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1. Introduction

Throughout this paper, X is an infinite set with cardinal p, and q is a cardinal such
that ℵ0 ≤ q ≤ p. Let T (X) denote the semigroup under composition of all (total)
transformations from X to X. If α ∈ T (X), we write ranα for the range of α and
define the rank of α to be r(α) = | ranα|. We also write

D(α) = X \Xα, d(α) = |D(α)|,

C(α) =
⋃
{yα−1 : |yα−1| ≥ 2}, c(α) = |C(α)|.

and refer to these cardinal numbers as the defect and the collapse of α, respectively.
We now write

BL(p, q) = {α ∈ T (X) : c(α) = 0, d(α) = q}

and call this the Baer-Levi semigroup on X: as shown in ([1] vol 2, section 8.1), it is
a right simple, right cancellative semigroup without idempotents; and any semigroup
with these properties can be embedded in some Baer-Levi semigroup. In addition,
every automorphism ϕ of BL(p, q) is “inner”: that is, there exists g ∈ G(X), the
symmetric group on X, such that αϕ = gαg−1 for all α ∈ BL(p, q) [6].

In this paper, we examine a related semigroup defined as follows. Let V be a vector
space over a field F and suppose dimV = p ≥ ℵ0. To emphasis the analogy between
our work and what has been done already for BL(p, q), we let T (V ) denote the
semigroup under composition of all linear transformations from V to V : in other
words, we use the ‘V ’ in T (V ) to denote the fact that we are considering linear
transformations. If α ∈ T (V ), we write kerα and ranα for the kernel and the range
(image) of α, and put

n(α) = dim kerα, r(α) = dim ranα, d(α) = codim ranα.

As usual, these are called the nullity, rank and defect of α, respectively. For each
cardinal q such that ℵ0 ≤ q ≤ p, we write

GS(p, q) = {α ∈ T (V ) : n(α) = 0, d(α) = q}

and call this the linear Baer-Levi semigroup on V . In section 2, we show this is
indeed a semigroup with the same properties as BL(p, q): this fact extends work by
Lima [8] Proposition 4.1 on GS(p, p). More importantly however, in section 3 we
show these two types of Baer-Levi semigroups – one defined on sets, the other on
vector spaces – are never isomorphic. In section 4, we transfer results of Sutov [11]
and Sullivan [10] on the left ideals of BL(p, q) to the vector space setting. Finally, in
section 5 we initiate the study of maximal subsemigroups of GS(p, q) by using ideas
taken from [7].
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2. Basic properties

In what follows, Y = A ∪̇B means Y is a disjoint union of A and B, and we write
idY for the identity transformation on Y . We adopt the convention introduced in [1]
vol 2, p 241: namely, if α ∈ T (X) then we write

α =
(
Ai

xi

)
and take as understood that the subscript i belongs to some (unmentioned) index
set I, that the abbreviation {xi} denotes {xi : i ∈ I}, and that ranα = {xi} and
xiα

−1 = Ai.

A similar notation can be used for α ∈ T (V ) (see [9] p 125). That is, often it is
necessary to construct some α ∈ T (V ) by first choosing a basis {ei} for V and some
{ui} ⊆ V , and then letting eiα = ui for each i ∈ I and extending this action by
linearity to the whole of V . To abbreviate this process, we simply say, given {ei} and
{ui} within context, that α ∈ T (V ) is defined by letting

α =
(
ei

ui

)
.

As usual, the subspace of V generated by a linearly independent subset {ei} of V
is denoted by 〈ei〉; and, often when we write U = 〈ei〉, we will tacitly assume the
set {ei} is a basis for the subspace U . The following result is analogous to [1] vol 2,
Theorem 8.2 (and to [8] Proposition 4.1 for the case p = q).

Theorem 2.1. If dimV = p ≥ q ≥ ℵ0 then GS(p, q) is a right cancellative, right
simple semigroup without idempotents.

Proof. Assume α, β ∈ GS(p, q) = S say, and let ranα = 〈ei〉 and V = 〈ei, ej〉, so
|J | = q. Then {eiβ}∪{ejβ} is independent and generates ranβ, and ranαβ = 〈eiβ〉.
Hence d(αβ) = q+ q = q, and clearly if α, β are injective then αβ is also, so αβ ∈ S.
Since elements of S are injective, the semigroup is right cancellative; also, if ε ∈ S is
idempotent then (uε)ε = (u)ε for all u ∈ V implies ε = idV , a contradiction. Suppose
α, β ∈ S and write V = 〈ek〉 and

α =
(
ek

xk

)
, β =

(
ek

yk

)
.

Now if V = 〈xk, x`〉 = 〈yk, y`, ym〉 where |L| = |M | = q and we define

µ =
(
xk x`

yk y`

)
then µ ∈ S and β = αµ, and we have shown GS(p, q) is right simple. tu
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Clearly, before proceeding any further, it is important to decide whether any of the
semigroups GS(m,n) are isomorphic to any of the BL(p, q) for appropriate cardinals
m,n and p, q (this was not considered in [8]). This question can be answered in
one of two ways: by showing the cardinals of BL(p, q) and GS(m,n) are different;
or by finding some algebraic property of BL(p, q) that is not preserved under an
isomorphism between it and GS(m,n). For their intrinsic interest, we now establish
some results pertinent to the first approach. Something like the following appears in
[3] Corollary 1.5.13 and Exercise 1.5.36, but for completeness we include a proof.

Lemma 2.2. If |X| = p ≥ q and p ≥ ℵ0 then the number of subsets of X with
cardinal q equals pq. In fact, this is also the number of injective mappings from a set
of cardinal q into a set of cardinal p.

Proof. Let |A| = q, |B| = p and note that for each Y ⊆ B with cardinal q, there is
an injective map A→ B with range Y . Hence the number k of Y ⊆ B with cardinal
q is at most the number ` of injective maps A→ B, and clearly ` ≤ |BA| = pq. Now
each α : A→ B is a subset of A×B and |α| = q. Hence |BA| is at most the number
m of subsets of A×B with cardinal q. But q×p = p, so m = k. Hence k = pq. Thus
we have pq = k ≤ ` ≤ pq, and the result follows. tu

We can now determine the cardinal of BL(p, q). But first we need the order of G(X)
where |X| = p ≥ ℵ0. To find this, writeX = A ∪̇B where |A| = |B| = p and note that
for each Y ⊆ A, there exists π ∈ G(X) which fixes Y pointwise and shifts all elements
of (A \ Y ) ∪B. Hence |G(X)| ≥ 2|A| = 2p and of course |G(X)| ≤ |T (X)| = 2p.

For clarity in what follows, we sometimes write BL(X, p, q) in place of BL(p, q), and
similarly GS(V,m, n) instead of GS(m,n) (see Theorem 3.5 below).

Theorem 2.3. If |X| = p ≥ q ≥ ℵ0 then |BL(p, q)| = 2p.

Proof. Suppose q < p. For each Y ⊆ X with cardinal q, we know |X \ Y | = p and
there exists a bijection α : X → X \ Y , hence α ∈ BL(p, q). In fact, the set of all
such α is in one-to-one correspondence with G(X \ Y ). Therefore, since in this case
p+ q = p, we have:

|BL(p, q)| =
∑

{|G(X \ Y )| : Y ⊆ X, |Y | = q} = 2p.pq = pp.pq = pp = 2p.

To find the cardinal k of BL(p, p) when p > ℵ0, write X = Y ∪̇Z where |Y | = |Z| = p

and fix β ∈ BL(Z, p, p). Then for ℵ0 ≤ q < p and each α ∈ BL(Y, p, q), we have
α ∪ β ∈ BL(X, p, p), so k ≥ |BL(Y, p, q)| = 2p and it follows that k = 2p.

Finally for p = ℵ0 we note that for each Y ⊆ X such that |Y | = |X \ Y | = ℵ0, there
exists α ∈ BL(p, p) such that ranα = Y , hence in this case |BL(p, p)| is at least the

4



number k of such subsets Y of X. To calculate k, note that {Y ⊆ X : |Y | = ℵ0}
equals⋃

n

{Y ⊆ X : |Y | = ℵ0, |X \ Y | = n < ℵ0} ∪ {Y ⊆ X : |Y | = |X \ Y | = ℵ0}

=
⋃
n

{X \A : |A| = n < ℵ0} ∪ {Y ⊆ X : |Y | = |X \ Y | = ℵ0}

and, taking cardinals, we find by Lemma 2.2 that

2ℵ0 = ℵℵ0
0 =

∑
n<ℵ0

ℵn
0 + k = ℵ0 + k.

Hence k must equal 2ℵ0 . tu

To obtain analogous results for GS(p, q), we first recall [5] vol II, p 245: if V is a
vector space over a field F and dimV = p ≥ ℵ0 then |V | = p × |F |. Now let A
be a basis for V . Since each α ∈ T (V ) determines a unique map from A into V ,
and conversely any map from A into V can be extended by linearity to a unique
α ∈ T (V ), we have |T (V )| = |V |p. In fact, since pp = 2p, we can deduce that

|T (V )| =
{

2p if |F | ≤ p,
|F |p if |F | > p.

Lemma 2.4. If V is a vector space with dimV = p ≥ q and p ≥ ℵ0, then the
number of subspaces of V with dimension q equals |V |q. In fact, this is also the
number of injective linear mappings from a vector space of dimension q into another
with dimension p over the same field.

Proof. Let k be the number of subspaces of V with dimension q. Now, if a subspace
U has dimension q then there is a basis A ⊆ U with |A| = q, so k is at most the
number |V |q of subsets of V with cardinal q. Now let U be any vector space with
dimension q. Note that each linear α : U → V can be regarded as a subspace of the
vector space U ×V . In fact, if A = {ai} is a basis for U then {(ai, aiα)} is a basis for
α ⊆ U × V , hence dimα = q. Therefore the number of linear U → V is at most the
number ` of subspaces of U×V with dimension q. But dim(U×V ) = q+p = p (since
if {ui} is a basis for U and {vj} a basis for V then {(ui, 0)} ∪ {(0, vj)} is a basis for
U × V ). Thus, U × V and V have the same dimension, hence they are isomorphic,
so ` = k. Also, if A is a basis for U then any map A→ V can be uniquely extended
to a linear U → V ; and any linear U → V induces a unique map A → V . That is,
the number of linear U → V equals |V A| = |V |q and it follows that k = |V |q.

Finally, let U be a vector space with dimension q and V a vector space with dimension
p over the same field. To find m, the number of injective linear U → V , we follow
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the corresponding argument in the proof of Lemma 2.2. That is, for each injective
linear U → V , there is an injective linear U → U × V (for example, U → {0} × V );
and conversely, since q× p = p and thus U × V is isomorphic to V , for each injective
linear U → U × V , there is an injective linear U → V . Now if α : U → V is any
linear map, let α′ : U → U × V, u→ (u, uα), and note that α′ is linear and injective.
Hence the number |V |q of linear U → V is at most the number of injective linear
U → U × V , and we have seen this equals m. It follows that m = |V |q as required.tu

Theorem 2.5. If dimV = p ≥ q ≥ ℵ0, then |GS(p, q)| = |V |p.

Proof. Suppose V = 〈vi, vj〉 is a vector space over a field F where |I| = p and |J | = q,
and let W = 〈vi〉. Now, for each basis A = {ai} for V and each α ∈ G(A), there
exists an invertible linear α′ : V → V and an injective linear β : V → V, ai → vi, and
then α′β ∈ GS(p, q). In other words,

|GS(p, q)| ≥
∑

{|G(A)| : A is a basis for V }.

But if |F | ≥ 3 then, for all ki ∈ F ∗ = F \ {0}, {kiai} is a basis for V , hence in this
case the number of bases for V is at least |F ∗|p = |F |p. Thus

|GS(p, q)| ≥ 2p.|F |p = (p.|F |)p = |V |p,

and equality follows.

Suppose now that |F | = 2. Let {ei} be a basis for V , so |I| = p. For each fixed j ∈ I,
{ej + ei} is a basis for V and so the number of bases for V is at least p. Hence

|GS(p, q)| ≥
∑

{|G(A)| : A is a basis forV } ≥ p.2p = (p.2)p = |V |p,

and then we also have equality in case |F | = 2. tu

From Theorems 2.3 and 2.5 we deduce that BL(p, q) is not isomorphic to GS(m,n)
when |F | > 2p and m ≥ p. For, König’s Theorem states that if {ri : i ∈ I} and
{si : i ∈ I} are any sets of cardinals such that ri < si for each i then

∑
i ri <

∏
i si

([3] Theorem 1.6.7). In particular, if ri = 2p for each i ∈ I and |I| = p then∑
i ri = p× 2p = 2p; and if si = |F | for each i, then

∏
i si = |F |p. So in this case

|GS(m,n)| = |V |m ≥ |V |p = |F |p > 2p = |BL(p, q)|.

To see that there are fields of any infinite order, we prove the following result for
which we are unable to find a detailed reference.

Lemma 2.6. For each k ≥ ℵ0, there is a field F such that |F | = k.
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Proof. We begin by closely following [4] Exercise III.5.4. Namely, let X be a non-
empty set with cardinal k ≥ ℵ0, let N denote the set of non-negative integers, and
suppose Φ is the set of all maps ϕ : X → N such that ϕ(x) 6= 0 for at most a finite
number of x ∈ X. Then Φ is an abelian monoid under the operation ‘·’ defined by

(ϕ · ψ)(x) = ϕ(x) + ψ(x).

We write ϕ · ψ = ϕψ when it is convenient to do so. For each x ∈ X and i ∈ N, we
define xi ∈ Φ by

xi(y) =
{
i if y = x,
0 if y 6= x.

If ϕ ∈ Φ and x1, . . . , xn are the only y ∈ X such that ϕ(y) 6= 0, it can be shown that

ϕ = xi1
1 · xi2

2 · · ·xin
n

where ij = ϕ(xj) for j = 1, . . . , n. If Q is the field of rational numbers, we let
Q[X] denote the set of all functions f : Φ → Q such that f(ϕ) 6= 0 for at most a
finite number of ϕ ∈ Φ. Then Q[X] is a commutative ring with identity under the
operations:

(f + g)(ϕ) = f(ϕ) + g(ϕ),

(fg)(ϕ) =
∑

f(α)g(β),

where the summation is over all pairs (α, β) such that αβ = ϕ. If ϕ = xi1
1 ·x

i2
2 · · ·xin

n ∈
Φ and r ∈ Q, we let rϕ denote the function f : Φ → Q defined by

f(ψ) =
{
r if ψ = ϕ,
0 if ψ 6= ϕ.

Then every non-zero f ∈ Q[X] can be written as

f =
m∑

i=0

rix
si1
1 xsi2

2 · · ·xsin
n (2.1)

where ri ∈ Q, xj ∈ X and m, sij ∈ N are all uniquely determined by f .

Now, as in [4] Theorem III.5.3, Q[X] is an integral domain, so we can form a field of
‘rational functions’ (compare [4] p 233, Example) thus:

Q(X) = {f/g : f, g ∈ Q[X], g 6= 0}.

We assert that |Q(X)| = k. To see this, first note that each polynomial x1 ∈ Φ ⊆
Q[X] equals x1/1 ∈ Q(X), hence |Q(X)| ≥ k. On the other hand, using the map
f/g 7→ (f, g), we have:

|Q(X)| ≤ |Q[X]×Q[X]| = |Q[X]|.
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Now, by uniqueness, the number of polynomials in Q[X] with the form rxs1
1 x

s2
2 · · ·xsn

n

is exactly
|Q| × ks1 × · · · × ksn = k.

Thus, to count all f ∈ Q[X] expressed as in (2.1) is equivalent to counting the number
of subsets with cardinal m < ℵ0 in a set with cardinal k, and by Lemma 2.2 this
number equals km = k. It then follows that |Q(X)| = k as asserted. tu

Of course, this discussion leaves open the question of whether BL(p, q) and GS(m,n)
are isomorphic when the condition “|F | > 2p and m ≥ p” does not hold. We consider
this possibility in the next section.

3. Isomorphisms between Baer-Levi semigroups

In this section we aim to use algebraic conditions on BL(p, q) to decide whether it
is ever isomorphic to GS(m,n). To do this, we first recall that Green’s L relation
on BL(p, q) equals the identity relation on BL(p, q) and the R relation equals the
universal relation on BL(p, q). In addition, BL(p, q) is not regular (since it contains
no idempotents). In this situation, it can be useful to study Green’s ∗-relations
instead. That is, following [2], if S is any semigroup and a, b ∈ S, we say a L∗ b if
and only if

for all x, y ∈ S1, ax = ay if and only if bx = by,

and we define R∗ on S dually. Clearly these relations are equivalences on S. In
fact, L ⊆ L∗ and R ⊆ R∗ always, so R∗ is universal on BL(p, q). However the
characterisation of L∗ on BL(p, q) is comparable with that of L on T (X) [1] vol 1,
Lemma 2.5: namely, from the next result, we deduce that α L∗ β on BL(p, q) if and
only if ranα = ranβ.

Lemma 3.1. If α, β ∈ BL(p, q) then the following are equivalent.

(a) ranβ ⊆ ranα,

(b) for each λ, µ ∈ BL(p, q)1, αλ = αµ implies βλ = βµ,

(c) for each λ ∈ BL(p, q), αλ = α implies βλ = β.

Proof. Assume α, β ∈ BL(p, q) are such that ranβ ⊆ ranα. Then β = β1α for some
β1 ∈ T (X). Let λ, µ ∈ BL(p, q)1. Then, αλ = αµ implies βλ = (β1α)λ = β1(αλ) =
β1(αµ) = (β1α)µ = βµ. Hence (a) implies (b). It is obvious that (b) implies (c). To
prove (c) implies (a), assume that, for each λ ∈ BL(p, q), αλ = α implies βλ = β.
Write X = {xi} and

α =
(
xi

ai

)
, β =

(
xi

bi

)
.
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If X = {ai} ∪̇ {aj} = {bi} ∪̇ {bj} where |J | = q, write {aj} = {cj} ∪̇ {dj} and
define

λ =
(
ai aj

ai cj

)
, µ =

(
ai aj

ai dj

)
.

Then λ, µ ∈ BL(p, q) and αλ = α = αµ. Consequently βλ = β = βµ, and this implies
ranβ ⊆ ranλ = {ai} ∪̇ {cj} and ranβ ⊆ ranµ = {ai} ∪̇ {dj}. Hence ranβ ⊆ {ai} =
ranα, as required. tu

We now decide when BL(X, p, q) and BL(Y,m, n) are isomorphic: although the proof
of the next result closely follows the arguments in [6], we provide all the details since
similar ideas will be used later. However, first note that if ψ : A → B is an order-
isomorphism between two families of sets then (A1 ∩ A2)ψ = A1ψ ∩ A2ψ whenever
A1, A2 ∈ A and A1 ∩A2 ∈ A. This is because order-isomorphisms preserve infima.

Theorem 3.2. The semigroups BL(X, p, q) and BL(Y,m, n) are isomorphic if and
only if p = m and q = n. Moreover, for each isomorphism θ, there is a bijection
h : X → Y such that αθ = h−1αh for each α ∈ BL(X, p, q).

Proof. Clearly, if the cardinals are equal as stated, then any bijection from X onto
Y will induce an isomorphism between the semigroups. So we assume there is an
isomorphism θ : BL(X, p, q) → BL(Y,m, n) and aim to find a bijection h : X → Y .
We begin by noting that Lemma 3.1 says: for α1, α2 ∈ BL(p, q), ranα1 ⊆ ranα2

if and only if for each β such that α2β = α2, we have α1β = α1. Since θ is an
isomorphism, it follows that ranα1 = ranα2 if and only if ran(α1θ) = ran(α2θ).
Hence, if B(X, q) is the family of all subsets A of X such that |A| = p and |X \A| = q,
and B(Y, n) the family of all subsets B of Y such that |B| = m and |Y \ B| = n,
then ψθ : B(X, q) → B(Y, n), defined by letting Aψθ = ran(αθ) where α ∈ BL(p, q)
is such that ranα = A, is a well-defined order-isomorphism of B(X, q) onto B(Y, n).

Next we show that every order-isomorphism ψ of B(X, q) onto B(Y, n) is induced by
a bijection of X onto Y . Let A ∈ B(X, q) and x ∈ X \A. We write A∪{x} as A∪x.
Clearly, A ∪ x ∈ B(X, q) and A ∪ x covers A. Hence (A ∪ x)ψ covers Aψ, that is,
(A ∪ x)ψ = Aψ ∪ y for some y ∈ Y \ Aψ. Write y = xhA. We proceed to show that
xhA1 = xhA2 for all A1, A2 ∈ B(X, q) not containing x. Let A1, A2 ∈ B(X, q) with
x 6∈ A1 ∪A2. If A1 ∩A2 ∈ B(X, q), then

(A1ψ ∩A2ψ) ∪ xhA1∩A2 = (A1 ∩A2)ψ ∪ xhA1∩A2

= ((A1 ∩A2) ∪ x)ψ

= ((A1 ∪ x) ∩ (A2 ∪ x))ψ

= (A1 ∪ x)ψ ∩ (A2 ∪ x)ψ

= (A1ψ ∪ xhA1) ∩ (A2ψ ∪ xhA2) .

(3.1)
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Thus,

{xhA1∩A2} = (A1ψ ∩ {xhA2}) ∪ ({xhA1} ∩A2ψ) ∪ ({xhA1} ∩ {xhA2}) .

Suppose xhA2 ∈ A1ψ. Then, xhA2 = xhA1∩A2 and so ((A1 ∩A2) ∪ x)ψ ⊆ A1ψ

by (3.1). Since ψ preserves order, (A1 ∩A2) ∪ x ⊆ A1 and this implies x ∈ A1, a
contradiction. Therefore, xhA2 6∈ A1ψ. Similarly, we conclude that xhA1 6∈ A2ψ and
hence {xhA1∩A2} = {xhA1} ∩ {xhA2}. Thus xhA1 = xhA2 = xhA1∩A2 . On the other
hand, if A1 ∩ A2 6∈ B(X, q) then, since |X \ (A1 ∩A2) | = q, we have |A1 ∩ A2| 6= p

and thus p must equal q. In addition, |A1| = |A1 \ A2| = p = |A2 \ A1| = |A2|. We
write A2 \A1 as the disjoint union of two sets M and N , with |M | = |N | = p and let
A3 = (A1 \A2)∪M . By construction, both M and A3 belong to B(X, q). Moreover,
x 6∈ A1 ∪A3, A1 ∩A3 ∈ B(X, q) and x 6∈ A2 ∪A3, A2 ∩A3 ∈ B(X, q). From the first
case, we may conclude that xhA1 = xhA3 = xhA2 .

We now define h : X → Y as follows: xh = xhA, where A ∈ B(X, q) satisfies x 6∈ A.
The foregoing argument shows h is well-defined. Suppose x1h = x2h for x1, x2 ∈ X
and take A ∈ B(X, q) with x1, x2 ∈ X \ A. Then (A ∪ x1)ψ = Aψ ∪ x1hA =
Aψ ∪ x2hA = (A ∪ x2)ψ and hence A∪ x1 = A∪ x2 since ψ is one-to-one. Therefore
x1 = x2 and thus h is one-to-one. In order to show that h is onto, let y ∈ Y and
B ∈ B(Y, n), with y ∈ B. Let A1, A2 ∈ B(X, q) be such that A1ψ = B \ y and
A2ψ = B. Then A2 covers A1 and so there exists x ∈ X \A1 such that A2 = A1 ∪ x.
Thus B = (B \ y) ∪ xhA1 and y = xhA1 . Hence h is a bijection and |X| = |Y |.

Next we show that ψ is induced by h, that is, Aψ = Ah for each A ∈ B(X, q). Let
y ∈ Ah. Then there exists x ∈ A with y = xh. Since A \ x ∈ B(X, q) and A covers
A \ x, we have Aψ = (A \ x)ψ ∪ xhA\x which equals (A \ x)ψ ∪ y by the definition
of h. Hence y ∈ Aψ. Conversely, if y ∈ Aψ then Aψ covers Aψ \ y. Let A1 ∈ B(X, q)
be such that Aψ \ y = A1ψ. Then, A covers A1 since ψ preserves order, and so there
exists x ∈ X \A1 with A = A1 ∪ x. Thus Aψ = (Aψ \ y)∪ xh (again by definition of
h) and hence y = xh ∈ Ah. Therefore Aψ = Ah.

Finally, we prove that, for each α ∈ BL(p, q), αθ = h−1
θ αhθ where hθ is the bijection

corresponding to the order-isomorphism ψθ. Let α ∈ BL(p, q), x1 ∈ X and x2 = x1α.
We may choose A1, A2 in B(X, q) such that A1 ⊆ A2 and A2 \ A1 = {x1}, together
with β, γ ∈ BL(X, q) such that ranβ = A1 and ran γ = A2. Now ran γ \ranβ = {x1}
and so

ran ((γα)θ) \ ran ((βα)θ) = ran ((γθ)(αθ)) \ ran ((βθ)(αθ))

= (ran(γθ) \ ran(βθ)) (αθ)

= (A2ψθ \A1ψθ) (αθ)

= {x1hθ}αθ.
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On the other hand, ran(γα) \ ran(βα) = (A2 \A1)α = {x2} and so

ran ((γα)θ) \ ran ((βα)θ) = (ran(γα))ψθ \ (ran(βα))ψθ

= ran(γα)h \ ran(βα)h

= {x2hθ} .

Thus x1hθαθ = x2hθ = x1αhθ for all x1 ∈ X and so αθ = h−1
θ αhθ. Finally, since

αθ ∈ BL(Y, n) implies that |Y \ Y αθ| = n and, on the other hand, |Y \ Y h−1αh| =
|(X \Xα)h| = q for any bijection h : X → Y , we also have q = n. tu

We now use a similar argument to show that BL(X, p, q) is never isomorphic to
GS(V,m,m). For this, we need a result for GS(m,n) which is analogous to Lemma
3.1 (its proof uses the well-known characterisation of Green’s L–relation on T (V ):
see [1] vol 1, p 57, Exercise 6).

Lemma 3.3. If α, β ∈ GS(m,n) then the following are equivalent.

(a) ranβ ⊆ ranα,

(b) for each λ, µ ∈ GS(m,n)1, αλ = αµ implies βλ = βµ,

(c) for each λ ∈ GS(m,n), αλ = α implies βλ = β.

Proof. Let α, β ∈ GS(m,n) be such that ranβ ⊆ ranα. Since α, β ∈ T (V ), there
is some β1 ∈ T (V ) such that β = β1α. Let λ, µ ∈ GS(m,n)1. Then, αλ = αµ

implies βλ = (β1α)λ = β1(αλ) = β1(αµ) = (β1α)µ = βµ. Therefore (a) implies
(b). Clearly (b) implies (c). Now assume (c) holds and write V = 〈ei〉. It follows
that ranα = 〈eiα〉 where {eiα} is linearly independent since α is one-to-one, and
V = 〈eiα, ej〉 with |J | = n since d(α) = n. Write {ej} = {uj} ∪̇ {vj} and define
λ, µ ∈ T (V ) as follows:

λ =
(
eiα ej

eiα uj

)
, µ =

(
eiα ej

eiα vj

)
.

Then λ, µ ∈ GS(m,n) and αλ = α = αµ. Hence βλ = β = βµ, so ranβ ⊆
ranλ = 〈eiα, uj〉 and ranβ ⊆ ranµ = 〈eiα, vj〉. Now, if w ∈ ranβ then w =∑
xi(eiα) +

∑
yjuj and w =

∑
ai(eiα) +

∑
bjvj for some scalars xi, yj and ai, bj ;

hence, by linear independence, yj = bj = 0 for each j. Thus, ranβ ⊆ 〈eiα〉 = ranα,
as required for (a). tu

Next we need [9] Lemma 6 which we quote below for convenience: as observed by
Lima [8] p 433, this result highlights an essential difference between sets and vector
spaces. For, if X = A ∪̇B where |A| = |B| = p and A ∩ B = ∅, then there is no
C ⊆ X such that |C| = p and C ∩A = ∅ = C ∩B.
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Lemma 3.4. If dimV = p ≥ ℵ0 and U1, U2 are subspaces of V with codimension p in
V then there is a subspace W of V such that dimW = p and W ∩U1 = {0} = W ∩U2.

Theorem 3.5. The semigroups BL(X, p, q) and GS(V,m,m) are not isomorphic for
any (infinite) cardinals p, q and m, with q ≤ p.

Proof. Suppose φ is an isomorphism from BL(X, p, q) onto GS(V,m,m). Then, from
Lemmas 3.1 and 3.3 we have

ranα ⊆ ranβ if and only if ran(αφ) ⊆ ran(βφ). (3.2)

Let B(X, p, q) denote the family of all A ⊆ X such that |A| = p and |X \ A| = q

and let G(V,m,m) denote the family of all subspaces U of V such that dimU = m

and codimU = m. We observe that φ gives rise in a natural way to a mapping ϕ
from B(X, p, q) into G(V,m,m): for each A ∈ B(X, p, q), let Aϕ = ran(αφ) for some
α ∈ BL(X, p, q) such that ranα = A. From (3.2), we readily deduce that ϕ is a
well-defined order-isomorphism of B(X, p, q) onto G(V,m,m).

Let A1, A2 ∈ B(X, p, q) and write X = A1 ∪̇B1 = A2 ∪̇B2 where |Ai| = p and |Bi| =
q for i = 1, 2. Then A1ϕ,A2ϕ are elements of G(V,m,m), and hence codim(A1ϕ) =
dimV = codim(A2ϕ). By Lemma 3.4, there is a subspace W of V such that dimW =
m and W ∩ A1ϕ = {0} = W ∩ A2ϕ. Let {wi} be a basis for W and {ai} a basis for
A1ϕ. Since W ∩A1ϕ = {0}, it follows that {wi}∪{ai} is linearly independent. Hence,
it can be expanded to a basis {wi, ai, vk} for V , and so codimW = |I| + |K| = m.
Thus, W ∈ G(V,m,m) and, since ϕ is onto, there is a subset C of X in B(X, p, q)
such that W = Cϕ. We have C = C ∩ X = (C ∩A1) ∪̇ (C ∩B1). Since |C| = p

and |C ∩ B1| ≤ q, it follows that |C ∩ A1| = p when q < p. Moreover, X =
(C ∩A1) ∪̇ (C ∩B1) ∪̇ (X \ C) and so |X \ (C ∩A1) | = q. Therefore, C ∩ A1 ∈
B(X, p, q) if q < p. Since C ∩ A1 ⊆ C and C ∩ A1 ⊆ A1 and ϕ preserves order, we
have (C ∩A1)ϕ ⊆W∩A1ϕ = {0}, which contradicts the fact that (C ∩A1)ϕ belongs
to G(V,m,m). On the other hand, if q = p then either |C ∩A1| = p or |C ∩B1| = p.
Without loss of generality, suppose |C ∩ A1| = p and write C ∩ A1 = Y ∪̇Z where
|Y | = p = |Z|. Then C = Y ∪̇Z ∪̇ (C ∩B1) and so |X \ Y | ≥ |Z ∪̇ (C ∩B1) | = p.
Therefore, Y ∈ B(X, p, p). Since Y ⊆ C, Y ⊆ A1 and ϕ preserves order, we have
Y ϕ ⊆W ∩A1ϕ = {0}, which contradicts the fact that Y ϕ ∈ G(V,m,m). tu

To obtain useful algebraic conditions on BL(p, q) when q < p, we first observe that
it contains a copy of BL(q, q): namely, if Y ⊆ X has cardinal q, we let

B(Y ) = {α ∈ BL(p, q) : Y α ⊆ Y, α | (X \ Y ) = idX\Y }
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which is clearly non-empty and isomorphic to BL(Y, q, q). For each α ∈ BL(p, q), we
define the shift of α to be

S(α) = {x ∈ X : xα 6= x}, s(α) = |S(α)|

and write
F (α) = X \ S(α) = {x ∈ X : xα = x}.

Note that S(αβ) ⊆ S(α) ∪ S(β), so s(αβ) ≤ s(α) + s(β) always. Clearly, λα = λ

in BL(p, q) if and only if ranλ ⊆ Fixα. Also if α ∈ BL(p, q) then s(α) = q if and
only if λα = λ for some λ ∈ BL(p, q). For, we know X \ ranα ⊆ S(α), so s(α) ≥ q

always. If λα = λ for some λ ∈ BL(p, q) then ranλ ⊆ F (α), so S(α) ⊆ X \ ranλ
and hence s(α) ≤ q; conversely, if s(α) = q < p then |X| = |F (α)| and any bijection
λ : X → F (α) satisfies λα = λ and belongs to BL(p, q). Thus, we have an algebraic
characterisation for the elements of the semigroup:

Λ(q) = {α ∈ BL(p, q) : s(α) = q}. (3.3)

Next we define an equivalence ∼ on Λ(q) by:

α ∼ β if and only if S(α) = S(β).

Surprisingly, this has an algebraic characterisation which is similar to Lemma 3.1(c).
Here it is also worth recalling [1] vol 2, Lemma 8.3: namely, the equation xy = y

cannot occur in any right simple, right cancellative semigroup without idempotents.

Lemma 3.6. If α, β ∈ Λ(q) then the following are equivalent.

(a) S(β) ⊆ S(α),

(b) for each λ ∈ BL(p, q), λα = λ implies λβ = λ.

Proof. Suppose S(β) ⊆ S(α). Let λ ∈ BL(p, q) be such that λα = λ. Then ranλ ⊆
F (α) and since S(β) ⊆ S(α) it follows that ranλ ⊆ F (β). Therefore, since xλ ∈ ranλ
for each x in X, we have x(λβ) = (xλ)β = xλ, and hence λβ = λ. Conversely, assume
(b) holds. If F (α) = {ei} and S(α) = {xj}, write {ei} = {fi} ∪̇ {fj} and

α =
(
fi fj xj

fi fj xjα

)
.

Define
λ =

(
ei xj

fi fj

)
.

Then λα = λ and λ ∈ BL(p, q) since d(λ) = q = s(α). Hence λβ = λ and F (α) =
ranλ ⊆ F (β). Thus S(β) ⊆ S(α). tu
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If we fix some β ∈ Λ(q) and put S(β) = Y then F (β) = X \ Y and we have:

B(Y ) = {α ∈ Λ(q) : S(α) ⊆ Y },

and this is the set of all α ∈ BL(p, q) such that µα = µ for some µ ∈ BL(p, q) and,
for each λ ∈ BL(p, q), λβ = λ implies λα = λ. In other words, we have an algebraic
description of each BL(q, q) inside BL(p, q) when q < p.

The aim now is to use this description to show that BL(p, q) cannot be isomorphic to
any GS(m,n) when p > q. However, for this we need to identify a subset of GS(m,n)
which will correspond to some B(Y ) in BL(p, q) under an isomorphism.

We start by defining, for each α ∈ T (V ),

Fix(α) = {u ∈ V : uα = u}.

Since this is a subspace of V , we can let s(α) = codim Fix(α), and we call this the
shift of α ∈ T (V ). It can be shown that s(αβ) ≤ s(α) + s(β): see [9] Lemma 5.
Hence, by analogy with Λ(q) in BL(p, q), if m > n then there exists a subsemigroup
of GS(m,n) defined by:

Σ(n) = {α ∈ GS(m,n) : s(α) = n}.

Furthermore, we can characterise Σ(n) algebraically as follows: given α ∈ GS(m,n),

s(α) = n if and only if λα = λ for some λ ∈ GS(m,n). (3.4)

For, Fix(α) ⊆ ranα implies n = d(α) ≤ s(α). If λα = λ for some λ ∈ GS(m,n) then
ranλ ⊆ Fix(α) and this implies s(α) ≤ d(λ) = n; conversely, if s(α) = n < m then
dimV = dim Fix(α) and any linear bijection λ : V → Fix(α) satisfies λα = λ and
belongs to GS(m,n).

Next we define an equivalence ≈ on Σ(n) by

α ≈ β if and only if Fix(α) = Fix(β).

Its algebraic characterization is analogous to that of the equivalence ∼ defined on
the subsemigroup Λ(q) of BL(p, q).

Lemma 3.7. If α, β ∈ Σ(n) then the following conditions are equivalent.

(a) Fix(α) ⊆ Fix(β),

(b) for each λ ∈ GS(m,n), λα = λ implies λβ = λ.
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Proof. Assume Fix(α) ⊆ Fix(β) and let λ ∈ GS(m,n) be such that λα = λ. Then
ranλ ⊆ Fix(α) and so ranλ ⊆ Fix(β). Therefore, λβ = λ. Conversely, suppose
{ei} = {fi} ∪̇ {fj} is a basis for Fix(α), where |I| = m > n = |J | since α ∈ Σ(n).
Expand {ei} to a basis {ei, vj} for V and note that

α =
(
fi fj vj

fi fj vjα

)
.

Define λ ∈ T (V ) by

λ =
(
ei vj

fi fj

)
.

Then λα = λ and λ ∈ GS(m,n) since d(λ) = n = s(α). Hence λβ = λ and so
Fix(α) = ranλ ⊆ Fix(β). tu

One candidate for a linear version of B(Y ), the copy of BL(Y, q, q) in BL(p, q), can
be defined as follows. If U is a subspace of V with dimension m and codimension n

and if W is a complement of U in V , then we let

G(U,W ) = {α ∈ GS(m,n) : Wα ⊆W, U ⊆ Fix(α)}

which is clearly non-empty and isomorphic to GS(W,n, n). Unfortunately, whereas
the complement of a subset Y in X is unique, this is not true for a complement of
a subspace U in V . Therefore, we now fix some β ∈ Σ(n) and put Fix(β) = U and
V = U ⊕W , so we have

G(U,W ) ⊆6 G(U) = {α ∈ Σ(n) : U ⊆ Fix(α)}.

Note that G(U) is the set of all α ∈ GS(m,n) such that µα = µ for some µ in
GS(m,n) and, for each λ ∈ GS(m,n), λβ = λ implies λα = λ: that is, G(U) has
the same characteristics as B(Y ) in BL(p, q). Note also that the above containment
is ‘proper’. For, if {ui} is a basis for U and {wj} a basis for W then V = 〈ui, wj〉.
Write {ui} = {vi} ∪̇ {vj} (possible since |J | = n ≤ m = |I| by the choice of U and
W ) and also write {vj + wj} = {xj} ∪̇ {yj}. Then {vi} ∪̇ {vj} ∪̇ {vj + wj} is a basis
for V and

α =
(
ui wj

ui xj

)
is an element of G(U) (note that wjα 6= wj for each j) and it does not belong to
G(U,W ) since Wα ∩W = {0}.

To proceed further, we require two technical results whose purpose will become ap-
parent in the proof of Theorem 3.10.

Lemma 3.8. For each vector space W with dimension n ≥ ℵ0, there exists α ∈
GS(W,n, n) which fixes exactly one element of W , namely 0.
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Proof. Consider a basis for W of the form:

{w1k} ∪ {w2k} ∪ . . . .

That is, W = 〈wik〉 where |I| = ℵ0 and |K| = n. Define α ∈ T (W ) by

α =
(
w1k . . . wik . . .
w2k . . . wi+1,k . . .

)
.

Then d(α) = n, so α ∈ GS(W,n, n). Now each v ∈W can be written as

v =
∑

k

xi1,kwi1,k + . . .+
∑

k

xir,kwir,k (3.5)

where the xij ,k are scalars, each sum is over a finite (and possibly different) index
set and we can assume i1 < i2 < . . . < ir. Therefore, if vα = v, we have:∑

k

xi1,kwi1,k +
∑

k

xi2,kwi2,k + . . .+
∑

k

xir,kwir,k

=
∑

k

xi1,kwi1+1,k +
∑

k

xi2,kwi2+1,k + . . .+
∑

k

xir,kwir+1,k.
(3.6)

Since all the wij ,k are linearly independent, and wi1,k does not appear on the right
of this equation, we deduce that xi1,k = 0 for all k. Then (3.6) reduces to∑

k

xi2,kwi2,k + . . .+
∑

k

xir,kwir,k =
∑

k

xi2,kwi2+1,k + . . .+
∑

k

xir,kwir+1,k. (3.7)

Again, wi2,k appears nowhere on the right of this new equation, so xi2,k = 0 for all
k. In like manner, all coefficients in (3.5) equal 0, hence v = 0 as required. tu

Lemma 3.9. Let V be a vector space of dimension m and U a subspace of V with
dimension m and codimension n. If W1,W2 are subspaces of V with codimension
n which contain U and satisfy dim(W1/U) = n = dim(W2/U), then there exists
a subspace L of V with codimension n in V which properly contains U such that
L ∩W1 = U = L ∩W2.

Proof. Let W1,W2 be subspaces of V such that U ⊆ W1, U ⊆ W2, codim(W1) =
n = codim(W2) and dim(W1/U) = n = dim(W2/U). Recall that dim(V/U) equals
the codimension of U in V and that there is a natural (linear) isomorphism between
V/Wi and (V/U)/(Wi/U) for i = 1, 2. Hence, Wi/U has codimension n in V/U .
By Lemma 3.4, there exists a subspace L/U of V/U such that dim(L/U) = n and
L/U ∩W1/U = {U} = L/U ∩W2/U . Since dim(L/U) = n, U is properly contained
in L. Moreover, since L/U ∩W1/U = {U},

n = dim(W1/U) ≤ codim(L/U) ≤ dim(V/U) = n,
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and so codim(L) = n. From L/U ∩W1/U = {U} = L/U ∩W2/U , we may conclude
that L ∩W1 = U = L ∩W2. tu

Theorem 3.10. The semigroups BL(X, p, q) and GS(V,m, n) are not isomorphic
for any infinite cardinals p, q,m, n with q < p and n < m.

Proof. Suppose φ is an isomorphism from BL(X, p, q) onto GS(V,m, n). Let Y ⊆ X

be such that |Y | = q and let β ∈ BL(p, q) be such that S(β) = Y . Then, βφ ∈
GS(m,n). Moreover, s(βφ) = n, since s(β) = q and so there exist µ ∈ BL(p, q) and
µφ ∈ GS(m,n) such that µβ = µ and (µφ)(βφ) = µφ. Hence, dim Fix(βφ) = m. Let
U = Fix(βφ) and V = U ⊕W . Let B be the family of all subsets of Y with cardinal
q and let G be the family of all subspaces of V with codimension n which contain U .
Consider ϕ defined as follows: given B ∈ B, let Bϕ = Fix(αφ), where α ∈ B(Y ) is
such that S(α) = B. We assert that ϕ is an anti-isomorphism from B onto G.

Let B = {bj} ∪̇ {cj} ∪̇ {dj} ∈ B, with |J | = q and write {dj} = {ej} ∪̇ {fj}. Write
X = {xi} ∪̇B and define α ∈ T (X) by

α =
(
xi bj cj dj

xi ej bj cj

)
.

Then c(α) = 0, d(α) = q and S(α) = B. Hence α ∈ Λ(q) and, by the characterisations
discussed at (3.3) and (3.4), we have αφ ∈ Σ(n). Also, since S(α) ⊆ Y , Lemmas
3.6 and 3.7 imply U ⊆ Fix(αφ). Therefore, Fix(αφ) ∈ G. If B1, B2 ∈ B and
α1, α2 ∈ B(Y ) are such that S(α1) = B1 and S(α2) = B2, then

B1 ⊆ B2 ⇔ S(α1) ⊆ S(α2)

⇔ λα2 = λ implies λα1 = λ for all λ in BL(p, q)

⇔ µ(α2φ) = µ implies µ(α1φ) = λ for all µ in GS(m,n)

⇔ Fix(α2φ) ⊆ Fix(α1φ)

⇔ B2ϕ ⊆ B1ϕ.

Thus, ϕ is a well-defined one-to-one mapping which inverts order. To show that ϕ
is onto, we will use Lemma 3.8. Let G = 〈ei〉 ∈ G. Then codimG = n and U ⊆ G.
Write V = G⊕H, with H = 〈fj〉 and define ε ∈ T (V ) by

ε =
(
ei fj

ei fjα

)
,

where α ∈ GS(H,n, n) fixes exactly one element ofH, namely 0. Now, ε ∈ GS(V,m, n)
and Fix(ε) = G. For, if v =

∑
aiei +

∑
bjfj , then vε = v if and only if α fixes the

element
∑
bjfj ∈ H. But the latter happens if and only if

∑
bjfj = 0 in which case
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bj = 0 for each j; that is, v ∈ G. Since ε is actually in Σ(n), there exists δ ∈ Λ(q)
such that ε = δφ. Let B = S(δ). Since Fix(βφ) = U ⊆ G = Fix(δφ), we conclude as
before that S(δ) ⊆ S(β) = Y . That is, B ∈ B and Bϕ = G.

We now show that, for subspaces W1 = B1ϕ, W2 = B2ϕ of V in G with W1∩W2 = U ,
we have B1 ∪B2 = Y . Since ϕ inverts order, (B1 ∪B2)ϕ is a subset of B1ϕ∩B2ϕ =
W1∩W2 = U = Y ϕ (the last equation holds since Y is the greatest element of B and
U is the least element of G). Hence, Y ⊆ B1 ∪B2 and so B1 ∪B2 = Y .

Next, we use the above results to produce a contradiction. Let B1, B2 ∈ B be such
that B1 ∪̇B2 = Y . Then, B1ϕ = W1 = 〈ui, vk〉 and B2ϕ = W2 = 〈ui, w`〉, where
U = 〈ui〉. Since codimW1 = n = codimW2, we can choose bases {xj} ∪̇ {yj} and
{sj} ∪̇ {tj} for complements of W1 and W2, respectively, where |J | = n. Then

V = 〈ui, vk, xj , yj〉 = 〈ui, w`, sj , tj〉.

Let W ′
1 = 〈ui, vk, xj〉 and W ′

2 = 〈ui, w`, sj〉. Then W ′
1,W

′
2 ∈ G and dim(W ′

1/U) =
n = dim(W ′

2/U). By Lemma 3.9, there exists an element L 6= U in G such that
L ∩W ′

1 = U = L ∩W ′
2. Since W1 ⊆ W ′

1 and W2 ⊆ W ′
2, we have L ∩W1 = U =

L ∩W2. Also, since ϕ is onto, there exists B ∈ B such that Bϕ = L. Therefore,
Bϕ ∩ B1ϕ = U = Bϕ ∩ B2ϕ, which implies that B ∪ B1 = Y = B ∪ B2. Thus,
B1, B2 ⊆ B and Y = B. Hence U = L, a contradiction. tu

Next we show that BL(p, p) and GS(m,n), with n < m, are not isomorphic. We
recall that BL(X, p, p) is embeddable in BL(Y, r, p), with X ⊆6 Y and p < r, and
consider the semigroup

S = {α ∈ BL(Y, r, p) : S(α) ⊆ X} .

For each α ∈ S, s(α) = p since D(α) ⊆ S(α) ⊆ X. Let

T = {α ∈ S : |X ∩ F (α)| = p}

which is easily seen to be non-empty. If α ∈ T , write X = {xj} = {sj} ∪̇ {tj}, where
S(α) = {sj} and X ∩ F (α) = {tj}. Write Y = {yi} ∪̇ {xj} and {tj} = {uj} ∪̇ {vj},
with {vj} = {aj} ∪̇ {bj}. Define

λ =
(
yi uj vj sj

yi aj uj bj

)
.

Then λ ∈ S and λα = λ. On the other hand, let α ∈ S be such that λα = λ for
some λ ∈ S. Since λ ∈ S, we have S(λ) ⊆ X. Hence Y \X ⊆ F (λ). We also have
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ran(λ) ⊆ F (α) since λα = λ. Hence Xλ ⊆ X ∩ F (α) and so |X ∩ F (α)| = p. Thus,
we have an algebraic characterisation for the elements of the set T .

However, T is not a semigroup. To see this, let X = A ∪̇B ∪̇C, each with cardinal
p, and let B = B1 ∪̇B2, C = C1 ∪̇C2, also each with cardinal p. Suppose α ∈ S fixes
both Y and A pointwise, and maps B onto C and C onto B1. Also, let β ∈ S fix
both Y and B pointwise, and map A onto C1 and C onto A. Then F (αβ) = Y and
|X ∩ F (αβ)| = 0. Hence α, β ∈ T but αβ 6∈ T .

Theorem 3.11. The semigroups BL(X, p, p) and GS(V,m, n) are not isomorphic
for any infinite cardinals p,m, n with n < m.

Proof. Suppose BL(X, p, p) is isomorphic to GS(V,m, n). Let Y be a set with
cardinal r > p such that Y ⊇ X. Then, BL(X, p, p) is isomorphic to a subset
of BL(Y, r, p) – namely, S = {α ∈ BL(Y, r, p) : S(α) ⊆ X} – and there is an
isomorphism φ from S onto GS(V,m, n). Let T = {α ∈ S : |X ∩ F (α)| = p}.
Clearly φ induces a one-to-one mapping from T onto Σ(n). For, α ∈ T if and only if
λα = λ for some λ ∈ S, which in turn is equivalent to saying: µ(αφ) = µ for some
µ ∈ GS(V,m, n) (even though T is not a semigroup). But Σ(n) is a subsemigroup of
GS(V,m, n) and φ is an isomorphism, hence Σ(n)φ−1 = T must be a subsemigroup
of S, contradicting our earlier remark. tu

Since we have now shown that BL(p, q) and GS(m,n) are never isomorphic, it is
worth observing the following result.

Theorem 3.12. Any right simple, right cancellative semigroup S without idempo-
tents can be embedded in some GS(m,m).

Proof. Let |S| = m and write S1 = {ai}, with |I| = m. Note that S is infinite, since
S has no idempotents. Let F be any field and let Fi be a copy of F for each i ∈ I.
As in [4] p182, Remark (c), we let V be the vector space

∑
Fi over F whose basis

can be identified in a natural way with {ai}: that is,
∑
Fi is the set of all (ri)i∈I

where ri ∈ Fi and at most finitely many ri are non-zero. Since S is right cancellative,
the extended right regular representation of S is a faithful representation of S as a
semigroup of one-to-one mappings of S1 into itself. Let x ∈ S. Then x is represented
by ρx : S1 → S1, ai 7→ aix, which is a one-to-one mapping of the basis {ai} into
itself. Hence ρx can be extended by linearity to a one-to-one linear map V → V .
Moreover, since S is infinite, [1] vol 2, Lemma 8.4 implies that

|S1| = |S| = |S \ Sx| = |S1 \ (x ∪ Sx)| = |S1 \ S1ρx|.

Therefore, codim ρx = |S| = m and hence ρx ∈ GS(V,m,m). The faithfulness of the
extended right regular representation implies that S is embedded in GS(V,m,m). tu
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4. Left ideals of GS(m,n)

In this section we transfer results of Sutov [11] and Sullivan [10] on the left ideals of
BL(p, q) to the linear Baer-Levi semigroup on V . By analogy with their work, the
most natural way to do this is to show that the left ideals of GS(m,n) are precisely
the subsets L of GS(m,n) which satisfy the condition:

(α ∈ L, β ∈ GS(m,n), ranβ ⊆ ranα, dim(ranα/ranβ) = n) implies β ∈ L.

Although this result is valid, to obtain more information about the left ideals of
GS(m,n) we proceed as follows.

If Y is a non-empty subset of GS(m,n), we let L+
Y = Y ∪ LY , where

LY = {β ∈ GS(m,n) : ranβ ⊆ ranα, dim(ranα/ ranβ) = n for some α ∈ Y }.

To show LY is non-empty, choose any α ∈ Y . Suppose {ei} is a basis for V and
write eiα = ai for each i. Since α is one-to-one, {ai} is linearly independent and so
it can be expanded into a basis {ai} ∪ {bj} for V . Note that |J | = d(α) = n ≤ m.
Therefore we can write {ai} = {ci} ∪ {dj} and define

β =
(
ei

ci

)
.

This is in GS(m,n) since β is one-to-one and d(β) = dim〈dj , bj〉 = n. We have
ranβ ⊆ ranα and dim(ranα/ ranβ) = dim〈dj〉 = n. Hence β ∈ LY and so LY is
non-empty.

Theorem 4.1. If Y is a non-empty subset of GS(m,n), then L+
Y is a left ideal of

GS(m,n). Conversely, if I is a left ideal of GS(m,n), then I = L+
I .

Proof. Suppose Y is a non-empty subset of GS(m,n) and let α ∈ L+
Y and β ∈

GS(m,n). Then βα ∈ GS(m,n) and ran(βα) ⊆ ranα. Suppose {ei} is a basis for V .
Since β is one-to-one, {eiβ} is a basis for ranβ, which can be expanded into another
basis {eiβ, ej} for V , with |J | = d(β) = n. Then ranα = 〈eiβα, ejα〉. On the other
hand, ran(βα) = 〈eiβα〉 and so dim(ranα/ ran(βα)) = dim〈ejα〉 = n. If α ∈ Y ,
then βα ∈ LY . If not, then α ∈ LY and so ranα ⊆ ran γ and dim(ran γ/ ranα) = n

for some γ ∈ Y . Thus ran(βα) ⊆ ranα ⊆ ran γ and n = dim(ran γ/ ranα) ≤
dim(ran γ/ ran(βα)) ≤ d(βα) = n. Therefore βα ∈ LY . In other words, we have
shown that L+

Y is a left ideal of GS(m,n).

Suppose I is a left ideal of GS(m,n). We assert that I = L+
I . Let β ∈ LI . Then

there exists α ∈ I such that ranβ ⊆ ranα and dim (ranα/ ranβ) = n. If {ei} is a
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basis for V then ranβ = 〈eiβ〉 and, since ranβ ⊆ ranα, ranα = 〈eiβ, ej〉 for some
linearly independent set {eiβ, ej}. Moreover, |J | = n since dim (ranα/ ranβ) = n.
Since α is one-to-one and eiβ, ej ∈ ranα, we can choose unique fi and fj in V such
that fiα = eiβ and fjα = ej . Then {fi} ∪ {fj} is a basis for V since α is one-to-one
and {eiβ, ej} is a basis for ranα. Thus, we have

α =
(
fi fj

eiβ ej

)
, β =

(
ei

eiβ

)
.

Define γ ∈ T (V ) by

γ =
(
ei

fi

)
.

Then γ ∈ GS(m,n) and β = γα. Since I is a left ideal, it follows that β ∈ I.
Therefore, LI ⊆ I and so L+

I = I. tu

Remark 4.2. The left ideals of GS(m,n) do not form a chain under ⊆. For,
suppose {ei} is a basis for V , let α ∈ GS(m,n) and write eiα = ai for each i. We
can expand {ai} into a basis {ai} ∪̇ {bj} for V , with |J | = n. Let |K| < n and write
{ei} = {fi} ∪̇ {fk} and {bj} = {ck} ∪̇ {dj}. Define

β =
(
fi fk

ai ck

)
.

Then α /∈ L+
{β} and β /∈ L+

{α}. Thus L+
{α} 6⊆ L+

{β} and L+
{β} 6⊆ L+

{α}.

The next result determines when one left ideal of GS(m,n) is contained in another.

Theorem 4.3. Let A,B be non-empty subsets of GS(m,n). Then L+
A ⊆ L+

B if and
only if A \B ⊆ LB .

Proof. If L+
A ⊆ L+

B , then A ⊆ B ∪ LB and so A \ B ⊆ LB . Suppose now that
the latter happens and let α ∈ L+

A. Then α ∈ A or α ∈ LA. If α ∈ A ∩ B, then
α ∈ B. If α ∈ A \ B, then α ∈ LB . On the other hand, if α ∈ LA, then there exists
β ∈ A such that ranα ⊆ ranβ and dim(ranβ/ ranα) = n. If β ∈ B, then α ∈ LB .
If not, then β ∈ A \ B ⊆ LB and so there exists γ ∈ B such that ranβ ⊆ ran γ
and dim(ran γ/ ranβ) = n. Therefore ranα ⊆ ran γ and n ≥ dim(ran γ/ ranα) ≥
dim(ranβ/ ranα) = n and hence α ∈ LB . Thus we have shown that α ∈ L+

B and the
result follows. tu

Hence A ⊆ B implies L+
A ⊆ L+

B , but not conversely. For, suppose {ei} is a basis for
V and write {ei} = {ai} ∪̇ {bj} and {ai} = {ci} ∪̇ {cj}, with |J | = n. Define

α =
(
ei

ai

)
, β =

(
ei

ci

)
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in T (V ). Since α, β are one-to-one and d(α) = dim〈bj〉 = n = dim〈bj , cj〉 = d(β), α
and β are elements of GS(m,n). If A = {β} and B = {α} then L+

A ⊆ L+
B but A 6⊆ B.

Corollary 4.4. Let A,B be non-empty subsets of GS(m,n). Then L+
A∪L

+
B = L+

A∪B .

Proof. Since A,B ⊆ A ∪ B, we have L+
A ∪ L+

B ⊆ L+
A∪B . Let γ ∈ L+

A∪B . Then
γ ∈ A ∪ B, and so γ ∈ A or γ ∈ B, or γ ∈ LA∪B . If the latter happens, then
there exists α ∈ A ∪ B such that ran γ ⊆ ranα and dim(ranα/ ran γ) = n. Hence
γ ∈ LA ∪ LB . Therefore γ ∈ L+

A ∪ L+
B and the result follows. tu

A similar result does not hold for the intersection of two non-empty subsets of
GS(m,n). That is, there are non-empty subsets A,B of GS(m,n) whose intersection
is also non-empty but L+

A∩B ⊆6 L+
A ∩ L+

B . To see this, suppose {ei} is a basis for
V and write {ei} = {ai} ∪̇ {bj} ∪̇ {cj} ∪̇ {dj}, with |J | = n. Since n ≤ m, we can
also write {ai} ∪̇ {bj} = {xi}, {ai} ∪̇ {bj} ∪̇ {cj} = {yi} and {ai} ∪̇ {dj} = {zi}. Now
define

α =
(
ei

xi

)
, β =

(
ei

yi

)
, γ =

(
ei

zi

)
in T (V ). It is easy to see that α, β, γ ∈ GS(m,n) and ranα ⊆ ranβ, dim(ranβ/ ranα) =
n and ranα 6⊆ ran γ. Let A = {α, γ} and B = {β, γ}. Then A ∩ B = {γ}. Since
α ∈ A and α ∈ LB , it follows that α ∈ L+

A ∩ L+
B . On the other hand, α 6= γ and

α /∈ L{γ}. Hence α /∈ L+
A∩B .

In addition, the correspondence A 7→ L+
A is not one-to-one. For example, if C =

{α, β} and D = {β} where α, β are the linear transformations defined in the last
paragraph, then L+

C = L+
D. To see this, let δ ∈ GS(m,n) be such that ran δ ⊆ ranα

and dim(ranα/ ran δ) = n. Then ran δ ⊆ ranα ⊆ ranβ and

n = dim(ranα/ ran δ) ≤ dim(ranβ/ ran δ) ≤ d(δ) = n.

That is, if δ ∈ L+
C then δ = β or (ran δ ⊆ ranβ and dim(ranβ/ ran δ) = n) (by the

definition of α and β, this covers the possibility that δ = α). Hence δ ∈ L+
D, and

clearly L+
D ⊆ L+

C , so we have equality as stated.

Note that by [1] vol 2, p 85, Exercise 3, if S is a right simple semigroup without
idempotents and if S = Sx ∪ {x} then x belongs to (at least) two distinct principal
left ideals L1 and L2, hence S is contained in both of these and so L1 = L2, a
contradiction. That is, GS(m,n) is not a principal left ideal of itself.

To decide when other left ideals of GS(m,n) are principal, we first observe that the
principal left ideal generated by α ∈ GS(m,n) is L+

{α}. For, clearly GS(m,n)1α ⊆
L+
{α} since α ∈ L+

{α} and L+
{α} is a left ideal of GS(m,n). Conversely, the argument
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in the second paragraph of the proof of Theorem 4.1 shows that if α ∈ A ⊆ GS(m,n)
and β ∈ LA then β = γα for some γ ∈ GS(m,n). In other words, L{α} ⊆ GS(m,n)α
and it follows that L+

{α} = GS(m,n)1α.

Corollary 4.5. Let A be a non-empty subset of GS(m,n) and α ∈ GS(m,n). Then
L+

A = L+
{α} if and only if α ∈ L+

A and A \ {α} ⊆ L{α}.

In effect, the following result determines when left ideals are proper.

Theorem 4.6. Let A be a non-empty subset of GS(m,n). Then L+
A = GS(m,n) if

and only if for each α ∈ GS(m,n) there exists λ ∈ A such that ranα ⊆ ranλ.

Proof. Suppose the latter condition holds for a non-empty A ⊆ GS(m,n). Let {ei}
be a basis for V , suppose β ∈ GS(m,n) and write eiβ = bi for each i. We can
expand {bi} into a basis for V , say {bi} ∪̇ {bj}. Write {bj} = {cj} ∪̇ {dj} and let
{ci} = {bi} ∪̇ {cj}. Define

γ =
(
ei

ci

)
.

Then γ ∈ GS(m,n) and so there exists λ ∈ A such that ran γ ⊆ ranλ. Hence
ranβ ⊆ ran γ ⊆ ranλ and n ≥ dim(ranλ/ ranβ) ≥ dim(ran γ/ ranβ) = n. Therefore
β ∈ LA ⊆ L+

A. Thus GS(m,n) ⊆ L+
A and equality follows. Conversely, if there exists

α ∈ GS(m,n) such that ranα 6⊆ ranλ for all λ ∈ A, then clearly α /∈ L+
A and hence

L+
A is a proper subset of GS(m,n). tu

To see that A may not equal GS(m,n) in the above result, fix α ∈ GS(m,n) = G

say, and write β = γα for some fixed γ ∈ G. Put A = G \ {β} and recall (see before
Lemma 3.6) that α 6= γα in G, so α ∈ A. Clearly G = GA ∪ A. Also, if µ ∈ G then
either µ ∈ A or µ = γ′λ for some λ ∈ A, and in each case ranµ ⊆ ranλ for some
λ ∈ A. Hence, by the Theorem, L+

A = G where A ⊆6 G.

It is easy to see that GS(m,n) has no minimal left ideals. For, by [1] vol 2, p 85,
Exercise 4, if S is any right simple semigroup without idempotents then Sba is a
proper subset of Sa for each a, b ∈ S. But if L is a minimal left ideal of S and
x, y ∈ L then Syx = L = Sx by minimality, hence S cannot contain any minimal left
ideals. However, it is not as easy to see that GS(m,n) has no maximal left ideals.

Theorem 4.7. The semigroup GS(m,n) has no maximal (proper) left ideals.

Proof. From Theorem 4.6, L+
A is a proper left ideal if and only if there exists some α

in GS(m,n) such that ranα 6⊆ ranλ for all λ ∈ A.
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Let L+
Y be a proper left ideal of GS(m,n). Then there exists α ∈ GS(m,n) such that

ranα 6⊆ ranλ for all λ ∈ Y . Let Z = Y ∪ {α}. Then L+
Y ⊆ L+

Z . Obviously α /∈ L+
Y

and so L+
Y ⊆6 L+

Z . We assert that L+
Z ⊆6 GS(m,n).

Write eiα = ai where {ei} is a basis for V , and expand {ai} into a basis for V , say
{ai} ∪̇ {aj}. Write {aj} = {bj} ∪̇ {cj} and let {bi} = {ai} ∪̇ {bj}. Define

β =
(
ei

bi

)
∈ GS(m,n).

Then ranα ⊆ ranβ and so β /∈ Y . Since α 6= β, we have β /∈ Z. Suppose β ∈ LZ .
Then ranβ ⊆ ran γ and dim(ran γ/ ranβ) = n for some γ ∈ Z. If γ = α, then
ranβ ⊆ ranα, a contradiction. Then γ ∈ Y , but ranα ⊆ ranβ ⊆ ran γ, which
contradicts our condition on α and Y . Therefore, β /∈ L+

Z and hence L+
Z ⊆6 GS(m,n).

In other words, given any proper left ideal A, we can find a strictly larger proper left
ideal that contains A. Hence there are no maximal left ideals of GS(m,n). tu

5. Maximal subsemigroups of GS(m,n)

In this section, we show that any subspace U 6= {0} of V with codimension at least
n gives rise to a maximal subsemigroup of GS(m,n): here, our work closely follows
that in [7].

Let U 6= {0} be a subspace of V with codim(U) ≥ n and define

MU = {α ∈ GS(m,n) : U 6⊆ ranα or (Uα ⊆ U or dim(V α/U) < n)} .

Theorem 5.1. For each subspace U 6= {0} of V with codim(U) ≥ n, MU is a
maximal subsemigroup of GS(m,n).

Proof. We first show that MU is a subsemigroup of GS(m,n). Let α, β ∈MU . Since
α, β ∈ GS(m,n), it follows that αβ ∈ GS(m,n). If U 6⊆ ran(αβ) then αβ ∈ MU . If
U ⊆ ran(αβ) then U ⊆ ranβ. Hence Uβ ⊆ U or dim(ranβ/U) < n. If the latter
holds then dim(ran(αβ)/U) ≤ dim(ranβ/U) < n and so αβ ∈ MU . If Uβ ⊆ U

then Uβ ⊆ ran(αβ) and so U ⊆ ranα. Thus, Uα ⊆ U or dim(ranα/U) < n since
α ∈ MU . Suppose Uα ⊆ U . Then Uαβ ⊆ Uβ ⊆ U and therefore αβ ∈ MU .
If dim(ranα/U) < n, write U = 〈ui〉 and so Uβ = 〈uiβ〉. Hence U = 〈uiβ, uj〉
for some linearly independent set {uiβ} ∪̇ {uj}, and likewise ranα = 〈ui, wr〉 and
ran(αβ) = 〈uiβ,wrβ〉. On the other hand, since U = 〈uiβ, uj〉 ⊆ ran(αβ), we have
ran(αβ) = 〈uiβ, uj , ws〉. Hence |R| = |J |+ |S|. Thus,

dim(ran(αβ)/U) = |S| ≤ |R| < n.

Therefore, αβ ∈MU and MU is a subsemigroup of GS(m,n).
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In order to prove the maximality ofMU , we show that a subsemigroupM of GS(m,n)
properly containing MU necessarily is GS(m,n) itself. Let M be a subsemigroup of
GS(m,n) satisfying these conditions. Let γ ∈M \MU and α ∈ GS(m,n)\MU . Since
γ, α 6∈ MU , we know that U ⊆ ran γ, Uγ 6⊆ U , dim (ran γ/U) ≥ n and U ⊆ ranα,
Uα 6⊆ U , dim (ranα/U) ≥ n. If Uα−1 = 〈ai〉 and Uγ−1 = 〈bj〉, then U = 〈aiα〉 =
〈bjγ〉 and {aiα}, {bjγ} are bases for U , since α and γ are one-to-one. Therefore
|I| = |J | and we can write Uγ−1 = 〈bi〉 and U = 〈aiα〉 = 〈biγ〉. Since Uα−1 is a
subspace of V , we can expand {ai} into a basis for V , say {ai}∪ {ek}. Then ranα =
〈aiα, ekα〉 where {aiα, ekα} is linearly independent. Hence codim(Uα−1) = |K| =
dim (ranα/U). Since ranα = 〈aiα, ekα〉 and ranα ⊆ V , we can expand {aiα}∪{ekα}
into a basis for V , say {aiα, ekα, e`} with |L| = n and so codimU = |K|+ n = |K|.

Analogously we can expand {bi} into a basis for V , say {bi, fr}, and ran γ is spanned
by the linearly independent set {biγ, frγ}. Hence

codim(Uγ−1) = |R| = dim (ran γ/U) ≥ n.

We can expand {biγ, frγ} into a basis for V , say {biγ, frγ, fs}. Hence d(γ) = n =
|S| and, since |L| = n, this means we can write {f`} instead of {fs}. Moreover
codimU = |R| = |K|. Therefore, we can also write {fk} and {fkγ} instead of {fr}
and {frγ}, respectively.

Since Uγ 6⊆ U , there exists u ∈ U such that uγ 6∈ U . It follows that {bi, u} and
{biγ, uγ} are linearly independent. We can expand these sets into bases for V and for
ran γ, respectively, say {bi, u, hk} and {biγ, uγ, gk} (note that |K| = codim(Uγ−1) =
dim〈u, hk〉 and |K| = dim(ran γ/U) = dim〈uγ, gk〉). We can also expand {biγ, uγ, gk}
into a basis {biγ, uγ, gk, gt} for V , where |T | = d(γ) = n = |L|. Write {g`} instead
of {gt} and let W = 〈uγ, gk, g`〉. Then W is a complement of U in V . We have
〈u〉 ⊆ U ∩Wγ−1. Also 〈u〉 ⊆ 〈u, hk〉, which is a complement of Uγ−1 in V . Since
|K| = dim(ran γ/U) ≥ n = |L|, we may write {hk} = {ck} ∪̇ {d`}. Define

β =
(
ai ek

bi ck

)
.

Since u ∈ U and u /∈ ranβ, it follows that U 6⊆ ranβ and so β ∈ MU . Write
{u} ∪ {d`} = {c`} and c`γ = z` for each `. Then

γ =
(
bi ck c`
biγ ckγ z`

)
.

Let 〈w`〉 be a complement of ran γ in V . As in the second paragraph above, let {e`}
be a basis for a complement of ranα in V and write {e`} = {x`} ∪̇ {y`}. Now write
{z`} ∪ {w`} = {v`} and define

δ =
(
biγ ckγ v`

aiα ekα x`

)
.
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Since U = 〈aiα〉 ⊆ ran δ and Uδ = 〈biγ〉δ = 〈aiα〉 = U , it follows that δ ∈MU . Since
βγδ = α, we have α ∈ MU .M.MU ⊆ M . Therefore, M = GS(m,n) and hence MU

is maximal. tu
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