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Universidade do Minho

4710-057 Braga

Portugal

Roland Puystjens‡

Department of Pure Mathematics

and Computeralgebra

University of Gent

Galglaan 2, 9000 Gent

Belgium

February 19, 2004

Abstract

Characterizations are given for elements in an arbitrary ring with involu-
tion, having a group inverse and a Moore-Penrose inverse that are equal and
the difference between these elements and EP–elements is explained. The re-
sults are also generalized to elements for which a power has a Moore-Penrose
inverse and a group inverse that are equal.

As an application we consider the ring of square matrices of order m over
a projective free ring R with involution such that Rm is a module of finite
length, providing a new characterization for range-Hermitian matrices over
the complexes.

Keywords: Drazin, Moore-Penrose, generalized inverses, EP elements, core nilpotent
decomposition, Fitting decomposition.

AMS classification: 15A09, 15A33

∗Research supported by Departamento de Matemática da Universidade do Minho, Portugal,
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1 Introduction

Throughout the paper and unless otherwise specified, R denotes an arbitrary ring
with identity 1, Matm×n (R) the set of m× n matrices and Matm (R) the ring of
m×m matrices over R.

An involution ∗ in a ring is a unary operation a → a∗ such that

(a∗)∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗,

for all elements a, b of a ring.
Given a ∈ R, a is (von Neumann) regular if there exists a− ∈ R such that

aa−a = a.

The set of von Neumann inverses of a will be denoted by a {1}. That is,

a {1} = {x ∈ R : axa = a} .

a is said to be Moore-Penrose (MP) invertible with respect to * , see [15] and
[19], if there exists a a† such that:

aa†a = a

a†aa† = a†(
aa†
)∗ = aa†(

a†a
)∗ = a†a.

(1)

If the Moore-Penrose with respect to * exists then it is unique, see [1].
Necessary and sufficient conditions for the existence as well as expressions for

a† can be found in [16], [17], [22] and [23].
Also, the group inverse of a exists if there is a a# such that

aa#a = a

a#aa# = a#

aa# = a#a.

(2)

If the group inverse exists then it is unique, see [1].
Necessary and sufficient conditions for the existence as well as expressions for

a# can be found in [21].
An element a ∈ R is said to have a Drazin inverse if there exists x ∈ R such

that


am = am+1x, for some non-negative integer m

x = x2a

ax = xa.

(3)
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If a has a Drazin inverse, then the smallest possible non-negative integer
involved in (3) is called the Drazin index of a. We denote by aDk the Drazin
inverse of index k of a.

As for group and Moore-Penrose inverses, if the Drazin inverse exists then it
is unique, see [1], [20].

In [1], the authors define the notion of “range -Hermitian” matrix A over the
field C of complex numbers as a matrix satisfying Im A = Im A+, in which A+ de-
notes the hermitian conjugate of A. This is clearly equivalent with A Matn (C) =
A+ Matn (C) and generalizes the notion of hermitian matrix. Then it is known,
see [1, pg 164], that a complex matrix A is range-Hermitian iff A# = A† with
respect to the involution +. They refer also to the concept of EPr matrix intro-
duced by H. Schwerdtfeger in 1950. There, however, EPr matrices are matrices
A of rank r over the complexes satisfying Im A = Im AT , in which AT denotes
the transpose of A. This is clearly equivalent with A Matn (C) = AT Matn (C).
The matrix [

1 i

i −1

]
=

[
1 i

i 1

][
1 0
0 0

][
1 i

i 1

]
over the field C of complex numbers is an EP1 matrix by a theorem of H. Schw-
erdtfeger, see page 131 of [27], but this matrix is clearly not range-Hermitian.
This shows that the concept of EPr matrices was introduced with respect to the
involution T on Matn (C). Therefore, we can avoid this misunderstanding about
EP in Matn (C) by using the different notions of +–EP and T –EP in Matn (C).

The generalization of the notion of EPr-matrices to an EP -morphism φ in a
category appeared in [25] as a morphism φ such that φ and φ∗ have images and
co-images and imφ = imφ∗, coim φ = coim φ∗. Here, it is clear that EP means
∗–EP.

The notion of EP was also used by R.E. Hartwig, see [6], for elements in a
*-regular ring, which are rings with the property that every element of it has
a Moore-Penrose inverse with respect to *. Indeed, he defined an element a in
a *–regular ring EP iff aR = a∗R and showed that this is equivalent with the
existence of a# together with a# = a†. Here, it is also clear that EP in a *–
regular ring means ∗–EP. It generalizes +–EP, but not T –EP, in Matn (C) since
Matn (C) is a +–regular ring and not a T -regular ring.

But, defining ∗–EP in rings R with involution * as elements a for which
aR = a∗R and expect an equivalence with a† = a#, as for ∗–regular rings, is not
possible. Indeed, an element a in a ring R with involution * can have the property
that aR = a∗R without having a MP-inverse with respect to the involution *.

As a consequence, there is the problem of characterizing the elements in a ring
with involution * having a group inverse a# and a MP-inverse a† with respect
to *, that are equal. These elements can be called *–group–Moore-Penrose (*–
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gMP) invertible and we show that these elements can be characterized by means
of classical invertibility together with an equivalence. Moreover, there is a parallel
with a result of I.J. Katz for range-Hermitian matrices over the complexes.

We also define the elements in a ring with involution * for which for some
smallest natural k,

(
ak
)# =

(
ak
)† with respect to the involution *. These ele-

ments are called *–Drazin-Moore-Penrose (*–DMP) invertible of index k. Among
other characterizations, we show that a is *–DMP if and only if the core part of
a is *–gMP invertible.

As an application, we characterize the +–DMP invertibility in the ring of
square matrices of order m over a projective free ring R with involution − such
that Rm is a module of finite length, providing a new characterization for range-
Hermitian matrices over the complexes.

2 Results

In a ring R with involution *, we introduce the following

Definition 1. 1. An element a in a ring R with involution * is called *–EP
if aR = a∗R.

2. An element a in a ring R with involution * is called *–group-Moore-Penrose
(*–gMP) invertible, if a† and a# exist and a† = a#.

Remarks.

1. The matrix A =

[
1 i

i −1

]
over the field C of complex numbers is clearly

T –EP but not +–EP (not range Hermitian) since A Mat2(C) = AT Mat2(C)
and A Mat2(C) 6= A+ Mat(C).

2. In the ring Z of integers with respect to the identity involution ι : n → n,
all elements are ι–EP but only 0, 1,−1 are ι–gMP.

3. In *–regular rings, such as Matn(C) with respect to the involution “hermi-
tian conjugate”, an element is *–EP iff it is *–gMP, see [6].

Proposition 2. Given a in a ring R with involution *, the following conditions
hold:

1. If aR = a∗R then a† exists with respect to * iff a# exists, in which case
a† = a#.

2. If a† exists with respect to *, a# exists and a† = a# then aR = a∗R.
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Proof. (1) Suppose aR = a∗R and a† exists. Then also Ra = Ra∗ and

a ∈ aa∗R ∩Ra∗a = a2R ∩Ra2,

which implies the group invertibility of a, see [7] or [24, page 145]. Analogously,
if aR = a∗R and a# exists then a† exists, see [22, page 133].

In order to show a# = a†, it follows from aR = a∗R and the definition of a†

that
a†R = a∗R = aR = a† ∗R

which imply
a2R = a†R = a† ∗R = a∗ 2R.

So, there exist y, z ∈ R such that a† = a2y, a† ∗ = a∗ 2z∗ and a2y = a† = za2.

Therefore, a2 (aya) = a = (aza) a2 which implies a# = (aza) a (aya) (see [7, page
45]). This gives

aa# = a (aza) a (aya)

= a2a†aya

= a2ya = a†a

which is symmetric with respect to the involution *. Similarly,

a#a = (aza) a (aya) a

= azaa†a2

= aza2 = aa†

and a#a is also symmetric with respect to the involution *. This leads to a† = a#,

by the uniqueness of the Moore-Penrose inverse.
(2) The proof is clear since aR = aa†R = a†aR = a∗a† ∗R = a∗R.

Corollary 3. The following conditions are equivalent:

1. a is *–gMP.

2. a is *–EP and a# exists.

3. a is *–EP and a† exists with respect to *.

Recently, see [21], the group inverse a# of a von Neumann regular element a

in a ring has been characterized by the invertibility of the element a2a−+1−aa−,
or equivalently, by the invertibility of the element a−a2 + 1− a−a. Moreover,

a# =
(
a2a− + 1− aa−

)−2
a = a

(
a−a2 + 1− a−a

)−2
.
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Also recently, see [16], [17], the Moore-Penrose inverse a† of a von Neumann
regular element a in a ring has been characterized by the invertibility of the
element aa∗aa− + 1 − aa−, or equivalently by the invertibility of the element
a−aa∗a + 1− a−a. Moreover,

a† = a∗
(
aa∗aa− + 1− aa−

)∗−1 =
(
a−aa∗a + 1− a−a

)∗−1
a∗.

We now combine these two results to obtain the following characterization:

Theorem 4. Let R be a ring with identity and with ring involution *. If a is
von Neumann regular in R and if a− denotes a von Neumann inverse then the
following are equivalent and independent from the choice of a−:

1. a is *–gMP.

2. aa∗aa− + 1− aa− and a2aa− + 1− aa− are invertible and[(
aa∗aa− + 1− aa−

)−1
a
]∗

=
(
a2aa− + 1− aa−

)−1
a.

3. a−aa∗a + 1− a−a and a−aa2 + 1− a−a are invertible and[
a
(
a−aa∗a + 1− a−a

)−1
]∗

= a
(
a−aa2 + 1− a−a

)−1
.

Moreover, if u = a2aa− + 1− aa−, v = a−aa2 + 1− a−a, ũ = aa∗aa− + 1− aa−

and ṽ = a−aa∗a + 1− a−a then

a# = a† = u−1a = av−1 =
(
ũ−1a

)∗ =
(
aṽ−1

)∗
and equals a

(
a2
)−

a
(
a2
)−

a.

Proof. Follows directly from the results in [17] and [21] if we can replace a2a− +
1−aa− by a2aa−+1−aa−, and analogously a−a2 +1−a−a by a−aa2 +1−a−a.
Indeed,

a2a− + 1− aa−

is invertible iff(
a2a− + 1− aa−

)2 =
(
a2a− + 1− aa−

) (
a2a− + 1− aa−

)
= a2a−a2a− + 1− aa−

= a3a− + 1− aa−

is invertible. Then,(
a2a− + 1− aa−

)−2 =
[(

a2a− + 1− aa−
)2]−1

=
(
a3a− + 1− aa−

)−1
.
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The remaining fact to prove is that a# = a† = a
(
a2
)−

a
(
a2
)−

a. Indeed, if
a# exists then a2 is von Neumann regular and(

a2a− + 1− aa−
)−1 = a

(
a2
)−

aa− + 1− aa−

since(
a2a− + 1− aa−

) (
a
(
a2
)−

aa− + 1− aa−
)

= a2a−a
(
a2
)−

aa− + 1− aa−

= a2
(
a2
)−

aa− + 1− aa−

= a2
(
a2
)−

a2a#a− + 1− aa−

= a2a#a− + 1− aa−

= 1

and

(
a
(
a2
)−

aa− + 1− aa−
) (

a2a− + 1− aa−
)

= a
(
a2
)−

aa−a2a− + 1− aa−

= a
(
a2
)−

a2a− + 1− aa−

= a#a2
(
a2
)−

a2a− + 1− aa−

= a#a2a− + 1− aa−

= 1.

Therefore, (
a3a− + 1− aa−

)−1 =
(
a2a− + 1− aa−

)−2

=
(
a
(
a2
)−

aa− + 1− aa−
)2

and

a# = a† =
((

a
(
a2
)−)2

aa− + 1− aa−
)

a = a
(
a2
)−

a
(
a2
)−

a.

Remark.
A von Neumann regular element a in a ring R with involution * has a group

inverse a# and a MP-inverse a† with respect to * such that a# = a† iff(
a3a− + 1− aa−

)−1 and
(
a−aa∗a + 1− a−a

)−1 exist

and
a∗ =

[(
a−aa∗a + 1− a−a

)∗
a
(
a2
)−

a
(
a2
)−]

a,
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for any choice of a−, since

a
(
a−a3 + 1− a−a

)−1 =
(
a3a− + 1− aa−

)−1
a = a

(
a2
)−

a
(
a2
)−

a.

This property can be considered as the generalization of a result of Katz, I.J.
and of its extension to Dedekind finite rings. Indeed, Katz proved, see [1, pag.
166, ex. 18], that for any square matrix A over the complexes, A† = A# if and
only if there is a matrix Y such that

A∗ = Y A.

His result can be lifted up to the following:

Fact 5. If a belongs to a Dedekind finite ring with a general involution * and a†

exists, then a∗ = ya, for some y ∈ R, if and only if a# exists and a† = a#.

Proof. If a† exists then also (a†)∗ exists and equals (a∗)†. Since a∗ = ya then
a = a∗y∗ and hence aR ⊆ a∗R.

Moreover, aR ∼= a∗R since φ : aR → a∗R, with φ(ax) = a†ax, is a R-module
isomorphism. Then, also aa†R ∼= a†aR, which implies aa†R = a†aR, or aR = a∗R

by using Theorem 1 (iii) of [8]. By Proposition 2(1), a# exists and a† = a#.
Conversely, if a# exists and a† = a# then

a∗ = (aa†a)∗ = a∗aa† = a∗aa# = a∗a#a.

It suffices to take y = a∗a#.

To introduce the notion of *–DMP invertibility in a ring R, we first need to
remark that if a is Drazin invertible with index k then ak is *–gMP iff ak+1 is
*–gMP. Indeed, if the Drazin index of a equals k and ak is *–gMP, then ak+1R =
akR = ak ∗R = (a∗)k R = (a∗)k+1 R. In addition, ak+1 is Moore-Penrose invertible
since ak+1

(
ak+1

)∗
R = a2k+2R = ak+1R,R

(
ak+1

)∗
ak+1 = Ra2k+2 = Rak+1, and

so ak+1 ∈ ak+1
(
ak+1

)∗
R ∩R

(
ak+1

)∗
ak+1. The converse is analogous.

Definition 6. An element a in a ring R with involution * is called *–DMP
(Drazin-Moore-Penrose) of index k if k is the smallest natural number such that(
ak
)# and

(
ak
)† exist with respect to * and

(
ak
)# =

(
ak
)†.

Examples.

1. The element 212 in Z12, with respect to the identity involution ι : n → n

is not ι–gMP, but it is ι–DMP of index 2 since 412 =
(
22
12

)† =
(
22
12

)#.
Remark that 212 has no MP-inverse with respect to ι, i.e., has no group
inverse.
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2. Every nonzero nilpotent element with index k in the Jacobson radical of a
ring with involution * is *–DMP with index k but these elements, clearly not
von Neumann regular, are not group invertible nor Moore-Penrose invertible
with respect to *.

Other characterizations of *–DMP of index k can be given as follows:

Theorem 7. Let a be an element in a ring R with involution *. Then the
following are equivalent:

1. a is *–DMP with index k.

2. aDk and
(
ak
)† exist with aDk = ak−1

(
ak
)†

.

Proof. Firstly, we will show that if a is *–DMP with index k then aDl exists and
l ≤ k. From ak is group invertible with

(
ak
)# =

(
ak
)† follows that aDl exists

with l ≤ k.

Now, suppose l < k. Then, since ak is *–EP,(
ak
)∗

R = akR = ak−1R,

since k > l. By another hand,(
ak
)∗

R =
(
Rak

)∗
=
(
Rak−1

)∗
=
(
ak−1

)∗
R.

Therefore,
(
ak−1

)∗
R = ak−1R and ak−1 is also *–EP, which is absurd since k is

the smallest natural number for which ak is *–EP.
To end this part of the proof, we remark that since k is the smallest k for

which ak is group invertible and ak is *–EP, then aD = ak−1
(
ak
)# = ak−1

(
ak
)†

(see [20]).
To show the converse, we will prove that if aDk = ak−1

(
ak
)†, then

(
ak
)# =(

ak
)†

. We will simply check the group inverse equations. The first and second
equations are trivially verified as they coincide with the first two Moore-Penrose
equations. It suffices to show

ak
(
ak
)†

=
(
ak
)†

ak.

By one hand, ak
(
ak
)† = aak−1

(
ak
)† = aaDk = aDka, and therefore ak

(
ak
)† =(

aDka
)∗. By another hand, and since ∗ commutes with (·)† and (·)D , then(

ak
)†

ak =
((

ak
)†

ak
)∗

= a∗ k
(
a∗ k
)† = a∗a∗ k−1

(
a∗ k
)† = a∗a∗D = a∗

(
aDk

)∗ =(
aDka

)∗
. So, ak

(
ak
)† =

(
ak
)†

ak.
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Let a ∈ R be Drazin invertible with Drazin index k and consider

ca = aaDka,

na =
(
1− aaDk

)
a = a− ca.

It should be remarked that a and 1− aaDk commute, and also that na is nilpo-
tent. Indeed, nk

a =
((

1− aaDk
)
a
)k = ak

(
1− aaDk

)
= ak − ak+1aDk = 0. The

following elementary results hold, as for matrices over the complexes (see [2]):

Lemma 8. Let a ∈ R be Drazin invertible with Drazin inverse aDk of index k.
Let ca = aaDka and na =

(
1− aaDk

)
a = a− ca. Then

1. a = ca + na.

2. cana = naca = 0.

3. ca is group invertible with (ca)
# = aDk .

4. nk
a = 0.

5. aj = cj
a + nj

a, if j < k.

6. aj = cj
a, if j ≥ k.

Definition 9. For a, ca, na as above, the sum

a = ca + na

is called the core nilpotent decomposition of the element a, ca is the core part of
a and na is the nilpotent part of a (compare with [1], [2] for the ring of matrices
over the complexes).

We remark the fact that the core nilpotent decomposition is unique in the
following sense: if aDk exists and x, y are such that a = x + y, x# exists, yk = 0
and xy = yx = 0, then x = ca and y = na (see [1]).

Theorem 10. Given an element a in a ring R with involution *, the following
are equivalent:

1. a is *–DMP with index k.

2. aDk exists and the core part of a is *–gMP.

3. aDk exists and is *–gMP.

4. aDk exists and aaDk is symmetric.
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Proof. (1 ⇔ 2) Suppose a is *–DMP with index k. Then aDk exists and ak = ck
a

is *–gMP. This means that ck
aR = c∗ k

a R, and as ca is group invertible, also that
caR = c∗aR. So,

cac
∗
aR = c2

aR = caR,

Rc∗aca = Rc2
a = Rca,

and ca ∈ cac
∗
aR ∩Rc∗aca, which implies that ca is Moore-Penrose invertible.

Conversely, if ca is *–gMP, then all powers of ca are *–gMP. In particular if k

is the Drazin index of a then ck
a = ak is *–gMP, and thus a is *–DMP of index k.

(2 ⇔ 3) Suppose ca = aaDka is *–gMP. Then(
aDk

)∗
R =

(
RaDk

)∗
=

(
RaaDk

)∗
=

(
RaDka

)∗
=

(
RaaDka

)∗
=

(
aaDka

)∗
R

= c∗aR

= caR

= aaDkaR

= aaDkR

= aDkaR

= aDkR.

Moreover, aDk
(
aDk

)∗
R =

(
aDk

)2
R = aDkR, and analogously, R

(
aDk

)∗
aDk =

RaDk , and therefore aDk is Moore-Penrose invertible. Hence, by corollary 1, aDk

is *–gMP.
Conversely, and analogously to the above, if aDkR =

(
aDk

)∗
R then caR =

c∗aR. Moreover, cac
∗
aR = c2

aR = caR, and also Rc∗aca = Rca. Therefore (ca)
†

exists, which together caR = c∗aR imply ca is *–gMP.
(2 ⇔ 4) If ca is *–gMP then c†a = c#

a = aDk . Hence,

aaDk =
(
aaDk

)2
= caa

Dk

= cac
†
a,

which is symmetric.
Conversely, if aaDk = aDka is symmetric then we prove that aDk is the Moore-

Penrose inverse of ca. Indeed, caa
Dk and aDkca are symmetric. Obviously,

caa
Dkca = ca,

aDkcaa
Dk = aDk .
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Therefore, c†a = aDk = c#
a and ca is *–gMP.

Theorem 11. If a is *–DMP with index k and with core part ca and nilpotent
part na, the following hold:

1. If n†a exists then a† exists with a† = c†a + n†a = c#
a + n†a.

2. If a† exists then n†a exists with n†a =
(
1− aaDk

)
a†naa

† (1− aaDk
)
.

Proof. We remark that ca belongs to the ring aaDkRaaDk and na belongs to the
ring

(
1− aaDk

)
R
(
1− aaDk

)
. Also, the previous theorem implies that c†a exists

with c†a ∈ aaDkRaaDk (see [18]).
(1) If na is Moore-Penrose invertible then also

n†a ∈
(
1− aaDk

)
R
(
1− aaDk

)
,

see [18]. The equality a† = c†a + n†a follows easily from

0 = cana

= can
†
a

= n†aca

= c†ana

= c†an
†
a.

(2) It is easy to show that

a†
(
1− aaDk

)
,
(
1− aaDk

)
a† ∈ na {1} .

In addition,
naa

† (1− aaDk
)

=
(
1− aaDk

)
aa†

(
1− aaDk

)
is symmetric, and therefore a†

(
1− aaDk

)
is a 1-3 inverse of na. Also,(

1− aaDk
)
a†na =

(
1− aaDk

)
a†na =

(
1− aaDk

)
a†a

(
1− aaDk

)
is symmetric, which makes

(
1− aaDk

)
a† a 1-4 inverse of na. Hence

n†a =
(
1− aaDk

)
a†naa

† (1− aaDk
)
,

see [28].

It should be pointed that in the previous theorem, a† = c†a + n†a is not neces-
sarily a core nilpotent decomposition. Let

A =

 0 0 0
1 0 0
1 1 0

 ∈ Mat3 (C)
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with transposed conjugation as the involution. 0 + A is the core nilpotent de-
composition of A, but since

A† =

 0 1 0
0 −1 1
0 0 0


is not nilpotent, 0† + A† is not the core nilpotent decomposition of A.

The A of this example is nilpotent of index 3. For *–DMP matrices with
index 2, the following positive results hold.

Lemma 12. If a2 = 0 and a† exists then also
(
a†
)2 = 0.

Proof. The result is clear since
(
a†
)2 = a†a† = a†aa†a†aa† = a†a†∗a∗a∗a†∗a† and

a∗ 2 = 0.

Lemma 13. If a is *–DMP with index 2 and a† exists then ca† = c†a and na† = n†a.

Proof. Since a is *–DMP then ca is *–gMP by Theorem 9 and therefore c†a = c#
a .

So,
(
c†a
)#

exists and equals ca. Also, since ca ∈ aaD2RaaD2 then c†a ∈ aaD2RaaD2 .

As in the previous theorem, the existence of a† implies the Moore-Penrose invert-
ibility of na, with

n†a =
(
1− aaD2

)
a†naa

† (1− aaD2
)
∈
(
1− aaD2

)
R
(
1− aaD2

)
.

So,
c†an

†
a = n†ac

†
a = 0.

Finally,
(
n†a
)2

= 0 since n2
a = 0, and a† = c†a + n†a. Using the uniqueness of the

core nilpotent decomposition, the result follows.

3 Application

Let R be a projective free ring with identity and involution r 7→ r such that
Rm be a module of finite length, which means that Rm has ACC and DCC for
submodules, see [3], [13]. Let + : (aij) → (aij)

T be the involution on Matm(R).
It follows from Fitting’s Decomposition Theorem, see [3], [5], [10] and [13], that
every matrix A is similar to a matrix of the form G ⊕N, with G invertible and
N nilpotent with an index k, since R is also supposed to be projective free. So,

A =
(

Q1 Q2

)( G 0
0 N

)(
P1

P2

)

13



with
(

Q1 Q2

)
=

(
P1

P2

)−1

.

By Theorem 9, A is +–DMP of index k if and only if AADk is symmetric with
respect to +. But,

AADk = Ak
(
Ak
)#

=
(

Q1 Q2

)( Gk 0
0 0

)(
P1

P2

)(
Q1 Q2

)( G−k 0
0 0

)(
P1

P2

)

=
(

Q1 Q2

)( I 0
0 0

)(
P1

P2

)
= Q1P1

and, the symmetry of Q1P1 together with P1Q1 = I implies that

Q1 = P †
1 .

But also P2P
†
1 = 0, i.e., P2P

+
1

(
P1P

+
1

)−1 = 0 or P2P
+
1 = 0 and P1P

+
2 = 0. This

means that P+
2 is a cokernel of P1 in the sense of [26], and Theorem 3.1 (page

77) implies [
Q1 Q2

]
=

[
P1

P2

]−1

=
[

P †
1 P †

2

]
.

Therefore,

1.

A is +–gMP iff A =
[

P †
1 P †

2

] [ G 0
0 0

][
P1

P2

]
iff A = P †

1GP1

(P1 retraction, G invertible)

It is easy to verify A# = A† by means of the product formulas (paq)# and
(paq)†, see [21], [17]. Indeed,

A# =
(
P †

1GP1

)#

=
(
P+

1

[(
P1P

+
1

)−1
G
]
P1

)#

= P+
1

(
P1P

+
1

)−1
G−1P1

= P †
1G−1P1

= A† with respect to +.

14



2. A is +–DMP of index k iff

A =
[

P †
1 P †

2

] [ G 0
0 N

][
P1

P2

]
= P †

1GP1 + P †
2NP2

(G invertible, N nilpotent of index k and

[
P1

P2

]−1

=
[

P †
1 P †

2

]
). Clearly,

(
Ak
)#

=
(
Ak
)†

= P †
1G−1P1.

Remark
In [2], we can find the following characterization for range-Hermitian matrices

over C:

- there exists a unitary matrix U =

[
U1

U2

]
and an invertible r × r matrix G,

r = rank A, such that

A =
[

U+
1 U+

2

] [ G 0
0 0

][
U1

U2

]
= U+

1 G U1.

Since C is projective free and Cn has finite length, the following is now a
unitary free characterization for range-Hermitian matrices over C:

- there exists an r × n matrix P1 of full rank and an invertible r × r matrix G,
r = rank A, such that

A = P †
1GP1.
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