Baer-Levi semigroups of linear transformations

Suzana Mendes-Gonçalves*
Centro de Matematica, Universidade do Minho, 4710 Braga, Portugal and
R P Sullivan
School of Mathematics \& Statistics University of Western Australia, Nedlands 6009, Australia

Synopsis

Given an infinite-dimensional vector space V, we consider the semigroup $G S(m, n)$ consisting of all injective linear $\alpha: V \rightarrow V$ for which $\operatorname{codim} \operatorname{ran} \alpha=n$ where $\operatorname{dim} V=m \geq n \geq \aleph_{0}$. This is a linear version of the well-known Baer-Levi semigroup $B L(p, q)$ defined on an infinite set X where $|X|=p \geq q \geq \aleph_{0}$. We show that, although the basic properties of $G S(m, n)$ are the same as those of $B L(p, q)$, the two semigroups are never isomorphic. We also determine all left ideals of $G S(m, n)$ and some of its maximal subsemigroups: in this, we follow previous work on $B L(p, q)$ by Sutov (1966) and Sullivan (1978) as well as Levi and Wood (1984).

AMS Primary Classification: 20M20; Secondary: 15A04.

[^0]
1. Introduction

Throughout this paper, X is an infinite set with cardinal p, and q is a cardinal such that $\aleph_{0} \leq q \leq p$. Let $T(X)$ denote the semigroup under composition of all (total) transformations from X to X. If $\alpha \in T(X)$, we write ran α for the range of α and define the rank of α to be $r(\alpha)=|\operatorname{ran} \alpha|$. We also write

$$
\begin{array}{lr}
D(\alpha)=X \backslash X \alpha, & d(\alpha)=|D(\alpha)|, \\
C(\alpha)=\bigcup\left\{y \alpha^{-1}:\left|y \alpha^{-1}\right| \geq 2\right\}, & c(\alpha)=|C(\alpha)| .
\end{array}
$$

and refer to these cardinal numbers as the defect and the collapse of α, respectively. We now write

$$
B L(p, q)=\{\alpha \in T(X): c(\alpha)=0, d(\alpha)=q\}
$$

and call this the Baer-Levi semigroup on X : as shown in ([1] vol 2, section 8.1), it is a right simple, right cancellative semigroup without idempotents; and any semigroup with these properties can be embedded in some Baer-Levi semigroup. In addition, every automorphism φ of $B L(p, q)$ is "inner": that is, there exists $g \in G(X)$, the symmetric group on X, such that $\alpha \varphi=g \alpha g^{-1}$ for all $\alpha \in B L(p, q)[6]$.

In this paper, we examine a related semigroup defined as follows. Let V be a vector space over a field F and suppose $\operatorname{dim} V=p \geq \aleph_{0}$. To emphasis the analogy between our work and what has been done already for $B L(p, q)$, we let $T(V)$ denote the semigroup under composition of all linear transformations from V to V : in other words, we use the ' V ' in $T(V)$ to denote the fact that we are considering linear transformations. If $\alpha \in T(V)$, we write $\operatorname{ker} \alpha$ and $\operatorname{ran} \alpha$ for the kernel and the range (image) of α, and put

$$
n(\alpha)=\operatorname{dim} \operatorname{ker} \alpha, r(\alpha)=\operatorname{dim} \operatorname{ran} \alpha, d(\alpha)=\operatorname{codim} \operatorname{ran} \alpha
$$

As usual, these are called the nullity, rank and defect of α, respectively. For each cardinal q such that $\aleph_{0} \leq q \leq p$, we write

$$
G S(p, q)=\{\alpha \in T(V): n(\alpha)=0, d(\alpha)=q\}
$$

and call this the linear Baer-Levi semigroup on V. In section 2, we show this is indeed a semigroup with the same properties as $B L(p, q)$: this fact extends work by Lima [8] Proposition 4.1 on $G S(p, p)$. More importantly however, in section 3 we show these two types of Baer-Levi semigroups - one defined on sets, the other on vector spaces - are never isomorphic. In section 4, we transfer results of Sutov [11] and Sullivan [10] on the left ideals of $B L(p, q)$ to the vector space setting. Finally, in section 5 we initiate the study of maximal subsemigroups of $G S(p, q)$ by using ideas taken from [7].

2. Basic properties

In what follows, $Y=A \dot{\cup} B$ means Y is a disjoint union of A and B, and we write id $_{Y}$ for the identity transformation on Y. We adopt the convention introduced in [1] vol 2, p 241: namely, if $\alpha \in T(X)$ then we write

$$
\alpha=\binom{A_{i}}{x_{i}}
$$

and take as understood that the subscript i belongs to some (unmentioned) index set I, that the abbreviation $\left\{x_{i}\right\}$ denotes $\left\{x_{i}: i \in I\right\}$, and that $\operatorname{ran} \alpha=\left\{x_{i}\right\}$ and $x_{i} \alpha^{-1}=A_{i}$.

A similar notation can be used for $\alpha \in T(V)$ (see [9] p 125). That is, often it is necessary to construct some $\alpha \in T(V)$ by first choosing a basis $\left\{e_{i}\right\}$ for V and some $\left\{u_{i}\right\} \subseteq V$, and then letting $e_{i} \alpha=u_{i}$ for each $i \in I$ and extending this action by linearity to the whole of V. To abbreviate this process, we simply say, given $\left\{e_{i}\right\}$ and $\left\{u_{i}\right\}$ within context, that $\alpha \in T(V)$ is defined by letting

$$
\alpha=\binom{e_{i}}{u_{i}} .
$$

As usual, the subspace of V generated by a linearly independent subset $\left\{e_{i}\right\}$ of V is denoted by $\left\langle e_{i}\right\rangle$; and, often when we write $U=\left\langle e_{i}\right\rangle$, we will tacitly assume the set $\left\{e_{i}\right\}$ is a basis for the subspace U. The following result is analogous to [1] vol 2 , Theorem 8.2 (and to [8] Proposition 4.1 for the case $p=q$).

Theorem 2.1. If $\operatorname{dim} V=p \geq q \geq \aleph_{0}$ then $G S(p, q)$ is a right cancellative, right simple semigroup without idempotents.

Proof. Assume $\alpha, \beta \in G S(p, q)=S$ say, and let $\operatorname{ran} \alpha=\left\langle e_{i}\right\rangle$ and $V=\left\langle e_{i}, e_{j}\right\rangle$, so $|J|=q$. Then $\left\{e_{i} \beta\right\} \cup\left\{e_{j} \beta\right\}$ is independent and generates $\operatorname{ran} \beta$, and $\operatorname{ran} \alpha \beta=\left\langle e_{i} \beta\right\rangle$. Hence $d(\alpha \beta)=q+q=q$, and clearly if α, β are injective then $\alpha \beta$ is also, so $\alpha \beta \in S$. Since elements of S are injective, the semigroup is right cancellative; also, if $\varepsilon \in S$ is idempotent then $(u \varepsilon) \varepsilon=(u) \varepsilon$ for all $u \in V$ implies $\varepsilon=\mathrm{id}_{V}$, a contradiction. Suppose $\alpha, \beta \in S$ and write $V=\left\langle e_{k}\right\rangle$ and

$$
\alpha=\binom{e_{k}}{x_{k}}, \quad \beta=\binom{e_{k}}{y_{k}} .
$$

Now if $V=\left\langle x_{k}, x_{\ell}\right\rangle=\left\langle y_{k}, y_{\ell}, y_{m}\right\rangle$ where $|L|=|M|=q$ and we define

$$
\mu=\left(\begin{array}{ll}
x_{k} & x_{\ell} \\
y_{k} & y_{\ell}
\end{array}\right)
$$

then $\mu \in S$ and $\beta=\alpha \mu$, and we have shown $G S(p, q)$ is right simple.

Clearly, before proceeding any further, it is important to decide whether any of the semigroups $G S(m, n)$ are isomorphic to any of the $B L(p, q)$ for appropriate cardinals m, n and p, q (this was not considered in [8]). This question can be answered in one of two ways: by showing the cardinals of $B L(p, q)$ and $G S(m, n)$ are different; or by finding some algebraic property of $B L(p, q)$ that is not preserved under an isomorphism between it and $G S(m, n)$. For their intrinsic interest, we now establish some results pertinent to the first approach. Something like the following appears in [3] Corollary 1.5.13 and Exercise 1.5.36, but for completeness we include a proof.

Lemma 2.2. If $|X|=p \geq q$ and $p \geq \aleph_{0}$ then the number of subsets of X with cardinal q equals p^{q}. In fact, this is also the number of injective mappings from a set of cardinal q into a set of cardinal p.

Proof. Let $|A|=q,|B|=p$ and note that for each $Y \subseteq B$ with cardinal q, there is an injective map $A \rightarrow B$ with range Y. Hence the number k of $Y \subseteq B$ with cardinal q is at most the number ℓ of injective maps $A \rightarrow B$, and clearly $\ell \leq\left|B^{A}\right|=p^{q}$. Now each $\alpha: A \rightarrow B$ is a subset of $A \times B$ and $|\alpha|=q$. Hence $\left|B^{A}\right|$ is at most the number m of subsets of $A \times B$ with cardinal q. But $q \times p=p$, so $m=k$. Hence $k=p^{q}$. Thus we have $p^{q}=k \leq \ell \leq p^{q}$, and the result follows.

We can now determine the cardinal of $B L(p, q)$. But first we need the order of $G(X)$ where $|X|=p \geq \aleph_{0}$. To find this, write $X=A \cup B$ where $|A|=|B|=p$ and note that for each $Y \subseteq A$, there exists $\pi \in G(X)$ which fixes Y pointwise and shifts all elements of $(A \backslash Y) \cup B$. Hence $|G(X)| \geq 2^{|A|}=2^{p}$ and of course $|G(X)| \leq|T(X)|=2^{p}$.

For clarity in what follows, we sometimes write $B L(X, p, q)$ in place of $B L(p, q)$, and similarly $G S(V, m, n)$ instead of $G S(m, n)$ (see Theorem 3.5 below).

Theorem 2.3. If $|X|=p \geq q \geq \aleph_{0}$ then $|B L(p, q)|=2^{p}$.
Proof. Suppose $q<p$. For each $Y \subseteq X$ with cardinal q, we know $|X \backslash Y|=p$ and there exists a bijection $\alpha: X \rightarrow X \backslash Y$, hence $\alpha \in B L(p, q)$. In fact, the set of all such α is in one-to-one correspondence with $G(X \backslash Y)$. Therefore, since in this case $p+q=p$, we have:

$$
|B L(p, q)|=\sum\{|G(X \backslash Y)|: Y \subseteq X,|Y|=q\}=2^{p} . p^{q}=p^{p} . p^{q}=p^{p}=2^{p}
$$

To find the cardinal k of $B L(p, p)$ when $p>\aleph_{0}$, write $X=Y \dot{\cup} Z$ where $|Y|=|Z|=p$ and fix $\beta \in B L(Z, p, p)$. Then for $\aleph_{0} \leq q<p$ and each $\alpha \in B L(Y, p, q)$, we have $\alpha \cup \beta \in B L(X, p, p)$, so $k \geq|B L(Y, p, q)|=2^{p}$ and it follows that $k=2^{p}$.

Finally for $p=\aleph_{0}$ we note that for each $Y \subseteq X$ such that $|Y|=|X \backslash Y|=\aleph_{0}$, there exists $\alpha \in B L(p, p)$ such that $\operatorname{ran} \alpha=Y$, hence in this case $|B L(p, p)|$ is at least the
number k of such subsets Y of X. To calculate k, note that $\left\{Y \subseteq X:|Y|=\aleph_{0}\right\}$ equals

$$
\begin{aligned}
& \bigcup_{n}\left\{Y \subseteq X:|Y|=\aleph_{0},|X \backslash Y|=n<\aleph_{0}\right\} \cup\left\{Y \subseteq X:|Y|=|X \backslash Y|=\aleph_{0}\right\} \\
&=\bigcup_{n}\left\{X \backslash A:|A|=n<\aleph_{0}\right\} \cup\left\{Y \subseteq X:|Y|=|X \backslash Y|=\aleph_{0}\right\}
\end{aligned}
$$

and, taking cardinals, we find by Lemma 2.2 that

$$
2^{\aleph_{0}}=\aleph_{0}^{\aleph_{0}}=\sum_{n<\aleph_{0}} \aleph_{0}^{n}+k=\aleph_{0}+k
$$

Hence k must equal $2^{\aleph_{0}}$.
To obtain analogous results for $G S(p, q)$, we first recall [5] vol II, p 245: if V is a vector space over a field F and $\operatorname{dim} V=p \geq \aleph_{0}$ then $|V|=p \times|F|$. Now let A be a basis for V. Since each $\alpha \in T(V)$ determines a unique map from A into V, and conversely any map from A into V can be extended by linearity to a unique $\alpha \in T(V)$, we have $|T(V)|=|V|^{p}$. In fact, since $p^{p}=2^{p}$, we can deduce that

$$
|T(V)|= \begin{cases}2^{p} & \text { if }|F| \leq p \\ |F|^{p} & \text { if }|F|>p\end{cases}
$$

Lemma 2.4. If V is a vector space with $\operatorname{dim} V=p \geq q$ and $p \geq \aleph_{0}$, then the number of subspaces of V with dimension q equals $|V|^{q}$. In fact, this is also the number of injective linear mappings from a vector space of dimension q into another with dimension p over the same field.

Proof. Let k be the number of subspaces of V with dimension q. Now, if a subspace U has dimension q then there is a basis $A \subseteq U$ with $|A|=q$, so k is at most the number $|V|^{q}$ of subsets of V with cardinal q. Now let U be any vector space with dimension q. Note that each linear $\alpha: U \rightarrow V$ can be regarded as a subspace of the vector space $U \times V$. In fact, if $A=\left\{a_{i}\right\}$ is a basis for U then $\left\{\left(a_{i}, a_{i} \alpha\right)\right\}$ is a basis for $\alpha \subseteq U \times V$, hence $\operatorname{dim} \alpha=q$. Therefore the number of linear $U \rightarrow V$ is at most the number ℓ of subspaces of $U \times V$ with dimension q. But $\operatorname{dim}(U \times V)=q+p=p$ (since if $\left\{u_{i}\right\}$ is a basis for U and $\left\{v_{j}\right\}$ a basis for V then $\left\{\left(u_{i}, 0\right)\right\} \cup\left\{\left(0, v_{j}\right)\right\}$ is a basis for $U \times V)$. Thus, $U \times V$ and V have the same dimension, hence they are isomorphic, so $\ell=k$. Also, if A is a basis for U then any map $A \rightarrow V$ can be uniquely extended to a linear $U \rightarrow V$; and any linear $U \rightarrow V$ induces a unique map $A \rightarrow V$. That is, the number of linear $U \rightarrow V$ equals $\left|V^{A}\right|=|V|^{q}$ and it follows that $k=|V|^{q}$.

Finally, let U be a vector space with dimension q and V a vector space with dimension p over the same field. To find m, the number of injective linear $U \rightarrow V$, we follow
the corresponding argument in the proof of Lemma 2.2. That is, for each injective linear $U \rightarrow V$, there is an injective linear $U \rightarrow U \times V$ (for example, $U \rightarrow\{0\} \times V$); and conversely, since $q \times p=p$ and thus $U \times V$ is isomorphic to V, for each injective linear $U \rightarrow U \times V$, there is an injective linear $U \rightarrow V$. Now if $\alpha: U \rightarrow V$ is any linear map, let $\alpha^{\prime}: U \rightarrow U \times V, u \rightarrow(u, u \alpha)$, and note that α^{\prime} is linear and injective. Hence the number $|V|^{q}$ of linear $U \rightarrow V$ is at most the number of injective linear $U \rightarrow U \times V$, and we have seen this equals m. It follows that $m=|V|^{q}$ as required.

Theorem 2.5. If $\operatorname{dim} V=p \geq q \geq \aleph_{0}$, then $|G S(p, q)|=|V|^{p}$.
Proof. Suppose $V=\left\langle v_{i}, v_{j}\right\rangle$ is a vector space over a field F where $|I|=p$ and $|J|=q$, and let $W=\left\langle v_{i}\right\rangle$. Now, for each basis $A=\left\{a_{i}\right\}$ for V and each $\alpha \in G(A)$, there exists an invertible linear $\alpha^{\prime}: V \rightarrow V$ and an injective linear $\beta: V \rightarrow V, a_{i} \rightarrow v_{i}$, and then $\alpha^{\prime} \beta \in G S(p, q)$. In other words,

$$
|G S(p, q)| \geq \sum\{|G(A)|: A \text { is a basis for } V\}
$$

But if $|F| \geq 3$ then, for all $k_{i} \in F^{*}=F \backslash\{0\},\left\{k_{i} a_{i}\right\}$ is a basis for V, hence in this case the number of bases for V is at least $\left|F^{*}\right|^{p}=|F|^{p}$. Thus

$$
|G S(p, q)| \geq 2^{p} .|F|^{p}=(p .|F|)^{p}=|V|^{p},
$$

and equality follows.
Suppose now that $|F|=2$. Let $\left\{e_{i}\right\}$ be a basis for V, so $|I|=p$. For each fixed $j \in I$, $\left\{e_{j}+e_{i}\right\}$ is a basis for V and so the number of bases for V is at least p. Hence

$$
|G S(p, q)| \geq \sum\{|G(A)|: A \text { is a basis for } V\} \geq p .2^{p}=(p .2)^{p}=|V|^{p},
$$

and then we also have equality in case $|F|=2$.
From Theorems 2.3 and 2.5 we deduce that $B L(p, q)$ is not isomorphic to $G S(m, n)$ when $|F|>2^{p}$ and $m \geq p$. For, König's Theorem states that if $\left\{r_{i}: i \in I\right\}$ and $\left\{s_{i}: i \in I\right\}$ are any sets of cardinals such that $r_{i}<s_{i}$ for each i then $\sum_{i} r_{i}<\prod_{i} s_{i}$ ([3] Theorem 1.6.7). In particular, if $r_{i}=2^{p}$ for each $i \in I$ and $|I|=p$ then $\sum_{i} r_{i}=p \times 2^{p}=2^{p}$; and if $s_{i}=|F|$ for each i, then $\prod_{i} s_{i}=|F|^{p}$. So in this case

$$
|G S(m, n)|=|V|^{m} \geq|V|^{p}=|F|^{p}>2^{p}=|B L(p, q)| .
$$

To see that there are fields of any infinite order, we prove the following result for which we are unable to find a detailed reference.

Lemma 2.6. For each $k \geq \aleph_{0}$, there is a field F such that $|F|=k$.

Proof. We begin by closely following [4] Exercise III.5.4. Namely, let X be a nonempty set with cardinal $k \geq \aleph_{0}$, let \mathbb{N} denote the set of non-negative integers, and suppose Φ is the set of all maps $\varphi: X \rightarrow \mathbb{N}$ such that $\varphi(x) \neq 0$ for at most a finite number of $x \in X$. Then Φ is an abelian monoid under the operation ' \cdot ' defined by

$$
(\varphi \cdot \psi)(x)=\varphi(x)+\psi(x) .
$$

We write $\varphi \cdot \psi=\varphi \psi$ when it is convenient to do so. For each $x \in X$ and $i \in \mathbb{N}$, we define $x^{i} \in \Phi$ by

$$
x^{i}(y)= \begin{cases}i & \text { if } y=x \\ 0 & \text { if } y \neq x\end{cases}
$$

If $\varphi \in \Phi$ and x_{1}, \ldots, x_{n} are the only $y \in X$ such that $\varphi(y) \neq 0$, it can be shown that

$$
\varphi=x_{1}^{i_{1}} \cdot x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}
$$

where $i_{j}=\varphi\left(x_{j}\right)$ for $j=1, \ldots, n$. If \mathbb{Q} is the field of rational numbers, we let $\mathbb{Q}[X]$ denote the set of all functions $f: \Phi \rightarrow \mathbb{Q}$ such that $f(\varphi) \neq 0$ for at most a finite number of $\varphi \in \Phi$. Then $\mathbb{Q}[X]$ is a commutative ring with identity under the operations:

$$
\begin{aligned}
(f+g)(\varphi) & =f(\varphi)+g(\varphi) \\
(f g)(\varphi) & =\sum f(\alpha) g(\beta),
\end{aligned}
$$

where the summation is over all pairs (α, β) such that $\alpha \beta=\varphi$. If $\varphi=x_{1}^{i_{1}} \cdot x_{2}^{i_{2}} \cdots x_{n}^{i_{n}} \in$ Φ and $r \in \mathbb{Q}$, we let $r \varphi$ denote the function $f: \Phi \rightarrow \mathbb{Q}$ defined by

$$
f(\psi)= \begin{cases}r & \text { if } \psi=\varphi \\ 0 & \text { if } \psi \neq \varphi\end{cases}
$$

Then every non-zero $f \in \mathbb{Q}[X]$ can be written as

$$
\begin{equation*}
f=\sum_{i=0}^{m} r_{i} x_{1}^{s_{i 1}} x_{2}^{s_{i}} \cdots x_{n}^{s_{i n}} \tag{2.1}
\end{equation*}
$$

where $r_{i} \in \mathbb{Q}, x_{j} \in X$ and $m, s_{i j} \in \mathbb{N}$ are all uniquely determined by f.
Now, as in [4] Theorem III.5.3, $\mathbb{Q}[X]$ is an integral domain, so we can form a field of 'rational functions' (compare [4] p 233, Example) thus:

$$
\mathbb{Q}(X)=\{f / g: f, g \in \mathbb{Q}[X], g \neq 0\} .
$$

We assert that $|\mathbb{Q}(X)|=k$. To see this, first note that each polynomial $x 1 \in \Phi \subseteq$ $\mathbb{Q}[X]$ equals $x 1 / 1 \in \mathbb{Q}(X)$, hence $|\mathbb{Q}(X)| \geq k$. On the other hand, using the map $f / g \mapsto(f, g)$, we have:

$$
|\mathbb{Q}(X)| \leq|\mathbb{Q}[X] \times \mathbb{Q}[X]|=|\mathbb{Q}[X]| .
$$

Now, by uniqueness, the number of polynomials in $\mathbb{Q}[X]$ with the form $r x_{1}^{s_{1}} x_{2}^{s_{2}} \cdots x_{n}^{s_{n}}$ is exactly

$$
|\mathbb{Q}| \times k^{s_{1}} \times \cdots \times k^{s_{n}}=k .
$$

Thus, to count all $f \in \mathbb{Q}[X]$ expressed as in (2.1) is equivalent to counting the number of subsets with cardinal $m<\aleph_{0}$ in a set with cardinal k, and by Lemma 2.2 this number equals $k^{m}=k$. It then follows that $|\mathbb{Q}(X)|=k$ as asserted.

Of course, this discussion leaves open the question of whether $B L(p, q)$ and $G S(m, n)$ are isomorphic when the condition " $|F|>2^{p}$ and $m \geq p$ " does not hold. We consider this possibility in the next section.

3. Isomorphisms between Baer-Levi semigroups

In this section we aim to use algebraic conditions on $B L(p, q)$ to decide whether it is ever isomorphic to $G S(m, n)$. To do this, we first recall that Green's \mathcal{L} relation on $B L(p, q)$ equals the identity relation on $B L(p, q)$ and the \mathcal{R} relation equals the universal relation on $B L(p, q)$. In addition, $B L(p, q)$ is not regular (since it contains no idempotents). In this situation, it can be useful to study Green's *-relations instead. That is, following [2], if S is any semigroup and $a, b \in S$, we say a $\mathcal{L}^{*} b$ if and only if

$$
\text { for all } x, y \in S^{1}, a x=a y \quad \text { if and only if } \quad b x=b y,
$$

and we define \mathcal{R}^{*} on S dually. Clearly these relations are equivalences on S. In fact, $\mathcal{L} \subseteq \mathcal{L}^{*}$ and $\mathcal{R} \subseteq \mathcal{R}^{*}$ always, so \mathcal{R}^{*} is universal on $B L(p, q)$. However the characterisation of \mathcal{L}^{*} on $B L(p, q)$ is comparable with that of \mathcal{L} on $T(X)$ [1] vol 1, Lemma 2.5: namely, from the next result, we deduce that $\alpha \mathcal{L}^{*} \beta$ on $B L(p, q)$ if and only if $\operatorname{ran} \alpha=\operatorname{ran} \beta$.

Lemma 3.1. If $\alpha, \beta \in B L(p, q)$ then the following are equivalent.
(a) $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$,
(b) for each $\lambda, \mu \in B L(p, q)^{1}, \alpha \lambda=\alpha \mu$ implies $\beta \lambda=\beta \mu$,
(c) for each $\lambda \in B L(p, q), \alpha \lambda=\alpha$ implies $\beta \lambda=\beta$.

Proof. Assume $\alpha, \beta \in B L(p, q)$ are such that $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$. Then $\beta=\beta_{1} \alpha$ for some $\beta_{1} \in T(X)$. Let $\lambda, \mu \in B L(p, q)^{1}$. Then, $\alpha \lambda=\alpha \mu$ implies $\beta \lambda=\left(\beta_{1} \alpha\right) \lambda=\beta_{1}(\alpha \lambda)=$ $\beta_{1}(\alpha \mu)=\left(\beta_{1} \alpha\right) \mu=\beta \mu$. Hence (a) implies (b). It is obvious that (b) implies (c). To prove (c) implies (a), assume that, for each $\lambda \in B L(p, q), \alpha \lambda=\alpha$ implies $\beta \lambda=\beta$. Write $X=\left\{x_{i}\right\}$ and

$$
\alpha=\binom{x_{i}}{a_{i}}, \quad \beta=\binom{x_{i}}{b_{i}} .
$$

If $X=\left\{a_{i}\right\} \dot{\cup}\left\{a_{j}\right\}=\left\{b_{i}\right\} \dot{\cup}\left\{b_{j}\right\}$ where $|J|=q$, write $\left\{a_{j}\right\}=\left\{c_{j}\right\} \dot{\cup}\left\{d_{j}\right\}$ and define

$$
\lambda=\left(\begin{array}{cc}
a_{i} & a_{j} \\
a_{i} & c_{j}
\end{array}\right), \quad \mu=\left(\begin{array}{rr}
a_{i} & a_{j} \\
a_{i} & d_{j}
\end{array}\right) .
$$

Then $\lambda, \mu \in B L(p, q)$ and $\alpha \lambda=\alpha=\alpha \mu$. Consequently $\beta \lambda=\beta=\beta \mu$, and this implies $\operatorname{ran} \beta \subseteq \operatorname{ran} \lambda=\left\{a_{i}\right\} \dot{\cup}\left\{c_{j}\right\}$ and $\operatorname{ran} \beta \subseteq \operatorname{ran} \mu=\left\{a_{i}\right\} \dot{\cup}\left\{d_{j}\right\}$. Hence $\operatorname{ran} \beta \subseteq\left\{a_{i}\right\}=$ $\operatorname{ran} \alpha$, as required.

We now decide when $B L(X, p, q)$ and $B L(Y, m, n)$ are isomorphic: although the proof of the next result closely follows the arguments in [6], we provide all the details since similar ideas will be used later. However, first note that if $\psi: \mathcal{A} \rightarrow \mathcal{B}$ is an orderisomorphism between two families of sets then $\left(A_{1} \cap A_{2}\right) \psi=A_{1} \psi \cap A_{2} \psi$ whenever $A_{1}, A_{2} \in \mathcal{A}$ and $A_{1} \cap A_{2} \in \mathcal{A}$. This is because order-isomorphisms preserve infima.

Theorem 3.2. The semigroups $B L(X, p, q)$ and $B L(Y, m, n)$ are isomorphic if and only if $p=m$ and $q=n$. Moreover, for each isomorphism θ, there is a bijection $h: X \rightarrow Y$ such that $\alpha \theta=h^{-1} \alpha h$ for each $\alpha \in B L(X, p, q)$.

Proof. Clearly, if the cardinals are equal as stated, then any bijection from X onto Y will induce an isomorphism between the semigroups. So we assume there is an isomorphism $\theta: B L(X, p, q) \rightarrow B L(Y, m, n)$ and aim to find a bijection $h: X \rightarrow Y$. We begin by noting that Lemma 3.1 says: for $\alpha_{1}, \alpha_{2} \in B L(p, q), \operatorname{ran} \alpha_{1} \subseteq \operatorname{ran} \alpha_{2}$ if and only if for each β such that $\alpha_{2} \beta=\alpha_{2}$, we have $\alpha_{1} \beta=\alpha_{1}$. Since θ is an isomorphism, it follows that $\operatorname{ran} \alpha_{1}=\operatorname{ran} \alpha_{2}$ if and only if $\operatorname{ran}\left(\alpha_{1} \theta\right)=\operatorname{ran}\left(\alpha_{2} \theta\right)$. Hence, if $\mathcal{B}(X, q)$ is the family of all subsets A of X such that $|A|=p$ and $|X \backslash A|=q$, and $\mathcal{B}(Y, n)$ the family of all subsets B of Y such that $|B|=m$ and $|Y \backslash B|=n$, then $\psi_{\theta}: \mathcal{B}(X, q) \rightarrow \mathcal{B}(Y, n)$, defined by letting $A \psi_{\theta}=\operatorname{ran}(\alpha \theta)$ where $\alpha \in B L(p, q)$ is such that $\operatorname{ran} \alpha=A$, is a well-defined order-isomorphism of $\mathcal{B}(X, q)$ onto $\mathcal{B}(Y, n)$.
Next we show that every order-isomorphism ψ of $\mathcal{B}(X, q)$ onto $\mathcal{B}(Y, n)$ is induced by a bijection of X onto Y. Let $A \in \mathcal{B}(X, q)$ and $x \in X \backslash A$. We write $A \cup\{x\}$ as $A \cup x$. Clearly, $A \cup x \in \mathcal{B}(X, q)$ and $A \cup x$ covers A. Hence $(A \cup x) \psi$ covers $A \psi$, that is, $(A \cup x) \psi=A \psi \cup y$ for some $y \in Y \backslash A \psi$. Write $y=x h_{A}$. We proceed to show that $x h_{A_{1}}=x h_{A_{2}}$ for all $A_{1}, A_{2} \in \mathcal{B}(X, q)$ not containing x. Let $A_{1}, A_{2} \in \mathcal{B}(X, q)$ with $x \notin A_{1} \cup A_{2}$. If $A_{1} \cap A_{2} \in \mathcal{B}(X, q)$, then

$$
\begin{align*}
\left(A_{1} \psi \cap A_{2} \psi\right) \cup x h_{A_{1} \cap A_{2}} & =\left(A_{1} \cap A_{2}\right) \psi \cup x h_{A_{1} \cap A_{2}} \\
& =\left(\left(A_{1} \cap A_{2}\right) \cup x\right) \psi \\
& =\left(\left(A_{1} \cup x\right) \cap\left(A_{2} \cup x\right)\right) \psi \tag{3.1}\\
& =\left(A_{1} \cup x\right) \psi \cap\left(A_{2} \cup x\right) \psi \\
& =\left(A_{1} \psi \cup x h_{A_{1}}\right) \cap\left(A_{2} \psi \cup x h_{A_{2}}\right) .
\end{align*}
$$

Thus,

$$
\left\{x h_{A_{1} \cap A_{2}}\right\}=\left(A_{1} \psi \cap\left\{x h_{A_{2}}\right\}\right) \cup\left(\left\{x h_{A_{1}}\right\} \cap A_{2} \psi\right) \cup\left(\left\{x h_{A_{1}}\right\} \cap\left\{x h_{A_{2}}\right\}\right) .
$$

Suppose $x h_{A_{2}} \in A_{1} \psi$. Then, $x h_{A_{2}}=x h_{A_{1} \cap A_{2}}$ and so $\left(\left(A_{1} \cap A_{2}\right) \cup x\right) \psi \subseteq A_{1} \psi$ by (3.1). Since ψ preserves order, $\left(A_{1} \cap A_{2}\right) \cup x \subseteq A_{1}$ and this implies $x \in A_{1}$, a contradiction. Therefore, $x h_{A_{2}} \notin A_{1} \psi$. Similarly, we conclude that $x h_{A_{1}} \notin A_{2} \psi$ and hence $\left\{x h_{A_{1} \cap A_{2}}\right\}=\left\{x h_{A_{1}}\right\} \cap\left\{x h_{A_{2}}\right\}$. Thus $x h_{A_{1}}=x h_{A_{2}}=x h_{A_{1} \cap A_{2}}$. On the other hand, if $A_{1} \cap A_{2} \notin \mathcal{B}(X, q)$ then, since $\left|X \backslash\left(A_{1} \cap A_{2}\right)\right|=q$, we have $\left|A_{1} \cap A_{2}\right| \neq p$ and thus p must equal q. In addition, $\left|A_{1}\right|=\left|A_{1} \backslash A_{2}\right|=p=\left|A_{2} \backslash A_{1}\right|=\left|A_{2}\right|$. We write $A_{2} \backslash A_{1}$ as the disjoint union of two sets M and N, with $|M|=|N|=p$ and let $A_{3}=\left(A_{1} \backslash A_{2}\right) \cup M$. By construction, both M and A_{3} belong to $\mathcal{B}(X, q)$. Moreover, $x \notin A_{1} \cup A_{3}, A_{1} \cap A_{3} \in \mathcal{B}(X, q)$ and $x \notin A_{2} \cup A_{3}, A_{2} \cap A_{3} \in \mathcal{B}(X, q)$. From the first case, we may conclude that $x h_{A_{1}}=x h_{A_{3}}=x h_{A_{2}}$.

We now define $h: X \rightarrow Y$ as follows: $x h=x h_{A}$, where $A \in \mathcal{B}(X, q)$ satisfies $x \notin A$. The foregoing argument shows h is well-defined. Suppose $x_{1} h=x_{2} h$ for $x_{1}, x_{2} \in X$ and take $A \in \mathcal{B}(X, q)$ with $x_{1}, x_{2} \in X \backslash A$. Then $\left(A \cup x_{1}\right) \psi=A \psi \cup x_{1} h_{A}=$ $A \psi \cup x_{2} h_{A}=\left(A \cup x_{2}\right) \psi$ and hence $A \cup x_{1}=A \cup x_{2}$ since ψ is one-to-one. Therefore $x_{1}=x_{2}$ and thus h is one-to-one. In order to show that h is onto, let $y \in Y$ and $B \in \mathcal{B}(Y, n)$, with $y \in B$. Let $A_{1}, A_{2} \in \mathcal{B}(X, q)$ be such that $A_{1} \psi=B \backslash y$ and $A_{2} \psi=B$. Then A_{2} covers A_{1} and so there exists $x \in X \backslash A_{1}$ such that $A_{2}=A_{1} \cup x$. Thus $B=(B \backslash y) \cup x h_{A_{1}}$ and $y=x h_{A_{1}}$. Hence h is a bijection and $|X|=|Y|$.

Next we show that ψ is induced by h, that is, $A \psi=A h$ for each $A \in \mathcal{B}(X, q)$. Let $y \in A h$. Then there exists $x \in A$ with $y=x h$. Since $A \backslash x \in \mathcal{B}(X, q)$ and A covers $A \backslash x$, we have $A \psi=(A \backslash x) \psi \cup x h_{A \backslash x}$ which equals $(A \backslash x) \psi \cup y$ by the definition of h. Hence $y \in A \psi$. Conversely, if $y \in A \psi$ then $A \psi$ covers $A \psi \backslash y$. Let $A_{1} \in \mathcal{B}(X, q)$ be such that $A \psi \backslash y=A_{1} \psi$. Then, A covers A_{1} since ψ preserves order, and so there exists $x \in X \backslash A_{1}$ with $A=A_{1} \cup x$. Thus $A \psi=(A \psi \backslash y) \cup x h$ (again by definition of $h)$ and hence $y=x h \in A h$. Therefore $A \psi=A h$.

Finally, we prove that, for each $\alpha \in B L(p, q), \alpha \theta=h_{\theta}^{-1} \alpha h_{\theta}$ where h_{θ} is the bijection corresponding to the order-isomorphism ψ_{θ}. Let $\alpha \in B L(p, q), x_{1} \in X$ and $x_{2}=x_{1} \alpha$. We may choose A_{1}, A_{2} in $\mathcal{B}(X, q)$ such that $A_{1} \subseteq A_{2}$ and $A_{2} \backslash A_{1}=\left\{x_{1}\right\}$, together with $\beta, \gamma \in B L(X, q)$ such that $\operatorname{ran} \beta=A_{1}$ and $\operatorname{ran} \gamma=A_{2}$. Now ran $\gamma \backslash \operatorname{ran} \beta=\left\{x_{1}\right\}$ and so

$$
\begin{aligned}
\operatorname{ran}((\gamma \alpha) \theta) \backslash \operatorname{ran}((\beta \alpha) \theta) & =\operatorname{ran}((\gamma \theta)(\alpha \theta)) \backslash \operatorname{ran}((\beta \theta)(\alpha \theta)) \\
& =(\operatorname{ran}(\gamma \theta) \backslash \operatorname{ran}(\beta \theta))(\alpha \theta) \\
& =\left(A_{2} \psi_{\theta} \backslash A_{1} \psi_{\theta}\right)(\alpha \theta) \\
& =\left\{x_{1} h_{\theta}\right\} \alpha \theta .
\end{aligned}
$$

On the other hand, $\operatorname{ran}(\gamma \alpha) \backslash \operatorname{ran}(\beta \alpha)=\left(A_{2} \backslash A_{1}\right) \alpha=\left\{x_{2}\right\}$ and so

$$
\begin{aligned}
\operatorname{ran}((\gamma \alpha) \theta) \backslash \operatorname{ran}((\beta \alpha) \theta) & =(\operatorname{ran}(\gamma \alpha)) \psi_{\theta} \backslash(\operatorname{ran}(\beta \alpha)) \psi_{\theta} \\
& =\operatorname{ran}(\gamma \alpha) h \backslash \operatorname{ran}(\beta \alpha) h \\
& =\left\{x_{2} h_{\theta}\right\} .
\end{aligned}
$$

Thus $x_{1} h_{\theta} \alpha \theta=x_{2} h_{\theta}=x_{1} \alpha h_{\theta}$ for all $x_{1} \in X$ and so $\alpha \theta=h_{\theta}^{-1} \alpha h_{\theta}$. Finally, since $\alpha \theta \in B L(Y, n)$ implies that $|Y \backslash Y \alpha \theta|=n$ and, on the other hand, $\left|Y \backslash Y h^{-1} \alpha h\right|=$ $|(X \backslash X \alpha) h|=q$ for any bijection $h: X \rightarrow Y$, we also have $q=n$.

We now use a similar argument to show that $B L(X, p, q)$ is never isomorphic to $G S(V, m, m)$. For this, we need a result for $G S(m, n)$ which is analogous to Lemma 3.1 (its proof uses the well-known characterisation of Green's \mathcal{L}-relation on $T(V)$: see [1] vol 1, p 57, Exercise 6).

Lemma 3.3. If $\alpha, \beta \in G S(m, n)$ then the following are equivalent.
(a) $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$,
(b) for each $\lambda, \mu \in G S(m, n)^{1}, \alpha \lambda=\alpha \mu$ implies $\beta \lambda=\beta \mu$,
(c) for each $\lambda \in G S(m, n), \alpha \lambda=\alpha$ implies $\beta \lambda=\beta$.

Proof. Let $\alpha, \beta \in G S(m, n)$ be such that $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$. Since $\alpha, \beta \in T(V)$, there is some $\beta_{1} \in T(V)$ such that $\beta=\beta_{1} \alpha$. Let $\lambda, \mu \in G S(m, n)^{1}$. Then, $\alpha \lambda=\alpha \mu$ implies $\beta \lambda=\left(\beta_{1} \alpha\right) \lambda=\beta_{1}(\alpha \lambda)=\beta_{1}(\alpha \mu)=\left(\beta_{1} \alpha\right) \mu=\beta \mu$. Therefore (a) implies (b). Clearly (b) implies (c). Now assume (c) holds and write $V=\left\langle e_{i}\right\rangle$. It follows that $\operatorname{ran} \alpha=\left\langle e_{i} \alpha\right\rangle$ where $\left\{e_{i} \alpha\right\}$ is linearly independent since α is one-to-one, and $V=\left\langle e_{i} \alpha, e_{j}\right\rangle$ with $|J|=n$ since $d(\alpha)=n$. Write $\left\{e_{j}\right\}=\left\{u_{j}\right\} \dot{\cup}\left\{v_{j}\right\}$ and define $\lambda, \mu \in T(V)$ as follows:

$$
\lambda=\left(\begin{array}{cc}
e_{i} \alpha & e_{j} \\
e_{i} \alpha & u_{j}
\end{array}\right), \quad \mu=\left(\begin{array}{cc}
e_{i} \alpha & e_{j} \\
e_{i} \alpha & v_{j}
\end{array}\right) .
$$

Then $\lambda, \mu \in G S(m, n)$ and $\alpha \lambda=\alpha=\alpha \mu$. Hence $\beta \lambda=\beta=\beta \mu$, so $\operatorname{ran} \beta \subseteq$ $\operatorname{ran} \lambda=\left\langle e_{i} \alpha, u_{j}\right\rangle$ and $\operatorname{ran} \beta \subseteq \operatorname{ran} \mu=\left\langle e_{i} \alpha, v_{j}\right\rangle$. Now, if $w \in \operatorname{ran} \beta$ then $w=$ $\sum x_{i}\left(e_{i} \alpha\right)+\sum y_{j} u_{j}$ and $w=\sum a_{i}\left(e_{i} \alpha\right)+\sum b_{j} v_{j}$ for some scalars x_{i}, y_{j} and a_{i}, b_{j}; hence, by linear independence, $y_{j}=b_{j}=0$ for each j. Thus, $\operatorname{ran} \beta \subseteq\left\langle e_{i} \alpha\right\rangle=\operatorname{ran} \alpha$, as required for (a).

Next we need [9] Lemma 6 which we quote below for convenience: as observed by Lima [8] p 433, this result highlights an essential difference between sets and vector spaces. For, if $X=A \dot{\cup} B$ where $|A|=|B|=p$ and $A \cap B=\emptyset$, then there is no $C \subseteq X$ such that $|C|=p$ and $C \cap A=\emptyset=C \cap B$.

Lemma 3.4. If $\operatorname{dim} V=p \geq \aleph_{0}$ and U_{1}, U_{2} are subspaces of V with codimension p in V then there is a subspace W of V such that $\operatorname{dim} W=p$ and $W \cap U_{1}=\{0\}=W \cap U_{2}$.

Theorem 3.5. The semigroups $B L(X, p, q)$ and $G S(V, m, m)$ are not isomorphic for any (infinite) cardinals p, q and m, with $q \leq p$.

Proof. Suppose ϕ is an isomorphism from $B L(X, p, q)$ onto $G S(V, m, m)$. Then, from Lemmas 3.1 and 3.3 we have

$$
\begin{equation*}
\operatorname{ran} \alpha \subseteq \operatorname{ran} \beta \quad \text { if and only if } \quad \operatorname{ran}(\alpha \phi) \subseteq \operatorname{ran}(\beta \phi) \tag{3.2}
\end{equation*}
$$

Let $\mathcal{B}(X, p, q)$ denote the family of all $A \subseteq X$ such that $|A|=p$ and $|X \backslash A|=q$ and let $\mathcal{G}(V, m, m)$ denote the family of all subspaces U of V such that $\operatorname{dim} U=m$ and $\operatorname{codim} U=m$. We observe that ϕ gives rise in a natural way to a mapping φ from $\mathcal{B}(X, p, q)$ into $\mathcal{G}(V, m, m)$: for each $A \in \mathcal{B}(X, p, q)$, let $A \varphi=\operatorname{ran}(\alpha \phi)$ for some $\alpha \in B L(X, p, q)$ such that $\operatorname{ran} \alpha=A$. From (3.2), we readily deduce that φ is a well-defined order-isomorphism of $\mathcal{B}(X, p, q)$ onto $\mathcal{G}(V, m, m)$.

Let $A_{1}, A_{2} \in \mathcal{B}(X, p, q)$ and write $X=A_{1} \dot{\cup} B_{1}=A_{2} \dot{\cup} B_{2}$ where $\left|A_{i}\right|=p$ and $\left|B_{i}\right|=$ q for $i=1,2$. Then $A_{1} \varphi, A_{2} \varphi$ are elements of $\mathcal{G}(V, m, m)$, and hence $\operatorname{codim}\left(A_{1} \varphi\right)=$ $\operatorname{dim} V=\operatorname{codim}\left(A_{2} \varphi\right)$. By Lemma 3.4, there is a subspace W of V such that $\operatorname{dim} W=$ m and $W \cap A_{1} \varphi=\{0\}=W \cap A_{2} \varphi$. Let $\left\{w_{i}\right\}$ be a basis for W and $\left\{a_{i}\right\}$ a basis for $A_{1} \varphi$. Since $W \cap A_{1} \varphi=\{0\}$, it follows that $\left\{w_{i}\right\} \cup\left\{a_{i}\right\}$ is linearly independent. Hence, it can be expanded to a basis $\left\{w_{i}, a_{i}, v_{k}\right\}$ for V, and so $\operatorname{codim} W=|I|+|K|=m$. Thus, $W \in \mathcal{G}(V, m, m)$ and, since φ is onto, there is a subset C of X in $\mathcal{B}(X, p, q)$ such that $W=C \varphi$. We have $C=C \cap X=\left(C \cap A_{1}\right) \dot{\cup}\left(C \cap B_{1}\right)$. Since $|C|=p$ and $\left|C \cap B_{1}\right| \leq q$, it follows that $\left|C \cap A_{1}\right|=p$ when $q<p$. Moreover, $X=$ $\left(C \cap A_{1}\right) \dot{\cup}\left(C \cap B_{1}\right) \dot{\cup}(X \backslash C)$ and so $\left|X \backslash\left(C \cap A_{1}\right)\right|=q$. Therefore, $C \cap A_{1} \in$ $\mathcal{B}(X, p, q)$ if $q<p$. Since $C \cap A_{1} \subseteq C$ and $C \cap A_{1} \subseteq A_{1}$ and φ preserves order, we have $\left(C \cap A_{1}\right) \varphi \subseteq W \cap A_{1} \varphi=\{0\}$, which contradicts the fact that $\left(C \cap A_{1}\right) \varphi$ belongs to $\mathcal{G}(V, m, m)$. On the other hand, if $q=p$ then either $\left|C \cap A_{1}\right|=p$ or $\left|C \cap B_{1}\right|=p$. Without loss of generality, suppose $\left|C \cap A_{1}\right|=p$ and write $C \cap A_{1}=Y \dot{\cup} Z$ where $|Y|=p=|Z|$. Then $C=Y \dot{\cup} Z \dot{\cup}\left(C \cap B_{1}\right)$ and so $|X \backslash Y| \geq\left|Z \dot{\cup}\left(C \cap B_{1}\right)\right|=p$. Therefore, $Y \in \mathcal{B}(X, p, p)$. Since $Y \subseteq C, Y \subseteq A_{1}$ and φ preserves order, we have $Y \varphi \subseteq W \cap A_{1} \varphi=\{0\}$, which contradicts the fact that $Y \varphi \in \mathcal{G}(V, m, m)$.

To obtain useful algebraic conditions on $B L(p, q)$ when $q<p$, we first observe that it contains a copy of $B L(q, q)$: namely, if $Y \subseteq X$ has cardinal q, we let

$$
B(Y)=\left\{\alpha \in B L(p, q): Y \alpha \subseteq Y, \alpha \mid(X \backslash Y)=\operatorname{id}_{X \backslash Y}\right\}
$$

which is clearly non-empty and isomorphic to $B L(Y, q, q)$. For each $\alpha \in B L(p, q)$, we define the shift of α to be

$$
S(\alpha)=\{x \in X: x \alpha \neq x\}, \quad s(\alpha)=|S(\alpha)|
$$

and write

$$
F(\alpha)=X \backslash S(\alpha)=\{x \in X: x \alpha=x\}
$$

Note that $S(\alpha \beta) \subseteq S(\alpha) \cup S(\beta)$, so $s(\alpha \beta) \leq s(\alpha)+s(\beta)$ always. Clearly, $\lambda \alpha=\lambda$ in $B L(p, q)$ if and only if $\operatorname{ran} \lambda \subseteq \operatorname{Fix} \alpha$. Also if $\alpha \in B L(p, q)$ then $s(\alpha)=q$ if and only if $\lambda \alpha=\lambda$ for some $\lambda \in B L(p, q)$. For, we know $X \backslash \operatorname{ran} \alpha \subseteq S(\alpha)$, so $s(\alpha) \geq q$ always. If $\lambda \alpha=\lambda$ for some $\lambda \in B L(p, q)$ then $\operatorname{ran} \lambda \subseteq F(\alpha)$, so $S(\alpha) \subseteq X \backslash \operatorname{ran} \lambda$ and hence $s(\alpha) \leq q$; conversely, if $s(\alpha)=q<p$ then $|X|=|F(\alpha)|$ and any bijection $\lambda: X \rightarrow F(\alpha)$ satisfies $\lambda \alpha=\lambda$ and belongs to $B L(p, q)$. Thus, we have an algebraic characterisation for the elements of the semigroup:

$$
\begin{equation*}
\Lambda(q)=\{\alpha \in B L(p, q): s(\alpha)=q\} . \tag{3.3}
\end{equation*}
$$

Next we define an equivalence \sim on $\Lambda(q)$ by:

$$
\alpha \sim \beta \text { if and only if } S(\alpha)=S(\beta) .
$$

Surprisingly, this has an algebraic characterisation which is similar to Lemma 3.1(c). Here it is also worth recalling [1] vol 2, Lemma 8.3: namely, the equation $x y=y$ cannot occur in any right simple, right cancellative semigroup without idempotents.

Lemma 3.6. If $\alpha, \beta \in \Lambda(q)$ then the following are equivalent.
(a) $S(\beta) \subseteq S(\alpha)$,
(b) for each $\lambda \in B L(p, q), \lambda \alpha=\lambda$ implies $\lambda \beta=\lambda$.

Proof. Suppose $S(\beta) \subseteq S(\alpha)$. Let $\lambda \in B L(p, q)$ be such that $\lambda \alpha=\lambda$. Then ran $\lambda \subseteq$ $F(\alpha)$ and since $S(\beta) \subseteq S(\alpha)$ it follows that $\operatorname{ran} \lambda \subseteq F(\beta)$. Therefore, since $x \lambda \in \operatorname{ran} \lambda$ for each x in X, we have $x(\lambda \beta)=(x \lambda) \beta=x \lambda$, and hence $\lambda \beta=\lambda$. Conversely, assume (b) holds. If $F(\alpha)=\left\{e_{i}\right\}$ and $S(\alpha)=\left\{x_{j}\right\}$, write $\left\{e_{i}\right\}=\left\{f_{i}\right\} \dot{\cup}\left\{f_{j}\right\}$ and

$$
\alpha=\left(\begin{array}{ccc}
f_{i} & f_{j} & x_{j} \\
f_{i} & f_{j} & x_{j} \alpha
\end{array}\right) .
$$

Define

$$
\lambda=\left(\begin{array}{cc}
e_{i} & x_{j} \\
f_{i} & f_{j}
\end{array}\right) .
$$

Then $\lambda \alpha=\lambda$ and $\lambda \in B L(p, q)$ since $d(\lambda)=q=s(\alpha)$. Hence $\lambda \beta=\lambda$ and $F(\alpha)=$ $\operatorname{ran} \lambda \subseteq F(\beta)$. Thus $S(\beta) \subseteq S(\alpha)$.

If we fix some $\beta \in \Lambda(q)$ and put $S(\beta)=Y$ then $F(\beta)=X \backslash Y$ and we have:

$$
B(Y)=\{\alpha \in \Lambda(q): S(\alpha) \subseteq Y\}
$$

and this is the set of all $\alpha \in B L(p, q)$ such that $\mu \alpha=\mu$ for some $\mu \in B L(p, q)$ and, for each $\lambda \in B L(p, q), \lambda \beta=\lambda$ implies $\lambda \alpha=\lambda$. In other words, we have an algebraic description of each $B L(q, q)$ inside $B L(p, q)$ when $q<p$.

The aim now is to use this description to show that $B L(p, q)$ cannot be isomorphic to any $G S(m, n)$ when $p>q$. However, for this we need to identify a subset of $G S(m, n)$ which will correspond to some $B(Y)$ in $B L(p, q)$ under an isomorphism.

We start by defining, for each $\alpha \in T(V)$,

$$
\operatorname{Fix}(\alpha)=\{u \in V: u \alpha=u\} .
$$

Since this is a subspace of V, we can let $s(\alpha)=\operatorname{codim} \operatorname{Fix}(\alpha)$, and we call this the shift of $\alpha \in T(V)$. It can be shown that $s(\alpha \beta) \leq s(\alpha)+s(\beta)$: see [9] Lemma 5 . Hence, by analogy with $\Lambda(q)$ in $B L(p, q)$, if $m>n$ then there exists a subsemigroup of $G S(m, n)$ defined by:

$$
\Sigma(n)=\{\alpha \in G S(m, n): s(\alpha)=n\} .
$$

Furthermore, we can characterise $\Sigma(n)$ algebraically as follows: given $\alpha \in G S(m, n)$,

$$
\begin{equation*}
s(\alpha)=n \quad \text { if and only if } \quad \lambda \alpha=\lambda \text { for some } \lambda \in G S(m, n) \tag{3.4}
\end{equation*}
$$

For, $\operatorname{Fix}(\alpha) \subseteq \operatorname{ran} \alpha$ implies $n=d(\alpha) \leq s(\alpha)$. If $\lambda \alpha=\lambda$ for some $\lambda \in G S(m, n)$ then $\operatorname{ran} \lambda \subseteq \operatorname{Fix}(\alpha)$ and this implies $s(\alpha) \leq d(\lambda)=n$; conversely, if $s(\alpha)=n<m$ then $\operatorname{dim} V=\operatorname{dim} \operatorname{Fix}(\alpha)$ and any linear bijection $\lambda: V \rightarrow \operatorname{Fix}(\alpha)$ satisfies $\lambda \alpha=\lambda$ and belongs to $G S(m, n)$.

Next we define an equivalence \approx on $\Sigma(n)$ by

$$
\alpha \approx \beta \text { if and only if } \operatorname{Fix}(\alpha)=\operatorname{Fix}(\beta)
$$

Its algebraic characterization is analogous to that of the equivalence \sim defined on the subsemigroup $\Lambda(q)$ of $B L(p, q)$.

Lemma 3.7. If $\alpha, \beta \in \Sigma(n)$ then the following conditions are equivalent.
(a) $\operatorname{Fix}(\alpha) \subseteq \operatorname{Fix}(\beta)$,
(b) for each $\lambda \in G S(m, n), \lambda \alpha=\lambda$ implies $\lambda \beta=\lambda$.

Proof. Assume $\operatorname{Fix}(\alpha) \subseteq \operatorname{Fix}(\beta)$ and let $\lambda \in G S(m, n)$ be such that $\lambda \alpha=\lambda$. Then $\operatorname{ran} \lambda \subseteq \operatorname{Fix}(\alpha)$ and so $\operatorname{ran} \lambda \subseteq \operatorname{Fix}(\beta)$. Therefore, $\lambda \beta=\lambda$. Conversely, suppose $\left\{e_{i}\right\}=\left\{f_{i}\right\} \dot{\cup}\left\{f_{j}\right\}$ is a basis for $\operatorname{Fix}(\alpha)$, where $|I|=m>n=|J|$ since $\alpha \in \Sigma(n)$. Expand $\left\{e_{i}\right\}$ to a basis $\left\{e_{i}, v_{j}\right\}$ for V and note that

$$
\alpha=\left(\begin{array}{ccc}
f_{i} & f_{j} & v_{j} \\
f_{i} & f_{j} & v_{j} \alpha
\end{array}\right) .
$$

Define $\lambda \in T(V)$ by

$$
\lambda=\left(\begin{array}{cc}
e_{i} & v_{j} \\
f_{i} & f_{j}
\end{array}\right) .
$$

Then $\lambda \alpha=\lambda$ and $\lambda \in G S(m, n)$ since $d(\lambda)=n=s(\alpha)$. Hence $\lambda \beta=\lambda$ and so $\operatorname{Fix}(\alpha)=\operatorname{ran} \lambda \subseteq \operatorname{Fix}(\beta)$.

One candidate for a linear version of $B(Y)$, the copy of $B L(Y, q, q)$ in $B L(p, q)$, can be defined as follows. If U is a subspace of V with dimension m and codimension n and if W is a complement of U in V, then we let

$$
G(U, W)=\{\alpha \in G S(m, n): W \alpha \subseteq W, U \subseteq \operatorname{Fix}(\alpha)\}
$$

which is clearly non-empty and isomorphic to $G S(W, n, n)$. Unfortunately, whereas the complement of a subset Y in X is unique, this is not true for a complement of a subspace U in V. Therefore, we now fix some $\beta \in \Sigma(n)$ and put $\operatorname{Fix}(\beta)=U$ and $V=U \oplus W$, so we have

$$
G(U, W) \varsubsetneqq G(U)=\{\alpha \in \Sigma(n): U \subseteq \operatorname{Fix}(\alpha)\}
$$

Note that $G(U)$ is the set of all $\alpha \in G S(m, n)$ such that $\mu \alpha=\mu$ for some μ in $G S(m, n)$ and, for each $\lambda \in G S(m, n), \lambda \beta=\lambda$ implies $\lambda \alpha=\lambda$: that is, $G(U)$ has the same characteristics as $B(Y)$ in $B L(p, q)$. Note also that the above containment is 'proper'. For, if $\left\{u_{i}\right\}$ is a basis for U and $\left\{w_{j}\right\}$ a basis for W then $V=\left\langle u_{i}, w_{j}\right\rangle$. Write $\left\{u_{i}\right\}=\left\{v_{i}\right\} \dot{\cup}\left\{v_{j}\right\}$ (possible since $|J|=n \leq m=|I|$ by the choice of U and $W)$ and also write $\left\{v_{j}+w_{j}\right\}=\left\{x_{j}\right\} \dot{\cup}\left\{y_{j}\right\}$. Then $\left\{v_{i}\right\} \dot{\cup}\left\{v_{j}\right\} \dot{\cup}\left\{v_{j}+w_{j}\right\}$ is a basis for V and

$$
\alpha=\left(\begin{array}{ll}
u_{i} & w_{j} \\
u_{i} & x_{j}
\end{array}\right)
$$

is an element of $G(U)$ (note that $w_{j} \alpha \neq w_{j}$ for each j) and it does not belong to $G(U, W)$ since $W \alpha \cap W=\{0\}$.

To proceed further, we require two technical results whose purpose will become apparent in the proof of Theorem 3.10.

Lemma 3.8. For each vector space W with dimension $n \geq \aleph_{0}$, there exists $\alpha \in$ $G S(W, n, n)$ which fixes exactly one element of W, namely 0 .

Proof. Consider a basis for W of the form:

$$
\left\{w_{1 k}\right\} \cup\left\{w_{2 k}\right\} \cup \ldots
$$

That is, $W=\left\langle w_{i k}\right\rangle$ where $|I|=\aleph_{0}$ and $|K|=n$. Define $\alpha \in T(W)$ by

$$
\alpha=\left(\begin{array}{cccc}
w_{1 k} & \ldots & w_{i k} & \ldots \\
w_{2 k} & \ldots & w_{i+1, k} & \ldots
\end{array}\right) .
$$

Then $d(\alpha)=n$, so $\alpha \in G S(W, n, n)$. Now each $v \in W$ can be written as

$$
\begin{equation*}
v=\sum_{k} x_{i_{1}, k} w_{i_{1}, k}+\ldots+\sum_{k} x_{i_{r}, k} w_{i_{r}, k} \tag{3.5}
\end{equation*}
$$

where the $x_{i_{j}, k}$ are scalars, each sum is over a finite (and possibly different) index set and we can assume $i_{1}<i_{2}<\ldots<i_{r}$. Therefore, if $v \alpha=v$, we have:

$$
\begin{align*}
& \sum_{k} x_{i_{1}, k} w_{i_{1}, k}+\sum_{k} x_{i_{2}, k} w_{i_{2}, k}+\ldots+\sum_{k} x_{i_{r}, k} w_{i_{r}, k} \\
& \quad=\sum_{k} x_{i_{1}, k} w_{i_{1}+1, k}+\sum_{k} x_{i_{2}, k} w_{i_{2}+1, k}+\ldots+\sum_{k} x_{i_{r}, k} w_{i_{r}+1, k} \tag{3.6}
\end{align*}
$$

Since all the $w_{i_{j}, k}$ are linearly independent, and $w_{i_{1}, k}$ does not appear on the right of this equation, we deduce that $x_{i_{1}, k}=0$ for all k. Then (3.6) reduces to

$$
\begin{equation*}
\sum_{k} x_{i_{2}, k} w_{i_{2}, k}+\ldots+\sum_{k} x_{i_{r}, k} w_{i_{r}, k}=\sum_{k} x_{i_{2}, k} w_{i_{2}+1, k}+\ldots+\sum_{k} x_{i_{r}, k} w_{i_{r}+1, k} . \tag{3.7}
\end{equation*}
$$

Again, $w_{i_{2}, k}$ appears nowhere on the right of this new equation, so $x_{i_{2}, k}=0$ for all k. In like manner, all coefficients in (3.5) equal 0 , hence $v=0$ as required.

Lemma 3.9. Let V be a vector space of dimension m and U a subspace of V with dimension m and codimension n. If W_{1}, W_{2} are subspaces of V with codimension n which contain U and satisfy $\operatorname{dim}\left(W_{1} / U\right)=n=\operatorname{dim}\left(W_{2} / U\right)$, then there exists a subspace L of V with codimension n in V which properly contains U such that $L \cap W_{1}=U=L \cap W_{2}$.

Proof. Let W_{1}, W_{2} be subspaces of V such that $U \subseteq W_{1}, U \subseteq W_{2}, \operatorname{codim}\left(W_{1}\right)=$ $n=\operatorname{codim}\left(W_{2}\right)$ and $\operatorname{dim}\left(W_{1} / U\right)=n=\operatorname{dim}\left(W_{2} / U\right)$. Recall that $\operatorname{dim}(V / U)$ equals the codimension of U in V and that there is a natural (linear) isomorphism between V / W_{i} and $(V / U) /\left(W_{i} / U\right)$ for $i=1,2$. Hence, W_{i} / U has codimension n in V / U. By Lemma 3.4, there exists a subspace L / U of V / U such that $\operatorname{dim}(L / U)=n$ and $L / U \cap W_{1} / U=\{U\}=L / U \cap W_{2} / U$. Since $\operatorname{dim}(L / U)=n, U$ is properly contained in L. Moreover, since $L / U \cap W_{1} / U=\{U\}$,

$$
n=\operatorname{dim}\left(W_{1} / U\right) \leq \operatorname{codim}(L / U) \leq \operatorname{dim}(V / U)=n
$$

and so $\operatorname{codim}(L)=n$. From $L / U \cap W_{1} / U=\{U\}=L / U \cap W_{2} / U$, we may conclude that $L \cap W_{1}=U=L \cap W_{2}$.

Theorem 3.10. The semigroups $B L(X, p, q)$ and $G S(V, m, n)$ are not isomorphic for any infinite cardinals p, q, m, n with $q<p$ and $n<m$.

Proof. Suppose ϕ is an isomorphism from $B L(X, p, q)$ onto $G S(V, m, n)$. Let $Y \subseteq X$ be such that $|Y|=q$ and let $\beta \in B L(p, q)$ be such that $S(\beta)=Y$. Then, $\beta \phi \in$ $G S(m, n)$. Moreover, $s(\beta \phi)=n$, since $s(\beta)=q$ and so there exist $\mu \in B L(p, q)$ and $\mu \phi \in G S(m, n)$ such that $\mu \beta=\mu$ and $(\mu \phi)(\beta \phi)=\mu \phi$. Hence, $\operatorname{dim} \operatorname{Fix}(\beta \phi)=m$. Let $U=\operatorname{Fix}(\beta \phi)$ and $V=U \oplus W$. Let \mathcal{B} be the family of all subsets of Y with cardinal q and let \mathcal{G} be the family of all subspaces of V with codimension n which contain U. Consider φ defined as follows: given $B \in \mathcal{B}$, let $B \varphi=\operatorname{Fix}(\alpha \phi)$, where $\alpha \in B(Y)$ is such that $S(\alpha)=B$. We assert that φ is an anti-isomorphism from \mathcal{B} onto \mathcal{G}.

Let $B=\left\{b_{j}\right\} \dot{\cup}\left\{c_{j}\right\} \dot{\cup}\left\{d_{j}\right\} \in \mathcal{B}$, with $|J|=q$ and write $\left\{d_{j}\right\}=\left\{e_{j}\right\} \dot{\cup}\left\{f_{j}\right\}$. Write $X=\left\{x_{i}\right\} \dot{\cup} B$ and define $\alpha \in T(X)$ by

$$
\alpha=\left(\begin{array}{llll}
x_{i} & b_{j} & c_{j} & d_{j} \\
x_{i} & e_{j} & b_{j} & c_{j}
\end{array}\right) .
$$

Then $c(\alpha)=0, d(\alpha)=q$ and $S(\alpha)=B$. Hence $\alpha \in \Lambda(q)$ and, by the characterisations discussed at (3.3) and (3.4), we have $\alpha \phi \in \Sigma(n)$. Also, since $S(\alpha) \subseteq Y$, Lemmas 3.6 and 3.7 imply $U \subseteq \operatorname{Fix}(\alpha \phi)$. Therefore, $\operatorname{Fix}(\alpha \phi) \in \mathcal{G}$. If $B_{1}, B_{2} \in \mathcal{B}$ and $\alpha_{1}, \alpha_{2} \in B(Y)$ are such that $S\left(\alpha_{1}\right)=B_{1}$ and $S\left(\alpha_{2}\right)=B_{2}$, then

$$
\begin{aligned}
B_{1} \subseteq B_{2} & \Leftrightarrow S\left(\alpha_{1}\right) \subseteq S\left(\alpha_{2}\right) \\
& \Leftrightarrow \lambda \alpha_{2}=\lambda \text { implies } \lambda \alpha_{1}=\lambda \text { for all } \lambda \text { in } B L(p, q) \\
& \Leftrightarrow \mu\left(\alpha_{2} \phi\right)=\mu \text { implies } \mu\left(\alpha_{1} \phi\right)=\lambda \text { for all } \mu \text { in } G S(m, n) \\
& \Leftrightarrow \operatorname{Fix}\left(\alpha_{2} \phi\right) \subseteq \operatorname{Fix}\left(\alpha_{1} \phi\right) \\
& \Leftrightarrow B_{2} \varphi \subseteq B_{1} \varphi .
\end{aligned}
$$

Thus, φ is a well-defined one-to-one mapping which inverts order. To show that φ is onto, we will use Lemma 3.8. Let $G=\left\langle e_{i}\right\rangle \in \mathcal{G}$. Then $\operatorname{codim} G=n$ and $U \subseteq G$. Write $V=G \oplus H$, with $H=\left\langle f_{j}\right\rangle$ and define $\varepsilon \in T(V)$ by

$$
\varepsilon=\left(\begin{array}{cc}
e_{i} & f_{j} \\
e_{i} & f_{j} \alpha
\end{array}\right)
$$

where $\alpha \in G S(H, n, n)$ fixes exactly one element of H, namely 0 . Now, $\varepsilon \in G S(V, m, n)$ and $\operatorname{Fix}(\varepsilon)=G$. For, if $v=\sum a_{i} e_{i}+\sum b_{j} f_{j}$, then $v \varepsilon=v$ if and only if α fixes the element $\sum b_{j} f_{j} \in H$. But the latter happens if and only if $\sum b_{j} f_{j}=0$ in which case
$b_{j}=0$ for each j; that is, $v \in G$. Since ε is actually in $\Sigma(n)$, there exists $\delta \in \Lambda(q)$ such that $\varepsilon=\delta \phi$. Let $B=S(\delta)$. Since $\operatorname{Fix}(\beta \phi)=U \subseteq G=\operatorname{Fix}(\delta \phi)$, we conclude as before that $S(\delta) \subseteq S(\beta)=Y$. That is, $B \in \mathcal{B}$ and $B \varphi=G$.

We now show that, for subspaces $W_{1}=B_{1} \varphi, W_{2}=B_{2} \varphi$ of V in \mathcal{G} with $W_{1} \cap W_{2}=U$, we have $B_{1} \cup B_{2}=Y$. Since φ inverts order, $\left(B_{1} \cup B_{2}\right) \varphi$ is a subset of $B_{1} \varphi \cap B_{2} \varphi=$ $W_{1} \cap W_{2}=U=Y \varphi$ (the last equation holds since Y is the greatest element of \mathcal{B} and U is the least element of $\mathcal{G})$. Hence, $Y \subseteq B_{1} \cup B_{2}$ and so $B_{1} \cup B_{2}=Y$.

Next, we use the above results to produce a contradiction. Let $B_{1}, B_{2} \in \mathcal{B}$ be such that $B_{1} \dot{\cup} B_{2}=Y$. Then, $B_{1} \varphi=W_{1}=\left\langle u_{i}, v_{k}\right\rangle$ and $B_{2} \varphi=W_{2}=\left\langle u_{i}, w_{\ell}\right\rangle$, where $U=\left\langle u_{i}\right\rangle$. Since codim $W_{1}=n=\operatorname{codim} W_{2}$, we can choose bases $\left\{x_{j}\right\} \dot{\cup}\left\{y_{j}\right\}$ and $\left\{s_{j}\right\} \dot{\cup}\left\{t_{j}\right\}$ for complements of W_{1} and W_{2}, respectively, where $|J|=n$. Then

$$
V=\left\langle u_{i}, v_{k}, x_{j}, y_{j}\right\rangle=\left\langle u_{i}, w_{\ell}, s_{j}, t_{j}\right\rangle
$$

Let $W_{1}^{\prime}=\left\langle u_{i}, v_{k}, x_{j}\right\rangle$ and $W_{2}^{\prime}=\left\langle u_{i}, w_{\ell}, s_{j}\right\rangle$. Then $W_{1}^{\prime}, W_{2}^{\prime} \in \mathcal{G}$ and $\operatorname{dim}\left(W_{1}^{\prime} / U\right)=$ $n=\operatorname{dim}\left(W_{2}^{\prime} / U\right)$. By Lemma 3.9, there exists an element $L \neq U$ in \mathcal{G} such that $L \cap W_{1}^{\prime}=U=L \cap W_{2}^{\prime}$. Since $W_{1} \subseteq W_{1}^{\prime}$ and $W_{2} \subseteq W_{2}^{\prime}$, we have $L \cap W_{1}=U=$ $L \cap W_{2}$. Also, since φ is onto, there exists $B \in \mathcal{B}$ such that $B \varphi=L$. Therefore, $B \varphi \cap B_{1} \varphi=U=B \varphi \cap B_{2} \varphi$, which implies that $B \cup B_{1}=Y=B \cup B_{2}$. Thus, $B_{1}, B_{2} \subseteq B$ and $Y=B$. Hence $U=L$, a contradiction.

Next we show that $B L(p, p)$ and $G S(m, n)$, with $n<m$, are not isomorphic. We recall that $B L(X, p, p)$ is embeddable in $B L(Y, r, p)$, with $X \varsubsetneqq Y$ and $p<r$, and consider the semigroup

$$
S=\{\alpha \in B L(Y, r, p): S(\alpha) \subseteq X\}
$$

For each $\alpha \in S, s(\alpha)=p$ since $D(\alpha) \subseteq S(\alpha) \subseteq X$. Let

$$
T=\{\alpha \in S:|X \cap F(\alpha)|=p\}
$$

which is easily seen to be non-empty. If $\alpha \in T$, write $X=\left\{x_{j}\right\}=\left\{s_{j}\right\} \dot{\cup}\left\{t_{j}\right\}$, where $S(\alpha)=\left\{s_{j}\right\}$ and $X \cap F(\alpha)=\left\{t_{j}\right\}$. Write $Y=\left\{y_{i}\right\} \dot{\cup}\left\{x_{j}\right\}$ and $\left\{t_{j}\right\}=\left\{u_{j}\right\} \dot{\cup}\left\{v_{j}\right\}$, with $\left\{v_{j}\right\}=\left\{a_{j}\right\} \dot{\cup}\left\{b_{j}\right\}$. Define

$$
\lambda=\left(\begin{array}{llll}
y_{i} & u_{j} & v_{j} & s_{j} \\
y_{i} & a_{j} & u_{j} & b_{j}
\end{array}\right)
$$

Then $\lambda \in S$ and $\lambda \alpha=\lambda$. On the other hand, let $\alpha \in S$ be such that $\lambda \alpha=\lambda$ for some $\lambda \in S$. Since $\lambda \in S$, we have $S(\lambda) \subseteq X$. Hence $Y \backslash X \subseteq F(\lambda)$. We also have
$\operatorname{ran}(\lambda) \subseteq F(\alpha)$ since $\lambda \alpha=\lambda$. Hence $X \lambda \subseteq X \cap F(\alpha)$ and so $|X \cap F(\alpha)|=p$. Thus, we have an algebraic characterisation for the elements of the set T.

However, T is not a semigroup. To see this, let $X=A \dot{\cup} B \dot{\cup} C$, each with cardinal p, and let $B=B_{1} \dot{\cup} B_{2}, C=C_{1} \dot{\cup} C_{2}$, also each with cardinal p. Suppose $\alpha \in S$ fixes both Y and A pointwise, and maps B onto C and C onto B_{1}. Also, let $\beta \in S$ fix both Y and B pointwise, and map A onto C_{1} and C onto A. Then $F(\alpha \beta)=Y$ and $|X \cap F(\alpha \beta)|=0$. Hence $\alpha, \beta \in T$ but $\alpha \beta \notin T$.

Theorem 3.11. The semigroups $B L(X, p, p)$ and $G S(V, m, n)$ are not isomorphic for any infinite cardinals p, m, n with $n<m$.

Proof. Suppose $B L(X, p, p)$ is isomorphic to $G S(V, m, n)$. Let Y be a set with cardinal $r>p$ such that $Y \supseteq X$. Then, $B L(X, p, p)$ is isomorphic to a subset of $B L(Y, r, p)$ - namely, $S=\{\alpha \in B L(Y, r, p): S(\alpha) \subseteq X\}$ - and there is an isomorphism ϕ from S onto $G S(V, m, n)$. Let $T=\{\alpha \in S:|X \cap F(\alpha)|=p\}$. Clearly ϕ induces a one-to-one mapping from T onto $\Sigma(n)$. For, $\alpha \in T$ if and only if $\lambda \alpha=\lambda$ for some $\lambda \in S$, which in turn is equivalent to saying: $\mu(\alpha \phi)=\mu$ for some $\mu \in G S(V, m, n)$ (even though T is not a semigroup). But $\Sigma(n)$ is a subsemigroup of $G S(V, m, n)$ and ϕ is an isomorphism, hence $\Sigma(n) \phi^{-1}=T$ must be a subsemigroup of S, contradicting our earlier remark.

Since we have now shown that $B L(p, q)$ and $G S(m, n)$ are never isomorphic, it is worth observing the following result.

Theorem 3.12. Any right simple, right cancellative semigroup S without idempotents can be embedded in some $G S(m, m)$.

Proof. Let $|S|=m$ and write $S^{1}=\left\{a_{i}\right\}$, with $|I|=m$. Note that S is infinite, since S has no idempotents. Let F be any field and let F_{i} be a copy of F for each $i \in I$. As in [4] p182, Remark (c), we let V be the vector space $\sum F_{i}$ over F whose basis can be identified in a natural way with $\left\{a_{i}\right\}$: that is, $\sum F_{i}$ is the set of all $\left(r_{i}\right)_{i \in I}$ where $r_{i} \in F_{i}$ and at most finitely many r_{i} are non-zero. Since S is right cancellative, the extended right regular representation of S is a faithful representation of S as a semigroup of one-to-one mappings of S^{1} into itself. Let $x \in S$. Then x is represented by $\rho_{x}: S^{1} \rightarrow S^{1}, a_{i} \mapsto a_{i} x$, which is a one-to-one mapping of the basis $\left\{a_{i}\right\}$ into itself. Hence ρ_{x} can be extended by linearity to a one-to-one linear map $V \rightarrow V$. Moreover, since S is infinite, [1] vol 2, Lemma 8.4 implies that

$$
\left|S^{1}\right|=|S|=|S \backslash S x|=\left|S^{1} \backslash(x \cup S x)\right|=\left|S^{1} \backslash S^{1} \rho_{x}\right|
$$

Therefore, $\operatorname{codim} \rho_{x}=|S|=m$ and hence $\rho_{x} \in G S(V, m, m)$. The faithfulness of the extended right regular representation implies that S is embedded in $G S(V, m, m)$.

4. Left ideals of $G S(m, n)$

In this section we transfer results of Sutov [11] and Sullivan [10] on the left ideals of $B L(p, q)$ to the linear Baer-Levi semigroup on V. By analogy with their work, the most natural way to do this is to show that the left ideals of $G S(m, n)$ are precisely the subsets L of $G S(m, n)$ which satisfy the condition:

$$
(\alpha \in L, \beta \in G S(m, n), \operatorname{ran} \beta \subseteq \operatorname{ran} \alpha, \operatorname{dim}(\operatorname{ran} \alpha / \operatorname{ran} \beta)=n) \text { implies } \beta \in L
$$

Although this result is valid, to obtain more information about the left ideals of $G S(m, n)$ we proceed as follows.

If Y is a non-empty subset of $G S(m, n)$, we let $L_{Y}^{+}=Y \cup L_{Y}$, where

$$
L_{Y}=\{\beta \in G S(m, n): \operatorname{ran} \beta \subseteq \operatorname{ran} \alpha, \operatorname{dim}(\operatorname{ran} \alpha / \operatorname{ran} \beta)=n \text { for some } \alpha \in Y\}
$$

To show L_{Y} is non-empty, choose any $\alpha \in Y$. Suppose $\left\{e_{i}\right\}$ is a basis for V and write $e_{i} \alpha=a_{i}$ for each i. Since α is one-to-one, $\left\{a_{i}\right\}$ is linearly independent and so it can be expanded into a basis $\left\{a_{i}\right\} \cup\left\{b_{j}\right\}$ for V. Note that $|J|=d(\alpha)=n \leq m$. Therefore we can write $\left\{a_{i}\right\}=\left\{c_{i}\right\} \cup\left\{d_{j}\right\}$ and define

$$
\beta=\binom{e_{i}}{c_{i}} .
$$

This is in $G S(m, n)$ since β is one-to-one and $d(\beta)=\operatorname{dim}\left\langle d_{j}, b_{j}\right\rangle=n$. We have $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$ and $\operatorname{dim}(\operatorname{ran} \alpha / \operatorname{ran} \beta)=\operatorname{dim}\left\langle d_{j}\right\rangle=n$. Hence $\beta \in L_{Y}$ and so L_{Y} is non-empty.

Theorem 4.1. If Y is a non-empty subset of $G S(m, n)$, then L_{Y}^{+}is a left ideal of $G S(m, n)$. Conversely, if I is a left ideal of $G S(m, n)$, then $I=L_{I}^{+}$.

Proof. Suppose Y is a non-empty subset of $G S(m, n)$ and let $\alpha \in L_{Y}^{+}$and $\beta \in$ $G S(m, n)$. Then $\beta \alpha \in G S(m, n)$ and $\operatorname{ran}(\beta \alpha) \subseteq \operatorname{ran} \alpha$. Suppose $\left\{e_{i}\right\}$ is a basis for V. Since β is one-to-one, $\left\{e_{i} \beta\right\}$ is a basis for ran β, which can be expanded into another basis $\left\{e_{i} \beta, e_{j}\right\}$ for V, with $|J|=d(\beta)=n$. Then $\operatorname{ran} \alpha=\left\langle e_{i} \beta \alpha, e_{j} \alpha\right\rangle$. On the other hand, $\operatorname{ran}(\beta \alpha)=\left\langle e_{i} \beta \alpha\right\rangle$ and so $\operatorname{dim}(\operatorname{ran} \alpha / \operatorname{ran}(\beta \alpha))=\operatorname{dim}\left\langle e_{j} \alpha\right\rangle=n$. If $\alpha \in Y$, then $\beta \alpha \in L_{Y}$. If not, then $\alpha \in L_{Y}$ and so $\operatorname{ran} \alpha \subseteq \operatorname{ran} \gamma$ and $\operatorname{dim}(\operatorname{ran} \gamma / \operatorname{ran} \alpha)=n$ for some $\gamma \in Y$. Thus $\operatorname{ran}(\beta \alpha) \subseteq \operatorname{ran} \alpha \subseteq \operatorname{ran} \gamma$ and $n=\operatorname{dim}(\operatorname{ran} \gamma / \operatorname{ran} \alpha) \leq$ $\operatorname{dim}(\operatorname{ran} \gamma / \operatorname{ran}(\beta \alpha)) \leq d(\beta \alpha)=n$. Therefore $\beta \alpha \in L_{Y}$. In other words, we have shown that L_{Y}^{+}is a left ideal of $G S(m, n)$.

Suppose I is a left ideal of $G S(m, n)$. We assert that $I=L_{I}^{+}$. Let $\beta \in L_{I}$. Then there exists $\alpha \in I$ such that $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$ and $\operatorname{dim}(\operatorname{ran} \alpha / \operatorname{ran} \beta)=n$. If $\left\{e_{i}\right\}$ is a
basis for V then $\operatorname{ran} \beta=\left\langle e_{i} \beta\right\rangle$ and, $\operatorname{since} \operatorname{ran} \beta \subseteq \operatorname{ran} \alpha, \operatorname{ran} \alpha=\left\langle e_{i} \beta, e_{j}\right\rangle$ for some linearly independent set $\left\{e_{i} \beta, e_{j}\right\}$. Moreover, $|J|=n \operatorname{since} \operatorname{dim}(\operatorname{ran} \alpha / \operatorname{ran} \beta)=n$. Since α is one-to-one and $e_{i} \beta, e_{j} \in \operatorname{ran} \alpha$, we can choose unique f_{i} and f_{j} in V such that $f_{i} \alpha=e_{i} \beta$ and $f_{j} \alpha=e_{j}$. Then $\left\{f_{i}\right\} \cup\left\{f_{j}\right\}$ is a basis for V since α is one-to-one and $\left\{e_{i} \beta, e_{j}\right\}$ is a basis for ran α. Thus, we have

$$
\alpha=\left(\begin{array}{cc}
f_{i} & f_{j} \\
e_{i} \beta & e_{j}
\end{array}\right), \quad \beta=\binom{e_{i}}{e_{i} \beta} .
$$

Define $\gamma \in T(V)$ by

$$
\gamma=\binom{e_{i}}{f_{i}} .
$$

Then $\gamma \in G S(m, n)$ and $\beta=\gamma \alpha$. Since I is a left ideal, it follows that $\beta \in I$. Therefore, $L_{I} \subseteq I$ and so $L_{I}^{+}=I$.

Remark 4.2. The left ideals of $G S(m, n)$ do not form a chain under \subseteq. For, suppose $\left\{e_{i}\right\}$ is a basis for V, let $\alpha \in G S(m, n)$ and write $e_{i} \alpha=a_{i}$ for each i. We can expand $\left\{a_{i}\right\}$ into a basis $\left\{a_{i}\right\} \dot{\cup}\left\{b_{j}\right\}$ for V, with $|J|=n$. Let $|K|<n$ and write $\left\{e_{i}\right\}=\left\{f_{i}\right\} \dot{\cup}\left\{f_{k}\right\}$ and $\left\{b_{j}\right\}=\left\{c_{k}\right\} \dot{\cup}\left\{d_{j}\right\}$. Define

$$
\beta=\left(\begin{array}{cc}
f_{i} & f_{k} \\
a_{i} & c_{k}
\end{array}\right) .
$$

Then $\alpha \notin L_{\{\beta\}}^{+}$and $\beta \notin L_{\{\alpha\}}^{+}$. Thus $L_{\{\alpha\}}^{+} \nsubseteq L_{\{\beta\}}^{+}$and $L_{\{\beta\}}^{+} \nsubseteq L_{\{\alpha\}}^{+}$.
The next result determines when one left ideal of $G S(m, n)$ is contained in another.

Theorem 4.3. Let A, B be non-empty subsets of $G S(m, n)$. Then $L_{A}^{+} \subseteq L_{B}^{+}$if and only if $A \backslash B \subseteq L_{B}$.

Proof. If $L_{A}^{+} \subseteq L_{B}^{+}$, then $A \subseteq B \cup L_{B}$ and so $A \backslash B \subseteq L_{B}$. Suppose now that the latter happens and let $\alpha \in L_{A}^{+}$. Then $\alpha \in A$ or $\alpha \in L_{A}$. If $\alpha \in A \cap B$, then $\alpha \in B$. If $\alpha \in A \backslash B$, then $\alpha \in L_{B}$. On the other hand, if $\alpha \in L_{A}$, then there exists $\beta \in A$ such that $\operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$ and $\operatorname{dim}(\operatorname{ran} \beta / \operatorname{ran} \alpha)=n$. If $\beta \in B$, then $\alpha \in L_{B}$. If not, then $\beta \in A \backslash B \subseteq L_{B}$ and so there exists $\gamma \in B$ such that $\operatorname{ran} \beta \subseteq \operatorname{ran} \gamma$ and $\operatorname{dim}(\operatorname{ran} \gamma / \operatorname{ran} \beta)=n$. Therefore $\operatorname{ran} \alpha \subseteq \operatorname{ran} \gamma$ and $n \geq \operatorname{dim}(\operatorname{ran} \gamma / \operatorname{ran} \alpha) \geq$ $\operatorname{dim}(\operatorname{ran} \beta / \operatorname{ran} \alpha)=n$ and hence $\alpha \in L_{B}$. Thus we have shown that $\alpha \in L_{B}^{+}$and the result follows.

Hence $A \subseteq B$ implies $L_{A}^{+} \subseteq L_{B}^{+}$, but not conversely. For, suppose $\left\{e_{i}\right\}$ is a basis for V and write $\left\{e_{i}\right\}=\left\{a_{i}\right\} \dot{\cup}\left\{b_{j}\right\}$ and $\left\{a_{i}\right\}=\left\{c_{i}\right\} \dot{\cup}\left\{c_{j}\right\}$, with $|J|=n$. Define

$$
\alpha=\binom{e_{i}}{a_{i}}, \quad \beta=\binom{e_{i}}{c_{i}}
$$

in $T(V)$. Since α, β are one-to-one and $d(\alpha)=\operatorname{dim}\left\langle b_{j}\right\rangle=n=\operatorname{dim}\left\langle b_{j}, c_{j}\right\rangle=d(\beta), \alpha$ and β are elements of $G S(m, n)$. If $A=\{\beta\}$ and $B=\{\alpha\}$ then $L_{A}^{+} \subseteq L_{B}^{+}$but $A \nsubseteq B$.

Corollary 4.4. Let A, B be non-empty subsets of $G S(m, n)$. Then $L_{A}^{+} \cup L_{B}^{+}=L_{A \cup B}^{+}$. Proof. Since $A, B \subseteq A \cup B$, we have $L_{A}^{+} \cup L_{B}^{+} \subseteq L_{A \cup B}^{+}$. Let $\gamma \in L_{A \cup B}^{+}$. Then $\gamma \in A \cup B$, and so $\gamma \in A$ or $\gamma \in B$, or $\gamma \in L_{A \cup B}$. If the latter happens, then there exists $\alpha \in A \cup B$ such that $\operatorname{ran} \gamma \subseteq \operatorname{ran} \alpha$ and $\operatorname{dim}(\operatorname{ran} \alpha / \operatorname{ran} \gamma)=n$. Hence $\gamma \in L_{A} \cup L_{B}$. Therefore $\gamma \in L_{A}^{+} \cup L_{B}^{+}$and the result follows.

A similar result does not hold for the intersection of two non-empty subsets of $G S(m, n)$. That is, there are non-empty subsets A, B of $G S(m, n)$ whose intersection is also non-empty but $L_{A \cap B}^{+} \varsubsetneqq L_{A}^{+} \cap L_{B}^{+}$. To see this, suppose $\left\{e_{i}\right\}$ is a basis for V and write $\left\{e_{i}\right\}=\left\{a_{i}\right\} \dot{\cup}\left\{b_{j}\right\} \dot{\cup}\left\{c_{j}\right\} \dot{\cup}\left\{d_{j}\right\}$, with $|J|=n$. Since $n \leq m$, we can also write $\left\{a_{i}\right\} \dot{\cup}\left\{b_{j}\right\}=\left\{x_{i}\right\},\left\{a_{i}\right\} \dot{\cup}\left\{b_{j}\right\} \dot{\cup}\left\{c_{j}\right\}=\left\{y_{i}\right\}$ and $\left\{a_{i}\right\} \dot{\cup}\left\{d_{j}\right\}=\left\{z_{i}\right\}$. Now define

$$
\alpha=\binom{e_{i}}{x_{i}}, \quad \beta=\binom{e_{i}}{y_{i}}, \quad \gamma=\binom{e_{i}}{z_{i}}
$$

in $T(V)$. It is easy to see that $\alpha, \beta, \gamma \in G S(m, n)$ and $\operatorname{ran} \alpha \subseteq \operatorname{ran} \beta, \operatorname{dim}(\operatorname{ran} \beta / \operatorname{ran} \alpha)=$ n and $\operatorname{ran} \alpha \nsubseteq \operatorname{ran} \gamma$. Let $A=\{\alpha, \gamma\}$ and $B=\{\beta, \gamma\}$. Then $A \cap B=\{\gamma\}$. Since $\alpha \in A$ and $\alpha \in L_{B}$, it follows that $\alpha \in L_{A}^{+} \cap L_{B}^{+}$. On the other hand, $\alpha \neq \gamma$ and $\alpha \notin L_{\{\gamma\}}$. Hence $\alpha \notin L_{A \cap B}^{+}$.

In addition, the correspondence $A \mapsto L_{A}^{+}$is not one-to-one. For example, if $C=$ $\{\alpha, \beta\}$ and $D=\{\beta\}$ where α, β are the linear transformations defined in the last paragraph, then $L_{C}^{+}=L_{D}^{+}$. To see this, let $\delta \in G S(m, n)$ be such that $\operatorname{ran} \delta \subseteq \operatorname{ran} \alpha$ and $\operatorname{dim}(\operatorname{ran} \alpha / \operatorname{ran} \delta)=n$. Then $\operatorname{ran} \delta \subseteq \operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$ and

$$
n=\operatorname{dim}(\operatorname{ran} \alpha / \operatorname{ran} \delta) \leq \operatorname{dim}(\operatorname{ran} \beta / \operatorname{ran} \delta) \leq d(\delta)=n
$$

That is, if $\delta \in L_{C}^{+}$then $\delta=\beta$ or $(\operatorname{ran} \delta \subseteq \operatorname{ran} \beta$ and $\operatorname{dim}(\operatorname{ran} \beta / \operatorname{ran} \delta)=n$) (by the definition of α and β, this covers the possibility that $\delta=\alpha$). Hence $\delta \in L_{D}^{+}$, and clearly $L_{D}^{+} \subseteq L_{C}^{+}$, so we have equality as stated.

Note that by [1] vol 2, p 85, Exercise 3, if S is a right simple semigroup without idempotents and if $S=S x \cup\{x\}$ then x belongs to (at least) two distinct principal left ideals L_{1} and L_{2}, hence S is contained in both of these and so $L_{1}=L_{2}$, a contradiction. That is, $G S(m, n)$ is not a principal left ideal of itself.

To decide when other left ideals of $G S(m, n)$ are principal, we first observe that the principal left ideal generated by $\alpha \in G S(m, n)$ is $L_{\{\alpha\}}^{+}$. For, clearly $G S(m, n)^{1} \alpha \subseteq$ $L_{\{\alpha\}}^{+}$since $\alpha \in L_{\{\alpha\}}^{+}$and $L_{\{\alpha\}}^{+}$is a left ideal of $G S(m, n)$. Conversely, the argument
in the second paragraph of the proof of Theorem 4.1 shows that if $\alpha \in A \subseteq G S(m, n)$ and $\beta \in L_{A}$ then $\beta=\gamma \alpha$ for some $\gamma \in G S(m, n)$. In other words, $L_{\{\alpha\}} \subseteq G S(m, n) \alpha$ and it follows that $L_{\{\alpha\}}^{+}=G S(m, n)^{1} \alpha$.

Corollary 4.5. Let A be a non-empty subset of $G S(m, n)$ and $\alpha \in G S(m, n)$. Then $L_{A}^{+}=L_{\{\alpha\}}^{+}$if and only if $\alpha \in L_{A}^{+}$and $A \backslash\{\alpha\} \subseteq L_{\{\alpha\}}$.

In effect, the following result determines when left ideals are proper.

Theorem 4.6. Let A be a non-empty subset of $G S(m, n)$. Then $L_{A}^{+}=G S(m, n)$ if and only if for each $\alpha \in G S(m, n)$ there exists $\lambda \in A$ such that $\operatorname{ran} \alpha \subseteq \operatorname{ran} \lambda$.

Proof. Suppose the latter condition holds for a non-empty $A \subseteq G S(m, n)$. Let $\left\{e_{i}\right\}$ be a basis for V, suppose $\beta \in G S(m, n)$ and write $e_{i} \beta=b_{i}$ for each i. We can expand $\left\{b_{i}\right\}$ into a basis for V, say $\left\{b_{i}\right\} \dot{\cup}\left\{b_{j}\right\}$. Write $\left\{b_{j}\right\}=\left\{c_{j}\right\} \dot{\cup}\left\{d_{j}\right\}$ and let $\left\{c_{i}\right\}=\left\{b_{i}\right\} \dot{\cup}\left\{c_{j}\right\}$. Define

$$
\gamma=\binom{e_{i}}{c_{i}}
$$

Then $\gamma \in G S(m, n)$ and so there exists $\lambda \in A$ such that $\operatorname{ran} \gamma \subseteq \operatorname{ran} \lambda$. Hence $\operatorname{ran} \beta \subseteq \operatorname{ran} \gamma \subseteq \operatorname{ran} \lambda$ and $n \geq \operatorname{dim}(\operatorname{ran} \lambda / \operatorname{ran} \beta) \geq \operatorname{dim}(\operatorname{ran} \gamma / \operatorname{ran} \beta)=n$. Therefore $\beta \in L_{A} \subseteq L_{A}^{+}$. Thus $G S(m, n) \subseteq L_{A}^{+}$and equality follows. Conversely, if there exists $\alpha \in G S(m, n)$ such that $\operatorname{ran} \alpha \nsubseteq \operatorname{ran} \lambda$ for all $\lambda \in A$, then clearly $\alpha \notin L_{A}^{+}$and hence L_{A}^{+}is a proper subset of $G S(m, n)$.

To see that A may not equal $G S(m, n)$ in the above result, fix $\alpha \in G S(m, n)=G$ say, and write $\beta=\gamma \alpha$ for some fixed $\gamma \in G$. Put $A=G \backslash\{\beta\}$ and recall (see before Lemma 3.6) that $\alpha \neq \gamma \alpha$ in G, so $\alpha \in A$. Clearly $G=G A \cup A$. Also, if $\mu \in G$ then either $\mu \in A$ or $\mu=\gamma^{\prime} \lambda$ for some $\lambda \in A$, and in each case $\operatorname{ran} \mu \subseteq \operatorname{ran} \lambda$ for some $\lambda \in A$. Hence, by the Theorem, $L_{A}^{+}=G$ where $A \varsubsetneqq G$.

It is easy to see that $G S(m, n)$ has no minimal left ideals. For, by [1] vol 2, p 85, Exercise 4, if S is any right simple semigroup without idempotents then $S b a$ is a proper subset of $S a$ for each $a, b \in S$. But if L is a minimal left ideal of S and $x, y \in L$ then $S y x=L=S x$ by minimality, hence S cannot contain any minimal left ideals. However, it is not as easy to see that $G S(m, n)$ has no maximal left ideals.

Theorem 4.7. The semigroup $G S(m, n)$ has no maximal (proper) left ideals.
Proof. From Theorem 4.6, L_{A}^{+}is a proper left ideal if and only if there exists some α in $G S(m, n)$ such that $\operatorname{ran} \alpha \nsubseteq \operatorname{ran} \lambda$ for all $\lambda \in A$.

Let L_{Y}^{+}be a proper left ideal of $G S(m, n)$. Then there exists $\alpha \in G S(m, n)$ such that $\operatorname{ran} \alpha \nsubseteq \operatorname{ran} \lambda$ for all $\lambda \in Y$. Let $Z=Y \cup\{\alpha\}$. Then $L_{Y}^{+} \subseteq L_{Z}^{+}$. Obviously $\alpha \notin L_{Y}^{+}$ and so $L_{Y}^{+} \varsubsetneqq L_{Z}^{+}$. We assert that $L_{Z}^{+} \varsubsetneqq G S(m, n)$.

Write $e_{i} \alpha=a_{i}$ where $\left\{e_{i}\right\}$ is a basis for V, and expand $\left\{a_{i}\right\}$ into a basis for V, say $\left\{a_{i}\right\} \dot{\cup}\left\{a_{j}\right\}$. Write $\left\{a_{j}\right\}=\left\{b_{j}\right\} \dot{\cup}\left\{c_{j}\right\}$ and let $\left\{b_{i}\right\}=\left\{a_{i}\right\} \dot{\cup}\left\{b_{j}\right\}$. Define

$$
\beta=\binom{e_{i}}{b_{i}} \in G S(m, n)
$$

Then $\operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$ and so $\beta \notin Y$. Since $\alpha \neq \beta$, we have $\beta \notin Z$. Suppose $\beta \in L_{Z}$. Then $\operatorname{ran} \beta \subseteq \operatorname{ran} \gamma$ and $\operatorname{dim}(\operatorname{ran} \gamma / \operatorname{ran} \beta)=n$ for some $\gamma \in Z$. If $\gamma=\alpha$, then $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$, a contradiction. Then $\gamma \in Y$, but $\operatorname{ran} \alpha \subseteq \operatorname{ran} \beta \subseteq \operatorname{ran} \gamma$, which contradicts our condition on α and Y. Therefore, $\beta \notin L_{Z}^{+}$and hence $L_{Z}^{+} \varsubsetneqq G S(m, n)$. In other words, given any proper left ideal A, we can find a strictly larger proper left ideal that contains A. Hence there are no maximal left ideals of $G S(m, n)$.

5. Maximal subsemigroups of $G S(m, n)$

In this section, we show that any subspace $U \neq\{0\}$ of V with codimension at least n gives rise to a maximal subsemigroup of $G S(m, n)$: here, our work closely follows that in [7].

Let $U \neq\{0\}$ be a subspace of V with $\operatorname{codim}(U) \geq n$ and define

$$
M_{U}=\{\alpha \in G S(m, n): U \nsubseteq \operatorname{ran} \alpha \quad \text { or } \quad(U \alpha \subseteq U \quad \text { or } \operatorname{dim}(V \alpha / U)<n)\}
$$

Theorem 5.1. For each subspace $U \neq\{0\}$ of V with $\operatorname{codim}(U) \geq n, M_{U}$ is a maximal subsemigroup of $G S(m, n)$.

Proof. We first show that M_{U} is a subsemigroup of $G S(m, n)$. Let $\alpha, \beta \in M_{U}$. Since $\alpha, \beta \in G S(m, n)$, it follows that $\alpha \beta \in G S(m, n)$. If $U \nsubseteq \operatorname{ran}(\alpha \beta)$ then $\alpha \beta \in M_{U}$. If $U \subseteq \operatorname{ran}(\alpha \beta)$ then $U \subseteq \operatorname{ran} \beta$. Hence $U \beta \subseteq U$ or $\operatorname{dim}(\operatorname{ran} \beta / U)<n$. If the latter holds then $\operatorname{dim}(\operatorname{ran}(\alpha \beta) / U) \leq \operatorname{dim}(\operatorname{ran} \beta / U)<n$ and so $\alpha \beta \in M_{U}$. If $U \beta \subseteq U$ then $U \beta \subseteq \operatorname{ran}(\alpha \beta)$ and so $U \subseteq \operatorname{ran} \alpha$. Thus, $U \alpha \subseteq U$ or $\operatorname{dim}(\operatorname{ran} \alpha / U)<n$ since $\alpha \in M_{U}$. Suppose $U \alpha \subseteq U$. Then $U \alpha \beta \subseteq U \beta \subseteq U$ and therefore $\alpha \beta \in M_{U}$. If $\operatorname{dim}(\operatorname{ran} \alpha / U)<n$, write $U=\left\langle u_{i}\right\rangle$ and so $U \beta=\left\langle u_{i} \beta\right\rangle$. Hence $U=\left\langle u_{i} \beta, u_{j}\right\rangle$ for some linearly independent set $\left\{u_{i} \beta\right\} \dot{\cup}\left\{u_{j}\right\}$, and likewise $\operatorname{ran} \alpha=\left\langle u_{i}, w_{r}\right\rangle$ and $\operatorname{ran}(\alpha \beta)=\left\langle u_{i} \beta, w_{r} \beta\right\rangle$. On the other hand, since $U=\left\langle u_{i} \beta, u_{j}\right\rangle \subseteq \operatorname{ran}(\alpha \beta)$, we have $\operatorname{ran}(\alpha \beta)=\left\langle u_{i} \beta, u_{j}, w_{s}\right\rangle$. Hence $|R|=|J|+|S|$. Thus,

$$
\operatorname{dim}(\operatorname{ran}(\alpha \beta) / U)=|S| \leq|R|<n .
$$

Therefore, $\alpha \beta \in M_{U}$ and M_{U} is a subsemigroup of $G S(m, n)$.

In order to prove the maximality of M_{U}, we show that a subsemigroup M of $G S(m, n)$ properly containing M_{U} necessarily is $G S(m, n)$ itself. Let M be a subsemigroup of $G S(m, n)$ satisfying these conditions. Let $\gamma \in M \backslash M_{U}$ and $\alpha \in G S(m, n) \backslash M_{U}$. Since $\gamma, \alpha \notin M_{U}$, we know that $U \subseteq \operatorname{ran} \gamma, U \gamma \nsubseteq U$, $\operatorname{dim}(\operatorname{ran} \gamma / U) \geq n$ and $U \subseteq \operatorname{ran} \alpha$, $U \alpha \nsubseteq U, \operatorname{dim}(\operatorname{ran} \alpha / U) \geq n$. If $U \alpha^{-1}=\left\langle a_{i}\right\rangle$ and $U \gamma^{-1}=\left\langle b_{j}\right\rangle$, then $U=\left\langle a_{i} \alpha\right\rangle=$ $\left\langle b_{j} \gamma\right\rangle$ and $\left\{a_{i} \alpha\right\},\left\{b_{j} \gamma\right\}$ are bases for U, since α and γ are one-to-one. Therefore $|I|=|J|$ and we can write $U \gamma^{-1}=\left\langle b_{i}\right\rangle$ and $U=\left\langle a_{i} \alpha\right\rangle=\left\langle b_{i} \gamma\right\rangle$. Since $U \alpha^{-1}$ is a subspace of V, we can expand $\left\{a_{i}\right\}$ into a basis for V, say $\left\{a_{i}\right\} \cup\left\{e_{k}\right\}$. Then ran $\alpha=$ $\left\langle a_{i} \alpha, e_{k} \alpha\right\rangle$ where $\left\{a_{i} \alpha, e_{k} \alpha\right\}$ is linearly independent. Hence $\operatorname{codim}\left(U \alpha^{-1}\right)=|K|=$ $\operatorname{dim}(\operatorname{ran} \alpha / U)$. Since $\operatorname{ran} \alpha=\left\langle a_{i} \alpha, e_{k} \alpha\right\rangle$ and $\operatorname{ran} \alpha \subseteq V$, we can expand $\left\{a_{i} \alpha\right\} \cup\left\{e_{k} \alpha\right\}$ into a basis for V, say $\left\{a_{i} \alpha, e_{k} \alpha, e_{\ell}\right\}$ with $|L|=n$ and so $\operatorname{codim} U=|K|+n=|K|$.

Analogously we can expand $\left\{b_{i}\right\}$ into a basis for V, say $\left\{b_{i}, f_{r}\right\}$, and ran γ is spanned by the linearly independent set $\left\{b_{i} \gamma, f_{r} \gamma\right\}$. Hence

$$
\operatorname{codim}\left(U \gamma^{-1}\right)=|R|=\operatorname{dim}(\operatorname{ran} \gamma / U) \geq n
$$

We can expand $\left\{b_{i} \gamma, f_{r} \gamma\right\}$ into a basis for V, say $\left\{b_{i} \gamma, f_{r} \gamma, f_{s}\right\}$. Hence $d(\gamma)=n=$ $|S|$ and, since $|L|=n$, this means we can write $\left\{f_{\ell}\right\}$ instead of $\left\{f_{s}\right\}$. Moreover $\operatorname{codim} U=|R|=|K|$. Therefore, we can also write $\left\{f_{k}\right\}$ and $\left\{f_{k} \gamma\right\}$ instead of $\left\{f_{r}\right\}$ and $\left\{f_{r} \gamma\right\}$, respectively.
Since $U \gamma \nsubseteq U$, there exists $u \in U$ such that $u \gamma \notin U$. It follows that $\left\{b_{i}, u\right\}$ and $\left\{b_{i} \gamma, u \gamma\right\}$ are linearly independent. We can expand these sets into bases for V and for ran γ, respectively, say $\left\{b_{i}, u, h_{k}\right\}$ and $\left\{b_{i} \gamma, u \gamma, g_{k}\right\}$ (note that $|K|=\operatorname{codim}\left(U \gamma^{-1}\right)=$ $\operatorname{dim}\left\langle u, h_{k}\right\rangle$ and $\left.|K|=\operatorname{dim}(\operatorname{ran} \gamma / U)=\operatorname{dim}\left\langle u \gamma, g_{k}\right\rangle\right)$. We can also expand $\left\{b_{i} \gamma, u \gamma, g_{k}\right\}$ into a basis $\left\{b_{i} \gamma, u \gamma, g_{k}, g_{t}\right\}$ for V, where $|T|=d(\gamma)=n=|L|$. Write $\left\{g_{\ell}\right\}$ instead of $\left\{g_{t}\right\}$ and let $W=\left\langle u \gamma, g_{k}, g_{\ell}\right\rangle$. Then W is a complement of U in V. We have $\langle u\rangle \subseteq U \cap W \gamma^{-1}$. Also $\langle u\rangle \subseteq\left\langle u, h_{k}\right\rangle$, which is a complement of $U \gamma^{-1}$ in V. Since $|K|=\operatorname{dim}(\operatorname{ran} \gamma / U) \geq n=|L|$, we may write $\left\{h_{k}\right\}=\left\{c_{k}\right\} \dot{\cup}\left\{d_{\ell}\right\}$. Define

$$
\beta=\left(\begin{array}{ll}
a_{i} & e_{k} \\
b_{i} & c_{k}
\end{array}\right) .
$$

Since $u \in U$ and $u \notin \operatorname{ran} \beta$, it follows that $U \nsubseteq \operatorname{ran} \beta$ and so $\beta \in M_{U}$. Write $\{u\} \cup\left\{d_{\ell}\right\}=\left\{c_{\ell}\right\}$ and $c_{\ell} \gamma=z_{\ell}$ for each ℓ. Then

$$
\gamma=\left(\begin{array}{ccc}
b_{i} & c_{k} & c_{\ell} \\
b_{i} \gamma & c_{k} \gamma & z_{\ell}
\end{array}\right) .
$$

Let $\left\langle w_{\ell}\right\rangle$ be a complement of ran γ in V. As in the second paragraph above, let $\left\{e_{\ell}\right\}$ be a basis for a complement of $\operatorname{ran} \alpha$ in V and write $\left\{e_{\ell}\right\}=\left\{x_{\ell}\right\} \dot{\cup}\left\{y_{\ell}\right\}$. Now write $\left\{z_{\ell}\right\} \cup\left\{w_{\ell}\right\}=\left\{v_{\ell}\right\}$ and define

$$
\delta=\left(\begin{array}{ccc}
b_{i} \gamma & c_{k} \gamma & v_{\ell} \\
a_{i} \alpha & e_{k} \alpha & x_{\ell}
\end{array}\right) .
$$

Since $U=\left\langle a_{i} \alpha\right\rangle \subseteq \operatorname{ran} \delta$ and $U \delta=\left\langle b_{i} \gamma\right\rangle \delta=\left\langle a_{i} \alpha\right\rangle=U$, it follows that $\delta \in M_{U}$. Since $\beta \gamma \delta=\alpha$, we have $\alpha \in M_{U} \cdot M \cdot M_{U} \subseteq M$. Therefore, $M=G S(m, n)$ and hence M_{U} is maximal.

References

1. A H Clifford and G B Preston, The Algebraic Theory of Semigroups, Mathematical Surveys, No. 7, vol 1 and 2, American Mathematical Society, Providence, RI, 1961 and 1967.
2. J. B. Fountain, Abundant Semigroups, Proc. London Math. Soc., 44 (1982) 103-129.
3. M Holz, K Steffens and E Weitz, Introduction to Cardinal Arithmetic, Birkhäuser Verlag, Basel, 1999.
4. T W Hungerford, Algebra, Springer Verlag, NY, 1974.
5. N Jacobson, Lectures on Abstract Algebra, 3 vols, van Nostrand, Amsterdam, 1953.
6. Inessa Levi, B M Schein, R P Sullivan and G R Wood, Automorphisms of Baer-Levi semigroups, J London Math Soc, 28 (3)(1983) 492-495.
7. Inessa Levi and G. R. Wood, On maximal subsemigroups of Baer-Levi semigroups, Semigroup Forum, 30 (1)(1984) 99-102.
8. Lucinda M. Lima, Nilpotent local automorphisms of an independence algebra, Proc Royal Soc Edinburgh, 124A (3)(1994) 423-436.
9. M A Reynolds and R P Sullivan, Products of idempotent linear transformations, Proc. Royal Soc. Edinburgh, 100A (1985) 123-138.
10. R P Sullivan, Ideals in transformation semigroups, Commen. Math. Univ. Carolinae, 19 (3)(1978) 431-446.
11. E G Sutov, On a certain semigroup of one-to-one transformations (Russian), Uspehi Mat Nauk, 18 (1963) 231-235; English translation by Boris Schein in Amer Math Soc Translations, 139 (1988) 191-196.

[^0]: * This paper forms part of work by the first author for a PhD supervised by the second author who gratefully acknowledges the assistance of Centro de Matematica, Universidade do Minho, Portugal during his visit in May-July 2002. Both authors acknowledge the support of the Portuguese Foundation for Science and Technology (FCT) through the research program POCTI.

