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Abstract - Fourier transforms and other related transforms are an essential tool in
applications of science, engineering and technology. In fact, much of the work currently
being done in mathematics, physics and engineering has its roots in Fourier’s pioneering
idea of representing an arbitrary function as the sum of a trigonometric series. The main
purpose of these notes is to give a brief overview of some Fourier-related transforms,
namely: continuous Fourier transform, Fourier series, discrete Fourier transform, fast
Fourier transform (FFT), sine and cosine transforms, Z-transform, Laplace transform,
windowed Fourier transform, continuous and discrete wavelet transforms. Our aim is
simply to present a summary of these transforms and to describe their main properties and
possible applications, and so most of the results are presented with no proof. References
containing the proofs and other details about the transforms are always indicated.

Keywords - Fourier transforms, Fourier series, FFT, wavelet transforms.

I. Notations

We start by introducing the main notations that will be used throughout these notes.

• If X is a measurable subset of the real line R, in particular the whole of R, we denote by
Lp(X) (0 < p <∞), the Banach space of the (equivalence classes of) measurable functions
f defined in X such that

‖f‖p :=
(∫

X
|f(t)|pdt

)1/p
<∞. (1)

When p = 2, this is a Hilbert space with respect to the inner product

〈f, g〉 :=
∫

X
f(t)g(t)dt. (2)

(Here and throughout, u denotes the complex conjugate of u.)

• When X is a finite interval X = [a, a+Ω] of length Ω, Ω > 0, we can identify the above
space with the space of functions which are periodic of period Ω, i.e. satisfy f(t+ kΩ) =

f(t), for all k ∈ Z and for almost all t, and are such that
∫ a+Ω
a |f(t)|pdt < ∞. In fact,
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any Ω-periodic function is totally determined by its behaviour on any interval of length Ω
and, reciprocally, any function which is only defined on an interval of length Ω can always
be periodically extended (with period Ω) to the whole line. We can also think of this
space as a space of functions defined on the Ω-torus TΩ = R/ΩZ; see Section IV if you are
unfamiliar with this type of notation. In this case, it is more convenient to normalize the
inner product (2) as

〈f, g〉 = 1

Ω

∫ a+Ω

a
f(t)g(t)dt. (3)

The norm ‖.‖p will also be redefined as

‖f‖p :=
(
1

Ω

∫ a+Ω

a
|f(t)|pdt

)1/p
. (4)

In order to simplify the notation, we will always write
∫

TΩ to designate 1
Ω

∫ a+Ω
a . This

means, for example, that the inner product (3) will be written simply as

〈f, g〉 =
∫

TΩ
f(t)g(t)dt. (5)

• When X is the discrete set Z, the functions defined on X will simply be two-sided
sequences, and we use for them a notation of the type f = (f [k])k∈Z, following the tradition
of signal processing literature of using square brackets around a discrete variable. In this
case, the integrals in (1) and (2) should be understood with respect to the discrete measure,
i.e. the norm and inner product are defined, respectively, by

‖f‖p :=
(∑

k∈Z
|f [k]|p

)1/p
(6)

and

〈f, g〉 :=
∑

k∈Z
f [k]g[k]. (7)

These spaces are referred to as the spaces of p-summable sequences and denoted by `p(Z).

• Finally, when the set X is discrete and finite, e.g. X = {0, 1, . . . , N−1}, the functions on
X, which are simply vectors f = f([k])N−1k=0 , can also be “viewed” as N -periodic sequences
on `p(Z) (any p) if we define, for k ∈ Z, f [k] = f [k mod N ], where k mod N denotes the
remainder of the division of k by the integer N . This space can be identified with the
space `(ZN ) with ZN = Z/NZ; more details, again, in Section IV. Here, naturally, the
inner product and norm are the usual Euclidean inner product and norm of vectors in CN ,
i.e. they are, respectively

〈f, g〉 :=
N−1∑

k=0

f [k]g[k] (8)
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and

‖f‖ := {
N−1∑

k=0

|f [k]|2}1/2. (9)

• A family {ek : k ∈ Z} of elements in a Hilbert space H (with inner product 〈·, ·〉 and
corresponding norm ‖ · ‖) is said to be an orthogonal basis of H if it satisfies:

1. 〈ei, ej〉 = 0, i 6= j;

2. for any x ∈ H, there is a unique sequence of scalars x̂[k] such that

lim
N→∞

‖x−
N∑

k=−N

x̂[k]ek‖ = 0. (10)

The orthogonality condition implies that the coefficients x̂[k] are necessarily given by

x̂[k] =
〈x, ek〉
‖ek‖2

,

and we will write (10) simply as

x =
∑

k∈Z

〈x, ek〉
‖ek‖2

ek. (11)

When each vector ek has unit norm, the basis is said to be orthonormal (o.n.). In this
case, Plancherel formula, which sates an energy conservation, holds:

‖x‖2 =
∑

k∈Z
| 〈x, ek〉 |2. (12)

We will frequently refer to Fourier transform to designate several different mathematical
transformations, depending on the nature of the spaces on which they are defined (in other
words, depending on the type of signals on which they are acting). When necessary, we
will be more specific and use terms like continuous time Fourier transform, continuous
time Fourier series, etc. A small table summarizing the Fourier transforms for various
settings is given below.
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Table of Fourier Transforms

Name Domain Transform F = f̂ Domain

of f (and Inverse) of f̂

CTFT R f̂(ω) =
∫

R f(t)e
−2πiωtdt R

f(t) =
∫

R f̂(ω)e
2πitωdω

CTFS TΩ f̂ [k] =
∫

TΩ f(t)e
−2πikt/Ωdt Z

f(t) =
∑

k∈Z f̂ [k]e
2πikt/Ω

DTFT Z f̂(ω) =
∑

k∈Z f [k]e
−2πikω/Ω TΩ

f [k] =
∫

TΩ f̂(ω)e
2πiktω/Ωdω

DTFS ZN f̂ [n] =
∑N−1

k=0 f [k]e
−2πikn/N ZN

f [k] = 1
N

∑N−1
n=0 f̂ [n]e

2πikn/N

CT-continuous time; DT-discrete time; FT-Fourier transform; FS-Fourier series

In Section IV, we wil give a more unified view of these different transforms, briefly de-
scribing how they all fit in the more general framework of Fourier transforms on groups.
For the moment, we will study in more detail each of the above transforms, discussing,
in particular the conditions (and the different interpretations) for the inverse formulas to
hold.

II. Continuous Time Fourier Transform (CTFT)

A. Fourier transform in L1(R)

We start by defining the Fourier transform of functions in the space L1(R).

The Fourier transform (also called continuous-time Fourier transform or integral Fourier
transform) of a function f ∈ L1(R) is the function f̂ defined by

f̂(ω) :=

∫

R
f(t)e−2πiωtdt, ω ∈ R. (13)

For simplicity, to indicate the correspondence between a function f and its Fourier trans-
form, we use the notation f −→ F .
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We consider the following three operators, defined for a ∈ R:

Translation: Taf(t) = f(t− a)
Modulation: Eaf(t) = e2πiatf(t)

Dilation: Daf(t) = |a|−1/2f(t/a), (a 6= 0).

The main algebraic and analytic properties of the Fourier transform are summarized in
the following two theorems; the proofs can be seen, e.g. in [6].

Theorem 1

1. Linearity c1f1 + c2f2 −→ c1F1 + c2F2.

2. Conjugation f(t) −→ F (−ω).

3. Time shifting Taf −→ E−aF.

4. Modulation Eaf −→ TaF.

5. Time dilation Daf −→ D1/aF.

Theorem 2

Let f ∈ L1(R) and let F be its Fourier transform. Then, we have

1. Boundedness For each ω ∈ R, |F (ω)| ≤ ‖f‖1.

2. Continuity F is (uniformly) continuous on R.

3. Riemann-Lebesgue Lemma lim
|ω|→∞

F (ω) = 0.

4. Time differentiation Let f ∈ Cm(R) ∩ L1(R) be such that f (k); k = 1 . . . ,m, are in
L1(R). Then

f (k)(t) −→ (2πiω)kF (ω).

5. Frequency differentiation Suppose that tmf(t) ∈ L1(R). Then, F (k); k = 1, . . . ,m,
exist and

(−2πit)kf(t) −→ F (k)(ω).

Another important property of Fourier transform is its behaviour with respect to convo-
lution. Recall that the convolution f ∗ g of two functions f and g is the function defined
by

f ∗ g(t) =
∫

R
f(u)g(t− u)du. (14)
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We then have the following result:

Theorem 3 (Convolution) If f, g ∈ L1(R), then f ∗ g ∈ L1(R) and

f ∗ g −→ FG.

B. Inversion

Given a function g ∈ L1(R), we define its inverse Fourier transform ǧ by

ǧ(t) :=

∫

R
g(ω)e2πiωtdω, t ∈ R,

i.e. ǧ(t) is simply ĝ(−t). The name inverse Fourier transform is justified by the following
theorem, which shows that the function f can be recovered from its Fourier transform, by
applying to it the inverse Fourier transform.

Theorem 4 Let f ∈ L1(R) and let f̂ denote its Fourier transform. If f̂ ∈ L1(R), then f

is continuous and f =
ˇ̂
f , i.e.

f(t) =

∫

R
f̂(ω)e2πiωtdω. (15)

Note: This theorem establishes a pointwise inversion formula for the Fourier transform under the

assumption that f̂ ∈ L1(R). It should be interpreted in the following sense: the integral on the
r.h.s. is defined for every t ∈ R and defines a continuous function which coincides with f almost
everywhere (a.e.); the pointwise equality is valid for the continuous representative of f .

C. Fourier transform in L2(R)

The formula (13) as it stands can not be applied directly to functions in the space L2(R)
(if they are not in L1(R)), so the definition of the Fourier transform for functions in this
space (the important space of signals of finite energy) has to be suitably adapted.

The following result is essential for establishing a natural definition for the Fourier trans-
form in L2(R).

Theorem 5 (Plancherel-Parseval) If f, g ∈ L1(R) ∩ L2(R), then

〈f, g〉 = 〈f̂ , ĝ〉 (Parseval identity). (16)

In particular, we have

‖f‖ = ‖f̂‖ (Plancherel formula). (17)
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The extension of the Fourier transform to L2(R) is based on the use of the above formulae
and the fact that L1(R) ∩ L2(R) is dense in L2(R). This means that, given a function
f ∈ L2(R), there is a sequence of functions (fn)n∈N in L1(R)∩L2(R) converging to f (with
convergence taken with respect to the norm in L2(R)). This implies that ‖fm − fn‖2 → 0
when m,n → ∞. By the linearity of the Fourier transform and the Plancherel formula,
we immediately conclude that the sequence (f̂n)n∈Z converges to a certain function in
L2(R). This limit function will be called the Fourier transform of f (sometimes called the
Plancherel transform) and will also be denoted, as before, by f̂ or F . It can be shown
that the limit function F does not depend on the choice of the sequence fn converging to
f and, naturally, that it coincides with the usual Fourier transform of f when f ∈ L1(R).
A standard way of selecting the sequence fn is to take fn = f 1[−n,n], where 1[a,b] denotes
the characteristic function of the interval [a, b], i.e.

1[a,b](t) =





1, t ∈ [a, b]

0, otherwise.

If we write l.i.m.gn(t) = g(t) to indicate that ‖gn − g‖2 → 0 when n → ∞, we can thus
write, for f ∈ L2(R),

f̂(ω) := l.i.m.

∫ n

−n
f(t)e−2πiωtdt. (18)

Note: With a convenient abuse of notation we will still write, when f ∈ L2(R),

f̂(ω) =

∫

R
f(t)e−2πiωtdt,

with the understanding that this is a limiting process as defined above.

It is important to observe that the main properties stated for the Fourier transform of
functions in L1(R) also hold for this extension to L2(R). The extension of the definition
of the inverse Fourier transform ǧ to functions g ∈ L2(R) is, naturally, done in manner
analogous to the process described for the Fourier transform, and we also have an inversion
theorem for this case.

Theorem 6 (Inversion in L2(R)) The Fourier transform is a bijective linear operator
from L2(R) into L2(R). Given f ∈ L2(R), we have

f =
ˇ̂
f.

The definition of the Fourier transform can also be extended to a wider class of “objects”,
the so-called tempered distributions; as an example of a tempered distribution we have
the Dirac-delta δ. This is a linear functional which acts on a (sufficiently well-behaved
function) f by giving its value at zero, i.e.

δ(f) := f(0).
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The Fourier transform of a tempered distribution is another tempered distribution. In the
case of the Dirac-delta, the Fourier transform can be identified with the constant function
1, i.e

δ̂ = 1.

For more details on Fourier transforms of tempered distributions, see, e.g. [26] or [6].

III. Continuous Time Fourier Series (CTFS)

We now consider the case where the function f to be transformed is in L2(TΩ), where
TΩ = R/ΩZ is the Ω-torus (Ω > 0). It can be shown that the set of functions

γk(t) := e2πikt/Ω, k ∈ Z, (19)

is an orthonormal basis of L2(TΩ) (with respect to the inner product defined by (5)). This
means that every function f ∈ L2(TΩ) can be written as

f(t) =
∑

k∈Z
f̂ [k]e2πikt/Ω, (20)

where the coefficients f̂ [k] are given by

f̂ [k] =〈f, γk〉

=

∫

TΩ
f(t)e−2πikt/Ωdt. (21)

The coefficients f̂ [k], k ∈ Z given by (21), are called the Fourier coefficients of the function
f and the series on the r.h.s. of (20) is the called the Fourier series of f .

The equality (20) is to be interpreted as (cf. 10)

lim
N→∞

∫ Ω

0
|f(t)−

N∑

k=−N

f̂ [k]e2πikt/Ω|2dt = 0

and does not necessarily mean that, for every t ∈ R, the series on the r.h.s. of (20)
converges to the value f(t). The problems associated with the pointwise (and uniform)
convergence of Fourier series, namely the discussion of the minimum conditions which
ensure this type of convergence, have attracted the attention of mathematicians for more
than two centuries and had a profound impact on the evolution of the foundations of
Analysis; an accessible reference on this subject, with an interesting historical perspective,
is [25].

The equality (20) is also known to hold for almost all t; moreover, if the function f is
sufficiently well-behaved (e.g. piecewise smooth) then the series converges, at every point
t, to the average value

f(t+) + f(t−)

2
.
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The Fourier series has a typical behaviour near the points of discontinuity; its partial sums
overshoot and undershoot the true values f(t+) and f(t−), respectively, by about 9% of
the total jump f(t+) − f(t−). This is the famous Gibbs phenomenon, and was observed
by Gibbs, for a particular function, in a letter to Nature (vol.59, p.606), in 1899.

Note: In fact, this phenomenon had already been described by H. Wilbraham, 51 years earlier

[50], although Gibbs was not aware of this. In 1906, M. Bôcher, an American mathematician,

proved that this behaviour is a general property of Fourier series in the vicinity of a jump discon-

tinuity; [7].

The computation of the sequence of the Fourier coefficients f̂ [k] in the case where f is a
periodic function can be seen as the analogue of the computation, for a function f with
no periodicity, of f̂(ω), for all ω ∈ R. This corresponds, in both cases, to the analysis
phase of the given signal f ; the inversion formula (15) and the series expansion (20) then
correspond to the synthesis or reconstruction phase of the signal.

Since γk(t) = e2πikt/Ω form an orthonormal basis of L2(TΩ), Pareseval’s identity gives us

∑

k∈Z
|〈f, γk〉|2 =

∑

k∈Z
|f̂ [k]|2 = ‖f‖22. (22)

It is also important to state the following result (which should be compared with the result
3. in Theorem 2).

Lemma 1 (Riemann-Lebesgue) If f ∈ L2(TΩ), then its Fourier coefficients f̂ [k] sat-
isfy

lim
|k|→∞

f̂ [k] = 0. (23)

Note: The above result is also valid for functions in the wider class L1(TΩ.)

The analogies between the Fourier transforms and series can also be extended to results
on convolutions, provided an appropriate definition for convolution is given. Given two
functions f, g ∈ L1(TΩ) we define its convolution as

f ∗ g(t) =
∫

TΩ
f(u)g(t− u)du.

We then have the following result (cf. Theorem 3).

Theorem 7 Let f, g ∈ L1(TΩ), with corresponding sequences (f̂ [k])k∈Z and (ĝ[k])k∈Z of
Fourier coefficients. Then, f ∗ g ∈ L1(TΩ) and the sequence of its Fourier coefficients is
the product of the two sequences (f̂ [k])k∈Z and (ĝ[k])k∈Z, i.e.

f̂ ∗ g [k] = f̂ [k] ĝ[k], k ∈ Z.
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IV. Discrete Time Fourier Transform (DTFT)

The equality (22) shows that, given a function in L2(TΩ), the sequence of its Fourier
coefficients is in the space `2(Z). One can also “move” the other way around. Let f =
(f [k])k∈Z be a given sequence in `2(Z). Then, for any chosen Ω > 0, the trigonometric
series

∑

k∈Z
f [k]e−2πikω/Ω (24)

converges (with respect to the ‖ · ‖2 norm defined by (4)), to a certain function in the
space L2(TΩ). We call this function the discrete time Fourier transform (corresponding to
Ω) of the sequence f = (f [k]) and denote it by f̂(ω). That is, we have

f̂(ω) =
∑

k∈Z
f [k]e−2πikω/Ω. (25)

One can show that the Fourier coefficients of this function f̂ are precisely the given numbers
f [k], that is, we have

∫

TΩ
f̂(ω)e2πikω/Ωdω = f [k], (26)

which can be seen as an inversion result. The equality (25) is also known to hold for almost
all ω. Moreover, if the given sequence is known to decrease “faster” than just being in
`2(Z), namely if f = (f [k])k∈Z ∈ `1(Z), then the series on the r.h.s. of (25) converges
uniformly and defines a continuous function f̂(ω), for all ω ∈ R.

If f, g ∈ `1(Z), we define the convolution f ∗ g of these two sequences by

(f ∗ g)[k] :=
∑

l∈Z
f [l]g[k − l]. (27)

We again have a result concerning the behaviour of the (discrete) Fourier transform with
respect to convolution.

Theorem 8 Let f, g ∈ `1(Z) and let f̂ , ĝ denote their discrete Fourier transforms. Then,
f ∗ g ∈ `1(Z) and

f̂ ∗ g(ω) = f̂(ω) ĝ(ω) (28)

V. Discrete Fourier Transform (DFT)

We now concentrate on the case where our signal is simultaneously discrete in time and
finite, f = (f [k])N−1k=0 . As already mentioned, we can also think of f as a periodic sequence
f = (f [k])k∈Z of period N (i.e. as an element in `(ZN )) by letting f [k] = f [k mod N ], for
all k ∈ Z.
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It is easy to show that the set of N vectors γk; k = 0, . . . , N − 1, defined by

γk[n] := e2πikn/N ; n = 0, . . . , N − 1, (29)

is an orthogonal basis of `(ZN ) and that ‖γk‖2 = N . Hence, any signal f ∈ `(ZN ) admits
the following expansion

f [n] =
1

N

N−1∑

k=0

f̂ [k]e2πikn/N ; n = 0, 1, . . . , N − 1, (30)

where the coefficients f̂ [k] are given by

f̂ [k] = 〈f, γk〉

=
N−1∑

n=0

f [n]e−2πikn/N ; k = 0, 1, . . . , N − 1. (31)

Formula (31) defines the so-called discrete time Fourier series or discrete Fourier transform
(DFT) of f and formula (30) the inverse discrete transform. Naturally, the following
Parseval’s identity holds

N−1∑

k=0

|f [k]|2 = 1

N

N−1∑

k=0

|f̂ [k]|2.

Because of the N -periodicity of the functions e−2πikn/N , we can also see (31) as a function
defined on ZN . This means that the discrete Fourier transform can be seen either as a
map from CN into CN or as a map from `(ZN ) into `(ZN ). Let’s introduce the following
standard notation

WN := e−2πi/N . (32)

Then, the discrete Fourier transform of f = (f [n])N−1n=0 can be defined by

f̂ [k] =

N−1∑

n=0

f [n]W kn
N . (33)

The discrete Fourier transform (as a linear transformation from CN into CN ) can also be
defined using the N ×N matrix (called the N th order DFT matrix),

M = (mkn), mkn =W kn
N ; k, n = 0, . . . , N − 1.

It is simply given by
f̂ =Mf.

Given two sequences f, g ∈ `(ZN ), we define its convolution by

(f ∗ g)[k] =
N−1∑

l=0

f [l]g[k − l], k = 0, 1, . . . , N − 1. (34)
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(Recall that the sequences are periodic of period N , i.e. g[k] = g[kmodN ].)

Once more, we have the usual property relating the Fourier transform of convolutions and
the product of Fourier transforms.

Theorem 9 Let f, g ∈ `(ZN ) and let f̂ and ĝ denote their DFT’s. Then, we have

f̂ ∗ g[k] = f̂ [k]ĝ[k].

• Relation of DFT to Fourier coefficients

Assume that we know the period Ω of a certain function f as well as N of its values
y[n] := f(tn) at the equally spaced points

tn := n
Ω

N
;n = 0, 1 . . . , N − 1, (35)

and that we want to make use this information to approximate the Fourier coefficients
f̂ [k] of f . In other words, we want to compute

f̂ [k] =
1

Ω

∫ Ω

0
f(t)e−2πikt/Ωdt. (36)

If we approximate the integral in (36) by a left-endpoint, uniform Riemann sum, based on
the points tn, we obtain

f̂ [k] ≈ 1

Ω

N−1∑

n=0

f(tn)e
−2πiktn/Ω × Ω

N

=
1

N

N−1∑

n=0

y[n]e−2πikn/N . (37)

The above formula shows that the kth Fourier coefficient of the function f is approximately
given by 1

N ŷ[k], where (ŷ[k])N−1k=0 is the N -point discrete Fourier transform of the vector

(y[n])N−1n=0 = (f(n ΩN ))N−1n=0 .

Note: The approximation described by the formula (37) has to be interpreted very carefully. Note

that the r.h.s of (37) has period N in the variable k and the same is not true for the sequence (f̂ [k])

(typically, f̂ [k] → 0, as k → ∞). The approximation (37) will usually be used only to calculate
coefficients f̂ [k] for |k| << N , e.g. for |k| ≤ N/8; for a justification of this “rule of thumb”, see

e.g. [47].

VI. Transforms in several dimensions

All the transforms referred so far were given for the one-dimensional case, i.e. for functions
of a single variable. The extension of these transforms to higher dimensions is straightfor-
ward. For example, the Fourier transform of a function f ∈ L1(Rd) is defined by

f̂(ωωω) =

∫

Rd

f(xxx)e−2πi〈ωωω,xxx〉dxxx, ωωω ∈ Rd. (38)
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In the particular case of dimension d = 2 (this is of special importance due to its applica-
tions in image processing), we have

f̂(ω, ξ) =

∫

R

∫

R
f(x, y)e−2πi(ωx+ξy)dx dy, (ω, ξ) ∈ R2. (39)

The evaluation of the Fourier transform of a 2D-function is especially simple when the
function is separable, i.e. can be written as

f(x, y) = g(x)h(y).

In that case, its Fourier transform is simply given by

f̂(ω, ξ) = ĝ(ω)ĥ(ξ),

where ĝ and ĥ are the one-dimensional transforms of g and h. The basic transforma-
tional properties of a d-dimensional Fourier transform are essentially the same as in one
dimension, with one new feature: the Fourier transform commutes with rotations, i.e. if
R denotes a rotation in Rd, then

f(Rxxx) −→ f̂(Rωωω).

• Fourier transforms of radial functions

The fact that the Fourier transform commutes with rotations has the following interesting
consequence. A function f defined in Rd is called radial if f(Rxxx) = f(xxx) for all rotations R,
i.e. f(xxx) depends only on |xxx|, where we used the simplified notation | · | for the Euclidean
norm‖ · ‖2 in Rd. If f is radial – say f(xxx) = g(|xxx|) – then so is its Fourier transform –
f̂(ωωω) = h(|ωωω|), say. In this case the integral formula relating f and f̂ can be written in polar
coordinates to yield h directly in terms of g. Let us illustrate with the two-dimensional
case. With xxx = r(cos θ, sin θ) and ωωω = ρ(cosφ, sinφ), we have 〈x, ω〉 = rρ cos(θ − φ), and
hence

f̂(ω) =

∫

R2
f(xxx)e−2πi〈x,ω〉dxxx

=

∫ ∞

0

∫ 2π

0
g(r)e−2πirρ cos(θ−φ)rdθdr

=

∫ ∞

0
g(r)

[∫ 2π

0
e−2πiρr cos θdθ

]
rdr

By recalling the definition of the zero-order Bessel function of the first kind

J0(z) =
1

2π

∫ 2π

0
e−iz cos θdθ,

we obtain

h(ρ) = 2π

∫ ∞

0
g(r)J0(2πρr)rdr. (40)
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The integral on the r.h.s (without the factor 2π) is called the Hankel transform of order
zero of g.

• Projection

Suppose that we project a two-dimensional function f(x, y) onto the x-axis, i.e we form

p(x) =

∫

R
f(x, y)dy

Then, the (one-dimensional) Fourier transform of p is

p̂(ω) =

∫

R

[∫

R
f(x, y)dye−2πiωx

]
dx

=

∫

R

∫

R
f(x, y)e−2πi(ωx+0y)dxdy = f̂(ω, 0)

So, the transform of the projection of f(x, y) onto the x-axis is f̂(ω, ξ) evaluated along
the ω-axis. This, together with the rotation property, implies that the Fourier transform
of the projection onto a a line at an angle θ with the x-axis is just the Fourier transform
computed along a line at an angle θ with the ω-axis. This projection property can be used
e.g. in computerized axial tomography; see, e.g. [13].

VII. Fourier Transform on Groups

It is possible to give a unified view of all of the different Fourier transforms described
above. This is done by considering them as particular cases of a more general theory
of Fourier transforms on groups. To present this theory in full detail requires ideas from
topology and measure theory which are beyond the scope of these notes. We will, however,
try to give a very brief idea of the main points (for simplicity, we will concentrate in the
1-D case).

A. Groups, Subgoups, Cosets

We start by recalling the notion of a group. A set G forms a group with respect to a
certain binary operation ⊕, if the following properties hold:

1. Closure ∀f, g ∈ G, f ⊕ g ∈ G

2. Associativity ∀f, g, h ∈ G, (f ⊕ g)⊕ h = f ⊕ (g ⊕ h)

3. Identity ∃0G ∈ G : ∀g ∈ G 0G + g = g + 0G = g

4. Inverse ∀g ∈ G∃ − g ∈ G : g ⊕−g = −g ⊕ g = 0G

As examples of groups especially important for our work, we have:

14



1. the set of real numbers R, under addition;

2. the set of integers Z, under addition;

3. the set NZ, N fixed integer, under addition;

4. the set ΩZ, Ω > 0, under addition;

5. the unit circle S1 in the complex plane (i.e. the set of complex numbers of modulus
1), under multiplication.

A group is called Abelian if the operation ⊕ is commutative, i.e. f ⊕ g = g ⊕ f , for all
f, g ∈ G.

A group G is locally compact if it has a topological structure such that the map (f, g)→
f ⊕−g is continuous and every point in G has a compact neighbourhood. The group R is
naturally a locally compact group (with the usual topology on R). In fact, all the groups
referred to in our examples are locally compact Abelian (LCA) groups.

A subgroup K of G is a subset of G which is also a group with respect to the same group
operation. We use the notation K ≤ G (respectively K < G) to indicate that H is a
subgroup of G (not equal to G itself). For example, for any N , NZ is a subgroup of Z;
the integers Z also form a subgroup of the additive group R.

If K < G and g ∈ G, we define the coset g ⊕K of K in G as the set

g ⊕K = {g + k : k ∈ K}.

If G is an Abelian group with subgroup K < G, then the set of all cosets of K in G is a
group under the following operation inherited from ⊕ (for which we use the same symbol
⊕):

(f ⊕K)⊕ (g ⊕K) := (f ⊕ g)⊕K. (41)

This group is denoted by G/K (the quotient group of G modulo K).

It is easy to see that the group Z/NZ is finite and has exactly N distinct elements. A
set of coset representatives of G/K is a set S of elements of G such that every coset in
G/K contains exactly one element of S. For example, a set of coset representatives of
Z/NZ can be taken to be {0, 1, . . . , N − 1}. When we use coset representatives instead
of writing the full coset notation itself, we must remember that the operation involved
is modular. In this sense, we can identify the group Z/NZ with the group formed by
the set {0, 1, . . . , N − 1} with the operation of addition modulo N . Similarly, the group
TΩ := R/ΩZ can be identified with the group whose set of elements is [0,Ω) (or any other
interval of length Ω) and whose operation is addition modulo Ω.

Let G and H be two groups with operations ⊕G and ⊕H , respectively. A homomorphism
from G to H is a map φ : G→ H such that

φ(f ⊕G g) = φ(f)⊕H φ(g), ∀f, g ∈ G.
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Is the homomorphism is bijective, we call it an isomorphism. For example, the function
φ : TΩ → S1 defined by

φ(t+ΩZ) = e2πit/Ω, t ∈ R

is an isomorphism between the additive group TΩ and the multiplicative group S1. In
some sense, we can view the two groups S1 and TΩ as the same group. Another important
example of two isomorphic groups is given by the group Z/NZ and the group SN of all
the N th roots of unity,

SN := {1,WN ,W
2
N , . . . ,W

N−1
N }, WN := e2πi/N ,

under multiplication. An isomorphism between the two groups is given by

φ(k +NZ) = e2πik/N =W k
N .

B. Characters of a group

For any Abelian group G, a character γ of G is a homomorphism of G into the group S1.
The set of all continuous characters of G is denoted by Ĝ and is itself an Abelian group
under the operation of pointwise multiplication. This is called the dual group of G.

For example, when G is the additive group R, one can show that the characters are the
functions

γω(x) = e2πiωx, x ∈ R,

for all ω ∈ R.

Note: The choice of the exponent 2π associated with the “index” ω is just for convenience; any

other real number would do, which would correspond to a simple renaming of the functions γ.

This is easily seen to be isomorphic to R itself (the mapping ω 7→ γω defining an isomor-
phism). In that sense, we say tat R is self-dual and write R̂ = R. One can also identify
the characters of the group ZN = Z/NZ : they are the functions γk; k = 0, 1 . . . , N − 1
defined by

γk[m] = e2πikm/N , m ∈ {0, . . . , N − 1}.
The function φ : k 7→ γk is an isomorphism between ZN and ẐN and, in that sense, ZN is
also self-dual.

Finally, we describe the characters of the group TΩ. They are the functions

γk(t) := e2πikt/Ω, t ∈ [0,Ω),

for all k ∈ Z. The dual group of TΩ is thus isomorphic to Z, the mapping φ : k 7→ γk
defining an isomorphism.

Since the dual group is also an Abelian group it is possible to define its set of characters,

i.e. to define its dual
ˆ̂
G. It turns out that this group is always isomorphic to G. Hence,

the dual group of Z is (isomorphic) to the Ω-torus TΩ (the particular choice of Ω > 0 is
not important, since all these groups are isomorphic to each other).
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C. Integration on groups and Fourier transform

In order to be able to give an adequate definition of the Fourier transform on a (LCA)
group, one has to introduce an appropriate concept of measure and corresponding integra-
tion on the group. It can be shown that in every LCA group, there exists a non-negative
and regular measure, which is not identically zero and is translation invariant. This mea-
sure is unique (up to the multiplication by a positive constant) and is called the Haar
measure of G. Integration on the group G will always be understood with respect to such
measure. For the construction of such a measure, see e.g. [29] or [35]. In our cases, we
simply refer that this measure is:

1. the usual Lebesgue measure, for the cases G = R and G = TΩ (with the “normal-
ization” constant 1

Ω in the latter case) ;

2. the usual counting measure for the discrete cases G = Z and G = Z/NZ.

Having defined integration on G, we can also introduce, in a natural way, the Lp(G) spaces.

We can then define the Fourier transform of any function f ∈ L1(G): it is the function f̂ ,
defined on Ĝ by

f̂(γ) =

∫

G
f(t)γ(t)dt, γ ∈ Ĝ. (42)

Note that the Fourier transform of a function defined on G is actually a function defined
on Ĝ. This means, for example, that in the case of G = R, we should have written the
Fourier transform of a function f as f̂(γω). However, due to the identification of R with
R̂, this is naturally shortened to f̂(ω).

Having identified previously the characters γ ∈ Ĝ for all the cases G = R, G = TΩ, G = Z
and G = ZN , it is now simple to verify that the definitions (13), (21) , (25) and (31) all
fit into this framework.

We also have an inversion theorem (cf. formulae (15), (20), (26) and (30)).

Theorem 10 Let f ∈ L1(G) be such that f̂ ∈ L1(Ĝ). If the Haar measure of G is fixed,
the Haar measure of Ĝ can be normalized so that the following inversion formula holds

f(t) =

∫

Ĝ
f̂(γ)γ(t)dγ, t ∈ G.

If we define the convolution of any two functions f, g ∈ L1(G) by

f ∗ g(t) =
∫

G
f(u)g(t− u)du

we have the following result from which the results of theorems 3,7,8 and 9 are specific
examples:
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Theorem 11 Let f, g ∈ L1(G) and let f̂ , ĝ be their Fourier transforms. Then, f ∗ g ∈
L1(G) and

f̂ ∗ g(γ) = f̂(γ)ĝ(γ).

Finally, we would like to remark that there is a natural way of extending the definition of
the Fourier transform from L1(G) to L2(G) and that the Parseval formula holds

∫

G
f(t)g(t)dt =

∫

Ĝ
f̂(γ)ĝ(γ)dγ.

For more details on this fascinating topic of Fourier transforms on groups see, e.g. [40]. We
now turn to the problem of describing efficient algorithms for the computation of Fourier
transforms.

VIII. Fast Fourier Transform

The Fast Fourier Transform – the most valuable algorithm of our lifetime.

Strang, 1993

A direct calculation of a N -point DFT requires (N − 1)2 multiplications and N(N − 1)
additions, i.e. it involves a number of operations of order O(N 2). For large N , this can
be extremely time consuming. In 1965, Cooley and Tukey [19] proposed an algorithm
to compute the DFT reducing the number of operations involved to O(N log2N), when
N = 2r. This algorithm, which has become known as the Fast Fourier Transform, had
a tremendous impact and is responsible for the widespread use of DFT’s in almost all
branches of scientific computation, with particular emphasis on digital signal processing.

Note: In fact, as referred in [32], the basic idea of the FFT had already been discovered by Gauss,

in 1805, as an efficient means of interpolating asteroid orbits. However, it was the Cooley and

Tukey publication which popularized the use of the discrete Fourier transform; see [18].

Many variants of the basic FFT algorithm have also appeared subsequently. Here, we will
briefly describe one of the most widely used of these algorithms, the so-called decimation
in time, radix 2 FFT; for other variants the reader is referred to, e.g. [47], [11] or [24].
FTT programs in various computer languages can be found in [39]. The article by Burrus
[12] gives an excellent summary and contains an extensive list of references on efficient
algorithms to compute the DFT. A compiled bibliography on this topic (with more than
3400 entries!) is given in [41].
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A. Decimation in Time Radix 2 FFT

We will assume that N is a power of 2, say N = 2r, where r is a positive integer. Let us
start by recalling the formula for the N -point DFT transform of a sequence f = (f [k])N−1k=0 ,

f̂ [n] =
N−1∑

k=0

f [k]W kn
N , (43)

where WN = e2πi/N . For simplicity, we will introduce the notation Fn := f̂ [n]. We can
halve the N-point DFT in (43) in two sums, each of which is a N/2-point DFT:

Fn =

N/2−1∑

k=0

f [2k]W 2kn
N +

N/2−1∑

k=0

f [2k + 1]W 2kn
N Wn

N

=

N/2−1∑

k=0

f [2k]W kn
N/2 +

N/2−1∑

k=0

f [2k + 1]W kn
N/2W

n
N

We can thus write

Fn = F 0n +Wn
NF

1
n

Fn+N/2 = F 0n −Wn
NF

1
n



 ;n = 0, . . . , N/2− 1, (44)

where, for j = 0, 1,

F jn =

N/2−1∑

k=0

f [2k + j](WN/2)
kn, (45)

and where we have used the fact that W
j(N/2)+n
N = ±W n

N , depending on wether j = 0, 1.
The DFT (Fn)

N−1
n=0 written in terms of the calculations (44)-(45) can be visualized as

F 0n −→F 0n +Wn
NF

1
n

↘↗ (46)

F 1n −→F 0n −Wn
NF

1
n

where n = 0, 1, . . . , N/2− 1. This diagram is called a butterfly. The butterfly (46) can be
viewed as a construction of the DFT in ZN in terms of two DFTs, F 0 and F 1, on ZN/2.
In the same way, each F 0 and F 1 can be constructed in terms of a pair of two of DFTs
on ZN/4. For example,

F 0n = F 00n +Wn
N/2F

01
n

and
F 0n+N/4 = F 00n −Wn

N/2F
01
n ,

for n = 0, 1, . . . , N/4 − 1, where F 00 is the DFT of (f [0], f [4], . . . , f [N − 4]) and F 01 is
the DFT of (f [2], f [6], . . . , f [N − 2]). Since N = 2r, this procedure can be repeated and
after r = log2N − 1 stages we reach a point where we are performing N/2 2-point DFTs,
which consist of adding and subtracting two points. Computationally, it is convenient to
compute the 2-point DFTs first, then the 4-point DFts, etc.
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B. Bit Reversal

Let f : ZN → C be given and suppose we want to compute the DFT F in the natural
ordering (F0, . . . , FN ). From (45), it is clear that if we begin with the DFTs of the pairs
(f [0], f [1]), (f [2], f [3]), . . . we will not obtain F in the natural ordering. For example,
when N = 8, the input indices must be ordered as (0, 4, 2, 6, 1, 5, 3, 7) so that the output
sequence will appear in the natural order. This ordering is obtained by bit reversal. Bit
reversal (at level r or of order r) is defined recursively as follows. For r = 1, the bit
reversal ordering (of the set {0, 1}) is the ordered pair (0, 1). At level r; r = 2, 3, . . ., the
bit reversal ordering of the set {0, 1, . . . , 2r − 1} is the 2r-tuple

(2b0, . . . , 2bM−1, 2b0 + 1, . . . , 2bM−1 + 1), (47)

whereM = 2r−1 and (b0, b1, . . . , bM−1) is the bit reversal ordering at level r−1. For exam-
ple, bit reversal orderings at levels 2 and 3 are (0, 2, 1, 3) and (0, 4, 2, 6, 1, 5, 3, 7), respec-
tively. The term bit reversal comes from the following observation. If k ∈ {0, 1, . . . , 2r−1}
has the binary expansion

k =
r−1∑

j=0

εj2
j

then the number in the position k; k = 0, . . . , 2r−1 of the bit reversal ordering is obtained
by “reversing” the order of the coefficients εj in the above expansion. It is important
to observe that there are efficient algorithms for obtaining bit-reversed indices; see e.g.
[11] or [47]. This last reference also describes efficient ways of performing the butterfly
calculations involved in each step of the FFT algorithm.

IX. Fourier Related Transforms

A. Cosine and Sine Transforms

A.1 Fourier Sine and Cosine Transform

Using Euler’s formula, we can write the Fourier transform of f as

f̂(ω) =

∫

R
f(t)e−2πiωtdt

=

∫

R
f(t) cos(2πωt)dt− i

∫

R
f(t) sin(2πωt)dt

:= Cf(ω)− iSf(ω), (48)

where Cf(ω) and Sf(ω) are called, the Fourier cosine transform and Fourier sine transform
of f , respectively. Observe that if the function f is real-valued, then its Fourier transform
can found by evaluating two real integrals. Also, if f is an even function, then the Fourier
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transform of f is simply its Fourier cosine transform and can be computed simply

f̂(ω) =

∫

R
f(t) cos(2πωt)dt

= 2

∫ ∞

0
f(t) cos(2πωt)dt.

Similarly, if f is an odd function,

f̂(ω) = −i
∫

R
f(t) sin(2πωt)dt

= −2i
∫ ∞

0
f(t) sin(2πωt)dt.

A.2 Fourier Sine and Cosine Series

It is simple to establish that the set of functions

γn(t) := cos(πnt/Ω), n ∈ N0,

is an orthogonal basis of the space L2(TΩ), and that ‖γ0‖22 = 1 and ‖γn‖22 = 1/2, n ∈ N.
Hence, every function f ∈ L2(TΩ) admits an expansion

f(t) =
1

2
A0 +

∞∑

n=1

An cos(πnt/Ω) , (49)

where

An =
2

Ω

∫ Ω

0
f(t) cos(πnt/Ω)dt. (50)

The series (49), with the coefficients given by (50), is called the Fourier cosine series of f .

Note: The above series is, in fact, the Fourier series of the even extension of f to L2(T2Ω).

In a similar manner, we define the Fourier sine series of f :

f(t) =
∞∑

n=1

Bn sin(πnt/Ω)dt,

where

Bn =
2

Ω

∫ Ω

0
f(t) sin(πnt/Ω)dt.
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A.3 Discrete Cosine Transforms

There are also discrete versions of the sine and cosine transforms. Here, we refer to four
established discrete cosine transforms (DCT-I through DCT-IV). The (two-dimensional
version) of DCT-II and DCT-IV are constantly applied in image processing and have a
FFT implementation, which makes them especially useful. The DCTs (in fact DCT-II)
was only discovered in 1974, [1]. All four types of DCT are orthogonal transforms and use
bases for the space CN (or `(ZN )) that involve only cosines. For k, n = 0, 1, . . . , N − 1 the
nth component of the kth basis vector is

DCT-I cos
(
nk π

N−1

)
(divide by

√
2 when k, n = 0, N − 1)

DCT-II cos
(
(n+ 1

2)k
π
N

)
(divide by

√
2 when k = 0)

DCT-III cos
(
n(k + 1

2)
π
N

)
(divide by

√
2 when n = 0)

DCT-IV cos
(
(n+ 1

2)(k +
1
2)

π
N

)

If we consider the matrices CI, CII, CIII and CIV whose columns are the above vectors,
then each of the DCT-T transforms f̂T of a vector f ∈ CN is defined by

f̂T = CT f ; T = I, II, III, IV. (51)

All vectors have norm
√
N/2; hence, we have, for example (using the DCT-IV transform),

that any vector f ∈ CN can be written as

f [n] =
2

N

N−1∑

k=0

f̂IV[k] cos

(
(n+

1

2
)(k +

1

2
)
π

N

)

where

f̂IV[k] =
N−1∑

n=0

f [n] cos

(
(n+

1

2
)(k +

1

2
)
π

N

)
.

Similar expressions for the transform and corresponding inverse for the DCT-I – DCT-III
are easily written.

B. Hartley Transform

The Hartley transform Hf is obtained by combining the sine and cosine transforms re-
placing −i by 1, i.e.

Hf(ω) = Cf(ω) + Sf(ω)

=

∫

R
f(t)cas(2πωt)dt, (52)

where cas(t) := cos t + sin t. The Hartley transform was initially proposed by Hartley in
1942 [31], but was virtually ignored until it was reintroduced by Bracewell [10] in 1983.
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The Hartley transform has the advantage that is real-valued for a real-valued signal, but it
lacks some of the important properties of the Fourier transform; a thorough investigation
of Hartley transforms can be found in [9]. There is also a discrete version of the Hartley
transform and fast algorithms for its computation (Fast Hartley Transform).

C. Laplace Transform

Fourier transforms were defined for real values of the frequency variable. A more general
class of transforms can be obtained if the frequency variable is allowed to be complex.

We define the (bilateral) Laplace transform of a function f by

Lf(s) =
∫

R
f(t)e−stdt (53)

where s ∈ C. Note that, when s = 2πiω, Lf(s) = f̂(ω) and so, as it might be expected,
the Laplace transforms has many important properties similar to those of the Fourier
transform. When s = σ + 2πiω, then Lf(s) is the Fourier transform of g(t) = f(t)e−iσt,
i.e. is the transform of an exponentially weighted signal.

Note: The more frequently used unilateral Laplace transform can be defined as the Laplace

transform of f(t)u(t), where u(t) is the unit-step function defined by u(t) = 1, for t ≥ 0 and

u(t) = 0 otherwise.

The above transform does not, in general, converge for all values of s. The set of values
for which (53) converges is called the region of convergence (ROC). The ROC has the
following important poperties:

1. it consists of strips in the complex plane parallel to the to the iω axis i.e. is of the
form A ≤ Re (s) ≤ B where A and B may be −∞ and +∞, respectively; (In the
extreme cases, the ≤ sign might have to be replaced by <);

2. if f(t) is right-sided (left-sided), i.e. is zero for t < T0 (i.e is zero for t > T1), then
B = +∞ (A = −∞).

3. if f(t) is time-limited (i.e. f(t) = 0 for T0 < t < T1, then its ROC is the whole
complex plane (provided it converges at some point);

4. if the iω axis is contained in the ROC, then the Fourier transform of f exists.

The Laplace transform can be inverted. Its inverse is given by

f(t) =
1

2πi

∫ σ+i∞

σ−i∞
estLf(s)ds,

where σ is chosen inside the ROC.

23



The (unilateral) Laplace transform is particularly useful for solving initial value problems.
For a comprehensive treatment of the Laplace transforms and its applications, we refer
the reader to [22] or [5].

D. z-Transform

Just as the Laplace transform was a generalization of the Fourier transform, the z-
transform can also be introduced as a generalization of the discrete time Fourier transform.
For a given sequence f = (f [k])k∈Z, we define its z-transform as

Z(f [k]) := F (z) :=
∑

k∈Z
f [k]z−k, (54)

where z ∈ C. Again, the transform is only defined for the values of z for which the above
series converges, these values defining its region of convergence (ROC). On the unit circle
z = e2πiω, this is the discrete-time Fourier transform (Ω = 1), and for z = ρe2πiω, it is the
discrete-time Fourier transform of the sequence f [k]ρ−k. The ROC of the z-transform has
properties “analogous” to the ROC of Laplace transforms:

1. it consists of a ring in the complex plane, i.e. is a set of the form A ≤ |z| ≤ B, where
A may be zero and B may be +∞. (In the extreme cases, the ≤ sign might have to be
replaced by <).

2. if the sequence f([k]) is causal (i.e. f [k] = 0 for k < 0), then B = +∞ (≤ possibly
replaced by <); if the sequence is anti-causal (i.e f [k] = 0 for k > 0), then A = 0 (≤
possibly replaced by <);

3. if the sequence is of finite length and causal, the ROC is the entire plane, except
possibly z = 0;

4. if the sequence is of finite length and anti-causal, the ROC is the entire z-plane
except, possibly, the “point” z =∞;

5. the discrete time Fourier transform of the sequence f([k]) converges absolutely if
and only the ROC contains the unit circle.

The inverse z-transform involves the contour integration in the ROC and Cauchy’s integral
theorem. We have

f [n] =
1

2πi

∮

C
Z(f [k])zn−1dz

where C denotes a contour around the origin lying in the ROC. The z-transform is very
useful for the study of difference equations and discrete-time filters; more details can be
seen, e.g. in [33] or [38].
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E. Mellin Transform

The Mellin transformMf of a function f is defined by

Mf(z) =

∫ ∞

0
f(t)tz−1dt. (55)

If we make the change of variable x = log t, we find that

Mf(z) =

∫

R
f(ex)exzdx (56)

which shows thatMf(−2πiω) is the Fourier transform (at ω) of the composition f ◦ exp;
a good reference to read about Mellin transforms is the book by Bracewell [8].

F. Hilbert Transform

The Hilbert transform Hf of f ∈ L2(R) is defined by

Hf(t) =
1

π

∫ ∞

−∞

f(u)

t− udu, (57)

interpreting the integral as a Cauchy principal value, i.e. as

lim
ε→0

∫

|t−u|>ε

f(u)

t− u du.

This transform is invertible, its inverse being simply −H, i.e.

f(t) =
1

π

∫ ∞

−∞

Hf(u)

u− t dt. (58)

• Analytic signals and Hilbert transform

A function f ∈ L2(R) is said to be a (strong) analytic signal if its Fourier transform is zero
for negative frequencies, i.e f̂(ω) = 0 for ω < 0. If f is real valued, one can associate with
f an analytic signal fa in the following manner: fa is the signal whose Fourier transform
is given by

f̂a(ω) =

{
2f̂(ω), ω ≥ 0

0, ω < 0.
(59)

One can show that if fa if is the analytic signal associated with the real signal f , then
Re fa = f and Im fa = Hf , i.e.

fa = f + iHf. (60)
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Let
fa(t) = A(t)eiφ(t)

The envelope E(t) of the signal f(t) is defined as |A(t)| =
√
f(t)2 +Hf(t)2 and E(t)2

is the the so-called instantaneous power; the instantaneous frequency ω(t) is defined by
ω(t) = φ′(t). Hence, Hilbert transform analysis provides a method of determining the
“instantaneous” frequency and power of a signal. This technique is widely used in com-
munications systems analysis; see, e.g. [15].

G. Haar and Walsh Transforms

We consider again the space L2(TΩ) and take, for simplicity, Ω = 1, i.e. consider functions
in the space L2[0, 1]. Besides the basis functions γk(t) := e2πikt, k ∈ Z, used in the
Fourier series expansion, one may consider the use of other orthonormal bases for this
space. We describe here two such bases, consisting of step functions.

Let H(t) be the function defined by

H(t) =

{
1, 0 < t < 1

2

−1, 1/2 ≤ t < 1
(61)

This is called the Haar function. Then, the set of functions obtained by dyadic dilation
and translation of this function, i.e.

Hjk(t) := 2j/2H(2jt− k), j ≥ 0, k = 0, 1, . . . , 2j − 1, (62)

together with the function H0 := 1[0,1) (the characteristic function on the interval [0, 1)),
form an orthonormal basis for L2[0, 1]. Thus, every function f ∈ L2[0, 1] admits a Haar
series expansion

f(t) = fH [0] +
∑

j≥0

2j−1∑

k=0

fH [j, k]Hjk(t)

where the Haar coefficients fH [0] and fH [j, k] are given by

fH [0] =

∫ 1

0
f(t)H0(t)dt; fH [j, k] =

∫ 1

0
f(t)Hjk(t)dt

To introduce the other basis consisting of step functions, we start by defining the so-called
Rademacher functions rn. For n ≥ 0, consider the division of the interval [0, 1] into 2n

subintervals of equal length. Then, rn(t) is the function which takes the values +1 and
−1, alternately, in each of these subintervals, starting with +1; in other words, if dn(t) is
the nth digit in the binary representation of t (0 ≤ t < 1), then

rn(t) = (−1)dn(t).
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If n ≥ 0 and b1, . . . , bk are the digits in the binary representation of n, i.e. n = (bk . . . b2b1)2,
then the nth Walsh function wn is defined by

wn(t) = r1(t)
b1r2(t)

b2 . . . rk(t)
bk .

Then, the set of Walsh functions {wn;n ≥ 0} is an orthonormal basis of L2[0, 1]. For an
account of the applications of the Haar and Walsh functions in signal and image processing
and other related fields see, e.g. [4]. Naturally, there are are also discrete versions of these
transforms.

The Haar function is the first example (constructed by Haar in 1910 [28]) of an orthogonal
wavelet, i.e. of a function ψ ∈ L2(R) whose dyadic dilations and translations ψjk =
2j/2ψ(2jt − k); j, k ∈ Z constitute an orthonormal basis of L2(R); we will come back to
this topic of wavelets in a little more detail in Section XI.

X. Windowed Fourier Transform

Recalling the expression for the Fourier transform

f̂(ω) =

∫

R
f(t)e−2πiωtdt,

we see that f̂(ω) depends on the values f(t) for all time t ∈ R. Hence, it is difficult to read
any local behaviour of f from f̂ . In many applications, such as analysis of non-stationary
signals or real time signal processing, the simple use of a Fourier transform may not be
appropriate. In fact, one would like to dispose of an analytic tool that provides information
both in time and frequency. One of the first ideas was simply to truncate the signal and to
analyze only what happens on a finite interval [−A,A]. Mathematically, this corresponds
to multiplying f by the characteristic function of this interval, 1[−A,A], and taking the
Fourier transform of the product. We then have

̂1[−A,A]f(ω) = (SA ∗ f̂)(ω),

where SA(ω) =
sin 2πAω

πω . Thus, truncating the function results in convolving its spectrum
with a cardinal sine. However, the cardinal sine decays slowly and has important lobes
near the origin (hence there is poor localization in frequency). To avoid these problems,
we can replace 1[−A,A] with more regular functions W (t), called windows. Some typical
choices include:

Bartlett or triangle window

W (t) = (1− |t|
A )1[−A,A]

Hamming and Hanning windows

W (t) = [α+ (1− α) cos(πt/A)]1[−A,A]
For α = 0.54 we have Hamming’s window and for α = 0.50 we have Hanning’s
window.
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Blackman window

W (t) = [0.42 + 0.5 cos(πt/A) + 0.08 cos(2πt/A)]1[−A,A]

Gaussian window

W (t) = Ce−αt
2

(C,α > 0).

For more details and other choices of window functions, see e.g. [30] or [39]. All the
windows described above are concentrated around the origin. We can then “slide” the
window along the real axis and analyze the whole function. We then define the so-called
windowed Fourier transform or short time Fourier transform (associated with the specific
window W ) as:

FW f(ω, τ) =
∫

R
f(t)W (t− τ)e−2πiωtdt. (63)

Note: When a Gaussian window is used in the short time Fourier transform, this is usually referred

as Gabor transform. If we define the family of functions Wω,τ by the result of two simple
operations – translation by τ and modulation by ω – on the basic window W , i.e.

Wωτ (t) :=W (t− τ)e2πiωt, (64)

we can view the windowed Fourier transform simply as the inner product of f with each
of these functions:

FW f(ω, τ) = 〈f,Wω,τ 〉. (65)

We then also have, by Plancherel formula,

FW f(ω, τ) = 〈f̂ , Ŵω,τ 〉. (66)

If W and Ŵ are localized around the origin, then Wω,τ is localized around the instant τ ,
while Ŵω,τ is localized around the frequency ω. The value FW f(ω, τ) thus provides an
indication of how the function behaves around time τ and frequency ω.

The function f can always be recovered (in the L2 sense), by a double integral

f(t) =

∫ ∫

R2
FW f(ω, τ)Wωτ (t)dω dτ, (67)

where we have assumed that the window W was chosen satisfying ‖W‖2 = 1. There is
also an energy conservation property for the windowed Fourier transform:

∫ ∫

R2
|FW f(ω, τ)|2dωdτ = ‖f‖22. (68)
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The windowed Fourier transform is even more familiar to signal analysis in its discrete
version, where τ and ω are assigned regularly spaced values: τ = nτ0 and ω = mω0, where
m,n ∈ Z and τ0, ω0 > 0 are fixed. That is, we let

Wm,n(t) := e2πimω0tW (t− nτ0) (69)

and compute the values

Cm,n = 〈f,Wm,n〉. (70)

The question naturally arises of whether it is possible to reconstruct the given function
f from its transform coefficients Cm,n in a numerically stable way (i.e. in a manner not
too “sensitive” to the unavoidable errors in the computed values). The answer is positive,
provided the functions Wm,n given by (69) constitute a frame, i.e. satisfy

A‖f‖22 ≤
∑

m,n∈Z
|〈f,Wm,n〉|2 ≤ B‖f‖22, (71)

for all f ∈ L2(R), with constants 0 < A ≤ B < ∞. The following theorem, whose proof
can be seen, e.g. in [20], establishes necessary conditions on the parameters ω0 and τ0 for
the set functions {Wm,n : m,n ∈ Z} to be a frame of L2(R).

Theorem 12 Let W ∈ L2(R) be such that ‖W‖2 = 1. The windowed Fourier family
{Wm,n : m,n ∈ Z} can only be a frame if

ω0τ0 ≤ 1. (72)

The frame bounds A and B necessarily satisfy

A ≤ 1

ω0τ0
≤ B. (73)

In particular, a necessary condition for the functions (69) to be an orthonormal basis of
L2(R) is that ω0τ0 = 1.

We also have the following important theorem, whose proof can again be seen in [20].

Theorem 13 (Balian-Low) If ‖W‖2 = 1 and {Wm,n : m,n ∈ Z} is a windowed Fourier
frame with ω0τ0 = 1, then

∫

R
t2|W (t)|2dt = +∞ or

∫

R
ω2|Ŵ (ω)|2dω = +∞.

This theorem shows, in particular, that we can not construct an ortogonal windowed
Fourier basis with a differentiable window of compact support.
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XI. Wavelet Transform

A. Continuous Wavelet Transform

The windowed Fourier transform computes the inner product of the function f with a
family of functions Wω,τ obtained by translating and modulating the basic window W .
The functions of this family are all of the “same size” (i.e. they all have the same spread
in time and frequency). If the signal to be studied has components which are almost
stationary associated with sudden variations, then the windowed Fourier analysis is not
the appropriate tool, due the above fixed size of the windows. We now study a different
transform which overcomes the above limitations, by using windows whose size naturally
adjusts to frequencies. The idea of the continuous wavelet transform is again to compute
the inner product of the function to be analyzed with a family of functions ψa,τ dependent
on two parameters. In this case, however, these functions are obtained from a basic
function (the analyzing or mother wavelet) by contractions or dilations (i.e. changes of
scale)– controlled by the parameter a, and translations – controlled by the parameter τ .
The mother wavelet ψ used for the analysis has to satisfy a certain technical condition,
known as the admissibility condition. More precisely, we say that ψ ∈ L2(R) is a wavelet
if it satisfies

Cψ :=

∫

R

|ψ̂(ω)|2
|ω| dω < +∞ (74)

In practice, we want to use a function ψ which behaves like a time window, i.e. we select
ψ with a fast decay property in time (e.g. ψ and tψ(t) ∈ L1(R)). In this case, the
admissibility condition (74) turns out to be equivalent to the condition

∫

R
ψ(t)dt = 0. (75)

This indicates that ψ must “oscillate” above and below the t axis, i.e. must behave like
a wave; this, together with the constraint that ψ decays fast (i.e. is “small”) justifies the
name wavelet adopted for these functions. Given a certain wavelet ψ (normalized so that
‖ψ‖2 = 1), we define the family of functions

ψa,τ (t) :=
1√
|a|
ψ(
t− τ
a

); a ∈ R∗ = R \ {0}, τ ∈ R. (76)

Then, the continuous wavelet transform (associated with the wavelet ψ) of f is defined by

Wψf(a, τ) = 〈f, ψa,τ 〉

=
1√
|a|

∫

R
f(t)ψ(

t− τ
a

)dt, a ∈ R∗, τ ∈ R. (77)

As in the windowed Fourier case, there is an inversion formula and a conservation of energy
result, which can be stated as follows:
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f(t) =
1

Cψ

∫ ∫

R2
Wψf(a, τ)ψa,τ (t)

da dτ

a2
(78)

and

1

Cψ

∫ ∫

R2
|Wψf(a, τ)|2

da dτ

a2
= ‖f‖22. (79)

If the function ψ is localized around t = 0 and ψ̂ is localized around ω = 1, then ψa,τ
will be localized around τ whilst ψ̂a,τ will be localized around ω = 1

a . When |a| > 1
(|ω| = | 1a | < 1), the function ψa,τ becomes a stretched version of ψ (less localized in time,
more localized in frequency); on the contrary, when |a| < 1 (|ω| = | 1a | > 1), ψa,τ will be a
function more localized in time (a compressed version of ψ) and less localized in frequency;
this is the already mentioned flexibility of the wavelet windows: their size naturally adjusts
to the frequencies.

B. Multiresolution Analysis (MRA)

As usual, we might like to use a discretized version of the wavelet transform, i.e. to
compute Wψ(a, τ) only for a discrete set of values of a and τ . A very common choice is
to take the dyadic points in the plane

a = 2−j , τ = 2−jk; j, k ∈ Z. (80)

For the above choice of values, we thus consider the family of functions

ψj,k(t) := 2j/2ψ(2jt− k); j, k ∈ Z (81)

and compute the wavelet values

Cj,k = 〈f, ψj,k〉. (82)

A natural challenge for the earlier researchers was to find ψ such that the corresponding
set of functions (81) was an orthonormal basis of L2(R), in which case every function
f ∈ L2(R) could be decomposed in a double series

f(t) =
∑

j,k∈Z
Cj,kψj,k(t), (83)

with the coefficients Cj,k given by (82). A function with this property is called an orthogo-
nal wavelet. In section VIII, we already mentioned the existence of one such function: the
Haar wavelet (61). This is, however, a discontinuous function, and the converge of the se-
ries (83) is extremely slow. In the 80’s, other orthogonal wavelets, with better properties,
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were discovered by J. O. Strömberg [42], Y. Meyer [37], G. Battle [3] and P. G. Lemarié
[34].

These first constructions of wavelets seem a bit “miraculous”; Y. Meyer confesses “I found
my wavelets by trial and error; there was no underlying concept.” In the end of 1986,
Stéphane Mallat, in collaboration with Yves Meyer, introduce the important concept of
multiresolution analysis (MRA). This structure gives a complete understanding of all the
wavelet constructions obtained up to then, and allows the construction of new orthogo-
nal wavelets. It is based on this concept, that I. Daubechies introduces a new class of
wavelets (the so called Daubechies wavelets) which became of great importance in ap-
plications; these wavelets have important properties: they have compact support, are
smooth (smoothness increasing with the size of support) and have a certain number of
zero moments.

Another important consequence of the introduction of the AMR paradigm was the dis-
covery of efficient computational algorithms for the decomposition and reconstruction of
a function in a wavelet basis, the fast wavelet transforms.

A multiresolution analysis (MRA)(Vj , φ) of L2(R) is a sequence of closed subspaces of
L2(R) and an associated function φ, called the generator or scaling function, satisfying:

1. Vj ⊂ Vj+1, ∀j ∈ Z

2.
⋂

j∈Z
Vj = {0}

3.
⋃

j∈Z
Vj = L2(R)

4. v(t) ∈ Vj ⇐⇒ v(2t) ∈ Vj+1

5. The integer translates of φ, φ(t− k), k ∈ Z, form an orthonormal basis of the space
V0.

Note: The concept here introduced is sometimes referred as orthogonal AMR; in fact, Condition

5. can be replaced by the less stringent assumption that the φ(t−k) are a Riesz basis of V0; in that
case, an “orthogonalized” function φ⊥ such that φ⊥(t − k) forms an o.n. basis of V0 can always

been obtained by a well-defined procedure; see, e.g. [20, pp. 139-140].

It follows from the properties of an AMR that, for each j, the set of functions {φj,k :=
2j/2φ(2j . − k) : k ∈ Z} is an o.n. basis for the space Vj (the so-called nodal basis).
Wavelets are associated with detail spaces, i.e. with complementary spaces Wj satisfying
Vj+1 = Vj⊕Wj , where ⊕ denotes the orthogonal complement of Vj in Vj+1. The properties
of the multiresolution analysis imply that

⊕
j∈ZWj = L2(R). Hence, if we can find a

function ψ whose integer translates form an o.n. basis of W0, then the collection {ψj,k :=
2j/2ψ(2j · −k) : j, k ∈ Z} will be an o.n. basis for the space L2(R) (a so-called wavelet
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basis), i.e. ψ will be an orthogonal wavelet. The basic principle of a multiresolution
analysis is that ψ always exists and can be explicitly determined (from φ). In fact, we
have the following theorem.

Theorem 14 Let (Vj)j∈Z be a MRA of L2(R) with scaling function φ. Then

1. there exists a sequence of scalars (hk) ∈ `2(Z) such that

φ(t) =
√
2
∑

k∈Z
hkφ(2t− k) (84)

2. the function ψ defined by

ψ(t) =
√
2
∑

k∈Z
gkφ(2t− k) (85)

where the coefficients gk are given by

gk = (−1)kh1−k (86)

is an orthogonal wavelet., i.e. the set of functions {ψj,k(t) := 2j/2ψ(2jt−k), j, k ∈ Z}
is an o.n. basis of L2(R).

Notes:

1. Equation (84), which is known as the refinement equation or the two-scale equation
for the scaling function φ follows immediately by observing that

√
2φ(2t − k) is an

o.n. basis of V1 and hence the function φ ∈ V0 ⊂ V1 must have a representation in
that basis.

2. The sequence of coefficients (hk)k ∈ Z in (84) is called the filter of φ. These coeffi-
cients are, naturally, given by

hk = 〈f, φ1,k〉 =
√
2

∫

R
f(t)φ(2t− k)dt. (87)

3. tThere are other possible ways to define the coefficients gk (in terms of hk) so that
(85) is an orthogonal wavelet; the different wavelets are, however, all closely related
to each other; further details can be seen, e.g. in [20, pp. 135-136].

C. Fast Wavelet Transforms

We now show how the MRA structure leads to a very efficient iterative scheme for com-
puting the coefficients of the expansion of a function f in a wavelet basis.
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Let (Vj)j∈Z be a MRA of L2(R), with scaling function φ and corresponding wavelet ψ.
Properties 1. and 2. of the MRA show that any function f ∈ L2(R) can be arbitrarily
well approximated by a function vj in a certain space Vj , provided j is taken sufficiently
large, i.e.

∀ε > 0 ∃J ∈ Z ∃vJ ∈ VJ : ‖f − vJ‖2 < ε. (88)

Let, as before, denote byWj the orthogonal complement of Vj into Vj+1 and let Pj and Qj
denote the orthogonal projectors of L2(R) into Vj and Wj , respectively; since Vj ⊂ Vj+1,
we have that Qj = Pj+1 − Pj . Moreover, PjPj+1 = Pj and QjPj+1 = Qj .

For each j, let vj and wj be the projections of f into Vj and Wj , respectively, i.e. let vj
and wj be given by

vj = Pjf and wj = Qjf. (89)

We thus have,

vJ = PJf = PJ−1f + (PJ − PJ−1)f
= vJ−1 + wJ−1

= vJ−2 + wJ−2 + wJ−1

= · · · = vJ−M + wJ−M + · · ·+ wJ−1, M > 0, (90)

Property 2. of AMR ensures that, provided M is sufficiently large, one has

‖vJ−M‖2 < ε. (91)

We can therefore conclude that any function in L2(R) can be reasonably well represented
as a finite sum of functions belonging to the subspaces Wj and a remainder vJ−M in a
space VJ−M which can be interpreted as a very coarse version of f . The decomposition
(90) tells us the details that must be added to this blurred version of f to obtain the fine
approximation vJ to f .

Let us assume that we know the approximation vJ = PJf ∈ VJ to f and that we want to
obtain the decomposition (90). Since, for every j, {φj,k : k ∈ Z} and {ψj,k : k ∈ Z} are o.n.
bases of Vj and Wj , respectively, to know the functions vJ and vJ−M , wJ−M , . . . , wJ−1, is

equivalent to know their coefficients in these bases. Let cccj = (cjk)k∈Z be the sequence of
the coefficients of vj = Pjf in the basis {φj,k : k ∈ Z}, i.e. let

cjk = 〈f, φj,k〉, k ∈ Z, (92)

and let dddj = (djk)k∈Z be the sequence of the coefficients of wj = Qjf in the basis {ψjk :
k ∈ Z}, i.e. let

djk = 〈f, ψjk〉, k ∈ Z. (93)
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Hence, we aim to obtain the decomposition

vJ =
∑

k∈Z
cJ−Mk φJ−M,k +

J−1∑

j=J−M

∑

k∈Z
djkψj,k. (94)

Recall that φ satisfies the dilation equation, i.e. that

φ(t) =
∑

n∈Z
hnφ1,n(t)

Hence, we have

φj−1,k(t) = 2(j−1)/2φ(2j−1t− k)
= 2(j−1)/2

∑

n∈Z
hnφ1,n(2

j−1t− k)

= 2j/2
∑

n∈Z
hnφ(2

jt− (2k + n))

=
∑

n∈Z
hnφj,2k+n(t)

=
∑

n∈Z
hn−2kφj,n(t). (95)

Thus, one gets

cj−1k = 〈f, φj−1,k〉
= 〈f,

∑

n∈Z
hn−2kφj,n〉

=
∑

n∈Z
hn−2k 〈f, φj,n〉

=
∑

n∈Z
hn−2k c

j
n. (96)

In a totally similar manner, by making use of the equations (85) and (86), one gets

dj−1k =
∑

n∈Z
gn−2k c

j
n. (97)

Starting from the sequence cccJ = (cJn), formulae (96) and (97)above can be used, recursively,
to obtain the sequences cccJ−M , dddJ−1, . . . , dddJ−M , i.e. to obtain the desired decomposition
for vj ; see the scheme in Figure 1.

The above transform can be easily inverted; starting from the sequences cccJ−M , dddJ−1, . . . , dddJ−M ,
we can obtain the initial sequence of coefficients cccJ . We have, for each j,

Pjf = vj = vj−1 + wj−1

=
∑

l∈Z
cj−1l φj−1,l +

∑

l∈Z
dj−1l ψj−1,l
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cccJ → cccJ−1 → cccJ−2 → · · · → cccJ−M

↘ ↘ ↘
dddJ−1 dddJ−2 dddJ−M

Figure 1: Decomposition Scheme

Therefore,

cjk = 〈f, φj,k〉
= 〈Pjf, φj,k〉
=
∑

l∈Z
cj−1l 〈φj−1,l, φj,k〉+

∑

l∈Z
dj−1l 〈ψj−1,l, φj,k〉. (98)

But,

〈φj−1,l, φj,k〉 = 〈
∑

n∈Z
hn−2lφj,n, φj,k〉

=
∑

n∈Z
hn−2l〈φj,n, φj,k〉

=
∑

n∈Z
hn−2lδn,k = hk−2l. (99)

On the other hand,

〈ψj−1,l, φj,k〉 = 〈
∑

n∈Z
gn−2lφj,n, φj,k〉 = gk−2l. (100)

Hence, we get

cjk =
∑

l∈Z
hk−2lc

j−1
l +

∑

l∈Z
gk−2ld

j−1
l

=
∑

l∈Z

(
hk−2lc

j−1
l + gk−2ld

j−1
l

)
; (101)

see the scheme in Fig.2.

dddJ−M dddJ−M+1 dddJ−1

↘ ↘ ↘
cccJ−M → cccJ−M+1 → · · · → cccJ−1 → cccJ

Figure 2: Reconstruction Scheme
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Notes

1. Naturally, when implementing the algorithms, all the infinite sequences have to be
truncated. Hence, when we apply the decomposition scheme, the initial sequence is
always a finite sequence, i.e. a vector of certain length N , (cJ0 , c

J
1 , . . . , c

J
N−1). Also,

either the filter (hk)k∈Z is finite or, if we are working with wavelets that do not
have compact support, will have to be truncated for a vector of a certain size L:
(h−m, h−m+1, . . . , h−m+L−1).

2. Since the initial sequence has finite length it is necessary to know how to deal with
the boundary points. For example, the formulae for cJ−10 and cJ−1N/2−1 are

cJ−10 =
−m+L−1∑

n=−m

hnc
J
n

and

cJ−1N/2−1 =
n=N+L−m−3∑

n=−m+N−2

hn−N+2c
J
n

Hence, it is necessary to add m components at the left of the vector cccJ and L−2−m
components at the end. This can be done in several ways; see, e.g. [36, pp. 282-290]
for a discussion on different choices of these boundary conditions.

3. With an appropriate choice of the boundary conditions, formulae (96) and (97)
show that in the first step of the decomposition we compute approximately N/2
coefficients cJ−1k and N/2 coeficientes dJ−1k . The next decomposition step is only

applied to the coefficients cJ−1k which represnt the part in VJ−1 and so on. Hence,
as the decomposition proceeds, less operations are involved If the filter length is L,
the number of operations involved is of the order of

L×
(
N +

N

2
+
N

4
+ · · ·

)
< 2NL.

Hence, the number of operations involved in the fast wavelet transform is O(N); cf.
with O(N logN) for the FFT.

There are many important variants of the basic wavelet theory. Since it is impossible to
present here a reasonable description (even very brief) of these variants, we just refer to
some of these developments and indicate some references for the interested reader:

• Biorthogonal wavelets, introduced by Cohen, Daubechies and Feaveau in [14];
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• wavelet-packets, introduced in [17] and applied in signal compression in [48]; we also
recommend the book by Wickerhauser [49] and the article [46];

• Wilson bases– [21];

• local sine and co-sine bases – [16], [2];

• multiwavelets – [27];

• interpolatory wavelets – [23];

• lifting scheme and second generation wavelets – [43, 44, 45].

XII. Conclusion

The idea of transforming or decomposing an object (e.g. a function) in order to extract
more “relevant” (for a specific purpose) information, and then reconstituting it, pervades
all the areas of mathematics. This makes the subject of mathematical transforms ex-
tremely vast and impossible to cover, even in condensed form, in a set of notes. We were,
therefore, forced to make a personal selection of topics. Our idea has been to focus on
the most popular transforms, having also in mind their relevance in applied areas, such as
signal processing.

We sincerely hope that these notes can be useful as a quick reference and a starting point
for studying, more deeply, this fascinating area of mathematics.
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