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INTRODUCTION

Phosphorus (P) is one of the most important plant macronutrients, playing a key role in many metabolic processes such as in energy transfer, signal
transduction, biosynthesis of macromolecules, photosynthesis or respiration (Raghothama, 1999). Despite of this, P is one of the most unavailable and
iInaccessible mineral nutrients, frequently being the limiting nutrient for plant growth. The form of P most readily accessed by plants is Pi, the concentration of
which rarely exceeds 10 yM in soil (Schachtman et al., 1998). Many of the morphological and biochemical changes that are induced in roots growing in Pi-
deficient conditions are geared towards enhancing Pi uptake, including not only the ability of increasing soil Pi availability but also the induction of high-affinity Pi
uptake systems. Although some progress has been done on the elucidation of phosphate transport in plants, there are still few studies concerning biochemical
and molecular characterization of phosphate uptake in proteoid roots. Here we present data on the mechanisms involved in Pi acquisition from soil by Hakea

sericea Schrad. (Proteacea), an Australian invader of natural habitats, which is able to develop proteoid roots as a response to P deficiency (Fig. 1). Figure 1. Hakea sericea Schrad. schrub (A) and Serra d'Arga
(Northern Portugal) landscape where the spreading of Hakea sericea

has become a major problem (B).

RESULTS

Pi transport Search for phosphate transporter genes (PiT) in H. sericea Schrad.
For the identification of PiT genes encoding
H. sericea Pi/H  symporters, a gDNA library was
constructed using Lambda DASH Il/Bam HI vector kit
(Stratagene). In order to obtain homologous PIiT
probes, PCR amplifications of H. sericea gDNA were
performed in the presence of degenerated primers
designed for the conserved regions of PiT genes from
higher plants (Fig.7).

Proteoid roots were harvested from adult H. sericea
shrubs growing in Serra d'Arga, Northern Portugal (Fig. 2),
washed with mineral medium without Pi, and cross-
sectioned. To study Pi transport roots were incubated with
2.5-200 uM NaH,PO, and the depletion of Pi from the

external medium was determined by the colorimetric
method of Adams (1991).

Figure 2. Hakea sericea proteoid roots harvested
18 | __ in the field (A) and after being washed in the lab
exhibiting densely spaced rootlets (B).

As a result of the use of degenerated primers,
several fragments with the same molecular weight,
but corresponding to different PiT genes of H. sericea,
could have been amplified in the same PCR reaction.

Figure 7. Southern analysis of PCR amplification products
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inhibited the initial uptake rates of 5-25
UM Pi (high-affinity range) and 25-70 uM
(low-affinity range) up to 60%,
suggesting the involvement of a H'-
dependenttransport (Fig. 5and 6).

Figure 9. Partial nucleotide and deduced amino acid sequences (PiT2 - Aand PiT6 - B) identified in Hakea sericea. The deduced
amino acid sequence is represented above the nucleotide sequence, in the one letter code. The numbers on the right are related with
the nucleotides and the numbers above are related with the amino acids. The sequences corresponding to the primers used in the
amplification are represented in green.
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In order to obtain the complete sequences of phosphate
transporters, PiT2 and PiT6 fragments are currently being used as

CONC LU DlNG RE MARKS homologous probes in the screening of the gDNA library of H. sericea

(Fig. 12).

e H. sericea proteoid roots have highly efficient transporters for acquisition of Pifrom sail.

Figure 12. Autoradiogram corresponding to the screening of the gDNA library of
e Piuptake was inhibited by CCCP, suggesting the involvement of H - dependent transport. H. sericea with the homologous probes PiT2and PiT6.

e ThePitransportedformislikely H,PQO,".
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e Thehigh affinity Pitransport system has a K_ of about 6 uM, a typical soil Pi concentration.
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