
 
 

 

 
Abstract—Triangulation with active beacons is widely 

used in the absolute localization of mobile robots. The 
Geometric Triangulation algorithm allows the self-
localization of a robot on a plane. However, the three 
beacons it uses must be “properly ordered” and the al-
gorithm works consistently only when the robot is 
within the triangle formed by these beacons. This paper 
presents an improved version of the algorithm, which 
does not require beacon ordering and works over the 
whole navigation plane except for a few well-determined 
lines where localization is not possible. 
 

Index Terms—Mobile Robots, Robot Navigation, Posi-
tion Location. 

I. INTRODUCTION 

Localization is the process of finding both position and 
orientation of a vehicle in a given referential system [1], 
Drumheller in [2], [3]. Navigation of mobile robots indoors 
usually requires accurate and reliable methods of localiza-
tion. Many transportation systems now using wire-guided 
automated vehicles may benefit from the increased layout 
design flexibility provided by a wire-free localization 
method such as triangulation with active beacons.  

Triangulation with active beacons is a robust, accurate, 
flexible and widely used method of absolute localization 
[4], [5]. Several triangulation algorithms have been pro-
posed. These are some examples: Geometric Triangulation, 
Iterative Search, Newton-Raphson Iterative Search and 
Geometric Circle Intersection [6], algorithm from the Impe-
rial College Beacon Navigation System [3], [7], triangula-
tion using three circle intersection [8], triangulation using 
two circle intersection [9], [10], Position Estimator algo-
rithm [10]. The term absolute localization was defined by 
Drumheller [2] as "the enabling of a mobile robot to deter-
mine its position and orientation [...] in a way that is inde-
pendent of assumptions about previous movements". This is 
a very important task since relative localization estimated 
by dead reckoning methods is only reliable within a few me-
ters of distance traveled or short periods of time. These 
methods are usually too inaccurate to insure safe navigation 
over large distances or long periods of time [1], [3], [11], 
[12], [13], [14], [15], [16], [17], [18]. So, absolute localiza-
tion is required to perform periodic corrections of the esti-
mated localization. According to [19], “the most common 

positioning methods for indoor vehicles are odometry for 
relative positioning and triangulation for absolute position-
ing”. 

Triangulation is based on the measurement of the bear-
ings of the robot relatively to beacons placed in known 
positions. It differs from trilateration, which is based on the 
measurement of the distances between the robot and the 
beacons. These beacons are also called landmarks by some 
authors. According to [3], the term beacon is more appro-
priate for triangulation methods. 

When navigating on a plane, three distinguishable bea-
cons - at least - are required for the robot to localize itself 
(Fig. 1). λ12 is the oriented angle “seen” by the robot be-
tween beacons 1 and 2. It defines an arc between these bea-
cons, which is a set of possible positions of the robot [20]. 
An additional arc between beacons 1 and 3 is defined by 
λ31. The robot is in the intersection of the two arcs. Usually, 
the use of more than three beacons results in redundancy. In 
[6], triangulation with three beacons is called three-object 
triangulation. 

Section II describes the restrictions that are common to 
all three-object triangulation algorithms. Section III pre-
sents the Geometric Triangulation algorithm described in 
[6]. This is done in order to clarify the improvements made 
to this algorithm in Section IV. Simulation results presented 
in that section validate these improvements. 

II. RESTRICTIONS COMMON TO ALL THREE-OBJECT 
TRIANGULATION ALGORITHMS 

As shown in the previous section, the robot must “see” at 
least three beacons to localize itself in a plane. All areas of 
the plane with less than three visible beacons are unsuitable 
for robot localization. It also has been shown that those 
three beacons are usually enough to allow robot localiza-
tion. 
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Fig. 1. Three-object triangulation 
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Fig. 2. Robot cannot localize itself on the circumference that contains 
the three beacons 

 
However, this is not true if the robot and the beacons all 

lie in the same circumference (Fig. 2). The robot cannot lo-
calize itself on this circumference because the intersection 
of the two arcs is another arc, not a point. These two restric-
tions are common to all three-object triangulation algo-
rithms. Even in an obstacle-free environment a problem 
arises when a beacon becomes between the robot and other 
beacon. In such cases, it is assumed that only the closest 
beacon is visible. 

III. THE GEOMETRIC TRIANGULATION ALGORITHM 

The Geometric Triangulation algorithm (Fig. 3) de-
scribed in [6] uses three distinguishable beacons in a Carte-
sian plane, labeled 1, 2 and 3, placed in known positions 
(x1, y1), (x2, y2) and (x3, y3). L12 and L31 are, respectively, 
the distances between beacons 1 and 2 and beacons 1 and 3. 
L1 is the distance between the robot and beacon 1. To de-
termine its position (xR, yR) and orientation θR, the robot 
measures angles λ1, λ2 and λ3 (relative beacon orientations 
from the robot). 

A. Specific Restrictions of the Geometric Triangulation 
Algorithm 

In addition to the restrictions that are common to all 
three-object triangulation algorithms (referred in Section II) 
and according to [6], the Geometric Triangulation algorithm 
has the following specific ones: 

1. The beacons must be labeled consecutively (1, 2, 3) 
in counterclockwise fashion; 

2. Both the angle between beacons 1 and 2 (λ12) and 
the angle between beacons 1 and 3 (λ31) must be less 
than 180º. If this is not true, the beacon labels must 
be shifted counterclockwise once or twice, until the 
requirement is met.  

When these two requirements are met, the beacons are 
said to be “properly ordered”. Resulting from all restrictions 
(both common and specific ones), there are zones and paths 
in the plane where the Geometric Triangulation algorithm 
does not work. Moreover, still according to [6], “the algo-
rithm works consistently only when the robot is within the 
triangle formed by the three landmarks [beacons]. There 
are areas outside the landmark [beacon] triangle where the 
algorithm works but these areas are difficult to determine 
and are highly dependent on how the angles are defined. 
(…) No consistent rule was found to define the angles to 
insure a correct execution of this method”. Such an angles 
definition is used in the Generalized Geometric Triangula-
tion algorithm described in Section IV. 
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Geometric Triangulation Algorithm 

1. Properly order beacons. 
2. Let ( )3131 º360 λ−λ+=λ  

3. Let 1212 λ−λ=λ  
4. Let φ be the angle between the positive x-axis and the line 

formed by the points of beacons 1 and 2. 
5. Let σ be the angle between the positive x-axis and beacons 1 and 

3, plus φ. 
6. Let 31λ−σ=γ  

7. Let 
3112
1231

sinL
sinLp

λ⋅
λ⋅=  

8. Let 








λ−γ⋅
γ⋅−λ=τ −

12

121
coscosp

sinpsintan  

9. Let ( )
12

1212
1 nsi

nsiLL
λ

λ+τ⋅=   

10. ( )τ+φ⋅−= cosLxx 11R   
11. ( )τ+φ⋅−= sinLyy 11R   
12. 1R λ−τ+φ=θ  

 
Fig. 3. Geometric Triangulation 

IV. THE GENERALIZED GEOMETRIC TRIANGULATION 
ALGORITHM 

This section presents a new version of the Geometric 
Triangulation algorithm that does not require beacon order-
ing and works over the whole navigation plane except for a 
few well-determined lines where localization is not possi-
ble. 

These improvements are mainly achieved through a care-
ful definition of the angles used by the algorithm, which is 
only subject to the restrictions that are common to all three-
object triangulation algorithms. 

Consider (Fig. 4) three distinguishable beacons in a Car-
tesian plane, randomly labeled 1, 2 and 3, with known posi-
tions (x1, y1), (x2, y2) and (x3, y3). L12 is the distance be-
tween beacons 1 and 2. L31 is the distance between beacons 
1 and 3. L1 is the distance between the robot and beacon 1. 
In order to determine its position (xR, yR) and orientation θR, 
the robot measures - in counterclockwise fashion - the an-
gles λ1, λ2 and λ3, which are the beacon orientations relative 
to the robot heading. Algorithm lines 2 through 5 compute 
the oriented angles λ12 and λ31 “seen” by the robot between 
beacons 1 and 2 and beacons 3 and 1, respectively. Both λ12 
and λ31 are always positive. 
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Angle Ranges 
 

0º ≤  λ1 < 360º 
0º ≤  λ2 < 360º 
0º ≤  λ3 < 360º 

 
0º <  λ12 < 360º 
0º <  λ23 < 360º 
0º <  λ31 < 360º 

 
-180º < φ ≤ 180º 
-180º < σ ≤ 180º 
-180º < τ ≤ 180º 

 
-180º < θR ≤ 180º 

 
 

Generalized Geometric Triangulation Algorithm 

1. If there are less than three visible beacons available, then 
return a warning message and stop. 

2. 1212 λ−λ=λ  
3. If 21 λ>λ  then ( )1212 º360 λ−λ+=λ   
4. 3131 λ−λ=λ  

5. If 13 λ>λ  then ( )3131 º360 λ−λ+=λ   

6. Compute L12 from known positions of beacons 1 and 2. 
7. Compute L31 from known positions of beacons 1 and 3. 
8. Let φ be an oriented angle such that -180º < φ ≤ 180º. Its 

origin side is the image of the positive x semi-axis that 
results from the translation associated with the vector 
which origin is (0, 0) and ends on beacon 1. The extrem-
ity side is the part of the straight line defined by beacons 
1 and 2 which origin is beacon 1 and does not go by bea-
con 2. 

9. Let σ be an oriented angle such that -180º < σ ≤ 180º. Its 
origin side is the straight line segment that joins beacons 
1 and 3. The extremity side is the part of the straight line 
defined by beacons 1 and 2 which origin is beacon 1 and 
does not go by beacon 2.  

10. 31λ−σ=γ  

11. ( )









λ⋅λ⋅−γ⋅λ⋅
γ⋅−λ⋅⋅λ=τ −

3112121231

313112121
sincosLcossinL

sinLsinLsintan  

12. If  




<τ
<λ
º0

º18012  then º180+τ=τ  

13. If  




>τ
>λ
º0

º18012  then º180−τ=τ  

 

14. If  3112 nsinsi λ>λ  then ( )
12

1212
1 nsi

nsiLL
λ

λ+τ⋅=  

15.   else ( )
31

3131
1 nsi

nsiL
L

λ
λ−σ+τ⋅

=  

16. ( )τ+φ⋅−= cosLxx 11R   
17. ( )τ+φ⋅−= sinLyy 11R   
18. 1R λ−τ+φ=θ  
19. If º180R −≤θ  then º360RR +θ=θ  
20. If º180R >θ  then º360RR −θ=θ  

 

Fig. 4. Generalized Geometric Triangulation
 
According to λ12 it is possible to divide the plane in two 

zones (Fig. 5). The same is valid to λ31, and this results in 
the plane divisions shown in Fig. 6. 

Applying the law of sines to the triangles formed by the 
robot and the beacons in each zone of the plane, we obtain 
the following expressions (for Zone I, 0º<σ<180º, refer to 
Fig. 4). 
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Fig. 5. Division of the plane according to λ12 
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Fig. 6. Divisions of the plane according to λ12, λ31, σ and the relative positions of the beacons 

 
Since, by definition, 
 

 31λ−σ=γ , (5) 
 
solving (1), (2), (3) and (4) to find τ and L1, the same re-

sult is obtained in each zone: 
 

 ( )









λ⋅λ⋅−γ⋅λ⋅
γ⋅−λ⋅⋅λ=τ −

3112121231

313112121
sincosLcossinL

sinLsinLsintan  (6) 

 ( )
12

1212
1 sin

sinLL
λ

λ+τ⋅=  (valid if 0sin 12 ≠λ ) (7)  

 ( )
31

3131
1 n

sinL
L

λ
λ−σ+τ⋅

=
si

 (valid if 0sin 31 ≠λ ) (8) 

For beacon configurations with σ=0º or σ=180º, if 
λ12=180º or λ31=180º then the robot is only able to “see” 
two beacons and L1 cannot be computed. For other configu-
rations, to enable localization if λ12=180º or λ31=180º, in 
the computation of L1 the algorithm chooses (lines 14 and 
15), from expressions (7) and (8), the one with larger de-
nominator. 

For all beacon configurations except those with σ=0º or 
σ=180º, if λ12=180º then the robot is over the line segment 
that joins beacons 1 and 2 and 

 

 ( )
31

3131
1 nsi

nsiLL
λ

λ−σ⋅=  (9) 

 
Since τ=0º, to compute L1 it is possible to use expression 

(8) instead of expression (9). Similarly, for all beacon con-
figurations except those with σ=0º or σ=180º, if λ31=180º 

then the robot is over the line segment that joins beacons 1 
and 3 and expression (7) can be used to compute L1. 

The value returned by function tan-1 is in the range of 
-90º to 90º. So, algorithm lines 12 and 13 are required to 
compute values of τ falling outside that interval. Similarly, 
algorithm lines 19 and 20 ensure that -180º<θ ≤180º. They 
may be omitted if θ is allowed to fall outside this interval. 

A. Specific Restrictions of the Generalized Geometric 
Triangulation Algorithm 

The Generalized Geometric Triangulation algorithm suf-
fers from the restrictions that are common to all three-object 
triangulation algorithms. However, the specific restrictions 
of the Geometric Triangulation algorithm do not further ap-
ply. In fact, the modified algorithm has the following fea-
tures: 

1. The three beacons may be randomly labeled 1, 2, 
and 3 (there is no need for consecutive labeling in 
counterclockwise fashion); 

2. The three beacons may be placed anywhere in the 
plane (as long as two beacons do not share the same 
position); 

3. Both the angle between beacons 1 and 2 (λ12) and 
the angle between beacons 3 and 1 (λ31) may be 
equal or greater than 180º; 

4. The algorithm works consistently inside, outside or 
over the triangle formed by the three beacons (ex-
cept where any restriction common to all three-
object triangulation algorithms apply). 

The Generalized Geometric Triangulation algorithm 
works over the whole navigation plane, except for the few 
lines plotted in Fig. 7. 



 
 

 

 
 

Fig. 7. Robot is unable to localize itself on these lines of the navigation 
plane 

B. Simulation Results 

In order to validate the improved features of the General-
ized Geometric Triangulation algorithm, two tests were 
made in a simulation environment. The code was written in 
Java 2 and compiled with the Java Development Kit (ver-
sion 1.3) on a personal computer equipped with a Pentium 
III processor and running Windows 2000 Professional. 
Computations were performed using IEEE 754 Double 
floating-point format (64 bits). Graphics were plotted with 
Matlab (version 5.2). 

In the first test, three beacons placed in known positions 
of a Cartesian plane are labeled 1, 2 and 3 in counterclock-
wise fashion. Beacon positions and resulting values of σ 
and φ are shown in Fig. 8. The robot is initially placed at the 
origin of the referential system. Its heading is arbitrarily set 
to 0º. Angles λ1, λ2 and λ3 are computed, rounded to inte-
gers (to simulate the outputs of an instrument unable to 
measure angle increments below 1º) and used as inputs of 
the Generalized Geometric Triangulation algorithm. This 
algorithm then computes both position and orientation of 
the robot. The distance between computed position and ac-
tual position of the robot is the position error. The absolute 
difference between computed orientation and actual orienta-
tion of the robot is the orientation error. The whole proce-
dure is repeated for robot positions covering a 100 x 100 
square. Position and orientation errors obtained in each po-
sition are displayed using a grayscale such that a point be-
comes darker as the error verified in that position increases. 

The second test is similar to the first one and the beacons 
are placed in the same positions of the Cartesian plane. 
However, they are labeled 1, 2 and 3 in clockwise fashion. 
Beacon positions and resulting values of σ and φ are shown 
in Fig. 9. 
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 x1 = 75 x2 = 25 x3 = 55 σ = 128.5º 
 y1 = 75 y2 = 60 y3 = 25 φ = 16.7º 
Fig. 8. Simulation results for beacons labeled in counterclockwise fashion 
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 x1 = 75 x2 = 55 x3 = 25 σ = -128.5º 
 y1 = 75 y2 = 25 y3 = 60 φ = 68,2º 

Fig. 9. Simulation results for beacons labeled in clockwise fashion 
 

Results displayed in Fig. 8 and Fig. 9 agree with the 
analysis made in Section 4. The Generalized Geometric 
Triangulation algorithm works for both counterclockwise 
and clockwise beacon labeling and the areas unsuitable for 
robot localization are almost reduced to the few lines shown 
in Fig. 7. The dark straight stripes are formed by points of 
the square where the robot is unable to “see” three beacons. 
Every time this happens during the simulations, the action 
taken by the algorithm consists of returning a position error 
arbitrarily set to 20 and an orientation error arbitrarily set to 
30º. Instead of being half straight lines, these stripes widen 
as the distance from the beacons increases. This is due to 
the errors contained in angles λ1, λ2 and λ3. It also can be 
seen that significant localization errors occur when the ro-
bot is over or close to the circumference defined by the 
three beacons. If angles λ1, λ2 and λ3 did not contain errors 
and computations were performed with an infinite number 
of significant digits, a 0/0 indetermination in the computa-
tion of τ would occur when the robot is over the circumfer-
ence but there would be no localization errors in its sur-
roundings. 

C. Comparison with other triangulation algorithms 

Table 1 summarizes some disadvantages of other trian-
gulation algorithms when compared to the Generalized 
Geometric Triangulation Algorithm. 
 

Table 1. Disadvantages of other triangulation algorithms 

 

Requires
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special 
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configura-
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solve 

equation 
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solutions 

Does not
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and 
orienta-

tion 
initial 

estimates

Iterative Search     x     
Newton-Raphson 
Iterative Method   x     x 
Two Circle Intersection   x   x   
Three Circle Intersection   x   x   
Geometric Circle 
Intersection x         
Position Estimator   x       
Imperial College B.N.S. x     x   

Geometric Triangulation x         



 
 

 

V. CONCLUSIONS 

All three-object triangulation algorithms for absolute 
self-localization of mobile robots navigating on a plane are 
subject to the following restrictions: 

1. At least three distinguishable beacons must be 
“seen” by the robot; 

2. Localization fails when the robot is over the 
circumference defined by the three beacons. 

The Geometric Triangulation algorithm uses three dis-
tinguishable beacons and, in addition to the restrictions that 
are common to all three-object triangulation algorithms, has 
three important limitations: 

1. The beacons must be labeled consecutively (1, 2, 3) 
in counterclockwise fashion; 

2. The angle between beacons 1 and 2 (λ12) and the 
angle between beacons 1 and 3 (λ31) must be less 
than 180º. If this is not true, then the beacon labels 
must be shifted counterclockwise once or twice, un-
til the requirement is met; 

3. It works consistently only when the robot is within 
the triangle formed by the three beacons. 

The Generalized Geometric Triangulation algorithm has 
been presented. It suffers from the restrictions that are 
common to all three-object triangulation algorithms but is 
free from the specific limitations of the Geometric Triangu-
lation algorithm. Improvements are mainly achieved 
through a careful definition of the angles used by the new 
algorithm, which has the following features: 

1. The three beacons may be randomly labeled 1, 2, 
and 3 (there is no need for consecutive labeling in 
counterclockwise fashion); 

2. The three beacons may be placed anywhere in the 
plane (as long as two beacons do not share the same 
position); 

3. Both the angle between beacons 1 and 2 (λ12) and 
the angle between beacons 3 and 1 (λ31) may be 
equal or greater than 180º; 

4. The algorithm works consistently inside, outside or 
over the triangle formed by the three beacons (ex-
cept where any restriction common to all three-
object triangulation algorithms apply).  

Results of two tests made in a simulation environment 
agree with the previously made analysis: the Generalized 
Geometric Triangulation algorithm works for both counter-
clockwise and clockwise beacon labeling. Though the an-
gles used as inputs of the algorithm contain errors, the areas 
of the plane unsuitable for robot localization are almost re-
duced to a few lines. Significant localization errors occur 
when the robot is over or close to the circumference defined 
by the three beacons. This suggests the need of providing 
the algorithm with a way of detecting these situations and 
also to develop a localization strategy that includes alterna-
tives to simple three-object triangulation. 
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