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Abstract

Let Q := {£2; 21, 29, 23, 24} be a quadrilateral consisting of a Jor-
dan domain €2 and four points 21, z9, 23, z4, in counterclockwise order
on 0N and let m(Q) be the conformal module of Q. Then @Q is con-
formally equivalent to the rectangular quadrilateral {Rm(Q); 0,1,1 4
im(Q),im(Q)}, where R, ) == {(§,n) : 0 <& <1, 0<n<m(Q)},
in the sense that there exists a unique conformal map f: Q — R,
that takes the four points 21, 29, 23, 24, respectively onto the four ver-
tices 0, 1, 1 +im(Q), im(Q) of R,,). In this paper we consider
the use of a domain decomposition method (DDM) for computing
approximations to the conformal map f, in cases where the quadrilat-
eral @ is “long”. The method has been studied already but, mainly,
in connection with the computation of m(Q). Here we consider cer-
tain recent results of Laugesen [12], for the DDM approximation of
the conformal map f: ©Q — R,, ) associated with a special class of
quadrilaterals (viz. quadrilaterals whose two non-adjacent boundary
segments (z9,23) and (24, z1) are parallel straight lines) and seek to
extend these results to more general quadrilaterals. By making use of
the available DDM theory for conformal modules, we show that the
corresponding theory for f can, indeed, be extended to a much wider

class of quadrilaterals than those considered by Laugesen.

AMS classification: 30C30, 65E05.
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1 Introduction

Let Q := {Q; 21, 29, 23, 24} be a quadrilateral consisting of a Jordan domain
Q2 and four points z1, 29, 23, 24 in counterclockwise order on 92 and let m(Q)
be the conformal module of Q. Also, let R,,) denote a rectangle of base 1
and height m(Q), i.e.

Ry ={(En):0<{<1 0<n<m(Q)}.

Then, @ is conformally equivalent to the rectangular quadrilateral

in the sense that there exists a unique conformal map f : Q — R, ) that
takes the four points zq, 29, 23, z4. respectively onto the four vertices 0, 1,
L +im(Q), im(Q) of Ry q)-

This paper is concerned with the study of a domain decomposition method
(DDM) for computing approximations to the conformal module m(Q) and
the associated conformal map f : € — R,,q). in cases where the quadrilat-

eral @ is long. The method is based on the following three steps:

(i) Decomposing the original quadrilateral @ := {€; z1, 29, 23, 24 } (by means
of appropriate crosscuts /;; j = 1,2,...) into two or more component

quadrilaterals @Q;; j =1,2,...; see e.g. Figure 1.1.

(ii) Approximating the conformal module m(Q) of the original quadrilat-
eral by the sum >, m(Q;) of the conformal modules of the component

quadrilaterals. (Note that
(@) > S m(Q) (1)

and equality occurs only when the images of all the crosscuts [; under
the conformal map f : € — R,,() are straight lines parallel to the real
axis. This follows from the well-known composition law for modules of

curve families; see e.g. [1, pp. 54-56] and [9, pp. 437-438].)
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(iii) Approximating the conformal map f : Q@ — R,,() of the original do-
main ), by the conformal maps f; : £; — R,,q,) of the subdomains

2;, where
Ry = {(m):0<E<1, 0<n<m(Q)}

and

Ry ={(&n):0<E< 1, im(Qk> <n< Y m(Q)}, j=2,3,....

k=1 k=1

Figure 1.1

The specific objectives for using the above process are as follows:

(a) To overcome the crowding difficulties associated with the problem
of computing the conformal maps of long quadrilaterals, i.e. the difficulties
associated with the conventional approach of seeking to determine m(Q) and
f:Q — R, by going via the unit disc or the half plane (see e.g. [13, §3.1]
and [17, §1]).

(b) To take advantage of the fact that in many applications (for example
VLSI applications), a complicated original quadrilateral @ can be decom-
posed into very simple components ();.

The DDM was introduced by two of the present authors (N.P. and N.S.S.)
in [14], [15], for the purpose of computing the conformal modules and asso-
ciated conformal maps of a special class of quadrilaterals, viz. quadrilaterals

where: (a) the defining domain 2 is bounded by two parallel straight lines
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and two Jordan arcs; (b) the points zy, 29, 23, z4 are the four corners where
the two boundary arcs meet the two parallel straight lines. For the same
special class of quadrilaterals, the method was also studied by Gaier and
Hayman [5], [6], in connection with the computation of conformal modules,
and more recently by Laugesen [12], in connection with the determination of
the conformal maps. These three papers contain several important results
that enhance considerably the associated DDM theory. In particular, the
results of Gaier and Hayman provided the necessary tools for extending the
application of the DDM to the computation of the conformal modules of a
much wider class of quadrilaterals than that considered initially in [14] and
[15] (see [16], [17], [18], [19]). The main purpose of the present paper is to
investigate the possibility of extending the DDM theory of Laugesen [12], for
the conformal map f : Q2 — R,,(g), to more general quadrilaterals than those
having the special form mentioned above.

The paper is organised as follows:

In Section 2 we present a number of preliminary results that are needed
for our work in Section 3.

Section 3 contains the main results of the paper. Here, by making use
of the theory given in Section 2, we show that Laugesen’s DDM theory for
the mapping function f can indeed be extended to a much wider class of
quadrilaterals than those considered in [12].

Finally, in Section 4 we present several numerical examples illustrating
the application of the DDM results obtained in Section 3.

In presenting our results we shall adopt throughout the notations used in
[16], [17], [18]. That is:

e O and Q := {Q; 21, 29, 23, 24} will denote respectively the original do-

main and corresponding quadrilateral.

e (2,0, ... and Qq,Q,, ..., will denote respectively the “principal” sub-
domains and corresponding quadrilaterals of the decomposition under

consideration.
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e The additional subdomains and associated quadrilaterals that arise
when the decomposition of @) involves more than one crosscut will be

denoted by using (in an obvious manner) a multisubscript notation.

For example, the five component quadrilaterals of the decomposition illus-

trated in Figure 1.1 are:
Ql = {91;217227a7 d}7 Q? = {QQ;duaa b7 C}, Q3 = {QS;Ca b7 23724}

and
Ql,? = {91,2; 21, 22, ba C}a Q2,3 = {92,3; da a, z3, 24}7

where
51,2 = ﬁl U QQ, 62,3 = QQ U ﬁg.

2 Preliminary results

In this section we present a number of preliminary results that are needed for
our work in Section 3. The first of these (Lemma 2.1) is a simple consequence
of results given in [12].

Consider a quadrilateral of the form illustrated in Figure 2.1(a), where:
(a) the defining domain €2 is bounded by the straight lines 8z = 0, Rz =1
and 7 :={z:0 < Rz <1, Iz =0} and a Jordan arc v9; (b) the four points
Z1, 22, 23, 24 are the four corners where v; and v, meet the lines Rz = 1 and
Rz =0.

Consider next the decomposition of @) illustrated in the figure, where the
crosscut of subdivision is a Jordan arc < joining the straight lines Rz = 0

and Rz = 1. Also let R,,) and R,,,) denote the rectangles

Ry ={(n):0<&<1, 0<n<m(Q)}

and
Ry = 1(&m) 1 0 <€ <1, m(Q) —m(Q2) <n <m(Q)}

and let f and fy be the associated conformal maps

f Q) — Rm(Q) and fQ : QQ — Rm(Qz)- (2.1)
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2 .23
\\/l i m(Q)
2 f2 > Ru@,)
|\\\////;/‘\\|
i {m(Q)-m(Qy)}
Q
0 Y1 1 0 1
1@ %2 (b)
Figure 2.1

Lemma 2.1 With reference to Figure 2.1 and the notations introduced above,

max |f(2) — fa(2)] < 1.28¢ (@), (2.2)
z€72
max 1£(2) — 2| < 1.60e ™™D, (2.3)
zZEM
and
max | f(z) — z| = max |f(2) — z| < 6.40e~™™(@2) (2.4)
z€M ze€y

provided that m(Qy) > 3. If, in addition, the crosscut vy is a straight line

parallel to the real axis, then

max 1£(2) = fo2)] < 2.57e 2™m(@2), (2.5)
zeY2
max 1f(2) — 2| < 2.04e7™™(@), (2.6)
zEM
and
max | f(z) — z| = max | f(z) — z| < 2.04e "™(@2), (2.7)
e, zey

provided that m(Qy) > 1.

Proof. Of the above, Estimates (2.2) and (2.5) can be concluded trivially

from the analysis of Laugesen [12], by noting that in our case 7, and 7y
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are Jordan arcs and applying Estimate (6.6) of [12, p. 550] to each of the
exponential mappings associated with the conformal maps f and f;. The
remaining estimates can be obtained as follows:

The transformation

z— 7 :=exp(inz),

maps conformally 2 onto the upper half of a symmetric doubly-connected
domain G which is bounded externally by the unit circle and internally by
a Jordan curve I" surrounding the origin. Let 1/r be the conformal modulus
of G and let g be the function that maps conformally G onto the circular
annulus A ;= {W :r < |W]| < 1}. Then g is related to the mapping function
[ Q= R,q) by means of

g{exp(imz)} = exp{in f(2)}, (2.8)

and
r = exp{—mm(Q)}. (2.9)
Next, apply the so-called 5r-theorem of Laugesen [12, p. 535] to the map-
ping function ¢~ : A — G. Then, by adapting the analysis of Laugesen [12,
p. 550] to our case and noting that the inner boundary I' of G is a Jordan

curve, we find that for any p, e ™ < p < 1, where h := max{Sz, 2 € v},

max [log g(Z) ~log 2| < pfrw, (2.10)
provided r < p/5. From this it follows easily that
max |f(2) 2] < (2.11)
provided r < 1/5, and
5o mm(Q)—h)
max |f(2) = 2| = max|[f(z) — 2] < (= e @ Ty (2.12)

provided m(Q) — h > (log5h)/m = 0.512---. Estimates (2.3) and (2.6) then
follow at once from (2.11), because m(Q) > m(Qs). Further, (2.12) with
m(Q) — h > 1 gives

max|f(z) — z| < 2.04e ™M@ =R},
z€M



Conformal Mapping of Elongated Quadrilaterals 7

and (2.7) follows from this, because when = is a straight line, then

m(Q) > m(Qs) + h.

Finally, to obtain Estimate (2.4) we make use of the following:
(i) The double inequality

where hsy is the distance of the crosscut v from the arc 7y; see [8, pp. 35 37].
(ii) The following two results of Gaier and Hayman (see [6, Thms 1, 4] and
16, Thm 2.1)):

1 1
m(Qy) — hy — —logry — —logry| < 0.381e ™", (2.14)
T m

provided hs > 2, where r; and r9 are the so-called exponential radii of
the arcs v and 73, respectively. (Here 75 denotes the reflection of the

arc 7, in the real axis.)
o Let @ be the quadrilateral
Q= {Q, ih,1+ih,z3, 24},

where O = Qy N {z: 3z > h}. Then,

1 —2mh 2 1

- 50.3816 2<m(Q) — hy — —logry <0, (2.15)
m

provided hy > 1.

(iii) The two inequalities

~

m(Q) >m(Q)+h  and  r; <4, (2.16)

which result, respectively, from the composition law (1.1) and Koebe’s -

theorem.

Estimate (2.4) follows from (2.12), because (2.13) (2.16) imply that

m(Q) —h > m(Qy) — 0.441 983 4. n
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Let @ be the quadrilateral @ := {Ry;0,1,1+ iH,iH}, where
Ry :={(n):0<&<1, 0<n< HY,

and consider a decomposition of ) by means of two Jordan arcs [; and [y
as illustrated in Figure 2.2. With the usual notations, let Q) 9, @2 and Q23
be the three quadrilaterals that are defined respectively by the subdomains
Q19, Q9, and Qy 3 and let R,y (q, ), Rin(@,) and Ry @, ) be the corresponding

conformally equivalent rectangles
Rin@ro) =1 :0<E<T, 0<n<m(Qua)}, (2.17)

Ry =1{(&n): 0 <<, m(Qi2) —m(Q2) <n<m(Qi2)} (2.18)

and

Rin(@e) = {(&m) :0<E< 1, H—m(Qa3) <n < H}. (2.19)

Figure 2.2

Finally, let fio, fo and fo3 denote the associated conformal maps (see Fi-

gure 2.3),

Ji2: Qo = Ro@ray, Joi Qo= Roqy),  fo3: 23 = Ring,.s),
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and consider the transformation 7' : Ry — Ry defined by

f23(¢), for ¢ € Qs,
T(C) =19 f12(0) + f2,3(¢) — fa(). for ¢ € Q. (2.20)
f1,2(¢), for ¢ € Q.

The lemma below says that if Ry is “long”, then T is close to the identity

map.
V2 1+iH iH
Q3
I im(Qq,2)
Q, fio -
Q12
D
Q
0 ! Y1 |1 (@ 0 1
V2 1+iH iH
Q
3 im(Qy.)
12
Q, 2 Rm(@,)
i{m(Qq ) - Q)
\.//\'
Q
0 Vi, (b 0 !
v, 1 iH
Q3
\/
f
23 Rm(QZ, 3)
Q,
w- i{H - m(Q)
Q
0 v )y © 0 1

Figure 2.3
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Lemma 2.2 With reference to Figures 2.2 and 2.3 and the notations intro-
duced above,

Ep := max |T(¢) — ¢| < 10.39¢ ™), (2.21)
(ERy

provided that m(Qy) > 3. If, in addition, the crosscut ly is a straight line
parallel to the real axis (so that fo3(C) = (), then

Er < 4.08¢™m(Q2), (2.22)
provided that m(Qy) > 1.

Proof. From (2.4),

By = maximax|f,(C) — ¢, ?@|T(g) = ¢l max|foa(Q) —¢l}, (2:23)

€y
where
max | f12(¢) = ¢| < 6.40e ™(Q2) (2.24)
€l
and
max | fo3(C) — C| < 6.40e77(9), (2.25)
€l2

provided m(Q5) > 3. Further, the function 7'(¢)—( is analytic in s, continu-
ous on €2, and can be extended (by means of the Schwarz reflection principle)
to a periodic function, with period 2, in the infinite domain obtained by re-
peatedly reflecting €y across its straight line boundary segments (see e.g. [7,

p. 273]). Therefore, from the maximum modulus principle,

Igé%x T(C) — ¢| = max{ £y, E, }, (2.26)
where
Ey, = max | f1,2(C) + f2,3(¢) — f2(C) — (]
and

By, = max | f12(C) + f23(C) = f2(¢) = C.
Next, if m(Q2) > 3, then from (2.2) and (2.4) we have that

E, < maX|f1,2(()—fQ(C)|+r?€&}§<\f273(C)—C|

C€ly
< 1.28e7 (@2 4 6,400 ™(Q2) = 7 68 ™M(Q2) (2.27)
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and

IN

I?g}f( | f23(C) = f2(C) — iem| + |em| + I?g}f |f12(¢) = ¢

< 1.28¢7™@2) e | 4 6.40e (@),

1

(The quantity

Em = H —{m(Q12) + m(Qa3) — m(Q2)}

was introduced in the last estimate, because the function f;3 maps the
domain €2y 3 onto the rectangle R,,q,,) whose lower side is at a distance
H —m(Qq3), rather than m(Q2) — m(Q2), from the real axis.) Thus, since
from Theorem 2.4 of [19]

em| < 2.71e™m(@2)

we have that
B, < 10.39¢™m(@2) (2.28)

The required result (2.21) follows from (2.23), by comparing the estimates
(2.24), (2.25), (2.27) and (2.28).

If [; is a straight line parallel to the real axis and m(Q2) > 1, then from
(2.7),

max | f12(¢) = ¢| < 2.04¢ ™m(Q2) (2.29)
€l
and
I}l%X | f25(C) — C| < 2.04¢™m(@2), (2.30)
€l

Also, since in this case fo3(¢) = ¢, (2.5) gives

Er, = max |f15(C) = f2(Q)] < 2,572, (2.31)

Finally, from (2.6),

max | f2(¢) — ¢| < 2.04e 27m(Q2)
¢elr

and hence

By, < max|f5(C) = |+ max | f12(C) — ¢] < 4.08e77(@), (2.32)
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The required result (2.22) follows from (2.23), by comparing the estimates
(2.29), (2.30), (2.31) and (2.32). m

Consider now a general quadrilateral @ := {2; 21, 29, 23, 24} decomposed

as shown in Figure 2.4(a). Let f be the conformal map

f:Q%Rm(Q)::{(gan):0<§<]-a 0<n<m(Q)}a

let Rpu@10)s Bin(@s)r Bm(q,,) denote the rectangles (2.17)-(2.19), with H =
m(Q) for Ry, (q,,), and let fi5. fo and f 3 denote the conformal maps,

f1,2 : QLQ — Rm(QLz)a f2 : QQ — Rm(Qz) and f2,3 : 9273 — Rm(Q2,3)‘

Also, let f denote the following DDM approximation to f:

fas(z), for z € Qg,
f(z) =19 fia2(z) + fos(z) — fa(z2), for z € Qo, (2.33)
f12(z), for z € Q.

The theorem below may be regarded as the extension of the conformal

module Theorem 2.5 of [19], to the case of the conformal map f.

Theorem 2.1 With reference to Figure 2.4(a), let f be the DDM approxi-
mation (2.33) to the conformal map f:Q — R, o). Then

By :=max |f(z) — f(2)] < 10.39¢ (@) (2.34)
z€Q

provided that m(Qy) > 3. If, in addition, the image of the crosscut l; under

the conformal map f is a straight line parallel to the real azis, then
E; < 4.08¢ (@), (2.35)

provided that m(Qy) > 1.
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im(Q) Y2

Figure 2.4

Proof. Let Ql, QQ, Q3, ll, lg, 41 and 5 denote respectively the images under
the conformal map f of Q, Qo, Q3. Iy, o, 71 := 27, 22 and vy = z3, 24 (see

Figure 2.4), and denote by fLQ, f2 and f273 the conformal maps,
fLQ : QLQ — Rm(Ql,?)’ fQ : QQ — Rm(QQ) and ng,g : 5\2273 — Rm(Qm)‘
Then,

fl,Q(Z) = fLQ(f(Z)), for z € QLQ, fQ(Z) = fQ(f(Z)), for z € QQ,

and
fas(2) = fos(f(2)), for z € Qys.
Next, let
f2,3(() for ¢ € 937
T(C) =13 fi2(Q) + f2s(¢) = f2(Q), for ¢ € Oy,
fi2(C), for C € Q,

and observe that for any z € Q, f(z) = T(¢), where ¢ = f(z). Thus,

Ey = max [T(¢) — ¢,

CERmQ)

and the required results follow at once from Lemma 2.2. [ |
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Remark 2.1 With reference to Theorem 2.1, the following estimates hold:

max 1£(2) = fia(z)] < 1.60e ™m(@12) (2.36)
ZE7
and
max |f(2) — faa(2)] < 1.60e ™2, (2.37)
zeY2

provided that m(Qy) > 3. This can be seen by observing that

max |f(z) — fia(z)] = max |f12(0) = ¢l

ZEY1

max |f(2) ~ fos(2)| = max | f23(¢) — (|

(see Figure 2.4(b)) and applying Estimate (2.3) to the right hand side of the

last two equations.

3 DDM for the conformal map

The results of this section extend the DDM conformal module results of

Theorems 2.4 and 2.6 of [19] to the case of the full conformal map.

A
i{m(Q)-m(Qp)}

Y

@ R

-im(Qq)

(b)

Figure 3.1

Consider a quadrilateral @ := {; 21, 29, 23, 24} of the form illustrated in
Figure 3.1(a), where the defining domain € can be decomposed by a straight

line crosscut [ into Q; and €, so that €, is the reflection in [ of some
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subdomain of €, as shown in the figure. Let R,,q). R, and R,,,) be

the rectangles
Ry ={(En):0<&<1, —m(Q1) <n<m(Q) —m(Q)},

Ry ={(n): 0 <& <1, —m(Qr) <n <0}
and

Ry ={(€n) 1 0< <1, 0<n<m(Qa)}
and let f; and f,, denote the conformal maps

f1 Q= Rm(Ql) and f2 c Qo — Rm(Qz)-

The theorem below extends the conformal module Theorem 2.4 of [19] to

the case of the conformal map f.

Theorem 3.1 With reference to Figure 3.1 and the notations introduced
above, let E}l} and E}Q} denote the DDM errors

EfYi=max|f(z) = fi(z)] and B} i=max|f(z) - fal2)).  (3.1)
ze 2€Q
Then,
B = max|f(2) — fi(2)] < 2.04¢" ™" (3.2)
zE
and
B < 4.08¢ @), (3.3)

provided that m(Qy) > 1.

Proof. Reflect €27 in [ and consider the decomposition of the resulting quadri-
lateral Q* := {Q*; 21, 29, 23, 2} } illustrated in Figure 3.2(a). Then the sym-
metry of @* implies that m(Q*) = 2m(Q;) and that the image of the crosscut

[, under the conformal map

G: Y = Ry =1{(&n):0<E<1, —m(Qr) <n<m(Q)},

is the segment 7 := {(£,0): 0 < & < 1} of the real axis.
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imQ 1)

AmQy)

(b)

Figure 3.2

Let Ql, QQ, Q3, 71, 72 be the images, under g, of 27, s, Q3, v1, 72, where

Vi 1= 21, 22, Y2 1= 23, 24 (see Figure 3.2), and consider the conformal maps

g1y — Ry, G2 Qg — Ring, and g1o: .y — R0)-

Then,
fi(2) = 01(9(2)), z €, fol2) = G2(9(2)), 2z € Qy,
and
f(z) = g12(9(2)), z € S
That is,

fi(2) =31(Q) = ¢, fa2) = G2(¢) and  f(z) = g12(C),

where ¢ = g(z). Therefore, from (2.7),

E}I} = max 191.2(C) — ¢| = max |g1(¢) — (] (3.4)
ceh cel
= max|f(z) — fi(2)] < 2.04¢ ", (3.5)
zE

Also, by applying to g1 2(¢) —g2(¢) the argument used for the function 7'(¢)—¢
at the beginning of the proof of Lemma 2.2,

B = max |§12(0) — 52(0)| = max{Ey, Es, ). (3.6)
=92
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where

Efiz Hclal} |§1,2(C) —92(¢)| and E% = rcne&lx 191.2(C) — G2(¢)]-
€ 2

Next, by using (2.6) and (2.7),

Ep < max|[g(¢) = (| 4+ max [715(C) — ¢

(el (el
< 4.08¢ (@), (3.7)
Also, from (2.5),
E5, < max 1G1.2(C) — §2(C) — iem| + em
€72
< 257 @) g (3.8)
where the quantity
em = m(Q) — {m(Q1) + m(Q2)} (3.9)

is introduced in (3.8), because the function g, » maps the domain QLQ onto
the rectangle R,, o) whose upper side is at a distance m(Q) — m(Q,), rather

than m(Q3), from the real axis. Thus, since from [18, Result 5]

¢ 2mm(Q2)

— — Y

we have that

B, < 3.85¢ 7(@), (3.10)

Therefore, from (3.6), (3.7) and (3.10),

B <408 m

Remark 3.1 With reference to Theorem 2.1, the following estimates hold:

max |f(z) — fi(z)] < 2.04¢ ™) (3.11)
zZET1
and

max | f(z) — fa(2)] < 3.85¢ 2m(Q2) (3.12)

ZEY2
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provided that m(Qy) > 1. The above estimates follow at once from (2.6) and
(3.10), because

max | f(2) — fi(z)] = max (g1 2(C) — (]

zem ¢em
and
max [ f(2) — f2(2)] = max [g15(C) — §2(C)] = E5,.
zC72 CE72
Consider now a quadrilateral @ := {€; 21, 29, 23, 24} of the form illus-

trated in Figure 3.3(a), where the defining domain €2 can be decomposed by
means of a straight line crosscut [ and two other crosscuts /; and [y into four
subdomains 2, €25, Q3 and €24, so that 23 is the reflection in [ of €5. Let

Ry =1(&n) 0 <<, =m(Qi2) <n<m(Q) —m(Qi2)},

Rm(Ql,g) = {(ﬁﬂ?) 10 < 5 <1 7m(Q1,2) <n< 0}7
Rm(Q3,4) = {(f, 77) 0<E<L, 0<n< m(Q3,4)}

and denote by f the conformal map f : Q — R,,) and by f the following
DDM approximation to f:

f3,4(2) : 93,4 — Rm(Q3,4); for z € 93’4,
flz) = (3.13)
fLQ(Z) : QLQ — Rm(Ql,Q)’ for z € QLQ.

The theorem below extends the conformal module Theorem 2.6 of [19] to

the case of the full conformal map f.

Theorem 3.2 With reference to Figure 3.3 and the notations introduced

abowve,

By :=max|f(z) — f(z)| < 6.17¢ (@), (3.14)
z€Q

provided that m(Qy) > 1.5.



Conformal Mapping of Elongated Quadrilaterals 19

A

i {m(Q)-m(Qy o)}

f > >
0 1 =
@
RnQ)
i mQy )
(b)

Figure 3.3

Proof. Recall that

[:Q= Ry ={(En):0<&<L, —m(Qia) <n<m(Q) — m(Qis)},

let
R 2s) = {(&:n):0< <1, —m(Qr2) <n <m(Qr23) —m(Qi2)},

Ron(@u) = 1(§,1):0 <€ <1, m(Qr2,3)-m(Q12)-m(Q23) <n <m(Qi23)m(Q12)},
Rin@uga) = {(&m) 1 0 < <1, m(Q)—m(Qu2)—m(Qaz4) < n < m(Q)—m(Qu2)},

and consider the transformation

f2,374(2), for z € Q4,

g(z) == f123(2) + faza(z) — fos(z), for z € Qy3,
f1’2’3(2), fOI' z € Ql,

where
Jio Q23 = Rin@iss) f23:1 Q23 = Ri@ag):  fo34: Q234 = Bi@as)
(see Figure 3.4). Then, from Theorem 2.1 (Estimate (2.34)) we have that

max | f(z) — g(z)| < 10.39¢~2m(@2), (3.15)

zeQ
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provided m(Q2) > 1.5. (Note that because of the symmetry m(Qq3) =

2m(Qs).)
3 2 Q4

(a)

Figure 3.4

i{m(Q)-m(Qy )}

i{m(Qq,2,3)-M(Qy )}

f123 o
Rm(Ql,z,s)
-imQq )
i {m(Q)-m(Qq )}
{M(Q) 29-M(Qy )}
Rm(Q,9)
fo3 >
0
i{m(Qq 23)-M(Qq 2) - MQ23) }
-imQq0)
i {m(Q)-m(Qq 2}
R”‘(Qz,3,4)
f234
a

i {m(Q)-m(Qq2) -M(Q234)}

-imQq 9)
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Our next objective is to estimate max|g(z) — f(z)|. We do this by esti-
zeQ)
mating separately the errors

B = max|g() - f(2)], j=1,2.3.4

as follows:
(i)
E';Ll} = max |f1,273<2) - f1,2<2)|‘

ZEQl
Therefore, from (3.2),
B < 2.04e @), (3.16)

provided m(Qy) > 1.
(ii)

E;Z} = max |fi23(2) + fa34(2) — faz(z) = fi2(2)]

ZEQZ
< max|fioa(2) — fi2(2)| + max|foza(z) — fos(2)],  (3.17)
z€8 z€8Q
where, from (3.2),
max | f123(z) — fi2(2)] < 2.04¢ (@), (3.18)
z€Q9

provided m(Qy) > 1. Also, if
R =& n):0<{<1, Hy <n< H},
with
Hy = m(Q1,2,3)—m(Ql,Q)—m(Q2,3) and Hj:= m(Q1,2,3)—m(Q1,2)—m(Q3)7
then, because of the symmetry of €23,
fo3(2) = fa(2), 2z €y,
where fo 1 €y — Ry (q,). Therefore, if

a:=m(Q) — {m(Qia3) + m(Qa34) — m(Qa3)},
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then by using (3.3),

max ‘f2,3,4(2) - f23(z)| < max |f2,3,4(2) — fa(2) —ial + |a]
z€Q9 z€Q9

< 4.08¢ Q) 4 |q, (3.19)

provided m(Q3) > 1. (The quantity o was introduced in the above estimate
because the function f; 3 4 maps the domain €2y 3 4 onto the rectangle R,,q, ;)
whose lower side is at a distance m(Q) — m(Q12) — m(Q23.4), rather than
m(Qi23) — m(Q12) — m(Qa3), from the real axis; see Figures 3.4(b), (c).)
Hence, from (3.17)—(3.19),

B <6.12¢7 @) 4 o, (3.20)

provided m(Qy) > 1.

(ii)

Eg}{g} = max |fi123(2) + foz4(2) — fo3(2) — f54(2)]

z€Q3
< max|fi23(2) — fas(2)| + max|foza(z) — faa(2) — ign| +em,
z€€3 z€€Q3

where the quantity

em = m(Q) — {m(Q12) + m(Qs.4)}

is introduced because the function fs34 maps the domain 534 onto the
rectangle R, ,,) Whose top side is at a distance m(Q) — m(Q12), rather
than m(Q34), from the real axis; see Figure 3.4(c). Hence, by recognising

that
fas(2) = f3(z), =z € Qs
with
f3: Q3 = Rpq,) = {&n):0<&<1, Hy<n<m(Qia3) — m(Qi2)},

we obtain from (3.2) and (3.3) that

B <6.12e @) o, (3.21)



Conformal Mapping of Elongated Quadrilaterals 23
provided m(Q2) > 1.
(iv) As in (iii) above, by using (3.2),
E,}H} = max|fo34(2) — f34(2)| < max|foz4(2) — f34(2) —icm| +em
z€Q, z€Q
< 2.04e7 ™M@ 4o (3.22)
provided m(Q2) > 1.
Thus, from (3.15), (3.16) and (3.20)—(3.22),
E; < max|f(z) = g(2)] +max|g(z) = f(2)],
2€02 2€9Q
< 10.39¢ 2@ L max|g(z) — f(2)], (3.23)
z€QN
where
2.04e ™@2)  for z € Q,
. 6.12e7™(@2) 4 ||, for z € Qy,
9(z) = f(z)] < ) _ (3.24)
6.12¢7 @) 4 = for z € Qs,
2.04e™m(Q2) 4 Em, for z € Q.
Finally, if m(Q) > 1.5, then Theorems 2.5 and 2.6 of [19] give,
la| < 2.71e72™(@)  and 0 < e, < 5.26e27M(@), (3.25)

These, in conjunction with (3.23) and (3.24), yield the required estimate

E; <6.17¢ ™@Q) =

Remark 3.2 We note the following regarding the various DDM estimates

involved in the proof of Theorem 3.2:

(i) Let 7, 72 denote respectively the sides 27, z9 and z3, z4 of the quadri-

lateral @ (see Figure 3.3). Then, by applying the maximum modulus

principle to the functions f(z) — fi2(2) and f(z) — fs4(z) (in a way

similar to that used for deriving Estimate (3.3) in Theorem 3.1) we find

that
max |f(2) — fi2(2)| = max{E,,, B'}

z€Q 2

(3.26)
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and
max |f(2) — fau(z)| = max{E.,, B, (3.27)

2€Q3,4

where,

B, = max|f(z) = fia(2), B = max|f(z) = fia(z)] (3.28)

ZEY1

and

B = max|f() = fra(:)l, B = max |£(2) = fua(z)l. - (3:20)

zZEY2
Thus, in order to estimate the full DDM error Ey, it is sufficient to
EM B, and E/*. This will
be used in Section 4 for the purpose of comparing: (a) the theoreti-

cal error estimate (3.14) with the “actual”’DDM error (Example 4.1);

consider the four partial errors K, .

(b) the DDM approximation fwith approximations obtained by other

conformal mapping techniques (Example 4.2).
(ii) For the two boundary errors E., and E.,. the following estimates hold:

E,, <3.64e™@23) and B, < 3.64e "(@289) 4 5.26¢ 2 m(@2)
(3.30)
provided m(Q2) > 1.5. This emerges from (2.36), (2.37), (3.11), (3.25)

and the triangle inequalities

E’yl < max |f(z) - f1,2,3(2)| + Igle%i{ \f1,2,3(2) - f1,2(2)‘7 (3-31)

ZEM

By, < %%§|f(z)—f2,3,4(2)|+%%§|f2,3,4(2)—f3,4(2)—i5m|+5m7 (3.32)
because m(Qq3) = 2m(Q2).

(iii) Since m(Q123) > 2m(Q2) and m(Qas34) > 2m(Q2), it follows from
(3.30) that the DDM errors on the boundary segments v;, 7, satisfy

E, =0(e @) j=12 (3.33)

This should be compared with the order of the DDM errors on the

crosscut of decomposition [, i.e.

El{J} — O(efwm(QZ))’ ] =1,2, (334)
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and with the order of the error of the DDM approximation for the

conformal module, i.e.

em = m(Q) — {m(Q12) +m(Qa4)} = O(e (@) (3.35)
(see (3.14) and (3.25)).

(iv) In (3.33) and (3.34) the indicated orders are best possible. For (3.34),
this follows from [12, §7|, and for (3.33) from the sharpness of the order

of the estimate for £, (see [6, Thm. 5]), because

By, > 1f(24) = fsa(za)] = [{m(Q) = m(Qu2)} — im(Qs4)| = m.

4 Numerical examples

In this section we present three numerical examples illustrating the applica-

tion of the DDM results obtained in Section 3. Our objectives are as follows:

1. To compare the theoretical estimates for the errors given by (3.14) and
(3.30) with the actual DDM errors. We do this in Example 4.1, by
considering a polygonal domain for which we can find reliable approxi-

mations to the various conformal maps involved in the decomposition.

2. To illustrate how the DDM can be used in conjunction with the nu-
merical conformal mapping package SC Toolbox of Driscoll 3], for the
efficient computation of the conformal mapping of complicated polyg-

onal quadrilaterals.

3. To present an example where, due to the effects of crowding, the con-
formal mapping software that we have available can approximate the

conformal map only through the use of domain decompositions.

Example 4.1 We consider the decomposition illustrated in Figure 4.1 and
compute approximations to the three conformal maps f : Q — Ry, ), fi2:

Mo — Ry and fzq @ Q34 — Ry, by means of the conventional
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method, i.e., by using the unit disc D as intermediate canonical domain.
For this we use: (a) the double precision version of the integral equation
conformal mapping package CONFPACK of Hough [10]" to compute the
conformal map of the defining domain of each quadrilateral onto the unit
disc; (b) the subroutine WSC of the Schwarz-Christoffel package SCPACK
of Trefethen [21], [20] to compute the inverse Jacobian elliptic sine that takes

D onto the associated rectangle.

2
4
i l2
I1 Ql Q4
2 Z3
0

Figure 4.1 The coordinates of the special points, starting from z; and moving

in counterclockwise order, are (-k-1.,2.), (-k-1.,0.), (k+2.,0.), (k+2.,3.)

Regarding accuracy, we expect that the computed approximations to the
functions f, fi2 and f34, (and to the associated conformal modules m(Q),
m(Q12) and m(Q34)) are correct to at least 8 decimal places. This is so

because (see e.g. [4, p. 188]):

e the CONFPACK error estimates for the conformal maps onto the unit

disc are less than 1.0 x 10~ '%;

e in the worst case, the measure of crowding is 6.4 x 10~4. (This occurs in

the computation of f: Q — Ry,g) corresponding to the value k = 2.)

In presenting the numerical results, we employ the following notations:

fThe double precision version of CONFPACK has only become available recently; see
http://www.mis.coventry.ac.uk/~dhough/
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o El{j} and E, , j = 1,2: These denote the “actual” DDM errors (3.28)-
(3.29):

E. =max|f(z) — fi2(2)], El{l} = max |f(2) = fi2(2)]

ZEM

and
2
B, = max|f(z) = foa(2)l. B i=max|f(z) ~ faal2)].
The above errors are determined by using the computed (accurate)
approximations to the mapping functions f, fi, and fs;4, and then
sampling the error functions f(z) — f12(z) and f(z) — f34(2z) at an

appropriate number of test points.

o T(El{j}) and T'(F,,), j = 1,2: These denote respectively the theoret-
ical estimates for the errors El{j} and E,, given by Theorem 3.2 and
Remark 3.2(ii), i.e.

T(El{j}) — 6.176*7””(@2)’ j=1,2 (4.1)
and

T(E,,) = 3.64¢ ™@23) T(E)) = 3.64e ""(@59) 4 2 56¢2mm(Q2),

(4.2)

71

o 5(El{j}) and 0(E,,), j = 1,2: These denote the values used for testing
the validity of the predicted orders of the errors (4.1) and (4.2). They
are determined from the computed values of the errors El{j} and E.

j=1,2, by: (a) assuming that
E(k) ~ Ce0mm®),

where E(k) stands for any of the errors E/, E,, corresponding to
the parameter k, § denotes the associated order 5(El{j}) or §(E,;), and
m(k) is the conformal module m(@Qy) corresponding to the parameter

k; (b) computing the various values of § by means of the formula

0 = —{log[E(k1)/E(k2)]}/{m(m (k1) — m(k2))},
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where k; and ky are taken to be successive values of the parameter k&
for which numerical results are listed. (Therefore, from the theory we
expect to obtain values (5(El{j}) ~land 0(E, )~ 2,j=1,2;see (3.34)
and (3.33).)

The numerical results corresponding to the values & = 1.00(0.25) 2.00 are
listed in Tables 4.1, 4.2 and 4.3

k m(Q2) m(Q1,2;3) m(Q2,3,1)
1.00 | 1.279 261 571 | 3.011 339 975 | 3.580 314 205
1.25 | 1.529 343 036 | 3.511 418 501 | 4.080 380 645
1.50 | 1.779 359 959 | 4.011 434 815 | 4.580 394 449
1.75 | 2.029 363 476 | 4.511 438 206 | 5.080 397 319
2.00 | 2.229 364 207 | 5.511 438 911 | 5.580 397 915

Table 4.1: Auxiliary conformal modules

k| B 1! sE'" | B, 1B WE,)
1.00 | 4.3e-4 * - 3.7e-6 * -

1.25 | 1.9e-4 5.0e-2 1.01 7.6e-7  5.8e-5 2.00
1.50 | 8.8e-5 2.3e-2 1.00 1.6e-7 1.2e-5 2.00
1.75 | 4.0e-5 1.0e-2 1.00 3.3e-8 2.5e-6 2.00
2.00 | 1.8e-5 5.6e-3 1.00 6.9¢e-9 5.3e-7 2.00

Table 4.2: Errors and orders in the approximation to f by fi

More precisely, Table 4.1 contains the values of the auxiliary conformal
modules m(Qs2), m(Q1.23) and m(Q23.4) that are needed in order to perform
the DDM error analysis; see Theorem 3.2 and (4.1)—(4.2). They were com-
puted by means of the subroutine RESIST of SCPACK and are expected to

be correct to all the figures quoted.

Example 4.2 Consider the quadrilateral Q := {; 21, 29, 23, 24} of Figure 4.2,
where the width of each strip of the spiral €2 is 1, and the special points zy,
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k| B 1) sEH | B, 1B, 6B,
1.00 | 4.3e-4 * - 8.3e-7 * -
1.25 | 1.9e-4 5.0e-2 1.01 1.7e-7 1.8e-4 2.00
1.50 | 8.8e-5 2.3e-2 1.00 3.6e-8 3.8e-5 2.00
1.75 | 4.0e-5 1.0e-2 1.00 1.2e-8 7.8e-6 *k
2.00 | 1.8e-5 5.6e-3 1.00 1.2e-8 2.6e-6 **

Table 4.3: Errors and orders in the approximation to f by fs4

Z9, 23, 24, Of Q are, respectively, the four (outermost and innermost) corners
19+ 18i, 18+ 187, 9491, 10+ 97 of 2. The above quadrilateral was first con-
sidered in [11], for the purpose of illustrating the performance of a modified
Schwarz-Christoffel technique for the mapping of elongated quadrilaterals,
and in the sequel in [16] and [18], as a case of application of the DDM for

conformal modules, where, in in particular the estimate
132.704 5393 < m(Q) < 132.704 5393

was obtained (see [18, pp. 276-277]). Here, we recall it in order to demon-
strate the gain in computational time, when using domain decomposition.
We do this by means of the MATLAB Schwarz-Christoffel (SC) Toolbox of
Driscoll [3] as follows: We call the subroutine rectmap of the SC Toolbox, to
construct approximations to the associated conformal maps f : Q — R,
and f; : Q; = Ryq,), 7 =1,2,...,10, and report, for each case the elapsed
CPU time. We note, in passing, that the particular subroutine of the Toolbox
circumvents the crowding difficulties, by employing the cross ratio and De-

lanay triangulation technique of Driscoll and Vavasis [2], and for this reason

introduces a number of additional vertices on the on the sides of the defining

polygon.
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Figure 4.2 The decomposition of Q and the grid points on Qg
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Figure 4.3 The images of the grid points on the (partly shown) conformally

equivalent rectangle

The numerical results for the quadrilaterals @ and Q;, j

=1,2

Y

are contained in Table 4.4, where we use the following notations:

PERIRE

.10
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Time I: this denotes the CPU time, in seconds, that are needed for the

setting up of the mapping function.

Time II: this denotes the CPU time, in seconds, required for the map-
ping of a 0.25 x 0.25 grid on the polygon onto the associated rectangle.

N: This denotes the total number of vertices introduced by the Tool-

box.

m: This denotes the estimate of the conformal module provided by
Toolbox.

N | time I | time II m

Q 136 | 12686 | 447 | 132.704 540
Q1 | 20 69 29 17.279 364
Q2 | 20 68 29 17.558 279
Qs | 20 70 26 16.558 279
Qs | 20 58 23 14.558 279
Qs | 20 55 21 13.558 279
Qs | 14 70 20 11.558 279
Q7 8 49 26 10.558 279
Qs 8 28 19 8.558 279
Q9 8 23 15 7.558 279
Quo | 16 | 100 35 14.955 345

Table 4.4:

In all the computations the apparent accuracy estimate produced by the
Toolbox was less than 3.0 x 1077.

All the computations were made using MATLAB 5.3, on an IBM RS
6000/360 workstation.

We end this section by presenting one example that involve quadrilat-
erals for which the software that we have available can approximate the

corresponding conformal map only through the use of DDM.
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Example 4.3 Consider the quadrilateral Q := {; 21, 29, 23, 24} of Figure 4.4,

Figure 4.4 The decomposition of Q and the grid points on Q

Figure 4.5 The images of the grid points on the conformally equivalent rectangle
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