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Abstract

This article answers three questions of J. Almeida. Using combinatorial, algebraic
and topological methods, we compute joins involving the pseudovariety of �nite groups,
the pseudovariety of semigroups in which each idempotent is a right zero and the
pseudovariety generated by monoids M such that each idempotent of Mnf1g is a left
zero.

1. Introduction

The need to organize �nite semigroups into a hierarchy comes from several algorithmic
problems in connection with computer science. The lattice of semigroup pseudova-
rieties (classes of �nite semigroups closed under �nite direct product, subsemigroup
and homomorphic image) became the object of special consideration after the publi-
cation of Eilenberg's treatise [11]. Many problems from language theory found indeed
an interesting formulation within this scope. At the moment, one of the challenges
is to understand some operators acting on pseudovarieties. In this perspective, topo-
logical approaches providing signi�cant results were developed during the last decade
by Almeida. The present paper takes advantage of these techniques to answer three
questions of his concerning calculations of joins of semigroup pseudovarieties.

Recall that the join V _W of two pseudovarieties V and W is the smallest
pseudovariety containing both V and W . Surprisingly, this operator leads to com-
plicated decision problems. For instance, it has been known for a long time that the
join of two �nitely based pseudovarieties might not be �nitely based [19]. Recently,
interest in this particular operator has been stimulated by an unexpected result of
Albert, Baldinger and Rhodes [1], who exhibited two decidable pseudovarieties whose
join is not decidable. Consequently, there is no hope to �nd a general result for doing
exact computations. One rather has to bring out standard techniques based on one's
knowledge of speci�c pseudovarieties.

For this reason, many researchers have devoted attention to the study of
joins of particular pseudovarieties. Rhodes [18] proposed various questions, and
some calculations, providing in particular positive answers to decision problems, were
performed by Almeida and by both authors in [2, 10, 9, 21, 22]. The determination
of the join of the pseudovarieties of R-trivial and L-trivial semigroups proposed by
K�onig [13] is typical of this kind of problems. It was solved by Almeida and the
�rst author in [6]. Almeida and Weil [7] then used more elaborate techniques based
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on a study of pro�nite groups to settle arduous computations involving groups. On
the other hand, Trotter and Volkov [20] solved the �nite basis problem in several
instances. See [23] for a survey of these questions.

This paper illustrates some of the already known techniques to evaluate joins.
We solve a problem posed by Almeida [5, Problem 24]:

Let G be the pseudovariety of �nite groups, D the pseudovariety of
semigroups in which each idempotent is a right zero and MK the pseu-
dovariety generated by monoids M such that each idempotent of Mnf1g
is a left zero. Which of the following equalities are true?

1. MK _G = [[x!yx! = x!y]]

2. MK _D = [[x!yx!zt! = x!yzt!; x! = x!+1]]

3. MK _D _G = [[x!yx!zt! = x!yzt! ]]

This is an attempt to extend existing results obtained by replacing MK by K ,
the dual pseudovariety of D . As we shall see, MK is generated by all semigroups
obtained by adding a neutral element to semigroups of K . The join K _ D is the
class of all semigroups S such that eSe is trivial for any idempotent e of S : this
is the well-known pseudovariety LI of locally trivial semigroups. Both joins K _G
and K_D_G are less classical but may easily be computed (see [5, Exercises 5.2.14
and 5.2.15]).

The three joins proposed by Almeida are determined in this paper. We show
that the guess for MK _ D is correct, while the other two constitute strict upper
bounds. The case MK_D turns out to be much simpler than the other two and only
requires combinatorics on words. The proofs in the other cases involve topological
arguments.

The paper is organized as follows. In Section 2., we �rst recall some terminol-
ogy and notation (Section 2.1.). We then give various results gathered into several
parts for reasons of exposition and clarity. We present a brief overview of the theory
of implicit operations developed by Almeida and the �rst author (Sections 2.2. and
2.3.). Section 2.4. then states technical (yet rather classical) results with which the
reader may perhaps not be fully acquainted. We �nally present more speci�c facts
concerning the pseudovariety MK in Section 2.5.. Sections 3., 4. and 5. compute
MK _D , MK _D _G and MK _G respectively.

2. Preliminaries

We presuppose familiarity with elementary concepts and terminology of semigroup
theory and combinatorics on words. We will briey review some de�nitions and
results that we shall need in the sequel. For more details on any construction or
statement of this section, the reader is referred to any standard text on the subject.
See for example the books of Howie [12], Lallement [14] or Pin [16] for basic notions
on semigroups or pseudovarieties and of Almeida [5] for more recent developments
concerning the theory of implicit operations.
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2.1. Vocabulary and notation

We �x a �nite alphabet Am = fa1; : : : ; amg (m > 0), and we set A =
S

m2NAm . We
denote by A+

m (resp. A�
m ) the free semigroup (resp. monoid) on Am , and by 1 the

empty word. Recall that the content c(u) of a word u 2 A�
m is the set of all letters

appearing in u . The length of u is denoted by juj and the number of occurrences of

a letter a in u by juja . Given a rewriting rule �! on Am , we denote by
�

�! its
reexive and transitive closure.

Let S be a semigroup. We denote by S1 the semigroup S itself if it is a
monoid, or S [ f1g where 1 =2 S acts as a neutral element otherwise. The number
of elements of S is denoted by jSj . An element s of S is regular if there exists
t 2 S such that sts = s . In a �nite (resp. compact) semigroup, the idempotent of
the subsemigroup (resp. closed subsemigroup) generated by an element s is denoted
by s! . If for each s 2 S we have s! � s = s! , then S is a group-free semigroup and
is said to be aperiodic. A semigroup is nilpotent if it has a unique idempotent which
is a zero.

A pseudovariety of semigroups is a class of �nite semigroups closed under
�nitary direct product, homomorphic image and subsemigroup. An example is the
pseudovariety S of all �nite semigroups. Before introducing other classical pseudova-
rieties, let us mention some operators the paper deals with. Let V and W be two
pseudovarieties.

- The intersection V \W of V and W is easily seen to be a pseudovariety.

- The join V _W of V and W is the smallest pseudovariety containing both
pseudovarieties.

- We denote by MV the pseudovariety generated by all S1 with S 2 V . Note
that MV is a semigroup pseudovariety containing V , and that the operator
V 7�!MV is idempotent. See [5, Chapter 7] for further information on MV .

We now set up notation concerning pseudovarieties we will frequently use.

- We denote by G the pseudovariety of all �nite groups.

- The pseudovariety D (resp. K) consists in all �nite semigroups in which idem-
potents are right zeros (resp. left zeros).

- We denote by N the pseudovariety of nilpotent semigroups. One can easily
check the equality N = K \D .

- The pseudovariety LI is the join of K and D .

Let us say that a semigroup pseudovariety is monoidal if for any semigroup S , S
belongs to V if and only if S1 does. Observe that MV is monoidal for any V .
Conversely, if V is monoidal, then MV = V . On the other hand, LI, D , K and N
do not contain any non-trivial monoid, hence they are not monoidal.

We say that
S

i2NVi is the union of an ascending chain if Vi � Vi+1 for each
i 2 N . Anticipating the terminology recalled in Section 2.2., we give a well-known
example of such a union in the following classical statement. See for instance [5,
page 179].

251



Azevedo and Zeitoun

Lemma 2.1. Let Dn be the pseudovariety of all semigroups satisfying the identity

zt1 � � � tn = t1 � � � tn

Then, the pseudovariety D is the union of the ascending chain
S

iDi .

The following simple fact is central in Section 3..

Lemma 2.2. The join commutes with a union of an ascending chain; that is, if
Vi are pseudovarieties satisfying Vi � Vi+1 , then for any pseudovariety V :

V _

 [
i2N

Vi

!
=
[
i2N

(V _Vi)

2.2. Overview of the theory of implicit operations

This section recalls the most general material of the theory of implicit operations
developed by Almeida. The reader can refer to [3, 4] for the main results, or to [5,
Chapter 3] for the bulk of this theory.

A semigroup S separates two words u and v of A+
m if there exists a morphism

' : A+
m ! S such that '(u) 6= '(v). Otherwise, S satis�es u = v . Let V be a

pseudovariety of semigroups. De�ne rV and eV on A+
m �A+

m as follows:

rV(u; v) = inf
�
jSj j S 2 V and S separates u and v

	
and

eV(u; v) = 2�rV(u;v)

with, by convention, inf � = +1 and 2�1 = 0. It is not di�cult to see that eV is
a pseudo-metric and that the relation �V de�ned by

u �V v () eV(u; v) = 0

is a congruence. The quotient A+
m=�V is the free semigroup in the variety generated

by V , denoted by Fm(V). If V is not trivial, then distinct letters are not �V -related,
and one can identify Am with Am=�V .

It is easy to check that eV induces an ultrametric distance function dV over
Fm(V), and that the multiplication in Fm(V) is uniformly continuous for this met-
ric, making Fm(V) a topological semigroup. The completion of the metric space
(Fm(V); dV) is denoted by Fm(V) . It is known that Fm(V) is a compact totally
disconnected topological semigroup, in which Fm(V) is dense. Elements of Fm(V)
are called the m-ary implicit operations on V . Implicit operations that lie in Fm(V)
are said to be explicit.

Observe that a sequence (�k)k2N of elements of Fm(V) converges to some
� 2 Fm(V) if and only if

8 S 2 V; 9 N 2 N such that 8 k 2 N; k > N =) S j== � = �k

As an important example, it is routine to verify that for each � 2 Fm(V) the sequence
(�k!)k2N converges to �! , the idempotent of the closed subsemigroup generated by
� .

One should keep in mind two fundamental properties:
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- Any morphism from Am into a semigroup S of V can be extended uniquely
to a continuous morphism from Fm(V) into S .

- Let V and W be two pseudovarieties such that W � V . Then, there exists a
unique continuous morphism from Fm(V) into Fm(W) that maps ai to ai .
This morphism is surjective. It is called the projection from Fm(V) onto
Fm(W) . We say that two implicit operations � and � on V agree or coincide
on W if their images under this projection are equal. The projection onto
Fm(W) of an implicit operation � will be called the restriction of � on W .

Using the �rst point, it can be proved that any morphism ' from Am into F`(V)
can be extended uniquely to a continuous morphism �' from Fm(V) into F`(V) .
Let � = �(a1; : : : ; am) be an m-ary implicit operation and let �1; : : : ; �m be `-ary
implicit operations. Let ' : Am ! F`(V) be the morphism mapping ai to �i . We
denote by �(�1; : : : ; �m) the image of � under �'. This `-ary implicit operation is
said to be obtained by substituting ai for �i in � . For instance, �! is obtained by
substituting a1 for � in the unary implicit operation a!1 .

A pseudoidentity on V is a formal identity � = � , with �; � in Fm(V) for
some m . We say that a semigroup S 2 V satis�es � = � if for every continuous
morphism ' : Fm(V) ! S , where S is endowed with the discrete topology, we have
'(�) = '(�). We will then write S j== � = � . We also say in this case that � and �
coincide on S . If S does not satisfy � = � , then it separates � and � .

If � is a set of pseudoidentities on V , S satis�es � if it satis�es every
pseudoidentity of �, and a class C of semigroups satis�es � if every semigroup
of C satis�es � (written C j== �).

The class of all semigroups of V satisfying � is denoted by [[�]]
V
. The term

pseudoidentity means \pseudoidentity on S", and we also set [[�]] = [[�]]
S
. Clearly,

any class of the form [[�]]
V

is a pseudovariety. The converse, due to Reiterman [17],
constitutes the foundation of the equational theory for pseudovarieties.

Theorem 2.3. Let V be a pseudovariety of semigroups and let W be a subclass
of V . Then, W is a pseudovariety if and only if there exists a set of pseudoidentities
� on V such that W = [[�]]

V
.

For instance, every semigroup whose unique idempotent acts as a neutral
element is a group. Thus, the pseudovariety G is de�ned by x!y = yx! = y ,
which is abbreviated by G = [[x! = 1]]. In the same way, a semigroup is aperiodic if
it satis�es x! = x!+1 (x!+1 abbreviates x � x! = x! � x). By de�nition, a semigroup
belongs to D (resp. to K) if it satis�es yx! = x! (resp. x!y = x! ). As another
example, Pin [15] established the equalities

MK = [[x!yx! = x!y; x!+1 = x!]] = [[x!yx = x!y]]

An identity is a pseudoidentity whose members are explicit. A pseudovariety
de�ned by identities is said to be equational. A pseudovariety is locally �nite if the
semigroup Fm(V) is �nite for every m > 0. The following proposition is proved
in [3].
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Proposition 2.4. Let V be a pseudovariety. Then,

1. If Fm(V) is �nite for some m > 0, then Fm(V) = Fm(V).

2. If V is locally �nite, then it is equational.

An important example of a locally �nite pseudovariety is Sl , the pseudovariety
of �nite semilattices, which is de�ned by:

Sl = [[x = x2; xy = yx]]

2.3. Some fundamental pseudovarieties

It is immediate that the pseudoidentities satis�ed by V_W are exactly those satis�ed
by both V and W . Thus, a strategy to compute V _W is to study implicit
operations on V and W . This frequently requires a precise knowledge of the implicit
operations on some fundamental pseudovarieties. Sometimes, information about
implicit operations on V may be obtained from the subpseudovarieties of V . We
review here classical results concerning the pseudovarieties of nilpotent semigroups,
semilattices and semigroups whose regular D-classes form a subsemigroup.

The simplest situation occurs when V contains all nilpotent semigroups. Each
assertion of the next lemma is well-known. See for instance [5, pp. 88{91] for a proof.

Lemma 2.5. Let V be a pseudovariety containing N, and let (�k)k2N be a se-
quence of explicit operations on V converging to an implicit operation � on V . The
following assertions hold:

1. The pseudovariety V does not satisfy any non-trivial identity, that is, Fm(V) =
A+
m . More precisely, if V satis�es � = u where u is explicit, then � and u are

equal.

2. The sequence (j�kj)k2N converges to +1 if and only if � is not explicit.

3. If in addition V contains K (resp. D) and if � is not explicit, then for every
n > 0 , there exists a word wn of length n that depends only on � such that wn

is a pre�x (resp. a su�x) of �k for any su�ciently large k .

This general result may help to understand implicit operations on N , K , D or LI .
The following corollary expands on the situation for K and D . See once again [5,
pp. 88{91].

Corollary 2.6. Let V be a pseudovariety containing K (resp. D). Two implicit
operations on V agree on K (resp. on D) if and only if they have the same pre�x
(resp. the same su�x) of length k for any k > 0. In particular, if � and � are non
explicit operations on V , then � and � agree on K (resp. on D) if and only if for
any �; � 2 Fm(V) , �� and �� (resp. �� and ��) agree on K (resp. on D).
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Lemma 2.5 allows us to speak about the pre�x (resp. su�x) of length n of any
non explicit operation on a pseudovariety V containing K (resp. D). It is also worth
extending the notion of alphabetic content. This may be done when V contains Sl .

Proposition 2.7. Let V be a pseudovariety containing Sl. Then, there exists a
unique uniformly continuous morphism c : Fm(V) �! 2Am such that c(ai) = faig .

If V contains Sl , the morphism c is in fact the projection from Fm(V) onto Fm(Sl).
If u and v are words representing the same explicit operation � , then u and v have
the same content in the usual sense, and the content of � is c(�) = c(u) = c(v).

Remark 2.8. It is worth re�ning here an important consequence of the density
of Fm(V) in Fm(V) . In general, if S belongs to V , then any implicit operation
on V coincides with an explicit operation on S . This follows directly from the fact
that any implicit operation � is a limit of a sequence (�k) of explicit ones. Now, the
�niteness of Fm(Sl) and the continuity of the content morphism shows that one may
assume c(�k) and c(�) to be equal.

Semigroups whose regular D-classes are subsemigroups form a pseudovariety
called DS which plays an important role for two reasons. In the �rst place, implicit
operations on DS share an essential decomposition property (Theorem 2.9 (4) below)
that leads to signi�cant theorems; on the other hand, theorems applying to DS

also apply to smaller pseudovarieties. It turns out that many pseudovarieties arising
frequently in the literature are subpseudovarieties of DS . This is the case for G; MK

and D .

The next statement summarizes results on DS due to Almeida and the �rst
author. They can be found in [5, Section 8.1], which is devoted to a detailed study
of DS. See also [8].

Theorem 2.9. Let V be a pseudovariety such that Sl � V � DS. We have:

1. An implicit operation � on DS is regular if and only if � = �!+1 .

2. If �; � are implicit operations on V such that � is regular and c(�) � c(�),
then �� and �� are also regular and there exist �1; �2 2 Fm(V) such that
� = �1�

!�2 .

3. If � and � are regular elements of Fm(V), then

� J � if and only if c(�) = c(�)

4. Every implicit operation � on S admits a factorization of the form

� = u0�1u1 � � � �rur

where each factor �i is regular when restricted to DS and each ui is a word.
Moreover, if ui is empty, then the contents of �i and �i+1 are incomparable,
and if ui is not empty, its �rst letter is not in c(�i) and its last letter is not in
c(�i+1).
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The Brandt semigroup B2 can be used to test the inclusion of a pseudovariety
in DS . Recall that this semigroup

B2 =

��
0 0
0 0

�
;

�
1 0
0 0

�
;

�
0 1
0 0

�
;

�
0 0
1 0

�
;

�
0 0
0 1

��

has the D-class structure shown on Figure 1, where a =

�
0 0
1 0

�
and b =

�
0 1
0 0

�
.

*ba b

a *ab

*0

Figure 1: The Brandt semigroup B2

The �nal propositions of this section can be found in [8]. Proposition 2.10 is classical.

Proposition 2.10. Let V be a pseudovariety. Then, B2 lies in V if and only if
V is not a subpseudovariety of DS.

A semigroup is orthodox if its idempotents form a subsemigroup. Let O be
the pseudovariety of orthodox semigroups. We shall need the following result, which
was proved by Almeida and the �rst author in a more general context.

Proposition 2.11. Let V be a pseudovariety between G and DS \ O . Then,
two regular implicit operations � and � on V are equal as soon as �! = �! and G
satis�es � = �.

2.4. Some more technical results

We recall in this section several unrelated basic results of the theories of �nite
semigroups and implicit operations that are used in the sequel. We shall also establish
a number of additional elementary statements that we shall need at various points
throughout the paper. We begin by general facts on semigroups. A proof of the
following classical lemma can be found in [16].

Lemma 2.12. Let S be a �nite semigroup, and let E(S) be the set of idempotents
of S . Then Sn = SE(S)S for any n > jSj .

The next lemma is less known and more technical. Refer to Almeida [5, Lemma 7.2.4]
for a proof.

Lemma 2.13. Let S be a semigroup satisfying

x!yzx! = x!yx!zx!

Then S1snS1 = (S1sS1)n for every s 2 S and n > jSj + 1 .
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Let us prove another basic statement.

Lemma 2.14. Let V be a pseudovariety containing LI (resp. K , resp. D), and
let � and � be non explicit operations on V . Assume that LI (resp. K, resp. D)
satis�es � = �. Then, one can write � = �~�� and � = �~�� (resp. � = �~� , � = �~�,
resp. � = ~�� , � = ~�� ) where � and � are not explicit.

Proof. This result is in fact a direct consequence of the considerations of [5,
pp. 88{91]. Let us show it when V contains LI. The other cases would be similar.
Since V contains both K and D , we can write by Lemma 2.5:

� = lim
k!1

sk~�ktk

where sk (resp. tk ) is the pre�x (resp. the su�x) of length k of � . We can de�ne
the corresponding sequences for � . Since K (resp. D) satisfy � = � , both � and �
have the same pre�x (resp. su�x) of length k for any k > 0 by Corollary 2.6. So we
get:

� = lim
k!1

sk ~�ktk

By compactness of Fm(V) , we may assume, taking subsequences if necessary, that
(sk)k2N , (tk)k2N , (~�k)k2N and (~�k)k2N converge to � , � , ~� and ~� respectively. Neither
� nor � can be explicit in view of Lemma 2.5 (2).

In a given implicit operation, we know how to substitute ai for another implicit
operation. We would like to know how to substitute ai for the empty word, that is,
to \erase" some letters. Let V be a monoidal pseudovariety and B be a nonempty
subset of Am . De�ne the morphism �B : A+

m ! Fm(V)1 by

�B(ai) =

(
1 if ai 2 B

ai otherwise

Assume that V satis�es u = v . Since V is monoidal, it contains S1 for any S 2 V ,
so it satis�es �B(u) = �B(v). Therefore, there exists a morphism ��B making the
following diagram commutative, where � is the canonical morphism, mapping ai to
itself: A+

m

�

Fm(V)

�B

Fm(V)1

@
@
@
@
@R

�
�

�
�
�	

-

��B

For u; v 2 Fm(V)1 , let r0
V
(u; v) = inf

�
jS1j j S1 2 V and S1 separates u and v

	
and e0

V
(u; v) = 2�r

0

V
(u;v) . It is not di�cult to see that this de�nes a distance function

e0
V

on Fm(V)1 . Observe that if S separates u and v , then so does S1 . From
the inequality jSj 6 jS1j 6 jSj + 1, we deduce that the distances e0

V
and eV are

equivalent on Fm(V), and that the underlying set of the completion of Fm(V)1 is
Fm(V)1 .
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Proposition 2.15. Let V be a monoidal pseudovariety containing Sl and let B
be a subset of Am . Then the morphism �B can be extended in a unique way to a
uniformly continuous morphism ��B from Fm(V) to Fm(V)1 .

Proof. It is su�cient to show that �B maps any Cauchy sequence of elements of
Fm(V) to a Cauchy sequence of elements of Fm(V)1 . Let (�k)k2N be a Cauchy
sequence in Fm(V). Since V contains Sl , the content morphism is uniformly
continuous on Fm(V) by Proposition 2.7. Therefore, we may assume that the
sequence c(�k) is constant. If c(�k) � B , then �B(�k) = 1 which is a convergent
sequence. Otherwise, for any n 2 N , we have dV(�p; �q) 6 2�(n+1) as soon as p
and q are su�ciently large. Therefore, any semigroup S of V such that jSj 6 n+1
satis�es �p = �q . Let T 2 V with jT j 6 n . We have jT 1j 6 n+ 1, and so T 1 satis�es
�p = �q . Hence T satis�es �B(�p) = �B(�q). Since T is arbitrary, this implies that
dV(�B(�p); �B(�q)) 6 2�n , so (�B(�k))k2N is a Cauchy sequence, as required.

We shall abbreviate ��B(�) by �jB=1 , and we shall write �ja=1 instead of �jfag=1 for
a 2 Am .

Remark 2.16. Let �; � 2 Fm(S) and let V be a pseudovariety containing Sl .
Assume that MV satis�es � = � . Since MV contains Sl , we have c(�) = c(�).
Let B such that c(�) n B 6= �. Then, V satis�es �jB=1 = �jB=1 . This is a direct
consequence of the de�nition of MV , which is generated by all semigroups S1 where
S 2 V .

2.5. A speci�c study of the pseudovariety MK

De�ne MKn as follows:

MKn = [[xy1xy2 � � � xynx = xy1xy2 � � � xyn j x 2 A; yi 2 A [ f1g]]

Lemma 2.17 provides a decomposition of MK as a union of an ascending chain. It
is due to Pin [15].

Lemma 2.17. The pseudovariety MK is the union of the ascending chain
S

iMKi .

Proof. Suppose that S satis�es all identities xy1xy2 � � � xynx = xy1xy2 � � � xyn , for
a �xed n with x 2 A and yi 2 A [ f1g . Then, S is aperiodic (take yi = x), and S
satis�es x!yx! = x!y (take x! for x; y1; : : : ; yn�1), so S belongs to MK . Conversely,
note that each S 2 MK satis�es the hypothesis of Lemma 2.13. Therefore, for
n = jSj + 1, we have

st1 � � � stn = asnb for some a; b 2 S1 by Lemma 2.13

= asnbs since S 2MK

= st1 � � � stns

In order to compute joins involving MK , we now de�ne a rewriting rule on A+
m :

u
MKn���! v () 9 a 2 Am; u = w1aw2; v = w1w2 and jw1ja > n
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Notice that this rewriting rule is conuent. We denote by
MKn����! the reexive

transitive closure of
MKn���! , and by #MKn

(u) the unique reduced word w such that

u
MKn����! w . By de�nition, MKn satis�es u = v if and only if #MKn

(u) = #MKn
(v).

Observe that the word #MKn
(u) is obtained by erasing in the word u all the kth

occurrences of letters, for all k > n . Let us �rst state some elementary properties of
this rewriting rule.

Lemma 2.18. We have the following properties

1. If u; v 2 A�
m and u is a pre�x of v , then #MKn

(u) is a pre�x of #MKn
(v) .

2. If a is a letter and u a word of (Am n fag)
� , then #MKn

(ua) = #MKn
(u)a.

3. If #MKn+1
(u) = #MKn+1

(v) , then #MKn
(u) = #MKn

(v).

4. Let u; v 2 A�
m such that juj < n . Then, #MKn

(uv) is of the form uv0 where v0

is obtained from the su�x v of uv by erasing all kth occurrences of letters in
uv for k > n .

5. If jujx > n, then j#MKn
(u)jx = n.

Proof. Each assertion follows directly from the de�nition of #MKn
.

Corollary 2.19. Let u1; u2; v1; v2 be in A�
m and let a 2 Am n c(u1v1). If MKn+1

satis�es the identity u1au2 = v1av2 , then MKn satis�es u1u2 = v1v2 .

Proof. Set # = #MKn+1
. The hypothesis tells us that

#(u1au2) = #(v1av2) (1)

By Statement (1) of Lemma 2.18, #(u1au2) is of the form #(u1a)u
0
2 . Since a is not

in c(u1), we have by Statement (2) of the same lemma: #(u1a) = #(u1)a . Therefore
#(u1au2) = #(u1)au

0
2 . Likewise, #(v1av2) = #(v1)av

0
2 for some v02 . By (1), we get

#(u1)au
0
2 = #(v1)av

0
2 . Since a is not in c(u1) [ c(v1), we have

#(u1) = #(v1)

and

u02 = v02

Using Statement (1) of Lemma 2.18 again, we can write

#MKn
(u1u2) = #MKn

(u1)u
00
2

#MKn
(v1v2) = #MKn

(v1)v
00
2

(2)

From the equality #(u1) = #(v1) and in view of Statement (3) of Lemma 2.18, we
deduce that

#MKn
(u1) = #MKn

(v1) (3)
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We have to prove that MKn satis�es u1u2 = v1v2 , that is, that #MKn
(u1u2) =

#MKn
(v1v2). In view of (2) and (3), it remains to show that u002 = v002 . The word u02

(resp. u002 ) is obtained from the su�x u2 of u1au2 by erasing all n+k+1st occurrences
(resp. all n + kth occurrences) of letters in u1au2 (resp. in u1u2 ) for all k > 0. A
similar statement holds for v02 and v002 . Now, every n+ k + 1st occurrence of a letter
in u1au2 (resp. in v1av2 ) is an n+ k + "th occurrence of this letter in u1u2 (resp. in
v1v2 ) with " 2 f0; 1g . Thus, the equality u02 = v02 implies that u002 = v002 .

Lemma 2.20. Let u , v and t be words. Then,

1. If #MKn
(u) = #MKn

(v), then #MKn
(ut) = #MKn

(vt).

2. Assume that #MKn
(ut) = #MKn

(vt) . Let �t = tjB=1 where

B = fa 2 Am j jutja < n and jvtja < ng

Then #MKn
(u�t) = #MKn

(v�t).

Proof. The �rst assertion is trivial. For the second one, let w = #MKn
(ut) =

#MKn
(vt). We have ut

MKn����! w and vt
MKn����! w . Each rewriting step consists in

erasing a kth occurrence of a letter for some k > n . In particular, no occurrence of
a letter of B can be erased. These letters play a passive role during each step,
so that we may ignore them in the rewriting process. This yields the equality
#MKn

(u�t) = #MKn
(v�t).

It is worth keeping in mind the following direct yet important property of MKn .

Proposition 2.21. The pseudovariety MKn is locally �nite.

Proof. Let u 2 A�
m . The word #MKn

(u) contains at most n occurrences of a
given letter. Therefore, j#MKn

(u)j 6 nm . Hence, there is a �nite number of reduced
words, and the congruence �MKn

has �nite index.

Corollary 2.22. Let V be a pseudovariety containing MK, let �1; �2; �1; �2 be
in Fn(V)1 , and let x be a letter that does not belong to c(�1)[c(�1). If MK satis�es
�1x�2 = �1x�2 then MK satis�es also �1�2 = �1�2 .

Proof. Since MK is the union of the ascending chain
S

n
MKn , it is enough to

show that all MKn satis�es �1�2 = �1�2 . Since the semigroup Fm(MKn+1) is �nite,
for each implicit operation � on V , there exists an explicit operation that coincides
on MKn+1 with � (by Remark 2.8), and therefore it coincides also with � on MKn .
The statement then follows from Corollary 2.19.

Corollary 2.23. Let V be a pseudovariety containing MK. Let u be a word and
let �; � be in Fn(V)1 such that MK satis�es u� = u�. Then MK satis�es � = �.

Proof. We proceed by induction on juj . Corollary 2.22 shows the result for
juj = 1, with �1 = �1 = 1, �2 = � and �2 = � . Assume that it holds when
juj 6 k � 1 and let u be a word of length k . Let u = xu0 with x 2 Am , and
apply Corollary 2.22 with �1 = �1 = 1, �2 = u0� and �2 = u0� : the pseudoidentity
u0� = u0� is satis�ed by MK . We conclude by induction.
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Lemma 2.24. Let V be a pseudovariety containing MK. For any regular oper-
ation � 2 Fm(V), there exists an explicit operation p agreeing with � on MKn and
such that:

c(�) = c(p)

8 x 2 c(�); jpjx > n

Proof. Let us consider a sequence (pk)k2N of explicit operations on V converging
to � . For k large enough, c(pi;k) = c(�i) by continuity of the content morphism
(Proposition 2.7). The semigroup Fm(MKn) is �nite by Proposition 2.21, so it lies
in MK and hence in V . Therefore Fm(MKn) satis�es � = pk for k large enough.
Now, MKn satis�es also xn = x! , so it satis�es

� = �!+1 using Theorem 2.9 (1)

= �n+1 since MKn j== xn = x!

= pn+1
k for k large enough

One can choose p = pn+1
k .

Lemma 2.25. Let p1; : : : ; pk; p; q 2 A�
m , and let x1; : : : ; xk�1 2 Am . Set wi =

pp1x1 � � � pixi . Assume that jwijxi < n for all i = 1; : : : ; k and that jpj < n. Then
#MKn

(wkpkq) is of the form pp01x1 � � � xk�1p
0
kq

0 with c(p01) = c(p1) , c(q
0) � c(q) and

c(p0i) � c(pi) for 1 6 i 6 k � 1.

Proof. By Lemma 2.18, #MKn
(pp1) is a pre�x of #MKn

(wkq). Since jpj < n , no
letter can occur at least n times in p so #MKn

(p) = p . Also #MKn
(pp1) is of the form

pp01 , with c(p01) = c(p1). Indeed, jpj < n implies that at least one occurrence of each
letter of p1 will not be deleted. Since jwijxi < n , no occurrence of xi can be erased

in the pre�x wi of wkpkq during a rewriting step
MKn���! . Therefore, #MKn

(wkpkq)
is of the form pp01x1 � � � xk�1p

0
kq

0 . Since p0i (resp. q
0 ) is obtained from pi (resp. from

q ) by erasing certain letters, we have c(q0) � c(q) and c(p0i) � c(pi).

3. The pseudovariety MK _D

Theorem 3.1. The pseudovariety MK _D is de�ned by

x!yx!zt! = x!yzt!; x! = x!+1

No use of the theory of implicit operations is required for proving this theorem.
The idea of the proof is to write MK and D as unions of ascending chains of
equational pseudovarieties, to compute the join of these equational pseudovarieties,
and to use the fact that the join commutes with such unions (Lemma 2.2).

The desired decompositions of our pseudovarieties as unions of ascending
chains are provided by Lemmas 2.1 and 2.17. From Lemma 2.2, we now get the
expected expression of MK _D :

MK _D =
1[

i;j=0

(MKj _Di) =
1[
i=0

(MKi _Di) (4)
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There is no need to give an explicit basis of identities for MKi _Di , a task
which may be di�cult. We only compute approximations of this pseudovariety. Let
Vn be the pseudovariety de�ned by the identities

xy1xy2 � � � xynxt1 � � � tn = xy1xy2 � � � xynt1 � � � tn;

x; ti 2 A; yi 2 A [ f1g
(5)

We de�ne the corresponding rewriting rule on A+
m by

u
Vn���! v () 9 a 2 Am; 9 t 2 An

m; u = w1aw2t; v = w1w2t and jw1ja > n

Let
Vn����! be the reexive transitive closure of

Vn���! , and denote by #Vn
(u) the

unique reduced word w such that u
Vn����! w . Plainly, Vn satis�es u = v if and

only if #Vn
(u) = #Vn

(v). It is easy to check that the word #Vn
(u) is obtained by

erasing in the word u all the kth occurrences of letters which are followed by at least
n letters in u .

Lemma 3.2. We have the following properties

1. Let u 2 A�
m and t 2 An

m . We have #Vn
(ut) = #MKn

(u)t.

2. The pseudovariety Vn is locally �nite.

Proof. The �rst assertion is a reformulation of the de�nitions of #MKn
and #Vn

.
From Proposition 2.21, there is a �nite number of words of the form #MKn

(u). Using
1 and the �niteness of An

m , we then deduce 2.

Proposition 3.3. We have:

Vn �MKn _Dn

Vn �MK2n _D2n

Proof. Observe that the basis of identities of Vn is obtained by multiplying each
identity of the basis of MKn on the right by t1 � � � tn . This proves both inclusions
MKn � Vn and Dn � Vn , hence Vn �MKn _Dn .

We now prove the inclusion Vn �MK2n_D2n . By Lemma 3.2, Vn is locally
�nite. Since MKn_Dn is contained in Vn , it is also locally �nite. Lemma 2.4 ensures
that MKn _Dn is equational. Thus, to prove the inclusion Vn �MK2n _D2n , it
is plainly su�cient to prove that every identity holding in MK2n_D2n also holds in
Vn . Let u = v be such an identity. By assumption,

i) D2n j== u = v; and ii) MK2n j== u = v:

From i), we deduce that if juj < 2n or jvj < 2n , then u = v and there is nothing to
prove. So one can assume that the lengths of both u and v are greater than 2n . In
this case, u and v have the same su�x of length 2n . In particular:

u = x1 � � � xk � t
v = y1 � � � yl � t
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where t = t1 � � � tn is the common su�x of length n of u and v .

From ii), it follows that a letter appearing at least 2n times in u has to
appear at least 2n times in v , and conversely. Let T be the set of such letters. For
1 6 i 6 n , set

�ti =

(
ti if ti 2 T

1 otherwise
and �t = �t1 � � � �tn

Each letter of T appears at least n times in x1 � � � xk . In particular, x1 � � � xk�t
MKn����!

x1 � � � xk , so #Vn
(x1 � � � xkt) = #MKn

(x1 � � � xk)t = #MKn
(x1 � � � xk�t)t = #Vn

(x1 � � � xk�tt)
(we used twice Statement (1) of Lemma 3.2). Therefore:

Vn j== u = x1 � � � xk � �t � t (6)

In the same way,

Vn j== v = y1 � � � yl � �t � t (7)

From ii), MK2n , satis�es x1 � � � xk � t = y1 � � � yl � t , so by Lemma 2.20:

MKn j== x1 � � � xk � �t = y1 � � � yl � �t

Hence, Vn satis�es x1 � � � xk � �tt = y1 � � � yl � �tt . This, together with (6) and (7) shows
that Vn satis�es u = v , as required.

Corollary 3.4. We have MK _D =
S

i2NVi .

Proof. Just use (4) and the inclusions MKn _Dn � Vn �MK2n _D2n .

In view of this result, what remains to show in the proof of Theorem 3.1 is that[
n2N

Vn = [[x!yx!zt! = x!yzt!; x! = x!+1]] (8)

To get the inclusion Vn � [[x!yx!zt! = x!yzt! ; x! = x!+1]] , substitute in equa-
tion (5) x! for x; y1; : : : ; yn�1 ; y for yn ; z for t1 ; and t! for t2; : : : ; tn (aperiodicity
is straightforward).

Conversely, assume that a semigroup S satis�es x!yx!zt! = x!yzt! and
x! = x!+1 . Then the hypothesis of Lemma 2.13 is satis�ed: for n > jSj+1 such that
sn = s! for every s 2 S , and for x 2 S; y1; : : : ; yn 2 S1 , there exist a; b 2 S1 such
that xy1 � � � xyn = axnb . On the other hand, from Lemma 2.12, there exist c; d; t 2 S
such that t1 � � � tn = ct!d . Therefore:

xy1 � � � xynt1 � � � tn = ax!bct!d

= ax!bx!ct!d since S j== x!yx!zt! = x!yzt!

= ax!b � x � x!ct!d by aperiodicity

= xy1 � � � xynxt1 � � � tn in the same way

Theorem 3.1 is proved.
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4. The pseudovariety MK _D _G

This section is based on a standard argument: to prove the equality V = V1 _V2 ,
one �rst checks that V contains both V1 and V2 . This gives the containment
V � V1 _V2 . Reiterman's theorem then implies that V1 _V2 is of the form [[�]]

V
,

where � is a set of pseudoidentities on V . It remains to prove that if V1_V2 satis�es
a pseudoidentity � = � on V , then � and � are equal. We shall prove Theorem 4.1
in this section.

Theorem 4.1. The following pseudoidentities de�ne MK _D _G:

x!yx!zt! = x!yzt! (9)

(xy!+1z)! = (xy!z)! (10)

Moreover, MK _D _G is properly contained in [[x!yx!zt! = x!yzt! ]].

Let X be the pseudovariety de�ned by equations (9) and (10). One can check
that MK , D and G satisfy (9) and (10), and so MK _D _G is contained in X .

Assume �rst that the equality X =MK_D_G holds, and let us then show
the last assertion of the theorem, that invalidates Almeida's guess. One has to �nd
a semigroup satisfying x!yx!zt! = x!yzt! yet not in X =MK _D _G . Consider
the transition semigroup S of the automaton of Figure 2.

Figure 2: An automaton whose transition semigroup satis�es
x!yx!zt! = x!yzt! yet not in X

Denote by q � u the state obtained from state q by reading the word u . One
checks that q � u2 = q � u4 for every word u and every state q . Therefore, we have
s! = s2 for all s 2 S . Moreover, 1 � (xy3z)2 = 5, while 1 � (xy2z)2 = 4, so S does
not satisfy (10). All there remains to verify is that S satis�es (9). The idempotents
of S are induced by the words y2; z; xz; yz and x2 . The idempotents induced by
z; xz; yz and x2 are left zeros, so if e is one of these idempotents and if s; r and
f = f2 are in S , then eserf = esrf . There remains to show that eserf = esrf when
e is the idempotent induced by y2 . This idempotent is the partial identity de�ned
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on states 2; 3; 4; 5. Since no transition leads to state 1, we have es � e � rf = es � rf
for e induced by y2 as well.

The rest of this section is devoted to the proof of the inclusion MK_D_G �
X . As usual with such problems, we have to get information about X . The next
lemma states some of its basic properties.

Lemma 4.2. We have the following properties:

1. The pseudovariety X is a subpseudovariety of DS \O.

2. Let � and � be regular operations on S, let x 2 c(�) and set �0 = �jx=1 . Then
X satis�es:

(r�y�zt!s)! = (r�y�0zt!s)! (11)

If in addition � is regular and c(�) � c(�), then X satis�es

�y�!z� = �yz� (12)

3. The product of two regular implicit operations on X is regular.

Proof. 1. The Brandt semigroup B2 does not belong to X since it does not
satisfy (9). Indeed, with the notation of Figure 1, choose x = t = ab; y = a and
z = b . Then, x!yx!zt! = 0 while x!yzt! = ab . By Proposition 2.10, it follows
that X � DS . Now, take y = z = t! in (9): we get (ef)2 = ef when e and f are
idempotent. Hence, X is included in O .

2. We �rst prove that X satis�es the identity

(rx!yxzt!s)! = (rx!yzt!s)! (13)

Indeed, X satis�es:

(rx!yxzt!s)! = (rx!yx!(xz)t!s)! by (9)

= (rx!yx!+1zt!s)!

= (rx!yx!zt!s)! by (10)

= (rx!yzt!s)! by (9)

Let now � = limn!1 un and �0 = limn!1 u0n where u0n = unjx=1 . By continuity
of ��fxg , we have �

0 = �jx=1 . Since � is regular, we can use Theorem 2.9 (2) and write
� = �1x

!�2 . We now have

(r�yunzt
!s)! = (r�1x

!�2yunzt
!s)!

= (r�1x
!�2yu

0
nzt

!s)! by (13)

= (r�yu0nzt
!s)!
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So X satis�es:

(r�y�zt!s)! = (r�y( lim
n!1

un)zt
!s)!

= lim
n!1

(r�yunzt
!s)! by continuity

= lim
n!1

(r�yu0nzt
!s)!

= (r�y( lim
n!1

u0n)zt
!s)! by continuity

= (r�y�0zt!s)!

Pseudoidentity (11) is proved.

For (12), we use the same kind of argument. By Theorem 2.9 (2), � = �1�
!�2 for

some �1; �2 . So:

�y�!z� = �1�
!�2y�

!z�!�

= �1�
!�2yz�

!� by (9)

= �yz�

3. Since X � DS, one can apply Theorem 2.9 (1): it su�ces to show that x!+1y!+1

is regular. Since X � O , the product x!y! is regular. Therefore, so is x!+1y!+1 =
x � (x!y!) � y by Theorem 2.9 (2).

In what follows, we use the following convention, even if not explicitly
repeated:

- �j ; �j denote implicit operations on X,
- xj ; yj denote letters, and
- p; q; r; s; pj ; p

0; q0; r0; s0; p0j denote words.

We will also say that ai is smaller than aj when i < j .

Notation The product p�1x1 � � � xk�1�kq is said to satisfy:

c.1) if �i is regular for all i 2 [1; k] .

c.2) if �i+1 = �i�i+1 where �i is an idempotent that depends only on c(�1 � � � �i)
such that c(�i) � c(�i) for all i 2 [1; k�1]. Observe that this condition implies
c(�i) � c(�i+1).

c.3) if xi =2 c(�i+1) for all i 2 [1; k � 1].

c.4) if the last letter of p is not in c(�1) and the �rst letter of q is not in c(�k).

c.5) if �i = �ix
! where x is the smallest letter of c(�i) for all i 2 [1; k � 1].

Let us show that any implicit operation on X has a factorization satisfying conditions
c.1) to c.5).
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Proposition 4.3. Every implicit operation � on X has a decomposition of the
form

� = p�1x1 � � � xk�1�kq

where k 2 N , p; q are words, x1; : : : ; xk�1 are letters and �1; : : : ; �k are implicit
operations satisfying conditions c.1), c.2), c.3), c.4) and c.5).

Proof. The situation where � is explicit is easily dealt with. The word represent-
ing � is unique, since X contains N (see Lemma 2.5). We take for p that word, and
set q = 1.

For the non explicit case, we use Theorem 2.9 (4): � is a product of regular
and explicit operations u0�1;1u1 � � � ur1�1�r1;1ur1 (the �i;1 's are the regular factors)
with conditions on contents stated in this theorem. Furthermore, the product of two
regular operations in X is regular, so we can group such products so that no word ui
is empty for 1 6 i < r1 . This factorization already satis�es c.1). To get the desired
factorization, we now repeatedly transform this product without changing its value
on X .

Step 1. For 1 6 i < r1 , let c(�1;1 � � � �i;1) = fy1; : : : ; ykig and let �i be the product
y!1 � � � y

!
ki
. Note that �i is idempotent on X . Set �0 = 1. For each 1 6 i < r1 , we

replace each factor

�i;1 � (zi;1 � � � zi;ji) � �i+1;1; where ui = zi;1 � � � zi;ji

by

�i;1 � (zi;1 � �i � zi;2 � �i � � � zi;ji � �i) � �i+1;1

We thus get a new factorization u0�1;2z1�2;2z2 � � � zr2�r2;2ur1 where the zi 's are letters,
and where �j;2 is of the form �i or �i�i+1;1 . In particular, each �j;2 is regular by
Statement (3) of Lemma 4.2, so that c.1) is still satis�ed. Observe that each y!j
appearing in �i also appears in some �hj ;1 for hj 6 j . Therefore, the value of the
product in X did not change, in view of pseudoidentity (12) of Lemma 4.2, taking
�hj ;1 for � , y!j for � and �r1;1 for � .

Moreover, since c(�i) contains c(�j) for j 6 i , the new factorization satis�es
c.2).

Step 2. This step consists in grouping terms. In the previous factorization, we
consider the maximal factors of the form �i;2zi � � � zj�1�j;2 where zi; : : : ; zj�1 2 c(�j;2).
The previous factorization satis�es c.2), so c(�i;2) � � � � � c(�j;2). Therefore, such
a factor is regular by Theorem 2.9 (2). Using c.2) and the maximality of j � i , we
deduce that two such factors cannot overlap. We name these factors from left to right
�1;3; : : : ; �r3 ;3 . We now have a factorization of the form u0�1;3t1�2;3t2 � � � tr3�r3;3ur1
where ti 's are letters.

Conditions c.1) and c.2) are still veri�ed. Furthermore, by the maximality of
the factors which we chose to group together, ti does not belong to c(�i+1;3), so the
new factorization satis�es c.3).
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Step 3. Using Theorem 2.9 (2), we absorb in �1;3 the largest su�x of u0 whose con-
tent is contained in c(�1;3). Similarly, we absorb in �r3;3 the largest pre�x of ur1 whose
content is contained in c(�r3;3). We obtain a new factorization p�1;4t1�2;4t2 � � � tr4�r4;4ur1
(where r4 = r3 and where �i;4 = �i;3 for i 6= 1 and i 6= r3 ). Plainly, the new factor-
ization satis�es c.1) to c.4).

Step 4. We replace in the last factorization each �i;4 for 1 6 i < r4 by �i = �i;4x
!

where x is the smallest letter of c(�i;4). This does not change the value of the product
in X , once again in view of pseudoidentity (12) of Lemma 4.2, taking �i;4 for � , x!

for � and �r4;4 for � . The new factorization still satis�es c.1) to c.4). In addition, it
now satis�es c.5). We thus have the required factorization of � .

The factorization constructed in the proof of Proposition 4.3 is the canonical factor-
ization on X . We now study some of its properties.

Lemma 4.4. Let � = p�1x1 � � � xk�1�kq and � = r�1y1 � � � yl�1�ls be implicit
operations on X. Assume that both factorizations satisfy c.1), c.2) and c.3) and
that MK satis�es � = � . Then,

1. MK satis�es p�1 = r�1 . Furthermore, if k; l > 1, then x1 = y1 .

2. If both factorizations satisfy c.4), then p = r and MK satis�es �1 = �1 .
In this case, if k; l > 1, for any regular implicit operation � such that c(�) �
c(�1) = c(�1), MK satis�es ��2x2 � � � xk�1�kq = ��2y2 � � � yl�1�ls.

Proof. 1. We �rst show that MK satis�es p�1 = r�1 , that is, that for n
arbitrarily large, MKn satis�es p�1 = r�1 . Let

n > max(jpj + jqj + k; jrj + jsj + l)

By Lemma 2.24, there exists an explicit operation pi that coincides with �i on MKn

and such that

c(pi) = c(�i); and for all z 2 c(�i); jpijz > n (14)

In the same way, let ri be explicit such that MKn satis�es �i = ri and

c(ri) = c(�i); and for all z 2 c(�i); jrijz > n (15)

Let w be the word #MKn
(pp1x1 � � � xk�1pkq) = #MKn

(rr1y1 � � � yl�1rls). By
c.2) and c.3), the letter xi is not in c(�1) [ � � � [ c(�i+1). Therefore,

jpp1x1 � � � pixijxi 6 jpj + i (16)

In particular, jpp1x1 � � � pixijxi < n , so we can apply Lemma 2.25:

w = pp01x1 � � � xk�1p
0
kq

0; with pp01 = #MKn
(pp1); c(p

0
1) = c(�1) and c(p

0
i) � c(�i)

Likewise,

w = rr01y1 � � � yl�1r
0
ls
0; with rr01 = #MKn

(rr1) ; c(r
0
1) = c(�1) and c(r

0
i) � c(�i)

Assume that jpp01j < jrr01j . Two cases may arise:
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a. jrj < jpp01j . In this case, let

j = maxfi j 1 6 i < k and jrr01j > jpp
0
1 � � � p

0
ixijg

Since jrr01j > jpp01j , we have j > 1. Since jrj < jpp01j and xj 2 c(rr01), xj is in
c(r01) = c(r1). So jr1jxj > n by (15). Thus, by Lemma 2.18 (5)

jrr01jxj = j#MKn
(rr1)jxj = n (17)

Let v = pp01 � � � p
0
jxjp

0
j+1 . Since c(p0i) � c(�i), equation (16) implies that

jvjxj 6 jpj + j . If j < k � 1, then jvxj+1jxj 6 jpj + j + 1 < jpj + k < n
and by de�nition of j , rr01 is a pre�x of vxj+1 , in contradiction with (17). If
j = k � 1, then jvq0j < jpj + k + jqj < n again, a contradiction.

b. jrj > jpp01j . In this case, we have n > jpp01j . Now pp01 = #MKn
(pp1); since

jpp1j > n (p1 6= 1 and jp1jy > n if y 2 c(p1)), we have j#MKn
(pp1)j > n , again,

a contradiction.

So it is not possible to have jpp01j < jrr01j . Symmetrically, it is not possible to
have jpp01j > jrr01j so pp

0
1 = rr01 . This implies that x1 = y1 and that MKn satis�es

pp1 = rr1 for all n > max(jpj + jqj + k; jrj + jsj+ l). Hence MK satis�es p�1 = r�1
as required. This proves 1.

For 2, suppose that the last letter of p is not in c(�1) and that the last letter
of r is not in c(�1). As K is a subpseudovariety of MK , p�1 and r�1 agree on K .
In particular, p is a pre�x of r or r is a pre�x of p by Corollary 2.6. Let for instance
r = pp0 . Suppose that p0 6= 1. Since pp01 = rr01 , the last letter of r is in c(p01), so it
appears at least n times in pp01 . Hence, it appears also at least n times in rr01 , and
since jrj < n , it lies in c(r01). Hence, the last letter of r is in c(�1), a contradiction.
So p = r . We now apply Corollary 2.23: MK satis�es �1 = �1 .

This implies that c(�1) = c(�1). Let now � be regular such that c(�) �
c(�1) = c(�1). Set � = �2x2 � � � xk�1�kq and � = �2y2 � � � yl�1�ls . We know that
MK satis�es p�1x1� = p�1x1� . We can therefore use Corollary 2.23: MK satis�es
�1x1� = �1x1� . Now, Corollary 2.22 shows that MK satis�es �1� = �1� . We
have c(�!�!1 �

!) = c(�!). By Theorem 2.9 (3), �!�!1 �
! and �! are J -equivalent

idempotents. Since they are plainlyR and L comparable, they areH equivalent, hence
they are equal. Therefore, � = ��! = ���!�!1 �

! , which by de�nition of MK is also
���!�!1 �

!��1 = ��1 . Likewise, � = ��1 , so MK satis�es �� = ��1� = ��1� = �� .

Lemma 4.5. Let � = p�1x1 � � � xk�1�kq and � = r�1s be factorizations of implicit
operations on X, which satisfy conditions c.1), c.2), c.3) and c.4). If MK _ D
satis�es � = �, then k = 1, p = r , q = s and MK _D satis�es �1 = �1 .

Proof. Conditions c.1) to c.4) hold for both factorizations. From Lemma 4.4, we
deduce that

p = r and MK j== �1 = �1

269



Azevedo and Zeitoun

We let again n = max(jpj + jqj + k; jrj + jsj + 1). Then pi (i = 1; : : : ; k ) satis�es
(14) and r1 satis�es (15). We borrow the notation from the proof of Lemma 4.4. As
in that proof,

pp01x1p
0
2x2 � � � xk�1p

0
kq

0 = rr01s
0 and jpp01j = jrr01j

Therefore, x1p
0
2 � � � xk�1p

0
kq

0 = s0 . In particular,

jp0j j 6 js
0j � k + 1 6 jsj � k + 1 (2 6 j 6 k) (18)

We know that c(pi) � c(pi+1). We claim that c(pj) = c(p1) for all j . Assume on the
contrary that this does not hold: choose j such that c(p1) = � � � = c(pj�1)  c(pj) and
a letter x in c(pj) n c(pj�1). Since jp1 � � � pj�1jx = 0, we have jpp1x1 � � � pj�1xj�1jx 6
jpj + j � 1. By (14), we know that jpjjx > n . Hence, the word p0j has to contain at
least n� (jpj+ j � 1) occurrences of x . In particular,

jp0j j > n� (jpj+ j � 1) (2 6 j 6 k) (19)

Inequalities (18) and (19) then imply that jsj � k+1 > n� jpj � j +1. Since p = r ,
this gives jrj + jsj + j � k > n > jrj + jsj + 1, so j > k + 1, a contradiction. So
c(pj) = c(p1).

Therefore, by c.3), xk�1 =2 c(�k) = c(�1). Hence we have also xk�1 =2 c(�1) =
c(�1). By the hypothesis, D satis�es � = � . Since �k and �1 are not explicit,
Corollary 2.6 tells us that D satis�es �kq = �1s . Since c(�k) = c(�1), we get

q = s

as was done for p and r in the proof of Lemma 4.4.

Let us now prove that k = 1. Assume that k > 1. We apply Remark 2.16 with
B = Am n fxk�1g : MK satis�es � = � implies that K satis�es �jB=1 = �jB=1 . Since
xk�1 is not in c(�1) = c(�i), this gives K j== (px1x2 � � � xk�2xk�1q)jB=1 = (pq)jB=1 .
This is a non-trivial identity, a contradiction. So k = 1.

Finally, D satis�es �1q = �1q , so by Corollary 2.6, these operations have the
same su�x of length k for all k > 0. In particular, �1 and �1 agree also on D .

Lemma 4.6. Let � = p�1x1 � � � xk�1�kq and � = p�1x1 � � � xk�1�kq be implicit
operations on X. Assume that both factorizations satisfy c.2) and c.3) and that G
satis�es � = �. Then, G satis�es �i = �i for i = 1; : : : ; k .

Proof. Observe that we include in the hypothesis that both factorizations have
the same length and that the �i 's and the �i 's are delimited in the product by the
same p; x1; : : : ; xk�1; q .

We proceed by induction on k . If k = 0, there is nothing to do. Assume
that the result holds for k � 1 and let �; � be as in the lemma. Then G satis�es
p!�1�q!�1 = p!�1�q!�1 , so that we can assume that p = q = 1.

Suppose that G 6j== �k = �k . Then there exists a �nite group G separating �k
and �k . We embed G in the symmetric group Sh where h = jGj . Let ' : Fm(G)!
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Sh be a morphism separating �k and �k and let s be an element of [1; h] such that
'(�k)(s) = a 6= b = '(�k)(s).

Denote by � : Sh ,! Sh+2k the canonical embedding: the permutation �(�)
coincides with � on [1; h] and with the identity on [h+ 1; h+ 2k] .

Consider the morphism  : Fm(G)! Sh+2k de�ned by

 (ai) =

(
� � '(ai) if ai 6= xk�1

(a; h+ 1; : : : ; h+ k)(b; h+ k + 1; : : : ; h+ 2k) otherwise

Since xk�1 =2 c(�k�k),  (�k)(s) = � � '(�k)(s) = '(�k)(s) = a , so

 (�)(s) =  (p�1x1 � � � xk�1�k)(s)

=  (p�1x1 � � � xk�1)(a)

=  (p�1x1 � � � �k�2)(h + 1)

= h+ jx1 � � � xk�1jxk�1

Let us justify the last equality. We have xk�1 =2 c(�j) for j 6 k�2. Therefore,  (�j)
acts on [h+ 1; h+ 2k] as the identity, and so does  (xj) for xj 6= xk�1 .

In the same way, we compute  (�)(s) = h+ k+ jx1 � � � xk�1jxk�1 . We thus get
 (�) 6=  (�), a contradiction since G satis�es � = � . Hence G satis�es �k = �k .

Since G satis�es both p�1x1 � � � xk�1�k = p�1x1 � � � xk�1�k and �k = �k , it
satis�es also p�1x1 � � � xk�1�k�

!�1
k = p�1x1 � � � xk�1�k�

!�1
k , that is, p�1x1 � � � xk�1 =

p�1x1 � � � xk�1 . The induction hypothesis concludes the proof.

We now start the classic scheme that was recalled at the beginning of this
section. We have to prove that MK _D _G contains X . From the other inclusion
MK _ D _ G � X , we deduced that MK _ D _ G is de�ned by a set � of
identities on X . What remains to show is that � is trivial, or, in other terms,
that if MK_D_G satis�es a pseudoidentity � = � on X , then � and � are equal.
The proof is decomposed in two propositions (Propositions 4.7 and 4.8 below). The
�rst proposition is a unique factorization statement that reduces this problem to the
case where � and � are regular operations. The second one proves that it holds for
regular operations.

Proposition 4.7. Let � and � be two implicit operations on X. Let p�1x1 � � �
xk�1�kq be the canonical factorization of � and r�1y1 � � � yl�1�ls be the
canonical factorization of � . Then

MK _D _G j== � = � =)

8>><
>>:

k = l;
p = r; q = s;
8 i = 1; : : : ; k � 1; xi = yi
8 i = 1; : : : ; k; MK _D _G j== �i = �i

Proof. We show by induction on minfk; lg that k = l , p = r , q = s and that
MK j== �i = �i . If minfk; lg = 0, then for instance k = 0 and � = p is explicit.
Since MK contains N , p and � agree on N . Hence � is equal to p (Lemma 2.5),
that is, l = 0, s = 1 and p = r . The case minfk; lg = 1 is treated in Lemma 4.5.
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Suppose now that the induction hypothesis holds for 1 6 minfk; lg < K
and let minfk; lg = K . By construction, both factorizations satisfy conditions
c.1) to c.5). Lemma 4.4 can be applied: p = r and MK satis�es �1 = �1 . In
particular, c(�1) = c(�1). Therefore, c.2) gives �2 = �1�2 and �2 = �1�2 , with the
same idempotent �1 , since this idempotent only depends on c(�1) = c(�1). Hence,
Lemma 4.4 shows that MK also satis�es �2x2 � � � xk�1�kq = �2y2 � � � yl�1�ls .

We thus conclude by induction that k = l , p = r , q = s and that MK

satis�es �i = �i . It remains to prove that D satis�es �i = �i . If k = 0, then there
is nothing to do. Otherwise, we �rst treat the case i = k . Since �k is not explicit,
D satis�es � = �kq . Similarly, it satis�es � = �kq . Since D satis�es � = � by the
hypothesis, it satis�es �kq = �kq . Therefore, �kq and �kq have the same su�xes
of length ` + jqj for each natural number ` , so �k and �k have the same su�xes
of length ` for each ` 2 N , so D satis�es �k = �k . For i 2 [1; k � 1], we know
that MK j== �i = �i ; in particular, c(�i) = c(�i). By c.5), we have �i = �ix

!

and �i = �ix
! for all i 2 [1; k � 1], where x is the smallest letter which belongs to

c(�i) = c(�i). Therefore, D satis�es �i = �ix
! = x! = �ix

! = �i for those values of
i , as required.

Finally, Lemma 4.6 shows that G satis�es �i = �i for 1 6 i 6 k .

In view of Proposition 4.7, the proof of Theorem 4.1 will be completed if we
prove the following result.

Proposition 4.8. Let �; � be two regular implicit operations on X. If MK_D_
G satis�es � = � , then � and � are equal.

Proof. Since X lies between G and DS \ O and since G j== � = � , we only
need to prove that X satis�es �! = �! by Proposition 2.11.

First notice that a regular implicit operation on X is not explicit. Indeed,
if u is a word, X does not satisfy u = u!+1 since X contains N (Lemma 2.5).
Thus � and � are not explicit. Since LI � MK _ D , we can apply Lemma 2.14
to � and � : we can write � = �~�� and � = �~�� where � and � are not explicit.
When decomposing � and � on DS as in Theorem 2.9 (4), we get � = u��0�v
and � = u��0�v where u and v are explicit and where � and � are regular. Thus,
� = u�(�0�!)�v and � = u�(�0�!)�v . Let �1 = (�0�!)jc(�)=1 and �1 = (�0�!)jc(�)=1 .
Observe that by de�nition,

c(�1�1) \ c(�) = � (20)

and

c(�) n c(�) � c(�1) \ c(�1) (21)

Furthermore, let C = Amn(c(�)nc(�)). By continuity of ��C , ��C(x
!+1) = (��C(x))

!+1 ,
so by Theorem 2.9 (1), the image under ��C of a regular implicit operation is regular
or empty. Now, �1jC=1 = (�0�!)jC[c(�)=1 is of the form �00(�!c(�)=1) with c(�

00) � c(�).

Since �!c(�)=1 is regular or empty, so is �1jC=1 by Theorem 2.9 (2). We have therefore

�1jC=1 and �1jC=1 are regular or the empty word (22)
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Since � = ��! , we have by de�nition of MK �w = �wjc(�)=1 for any word w . By
continuity of ��c(�) , we obtain:

MK j== � = u��1�v; MK j== � = u��1�v (23)

We shall proceed again by induction on the number jc(�1)j of letters in c(�1).

Lemma 4.9. Let k > 0, let � = u1�1 � � � uk�k�k�v and � = u1�1 � � � uk�k�k�v be
implicit operations on X, such that u1; : : : ; uk; v are explicit and �1; : : : ; �k; � are
regular. Let B = c(�1 � � � �k) and C = Am n (c(�) n B). Assume that �k and �k are

in Fm(X)
1
and verify:

c(�k�k) \ B = � (24)

c(�) n B � c(�k) \ c(�k) (25)

�k jC=1 and �k jC=1 are regular or empty (26)

If MK satis�es � = �, then X satis�es �! = �! .

Proof. Assume that �k or �k is explicit or the empty word. By Remark 2.16,
K satis�es �jB=1 = �jB=1 . From (24), we have �k jB=1 = �k and �k jB=1 = �k .
Hence, K j== �jB=1 = �jB=1 can be written K j== (u1 � � � uk)jB=1�k(�v)jB=1 =
(u1 � � � uk)jB=1�k(�v)jB=1 . Since �k and �k are explicit, the only way for (26) to
hold is that c(�k�k) � C . This, together with (25) shows that c(�) � B . So
(�v)jB=1 = vjB=1 , and K j== (u1 � � � uk)jB=1�k(v)jB=1 = (u1 � � � uk)jB=1�k(v)jB=1 .

By Lemma 2.5, both members of this pseudoidentity share the same pre�xes.
Hence, so do �k(v)jB=1 and �k(v)jB=1 , so that K satis�es �kv = �kv . Since both �k
and �k are explicit, Lemma 2.5 gives �k = �k . In this case, � = � so the result holds.

We now proceed by induction on jc(�k)j . If jc(�k)j = 0, that is, if �k is
the empty word, then we just saw that � = � . Suppose that the result holds for
jc(�k)j < K and let jc(�k)j = K . If either �k or �k is explicit, then we already
proved that � = � and there is nothing to do. Assume �k and �k are not explicit. We
apply again Remark 2.16: K satis�es �jB=1 = �jB=1 , that is, (u1 � � � uk�k�v)jB=1 =
(u1 � � � uk�k�v)jB=1 . Consequently, these words share the same pre�xes, and so do
(�k�v)jB=1 and (�k�v)jB=1 . Hence, K satis�es (�k�v)jB=1 = (�k�v)jB=1 . By (24),
(�k�v)jB=1 = �k(�vjB=1) and (�k�v)jB=1 = �k(�vjB=1). Since �k and �k are not
explicit, one can apply Corollary 2.6: K satis�es �k = �k . Therefore, we can use
Lemma 2.14: �k = �~�k and �k = �~�k where � is not explicit. Decomposing � on
DS, we get

�k = uk+1�k+1�
0
k+1; �k = uk+1�k+1�

0
k+1

where uk+1 is explicit, and where �k+1 is regular. Let

�k+1 = (�0k+1�
!)jc(�1 ����k+1)=1
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�k+1 = (�0k+1�
!)jc(�1 ����k+1)=1

Since �k and �k are not explicit, �k+1 is not empty and c(�k+1)  c(�k) and
c(�k+1)  c(�k). Let � = u1�1 � � � uk+1�k+1 . By the induction hypothesis, X satis�es

(��k+1�v)
! = (��k+1�v)

! (27)

Furthermore, X satis�es

�! = (��0k+1�v)
!

= (� � �0k+1�
! � �!�v)! since � is regular

= (��k+1�v)
! by successive applications of (11)

In the same way, X satis�es �! = (��k+1�v)
! . So by (27), X satis�es �! = �! , as

required.

In view of (20), (21), (22) and (23) Proposition 4.8 is a particular case of Lemma 4.9
with k = 1.

5. The pseudovariety MK _G

Theorem 5.1. The pseudovariety MK _G is de�ned by the pseudoidentities

(xy!+1z)! = (xy!z)! (10)

and

x!yx! = x!y (28)

Moreover, MK _G is properly contained in [[x!yx! = x!y]] .

This join is similar to the previous one. We just briey indicate the corresponding
statements. Let Y be the pseudovariety de�ned by equations (10) and (28). Again,
the inclusion MK _G � Y is easy. The outline of the proof is then analogous as
for MK _D _G . The transition semigroup of the automaton of Figure 2 satis�es
(28). The proof is exactly the same as for proving it satis�es (9). Hence, MK _G
is properly contained in [[x!yx! = x!y]] .

Then, Lemma 4.2 may be reformulated for Y : since Y is a subpseudovariety
of X , it is a subpseudovariety of DS \ O , and the product of two regular implicit
operations of Fm(Y) is regular. Furthermore, if � and � are regular elements of
Fm(Y) and if x 2 c(�), then

(r�y�)! = (r�y(�jx=1))
! (29)

If in addition � is regular and c(�) � c(�), then Y satis�es also

�y�! = �y (30)

Pseudoidentity (29) is proved as in Lemma 4.2 and pseudoidentity (30) follows im-
mediately from (28) and from Theorem 2.9 (2). To reduce the problem to regular
operations, the decomposition is somewhat di�erent. Propositions 4.3 and 4.7 may
be replaced by the following statement.
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Proposition 5.2. Every implicit operation � on Y has a decomposition

� = p�1x1 � � � xk�1�k

satisfying c.1) to c.4). Let r�1y1 � � � yl�1�l be the decomposition of another operation
�. Then:

MK _G j== � = � =)

8>><
>>:

k = l;
p = r;
8 i = 1; : : : ; k � 1; xi = yi
8 i = 1; : : : ; k; MK _G j== �i = �i

Proof. The proof is based on Corollary 2.22 and on Lemma 4.4, which holds if we
replace X by Y , since Y � X . The di�erence with the proof of 4.3 occurs in Step
1. Keeping the same notation, we do not stop the transformation at �r1;1 . Instead,
we insert �r1 between each letter of ur1 and after its last letter. This can be done
without changing the value of the implicit operation in view of pseudoidentity (30).
The rest of the proof is analogous.

To conclude the proof of Theorem 5.1, there remains to prove the statement
concerning regular operations.

Proposition 5.3. Let �; � be two regular implicit operations of Fm(Y) . If MK_
G satis�es � = � , then Y satis�es � = � .

Proof. The proof is the same as for Proposition 4.8, replacing X by Y , � by 1,
and using Lemma 2.14 with K instead of LI to get the factorizations of � and � .
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