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Centro de Matemática, University of Minho

Campus of Gualtar, 4700-030 Braga
Portugal

Abstract

This paper studies existence, uniqueness, continuous dependence on the given data
and the asymptotic behavior of the solution of an evolutive variational inequality with
non-constant gradient constraint and homogeneous Dirichlet boundary condition.

With assumptions on the given data, we prove existence of solution for a variational in-
equality with two obstacles, a Lagrange multiplier problem and an equation with gradient
constraint. Equivalence of these problems with the variational inequality with gradient
constraint is proved. An example of non-equivalence among these problems is given in
order to show the necessity of the assumptions.

Mathematics subject classification: 35K85, 35K55, 35R35.
Key words: Parabolic variational inequality, parabolic PDE, free boundary problem.

1 Introduction

Variational problems with gradient constraint have been studied by several authors, in
many different situations. The well known elastic-plastic torsion problem, a linear elliptic
variational inequality, with constant coefficients and gradient constraint γ (the threshold of
plasticity, which, for simplicity, is assumed here to be 1), in a simply connected domain,
was solved by Brézis in [2]. Brézis also proved the equivalence of this problem with two
other problems, a double obstacle variational inequality and a Lagrange multiplier prob-
lem. The first equivalence was generalized by Caffarelli and Friedman ([3]) to problems with
non-homogeneous boundary conditions and the second one by Gerhardt ([6]) to multiply
connected domains and also non-homogeneous boundary conditions. A general elliptic vari-
ational inequality with a convex set defined by a convex nonlinear function of the gradient,
bounded from above by 1, was studied by Jensen in [9]. Evans studied general linear elliptic
equations with a non-constant gradient constraint in [5] and his regularity result was extended
by Ishii and Koike ([8]). Choe and Shim ([4]) obtained a regularity result for a variational
inequality for the p-Laplacian, with non-constant gradient constraint and non-homogeneous
boundary condition.

Parabolic variational inequalities with gradient constraint have also been considered (see,
for instance [20], [21] and [23]).

Recently, the interest in problems with gradient constraint increased, since the critical
state model of type-II superconductors in a longitudinal geometry turns out to be a nonlinear
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evolution equation involving the p-Laplacian, for the relevant component of the magnetic field,
together with a gradient constraint the threshold of which depends on the solution (see [1]
and [17]). More explicitly, the model turns out to be a quasivariational inequality with a
gradient constraint depending on the solution itself. Another model, the description of the
growth of a sandpile, is also a quasi-variational inequality with gradient constraint depending
on the solution ([16]). Some recent works about quasi-variational inequalities with gradient
constraint are [10], [11] and [19].

In this paper we study an abstract evolutive variational inequality, with non-constant gra-
dient constraint and homogeneous Dirichlet boundary condition. Part of the results presented
here were announced in a symposium and are shortly described in [21].

This paper has two sections:
- the first section is divided in three subsections. The first one establishes briefly the exis-

tence of solution of the variational inequality, being this proof related with the one presented
in [19], for the quasi-variational case with the p-Laplacian. Obviously, the result obtained
here for the variational case (with the Laplacian) is stronger. The second subsection stud-
ies the continuous dependence of the solution on the data and the third one obtains the
asymptotic limit of the solution, when t → +∞;

- in section two we suppose the given function depends only on the t variable. With
assumptions on the gradient constraint we prove, in the first subsection, existence of solution
of a double obstacle problem, deducing easily the W 2,1

p (QT ) regularity of the solution in this
case. Afterwards, equivalence of this problem with the variational inequality with gradient
constraint is proved. In the second subsection we establish existence of solution of a Lagrange
multiplier problem and we prove that its solution is solution of the variational inequality. In
the third subsection, existence for an equation with gradient constraint is proved, as well as
the equivalence between this problem and the variational inequality. The forth subsection
is dedicated to the presentation of an example that shows the non-equivalence, in general,
among these problems.

2 The variational problem

The main purpose of this section is to define the variational inequality problem and to
present a brief proof of existence of solution. We also present a result about the continuous
dependence of the solution on the given data and we study the asymptotic behavior of the
solution, when t → +∞.

We assume that Ω is an open, bounded subset of IRN , with a smooth boundary ∂Ω. We
denote by I = [0, T ] (T ∈ IR+) a closed interval of IR and by QT the cylinder Ω×]0, T [. The
set Σ = ∂Ω× I is the lateral boundary and Ω0 = Ω× {0}.

Let f and g be functions defined in QT , g ≥ 0, and let h be defined in Ω.
Define, for a.e. t ∈ I, the following closed convex subset of H1

0 (Ω),

IKg(t) = {v ∈ H1
0 (Ω) : |∇v(x)| ≤ g(x, t) for a.e. in x ∈ Ω}. (1)
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We consider the following variational inequality problem:

To find u ∈ L∞(0, T ; H1
0 (Ω)) such that





u(t) ∈ IKg(t) for a.e. t ∈ I, u(0) = h,

∫

Ω
ut(t)(v(t)− u(t)) +

∫

Ω
∇u(t)·∇(v(t)− u(t)) ≥

∫

Ω
f(t)(v(t)− u(t)),

∀v ∈ L∞(0, T ; H1
0 (Ω)) : v(t) ∈ IKg(t), for a.e. t ∈ I.

(2)

2.1 Existence of solution

This subsection is dedicated to the proof of existence of solution, since the uniqueness
is obvious. In [19], it can be found the proof of existence of solution for a related quasi-
variational inequality problem with the p-Laplacian. There are many similarities between
both proofs. Obviously, the solution for the variational inequality presented here is more
regular and we prove here with more detail the facts which are specific of this problem.

Let us impose some assumptions on the given data:




g ∈ C0(QT ) ∩W 1,∞(0, T ; L∞(Ω)),

∃m > 0 ∀(x, t) ∈ QT g(x, t) ≥ m,

f ∈ L∞(QT ),

h ∈ H1
0 (Ω), |∇h| ≤ g(0) a.e. in Ω.

(3)

Let fε ∈ C0
α,α/2(QT ), gε ∈ C1,0

α,α/2(QT ) and hε ∈ C2
α(Ω) (0 < α < 1) be smooth approxima-

tions of f , g and h in the spaces L∞(QT ), C0(QT )∩W 1,∞(0, T ;L∞(Ω)), H1
0 (Ω) respectively,

verifying hε and gε the additional conditions |∇hε| ≤ gε(0) a.e. in Ω, gε ≥ m. Let kε be a
C2, nondecreasing function, such that kε(s) = 1 if s ≤ 0, kε(s) = es/ε if ε ≤ s. Consider now
a family of approximate quasilinear parabolic problems, defined as follows,





uε
t −∇·(kε(|∇uε|2 − g2

ε)∇uε) = fε in QT ,

uε(0) = hε in Ω0, uε = 0 on Σ.
(4)

The following theorem is the main result of this section.

Theorem 2.1 With the assumption (3), problem (2) has a unique solution u belonging
to L∞(0, T ; W 1,∞

0 (Ω)) ∩ C0(QT ) ∩ H1(0, T ;L2(Ω)). Besides that, u is the weak limit in
Lp(0, T ; W 1,p

0 (Ω)) (for any p ∈]N,+∞[) of a subsequence (uεn)n of solutions of the family of
approximate problems (4), uεn −→ u in C0(QT ), uεn

t ⇀ ut in L2(QT )-weak.
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We begin presenting first some auxiliary results.

Proposition 2.2 Problem (4) has a unique solution uε ∈ C2,1
α,α/2(QT ) ∩ C0(QT ), 0 < α < 1.

Proof: This result is an immediate consequence of the well known theory of quasilinear
parabolic equations (see theorem 6.2, page 457 of [12]).

Lemma 2.3 Let uε be the solution of problem (4) and suppose that the assumption (3) is
verified. Then

∃C0 > 0 ∀ε ∈]0, 1[ ∀(x, t) ∈ QT |uε(x, t)| ≤ C0, (5)

the constant C0 being dependent on ‖f‖L∞(QT ) and ‖h‖L∞(Ω).

Proof: This result is an immediate consequence of the well known maximum principle for
quasilinear parabolic equations (see [12], theorem 7.1 , page 181 ). Notice that, since h ∈
H1

0 (Ω) and |∇h| ≤ g(0), then h ∈ L∞(Ω).

Lemma 2.4 Let uε be the solution of problem (4) and suppose that the assumption (3) is
verified. Then

∃C1 > 0 ∀ε ∈]0, 1[ ‖kε(|∇uε|2 − g2
ε)‖L1(QT ) ≤ C1, (6)

the constant C1 being dependent on 1
m2 , ‖f‖2

L2(QT ), ‖g‖2
L2(QT ) and ‖h‖2

L2(Ω).

Proof: Multiply the equation of the problem (4) by uε and integrate over
Qt = Ω×]0, t[. Then,

1
2

∫

Ω
[uε(t)]2 +

∫

Qt

kε(|∇uε|2 − g2
ε)|∇uε|2 =

∫

Qt

f εuε +
1
2

∫

Ω
h2

ε.

Using Hölder and Poincaré inequalities, denoting by C the Poincaré constant, we have

∫

Qt

kε(|∇uε|2 − g2
ε)|∇uε|2 ≤ C

(∫

Qt

(fε)2
) 1

2
(∫

Qt

|∇uε|2
) 1

2

+
1
2

∫

Ω
h2

ε

and using Young’s inequality and the fact that kε ≥ 1, we have
∫

QT

kε(|∇uε|2 − g2
ε)|∇uε|2 ≤ C2‖fε‖2

L2(QT ) + ‖hε‖2
L2(Ω).

Now,
∫

QT

kε(|∇uε|2 − g2
ε)|∇uε|2 =

∫

QT

kε(|∇uε|2 − g2
ε)

[
|∇uε|2 − g2

ε

]
+

∫

QT

kε(|∇uε|2 − g2
ε)g

2
ε
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and, since kε(s) = 1 for s ≤ 0 and kε(s)s ≥ 0, ∀s ∈ IR+
0 , then

∫

Qt

kε(|∇uε|2 − g2
ε)

[
|∇uε|2 − g2

ε

]
=

∫

{|∇uε|2≤g2
ε}

kε(|∇uε|2 − g2
ε)

[
|∇uε|2 − g2

ε

]

+
∫

{|∇uε|2>g2
ε}

kε(|∇uε|2 − g2
ε)

[
|∇uε|2 − g2

ε

]

≥ −
∫

QT

g2
ε .

Then we conclude that
∫

Qt

kε(|∇uε|2 − g2
ε) ≤ 1

m2

[∫

QT

kε(|∇uε|2 − g2
ε)|∇uε|2 +

∫

QT

g2
ε

]

≤ 1
m2

[
C2‖fε‖2

L2(QT ) + ‖hε‖2
L2(Ω) + ‖gε‖2

L2(QT )

]

≤ 1
m2

[
C2‖f‖2

L2(QT ) + ‖h‖2
L2(Ω) + ‖g‖2

L2(QT ) + 1
]
,

since fε, gε and hε are approximations of f , g and h.

Lemma 2.5 Let uε be the solution of problem (4) and suppose that the assumption (3) is
verified. Then

∃C2 > 0 ∀ε ∈]0, 1[ ‖uε
t‖2

L2(QT ) ≤ C2, (7)

the constant C2 being dependent on C1 and on ‖g‖2
W 1,∞(0,T ;L∞(Ω)).

Proof: Multiply the equation of problem (4) by uε
t , noticing that uε

t |Σ ≡ 0, and integrate

over Qt. Calling φε(s) =
∫ s

0
kε(τ)dτ , we have

∫

Qt

[uε
t ]

2 +
1
2

∫

Qt

d

dt

[
φε(|∇uε|2 − g2

ε)
]
+

∫

Qt

kε(|∇uε|2 − g2
ε)gεgεt =

∫

Qt

f εuε
t ,

and, consequently,
∫

QT

[uε
t ]

2 ≤
∫

QT

[fε]2 + 2C1‖gε‖L∞(QT )‖gεt‖L∞(QT ) −
∫

Ω

[
φε(|∇uε(t)|2 − g2

ε(t))
]
,

since ∫

Ω

[
φε(|∇uε(0)|2 − g2

ε(0))
]
≤ 0, because |∇uε(0)| = |∇hε| ≤ gε(0).

Let Λ = {(x, t) ∈ QT : |∇uε(x, t)| < gε(x, t)}. Then we have:




for a.e. (x, t) ∈ Λ φε(|∇uε(x, t)|2 − g2
ε(x, t)) = |∇uε(x, t)|2 − g2

ε(x, t) ≥ −g2
ε(x, t),

for a.e. (x, t) ∈ QT \ Λ φε(|∇uε(x, t)|2 − g2
ε(x, t)) ≥ 0 ≥ −g2

ε(x, t),
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Consequently, for a.e. t0 ∈ I,

−
∫

Ω
φε(|∇uε(t0)|2 − g2

ε(t0)) ≤ ‖gε‖2
L∞(0,T ;L2(Ω))

and the proof is concluded.

Lemma 2.6 Let uε be the solution of problem (4) and suppose that the assumption (3) is
verified. Then

∀p ∈ [1, +∞[ ∃Dp ∈ IR+ ∀ε ∈]0, 1[: ‖∇uε‖Lp(QT ) ≤ Dp, (8)

the constant Dp being dependent on p, C1 and on ‖g‖2
L2(QT ).

Proof: We know, from (6), that there exists a constant C1, independent of ε, such that, for
any ε ∈]0, 1[, ∫

QT

kε(|∇uε|2 − g2
ε) ≤ C1.

So,

C1 ≥
∫

{|∇uε|2>g2
ε+ε}

kε(|∇uε|2 − g2
ε) =

∫

{|∇uε|2>g2
ε+ε}

e
|∇uε|2−g2

ε
ε .

Recalling that,

∀s ∈ IR+ ∀j ∈ IN es ≥ sj

j!
,

we obtain

∀j ∈ IN

∫

{|∇uε|2>g2
ε}

[
|∇uε|2 − g2

ε

]j

≤ j!εj
∫

{|∇uε|2>g2
ε+ε}

e
|∇uε|2−g2

ε
ε ≤ j!εjC1.

Given p ∈ [1, +∞[, we have
∫

QT

|∇uε|p =
∫

{|∇uε|2≤g2
ε+ε}

|∇uε|p +
∫

{|∇uε|2>g2
ε+ε}

|∇uε|p. (9)

Since there exists a constant M > 0, not depending on ε, such that ‖gε‖L∞(QT ) ≤ M , we
can estimate, for p ∈ IN , the second integral in the second term of (9) as follows,

∫

{|∇uε|2>g2
ε+ε}

|∇uε|2p ≤

=
∫

{|∇uε|2>g2
ε+ε}

p∑

j=0

(
p
j

)
‖gε‖2p−2j

L∞(QT )

[
|∇uε|2 − g2

ε

]j

≤
p∑

j=0

(
p
j

)
‖gε‖2p−2j

L∞(QT )j!ε
jC1.
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The first integral in the second term of (9) is obviously bounded. In fact,
∫

{|∇uε|2≤g2
ε+ε}

|∇uε|2p ≤
∫

QT

(
g2
ε + 1

)p

and the conclusion follows easily, not only for p ∈ IN , but also for any p ∈ [1, +∞[.

Lemma 2.7 Define

IKgε(t) = {v ∈ H1
0 (Ω) : |∇v(x)| ≤ gε(x, t) for a.e. x in Ω}. (10)

Then, for any v ∈ L∞(0, T ; H1
0 (Ω)) such that v(t) ∈ IKg(t) for a.e. t ∈ I, there exists

vε ∈ L∞(0, T ; H1
0 (Ω)) such that vε(t) ∈ IKgε(t) and

vε −→ v when ε → 0 in L∞(0, T ; H1
0 (Ω)).

Proof: Let αε(t) = ‖gε(t)− g(t)‖L∞(Ω). Obviously,

αε −→ 0 when ε → 0 in C0([0, T ]).

Define ψε(t) = 1 +
αε(t)
m

and, given v ∈ L∞(0, T ; H1
0 (Ω)) such that v(t) ∈ IKg(t) for a.e.

t ∈ [0, T ], define vε =
1
ψε

v ∈ L∞(0, T ; H1
0 (Ω)).

Then,

|∇vε(x, t)| =
1

ψε(x, t)
|∇v(x, t)| ≤ 1

ψε(x, t)
g(x, t) ≤ gε(x, t),

because

ψε(x, t) = 1 +
αε(t)
m

≥ 1 +
αε(t)

gε(x, t)
≥ gε(x, t) + g(x, t)− gε(x, t)

gε(x, t)
=

g(x, t)
gε(x, t)

.

So, vε(t) ∈ IKgε(t) for a.e. t ∈ [0, T ] and vε −→ v in L∞(0, T ;H1
0 (Ω)), when ε → 0, since

‖vε(t)− v(t)‖H1
0 (Ω) =

∣∣∣∣
1

ψε(t)
− 1

∣∣∣∣ ‖v‖L∞(0,T ;H1
0 (Ω)) ≤

|αε(t)|
m

‖v‖L∞(0,T ;H1
0 (Ω)),

and so,
vε −→ v when ε → 0 in L∞(0, T ; H1

0 (Ω)).

Proof of Theorem 2.1: We have proved that there are constants C2 and Cp (indepen-
dent of ε), ∀p ∈ [1, +∞[, such that

‖uε
t‖L2(QT ) ≤ C2, ‖uε‖Lp(0,T ;W 1,p(Ω)) ≤ Cp.

So, for p > N , by a well known compactness theorem ([22], page 84), {uε}ε∈]0,1[ is
relatively compact in C(0, T ;C(Ω)) and so, at least for a subsequence, we have

uε(t) −→ u when ε → 0 uniformly in t in C0(Ω),
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and we also know that,

uε ⇀ u when ε → 0 weakly in Lp(0, T ; W 1,pΩ)), p ∈ [1,+∞[

uε
t ⇀ ut when ε → 0 weakly in L2(QT ).

Let us prove now that u is, in fact, solution of the variational inequality (2). Given
v ∈ L∞(0, T ; H1

0 (Ω)) such that v(t) ∈ IKg(t) for a.e. t ∈ [0, T ], let vε ∈ L∞(0, T ; H1
0 (Ω)) be

defined as in Lemma 2.7. Multiply the equation of problem (4) by vε(t)− uε(t) and use the
monotonicity of kε and integration over ]s, t[×Ω, 0 ≤ s < t ≤ T to conclude that

∫ t

s

∫

Ω
uε

t (v
ε − uε) +

∫ t

s

∫

Ω
∇vε ·∇(vε − uε) ≥

∫ t

s

∫

Ω
fε(vε − uε).

Letting ε → 0 and because s and t are arbitrary, we conclude that
∫

Ω
ut(t)(v(t)− u(t)) +

∫

Ω
∇v(t)·∇(v(t)− u(t)) ≥

∫

Ω
f(t)(v(t)− u(t)),

∀v ∈ L∞(0, T ; H1
0 (Ω)) : v(t) ∈ IKg(t) for a.e. t ∈]0, T [.

(11)

Calling, for M ≥ ε, AM,ε = {(x, t) ∈ QT : |∇uε|2 − g2
ε ≥ M}, we see that, since in AM,ε

we have kε(|∇uε|2 − g2
ε) ≥ e

M
ε ,

|AM,ε| =
∫

AM,ε

1 ≤
∫

AM,ε

kε(|∇uε|2 − g2
ε)

e
M
ε

≤ C1e
−M

ε ,

since ‖kε(|∇uε|2 − g2
ε)‖L1(QT ) ≤ C1, C1 independent of ε. So, choosing M =

√
ε,

∫

QT

(
|∇u|2 − g2

)+ ≤ lim inf
ε→0

∫

QT

(
|∇uε|2 − g2

ε −
√

ε
)+

= lim inf
ε→0

∫

A√ε,ε

(
|∇uε|2 − g2

ε −
√

ε
)
≤ lim

ε→0
D

∣∣∣A√ε,ε

∣∣∣
1
2 = 0,

where D is an upper bound of
[∫

QT

(
|∇uε|2 − g2

ε −
√

ε
)2

] 1
2

, D independent of ε. Conse-

quently,
|∇u| ≤ g a.e. in QT .

So u ∈ IKg(t) and, to complete the proof, it is necessary to show that, by a variant
of Minty’s Lemma (see [18], lemma 4.2, page 99), it is possible to substitute the term∫

Ω
∇v(t)·∇(v(t)− u(t)) in (11) by

∫

Ω
∇u(t)·∇(v(t)− u(t)), in order to obtain the variational

inequality (2). So, let w ∈ L∞(0, T ; H1
0 (Ω)) be such that w(t) ∈ IKg(t) for a.e. t ∈ [0, T ].

Define v = u + θ(w− u), θ ∈]0, 1]. Notice that v(t) ∈ IKg(t) for a.e. t ∈ I. Then, substituting
v in (11) and dividing both sides by θ, we obtain
∫

Ω
ut(t)(w(t)−u(t))+

∫

Ω
∇u(t)·∇(w(t)−u(t))+ θ

∫

Ω
|∇(w(t)−u(t))|2 ≥

∫

Ω
f(t)(w(t)−u(t))
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and, letting θ → 0, we prove that
∫

Ω
ut(t)(w(t)− u(t)) +

∫

Ω
∇u(t)·∇(w(t)− u(t)) ≥

∫

Ω
f(t)(w(t)− u(t)),

∀w ∈ L∞(0, T ; H1
0 (Ω)) : w(t) ∈ IKg(t) for a.e. t ∈]0, T [.

It remains to prove uniqueness, which is an immediate consequence of Theorem 2.8 below.

2.2 Continuous dependence on the data

This subsection is dedicated to the study of the continuous dependence of the solution of
problem (2) on the given data.

Let u1 and u2 denote, respectively, the solution of problem (2) with data (f1, g1, h1) and
(f2, g2, h2). Denote

IKgi(t) = {v ∈ H1
0 (Ω) : |∇v| ≤ gi(t) a.e. in Ω}, i = 1, 2. (12)

Theorem 2.8 Suppose that (f1, g1, h1) and (f2, g2, h2) satisfy assumption (3), with the same
m for g1 and g2. Then

∃C0, C1, C2 > 0 : ‖u1 − u2‖2
L∞(0,T ;L2(Ω)) + ‖∇(u1 − u2)‖2

L2(QT ) ≤

C0‖f1 − f2‖2
L2(QT ) + C1‖h1 − h2‖2

L2(Ω) +
C2

m
‖g1 − g2‖L2(0,T ;L∞(Ω)).

(13)

Proof: Let θ(t) = ‖g1(t) − g2(t)‖L∞(Ω) and ψ(t) = 1 +
θ(t)
m

. Define v1(x, t) =
1

ψ(t)
u1(x, t)

and v2(x, t) =
1

ψ(t)
u2(x, t).

Notice that

g1(x, t)
g2(x, t)

= 1 +
g1(x, t)− g2(x, t)

g2(x, t)
≤ ψ(t) and also

g2(x, t)
g1(x, t)

≤ ψ(t).

Since
|∇v1(x, t)| =

∣∣∣∣
1

ψ(t)
∇u1(x, t)

∣∣∣∣ ≤
1

ψ(t)
g1(x, t) ≤ g2(x, t)

and
|∇v2(x, t)| =

∣∣∣∣
1

ψ(t)
∇u2(x, t)

∣∣∣∣ ≤
1

ψ(t)
g2(x, t) ≤ g1(x, t),

we have that v1(t) ∈ IKg2(t) and v2(t) ∈ IKg1(t).
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Putting in (2), for data (f1, g1, h1), v = v2, we obtain
∫

Ω
u1

t (t)(u
2(t)− u1(t)) +

∫

Ω
∇u1(t)·∇(u2(t)− u1(t)) ≥

∫

Ω
f1(t)(u2(t)− u1(t))

(14)

+
∫

Ω

(
1− 1

ψ(t)

) [
u1

t (t)u
2(t) +∇u1(t)·∇u2(t)− f1(t)u2(t)

]
,

and an analogous expression substituting the superscripts 1 by 2 and 2 by 1. Summing both
inequalities, integrating between 0 and t and using Poincaré inequality (being C the Poincaré
constant), we obtain

1
2

∫

Ω
(u1(t)− u2(t))2 +

1
2

∫

QT

|∇(u1 − u2)|2

≤ C2

2

∫

QT

(f1 − f2)2 +
1
2

∫

Ω
(u1(0)− u2(0))2

+
∫

QT

∣∣∣∣1−
1
ψ

∣∣∣∣
∣∣∣u1

t u
2 + u2

t u
1 + 2∇u1 ·∇u2 − f1u

2 − f2u
1
∣∣∣

≤ C2

2

∫

QT

(f1 − f2)2 +
1
2

∫

Ω
(u1(0)− u2(0))2

+

[∫

QT

(
1− 1

ψ

)2
] 1

2 [∫

QT

(
u1

t u
2 + u2

t u
1 + 2∇u1 ·∇u2 − f1u

2 − f2u
1
)2

] 1
2

.

Noticing that

∃D > 0 (depending only on the data) :

‖u1
t u

2 + u2
t u

1 + 2∇u1 ·∇u2 − f1u
2 − f2u

1‖L2(QT ) ≤ D,

since u1
t , u2

t ∈ L2(QT ), u1, u2 ∈ L∞(0, T ; W 1,∞(Ω)) f1, f2 ∈ L∞(QT ) and that
[∫

QT

(
1− 1

ψ

)2
] 1

2

≤ C

(∫

QT

θ2(t)
) 1

2

,

(13) is proved.

2.3 Asymptotic behavior in time

In this subsection we are going to study the asymptotic limit, when t → +∞, of the
solution of the variational inequality (2).

Considering T = +∞, we begin proving that there exists a global solution of the varia-
tional inequality, defined in Ω× IR+

0 .
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Lemma 2.9 Suppose that the assumption (3) is verified, with T = +∞. Then problem (2)
has a solution u such that

u ∈ L∞(0, +∞;W 1,∞
0 (Ω)) ∩ C0(Ω× IR+

0 ), ut ∈ L2
loc(IR

+
0 ; L2(Ω)).

Proof: For each T ∈]0, +∞[, let uT : Ω × [0, T ] → IR denote the unique solution of the
variational inequality (2). Let u : Ω× IR+

0 → IR be defined as follows: given (x, t) ∈ Ω× IR+
0 ,

fix T > t and define u(x, t) = uT (x, t). Clearly, u is well defined, due to the uniqueness (for
each T ) of solution of the variational inequality (2), and u solves (2) with T = +∞. By
the estimates obtained in the previous section, it is obvious that u ∈ C0(Ω × IR+

0 ) and that
ut ∈ L2

loc(IR
+
0 ; L2(Ω)).

From the fact that u(t) ∈ IKg(t) for a.e. t ∈ IR+
0 , we obtain that

|∇u(x, t)| ≤ g(x, t) for a.e. (x, t) ∈ Ω× IR+
0

and, since g ∈ L∞(Ω× IR+
0 ), it follows that u ∈ L∞(0, +∞; W 1,∞(Ω)).

Let us now define, for given functions (f∞, g∞), satisfying the assumption




g∞ ∈ C0(Ω),

∃ m∞ > 0 ∀x ∈ Ω g∞(x) ≥ m∞,

f∞ ∈ L∞(Ω),

(15)

the limiting elliptic problem




To find u∞ ∈ IKg∞ :

∫

Ω
∇u∞ ·∇(w − u∞) ≥

∫

Ω
f∞(w − u∞), ∀w ∈ IKg∞ ,

(16)

where

IKg∞ = {w ∈ H1
0 (Ω) : |∇w| ≤ g∞ a.e. in Ω}. (17)

Existence of solution for the variational inequality (16) follows immediately from Stam-
pacchia Theorem (see [18], Corollary 3.3 i), page 95).

Lemma 2.10 ([7], pg. 286) Let ζ : IR+
0 → IR be a nonnegative function, absolutely contin-

uous in any compact subinterval of IR+
0 , Φ ∈ L1

loc(0, +∞) a nonnegative function and λ a
positive constant such that

ζ ′(t) + λζ(t) ≤ Φ(t), ∀ t ∈ IR+
0 . (18)

Then

∀ s, t ∈ IR+
0 ζ(t + s) ≤ e−λt +

1
1− e−λ

[
sup
τ≥s

∫ τ+1

τ
Φ(ξ)dξ

]
. (19)
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Theorem 2.11 Suppose that (f, g, h) satisfy the assumption (3) with T = +∞ and (f∞, g∞)
satisfy the assumption (15). Suppose, in addition, that

∫ t+1

t

∫

Ω
[f(τ)− f∞]2 dτdx −→ 0, when t → +∞,

∃D > 0 ∃γ >
1
2

: ‖g(t)− g∞‖L∞(Ω) ≤
D

tγ
.

(20)

Then we have

u(t) −→ u∞ in C0,α(Ω), (0 < α < 1) when t → +∞. (21)

Proof: Let, once more, θ(t) = ‖g(t) − g∞‖L∞(Ω), m0 = min{m,m∞} and ψ(t) = 1 +
θ(t)
m0

.

Then we have that v(t) =
1

ψ(t)
u∞ ∈ IKg(t) and v∞ =

1
ψ(t)

u(t) ∈ IKg∞ , for a.e. t ∈ IR+.

Substitute v by v(t) in (2) and w by v∞ in (16). Then, we obtain,
∫

Ω
ut(t)

(
1

ψ(t)
u∞ − u(t)

)
+

∫

Ω
∇u(t)·∇

(
1

ψ(t)
u∞ − u(t)

)

≥
∫

Ω
f(t)

(
1

ψ(t)
u∞ − u(t)

)

and
∫

Ω
∇u∞ ·∇

(
1

ψ(t)
u(t)− u∞

)
≥

∫

Ω
f∞

(
1

ψ(t)
u(t)− u∞

)

and so,
∫

Ω
(u(t)− u∞)t (u(t)− u∞) +

∫

Ω
|∇(u(t)− u∞)|2 ≤

∫

Ω
(f(t)− f∞)(u(t)− u∞)

+
∫

Ω

(
1− 1

ψ(t)

) [
ut(t)u∞ + 2∇u(t)·∇u∞ − f(t)u∞ − f∞u(t)

]
.

Using Poincaré’s inequality (denoting by C the Poincaré constant) and denoting w(t) =
u(t)− u∞, we obtain

1
2

d

dt

∫

Ω
w2(t) +

1
2

∫

Ω
|∇w(t)|2 ≤ C2

2
‖f(t)− f∞‖2

L2(Ω)

+C1

∣∣∣∣1−
1

ψ(t)

∣∣∣∣
[
‖ut(t)‖L2(Ω) + 1

]
.

(22)

since u∞, f∞ ∈ L∞(Ω), u ∈ L∞(0, +∞; W 1,∞(Q∞)), ut ∈ L2
loc(IR

+
0 ; L2(Ω)) and f ∈

L∞(Q∞). Looking at the estimate of ‖uε
t‖2

L2(Ω×[0,T ]) presented in the proof of Lemma 2.5,
we see that there exist constants D0, D1, such that

‖ut‖2
L2(Ω×[0,t]) ≤ D0t + D1,
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where D0 and D1 are independent of t.
Calling ζ(t) = ‖w(t)‖2

L2(Ω) and

Φ(t) = C2‖f(t)− f∞‖2
L2(Ω)+2

C1

m
‖g(t)− g∞‖L∞(Ω)

[
‖ut(t)‖L2(Ω) + 1

]

we see that, in fact, Φ ∈ L1
loc(0, +∞) and ζ and Φ satisfy (18). So, for this choice of ζ and

Φ, (19) is verified.
Applying Lemma 2.10, the result is proved, since

∫ t+1

t
‖g(τ)− g∞‖L∞(Ω)‖ut(τ)‖L2(Ω)dτ

≤ ‖g(τ)− g∞‖L∞(Ω×]t,t+1[)

(∫

Ω×]t,t+1[
|ut|2

) 1
2

≤ DD̃0

tγ−
1
2

+
DD̃1

tγ
−→ 0 when t → +∞,

being D̃0 and D̃1 constants (independent of t).

3 Other problems with gradient constraint

There are problems with gradient constraint, well known in the literature, and which are
related with this one.

We are going to define now three other problems related with the variational problem (2).
It is our aim in this section to study whether this problem is equivalent to each one of the
three problems defined here.

In this section we impose the additional assumptions on f and g:

f = f(t) (i.e. f is independent of x), f ∈ L∞(0, T ),

g ∈ L∞(0, T ; C2(Ω)) ∩W 1,∞(0, T ; L∞(Ω)), ∂Ω is of class C2.
(23)

There are two main reasons for the choice of the function f depending only on t. The first
one is a historical reason. In fact, the first problem with gradient constraint known in the
literature is the elastic-plastic torsion problem, the elliptic variational inequality considered in
(16), with gradient constraint g∞ ≡ 1 and f a positive constant. For this first problem, with
a clear physical meaning, equivalence with a double obstacle problem, with obstacles ϕ(x) =
d(x, ∂Ω) and ϕ(x) = −d(x, ∂Ω), was proved by Caffareli and Friedman in [3]. Equivalence
of this specific problem with a Lagrange multiplier problem was also proved, for simply
connected domains, by Brèzis in [2], and for multiply connected domains by Gerhardt, in
[6]. Even in the case of the equation with gradient constraint, Evans ([5]) refers, without
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proving, the truth of the equivalence, when the gradient constraint is one, of the equation
with gradient constrain and the variational elastic-plastic torsion problem, alerting to the fact
that this equivalence is not true, in the general case. The second and more important reason
to consider f depending only on the time parameter is that any natural way to establish
equivalence among all these problems depends on the application of the maximum principle
and on the obtainance of very precise estimates on the gradient of the solutions of each of
these problems. Considering f not constant in x would allow us to obtain gradient bounds
but not the necessary ones to prove equivalence among the problems.

We consider first the double obstacle problem. To define it, let, for x, z ∈ Ω,

Lt(x, z) = inf

{∫ δ

0
g(ξ(s), t)ds : δ > 0, ξ : [0, δ] → Ω, ξ smooth , ξ(0) = x, ξ(δ) = z,

|ξ′| ≤ 1

}
,

ϕ(x, t) =
∨
{w(x) : w ∈ IKg(t)}, (24)

ϕ(x, t) =
∧
{w(x) : w ∈ IKg(t)}. (25)

The function Lt is a metric and it can be shown (see [15], theorem 5.1, page 117) that

ϕ(x, t) = inf
z∈∂Ω

{Lt(x, z)} = Lt(x, ∂Ω)

and that
ϕ(x, t) = sup

z∈∂Ω
{−Lt(x, z)} = −Lt(x, ∂Ω).

In the special case where g ≡ 1, then Lt is the geodesic distance to ∂Ω and, if Ω is convex,
Lt is the usual distance to ∂Ω.

Consider the following closed convex set with two obstacles

IK(t) = {w ∈ H1
0 (Ω) : ϕ(x, t) ≤ w(x) ≤ ϕ(x, t) for a.e. x in Ω}. (26)

The double obstacle problem is defined as follows:

To find u ∈ L∞(0, T ; H1
0 (Ω)) such that





u(t) ∈ IK(t) for a.e. t ∈ I, u(0) = h,

∫

Ω
ut(t)(v(t)− u(t)) +

∫

Ω
∇u(t)·∇(v(t)− u(t)) ≥

∫

Ω
f(t)(v(t)− u(t)),

∀v ∈ L∞(0, T ; H1
0 (Ω)) : v(t) ∈ IK(t), for a.e. t ∈ I.

(27)

It was shown by Caffarelli and Friedman in [3], that the elliptic formulation of the varia-
tional inequality with constant gradient constraint is equivalent to the double obstacle prob-
lem. The equivalence is still true for the parabolic case and constant gradient constraint (see
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[20]). We intend to prove here the equivalence between these two problems, with non-constant
gradient constraint g, as long as g satisfy suitable assumptions.

The following Lagrange multiplier problem is also related with the problem (2):

To find (u, λ) ∈
[
L∞(0, T ; W 1,∞

0 (Ω)) ∩W 1,∞(0, T ;L2(Ω))
]
× L∞(QT ) such that





ut −∇·(λ∇u) = f in QT ,

λ ∈ k(|∇u|2 − g2),

u(0) = h in Ω0, u|Σ = 0,

(28)

where k is the maximal monotone graph defined by k(s) = 1 if s < 0, k(0) = [1, +∞[.
The existence of solution for the elliptic case was proved by Gerhardt ([6]) in the case

where f is constant, the boundary condition is zero and g ≡ 1, as well as its equivalence with
the elastic-plastic torsion problem. The parabolic case with non-homogeneous boundary
condition was considered in [20].

Let us consider also the following parabolic equation with gradient constraint: to find
u ∈ W 1,∞(0, T ;L∞(Ω)) ∩ L∞(0, T ; W 1,∞(Ω)) ∩W 2,1

p,loc(QT ) such that




max{ut −∆u− f, |∇u| − g} = 0 in QT ,

u(0) = h in Ω0, u|Σ = 0.
(29)

It is easily seen that, when g is constant and f = f(t), problems (2) and (29) are equiva-
lent.

Zhu ([23]) has proved existence and (additional) regularity of solution for a similar prob-
lem, if f ≥ 0 (depending on (x, t)). More precisely, he studied the problem





min{ut + Lu + f,−|∇u|+ g} = 0 in IRN × IR+
0 ,

u(x, T ) = 0 ∀x ∈ IRN ,

where L is an elliptic operator and T is a fixed instant.

3.1 Equivalence with the double obstacle problem

In this subsection, we present firstly a brief proof of existence of solution of problem (27).
The equivalence between problem (2) and problem (27) is obtained when

(
g2

)
t
−∆

(
g2

)
≥ 0. (30)
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Theorem 3.1 With the assumption (3), problem (27) has a unique solution.

In order to prove this theorem, we are going to present some auxiliary propositions first.

Proposition 3.2 Let ϕ and ϕ be the obstacles defined, respectively, in (24) and in (25). We
have

ϕ, ϕ ∈ L∞(0, T ; W 1,∞(Ω)) ∩W 1,∞(0, T ;L∞(Ω)),

for a.e (x, t) ∈ QT |∇ϕ(x, t)| = |∇ϕ(x, t)| = g(x, t), (31)

for a.e. t ∈ I ∀x0 ∈ ∂Ω |∇ϕ(x0, t)| = |∇ϕ(x0, t)| = g(x0, t), (32)

∃C > 0 : ∆ϕ ≤ C, ∆ϕ ≥ −C, in L∞(0, T ;D′(Ω)). (33)

Proof: Since ϕ(x, t) = Lt(x, ∂Ω), Lt is continuous and ∂Ω is compact, there exists z ∈ ∂Ω
such that ϕ(x, t) = Lt(x, z). So,

∀ε > 0 ∃δε
0 > 0 ∃ξε : [0, δε

0] → Ω : ξε(0) = x, ξε(δε
0) = z, |ξ′ε| ≤ 1,

∫ δε
0

0
g(ξε(s), t)ds− ε ≤ ϕ(x, t) ≤

∫ δε
0

0
g(ξε(s), t)ds.

Since, obviously, given h > 0, we have Lt+h(x, z) ≤
∫ δε

0

0
g(ξε(s), t + h)ds, then

Lt+h(x, z)− Lt(x, z)
h

≤
∫ δε

0

0

g(ξε(s), t + h)− g(ξε(s), t)
h

ds +
ε

h

=
∫ δε

0

0
[gt(ξε(s), η(h))]ds + ε/h ≤ C,

where t < η(h) < t + h and C is a constant, if we choose, for instance, ε = h2, noticing
that gt ∈ L∞(QT ) and that δε

0 is bounded from above independently of h (depending on
‖g‖L∞(QT ) and on Ω).

Analogously,

∀h > 0 ∀ε > 0 ∃δε,h
0 > 0 ∃ζh

ε : [0, δε,h
0 ] → Ω : ζh

ε (0) = x, ζh
ε (δε,h

0 ) = z, |(ζh
ε )′| ≤ 1,

∫ δε,h
0

0
g(ζh

ε (s), t + h)ds− ε ≤ ϕ(x, t + h) ≤
∫ δε,h

0

0
g(ζh

ε (s), t + h)ds

and, of course, Lt(x, z) ≤
∫ δε,h

0

0
g(ζh

ε (s), t)ds, so,

Lt+h(x, z)− Lt(x, z)
h

≥
∫ δε,h

0

0

g(ζh
ε (s), t + h)− g(ζh

ε (s), t)
h

ds− ε

h

=
∫ δε,h

0

0
[gt(ζh

ε (s), α(h))]ds− ε/h ≥ C,
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being t < α(h) < t + h and, for a choice of ε = h2, C is, as above, independent of h. Then
ϕt ∈ L∞(QT ) and so, ϕ ∈ W 1,∞(0, T ; L∞(Ω)).

By theorem 5.1, page 117 of [15], we know that, for a.e. t ∈ I, ϕ(t) ∈ W 1,∞(Ω) and that
(31) is verified.

By theorem 8.2, page 179 of [15], we know that, if Ωδ = {x ∈ Ω : d(x, ∂Ω) ≥ δ} (where
δ > 0), then

∃δ0 > 0 for a.e. t ∈ I ϕ(t) ∈ C2(Ω \ Ωδ0). (34)

So, we have (32) and, using again theorem 5.1, page 117 of [15], we also have that

∀δ > 0 ∃Cδ > 0 for a.e. t ∈ I : ∆ϕ(t) ≤ Cδ in D′(Ωδ). (35)

So, (33) follows immediately for ϕ from (34) and (35). The proof for the function ϕ is
analogous.

Consider the following family of penalized problems




zε
t −∆zε + 1

ε

(
zε − (zε ∧ ϕ) ∨ ϕ

)
= f in QT ,

zε(0) = h, zε
|Σ = 0.

(36)

Proposition 3.3 Problem (36) has a unique solution zε ∈ W 2,1
p (QT ), for any p ∈ [1, +∞[

and
i) the set

{
1
ε
(zε − (zε ∧ ϕ) ∨ ϕ) : ε ∈]0, 1[

}
is bounded in L∞(QT );

ii) the set {zε : ε ∈]0, 1[} is bounded in W 2,1
p (QT ), for any p ∈ [1, +∞[.

Proof: Let wε = zε − h. Then




wε
t −∆wε + 1

ε

(
(wε + h)− ((wε + h) ∧ ϕ) ∨ ϕ

)
= f −∆h in QT ,

wε = 0 on Σ ∪ Ω0.

This problem has a unique solution w ∈ L2(0, T ;H1
0 (Ω)) (see [14], pg. 162) and so,

problem (36) has a unique solution zε ∈ L2(0, T ; H1(Ω)).
Let ψ = ϕ + Mε, where M is a positive constant to be chosen later. By (33), we know

that ∆ϕ(x, t) ≤ C in L∞(0, T ;D′(Ω)) and we also know that ϕt ∈ L∞(QT ). Then, ψ is a
supersolution of problem (36), i.e. , if Lξ = ξt −∆ξ + 1

ε

(
ξ − (ξ ∧ ϕ) ∨ ϕ

)
, then

Lψ − f ≥ 0 in L∞(0, T ;D′(Ω)), (37)

as long as we impose M ≥ ‖ϕt‖L∞(QT ) + C + ‖f‖L∞(0,T ). And, for M ≥ ‖ϕ
t
‖L∞(QT ) + C +

‖f‖L∞(0,T ), ψ = ϕ−Mε is a subsolution of problem (36). So
(
Lzε − Lψ

)
Φ+ ≤ 0 ∀Φ ∈ L∞(0, T ;D(Ω))
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and, consequently, as we can approximate zε − ψ by functions in L∞(0, T ;D(Ω)), we have
(
Lzε − Lψ

)
(zε − ψ)+ ≤ 0.

Easy calculations show that

1
2

∫

Ω

[
(ψ(t)− zε(t))+

]2
+

∫

Qt

|∇(ψ − zε)+|2 ≤ 0

and, as a consequence, zε ≤ ψ a.e. in QT .
Analogously we prove that zε ≥ ψ a.e. in QT .
In particular, we conclude that

−M ≤ 1
ε

(
zε − (zε ∧ ϕ) ∨ ϕ)

)
≤ M,

which proves i).
From the classical theory for parabolic equations (see [12], theorem 9.1,page 341), since

f − 1
ε

(
zε − (zε ∧ ϕ) ∨ ϕ)

)
is bounded in L∞(QT ) independently of ε,

∀p ∈ [1,+∞[ ∃C > 0, C independent of ε : ‖zε‖
W 2,1

p (QT )
≤ C.

Proof of Theorem 3.1: By the preceding proposition, we know that {zε : ε ∈]0, 1[}
is a bounded subset in W 2,1

p (QT ), for any p ≥ 1. So, there exists a subsequence converging
weakly to some function u∗, in this space. This convergence is strong in L2(0, T ; H1(Ω)) (see,
for instance, [13], pg. 58). On the other hand, zε

t ⇀ u∗t weakly in L2(QT ).
Multiplying the first equation of problem (36) by v − zε, being v(t) a function belonging

to IK(t), for a.e. t ∈ I, integrating over QT , and using the fact that
∫

QT

1
ε

(
zε − (zε ∧ ϕ) ∨ ϕ

)
(v − zε) ≤ 0,

we obtain
∫

QT

zε
t (v − zε) +

∫

QT

∇zε ·∇(v − zε) ≥
∫

QT

f(v − zε),

∀v : v(t) ∈ IK(t) for a.e. t ∈ [0, T ].

Letting ε → 0, we see that
∫

QT

u∗t (v − u∗) +
∫

QT

∇u∗ ·∇(v − u∗) ≥
∫

QT

f(v − u∗),

∀v : v(t) ∈ IK(t) for a.e. t ∈ [0, T ].

Since
ϕ(x, t)−Mε ≤ zε(x, t) ≤ ϕ(x, t) + Mε, for a.e. (x, t) ∈ QT ,
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letting ε → 0, we obtain

ϕ(x, t) ≤ u∗(x, t) ≤ ϕ(x, t), for a.e. (x, t) ∈ QT ,

which means that u∗(t) ∈ IK(t) for a.e. t ∈ I.
Given v such that v(t) ∈ IK(t) for a.e. t ∈ I and given t0 ∈ I, δ > 0 such that

Iδ =]t0 − δ, t0 + δ[⊂ I, define

w(t) =

{
u∗(t) if t ∈ I \ Iδ,
v(t) if t ∈ Iδ.

Obviously, w(t) ∈ IK(t) for a.e. t ∈ I and so,
∫

QT

u∗t (w − u∗) +
∫

QT

∇u∗ ·∇(w − u∗) ≥
∫

QT

f(w − u∗),

and, dividing the inequality by δ, we obtain

1
δ

∫ t0+δ

t0−δ

∫

Ω
u∗t (v − u∗) +

1
δ

∫ t0+δ

t0−δ

∫

Ω
∇u∗ ·∇(v − u∗) ≥ 1

δ

∫ t0+δ

t0−δ

∫

Ω
f(v − u∗),

and, letting δ → 0, where t0 is a Lebesgue point, we have
∫

Ω
u∗t (t0)(v(t0)− u∗(t0)) +

∫

Ω
∇u∗(t0)·∇(v(t0)− u∗(t0)) ≥

∫

Ω
f(t0)(v(t0)− u∗(t0)).

So, u∗ is solution of problem (27).
The uniqueness of solution follows immediately from the fact that, if u1 and u2 are two

solutions of problem (27) then, substituting v = u2(t) in the variational inequality when u1 is
considered as a solution and reciprocally and subtracting the inequalities obtained, one from
the other, we get ∫

Ω
(u1(t)− u2(t))

2 +
∫

Qt

|∇(u1 − u2)|2 ≤ 0

and so u1 = u2 a.e. in QT .

Proposition 3.4 Suppose that the assumptions (3) and (23) are verified. Then

∃M > 0 ∀(x, t) ∈ Σ ∪ Ω0 |∇zε(x, t)| ≤ g(x, t) + M
√

ε. (38)

Proof: Since ∂Ω is of class C2, it satisfies the exterior sphere condition, i.e.

∃R > 0 ∀x0 ∈ ∂Ω ∃y0 ∈ IRN DR(y0) ∩ Ω = {x0},

where DR(y0) = {x ∈ IRN : d(x, y0) ≤ R}. Fixed x0 ∈ ∂Ω we can, with a linear change of
variables, suppose that y0 = 0.

Let ξε(s) = e
− s√

ε and define

ψ(x, t) = ϕ(x, t) + Mε(1− ξε(‖x‖ −R)), ψ(x, t) = ϕ(x, t)−Mε(1− ξε(‖x‖ −R)).
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We are going to prove that ψ and ψ are, respectively, a supersolution and a subsolution
of problem (36), in the same sense as in (37).

Notice that

ψ|Σ ≥ 0 = zε
|Σ ≥ ψ|Σ, ψ(x0, t) = 0 = zε(x0, t) = ψ(x0, t),

ψ|Ω0
≥ ϕ|Ω0

≥ h ≥ ϕ|Ω0
≥ ψ|Ω0

.

Let us denote ξε(‖x‖ −R) simply by ξε(−). Easy calculation show that

ψt = ϕt,
1
ε
(ψ − (ψ ∧ ϕ) ∨ ϕ) = M(1− ξε(−)),

∆ψ = ∆ϕ−Mξε(−) + M
√

εξε(−)
n− 1
‖x‖ .

Then,

ψt −∆ψ +
1
ε
(ψ − (ψ ∧ ϕ) ∨ ϕ)

= ϕt −∆ϕ + Mξε(−)−M
√

εξε(−)
n− 1
‖x‖ + M(1− ξε(−))

≥ ϕt −∆ϕ + M

(
1−√ε

n− 1
R

)
.

Choosing ε such that
√

εn−1
R ≤ 1

2 and M ≥ 2
(
‖ϕt‖L∞(QT ) + C + ‖f‖L∞(0,T )

)
, we verify

that ψ is a supersolution of problem (36). Analogously, for M ≥ 2
(
‖ϕ

t
‖L∞(QT ) + C + ‖f‖L∞(0,T )

)
,

ψ is a subsolution, so ψ ≤ zε ≤ ψ.
In particular, recalling that zε ∈ W 2,1

p (QT ), for any p ∈ [1, +∞[ and the inclusion
W 2,1

p (QT ) ↪→ C1,0
α (Ω × [0, T ]), if p > n (and α = 1 − n/p), then, ∇zε(x0, t) exists for

every (x0, t) ∈ Σ ∪ Ω0 and

|∇zε(x0, t)| ≤ max{|∇ψ(x0, t)|, |∇ψ(x0, t)|}.
But,

|∇ψ(x0, t)| =
∣∣∣∣∇ϕ(x0, t) + M

√
εξε(−)

x0

‖x0‖
∣∣∣∣ ≤ g(x0, t) + M

√
ε,

and also |∇ψ(x0, t)| ≤ g(x0, t) + M
√

ε.
Besides that, |∇zε(x, 0)| = |∇h(x)| ≤ g(x, 0), which completes the proof.

Theorem 3.5 Suppose that the assumptions (3), (23) and (30) are verified. Then problem
(2) is equivalent to problem (27).

Proof: Differentiate the first equation of problem (36) with respect to xk, multiply by zε
xk

and sum over k, denoting v = |∇zε|2. Since 1
2vt = zε

xk
zε
xkt and 1

2∆v = (zε
xixk

)2 + zε
xk

∆zε
xk

, we
get then

1
2
vt − 1

2
∆v +

1
ε

(
v −∇z̃ε ·∇zε) ≤ 0,
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where z̃ε = (zε ∧ ϕ) ∨ ϕ and using the Cauchy-Schwartz inequality,

1
2
vt − 1

2
∆v +

1
ε
(v − |∇z̃ε|v 1

2 ) ≤ 0. (39)

Since we have proved in Proposition 3.4 that v(x, t) ≤ (g(x, t) + M
√

ε)2, for (x, t) ∈
Σ ∪Ω0, there exists N independent of ε such that v(x, t) ≤ g2(x, t) + N

√
ε on Σ ∪Ω0. Then

(v − (g2 + N
√

ε))+ is zero on Σ ∪ Ω0.

Notice that the expression
2
ε
(v − |∇z̃ε|v 1

2 )(v − (g2 + N
√

ε))+ is always nonnegative. In
fact,

|∇z̃ε(x, t)| =





v(x, t) if ϕ(x, t) < zε(x, t) < ϕ(x, t),

g(x, t) if zε(x, t) ≥ ϕ(x, t) or zε(x, t) ≤ ϕ(x, t).

Then, at a given point (x, t) ∈ QT ,

v ≤ g2 + N
√

ε =⇒ 2
ε
(v − |∇z̃ε|v 1

2 )(v − (g2 + N
√

ε))+ = 0,

v > g2 + N
√

ε and ϕ < zε < ϕ =⇒ v − |∇z̃ε|v 1
2 = 0 =⇒ 2

ε
(v − |∇z̃ε|v 1

2 )(v − (g2 + N
√

ε))+ = 0,

v > g2 + N
√

ε and zε ≥ ϕ or zε ≤ ϕ =⇒ v − |∇z̃ε|v 1
2 = v

1
2 (v

1
2 − g) > 0

=⇒ 2
ε
(v − |∇z̃ε|v 1

2 )(v − (g2 + N
√

ε))+ > 0.

Multiplying the inequality (39) by (v− (g2 +N
√

ε))+ and integrating over Qt = Ω× [0, t],
we have ∫

Qt

vt(v − (g2 + N
√

ε))+ +
∫

Qt

∇v ·∇(v − (g2 + N
√

ε))+ ≤ 0

and so
1
2

∫

Ω

[
(v(t)− (g2(t) + N

√
ε))+

]2 − 1
2

∫

Ω

[
(v(0)− (g2(0) + N

√
ε))+

]2

+
∫

Qt

∣∣∣∇(v − (g2 + N
√

ε))+
∣∣∣
2

≤
∫

Qt

−
[
(g2 + N

√
ε)t −∆(g2 + N

√
ε))

]
(v − (g + N

√
ε)2)+ ≤ 0,

using the assumption (30).
Since (v(0)−(g2(0)+N

√
ε))+ ≡ 0, we conclude that (v−(g2 +N

√
ε))+ ≡ 0, which means

that
|∇zε|2 ≤ g2 + N

√
ε a.e. in QT ,

and so, if u∗ is the solution of problem (27), since u∗ is the limit in L∞(0, T ; H1
0 (Ω)) of zε,

when ε → 0, we have |∇u∗| ≤ g a.e. in QT . In particular, u∗(t) ∈ IKg(t). Since IKg(t) ⊆ IK(t),
then u∗ (by uniqueness) is also the solution of problem (2).
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3.2 Equivalence with the Lagrange multiplier problem

We begin this subsection by proving existence of a solution for the Lagrange multiplier
problem (28), when the following assumption is verified:

(
g2

)
t
≥ 0 ∆

(
g2

)
≤ 0. (40)

We would like to refer that the proof of existence of solution of this problem is very
technical, even in the case where g ≡ 1. As we have done in the first section, the problem is
approximated by a family of quasilinear parabolic problems (depending on a parameter ε) and
the necessary estimates to pass to the limit are obtained. The more difficult estimates are the
uniform boundedeness of the gradient and the uniform (local) estimate in L2(0, T ; H2(Ω)).
Although the procedure for both cases (g constant and non-constant) is the same, these two
estimates are more difficult in the second case, since the partial derivatives of g are not zero.

Afterwards, with the same assumptions, we prove that if (u, λ) is a solution of (28) then
u solves the variational inequality (2).

Consider the approximated problem (4), with kε(s) = e
Ns
ε if s ≥ ε, where N is a constant

to be chosen later. In addition to the conditions imposed in the definition of the problem,
we impose that kε is a C2,1 function.

Recall that problem (4) has a solution uε ∈ C2,1
α,α/2(QT ), 0 < α < 1.

Proposition 3.6 Suppose that the assumptions (3) and (23) are verified. Then

∃C > 0 |∇uε(x, t)|2 ≤ g2
ε(x, t) + Cε for a.e. (x, t) ∈ Σ ∪ Ω0. (41)

Proof: Let ϕε and ϕ
ε
be defined as in (24) and (25), respectively, with g replaced by

√
g2
ε + ε.

Let, for s ∈ IR, ηε(s) = s + ε
(
1− e−Bs

)
, where B is a positive constant, to be chosen

later, depending on the given data and independent of ε.
We are going to prove that ψ = ηε(ϕε) and ψ = ηε(ϕε

) are, respectively, a supersolution
and a subsolution of problem (4).

Define Lψ = ψt −∇·(kε(|∇ψ|2 − g2
ε)∇ψ). Due to the monotonicity of kε, it is enough to

prove that

Lψ ≥ f = Luε in QT , ψ|Σ∪Ω0
≥ uε

|Σ∪Ω0
, (42)

and

Lψ ≤ f = Luε in QT , ψ|Σ∪Ω0
≤ uε

|Σ∪Ω0
. (43)

We present here only the calculations for the supersolution, since the calculations for the
subsolution are similar.

Obviously, since ηε is an increasing function and ηε(0) = 0, we have:

• for (x, t) ∈ Σ, ψ(x, t) = ηε(ϕε(x, t)) = ηε(0) = 0;
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• for (x, t) ∈ Ω0, ψ(x, 0) = ηε(ϕε(x, 0)) ≥ ϕε(x, 0) ≥ hε(x) = uε(x, 0).

Easy calculations show that

ψxi
= η′ε(ϕ

ε)ϕε
xi, |∇ψ| = η′ε(ϕ

ε)
√

g2
ε + ε,

ψxixj
= η′′ε (ϕε)ϕε

xi
ϕε

xj
+ η′ε(ϕ

ε)ϕε
xixj

,

∆ψ = η′′ε (ϕε)(g2
ε + ε) + η′ε(ϕ

ε)∆ϕε,

ψxi
ψxj

ψxixj
=

(
η′ε(ϕ

ε)
)3

ϕε
xi

ϕε
xj

ϕε
xixj

+
(
η′ε(ϕ

ε)
)2

η′′ε (ϕε)|∇ϕε|4

and, noticing that ϕε
xi

ϕε
xixj

= gεgεxj
, then ϕε

xi
ϕε

xj
ϕε

xixj
= gε∇gε ·∇ϕε.

Denoting ξ(s) = e−Bs, we have

η′ε(s) = 1 + εBξ(s), η′′ε (s) = −εB2ξ(s).

Calculate now Lψ (to simplify, we will omit the argument ϕε in η′ε and in ξ):

Lψ = ψt − k′ε(|∇ψ|2 − g2
ε)(2ψxi

ψxj
ψxixj

− 2gεgεxi
ψxi

)− kε(|∇ψ|2 − g2
ε)∆ψ

= η′εϕ
ε
t + 2k′ε

((
η′ε

)2 (g2
ε + ε)− g2

ε

) { [
− (

η′ε
)2

η′′ε (g2
ε + ε)2 − (

η′ε
)3

gε∇gε ·∇ϕε
]
+

η′εgε∇gε ·∇ϕε
}

+ kε

((
η′ε

)2 (g2
ε + ε)− g2

ε

) [
−η′ε∆ϕε − η′′ε (g2

ε + ε))
]
.

Notice that:

• for s ≥ ε we have k′ε(s) = N
ε kε(s) and (η′ε)

2 (g2
ε + ε)− g2

ε ≥ ε;

• ∃C0 > 0 (depending only on ‖ϕ‖∞) such that 1 ≥ ξ = ξ(ϕε) ≥ e−BC0 ;

• kε ≥ 1, g2
ε ≥ m2;

• ϕε
t is bounded independently of ε, ∆ϕε ≤ C, C positive constant independent of ε;

• 1 ≤ η′ε(ϕε) = 1 + εBξ(ϕε) ≤ 1 + εB;

• η′ε
1− (η′ε)

2

ε
gε∇gε · ∇ϕε = −(2Bη′εξ + εB2η′εξ

2)gε∇gε ·∇ϕε.

To prove (42) we only need to find B and N sufficiently large, independent of ε, such that

kε

{
2N

[
B2 (

η′ε
)2

ξ(g2
ε + ε)2 + η′ε

1− (η′ε)
2

ε
gε∇gε ·∇ϕε

]
− η′ε∆ϕε − η′′ε (g2

ε + ε)

}
≥

≥ η′ε(ϕε)‖ϕε
t‖L∞(QT ) + ‖f‖L∞(0,T ),

23



The second term is bounded from above by a positive constant C1 independent of ε.
Working with ε such that ε ≤ 1

B and noting that ‖gε∇gε ·∇ϕε‖∞ ≤ X0, X0 not depending
on ε, we see that

−η′ε∆ϕε ≥ −(1 + εB)C ≥ −2C,

−η′′ε (g2
ε + ε) ≥ 0,

B2 (
η′ε

)2
ξ(g2

ε + ε)2 + η′ε
1− (η′ε)

2

ε
gε∇gε ·∇ϕε

≥ B2ξm4 − (2Bη′εξ + εB2η′εξ
2)X0

= Bξ(Bm4 − η′ε(2 + εBξ)X0)

≥ Bξ(Bm4 − 6X0).

Choose B = (1 + 6X0)/m4 (this choice comes from imposing that Bm4 − 6X0 = 1). So,

2N

[
B2 (

η′ε
)2

ξ(g2
ε + ε)2 + η′ε

1− (η′ε)
2

ε
gε∇gε ·∇ϕε

]
− η′ε∆ϕε − η′′ε (g2

ε + ε)

≥ 2NBξ(Bm4 − 6X0)− 2C

≥ 2NBe−BC0 − 2C ≥ C1 ≥ 0,

as long as N ≥ C1 + 2C

2Be−BC0
.

Then, since kε ≥ 1, C1 ≥ 0

kε

{
2N

[
B2 (

η′ε
)2

ξ(g2
ε + ε)2 + η′ε

1− (η′ε)
2

ε
gε∇gε ·∇ϕε

]
− η′ε∆ϕε − η′′ε (g2

ε + ε)

}

≥ kεC1 ≥ C1,

as we wanted to prove.
Since we have

ψ ≤ uε ≤ ψ in QT , ψ(x, t) = uε(x, t) = ψ(x, t) = 0 if (x, t) ∈ Σ,

then
∀(x, t) ∈ Σ |∇uε(x, t)| ≤ max{|∇ψ(x, t)|, |∇ψ(x, t)|}.

But, for (x, t) ∈ Σ,

|∇ψ(x, t)|2 =
(
η′ε(ϕε(x, t))

)2 |∇ϕε(x, t)| ≤ (1 + εB)2
(
g2
ε(x, t) + ε

)
≤ g2

ε(x, t) + Cε,

where C is a constant independent of ε. Analogously, |∇ψ(x, t)|2 ≤ g2
ε(x, t) + Cε.

Since |∇uε(x, 0)| = |∇hε(x)| ≤ gε(x, 0), the proof is concluded.
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Proposition 3.7 Suppose that the assumptions (3), (23) and (40) are verified. Then

∃C > 0 ∀(x, t) ∈ QT |∇uε(x, t)|2 ≤ g2
ε(x, t) + Cε. (44)

Proof: Let v = |∇uε|2 and w = v − g2
ε . Since g satisfies (40), we may assume that the

approximations gε of g also verify
(
g2
ε

)
t ≥ 0 and ∆g2

ε ≤ 0. Differentiate the first equation of
problem (4) with respect to xk. Then,

uε
xkt − k′′ε (w)wxk

wxiu
ε
xi
− k′ε(w)wxixk

uε
xi
− k′ε(w)wxiu

ε
xixk

−k′ε(w)wxk
uε

xixi
− kε(w)uε

xixixk
= 0.

(45)

Multiplying (45) by uε
xk

, summing over k, we obtain

uε
xk

uε
xkt − k′′ε (w)uε

xi
uε

xk
wxiwxk

− kε
′(w)uε

xi
uε

xk
wxixk

− k′ε(w)uε
xk

uε
xixk

wxi − k′ε(w)uε
xk

uε
xixi

wxk

−kε(w)uε
xk

uε
xixixk

= 0.

Notice that
uε

xk
uε

xixixk
=

1
2
vxixi − (uε

xkxi
)2.

Then
1
2
vt +

(
−k′′ε (w)uε

xi
uε

xk
wxi − k′ε(w)

(
uε

xi
uε

xkxi
+ uε

xixi
uε

xk

))
wxk

−
(
k′ε(w)uε

xi
uε

xk

)
wxixk

−1
2
kε(w)∆v + kε(w)(uε

xixk
)2 = 0

and, denoting

aik = k′ε(w)uε
xi

uε
xk

+
1
2
kε(w)δij , bk = −k′ε(w)

(
uε

xi
uε

xixk
+ uε

xixi
uε

xk

)
− k′′ε (w)uε

xi
uε

xk
wxi

and recalling that v = w + g2
ε , we obtain

1
2
wt − aikwxixk

− bkwxk
≤ −1

2

[(
g2
ε

)
t
− kε(w)∆

(
g2
ε

)]
,

and, by the assumption (40) and the previous proposition, we have, in fact,




1
2
wt − aikwxixk

− bkwxk
≤ 0.

w|Σ∪Ω0
≤ Cε,

(46)

where C is a constant independent of ε.
Since uε is a function belonging to the class C2,1

α,α/2(QT ) and kε is also a C2,α function,
the coefficients aik and bk are Hölder continuous functions. On the other hand, we have∑

i,k

aikξiξk ≥ 0 for all ξ ∈ IRn. So, by the weak maximum principle for parabolic equations,

if z = w − Cε,
z(x, t) ≤ max

Σ∪Ω0

{z} ≤ 0,

by the previous proposition. Since |∇uε|2 = v = z + g2
ε + Cε, we conclude (44).
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Proposition 3.8 Suppose that the assumption (23) is verified. Then

{uε : ε ∈]0, 1[} is bounded in L2(0, T ; H2
loc(Ω)). (47)

Proof: In this proof, since there is no risk of confusion, we are going to omit the subscripts
and the superscripts ε.

Given Ω′ ⊂⊂ Ω, let η belonging to D(Ω) be such that η|Ω′ ≡ 1. Multiply the equation of
problem (4) by −uxkxk

η2 and integrate over Qt = Ω×]0, t[. Then
∫

Qt

−utuxkxk
η2 +

∫

Qt

(
k(|∇u|2 − g2)uxi

)
xi

uxkxk
η2 =

∫

Qt

fuxkxk
η2.

We are going to consider each term of the equality above separately.
Notice that

∫

Qt

−utuxkxk
η2 =

∫

Qt

(
utη

2
)

xk

uxk
(48)

=
∫ t

0

∫

Ω

1
2

[
(uxk

)2
]
t
η2 +

∫ t

0

∫

Ω
2utuxk

ηηxk

=
1
2

∫

Ω

[
(uxk

)2(t)− (uxk
)2(0)

]
η2 +

∫

Qt

2utuxk
ηηxk

.

The second term of the equality above is treated as follows:
∫

Qt

(
k(|∇u|2 − g2)uxi

)
xi

uxkxk
η2 = −

∫

Qt

k(|∇u|2 − g2)uxi

(
uxkxk

η2
)

xi

= −
∫

Qt

k(|∇u|2 − g2)uxi

(
uxkxkxiη

2 + uxkxk
2ηηxi

)

=
∫

Qt

(
k(|∇u|2 − g2)uxiη

2
)

xk

uxkxi −
∫

Qt

k(|∇u|2 − g2)uxi2ηηxiuxkxk

(49)

=
∫

Qt

k′(|∇u|2 − g2)
(
2uxjuxjxk

− 2ggxk

)
uxiη

2uxixk

+
∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2

+
∫

Qt

k(|∇u|2 − g2)uxiuxixk
2ηηxk

−
∫

Qt

k(|∇u|2 − g2)uxi2ηηxiuxkxk

=
∫

Qt

k′(|∇u|2 − g2)
(
2uxjuxjxk

− 2ggxk

)
((uxiuxixk

− ggxk
) + ggxk

) η2

+
∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2 +

∫

Qt

k(|∇u|2 − g2)uxiuxixk
2ηηxk

−
∫

Qt

k(|∇u|2 − g2)uxi2ηηxiuxkxk
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= 2
∫

Qt

k′(|∇u|2 − g2)
(
uxjuxjxk

− ggxk

)2
η2 +

1
2

∫

Qt

[
k(|∇u|2 − g2)

]
xk

[
g2

]
xk

η2

+
∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2 +

∫

Qt

k(|∇u|2 − g2)uxiuxixk
2ηηxk

−
∫

Qt

k(|∇u|2 − g2)uxi2ηηxiuxkxk
.

So, we have

1
2

∫

Ω

[
(uxk

)2(t)− (uxk
)2(0)

]
η2 +

∫

Qt

2utuxk
ηηxk

+
∫

Qt

k′(|∇u|2 − g2)
(
2uxjuxjxk

− 2ggxk

)2
η2 +

1
2

∫

Qt

[
k(|∇u|2 − g2)

]
xk

[
g2

]
xk

η2

(50)

+
∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2 +

∫

Qt

k(|∇u|2 − g2)uxiuxixk
2ηηxk

−
∫

Qt

k(|∇u|2 − g2)uxi2ηηxiuxkxk
η2 = −

∫

Qt

fuxkxk
η2.

Notice that ∫

Ω
(uxk

)2(t)η2 ≥ 0,

∫

Ω
(uxk

)2(0) =
∫

Ω
(hxk

)2η2,

∫

Qt

2utuxk
ηηxk

≤ C0, C0 constant independent of ε,

∫

Qt

k′(|∇u|2 − g2)
(
2uxjuxjxk

− 2ggxk

)2
η2 ≥ 0,

∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2 ≥

∫

Qt

(uxixk
)2 η2,

using Hölder and Young inequalities, we see that
∫

Qt

k(|∇u|2 − g2)uxiuxixk
2ηηxk

≤

∫

Qt

k(|∇u|2 − g2)(uxi)
2η2

xk
+

1
4

∫

Qt

k(|∇u|2 − g2)(uxixk
)2η2,

and, obviously,
∫

Qt

k(|∇u|2 − g2)(uxi)
2η2

xk
≤ C1, C1 constant independent of ε.

Analogously,
∫

Qt

k(|∇u|2 − g2)uxi2ηηxiuxkxk
≤

∫

Qt

k(|∇u|2 − g2)(uxi)
2η2

xi
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+
1
4

∫

Qt

k(|∇u|2 − g2)(uxkxk
)2η2

and ∫

Qt

k(|∇u|2 − g2)(uxi)
2η2

xi
≤ C1, C1 defined above.

On the other hand,
∫

Qt

fuxkxk
η2 ≤ 1

4

∫

Qt

(uxkxk
)2η2 +

∫

Qt

f2η2

and ∫

Qt

[
k(|∇u|2 − g2)

]
xk

[
g2

]
xk

η2 = −
∫

Qt

k(|∇u|2 − g2)
([

g2
]
xk

η2
)

xk

≤ C2,

C3 constant independent of ε.
Then,

1
4

∫

QT

(uxixk
)2 η2 ≤

∫

Ω
(hxk

)2η2 + C0 + 2C1 + 2C2 +
∫

QT

f2η2

and the proof is concluded.

Theorem 3.9 With the assumptions (3), (23) and (40), problem (28) has a solution.

Proof: We have proved that

{uε : ε ∈]0, 1[} is uniformly bounded in W = {v ∈ L2(0, T ;H2
loc(Ω)) : vt ∈ L2(QT )}.

If we consider W with the weak topology, we know that {uε : ε ∈]0, 1[} belongs to a
compact subset of W (see [13], pg. 58). So, there exists u ∈ W such that, for the weak
topology, uε ⇀ u in this space, when ε → 0.

So, uε −→ u strongly in L2(0, T ; H1
0 (Ω′)), for all Ω′ with smooth boundary and compactly

included in Ω and ∇uε(x, t) −→ ∇u(x, t) for a.e. (x, t) ∈ QT .
Recalling that

∃C > 0 ∀(x, t) ∈ QT |∇uε(x, t)|2 ≤ g2
ε(x, t) + Cε,

we have
1 ≤ kε(|∇uε|2 − g2

ε) ≤ eNC .

So, with the additional assumptions introduced in this subsection, kε(|∇uε|2 − g2
ε) is

uniformly bounded not only in L1(QT ), as we have proved in section 1, but also in L∞(QT ).
So, there exists λ ∈ L∞(QT ) such that

kε(|∇uε|2 − g2
ε) ⇀ λ in L∞(QT ) weak-∗, when ε → 0

and so
kε(|∇uε|2 − g2

ε)∇uε ⇀ λ∇u weakly in L2(QT ), when ε → 0.
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Since ‖uε
t‖L2(QT ) ≤ C, C independent of ε, we also have uε

t ⇀ ut weakly in L2(QT ) and
so, passing to the limit in problem (4), we see that, in fact,





ut −∇·(λ∇u) = f in QT ,

u|Σ = 0, u(0) = h,

and it only remains to prove that λ ∈ k(|∇u|2−g2
ε) to conclude that the pair (u, λ) is solution

of problem (28).
Since Λ = {(x, t) ∈ QT : |∇u(x, t)| − g(x, t) < 0} is a measurable set and

kε(|∇uε(x, t)|2 − g2
ε(x, t)) −→ 1 when ε → 0, for a.e. (x, t) ∈ Λ,

kε(|∇uε(x, t)|2 − g2
ε(x, t)) ≥ 1 for a.e. (x, t) ∈ QT

we conclude that λ = 1 in Λ and λ ≥ 1 in QT . So, λ ∈ k(|∇u|2− g2
ε), as we wanted to prove.

Theorem 3.10 Suppose that the assumptions (3), (23) and (40) are verified. Then , if (u, λ)
is a solution of problem (28), then u is solution of problem (2).

Remark 3.11 From this theorem we may conclude that, under the assumptions (3), (23)
and (40), if (u, λ) is a solution of problem (28), then u is unique, but nothing is established
about the uniqueness of λ. Uniqueness for λ was proved by Brézis in [1], for the elliptic case,
with g ≡ 1 and homogeneous boundary condition. In [20], examples of non-uniqueness of λ
can be found, when the boundary consition is not homogeneous.

Proof of Theorem 3.10: Multiply the equation ut − ∇·(λ∇u) = f by v(t) − u(t), with
v ∈ L∞(0, T ; H1

0 (Ω)), v(t) ∈ IKg(t) for a.e. t ∈ I, and integrate over Ω, to obtain
∫

Ω
ut(t)(v(t)− u(t)) +

∫

Ω
((λ(t)− 1) + 1)∇u(t)·∇(v(t)− u(t)) =

∫

Ω
f(t)(v(t)− u(t)).

Notice that

(λ(t)− 1)∇u(t)·∇(v(t)− u(t)) ≤ (λ(t)− 1)|∇u(t)| [|∇v(t)| − |∇u(t)|]

≤ (λ(t)− 1)|∇u(t)| [g(t)− |∇u(t)|] = 0,

since λ(x, t) = 1 whenever |∇u(x, t)| < g(x, t).
Then,

∫

Ω
ut(t)(v(t)−u(t))+

∫

Ω
∇u(t)·∇(v(t)−u(t)) ≥

∫

Ω
f(t)(v(t)−u(t)), ∀v ∈ IKg(t), for a.e. t ∈ I,

as we wanted to prove. Besides that, u(t) ∈ IKg(t) for a.e. t ∈ I.
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3.3 Equivalence with the equation with gradient constraint

In this subsection, the equation with gradient constraint (29) is considered. We begin
proving existence of solution of problem (29) if assumptions (3) and

∆h ∈ L∞(Ω), f ∈ W 1,∞(0, T ; L∞(Ω)),

−∆h(x) ≤ f(x, t) for a.e. (x, t) ∈ QT ,
(
g2

)
t
≤ 0,

(51)

are verified. We would like to remark that, in order to prove existence of solution, we
don’t need to assume that f is independent of the spatial variable x. The proof has many
similarities with the proof presented by Zhu in [23], where a general linear parabolic equation
with gradient constraint is considered in an unbounded domain and for arbitrarily large times,
with a zero condition given at a fixed instant T , as well as with the proof of Evans ([5]), for
the elliptic case.

The proof of equivalence between the variational inequality (2) and problem (29) is pre-
sented if assumptions (3), (40) and (51) are verified (which implies, in particular, that g is
independent of t).

Theorem 3.12 Suppose that the assumptions (3) and (51) are verified. Then problem (29)
has a solution.

Proof: Consider the following family of problems




wε
t −∆wε + γε(|∇wε|2 − g2) = fε in QT ,

wε
|Σ = 0, wε(0) = hε,

(52)

where γε : IR → IR is a C2, nondecreasing, convex function such that γε(s) = 0 if s ≤ 0 and

γε(s) =
s− ε

ε
for s ≥ 2ε, f ε ∈ C2,1

α,α/2(QT ), and hε ∈ C2
α(Ω) are approximations of f and h,

respectively, satisfying −∆hε ≤ fε and |∇hε|2 ≤ g2 + ε.
Problem (52) has a unique solution wε ∈ C2,1

α,α/2(QT ), by the classical theory of quasilinear
parabolic equations (see [12], theorem 4.1, page 558).

Since γε ≥ 0, we have wε
t − ∆wε ≤ fε and so, by the maximum principle for parabolic

equations,
∃C > 0 independent of ε : ‖wε‖L∞(QT ) ≤ C.

Let us prove now that wε
t is bounded in L∞(QT ) independently of ε: differentiate the

first equation of problem (52) in order to t and call z = wε
t . Then





zt −∆z + γ′ε(|∇wε|2 − g2)(2wε
xi

zxi −
(
g2

)
t) = fε

t in QT ,

z|Σ = 0, z(0) = ∆hε + fε(0),

Since γ′ε ≥ 0 and
(
g2

)
t ≤ 0, we have, in fact that

zt −∆z + bizxi ≤ f ε
t , where bi = 2γ′ε(|∇wε|2 − g2)wε

xi
.
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So, by the maximum principle

∃C1 > 0 independent of ε : ‖wε
t ‖L∞(0,T ;L2(Ω)) ≤ C1. (53)

The next step consists in obtaining uniform gradient estimates (independent of ε) for
∇wε. Let ϕε be defined as in (24) such that |∇ϕε|2 = g2 + Mε, where M is a constant
to be chosen later. It is easy to verify that, for M sufficiently big (M ≥ ‖ϕε

t‖L∞(QT ) +
supQT

{∆ϕε} + ‖fε‖L∞(QT )), independent of ε, then ϕε is a supersolution of problem (52).
On the other hand, hε is obviously a subsolution of the same problem. Then

hε ≤ wε ≤ ϕε in QT , hε|Σ = wε
|Σ = ϕε

|Σ, hε = wε(0) ≤ ϕε(0),

and so

|∇wε(x, t)|2 ≤ max{|∇hε(x)|2, |∇ϕε(x, t)|2} ≤ g2(x, t) + ε + Mε for (x, t) ∈ Σ ∪ Ω0.

Let v = |∇wε|2−wε. The maximum of v may be attained at the parabolic boundary Σ∪Ω0

or at QT \ (Σ∪Ω0). If the first case happens, since |∇wε| and wε are bounded independently
of ε on Σ ∪ Ω0, then the bound of v, and consequently, the bound of |∇wε| is independent
of ε. Let us consider now the second case, i.e. the maximum of v is attained at a point
(x0, t0) 6∈ Σ ∪ Ω0. Then, at this point (x0, t0), we have

vxi = 0, vt = 0, vt −∆v ≥ 0.

Since
vt = 2wε

xj
wε

xjt − wε
t , ∆v = 2

(
wε

xixj

)2
+ 2wε

xj
∆wε

xj
−∆wε,

and

∆wε = wε
t + γε(|∇wε|2 − g2)− fε, ∆wε

xj
= wε

xjt + γ′ε(|∇wε|2 − g2)(|∇wε|2 − g2)xj ,

omitting the argument of γε to simplify, we get at (x0, t0),

0 ≤ vt −∆v = 2wε
xj

wε
xjt − wε

t − 2
(
wε

xi
wε

xj

)2 − 2wε
xj

[
wε

xjt + γ′ε(−)(|∇wε|2 − g2)xj

]

+ [wε
t + γε(−)− fε]

≤ −2γ′ε(−)wε
xj

(|∇wε|2 − g2)xj +
[
γε(−) + ‖fε‖L∞(QT )

]
.

Since γε is convex, we have, ∀s ∈ IR γε(s) ≤ γ′ε(s)s and, since vxi = 0, we have(|∇wε|2)xi
= wε

xi
. On the other hand, we may suppose that γε(−) ≥ 2‖f ε‖L∞(QT ) at the

point (x0, t0), because, otherwise, we would have already obtained the bound for |∇wε|. So,

[
γε(−) + ‖f ε‖L∞(QT )

]
≤ γε(−) +

γε(−)
2‖fε‖L∞(QT )

‖fε‖L∞(QT ) =
3
2
γε(−) ≤ 3

2
γ′ε(−)(|∇wε|2 − g2)

and so, at (x0, t0)

0 ≤ vt −∆v ≤ γ′ε(−)
[
−2|∇wε|2 + 2∇g2 ·∇wε +

3
2

(
|∇wε|2 − g2

)]
.
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Then, −1
2 |∇wε|2 + 2∇ (

g2
)·∇wε − 3

2g2 ≥ 0 and we get

|∇wε(x0, t0)|2 ≤ 16|∇g2(x0, t0)|2 − 6g2(x0, t0) ≤ 16|∇g2(x0, t0)|2

and, since

v(x, t) = |∇wε(x, t)|2 − wε(x, t) ≤ v(x0, t0) = |∇wε(x0, t0)|2 − wε(x0, t0),

because |∇wε(x, t)|2 = v(x, t) + wε(x, t) we get that

|∇wε(x, t)|2 ≤ v(x0, t0) + wε(x, t) ≤ 16 max
(x,t)∈QT

|∇g2(x, t)|2 + 2‖wε‖L∞(QT ),

concluding then that ∇wε is bounded in QT , independently of ε.

Remark 3.13 Notice that, if g ≡ 1, then the maximum of v is attained at the parabolic
boundary.

The next step consists in proving that γε(|∇wε|2−g2) is locally bounded independently of
ε: given Ω′ ⊂⊂ Ω, let ζ belong to D(Ω) be such that ζ|Ω′ ≡ 1. Define v = ζ2γε(|∇wε|2 − g2).
As before, if maxQT

v is attained at (x0, t0) ∈ Ω0 (notice that on Σ we have v(x0, t0) = 0)
then maxQT

v ≤ ζ2(x0, t0)γε(g2(x0, t0) + Mε− g2(x0, t0)) = ζ2(x0, t0)(M − 1) is independent
of ε. If the maximum of v is attained at (x0, t0) ∈ QT \ Σ ∪ Ω0 then, at this point, we have
vt −∆v ≥ 0 and also vxi = 0.

Remarking that all the calculations below are done in the point (x0, t0), we have

vt = ζ2γ′ε(−)(2wε
xj

wε
xjt −

(
g2

)
t)

∆v = ζ2γ′′ε (−)
[
(|∇wε|2 − g2)xi

]2

+ 2(ζ2)xiγ
′
ε(−)(|∇wε|2 − g2)xi + ∆ζ2γε(−)

+ζ2γ′ε(−)
[
2

(
wε

xjxi

)2
+ 2wε

xj
∆wε

xj
−∆

(
g2

) ]
,

and, since ζ2γ′′ε (−)
[
(|∇wε|2 − g2)xi

]2 ≥ 0, using the calculations presented above for ∆wε
xj

,

0 ≤ vt −∆v ≤ ζ2γ′ε(−)
[
2wε

xj
wε

xjt −
(
g2

)
t

]
− 2(ζ2)xiγ

′
ε(−)(|∇wε|2 − g2)xi −∆ζ2γε(−)

−ζ2γ′ε(−)
[
2

(
wε

xjxi

)2
+ 2wε

xj

(
wε

xjt + γ′ε(−)(|∇wε|2 − g2)xj

)
−∆

(
g2

)]
.

Recall that, since γε is a convex function, we have, ∀s ∈ IR, γ′ε(s)s ≥ γε(s). So, since
|∆ζ2| ≤ C, C independent of ε,

0 ≤ γ′ε(−)
[
− ζ2

(
g2

)
t − 2(ζ2)xi(|∇wε|2 − g2)xi + C(|∇wε|2 − g2)

−2ζ2(wε
xixj

)2 − 2ζ2γ′ε(−)wε
xi

(|∇wε|2 − g2)xi + ζ2∆g2

]
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and, since vxi = 0 at the point considered, then, at that point, ζ2γ′ε(−)(|∇wε|2 − g2)xi =
−(ζ2)xiγε(−) and we get

−ζ2
(
g2

)
t
− 2

(
ζ2

)
xi

(
|∇wε|2 − g2

)
xi

+ C(|∇wε|2 − g2)− 2ζ2(wε
xixj

)2

+2(ζ2)xiw
ε
xi

γε(−) + ζ2∆g2 ≥ 0.

But

−2
(
ζ2

)
xi

(
|∇wε|2 − g2

)
xi

= −4ζζxi

(
2wε

xj
wε

xjxi
−

(
g2

)
xi

)

≤ ζ2(wε
xixj

)2 + 16(wε
xj

)2(ζxi)
2 + 4ζ∇ζ ·∇g2

(54)

and
2(ζ2)xiw

ε
xi

γε(−) = 4ζ∇ζ ·∇wεγε(−) ≤ 1
4
ζ2γ2

ε (−) + 16|∇ζ|2|∇wε|2.
Then,

−ζ2
(
g2

)
t
+ ζ2(wε

xixj
)2 + 16(wε

xj
)2(ζxi)

2 + 4ζ∇ζ ·∇g2 + C(|∇wε|2 − g2)− 2ζ2(wε
xixj

)2

+
1
4
ζ2γ2

ε (−) + 16|∇ζ|2|∇wε|2 + ζ2∆g2 ≥ 0.

So, there exists a constant C0 , independent of ε, such that

ζ2(wε
xixj

)2 ≤ C0 +
1
4
ζ2γ2

ε (|∇wε|2 − g2)

and then, at (x0, t0), we have

∃C1 > 0 independent of ε : ζ
∣∣∣wε

xixj

∣∣∣ ≤ C1 +
1
2
ζγε(|∇wε|2 − g2).

Then, since ζγε(|∇wε|2 − g2) = ζf − ζwε
t + ζ∆wε, we have, at the point (x0, t0),

ζγε(|∇wε|2 − g2) ≤ ζ‖f‖L∞(QT ) + ζ‖wε
t ‖L∞(QT ) + C1 +

1
2
ζγε(|∇wε|2 − g2)

and so

1
2
ζ(x, t)γε(|∇wε(x, t)|2 − g2(x, t)) ≤ 1

2
ζ(x0, t0)γε(|∇wε(x0, t0)|2 − g2(x0, t0)) ≤ C2,

where C2 is a constant independent of ε.
Now, if w̃ = ζwε, we have,





w̃t −∆w̃ = ζf − ζγε(|∇wε|2 − g2)− (∆ζ) wε − 2∇ζ ·∇wε = Φ,

w̃|Σ = 0, w̃(0) = ζh

and so, since Φ is bounded in L∞(QT ), independently of ε, then w̃ is bounded in W 2,1
p (QT ),

1 < p < +∞, independently of ε (see [12], theorem 9.1, page 341).
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Since {wε : ε ∈ [0, 1[} is bounded in W 2,1
p,loc(QT ), let u be the weak limit of (wε)ε in this

space (at least for a subsequence), when ε → 0. Of course, we also have

wε
t ⇀ ut when ε → 0, in L∞(QT ) weak− ∗,

wε −→ u when ε → 0, in Lp(0, T ; W 1,p(Ω′)), for any Ω′ ⊂⊂ Ω, 1 < p < +∞,

and, since ‖wε‖W 1,∞(Ω×[0,T ]) ≤ C, C independent of ε, we also have, due to the compact
inclusion W 1,∞(QT ) ↪→ C0,1(QT ),

wε −→ u uniformly in QT

and, in particular, wε(x, 0) = h(x) −→ u(x, 0) = h(x), when ε → 0.
Since γε(|∇wε|2 − g2) is locally bounded, independently of ε , we must have |∇u| ≤ g

a.e. in QT . On the other hand, γε(|∇wε|2 − g2) ⇀ χ, in L∞(Ω′ × [0, T ]) weak-∗, for every
Ω′ ⊂⊂ Ω, when ε → 0. Letting ε → 0 in problem (52), we see that

ut −∆u + χ = f, |∇u| ≤ g, u|Σ = 0, u(0) = h.

It only remains to prove that, whenever |∇u| < g we have χ = 0. Given x0 ∈ Ω, let
Ω′ be such that x0 ∈ Ω′ ⊂⊂ Ω. Since wε ⇀ u in W 2,1

p (Ω′ × [0, T ]), for 1 < p < +∞,
when ε → 0, and W 2,1

p (Ω′ × [0, T ]) ↪→ C1,0
α,α/2(Ω

′ × [0, T ]), if p > n (being this inclusion
compact) then, if (x0, t0) is such that |∇u(x0, t0)| < g(x0, t0), we have, for ε sufficiently
small, γε(|∇wε(x0, t0)|2 − g2(x0, t0)) = 0. So, letting ε → 0, we conclude that χ(x0, t0) = 0
and the result follows.

Proposition 3.14 Suppose that the assumptions (3), (40) and (51) are verified. Then prob-
lems (2) and (29) are equivalent.

Proof: Let u denote a solution of problem (29) and u∗ the solution of problem (27).
Recall the family of penalized problems (36) for the double obstacle variational inequality

problem:




zε
t −∆zε + 1

ε

(
zε − (zε ∧ ϕ) ∨ ϕ

)
= f in QT ,

zε(0) = h, zε
|Σ = 0.

Let us call Φε(v) = γε(|∇v|2 − g2) and Ψε(v) = 1
ε

(
v − (v ∧ ϕ) ∨ ϕ)

)
.

Notice that:

• since |∇u| ≤ g then ϕ ≤ u ≤ ϕ and so Ψε(u) = 0;

• ut −∆u ≤ f, since u is solution of problem (29).

So, u is a subsolution of the problem (36) and, due to the monotonicity of Ψε, we have
u ≤ zε and, passing to the limit when ε → 0,

u ≤ u∗.

On the other hand
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• since problems (2) and (27) are equivalent, we have |∇u∗| ≤ g;

• −∆h ≤ f and |∇h| ≤ g (and consequently ϕ ≤ h ≤ ϕ) implies that h is a subsolution
of the problem (36) and consequently, ϕ ≤ h ≤ zε;

• passing to the (weak) limit when ε → 0 in the equation of problem (36), we conclude
that u∗t −∆u∗ + χ∗ = f ; notice that χ∗ = limε Ψε(zε) ≥ 0, since zε ≥ ϕ;

• since u∗t −∆u∗ ≤ f and |∇u∗| ≤ g we know that u∗ is a subsolution of problem (52)

The monotonicity of Φε implies that u∗ ≤ wε and so, letting ε → 0,

u∗ ≤ u.

So u = u∗ and both problems are equivalent.
In particular, since u∗ is unique, we proved that problem (29) has a unique solution.

3.4 A counter-example

This subsection is dedicated to present a counter-example. We prove that problem (2) is
not always equivalent to problem (27), as well as to problem (29), presenting data for which
the solutions of problems (2), (27) and (29) are different. Detailing more, we are going to
present an example to show that, if

(
g2

)
t − ∆

(
g2

) 6≥ 0, then the problems considered in
section 3 may not be equivalent.

It is important to note that the data chosen here do not satisfy completely the assumption
(3), since the (very smooth) gradient constraint is zero in one point. Nevertheless, the
nonzero gradient constraint condition is used in the previous sections only to prove existence
of solution and not the equivalence among these problems. Since the solution of problem (2),
for the chosen data, will be calculated here explicitly, there is no question about the existence
of solution.

Let

f : ]− 1, 1[×]0, T [ → IR g : ]− 1, 1[×]0, T [ → IR

x 7→ 2 x 7→ 3x2

Remark 3.15 In fact
(
g2

)
t (x, t)−∆

(
g2

)
(x, t) = −108x2 6≥ 0.

Easy calculations show that the two obstacles (with respect to this function g) are

ϕ(x, t) =

{
x3 + 1 if x ∈ [−1, 0[,
1− x3 if x ∈ [0, 1],

and ϕ(x, t) =

{
−x3 − 1 if x ∈ [−1, 0[,
x3 − 1 if x ∈ [0, 1].

Let

h(x) =

{
1− x2 if |x| ≥ 2

3 and |x| ≤ 1,
ϕ(x, 0)− 4

27 otherwise.
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We would like to remark that the function h is a C1 function. Defining w(x, t) ≡ h(x),
we see that |∇w(x, t)| = 2|x| ≤ g(x, t), if |x| > 2

3 and |∇w(x, t)| = 3x2 = g(x, t) if |x| < 2
3 .

So, w(t) ∈ IKg(t) for all t ∈ [0, 1] and w(0) = h. We are going to prove that w is, in fact, the
solution of problem (2), for the given data (f, g, h). Recalling that w is of class C1, we have
∫ 1

−1
wt(t)(v(t)− w(t))dx +

∫ 1

−1
wx(t)(v(t)− w(t))xdx−

∫ 1

−1
2(v(t)− w(t))dx

=
∫ 1

−1
h′(x)(vx(x, t)− h′(x))dx−

∫ 1

−1
2(v(t)− h)dx

= −
∫ 1

−1
h′′(x)(v(x, t)− h(x))dx−

∫ 1

−1
2(v(t)− h)dx

=
∫

{|x|≤ 2
3
}
(−h′′(x)− 2)(v(x, t)− h(x))dx +

∫

{|x|≥ 2
3
}
(−h′′(x)− 2)(v(x, t)− h(x))dx

=
[
(−3x2 − 2x)(v(x, t)− h(x))

]0

− 2
3

−
∫ 0

− 2
3

(−3x2 − 2x)(vx(x, t)− h′(x))

+
[
(3x2 − 2x)(v(x, t)− h(x))

] 2
3

0
−

∫ 2
3

0
(3x2 − 2x)(vx(x, t)− h′(x))dx

=
∫ 0

− 2
3

(3x2 + 2x)(vx(x, t)− 3x2) +
∫ 2

3

0
(−3x2 + 2x)(vx(x, t) + 3x2)dx ≥ 0,

as long as v is such that v(t) ∈ IKg(t) for a.e. t ∈ [−1, 1], since, in that case, we have
−3x2 ≤ vx(x, t) ≤ 3x2.

If u denotes the solution of problem (27), it is easy to verify that u(t) → u∞, when
t → +∞, in L2(Ω), where u∞ is the solution of the problem

∫ 1

−1
u∞x (v − u∞)x ≥

∫ 1

−1
2(v − u∞), ∀v ∈ IK,

where IK = {v ∈ H1
0 (−1, 1) : ϕ ≤ v ≤ ϕ a.e.}. Since z(x) = 1 − x2 is such that z ∈ IK and

z′′ = −2, obviously, z = u∞.

Now, if problems (2) and (27) were equivalent, we should have limt→+∞w(t) = u∞ in
L2(Ω), which obviously does not happen.

On the other hand, w is not a solution of problem (29) since, although |∇w| ≤ g a.e., the
function w does not verify wt −∆w ≤ 2 a.e. in QT .

It was then shown that, for the given data, problem (2) is not equivalent to problem (27)
nor to problem (29).

References

[1] Brandt, E. H., Electric field in superconductor with regular cross-sections, Phys. Reviews
B 52 (1995) 15442 – 15457.

36
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