Synthesis of pure stereoisomers of benzo[b]thienyl dehydrophenylalanines by Suzuki cross-coupling. Preliminary studies of antimicrobial activity.

Ana S. Abreu,^a Paula M. T. Ferreira,^{a*} Luís S. Monteiro,^a Maria-João R. P. Queiroz,^a Isabel C.F.R. Ferreira,^b Ricardo C. Calhelha^b and Letícia M. Estevinho^b

^aDepartamento de Química, Universidade do Minho, 4710-057 Braga, Portugal ^bEscola Superior Agrária, Instituto Politécnico de Bragança, Campus de Sta Apolónia, 5300 Bragança, Portugal

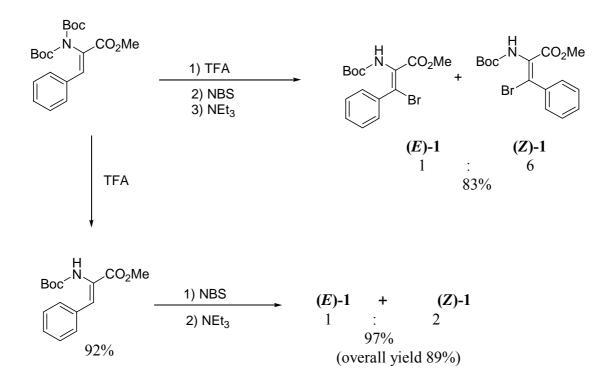
Abstract: Several benzo[b]thienyldehydrophenylalanines were synthesized from pure stereoisomers *N*-(*tert*-butoxycarbonyl)-βof the methyl ester of bromodehydrophenylalanine as an extension of our previously reported method for the synthesis of dehydrotryptophan analogues to dehydrophenylalanine derivatives. The latter were obtained in high yields by N-deprotection and bromination of N,N-bis-(tertbutoxycarbonyl)-(Z)-dehydrophenylalanine using TFA and NBS. This was carried out in two steps or in a one pot procedure resulting in different E/Z ratios. These compounds were coupled under Suzuki cross-coupling conditions [Pd(PPh₃)₄, Na₂CO₃, DME/H₂O] with several boronic benzo[b]thienyl acids in good to high yields maintaining the stereochemistry of the starting materials. The best yields were obtained when the boronic acid was in position 7 of the benzo[b]thiophene and with the E isomer of the brominated dehydrophenylalanine. In some cases it was possible to increase the lower yields by changing the Pd source to PdCl₂(PPh)₂. A model dipeptide was prepared coupling a benzo[b]thienyldehydrophenylalanine with the methyl ester of alanine. Preliminary antimicrobial studies were performed with both isomers of one of the β , β diaryldehydroalanines obtained. The results show that the compounds are selective and very active (very low MICs) against Gram positive bacteria (B. cereus and B. subtilis)

Keywords: amino acids, dehydrophenylalanines, benzo[*b*]thiophenes, Suzuki coupling, palladium, antimicrobial

^{*} Corresponding author: email:pmf@quimica.uminho.pt; Tel.+351253604372; fax. +351253678983

the Z-isomer being more active. The compounds are also active against *Candida albicans* presenting similar MICs.

1. Introduction


Dehydroamino acids have been found in several natural peptides from microbial or marine sources. The incorporation of α , β -dehydroamino acids constitutes a valuable tool in structure-activity relationship (SAR) studies, due to the conformational constraints they impose. These restrained analogues of amino acids mainly dehydrophenylalanine and dehydrotyrosine have been introduced in peptide sequences to probe the preferred orientations of these residues once bound to the receptors.¹ These molecules can also be very useful as pharmaceutical probes towards various proteases, namely HIV-proteases.²

The dehydrophenylalanine residue as a constrained phenylalanine mimic has gained much importance, in particular, because of its turn inducing as well as helix-forming propensity.³ Studies have indicated that the α,β -double bond of dehydroamino acids does not in itself cause reversal in the peptide backbone and the preferred conformation of a dehydropeptide may be decided by the nature of the β -substituents. Thus, different dehydroamino acids can be used to introduce different kinds of constraints in peptides.⁴ Recently, we have been interested in the synthesis of new β -substituted dehydroamino acids either by Michael additions⁵ or by palladium catalyzed cross-couplings.^{6a-c} The fluorescence studies performed on β -benzo[*b*]thienyldehydroamino acids already prepared by us showed that some of them can also be used as fluorescent probes.^{6c}

Here we describe the synthesis of benzo[*b*]thienyldehydrophenylalanines using Suzuki cross-coupling⁷ of several boronic benzo[*b*]thienyl acids with pure stereoisomers of a β -bromodehydrophenylalanine derivative. Two of the β , β -diaryldehydroalanines obtained were tested for antimicrobial activity and showed to be active with low minimal inhibitory concentration (MIC). The insertion of this type of compounds in peptides was demonstrated preparing a model dipeptide using DCC/HOBt.

2. Results and discussion

The methyl ester of *N*,*N*-bis-(*tert*-butoxycarbonyl)-(*Z*)-dehydrophenylalanine⁵ (Boc₂- Δ Phe-OMe) was N-monodeprotected⁵ with TFA and β -brominated with NBS followed by treatment with NEt₃ to give the methyl ester of *N*-(*tert*-butoxycarbonyl)- β -bromodehydrophenylalanine [Boc- Δ Phe(β -Br)-OMe)] as a 1:2 E/Z mixture in an overall yield of 89%. The same reactions performed in a one pot procedure gave the products in a similar yield but resulted in a higher selectivity towards the *Z* isomer (1:6 *E/Z*) (Scheme 1). These results are similar to those obtained by us in the bromination of dehydroaminobutyric acid.^{6a}

Scheme 1. Synthesis of compounds (*E*)-1 and (*Z*)-1 in two steps or in a one pot procedure.

The stereochemistry of (*E*) and (*Z*)-1 was determined by NOE difference experiments irradiating the α -NH and observing a NOE effect on the signal of the phenyl protons of (*E*)-1 (Fig. 1) while for compound (*Z*)-1 this was not observed (Fig. 2).

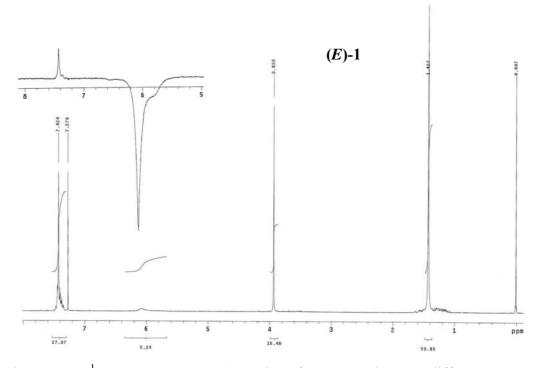


Figure 1 – ¹H-NMR spectrum (CDCl₃) of (*E*)-1 and NOE difference experiment irradiating the α -NH and observing the effect on the signal of the phenyl protons.

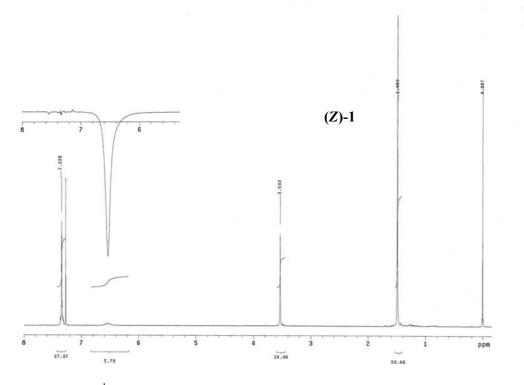
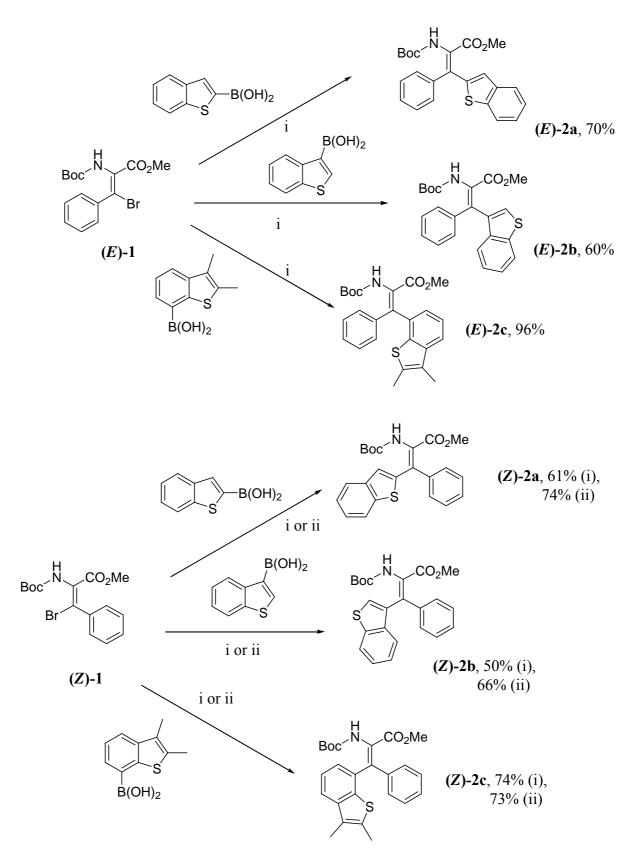
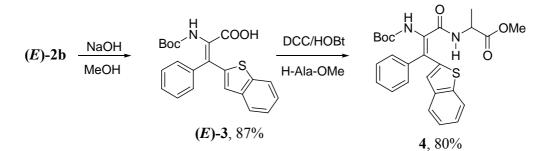



Figure 2 - ¹H-NMR spectrum (CDCl₃) of (**Z**)-1 and NOE difference experiment irradiating the α -NH.

The pure stereoisomers (*E*) and (*Z*)-1 were coupled with several boronic benzo[*b*]thienyl acids under Suzuki cross-coupling conditions^{6a} to give β -

benzo[*b*]thienyldehydrophenylalanines in good to high yields (Scheme 2). NOE difference experiments irradiating the α -NH confirmed that the coupled products maintained the stereochemistry of the starting materials.



Scheme 2. Synthesis of compounds (*E*)-2a-c and (*Z*)-2a-c under Suzuki cross-coupling conditions. i) $Pd(PPh_3)_4$ (10 mol%), Na_2CO_3 (2 eq.), boronic acid (1.3 eq.), DME/H_2O (4:1), 90 °C, 3-5 h. ii) same conditions but using $PdCl_2(PPh_3)_2$ (10 mol%).

The best yields were obtained when the boronic acid was in position 7 of the benzo[b]thiophene moiety. In all cases using the same catalytic conditions (i), the higher yields were obtained from compound (E)-1 which can be due to the lower steric hindrance of this derivative.

In order to increase the yields of the Z isomers, another palladium catalyst $[PdCl_2(PPh_3)_2]$, that had already given good results in the synthesis of β , β -bis-(benzo[b]thienyl)dehydroalanines from a β , β -dibromodehydroalanine derivative, was used.^{6c} In these conditions (ii), when the boronic acids are in the thiophene ring the yields increased from 61% to 74% in the synthesis of (Z)-2a and from 50% to 66% in the synthesis of (Z)-2b. This increase was not observed in the synthesis of compound (Z)-2c which was obtained in similar yields using both catalytic systems (Scheme 2).

A dipeptide was prepared from (*E*)-2b by C-deprotection and coupling with the methyl ester of alanine using DCC/HOBt (Scheme 3).

Scheme 3. Synthesis of dipeptide 4 from (E)-2b and the methylester of alanine.

This result in the synthesis of a model dipeptide shows that our β , β -diaryldehydroamino acids can be inserted into peptides.

A screening of antibacterial activities using two Gram negative (*Escherichia coli* and *Pseudomonas aeruginosa*) and two Gram positive bacteria (*Bacillus subtilis* and *Bacillus cereus*) and antifungal activity using *Candida albicans* as a representative of fungi was assessed for compounds (*Z*)-2c and (*E*)-2c. The MIC (in μ g/mL) was determined (Table 1) using an adaptation of agar streak dilution method based on radial diffusion.^[8] In the same conditions different concentrated solutions of Ampiciline (antibacterial) and Cyclohexamide (antifungal) were used as standards. The MIC was considered to be the lowest concentration of the tested compound which inhibits growth of bacteria or fungi on the plate. The compounds tested were inactive against the Gram- bacteria

(*Escherichia coli* and *Pseudomonas aeruginosa*). The diameters of the inhibition zones corresponding to the MICs for the Gram+ bacteria and for *C. albicans* are presented in Table 1.

Compounds	MIC in μ g/mL (Zone of inhibition in mm)		
	Bacillus cereus	Bacillus subtilis	Candida albicans
	CECT148	CECT498	CECT 1394
(E)-2c	0.125 (13)	0.125 (15)	0.125 (6)
(Z)-2c	$1.25 \times 10^{-3} (15)$	$1.25 \times 10^{-3} (11)$	0.125 (5)
Ampiciline	3.13 (13)	12.5 (10)	
Cyclohexamide			12.5 (5)

Table 1. Antimicrobial activity of compounds (Z)-2c and (E)-2c.

CECT-Spanish type culture collection of Valencia University

From the inspection of Table 1 it is possible to conclude that the compounds tested are active against *B.cereus*, *B.subtilis* and *C. albicans* presenting MICs very much lower than those obtained with Ampiciline (antibacterial) and Cyclohexamide (antifungal).

Compound (Z)-2c shows lower MICs than (E)-2c for Gram + bacteria but the results against *C. albicans* are similar for both isomers. These results indicate that the compounds are selective and very active (very low MICs) against the Gram + bacteria tested and against a representative of fungi, thus showing very interesting antimicrobial properties.

3. Conclusion

Several β , β -diaryldehydroamino acids in the benzo[*b*]thiophene series were synthesized in good to high yields from pure stereoisomers of a β -bromodehydrophenylalanine derivative and benzo[*b*]thienylboronic acids using C-C paladium-catalyzed crosscouplings. From the results obtained we can conclude that the *E* isomer of the β brominated dehydrophenylalanine (*E*)-1 is more reactive under Suzuki cross coupling conditions then the *Z* isomer. It is also possible to conclude that the 7benzo[*b*]thienylboronic acid is the most reactive, and its reactivity does not depend on the Pd source. The insertion of this type of compounds in peptides was tested preparing a model dipeptide in high yield. Preliminary antimicrobial studies were performed using both isomers of one of the β , β -diaryldehydroalanines obtained. The results show that the compounds are selective and very active (very low MICs) against Gram + bacteria (*B. cereus* and *B. subtilis*), the Z-isomer being more active. The compounds are also active against *Candida albicans* presenting similar MICs.

4. Experimental

4.1. General

Melting points (°C) were determined in a Gallenkamp apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on a Varian Unity Plus at 300 and 75,4 MHz respectively. ¹H-¹H spin-spin decoupling and DEPT θ 45° were used. Chemical shifts are given in ppm and coupling constants in Hz. MS and HRMS data were recorded by the mass spectrometry service of the University of Vigo, Spain. Elemental analysis was performed on a LECO CHNS 932 elemental analyser.

The reactions were monitored by thin layer chromatography (TLC). Column chromatography was performed on Macherey-Nagel silica gel 230-400 mesh. Petroleum ether refers to the boiling range 40-60 °C. When solvent gradient was used, the increase of polarity was made from neat petroleum ether to mixtures of ether/petroleum ether, increasing 10% of ether each time until the isolation of the product.

4.2. Synthesis of Boc-(*E*)- Δ Phe(β -Br)-OMe (*E*-1) and Boc-(*Z*)- Δ Phe(β -Br)-OMe (*Z*-

1): Boc-ΔPhe-OMe⁵ (1.39 g, 5.00 mmol) was dissolved in dichloromethane (0.1 M) and 1.2 eq. of *N*-bromosuccinimide (0.980 g, 5.50 mmol) were added with vigorous stirring. After reacting for 16 hours, triethylamine (1.5 eq.) was added and stirring continued for an additional hour. Dicloromethane (50 mL) was added and the organic phase was washed with water and brine (3x30 mL each). After drying over MgSO₄ the extract was taken to dryness at reduced pressure to give (*E*)-1 and (*Z*)-1 (1.73 g, 97%) as a 1:2 mixture. The diastereomers were separated by column chromatography using solvent gradient from neat petroleum ether to 20% diethyl ether/petroleum ether to give (*Z*)-1 mp 101-103 °C (from diethyl ether/*n*-hexane). ¹H NMR (CDCl₃): 1.49 (9H, s, CH₃Boc), 3.53 (3H, s, OCH₃), 6.55 (1H, s, αNH), 7.34 (5H, br s, ArH). ¹³C NMR (CDCl₃): 28.06 (C(*C*H₃)₃), 52.43 (OCH₃), 82.10 (O*C*(CH₃)₃), 128.21 (CH), 128.94 (CH), 129.11 (CH), 129.31 (C), 137.39 (C), 151.89 (C=O), 163.47 (C=O) ppm. Anal. calcd. for

C₁₅H₁₈NO₄Br (356.22): C 50.58; H 5.09; N 3.93; found C 50.61; H 5.12; N 4.01. (*E*)-1 mp 80-81 °C (from petroleum ether). ¹H NMR (CDCl₃): 1.43 (9H, s, CH₃Boc), 3.93 (3H, s, OCH₃), 6.08 (1H, s, αNH), 7.43 (5H, br s, ArH). ¹³C NMR (CDCl₃): 28.01 (C(*C*H₃)₃), 52.58 (OCH₃), 82.00 (O*C*(CH₃)₃), 128.58 (CH), 128.94 (CH), 129.04 (CH), 129.47 (C), 136.50 (C), 151.56 (C=O), 164.55 (C=O) ppm. Anal. calcd. for C₁₅H₁₈NO₄Br (356.22): C 50.58; H 5.09; N 3.93; found C 50.74; H 5.21; N 4.09. One pot procedure: Boc₂-ΔPhe-OMe⁵ (1.86 g, 5.00 mmol) was dissolved in dichloromethane (0.1 M) and 2% of TFA slowly added with vigorous stirring. The reaction was monitored by TLC and when no starting material was detected (≈1 hour) 1.2 eq. of *N*-bromosuccinimide (1.34 g, 7.50 mmol) were added. After reacting for 16 hours triethylamine (15.0 mmol) was added and stirring continued for an additional hour. Dichoromethane was added (50 mL) and the organic phase was then washed with water and brine (2x30 mL each). After drying over MgSO4 the extract was taken to

dryness at reduce pressure to afford a 1:6 mixture of (E)-1 and (Z)-1 (1.48 g, 83%).

4.3.General procedure for Suzuki cross couplings: To a solution of compound (*E*)-1 or (*Z*)-1 in DME/water (4/1), benzo[*b*]thienylboronic acids (1.1 eq.), Na₂CO₃ (2 eq.) and Pd(PPh₃)₄ (10 mol%) were added and the mixture was heated at 90 °C while the reaction was monitored by TLC. The DME was removed under reduced pressure and the residue was dissolved in ethyl acetate (15 mL). The organic layer was then washed with water and brine (3x5 mL) dried with MgSO₄ and the solvent evaporated at reduce pressure to give an oil which was submitted to column chromatography.

4.3.1. Boc-(*E*)-ΔPhe(β-benzo[*b*]thien-2-yl)-OMe (*E*-2a): The procedure described above was applied using compound (*E*)-1 (107 mg, 0.300 mmol) and the 2-benzo[*b*]thienylboronic acid (0.330 mmol, 59.0 mg) and heating for 3h 30m. Column chromatography using a solvent gradient from pure petroleum ether to 30% diethyl ether in petroleum ether, gave compound (*E*)-2a (86.0 mg, 70%) as an oil. Recrystallization from diethyl ether/petroleum ether afforded light yellow crystals, mp 97-99 °C. ¹H NMR (CDCl₃): 1.46 (9H, s, CH₃ Boc), 3.69 (3H, s, OCH₃), 6.17 (1H, br s, NH), 7.16 (1H, s, ArH), 7.29-7.43 (7H, m, ArH), 7.69-7.74 (2H, m, ArH) ppm. ¹³C NMR (CDCl₃): 28.09 (C(*C*H₃)₃), 52.58 (OCH₃), 81.77 (O*C*(CH₃)₃), 122.05 (CH), 123.60 (CH), 124.33 (CH), 124.43 (CH), 124.55 (CH), 127.44 (C), 128.83 (CH), 129.02 (CH), 129.62 (CH), 137.33

(C), 139.31 (C), 140.72 (C), 141.97 (C), 152.12 (C=O), 166.01 (C=O) ppm. Anal. calcd. for C₂₃H₂₃NO₄S (409.50): C 67.46; H 5.66; N 3.42; S 7.83; found C 67.25; H 5.93; N 3.39; S 7.36.

4.3.2. Boc-(*Z*)-ΔPhe(β-benzo[*b*]thien-2-yl)-OMe (*Z*-2a): The procedure described above was applied using compound (*Z*)-1 (107 mg, 0.300 mmol) and the 2-benzo[*b*]thienylboronic acid (59.0 mg, 0.330 mmol) and heating for 5h. Column chromatography using a solvent gradient from pure petroleum ether to 30% diethyl ether in petroleum ether, gave compound (*Z*)-2a (75.0 mg, 61%) as an oil. Recrystallization from diethyl ether/petroleum ether afforded colourless crystals, mp 123-124 °C. ¹H RMN (CDCl₃): 1.52 (9H, s, CH₃ Boc), 3.49 (3H, s, OCH₃), 6.55 (1H, br s, NH), 7.08 (1H, s, ArH), 7.28-7.41 (7H, m, ArH), 7.67-7.76 (1H, m, ArH), 7.80-7.83 (1H, m, ArH) ppm. ¹³C RMN (CDCl₃): 28.15 (C(*C*H₃)₃), 51.96 (OCH₃), 81.59 (OC(CH₃)₃), 122.01 (CH), 123.57 (C), 124.00 (CH), 124.59 (CH), 125.31 (CH), 125.87 (C), 127.80 (CH), 128.07 (CH), 128.24 (CH), 129.38 (CH), 138.79 (C), 138.85 (C), 140.77 (C), 152.84 (C=O), 165.89 (C=O) ppm. Anal. calcd. for C₂₃H₂₃NO₄S (409.50): C 67.46; H 5.66; N 3.42; S 7.83; found C 67.58; H 5.74; N 3.48; S 7.70. The procedure described above using 0.5 mmol of (*Z*)-1 and substituting PdCl₂(PPh₃)₂ for Pd(PPh₃)₄ was used giving compound (*Z*)-2a (150 mg, 74%).

4.3.3. Boc-(*E*)-ΔPhe(β-benzo[*b*]thien-3-yl)-OMe (*E*-2b): The procedure described above was applied using compound (*E*)-1 (178 mg, 0.500 mmol) and the 3-benzo[*b*]thienylboronic acid (98.0 mg, 0.550 mmol) and heating for 3h. Column chromatography using a solvent gradient from pure petroleum ether to 30% diethyl ether in petroleum ether, gave compound (*E*)-2b (112 mg, 60%) as an oil. Recrystallization from diethyl ether/petroleum ether afforded colourless crystals, mp 171-172 °C. ¹H RMN (CDCl₃): 1.48 (9H, s, CH₃ Boc), 3.46 (3H, s, OCH₃), 6.33 (1H, br s, NH), 7.19 (1H, d, *J* = 7.8 Hz, ArH), 7.26-7.40 (8H, m, ArH), 7.81 (1H, d, *J* = 7.5 Hz, ArH) ppm ¹³C RMN. (CDCl₃): 28.09 (C(*C*H₃)₃), 52.09 (OCH₃), 81.46 (OC(CH₃)₃), 122.49 (CH), 123.21 (CH), 124.08 (CH), 124.30 (CH), 125.63 (CH), 127.57 (C), 128.45 (CH), 128.89 (CH), 129.20 (CH), 131.94 (C), 134.59 (C), 136.75 (C), 138.09 (C), 139.81 (C), 152.54 (C=O), 166.34 (C=O) ppm. Anal. calcd. for C₂₃H₂₃NO₄S (409.50): C 67.46; H 5.66; N 3.42; S 7.83; found C 67.30; H 5.94; N 3.51; S 7.64.

4.3.4. Boc-(*Z*)-ΔPhe(β-benzo[*b*]thien-3-yl)-OMe (*Z*-2b): The procedure described above was applied using compound (*Z*)-1 (107 mg, 0.300 mmol) and the 3-benzo[*b*]thienylboronic acid (59.0 g, 0.330 mmol) and heating for 3h. Column chromatography using a solvent gradient from pure petroleum ether to 30% diethyl ether in petroleum ether, gave compound (*Z*)-2b (62.0 mg, 50%) as an oil. Recrystallization from diethyl ether/petroleum ether afforded colourless crystals, mp 139-140 °C. ¹H RMN (CDCl₃): 1.40 (9H, s, CH₃ Boc), 3.61 (3H, s, OCH₃), 5.92 (1H, br s, NH), 7.16-7.20 (2H, m, ArH), 7.27-7.57 (6H, m, ArH), 7.58 (1H, d, *J* = 8.1 Hz, ArH), 7.90 (1H, d, *J* = 8.1 Hz, ArH) ppm. ¹³C RMN (CDCl₃): 28.07 (C(CH₃)₃), 52.13 (OCH₃), 81.38 (OC(CH₃)₃), 122.79 (CH), 123.25 (C), 124.67 (CH), 124.82 (CH), 127.22 (C), 128.05 (CH), 128.17 (CH), 128.41 (CH), 128.70 (CH), 134.16 (C), 136.84 (C), 139.39 (C), 140.12 (C), 152.73 (C=O), 166.18 (C=O) ppm. Anal. calcd. for C₂₃H₂₃NO₄S (409.50): C 67.46; H 5.66; N 3.42; S 7.83; found C 67.53; H 5.79; N 3.50; S 7.72. The procedure described above substituting PdCl₂(PPh₃)₂ for Pd(PPh₃)₄ was used giving compound (*Z*)-2b (81.0 mg, 66%).

4.3.5. Boc-(*E*)-ΔPhe(β-2,3-dimethylbenzo[*b*]thien-7-yl)-OMe (*E*-2c): The procedure described above was applied using compound (*E*)-1 (178 mg, 0.500 mmol) and the 2,3-dimethyl-7-benzo[*b*]thienylboronic acid (113 mg, 0.550 mmol) and heating for 4h 30m. Column chromatography using a solvent gradient from pure petroleum ether to 30% diethyl ether in petroleum ether, gave compound (*E*)-2c (209 mg, 96%) as an oil. Recrystallization from petroleum ether afforded colourless crystals, mp 152-154 °C. ¹H NMR (CDCl₃): 1.47 (9H, s, CH₃ Boc), 2.26 (3H, s, ArCH₃), 2.36 (3H, s, ArCH₃), 3.41 (3H, s, OCH₃), 6.24 (1H, br s, NH), 7.15 (1H, br d, *J* = 6.9 Hz, ArH), 7.31-7.36 (6H, m, ArH), 7.53 (1H, dd, *J* = 8.1 and 0.9 Hz, ArH) ppm. ¹³C NMR (CDCl₃): 11.41 (CH₃), 13.63 (CH₃), 28.13 (C(CH₃)₃), 51.99 (OCH₃), 81.27 (OC(CH₃)₃), 120.89 (CH), 123.71 (CH), 124.47 (CH), 126.70 (C), 127.06 (C), 128.06 (C), 128.45 (CH), 128.76 (CH), 129.67 (CH), 133.50 (C), 134.48 (C), 136.60 (C), 138.07 (C), 141.48 (C), 152.70 (C=O), 166.03 (C=O) ppm. Anal. calcd. for C₂₅H₂₇NO₄S (437.55): C 68.62; H 6.22; N 3.20; S 7.33; found C 68.64; H 6.44; N 3.29; S 7.02.

4.3.6. Boc-Z- Δ Phe(β -2,3-dimethylbenzo[*b*]thien-7-yl)-OMe (Z-2c): The procedure described above was applied using compound (Z)-1 (178 mg, 0.500 mmol) and the 2,3-

dimethyl-7-benzo[*b*]thienylboronic acid (113 mg, 0.550 mmol) and heating for 4h 30m. Column chromatography using a solvent gradient from pure petroleum ether to 30% diethyl ether in petroleum ether, gave compound (*E*)-2c (162 mg, 74%) as an oil. Recrystallization from petroleum ether afforded colourless crystals, mp 140-142 °C. ¹H NMR (CDCl₃): 1.42 (9H, s, CH₃ Boc), 2.31 (3H, s, ArCH₃), 2.42 (3H, s, ArCH₃), 3.60 (3H, s, OCH₃), 5.89 (1H, br s, NH), 7.08-7.21 (3H, m, ArH), 7.23-7.30 (3H, m, ArH), 7.38 (1H, t, *J* = 8.1 Hz, ArH), 7.59 (1H, d, *J* = 8.1 Hz, ArH) ppm. ¹³C NMR (CDCl₃): 11.46 (CH₃), 13.67 (CH₃), 28.08 (C(CH₃)₃), 52.19 (OCH₃), 81.14 (OC(CH₃)₃), 121.26 (CH), 124.38 (CH), 125.33 (CH), 126.99 (C), 127.93 (CH), 128.08 (CH), 128.78 (CH), 129.69 (C), 132.00 (C), 134.87 (C), 137.87 (C), 138.59 (C), 141.78 (C), 152.67 (C=O), 166.30 (C=O) ppm. Anal. calcd. for C₂₅H₂₇NO₄S (437.55): C 68.62; H 6.22; N 3.20; S 7.33; found C 68.54; H 6.35; N 3.24; S 7.05. The procedure described above substituting PdCl₂(PPh₃)₂ for Pd(PPh₃)₄ was used giving compound (*Z*)-2c (160 mg, 73%).

4.4. Synthesis of the model dipeptide Boc-E- Δ Phe-(β -benzo[b]thien-2yl)-Ala-OMe

4.4.1. Synthesis of Boc-*E*-ΔPhe-(β-benzo[*b*]thien-2yl)-OH (*E*-3): To a solution of Boc-*E*-ΔPhe(β-benzo[*b*]thien-2-yl)-OMe (0.34 mmol, 137 mg) in dioxane (3 mL), 1 equiv. of NaOH 1 M was added. The solution was left stirring for 18 h at rt (the reaction was followed by tlc until no starting material was detected). The reaction mixture was acidified to pH 2-3 with KHSO₄ 1 M and the solid formed filtered. Cristallization from ethyl acetate / n-hexane afforded compound (*E*)-3 (117 mg, 87%) as a light yellow solid, mp 189-191°C (from ethyl acetate / *n*-hexane). ¹H RMN (CDCl₃): 1.43 (9H, s, CH₃ Boc), 6.18 (1H, s, NH), 7.29-7.40 (8H, m, ArH), 7.70-7.73 (2H, m, ArH) ppm. ¹³C NMR (CDCl₃): 28.08 (C(*C*H₃)₃), 82.01 (OC(CH₃)₃), 114.48 (C), 122.09 (CH), 123.87 (CH), 124.38 (CH), 124.72 (CH), 125,23 (CH), 126.32 (C), 128.95 (CH), 129.02 (CH), 129.58 (CH), 137,46 (C), 139.36 (C), 141.05 (C), 141.34 (C), 151.32 (C=O), 152.56 (C=O) ppm.

4.4.2. Synthesis of Boc-*E*- Δ Phe-(β -benzo[*b*]thien-2yl)-Ala-OMe (4): To a solution of Boc-*E*- Δ Phe(β -benzo[*b*]thien-2-yl)-OH (0.20 mmol, 79,0 mg) in acetonitrile (5 mL), HOBt (0.22 mmol, 34 mg) and DCC (0.22 mmol, 44 mg) were added with vigorous stirring at 0°C. After 15 min, HCl,H-Ala-OMe (0,2 mmol, 28 mg) and NEt₃ (0,2 mmol, 0.03 mL) were added. The reaction was left stirring for 18 h at rt. The urea was removed

by filtration and the solvent removed at reduced pressure. The oily residue was dissolved in ethyl acetate (15 mL) and the solution washed with KHSO₄ 1 M (3 x 5 mL), NaHCO₃ 1M (3 x 5 mL) and brine (3 x 5 mL). The organic layer was dried with MgSO₄ and solvent removed at reduced pressure giving an oil which was submitted to column chromatography with diethyl ether / petroleum ether (2:1). Compound **4** was isolated as a white solid (74 mg, 80 %), mp 168-169°C (from diethyl ether / *n*-hexane). ¹H RMN (CDCl₃): 1.10 (3H, d, J = 7.2 Hz, β CH₃ Ala), 1.44 (9H, s, CH₃ Boc), 3.43 (3H, s, OMe), 4.54-4.63 (1H, m, α CH Ala), 6.06 (1H, s, NH), 6.42 (1H, d, J = 7.5 Hz, NH), 7.27-7.41 (8H, m, ArH), 7.73-7.78 (2H, m, ArH) ppm. ¹³C NMR (CDCl₃): 17.82 (CH₃), 28.13 (C(*C*H₃)₃), 48.33 (CH), 52.17 (OMe), 81.52 (O*C*(CH₃)₃), 122.07 (CH), 123.57 (C), 123.67 (CH), 124.45 (CH), 124.56 (CH), 125,18 (CH), 128.73 (CH), 128.96 (CH), 129.54 (CH), 131.11 (C), 137,50 (C), 139.44 (C), 140.82 (C), 141.44 (C), 152.16 (C=O), 164.29 (C=O), 172.60 (C=O) ppm. Anal. calcd. for C₂₆H₂₈N₂O₅S (480.58): C 64.98; H 5.87; N 5.83; S 6.67; found C 64.94; H 5.95; N 5.82; S 6.66.

4.5. In vitro antimicrobial activity

Suspensions of the microorganism were prepared to contain approximately 10^8 cfu/mL and the plates were inoculated. A stock solution of the synthesized compound (1000 µg/mL) in DMSO was prepared and graded dilutions of the tested compounds were incorporated in a cavity (depth 3mm, diameter 4mm) made in the center of the Petri dish (nutrient agar for antibacterial activity and sabouraud dextrose agar medium for antifungal activity). The plates were incubated at 37 °C (for bacteria) and at 30 °C (for fungi) for 24h in duplicate.

Positive control using only inoculation and negative control using only DMSO in the cavity were carried out.

Acknowledgements

We thank the Foundation for Science and Technology (Portugal) for financial support through IBQF-Univ. Minho, project POCTI/1999/QUI/32689 and through SFRH/BD/4709/2001, PhD financial support of A.S. Abreu.

References

- 1- Sagan, S.; Josien, H.; Karoyan, P.; Brunissen A.; Chassaing, G.; Lavielle, S. *Bioorg. Med. Chem.* **1996**, *4*, 2167-2178, and references cited therein.
- 2- Prabhakaran, E. N.; Nandy, J. P.; Shukla, S.; Tewari, A.; Kumar Das, S.; Iqbal, J. *Tet. Lett.* **2002**, *43*, 6461-6466, and references cited therein.

3- Sastry, T. V. R. S.; Banerji, B.; Kumar, S. K.; Kunwar, A. C.; Das, J.; Nandy, J. P.; Iqbal, J. *Tet.Lett.* **2002**, *43*, 7621-7625, and references cited therein.

4- Siddiqui, M. Z. Int. J. Bio. Macromolecules 1999, 26, 17-21, and references cited therein.

5- Ferreira, P.M.T.; Maia, H.L.S.; Monteiro, L.S.; Sacramento, J. J. Chem. Soc. Perkin Trans. 1, 2001, 3167-3173.

6- (a) Silva, N. O.; Abreu, A. S.; Ferreira, P. M. T.; Monteiro L.S.; Queiroz, M.-J. R. P. *Eur. J. Org. Chem.*, 2002, 2524-2528. (b) Abreu, A. S.; Silva, N. O.; Ferreira, P. M. T.; Queiroz, M.-J. R. P. *Eur. J. Org. Chem.*, 2003, 1537-1544. (c) Abreu, A. S.; Silva, N. O.; Ferreira, P. M. T.; Queiroz, M.-J. R. P. *Eur. J. Org. Chem.*, 2003, 4792-4796.

7- For reviews see (a) Suzuki A.; Miyaura N. *Chem. Rev.*, **1995**, *95*, 2457-2483 (b) Suzuki A. J. Organomet. Chem., **1999**, *576*, 147-168.

8- (a) N. Rameshkumar, M. Ashokkumar, E. H. Subramanian, R. Ilavarasan, S. K. Sridhar, *Eur. J. Med. Chem.*, **2003**, 38, 1001-1004. (b) Queiroz, M.-J. R. P., Agathe Begouin, Ferreira, I.C.F.R., Kirsch, G., Calhelha, R.C., Barbosa, S., Estevinho, L. M., *Eur. J. Org. Chem.*, **2004**, 3679-3685.