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Summary Recent research has focused on the links between long memory and structural
breaks, stressing the memory properties that may arise in models with parameter changes. In
this paper, we question the implications of this result for forecasting. We contribute to this
research by comparing the forecasting abilities of long memory and Markov switching models.
Two approaches are employed: the Monte Carlo study and an empirical comparison, using the
quarterly Consumer Price inflation rate in Portugal in the period 1968–1998. Although long
memory models may capture some in-sample features of the data, we find that their forecasting
performance is relatively poor when shifts occur in the series, compared to simple linear and
Markov switching models.
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1. INTRODUCTION

There has been a considerable interest in long memory and structural change in time series, as
witnessed by the remarkable growth of the theoretical and empirical research on these issues over
the last years. However, only recently have econometricians begun to consider the relationships
between the two seemingly distinct phenomena. Indeed, Granger and Teräsvirta (1999), Granger
and Hyung (1999), Diebold and Inoue (2001) or Gourieroux and Jasiak (2001) show analytically
and via Monte Carlo that models with regime changes may exhibit long memory properties.

What are the implications of these results for forecasting? Despite ‘spurious long memory’
effects due to regime shifts, will an ARFIMA specification still be an effective tool for forecasting?
Diebold and Inoue (2001, p. 157) suggest that ‘[e]ven if the “truth” is structural change, long
memory may be a very convenient shorthand description, which may remain very useful for tasks
such as prediction’. Thus, we investigate whether a long memory approach will be ‘robust’
to structural breaks in a time series, in terms of providing good forecasts for financial and
macroeconomic data. Judging by the way predictions are constructed for long memory models
(i.e. taking into account the information of distant lags), one may anticipate that ARFIMA models
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would experience difficulties in forecasting future immediate regime changes, unless the switching
is transitory.

The question of the relative forecast performance of long memory and structural change
models has not (to our knowledge) been addressed yet. Near-observational equivalence does not
necessarily imply similar forecasting abilities. This problem may also be seen as a variant of the
issue of whether to use forecasts from trend-stationary or difference-stationary models, which
arises from the fact that these models are practically indistinguishable in small samples. See
Clements and Hendry (2000) for a recent discussion on this issue.

We compare the univariate forecast accuracy of one type of regime switching model, the
Markov Switching (MS) model, with that of fractionally integrated ARMA (ARFIMA) models.
Other models with parameter shifts could have been considered (e.g. TAR, STAR or STOPBREAK
models), but we stress the MS specification, since it is a widely used approach to model changes
in time series. Our analysis is conducted by means of Monte Carlo simulations and empirically, by
investigating the ability of the two methods to forecast the inflation rate in Portugal. It is interesting
to use inflation rates for this comparison, since we may find different means and variances for
different periods in these series, but we also may use long memory models to account for their
persistence.

Concerning the Monte Carlo experiment, in the first set of simulations we use the empirical
estimates as parameter values for the data generating process (DGP). Subsequently, we refine
the experiment by extending the simulations in Clements and Hendry (1998), including long
memory and MS models and evaluating their forecast accuracy under different DGPs. Obviously,
by focusing on univariate methods we are simplifying our analysis, mainly for expositional
simplicity. Nevertheless, this may be viewed as a first approximation to more evolved forecasting
practices, since univariate forecasts are usually taken as benchmarks for later comparisons. See
Stock and Watson (1999) for a recent discussion on inflation forecasting.

In a related study, Clements and Krolzig (1998) claim that, although non-linear models
(including the MS model) may be superior in capturing some features of the data, their
forecast performance is not superior to more simple linear time series models. Moreover,
Clements and Hendry (1998) argue that some types of linear models may be robust to structural
breaks, in terms of their ability to circumvent forecast failure. These authors compared the
prediction accuracy of several linear models when the DGP produced a single change in the
mean.

Notwithstanding this, none of these works considered the more general linear ARFIMA model.
Given the potential confusion between long memory and regime shifts that may arise in many
empirical situations, it is of obvious interest to assess how long memory models behave in terms
of forecasting when time series suffer regime shifts. Therefore, our paper may be viewed as the
implementation of the ideas in Diebold and Inoue (2001), inter alia, to forecasting problems
and as a complement to the studies of Clements and Hendry (1998) and Clements and Krolzig
(1998).

The paper proceeds as follows. In Section 2, we briefly review modelling and forecasting
with ARFIMA and Markov switching models, introducing definitions and notation, and
consider why parameter shifts may cause the appearance of long memory characteristics
in a given time series. Section 3 discusses empirical aspects of our example, including a
forecasting exercise, complemented by Monte Carlo analysis. The next section presents the
results of further Monte Carlo simulations. Finally, Section 5 provides some discussion and
conclusions.



2. LONG MEMORY AND REGIME SWITCHING MODELS

2.1. Fractional ARIMA models

Long memory in time series econometrics has been the subject of many studies, and recent surveys
of the literature may be found in Baillie (1996). Fractional integration, as in Granger and Joyeux
(1980), for example, aims to circumvent some of the limitations of integer analysis of ARIMA
models. A fractionally integrated ARMA process yt may be represented by

�(L)(1 − L)d yt = �(L)εt , εt ∼ i.i.d.(0, σ 2), (1)

where d is a parameter that assumes a non-integer value in the difference operator, (1 − L)d . The
fractional differencing operator is defined by the binomial expansion

(1 − L)d =
∞∑

i=0

(
d

i

)
(−L)i , (2)

or (1 − L)d = 1 − dL + d(d − 1)/2!L2 − d(d − 1)(d − 2)/3!L3 + · · ·, for d > −1. The process
is stationary and invertible if the roots of the autoregressive polynomial of order p, � (L) = 1
− φ1L − · · · − φ p Lp, and of the moving-average part of order q, �(L) = 1 + θ 1L + · · · +
θ q Lq, lie outside the unit circle, with |d| < 0.5. Obviously, the ARFIMA model generalizes the
traditional ARIMA representation with integer values for d.

Long memory is usually defined in the time domain, characterized by a hyperbolically
decaying autocorrelation function, with ρ y(k) = ak2d−1 as k → ∞, or alternatively, in the
frequency domain, where in the lowest frequencies the spectrum is fy(ω) ∼ cω−2d , when
ω → 0. It is also noted that a process is I(d) (for d > 0) if the variance of the partial sum
process ST = ∑T

t=1 yt is of order O(T 2d+1) as T → ∞ . The process yt exhibits long memory
for d ∈ (0, 1), being covariance-stationary if d < 0.5 and still mean-reverting if d < 1. This
contrasts with stationary, I(0), ARMA, or ‘short memory’, processes, where dependence tends
to be dissipated geometrically with time, meaning that shocks have a temporary effect in the
process. In its turn, I(1) processes are not mean-reverting, wherefore shocks have permanent
effects. Fractional ARMA models are, thus, an intermediate and flexible form of analysing time
series.

Several methods have been proposed to estimate the parameter d and the remaining parameters
of the ARFIMA specification, either in the time or in the frequency domain. See Geweke and
Porter-Hudak (1983, hereafter GPH), Fox and Taqqu (1986) and Sowell (1992), among others,
and Baillie (1996) for comparisons and discussion of small sample properties.

Concerning prediction from ARFIMA processes, this is usually carried out by using an infinite
autoregressive representation of (1), written as �(L)yt = ε t , or

yt =
∞∑
j=1

π j yt− j + εt , (3)

where
∏

(L) = (1 − π 1L − π 2L2 − · · ·) = � (L)(1 − L)d�(L)−1. In terms of practical
implementation, this form needs truncation after k lags, but there is no obvious way of doing it.
This truncation problem will also be related to the forecast horizon considered in predictions (see
Crato and Ray 1996). From (3) it is clear that the forecasting rule will pick up the influence of
distant lags, thus capturing their persistent influence. However, if a shift in the process occurs, this



means that pre-shift lags will also have some weight on the prediction, which may cause some
biases for post-shift horizons.

2.2. Markov switching models

The importance of non-linearities (along with structural changes) in economic series has often been
debated in the literature. The discussion was further intensified since Hamilton (1989) proposed his
autoregressive Markov switching model to analyse US GNP growth rate. It offers a powerful and
flexible instrument to characterize macroeconomic fluctuations, by accommodating asymmetries
and changes in the behaviour of economic time series. Several extensions and generalizations
have been presented, see Kim and Nelson (1999), inter alia, for a survey.

Consider, for simplicity, the first-order autoregressive Markov switching model with two
regimes, MS(2)-AR(1),

yt − µ(st ) = φ[yt−1 − µ(st−1)] + σ (st )εt , (4)

where ε t ∼ n.i.d.(0, 1). Here, st is a binary random variable on S = {1, 2}, indicating the
unobserved regime or state driving the process at date t. To complete the specification of the
model, it is postulated that {st} is a stationary first-order Markov chain in S with transition matrix
P = (pij), where

pi j = Pr(st = j |st−1 = i), i, j ∈ S. (5)

Furthermore, it is assumed that {st} is independent of {ε t}. Therefore, the mean µ(st) and the
variance σ 2(st) of the innovation ε t switch between two states according to an unobserved Markov
chain. It is also possible to consider a more general specification, where the dynamic components,
namely the autoregressive coefficients, are allowed to depend on st.

Estimation of the parameters of the model, θ = {µ(st), σ 2(st), φ, pij}, is carried out by
maximizing the likelihood function of the MS-AR model. It involves recursive computation of
probabilities about the unobserved regimes and obtaining θ̂ that maximizes the log-likelihood
function. This may be achieved through numerical optimization or using the EM procedure (see
Hamilton 1994; Kim and Nelson 1999).

In terms of forecasting, the MS specification allows us to obtain forecasts in an easy fashion. To
construct forecasts for the regime probabilities conditional on past values of yt (Yt), consider now
the general case of an N-state Markov chain and let P denote the matrix of transition probabilities
for the N states and let

λ̂
′
t = [p(st = 1|Yt ) p(st = 2|Yt ) · · · p(st = N |Yt ) ] (6)

be the vector containing the inference about the current state (the filtered probabilities). The
optimal h-step-ahead of prediction for the probabilities of the unobserved state conditional on
information available at date t is given by λ̂

′
t+h|t = λ̂

′
t Ph or,

Pr(st+h = j |Yt ) =
N∑

i=1

Pr(st+h = j |st = i) Pr(st = i |Yt ). (7)



 

On the other hand, to construct forecasts for the observed series {yt}, we calculate the
conditional expectation E(yt+h|t ) as

E(yt+h|t ) =
N∑

j=1

Pr(st+h = j |Yt )E(yt+h |Yt , st+h = j), (8)

meaning that the forecast for each regime is multiplied by the corresponding probability that the
process will be in that regime and the sum of these products will form the forecast for yt+h . For
the simple MS(2)-AR(1) model in (4), E(yt+h |Yt , st+h = j) = µ(st+h) + φ[yt+h−1 − µ(st+h−1)],
so we have

ŷt+h|t = µ̂(st+h|t ) + φ[ŷt+h−1|t − µ̂(st+h−1|t )], (9)

where µ̂(st+h|t ) = ∑2
j=1 µ̂ j Pr(st+h = j |Yt ). However, as the regimes become unpredictable

(implying that Pr(st |st−1) = Pr(st )), the forecasting rule will become linear, since then µ̂(st+h|t ) =
µ̃, the unconditional mean of yt, and thus,

ŷt+h|t = µ̃(1 − φh) + φh yt , (10)

which means that forecasts will be, in essence, similar to those of linear models (see Clements and
Krolzig 1998). Of course, this recursion could be easily extended to more complicated models
(see Hamilton 1994; Clements and Krolzig 1998).

2.3. Long memory in markov switching models

As mentioned in the Introduction, some recent papers deal with the relationship between long
memory and regime shifts, namely stochastic regime switching. These authors analysed several
cases with stochastic parameter shifts, by looking at the behaviour of the autocorrelations of the
processes (or by deducing the rate of growth of the variance of partial sums of the processes),
showing that they may be described asymptotically as an I(d) process. The key idea behind this
result is the following: as the frequency of regime switching decreases (i.e. as p11 and p22 approach
unity in the Markov switching case), the process will closely resemble a fractionally integrated
series. Moreover, the size of the parameter shifts will also be a factor to take into account because
larger magnitudes of breaks will introduce more persistence in the series.

This can be easily verified by considering an example with the simple two-regimes first-order
autoregressive Markov switching model in (4). The corresponding population autocorrelation
function at lag k is given by

ρk = π1π2(µ1 − µ2)2vec(Pk)v1 + φkπ ′(Ik − φ2 B)−1σs

(π1µ1 + π2µ2)2 + (
π1σ

2
1 + π2σ

2
2

)
(1 + φ2)−1

, (11)

where π j represents the ergodic probability of staying in regime j ( j = 1, 2), π = [π 1, π 2] v1 =
[π 2, −π 2, π 1, −π 1], σ s = [σ 2

1, σ 2
2], µ j and σ 2

j are the state dependent means and variances, Ik is a
k-dimensional identity matrix and B is the matrix of transition probabilities for the ‘time reversed’
Markov chain (see, Timmermann 2000, Propositions 2 and 4). Setting σ 2

1 = σ 2
2 = 1, p11 = p22

∈ {0.95, 0.98, 0.99}, µ1 = 1 and considering distinct values for µ2 (i.e., different magnitudes of
shifts) and φ, we calculated the autocorrelation function up to k = 50. From the results presented in
Table 1, it is possible to observe the following. Firstly, there is a positive relationship between the
persistence of the process and the transition probabilities, as well as between the size of the shift



Table 1. Autocorrelation function of an autoregressive Markov switching-mean model.

p11 = p22 = 0.95

φ = 0.2 φ = 0.5 φ = 0.9

µ2 2 5 10 2 5 10 2 5 10

k = 1 0.336 0.755 0.866 0.563 0.80 0.875 0.90 0.90 0.90

10 0.068 0.277 0.332 0.056 0.262 0.327 0.349 0.349 0.349

20 0.235 0.097 0.116 0.019 0.091 0.114 0.122 0.122 0.122

50 0.001 0.004 0.005 0.001 0.004 0.005 0.005 0.005 0.005

p11 = p22 = 0.98

φ = 0.2 φ = 0.5 φ = 0.9

µ2 2 5 10 2 5 10 2 5 10

k = 1 0.347 0.803 0.923 0.573 0.845 0.932 0.903 0.926 0.947

10 0.129 0.528 0.632 0.106 0.499 0.624 0.363 0.485 0.60

20 0.086 0.351 0.42 0.07 0.332 0.415 0.136 0.259 0.376

50 0.025 0.103 0.124 0.021 0.097 0.122 0.011 0.059 0.104

p11 = p22 = 0.99

φ = 0.2 φ = 0.5 φ = 0.9

µ2 2 5 10 2 5 10 2 5 10

k = 1 0.351 0.819 0.942 0.576 0.86 0.95 0.904 0.935 0.963

10 0.158 0.648 0.777 0.13 0.613 0.767 0.37 0.551 0.72

20 0.129 0.53 0.635 0.105 0.501 0.626 0.146 0.357 0.555

50 0.07 0.289 0.346 0.058 0.273 0.342 0.021 0.16 0.29

and the autoregressive parameter. Secondly, the rate of decay of the autocorrelations slows down
as the latter parameters increase.1 Even after 50 lags, the autocorrelations are non-negligible. This
means that a stationary I(0) process as this Markov switching-mean model generates substantial
persistence and, in certain cases (such as those of large permanent changes), may be easily
confused with a random walk (see, Timmermann 2000 (Section 6); Nunes et al. 1997.

Furthermore, accounting for shifts in the process has the effect of reducing the estimated
fractional integration parameter, d̂ , according to Bos et al. (1998) and Granger and Hyung (1999),
which indicates that spurious long memory may arise due to neglected shifts. However, Granger

1Note that, in our example, the autocorrelations do not depend on the break size when the persistence of the regime is
equal to the autoregressive parameter (see columns in Table 1 corresponding to pij = 0.95 and ρ = 0.9).



 

and Hyung (1999) argue that a ‘spurious break’-type phenomenon (see Nunes et al. 1997) may
appear when trying to estimate the number of breaks of an I(d) process with no breaks. For
instance, using a Schwarz–Bayesian criterion approach to estimate the number of breaks will
lead asymptotically to an infinite number of breaks being estimated, except for d = 0, where the
correct number of breaks (none) is consistently estimated. Therefore, these results seem to point
that the issue ‘long memory vs. structural breaks’ is just an intermediate form of the controversy
‘unit roots vs. structural breaks’.

An interesting feature of the way optimal prediction rules are constructed from MS models
is that the prediction can be decomposed into linear and non-linear contributions to the forecast.
The contribution of the MS structure depends on the magnitude of the regime shifts and on the
persistence of the regimes, given by p11 + p22 − 1 (see Clements and Krolzig 1998, pp. 70–71).
Thus, for small breaks and less persistent regimes, a forecast from an MS model will be generated
in a way that will resemble a linear prediction rule. On the other hand, it is expected that an
MS model will perform better when the regimes are more persistent and for larger breaks. Note,
however, that these same factors that favour prediction from MS models are central for the result
that an MS process will display long memory properties. Hence, this adds relevance to our study,
since it is interesting to assess if the empirical similarities between the two models will continue
to hold in terms of forecasting.

3. THE INFLATION RATE IN PORTUGAL

3.1. Empirical analysis

We use MS and ARFIMA specifications to model the empirical path of the inflation rate in
Portugal, and evaluate their forecast performance in a simple out-of-sample forecast comparison.
This is carried out on a data set of seasonally unadjusted quarterly observations of Consumer Price
inflation for the period 1968:1–1998:4. The series is constructed by taking first-differences and
logs of the CPI. It is evident from Figure 1 that the series displays seasonality and clear changes
in the mean and variance. For simplicity, we will abstract from the problems posed by seasonality
and work with unadjusted data, thus concentrating on the other features of the data.2 In this period,
several major events in Portugal led to changes in economic policy and substantial fluctuations in
the inflation rate: oil shocks, the democratic Revolution with the subsequent loss of its colonies
(1974, 1975), two agreements with the International Monetary Fund (1978 and 1983), the entry
in the European Economic Community (in 1986) and, later, in the European Monetary System
(in 1992), among others.

Indeed, prior knowledge about the economic conditions in distinct periods and observation
of the series supports the hypothesis of different regimes. On the other hand, these events led
to an increased persistence in the inflation rate in Portugal, when compared to other European
countries. In fact, the series shows the typical behaviour of a series with long memory, with a
very slow return to a low inflation regime after a large shock, so one may expect a high estimate
for the order of integration.

2We considered different methods to account for seasonality, but the results of our subsequent analysis did not change
qualitatively.
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Figure 1. Quarterly CPI inflation rate in Portugal, 1968–1998.

Long memory models have been successfully applied to model inflation rates in several
industrialized countries. Hassler and Wolters (1995) found evidence that many inflation rates are
neither I(0) nor I(1), having estimated a fractional order of integration of approximately 0.5. Bos
et al. (1998) consider long memory and level shifts to explain the behaviour of US inflation rate.
See, also, Ooms and Doornik (1999) for an application to US and UK inflation rates, including
forecasting, as well as Baillie et al. (1996).

In turn, MS models are particularly suitable to analyse some of the dynamic features of
inflation rates, namely by capturing the apparent changes in mean and variance. Regime shifts in
inflation rates have been studied utilizing a variety of specifications with MS. Garcia and Perron
(1996) explored the possibility of more than two regimes in the inflation rate process. Evans and
Wachtel (1993) and Kim (1994), for example, used richer specifications of the basic MS model to
study the link between inflation and uncertainty, accounting for possible changing (conditional)
heteroskedasticity of inflation rates. We will not, however, consider these models in our analysis.

In Table 2, we present some tests concerning the properties of the data. Different unit root
tests (ADF, Phillips-Perron and DF-GLS as in Elliott et al. 1996) and the KPSS stationarity test
are computed, and they do not agree on whether there is a unit root in the inflation rate or not.
However, both types of tests are known to have their performance affected by the presence of
breaks. Furthermore, when testing for structural change using the procedures defined in Andrews
(1993), there is clear evidence of breaks in the series.

On the other hand, the estimation of the order of integration d also allows us to test whether
the series is I(0) or I(1). We have adopted the frequency domain estimator of Fox and Taqqu
(1986) throughout the paper.3 Looking at the estimates of d and respective standard errors (see
Table 3), it can easily be seen that both the I(0) and I(1) hypothesis are rejected.4 Therefore, it is

3We tried different procedures, such as the GPH estimator and the exact maximum likelihood method of Sowell (1992),
but the one we adopted seemed to do better in the subsequent forecasting exercises.

4The results are for the period 1968:1–1998:4, that is, retaining four observations for prediction. Holding back 16
observations does not change substantially the previous results, so they are not shown.



Table 2. Unit roots, stationarity and structural changes tests for the inflation rate in Portugal.a

ADF −2.222

PP-Zα −75.673∗∗

PP-Zt −7.618∗∗

KPSS 0.761∗∗

DF-GLS −2.229

sup-F 422.431∗∗

avg-F 40.295∗∗

exp-F 285.884∗∗

aThe lag length for the ADF and DF-GLS tests is selected according to a t-test downwards selection procedure,
by setting the maximum lag equal to 8 and then testing downwards until a significant last lag is found, at the 5%
level. For the Phillips–Perron and KPSS tests, the long run variance is estimated by means of a quadratic spectral
kernel with an automatically selected bandwidth estimator
∗−5% significant statistic.
∗∗−1% significant statistic.

Table 3. Estimation results for the inflation rate in Portugal (1968:1–1998:4).a

(0, d, 0) (1, d, 0) MS(2) MS(2)−AR(4) MS(3)−AR(2)

d 0.4003
(0.055)

0.466

φ −0.125
(0.094)

σ 2 2.565
(0.163)

1.986
(0.152)

µ1 1.776
(0.171)

1.335
(0.586)

0.883
(0.126)

µ2 5.227
(0.42)

4.854
(0.845)

2.33
(0.203)

µ3 5.251
(0.377)

σ 1
2 2.025

(0.349)
0.582
(0.121)

0.405
(0.121)

σ 2
2 7.96

(1.599)
7.953
(1.465)

2.104
(0.476)

σ 3
2 7.875

(1.625)

p11 0.989
(0.012)

0.97
(0.024)

0.952
(0.04)

p22 0.973
(0.022)

0.973
(0.021)

0.969
(0.024)

p33 0.972
(0.031)

aStandard errors in brackets.

difficult to clearly state how the process behaves in the considered sample period. Note that d̂ in
the ARFIMA (0, d, 0) is less than, but close to, 0.5, which is consistent with the evidence provided
in Hassler and Wolters (1995) for the inflation rates of other countries.5 However, introducing an
autoregressive component induces an increase in the estimated d.

Regarding the estimation of MS models, we present in Table 3 results for three distinct
specifications: the simple MS model, the widely used MS(2)-AR(4) model and the three-regime
model proposed by Garcia and Perron (1996) for the inflation rate. Each model clearly points

5The estimates of d range between approximately 0.3 and 0.7 using other estimation methods.

C



0.0

0.2

0.4

0.6

0.8

1.0

-4

0

4

8

12

16

70 75 80 85 90 95

0.0

0.2

0.4

0.6

0.8

1.0

-4

0

4

8

12

16

70 75 80 85 90 95

0.0

0.2

0.4

0.6

0.8

1.0

-4

0

4

8

12

16

70 75 80 85 90 95

0.0

0.2

0.4

0.6

0.8

1.0

-4

0

4

8

12

16

70 75 80 85 90 95

0.0

0.2

0.4

0.6

0.8

1.0

-4

0

4

8

12

16

70 75 80 85 90 95

MS(2)

MS(2)-AR(4)

MS(3)-AR(2)

Pr(low inflation regime)

Pr(medium inflation regime)

Pr(high inflation regime)

Pr(low inflation regime)

Pr(low inflation regime)

Figure 2. Inflation regimes.

to different means and variances within the sample period.6 Moreover, the estimated transition
probabilities are quite large, indicating that the regimes are very persistent. Therefore, it is not
surprising to find evidence of long memory in the series, considering the results in Diebold and
Inoue (2001), inter alia. Figure 2 displays the regime classification (based on filtered probabilities)
for each model. We see that the last period is one of low inflation and that the 2-regime models

6One could test the specification of the MS models using the tests proposed in Hansen (1992), for example, but since
that is not our main concern, we disregarded that matter.



Table 4. Forecasting performance for the inflation rate in Portugal.

Forecast period 4 16

Models FMSE FMAE FMSE FMAE

(0, d, 0) 0.358 0.57 0.398 0.479

(1, d, 0) 0.281 0.483 0.349 0.444

RW 0.725 0.668 0.541 0.577

IMA 0.338 0.529 0.301 0.495

MS(2)-AR(4) 0.242 0.437 0.557 0.636

MS(3)-AR(2) 0.561 0.611 0.248 0.394

MS(2) 1.832 1.227 1.554 1.149

coincide in the dating of the shift (around 1986), whereas the 3-regime model interprets this switch
as a change to a medium-inflation period, later followed by a low-inflation one.

Turning to the forecast comparison, we undertake a simple forecasting exercise with a shorter
forecasting horizon (4 periods) and a longer one (16 periods), measuring the forecast mean-
squared error (FMSE), as well as the forecast mean absolute error (FMAE). For comparison
purposes, we consider different types and classes of models. Besides those mentioned above, we
also include the random walk (RW) model and an integrated moving-average (IMA) model. The
latter model was found to be one of the most robust forecasting devices by Clements and Hendry
(1998) in their study. Prediction for the ARFIMAs from (3) was conducted with k = 10.

From Table 4, we observe that no single model dominates the others, with the MS(2)-AR(4)
predicting better for a 4-period forecast horizon, while the MS(3)-AR(2) does well for 16-steps
forecasts. It is interesting to highlight the performance of the ARFIMA (1, d, 0) model, which
ranks second for both the shorter and longer horizons. The simplest ARFIMA (0, d, 0) also works
well, ranking fourth for each prediction period. Using different lags for the prediction rule of the
ARFIMA models did not alter the results substantially, since the π j ’s from (3) approach zero
very quickly. The good performance of fractional models may be explained by the fact that the
last observations, as well as those of the prediction horizon, are relatively stable, that is, it is all
taking place in the same ‘regime’. Curiously, the worst model was the simple MS model, perhaps
meaning that extra (autoregressive) parameters are needed to account for the dynamics in the
series.

In order to circumvent the specificity of these results, in the next section we design a simple
Monte Carlo study by taking empirical models of the inflation rate as the DGP. Although an
artificial DGP may be useful in this context, it is preferable to use more empirically meaningful
estimated models, even if these only offer a poor approximation to the true DGP. This practice
also permits controlling for sampling variability of a one-shot type of forecast comparison as in
this section, with the empirical example.

3.2. A simple Monte Carlo experiment

For our initial results, we base our DGP on the estimated baseline MS(2) model (third column of
Table 3) because it provides a simple, yet rough, description of the data, by estimating changes in
mean and variance. Furthermore, we consider a second DGP where we restrict the break points
to be those obtained from observing the filtered regime probabilities for the baseline MS model.



Table 5. Monte Carlo FMSE for the empirical MS(2) DGP.

h (0, d, 0) (1, d, 0) RW IMA MS(2)

1 10.184 9.416 12.063 7.202 9.011

2 11.682 10.354 12.844 7.524 9.223

3 13.494 11.756 13.418 7.930 9.142

4 14.438 12.519 13.571 8.041 8.907

5 15.637 13.738 14.390 8.144 8.989

6 16.950 14.803 14.182 8.545 8.650

7 17.537 15.244 13.972 8.165 8.596

8 18.634 16.339 15.361 8.687 8.774

9 20.018 17.681 15.879 9.195 8.672

10 20.371 17.995 15.300 8.876 8.818

11 21.183 18.763 15.284 9.359 8.769

12 22.511 20.063 16.315 9.635 9.123

13 22.483 20.146 16.195 9.147 9.263

14 23.264 21.020 16.835 9.821 9.458

15 23.669 21.488 17.000 10.124 9.479

16 25.585 22.733 20.584 14.022 9.788

Average 18.540 16.504 15.178 9.026 9.041

We also consider a smaller value for the variance of the last regime, which is in accordance with
what is observed in the series. This DGP is given by yt = µt + σ tε t , with

µt =




µ1 = 1.8, σ 2
1 = 2,

µ2 = 5.2, σ 2
2 = 8,

µ3 = 1.8, σ 2
3 = 1,

t ≤ 24
24 < t ≤ 74
t > 74

. (12)

While DGP (12) is not truly an MS process (there is no Markov chain behind it), it may be
viewed as one with fixed break points. Using GAUSS software, we generate 5000 series of 128
observations, retaining 16 observations for forecasts comparisons.

The results (see Tables 5 and 6) are quite similar, although the forecasts errors are larger in the
first case, since the break points are unknown. As expected, for both DGPs the MS model does
relatively well, because it is the closest to the specified DGP. The IMA model performs slightly
better, which, however, is not surprising, given the results in Clements and Hendry (1998). As
for the ARFIMA models, although they provide reasonable forecasts for shorter periods, their
performance quickly deteriorates as the forecast horizon increases.

It may be argued that the previous comparison is unfair to ARFIMA models, because these
models are trying to fit a different DGP model. Thus, in a second set of simulations, we take the
estimated (0, d, 0) and (1, d, 0) ARFIMA models of the inflation rate in Table 3 as the DGP. The
corresponding results are shown in Table 7. Surprisingly, we observe that the simple MS model
provides better predictions, followed by the (0, d, 0) and IMA models, while the ARFIMA (1,
d, 0) is the worst, even when it is the true DGP. Of course, for other plausible DGPs, the results
and the ranking could be different. Therefore, in the next section, we refine our empirically based
analysis by considering a more complete set of the Monte Carlo experiments.

C



Table 6. Monte Carlo FMSE for the empirical DGP (12).a

h (0, d, 0) (1, d, 0) RW IMA MS(2)

1 1.455 1.334 2.037 1.130 1.188

2 1.608 1.408 2.033 1.122 1.146

3 1.818 1.532 2.076 1.150 1.156

4 1.956 1.608 2.082 1.129 1.127

5 2.129 1.729 2.114 1.129 1.133

6 2.299 1.857 2.146 1.154 1.139

7 2.410 1.928 2.154 1.120 1.168

8 2.554 2.040 2.131 1.100 1.231

9 2.632 2.108 2.189 1.114 1.185

10 2.879 2.321 2.213 1.139 1.179

11 3.015 2.431 2.236 1.137 1.226

12 3.104 2.511 2.229 1.094 1.227

13 3.204 2.610 2.274 1.106 1.217

14 3.299 2.700 2.246 1.098 1.234

15 3.323 2.741 2.297 1.107 1.295

16 3.555 2.964 2.383 1.140 1.246

Average 2.577 2.114 2.178 1.123 1.194
aFrom the 5000 replications, the following results were obtained for the main parameters. Mean d = 0.388 (SE = 0.053);
mean p11= 0.983 (SE = 0.021); mean p22 = 0.968 (SE = 0.031).

Table 7. Monte Carlo FMSE for the empirical ARFIMA DGP.a

Forecast period (0, d, 0), d = 0.4003 (1, d, 0), d = 0.466, φ = −0.125

Models FMSE FMAE FMSE FMAE

Models FMSE FMAE FMSE FMAE

(0, d, 0) 1.264 0.895 1.315 0.914

(1, d, 0) 1.737 1.047 2.634 1.267

RW 1.816 1.075 1.744 1.054

IMA 1.357 0.928 1.296 0.908

MS(2) 0.966 0.772 1.075 0.815
aThe results are averages for h = 16.

4. FURTHER MONTE CARLO ANALYSIS

The results from the previous section suggest that ARFIMA models do not perform well when
the true model has parameter shifts, while the simple MS model does reasonably well. More
surprisingly, forecasts from the latter are superior to those from long memory models, even when
the DGP is an ARFIMA. Furthermore, the idea that a linear model as the IMA may be robust to
breaks, as explained in Clements and Hendry (1998), finds echo in these simulations. However,
as with all Monte Carlo experiments, there is an inevitable specificity concerning the DGPs and
the obtained results. In order to compare the relative merits of long memory and MS models in



a more general setting, a set of simple Monte Carlo simulations is carried out. We stress what is
essential to our case, that is, magnitude and frequency of parameter switching, as discussed in the
previous section.

Hence, in the first stage we base our simulations on the DGP studied by Clements and Hendry
(1998). These authors compared the prediction accuracy of several linear models with a simple
deterministic switching-mean DGP, having concluded that some types of linear models are robust
to structural breaks, in terms of forecast failure. Thus, we extend their study by analysing how
long memory models behave when time series suffer regime shifts. This is potentially interesting
given the near-observational equivalence between long memory and parameter shifts. We begin
by considering the simple switching-mean process

yt = µt + εt , t = 1, . . . , T (13)

where we assume that ε t ∼ n.i.d.(0, 1) and µt evolves as

µt =
{

µ1,

µ2,

t ≤ τ

t > τ
,

(14)

where τ is an exogenously fixed break point. In our experiments, µ1 is always 1, while we allow µ2

to take on different values, in this case µ2 ∈ {2, 5, 10}. The case µ2 = 10 corresponds to the DGP
analysed in Clements and Hendry (1998), but we also wish to consider other empirically relevant
shift magnitudes. Obviously, pronounced breaks as the latter may be detected even by visual
inspection, and we may expect fractional models to perform worse. However, the other cases are
empirically plausible, as we have seen in the empirical example. For simplicity, the variance is
kept constant and we let τ = T /2, generating T = 100 plus h = 16 random observations in each
replication, where the last h observations are held back for the forecast simulation.

We also specify a Markov switching DGP

yt = µ(st ) + σ (st )εt , (15)

where µ depends on a stationary first-order Markov chain {st}, independent of {ε t}. The values
for µ2 are taken from {2, 5}, and in our simulations, the values of the transition probabilities
are taken from (p11, p22) ∈ {(0.95, 0.95), (0.99, 0.99)}. We should stress that this is the type of
parameter setting under which long memory and MS specifications are likely to be confused, as
explained before. For this specific DGP, we consider a sample size of 200 observations, given the
persistence in the regimes we are considering, and restrict the variances to be equal in the two
regimes.

As in the previous section, we also simulate data from a long memory DGP, although in a
more general setting. In fact, we simulate data from ARFIMA (0, d, 0) and (1, d, 0) models for
a range of values of φ and d in the region of stationarity and mean-reversion, {−0.75, −0.25,
0.25, 0.75} and {−0.49, −0.25, 0.25, 0.49, 0.75}, respectively. We tried different values for the
parameters, but the results were not significantly distinct, and these values illustrate the question
we are addressing.

Finally, another interesting situation that merits attention is when structural change occurs in
the forecasting period. It may be of interest to see how different models are robust in terms of
‘adapting’ their forecasts to a change outside the sample period, especially if we wish to assess
‘ex ante’ forecast accuracy. In the previous cases, the models were estimated with the information
about the first break. In this case, it may be that, although the forecasts are constructed without the
information about the second break, some models may still be robust to the second shift. Thus,



we modify the previous DGP by assuming that

µt =



µ1,

µ2,

µ3,

t ≤ τ

τ < t ≤ T + h/2,

t > T + h/2
(16)

which introduces a second break in the middle of the forecasting period. We focus on the
empirically more plausible values for µ2, i.e. (2, 5). When µ2 = 2, we let µ3 = (1, 3), and
when µ2 = 5, µ3 is allowed to take the values (1, 9).

In all experiments, the number of replications was 5000 and the criterion used for comparisons
is the forecast mean-squared error. In each replication, we fit a simple Markov switching-mean
model, ARFIMA (0, d, 0) and ARFIMA (1, d, 0) models, a RW and an IMA model, and compute
the respective forecasts. We tried different specifications for the ARFIMA models, but in general
the ones considered here worked better in terms of forecasting.

Tables 8–10 show the results of the simulations for the four DGPs under study. Considering
the results in Table 8 for DGP (14), we observe that the ARFIMA specifications are not, in general,
robust predictors. Although their ability to forecast for shorter periods is reasonable, it rapidly
deteriorates, a result that was already seen in Section 3.2. Even when the break is relatively small
(µ2 = 2), long memory models offer disappointing forecasts. This contrasts with the results for
the IMA model, in that they do not depend on h. In turn, the MS approach is generally superior to
the ARFIMAs, and occasionally better than the IMA, especially for shorter forecasting periods.
Moreover, for larger shift magnitudes, one gets higher estimates for d, as predicted in Section 2.3.
That also leads to a decrease in the predictive ability for all models, with the exception of the
ARFIMA (1, d, 0).

The above comments also apply to the MS DGP (Table 9), except that in this case, forecasts
from the IMA model also suffer when h increases. Furthermore, we observe that less frequent
switching improves the performance of all models. Curiously, the average d̂ decreases slightly
in this situation (see notes on Table 3), although the estimates are not significantly different for
pij = 0.95 and pij = 0.99(i = j). Thus, the IMA model is still the best, while the ARFIMAs
improve their relative performance in this DGP. The MS becomes relatively more inaccurate when
the shift is larger, which is in contradiction to what might be expected (recall Section 2.3).

Considering the results for the long memory DGPs in Table 10, to some extent these confirm
the conclusions of Section 3.2. Overall, the ARFIMA (0, d, 0) is the most well-balanced model,
but, for some regions of the parameter space and for both DGPs, the simple MS model offers
the best predictions, namely when d = 0.25 and d = 0.49, which is probably the most common
interval for d in empirical applications. However, when the DGP is an ARFIMA (1, d, 0), for
negative and/or high φ the MS performance worsens. On the other hand, the IMA model performed
consistently well, while ARFIMA (1, d, 0) does the opposite, even when it is the true DGP. This
is probably explained by the same sort of identification problem in estimating d and φ (especially
when we let φ increase), which has already been documented in the literature (see, e.g. Pérez
and Ruiz 2001). We also report averages of estimated transition probabilities for the MS model,
with corresponding standard deviations. It is interesting to note that, as persistence increases in
the DGP (either d or φ get larger), on average a more persistent MS model is fitted. Moreover,
the transition probabilities are estimated with increasing precision. This means that a type of
‘spurious switching’ is occurring when the true process is a long memory one.

As for the DGP in (16), an upwards shift in the mean will worsen the predictive ability of
the ARFIMA models, when compared to a ‘reverting’ shift (see lower part of Table 8). In this
last case, the ARFIMAs are to be preferred to the other models, but are clearly worse in the



Table 8(a). Monte Carlo FMSE from DGP (14) and (16) with µ2 = 2.a

(0, d, 0) (1, d, 0) RW IMA MS(2)

h NB

1 1.540 1.384 2.000 1.069 0.974

2 1.815 1.523 2.052 1.075 0.979

3 2.082 1.687 2.050 1.072 1.015

4 2.300 1.829 2.027 1.053 1.085

5 2.534 2.013 2.053 1.062 1.020

6 2.751 2.188 2.117 1.084 1.134

7 2.908 2.312 2.123 1.060 1.094

8 3.087 2.458 2.211 1.055 1.116

9 3.194 2.547 2.183 1.051 1.145

10 3.479 2.804 2.239 1.069 1.089

11 3.617 2.936 2.216 1.069 1.149

12 3.770 3.086 2.285 1.091 1.285

13 3.957 3.266 2.341 1.065 1.243

14 4.110 3.422 2.287 1.046 1.318

15 4.115 3.460 2.330 1.076 1.236

16 4.256 3.612 2.372 1.067 1.375

Average 3.094 2.532 2.180 1.067 1.141

µ3 = 1 µ3 = 3 µ3 = 1 µ3 = 3 µ3 = 1 µ3 = 3 µ3 = 1 µ3 = 3 µ3 = 1 µ3 = 3

9 1.242 7.146 1.089 6.004 3.438 2.926 2.089 2.013 14.828 1.794

10 1.348 7.611 1.159 6.449 3.455 3.023 2.047 2.091 14.559 1.865

11 1.396 7.839 1.191 6.681 3.473 2.958 2.068 2.071 14.420 1.959

12 1.462 8.077 1.242 6.929 3.569 3.001 2.096 2.086 13.936 1.949

13 1.528 8.386 1.283 7.249 3.602 3.079 2.026 2.103 13.319 1.791

14 1.581 8.640 1.321 7.522 3.538 3.037 1.976 2.116 13.296 1.887

15 1.601 8.629 1.356 7.564 3.676 2.983 2.082 2.071 13.419 1.823

16 1.656 8.857 1.403 7.822 3.706 3.038 2.039 2.095 12.780 1.842

Average 1.464 8.148 1.256 7.028 3.557 3.006 2.053 2.081 13.820 1.864
aThe values in the row ‘Average’ represent the means of each column. The reported FMSE’s are obtained considering the
5000 replications. NB represents ‘no break’ in the forecasting period. From the 5000 replications the following results
were obtained for the main parameters. Mean d = 0.357 (SE = 0.050); mean p11 = 0.989 (SE = 0.010); mean p22 =
0.989 (SE = 0.014).

first situation. This again is not surprising, since the fractional models will incorporate pre-shift
information in their predictions.

5. CONCLUSION

Forecasting is a difficult task, which becomes even more complicated in a rapidly changing world,
where structural changes may occur. Recent studies have focused on this issue, and the aim of this
paper is to provide further insight to the problem. Given that economic time series usually display



Table 8(b). Monte Carlo FMSE from DGP (14) and (16) with µ2 = 5.

(0, d, 0) (1, d, 0) RW IMA MS(2)

h NB

1 1.596 1.443 2.003 1.210 0.975

2 1.792 1.529 2.060 1.224 0.987

3 2.101 1.584 2.065 1.218 1.033

4 2.447 1.672 2.052 1.191 1.117

5 2.874 1.832 2.091 1.203 1.085

6 3.336 2.014 2.173 1.230 1.218

7 3.771 2.164 2.203 1.201 1.192

8 4.267 2.358 2.314 1.216 1.251

9 4.682 2.490 2.327 1.197 1.281

10 5.365 2.820 2.396 1.222 1.282

11 5.866 3.022 2.413 1.210 1.383

12 6.447 3.293 2.520 1.239 1.561

13 7.112 3.607 2.599 1.218 1.593

14 7.717 3.889 2.574 1.187 1.707

15 8.129 4.081 2.694 1.212 1.639

16 8.789 4.414 2.769 1.207 1.857

Average 4.768 2.638 2.328 1.211 1.322

µ3 = 1 µ3 = 9 µ3 = 1 µ3 = 9 µ3 = 1 µ3 = 9 µ3 = 1 µ3 = 9 µ3 = 1 µ3 = 9

9 5.691 35.673 9.677 27.303 21.532 15.121 17.460 16.934 17.414 18.069

10 5.022 37.708 9.007 28.632 21.685 15.108 17.243 17.201 16.966 18.859

11 4.533 39.198 8.552 29.492 22.109 14.716 17.314 17.105 16.601 19.363

12 4.115 40.779 8.127 30.458 22.566 14.474 17.368 17.110 15.997 19.988

13 3.631 42.592 7.569 31.646 22.796 14.401 17.174 17.261 15.173 20.632

14 3.182 44.252 7.044 32.734 22.970 14.178 17.016 17.357 15.007 20.929

15 3.012 45.246 6.877 33.285 23.717 13.670 17.345 17.079 15.008 20.786

16 2.694 46.884 6.432 34.396 23.983 13.555 17.205 17.209 14.208 21.776

Average 3.985 41.542 7.910 30.993 22.670 14.403 17.266 17.157 15.797 20.050
aSee notes on Table 8a. From the 5000 replications the following results were obtained for the main parameters: mean
d = 0.665 (SE = 0.042); mean p11 = 0.989 (SE = 0.005); mean p22 = 0.989 (SE = 0.004).

high persistence and signs of structural breaks, it is natural to compare distinct modelling and
forecasting methodologies, which try to address the different features of the data. By looking at
the forecast performance of ARFIMA, MS and simple linear models, we tried to assess whether
these approaches are flexible enough to cope with changes in parameters.

Although long memory models may capture some in-sample features of the data, we found that
when shifts occur in the series we considered, their forecast performance is relatively poor when
compared to MS models. It seems, therefore, that forecasting from ‘spuriously’ fitted long memory
models does not carry any gains in terms of common forecast accuracy measures, even in parameter
settings where we could expect the two types of model not to be easily distinguished. This result
is related to the way that predictions are constructed for ARFIMA processes (as pointed out in



Table 8(c). Monte Carlo FMSE from DGP (14) and (16) with µ2 = 10.a

(0, d, 0) (1, d, 0) RW IMA MS(2)

h NB

1 1.741 1.689 2.012 1.420 0.980

2 1.768 1.726 2.089 1.443 1.014

3 1.866 1.723 2.127 1.432 1.104

4 2.005 1.734 2.159 1.396 1.210

5 2.228 1.819 2.256 1.410 1.258

6 2.516 1.932 2.414 1.438 1.451

7 2.787 2.013 2.535 1.411 1.482

8 3.131 2.142 2.748 1.443 1.662

9 3.412 2.209 2.898 1.412 1.759

10 3.934 2.424 3.067 1.442 1.902

11 4.309 2.543 3.235 1.415 2.119

12 4.802 2.738 3.501 1.447 2.459

13 5.376 2.980 3.719 1.443 2.687

14 5.889 3.169 3.851 1.401 2.934

15 6.306 3.317 4.219 1.417 2.960

16 6.967 3.560 4.475 1.421 3.456
Average 3.689 2.357 2.956 1.424 1.902
aSee notes on Table 8a. From the 5000 replications the following results were obtained for the main parameters. Mean
d = 0.862 (SE = 0.038); mean p11 = 0.990 (SE = 0.001); meanp22 = 0.990 (SE = 0.001).

Section 2.1), despite the theoretical and empirical similarities that may exist between fractional
processes and series with breaks. By attributing weight to distant lags when forming forecasts,
ARFIMA models will in general be slow to react to shifts in the series. On the other hand, we
also found a ‘spurious switching’ phenomenon, where MS models may capture long memory
behaviour. However, in some cases, this misspecification may be robust in terms of forecasting.

Moreover, our findings, in a more general framework, are in accordance with what Clements
and Hendry (1998) and Clements and Krolzig (1998) claim, that is, that simple linear time series
models remain useful tools for prediction. Indeed, our experiments allow us to conclude that the
IMA model is the best predictor for most of the DGPs under study.

Obviously, the results in our paper are specific to the empirical data and the Monte Carlo design
we have chosen. It would be useful to look at other situations and data, for instance financial data,
where both long memory and structural change models are commonly used. On the other hand,
it would also be interesting to analyse how these results would carry over other forecast settings,
namely multivariate forecasting.
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Table 9(a). Monte Carlo FMSE from the MS DGP (15) with T = 200,µ2 = 2.a

(0, d, 0) (1, d, 0) RW IMA MS(2)

h 0.95 0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95 0.99

1 1.461 1.424 1.379 1.323 2.021 1.976 1.205 1.100 1.503 1.638

2 1.674 1.642 1.505 1.438 2.112 2.018 1.253 1.150 1.507 1.564

3 1.843 1.822 1.631 1.570 2.158 2.046 1.273 1.160 1.569 1.620

4 1.968 1.969 1.725 1.674 2.214 2.077 1.286 1.155 1.589 1.622

5 2.164 2.161 1.882 1.823 2.261 2.085 1.311 1.151 1.670 1.656

6 2.218 2.210 1.929 1.862 2.324 2.116 1.305 1.129 1.660 1.588

7 2.340 2.333 2.033 1.967 2.342 2.111 1.320 1.152 1.676 1.621

8 2.349 2.332 2.045 1.967 2.323 2.065 1.278 1.100 1.660 1.548

9 2.560 2.548 2.233 2.167 2.377 2.142 1.318 1.157 1.772 1.601

10 2.697 2.712 2.367 2.328 2.442 2.246 1.358 1.206 1.847 1.670

11 2.740 2.721 2.408 2.336 2.452 2.216 1.352 1.193 1.868 1.641

12 2.894 2.865 2.557 2.473 2.495 2.226 1.373 1.178 1.939 1.654

13 2.953 2.962 2.628 2.583 2.504 2.254 1.390 1.228 2.003 1.692

14 3.053 3.018 2.736 2.648 2.595 2.296 1.415 1.210 2.083 1.690

15 3.090 3.107 2.786 2.751 2.541 2.270 1.404 1.232 2.090 1.735

16 3.147 3.151 2.862 2.832 2.706 2.709 1.466 1.501 1.925 1.297

Average 2.446 2.436 2.169 2.108 2.366 2.178 1.331 1.187 1.772 1.614
aThe values in the row Average represent the means of each column. The reported FMSE’s are obtained considering
the 5000 replications. The notation 0.95 and 0.99 in the second row represents (p11,p22) = (0.95,0.95) and (p11,p22) =
(0.99,0.99), respectively. From the 5000 replications the following results were obtained: for 0.95, mean d = 0.334 (SE
= 0.040); for 0.99, mean d = 0.319 (SE = 0.058).
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Table 9(b). Monte Carlo FMSE from the MS DGP (15) with T = 200,µ2 = 5.a

(0, d, 0) (1, d, 0) RW IMA MS(2)
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Table 10. Monte Carlo FMSE from the ARFIMA DGPs with T = 200.a
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aThe results are averages for h = 4. Average standard deviations for estimated transition probabilities are presented in
parentheses.
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