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SUMMARY 

1. Leaf breakdown rates of Alnus glutinosa were determined and the structure 

of decomposer assemblages associated with leaves were analysed to assess the effect 

of pollution on the ecological condition of the Ave River (Northwest Portugal). 

2. The increase in organic and inorganic nutrients was associated with an 

increase in the density and a decrease in the richness of macroinvertebrates, a 

dramatic decline in the conidial production of aquatic hyphomycetes, but no major 

change in the richness of aquatic hyphomycetes.  

3. The nutrient enrichment toward downstream was correlated with a 

significant acceleration in leaf breakdown rates.  

4. The degree of functional impairment assessed by the ratio of leaf 

breakdown rates in coarse-mesh and fine-mesh bags was in accordance with the 

gradient of pollution defined by two biotic indices. 

5. This study supports the contention that leaf breakdown experiments are a 

valuable tool to assess the effect of pollution on the ecological condition of rivers.  
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Introduction 

The concept of ecological integrity in streams can be envisaged as structural 

and functional integrity and, therefore, the assessment of a stream condition should 

include measurements of structural biological parameters and the analysis of 

ecosystem level-processes (Gessner & Chauvet 2002). Leaf breakdown is an 

integrative process since it links riparian vegetation, microbial and invertebrate 

activities as well as physical and chemical features of the stream (Benfield 1996, 

Gessner, Dobson & Chauvet 1999). Several studies demonstrate that anthropogenic 

stress affects leaf breakdown rates (see Gessner & Chauvet 2002 and references 

therein). Some authors find that nutrient enrichment stimulates leaf breakdown (e.g. 

Robinson & Gessner 2000, Pascoal, Cássio & Gomes 2001), while other working 

groups have demonstrated that this is not always the case. In a Hong Kong stream, 

the presence of organic pollution led to an increase in leaf breakdown rates in 

summer and a decrease in winter (Au, Hodgkiss & Vrijmoed 1992a), and no effect of 

pollution was found in an Indian river (Raviraja, Sridhar & Bärlocher 1998). Leaf 

breakdown rates were lowered by mine effluent discharge (Bermingham, Maltby & 

Cooke 1996) and they were negatively correlated with the concentration of dissolved 

zinc in stream water (Niyogi, Lewis & McKnight 2001). However, high values for 

leaf breakdown rates were found in a moderately heavy metal polluted stream, which 

was explained by the presence of an adapted fungal community and high N and P 

concentrations in the stream water (Sridhar et al. 2001). 

Three groups of organisms are recognised to be involved in leaf breakdown in 

aquatic ecosystems, namely invertebrate shredders, fungi and bacteria (Bärlocher 

1992, Gessner et al. 1999). There is evidence that fungi, particularly aquatic 
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hyphomycetes, dominate microbial leaf breakdown and condition the leaves, 

increasing their palatability for invertebrate shredders (Suberkropp 1998a). The 

relative importance of shredders, fungi and bacteria, and the factors controlling 

possible shifts in dominance are not clear (Hieber & Gessner 2002). The role of 

microorganisms and invertebrates in polluted streams may be altered if they respond 

differently to the imposed stress. It is currently recognised that macroinvertebrate 

communities are differentially sensitive to various types of pollutants and are capable 

of a graded response (Metcalfe-Smith 1996). Major data analysis for assessing water 

quality includes the use of biotic indices, diversity measures and multivariate 

analysis, widely applied to the benthic macroinvertebrate communities. Aquatic 

hyphomycetes are generally considered to be more abundant in streams with low 

level of pollution (Bärlocher 1992). Some studies, in organically polluted rivers, 

point to a loss of aquatic hyphomycete species and a decrease in conidial production 

associated with decomposing leaves (Au, Hodgkiss & Vrijmoed 1992b, Raviraja et 

al. 1998). In heavy metal polluted streams, a decline in the number of hyphomycete 

species (Bermingham et al. 1996) and a reduction in conidial production (Sridhar et 

al. 2001) were found. However, according to other studies, the community structure 

of aquatic hyphomycetes is not affected by effluents from a sewage treatment plant 

(e.g. Suberkropp et al. 1988) and a substantial number of hyphomycete species has 

been reported in some extremely polluted waters (Krauss et al. 2001, Sridhar et al. 

2000). 

In the current study, leaf breakdown rates of Alnus glutinosa (alder) were 

determined and the structure of the invertebrate and aquatic hyphomycete 

assemblages associated with leaves were analysed to assess the effect of pollution in 
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the ecological condition of a lowland river located in the Northwest Portugal, in a 

region of high urban and industrial pressure. 

 

Materials and methods 

Study area 

The Ave River is located in Northwest Portugal in a region of high 

demographic density and several industrial activities that have developed over the 

last 30 years, mainly textile, cutlery and metalworking industries. An integrated 

scheme for the recovery of this river is being implemented and most pollution 

sources are supposed to be linked to wastewater treatment stations. Six sampling 

sites were selected along a 30 km stretch of the river (Fig. 1). Stream order varied 

from 3 to 5 along the study stretch. The riparian forest in the Ave River catchment 

has been severely affected by high levels of human activity at the riverbanks and the 

presence of exotic riparian species such as Acacia sp. Nevertheless, there were only 

minor changes in the riparian vegetation among the sampling sites. The floristic 

inventory showed a dominance of Alnus glutinosa (L.) Gaertner in a 

phytosociological association characterised as Senecio bayonnensis-Alnetum 

glutinosae (Botelho 2001). 

 

Field procedures 

This study started in November 1999 and ran over five weeks. Leaves of A. 

glutinosa were collected just before abscission, stored air dried, weighed into 6 g-

groups and placed in fine-mesh (0.5 mm mesh) and coarse-mesh (10 mm mesh) bags 

(16 x 20 cm). A total of 108 bags of each mesh size were sealed and distributed at the 
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sampling sites. Triplicate fine-mesh and coarse-mesh bags were retrieved from each 

sampling site weekly over the period of study. In addition, three bags of both mesh 

sizes were randomly retrieved after thirty minutes of immersion to determine the 

initial leaf mass. 

 

Physical, chemical and microbial analyses of stream water 

During the study period, water samples were collected into sterile glass 

bottles, transported in a cold box (4 °C) and analysed within 24 h. A HACH 

DR/2000 photometer was used for the following analyses: quantification of chemical 

oxygen demand (COD) by dichromate reactor digestion method (measurable range: 

0-40 mg L
-1

), determination of nitrate concentration by cadmium reduction method 

(measurable range: 0-30 mg L
-1

) and determination of ammonium concentration by 

the Nessler method (measurable range: 0.025-3.25 mg L
-1

). The colony-forming units 

(CFU) of total heterotrophs, total and faecal coliforms were quantified according to 

standard methods (APHA 1998). 

 

Leaf mass loss 

The leaves were removed from the bags, rinsed with deionized water to 

remove the sediments and adhering invertebrates. Subsamples of the leaf material 

were used to induce fungal sporulation and the remaining leaf material was dried at 

60 °C to constant mass (72±24 h) and weighed to the nearest 0.01 g.  
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Macroinvertebrate and fungal survey 

The leaves in coarse-mesh bags were rinsed into a 400 m-mesh screen to 

retain the associated macroinvertebrates, which were sorted and preserved in ethanol 

(70 %, v/v) until identification and counting. Macroinvertebrates were identified to 

the genus or family, except for Oligochaeta that were not identified beyond the class 

level. Taxa were assigned as shredders according to Merritt & Cummins (1996). Two 

biotic indices, namely the Belgian Biotic Index (BBI – De Pauw & Vanhooren 1983) 

and the Biological Monitoring Working Party index, adapted to the Iberian Peninsula 

(BMWP´ – Alba-Tercedor & Sánchez-Ortega 1988, Rico et al. 1992) were 

calculated. In addition, both the relative number of Oligochaeta (% O) and of 

Ephemeroptera + Plecoptera + Trichoptera (% EPT) were calculated. 

Fungal sporulation was induced by aeration of 15 leaf discs (12 mm diameter) 

from each fine-mesh bag in 40 ml of filtered stream water (0.22 m pore size 

membrane) for 48±4 h at 18 °C. The suspension was filtered through a membrane 

(Millipore, 5 m pore size) and the spores retained were stained with cotton blue in 

lactic acid, identified and counted. Sporulation rates were calculated as number of 

conidia released per g (dry mass) of decomposing leaves per day.  

The macroinvertebrate and fungal communities were also analysed in terms of 

taxa richness.  

 

Statistical analysis 

Rates of leaf breakdown were obtained by fitting the percentage of dry mass 

remaining to the exponential model Wt=Wo . e-kt (Petersen & Cummins 1974), 
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where k is the exponential breakdown coefficient, Wt is the leaf dry mass remaining 

after time t from the initial amount Wo. Regression lines (ln transformed data) were 

compared by analysis of covariance (ANCOVA) followed by Tukey´s HSD test (Zar 

1996), using the statistical package Prism 3.0 for Macintosh (GraphPad software 

Inc., San Diego). 

Ordination of the spatial gradient according to the stream water variables was 

done using Principal Component Analysis (PCA) after standardisation of the 

variables (Legendre & Legendre 1998). The distribution of macroinvertebrates and 

fungi associated with leaf bags was analysed by Correspondence Analysis (CA – 

Legendre & Legendre 1998). Analyses were based on either the average number of 

the macroinvertebrates collected from leaves in coarse-mesh bags at each site during 

the whole study period, or the average value of sporulation rates of the aquatic 

hyphomycetes associated with leaves in fine-mesh bags at each site during the first 

three weeks of the study. Both PCA and CA were performed using the statistical 

package ADE-4 for Macintosh (Thioulouse et al.1997). 

Spearman rank correlation was used to examine the relationship between 

stream water variables, leaf breakdown rates, macroinvertebrate densities and 

richness, and aquatic hyphomycete sporulation rates and richness. Linear regression 

analysis was used to investigate the effect of stream water variables described by 

PCA scores on leaf breakdown rates. Correlations and regressions were done using 

the statistical package Statview 5.0 for Macintosh (SAS Institute Inc., North 

Carolina). 

 

 



9 

 

Results 

Physical, chemical and microbial analyses of stream water 

Temperature was similar at the different sampling sites (range 12.4 to 13.7 

ºC). Other physical, chemical and microbial characteristics of stream water are 

presented in Table 1. The average values of pH varied from 6.6 to 7.3. Conductivity 

and the chloride concentration increased about 7-fold and 18-fold, respectively, 

between L1 and L7. COD and the concentration of nutrients, such as ammonium, 

nitrates and phosphates, were high and increased from upstream to downstream. At 

all sampling sites, the total number of heterotrophic microbes was high and reached 

1.4 x 10
6
 CFU ml

-1
 at L7, the most downstream site. This site also exhibited the 

highest values for total and faecal coliform populations, although similar values for 

faecal coliforms were found at L5. The PCA ordination of the physical, chemical and 

microbial variables (Table 1) showed that variables indicative of a pollution gradient 

were positively correlated with the first PC axis (Fig. 2). The second PC axis seemed 

to separate inorganic nutrients from organic load. The PCA ordination of the 

sampling sites indicated three groups: i) L1 and L2, ii) L3, L4 and L5, and iii) L7 

(Fig. 2). 

 

Macroinvertebrate assemblages associated with decomposing alder leaves 

The density of macroinvertebrates associated with leaves in coarse-mesh bags 

increased from upstream to downstream (Fig. 3a). Significant correlations were 

noted between macroinvertebrate density and the concentration of nitrates (r=0.89, 

p=0.04), phosphates (r=0.97, p=0.04), ammonium (r=0.77, p=0.05) and conductivity 
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(r=0.87, p=0.05) in the stream water. Macroinvertebrate richness was low at all 

sampling sites (Fig. 3a). The highest richness was found at L1 (20 taxa) and the 

lowest at L3 (7 taxa). No significant correlations were found between richness and 

the environmental variables tested here.  

The BBI index revealed slightly polluted water at L1 (index 8) and moderately 

polluted water (index 5 to 6) at all downstream sampling sites (Fig. 3b). Similarly, 

BMWP´ (Fig. 3b) indicated some disturbance at L1, and decreased water quality at 

downstream sites: polluted (L2), seriously polluted (from L3 to L5) and polluted 

(L7). Poor water quality was also revealed by the low percentage of EPT taxa (Fig. 

3c). The value was highest at L1, corresponding to about 20 % of all individuals, and 

declined at L2 (7 %). Below L2, EPT taxa were only found at L4 and L7 at low 

frequencies (< 1 %). Shredders were rare at L1 and L7, and absent at the other 

sampling sites (data not shown). Apart from L1 and L2, which exhibited percentages 

of Oligochaeta less than 10 % (Fig. 3c), all sites exhibited extremely high values, 

particularly from L3 (69 %) to L5 (82 %).  

The distribution of the macroinvertebrates colonising leaf bags along the 

sampling sites by Correspondence Analysis is shown in Fig. 4. Factor 1 explained 41 

% of the total variance and clearly distinguished L1 and L2 from all the other sites. 

The taxa responsible for the separation along factor 1 were Athericidae, Baetidae, 

Leptophlebiidae, Leuctridae, Polycentropodidae and Platycnemidae. These taxa 

exhibited higher relative and absolute contributions to factor 1 and they were mainly 

associated with L1 and into a lesser extent with L2 (data not shown). Factor 2 

explained 26 % of the total variance and mainly separated L7 from L3, L4 and L5. 

Analysis of both absolute and relative contributions (data not shown) also suggested 
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a strong association of Ancylidae, Dugesiidae, Lymnaeidae, Bythinellidae and 

Calopterygidae with L7, while Erpobdellidae and Oligochaeta were strongly 

associated with L3, L4 and L5. The CA ordination of the sampling sites indicated 

three groups: i) L1 and L2, ii) L3, L4 and L5, and iii) L7 (Fig. 4). 

 

Aquatic hyphomycete assemblages associated with decomposing alder leaves 

Aquatic hyphomycetes exhibited peaks of sporulation between the first and the 

third week of leaf immersion in the Ave River, depending on the sampling site (data 

not shown). Average values of sporulation rates during the first three weeks of leaf 

decomposition are shown in Fig. 5. The highest value was observed at L1 (2140 

conidia mg
–1

 leaf dry mass d
-1

), which decreased about 100-fold at L5 and increased 

slightly at L7 (187 conidia mg
–1

 leaf dry mass d
-1

). Sporulation rates were negatively 

correlated with the concentrations of ammonium (r=-0.90, p=0.05) and chloride (r=-

0.97, p=0.05) in the stream water. Fungal richness ranged from 18 to 23 taxa and the 

highest value was found at L7. 

CA ordination of the aquatic hyphomycete taxa colonising alder leaves in fine-

mesh bags is shown in Fig. 6. Factor 1 explained 51 % of the total variance and 

separated L1 from the other sampling sites. Factor 3 explained 17 % of the total 

variance and seemed to separate L3 from the other sampling sites. Analysis of 

absolute and relative contributions (data not shown) suggested that Sigmoid 1, 

Alatospora acuminata and Tetrachaetum elegans were clearly associated with L1, 

while Clavariopsis aquatica, Clavatospora longibrachiata, Heliscella stellata and 

Tricladium splendens were mainly related to L3. In addition, C. longibrachiata made 

up more than 50 % of the total number of conidia released from submerged leaves at 
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L3. Flagellospora curta and Heliscus lugdunensis also exhibited high absolute and 

relative contributions (data not shown) and were strongly related to L5 and L7. In 

contrast, Anguillospora filiformis and Articulospora tetracladia were widely 

distributed along the study stretch, and thus did not contribute to the ordination of the 

sampling sites. The CA ordination of the sampling sites indicated three groups: i) L1, 

ii) L2, L5 and L7, and iii) L3 (Fig. 6).  

 

Breakdown rates of alder leaves 

Leaf breakdown rates were high (Petersen and Cummins 1974) and increased 

from upstream to downstream (Table 2). All sampling sites, except L1, exhibited 

significantly faster leaf breakdown in coarse-mesh than in fine-mesh bags 

(ANCOVA, F=4.15, p<0.05). Significant differences were found among the 

sampling sites in both fine-mesh (ANCOVA, F=2.42, p=0.04) and coarse-mesh 

(ANCOVA, F=8.61, p<0.0001) bags. Leaf breakdown was more pronounced in 

coarse-mesh bags at L7 (kc=0.0369 d
-1

) when compared to that measured at L1 and 

L2, but no differences were found between L7, L3, L4 and L5 (Table 2). In fine-

mesh bags, L7 (kf=0.0195 d
-1

) exhibited significantly faster leaf breakdown than L1, 

L2 and L3, and leaf breakdown rates at L4 and L5 were not significantly different 

from those measured at all the other sites.  

Significant linear relationships were found between the gradient of pollution, 

as defined by scores of the first PC axis in Fig. 2, and leaf breakdown rates in both 

coarse-mesh (r=0.96, p=0.002) and fine-mesh (r=0.92, p=0.01) bags (Fig. 7). In 

addition, leaf breakdown rates in fine-mesh bags were significantly correlated with 

nitrates (r=0.77, p=0.05), but not with aquatic hyphomycete attributes. Leaf 
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breakdown rates in coarse-mesh bags were correlated with ammonium (r=0.95, 

p=0.03), nitrates (r=0.94, p=0.04), phosphates (r=0.88, p=0.05) and 

macroinvertebrate density (r=0.77, p=0.05).  

 

Discussion  

Decomposer assemblages and structural condition of the Ave River 

In the reach under study, the concentration of organic and inorganic nutrients 

was high and increased along the longitudinal gradient of the river. From upstream to 

downstream, sporulation rates of aquatic hyphomycetes declined and were negatively 

associated with ammonium and chloride concentrations in the stream water. A 

decline in the number of aquatic hyphomycete species and in the spore production 

has been observed in streams polluted with either organic compounds (Au et al. 

1992b, Raviraja et al. 1998) or heavy metals (Sridhar et al. 2001). In the present 

study, the total number of aquatic hyphomycete species varied little (18-23 taxa) and 

was comparable with those reported from alder leaves by Bärlocher, Canhoto & 

Graça (1995) in Central Portugal (22-24 taxa) and by Chauvet et al. (1997) in 

Northern Spain (15-17 taxa). However, CA ordination indicated community changes 

on either the identity or the relative proportion of hyphomycete species along the 

Ave River. The density of macroinvertebrates in alder leaves was correlated with 

nitrate and phosphate concentrations in the stream water. Higher density of 

invertebrates, in both alder and eucalyptus leaves, was also found at nutrient enriched 

downstream sites in Northern Spain (Basaguren & Pozo 1994). Ordination of the 

sampling sites based on either the environmental variables or the macroinvertebrate 

taxa discriminated the same groups, namely i) L1 and L2, ii) L3, L4 and L5, and iii) 
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L7. Nevertheless, multivariate approaches cannot directly show whether ecosystem 

conditions are improving or deteriorating (Cao, Bark & Williams 1996). 

Biotic indices, such as BBI and BMWP’, developed on benthic 

macroinvertebrate communities are designed for water quality assessment using 

information on species tolerance to pollution (Metcalfe-Smith 1996). Previous 

studies demonstrate that the degree of pollution as evaluated by biotic indices can 

depend on both the sampling method and the biotic index used (Pascoal et al. 2001). 

Graça, Ferreira & Coimbra (2001) recovered essentially the same invertebrate taxa 

using either alder leaf bags or hand net, and these sampling methods were effective 

in discriminating water quality in a stream impacted by sewage effluents in the 

Northwest of Portugal (Pascoal et al. 2001). BMWP’ and BBI were good indicators 

of water pollution, being the first index more sensitive to changes in water quality 

(Pascoal et al. 2001). Similar results were found in the Ave River, and BMWP’ 

classified L1 as having some disturbance, L2 and L7 as polluted, and L3, L4 and L5 

as seriously polluted. Ephemeroptera, Plecoptera and Trichoptera include sensitive 

taxa to organic pollution (Resh & Jackson 1993), while Oligochaeta include several 

tolerant taxa (Merritt & Cummins 1996). Below L2, the low frequencies of EPT taxa 

and the dominance of Oligochaeta corroborate the poor water quality at downstream 

sites.  

 

Leaf breakdown and functional condition of the Ave River 

Breakdown rates of alder leaves were high and varied from 0.0113 to 0.0195 

d
-1 

and from 0.0170 to 0.0369 d
-1 

in fine-mesh and coarse-mesh bags, respectively. 

These values are within the range of those reported for alder leaves in Portuguese 



15 

(Abelho 1999, Graça et al. 2001), Spanish (Pozo et al. 1998), French (Gessner & 

Chauvet 1994, Fabre & Chauvet 1998) and German (Hieber & Gessner 2002) 

streams, in the same season.  

In this study, leaf breakdown was faster at the most nutrient enriched sites as 

found by other authors (Meyer & Johnson 1983, Suberkropp & Chauvet 1995, 

Pearson & Connolly 2000, Pascoal et al. 2001). Leaf breakdown can be stimulated 

by phosphate or both phosphate and nitrate (Grattan & Suberkropp 2001) and 

differences in nitrate concentration appeared to explain much of the variation in leaf 

breakdown rates and in microbial activity in streams with different water chemistry 

(Meyer & Johnson 1983, Suberkropp & Chauvet 1995). However, most of the 

research on the effect of nutrients on leaf breakdown has been conducted in streams 

with lower levels of nutrients (e.g. Meyer & Johnson 1983, Suberkropp & Chauvet 

1995, Robinson & Gessner 2000, Grattan & Suberkropp 2001) when compared to 

those found in this study. In the Ave River, the stress gradient described by PCA 

revealed to be a reliable predictor of leaf breakdown rates in both fine-mesh and 

coarse-mesh bags. Leaf breakdown rates in fine-mesh bags were mainly correlated 

with nitrate concentrations and rates in coarse-mesh bags were correlated with 

ammonium, nitrate and phosphate concentrations, which could suggest a different 

influence of N and P on microbial decomposing activity depending on the presence 

or absence of feeding invertebrates.  

Significant correlations between leaf breakdown rate and maximum of fungal 

biomass or conidial production have been found (Gessner & Chauvet 1994, 

Maharning & Bärlocher 1996). However, in an organically polluted river, the decline 

in spore production was not accompanied by a decrease in leaf breakdown rates 
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(Raviraja et al. 1998). In the Ave River, leaf breakdown rates were not significantly 

correlated with fungal sporulation and at the most downstream site, which exhibited 

the highest leaf breakdown rate, low conidium production was found. Several 

hypotheses can explain these findings. First, higher values for spore production could 

have occurred outside the sampling dates. Second, sporulation is more sensitive to 

water chemistry than growth of aquatic hyphomycetes (e.g., Suberkropp & Chauvet 

1995, Suberkropp 1998b), and the reduction in sporulation rates is not necessarily 

proportional to the decrease in fungal biomass and/or enzymatic decomposing 

activity. Finally, although fungi are considered to contribute greater to leaf mass loss 

than heterotrophic bacteria (Baldy, Gessner & Chauvet 1995, Weyers & Suberkropp 

1996, Hieber & Gessner 2002), an enhanced contribution of bacteria for the overall 

process could have occurred at the most polluted sites. 

Apart from L1, leaf breakdown rates were higher in coarse-mesh bags and 

were correlated with the density of macroinvertebrates. Shredders were rare or even 

absent at the majority of the sampling sites and thus, could not have been responsible 

for the faster leaf breakdown observed at the most nutrient enriched sites. Similar 

results were found at sites affected by sewage effluents (Pascoal et al. 2001). Except 

perhaps for predators, all the other invertebrates can, to various extents, behave as 

detritivores (Graça 2001). A high number of oligochaetes was frequently observed 

inside the leaf matrix after the third week of leaf immersion in the Ave River, mainly 

below L2. These invertebrates, which feed on fine particulate organic matter, use leaf 

litter as habitat where they may enhance leaf breakdown by their movement and 

feeding activity (Chauvet, Giani & Gessner 1993).   
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Gessner & Chauvet (2002) proposed that the ratio of leaf breakdown rates in 

coarse-mesh bags to rates in fine-mesh bags could provide more powerful 

information to assess functional stream integrity than absolute values of breakdown 

rates, because changes in the ratio would indicate changes in the relative contribution 

of microorganisms and invertebrates. The ratio of leaf breakdown rates in coarse-

mesh and fine-mesh bags (Table 3) revealed that apart from L1 (score 2), ecosystem 

functioning in the Ave River was compromised at all sampling sites, particularly at 

L3 (score 0). The better river functioning at L1 and the compromised functional 

condition at downstream sites were in agreement with data from biotic indices. 

Furthermore, CA ordination of aquatic hyphomycetes separated L3 from either L1 or 

the remaining sampling sites, suggesting shifts in the structure of the fungal 

assemblages associated with changes in the functional condition of the Ave River. 

In summary, structural and functional attributes in the Ave River responded to 

the presence of pollution as follows: i) an increase in the density and a decrease in 

the richness of macroinvertebrate taxa, ii) a strong decline in conidial production, but 

no major change in the richness of aquatic hyphomycete taxa and iii) a stimulation of 

leaf breakdown rates. In addition, the degree of functional impairment assessed by 

the ratio of leaf breakdown rates in coarse-mesh and fine-mesh bags was in 

accordance with the gradient of pollution defined by two biotic indices. Therefore, 

these results support the contention that studies of leaf breakdown are valuable tools 

to assess the effect of pollution on the ecological condition of rivers.  
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