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Abstract

In this paper, we establish several decidability results for pseudo-
variety joins of the form V ∨ W, where V is a subpseudovariety of J

or the pseudovariety R. Here, J (resp. R) denotes the pseudovariety of
all J-trivial (resp. R-trivial) semigroups. In particular, we show that
the pseudovariety V ∨ W is (completely) κ-tame when V is a subpseu-
dovariety of J with decidable κ-word problem and W is (completely)
κ-tame. Moreover, if W is a κ-tame pseudovariety which satisfies the
pseudoidentity x1 · · ·xry

ω+1ztω = x1 · · ·xryzt
ω, then we prove that

R ∨ W is also κ-tame.
In particular the joins R ∨ Ab, R ∨ G, R ∨ OCR, and R ∨ CR are

decidable.
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1 Introduction

A semigroup (resp. monoid) pseudovariety is a class of finite semigroups
(resp. monoids) closed under finite direct product and quotient. It is said
to be decidable if there is an algorithm to test membership of a finite semi-
group (resp. monoid) in that pseudovariety. The notion of tameness was
introduced by Steinberg and the first author as a tool for proving decidabil-
ity of the membership problem for semidirect products of pseudovarieties of
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4Address: LIAFA, Université Paris 7 & CNRS, Case 7014, 2 place Jussieu, F-75251
Paris Cedex 05, France.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55603075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


semigroups and monoids [13] and provides some nontrivial connections with
group theory and model theory [26, 9, 8]. Other notions play similar roles
with respect to various other operators on pseudovarieties [5]. To be able to
prove tameness of a specific pseudovariety one needs in general a thorough
knowledge about its free objects within a suitable algebraic setting, namely
to be able to solve the word problem as well to be able to reduce the exis-
tence of profinite solutions of certain systems of equations with generalized
rational constraints to the free objects in question.

The join V∨W of two pseudovarieties V and W is the least pseudovariety
containing both V and W. A well-known result by Albert, Baldinger and
Rhodes [1] states that the join of two decidable pseudovarieties may not be
decidable (see [21] for a recent short proof which applies to many other nat-
ural operators on pseudovarieties). Yet, many pseudovarieties obtained from
tame pseudovarieties using the join operator (or other natural operators) are
expected to be decidable, although this is in general apparently not trivial
to show. We show in this paper how to successfully tackle the problem in
special cases in which both pseudovarieties are tame.

The tameness property is parameterized by an implicit signature σ, and
we speak of σ-tameness. The implicit signature which is most commonly
encountered in the literature is the canonical signature κ, containing the
semigroup multiplication and the (ω − 1)-power. Informally, σ-tameness
consists in two properties: the first one is the word problem for σ-terms; the
second one is called σ-reducibility.

It was already known that the decidability of some pseudovariety joins
(e.g., J∨B, a result proved in [32]) follows very easily from the tameness of
the pseudovariety J of all J-trivial semigroups (cf. [4, 5]). This paper further
develops this idea giving new methods for using the tameness property to
show decidability of joins. In fact, we prove stronger results for certain
joins of pseudovarieties: the tameness property itself is preserved for the
pseudovarieties considered in this paper.

We establish σ-reducibility of joins of the form V∨W, where V is a sub-
pseudovariety of J, and W is a σ-reducible pseudovariety. This extends a
result of Steinberg [30, 31] where the author proved that J∨W is κ-reducible
if W is a κ-reducible subpseudovariety of CR, the latter denoting the pseudo-
variety of completely regular semigroups, that is, such that every element
is a group element. This extends also the particular case of the decidabil-
ity of J ∨ G, where G is the pseudovariety of groups, a result established
independently in [7]. The same kind of ideas have been applied by the sec-
ond author [23] to prove in particular σ-reducibility of joins involving the
pseudovariety K of semigroups in which idempotents are left zeros.

Furthermore, our proofs are very elementary and adapt to a stronger
property than σ-reducibility, namely complete σ-reducibility, a notion re-
cently introduced by the first author [5]. Since the complete κ-tameness
of Ab, the pseudovariety of Abelian groups, is already known [10], this
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establishes in particular the complete κ-tameness of J ∨ Ab and Com =
(A∩Com)∨Ab, where Com and A∩Com are the pseudovarieties of commu-
tative semigroups and of group-free commutative semigroups, respectively.
The decidability of J ∨ Ab, along with a nice basis of pseudoidentities, had
previously been established by Azevedo [22].

The same tools can also be applied to the case of the pseudovariety R

of all finite R-trivial semigroups. We prove that R∨W is κ-reducible when-
ever W is κ-reducible and satisfies the pseudoidentity x1 · · · xry

ω+1ztω =
x1 · · · xryzt

ω. This shows in particular that the pseudovariety R is κ-tame,
and extends and simplifies earlier results of Silva and the first author [11]
in which a weaker form of tameness had been established for R. Examples
of pseudovarieties W to which this result may be immediately applied in-
clude the pseudovarieties Ab of Abelian groups [10], G of groups [20], OCR of
orthodox completely regular semigroups [14], and CR of completely regular
semigroups [15] (the validity of the conjecture left open in [15], upon which
the proof of tameness of CR depends, has been observed by K. Auinger, in
private communication with the first author, using the methods of [8, 9]).
This proves in particular the decidability of R ∨ G, thus solving a problem
that appears implicitly for instance in [33] and which is a natural sequel of
the already mentioned proof of the decidability of J ∨ G.

2 Preliminaries

We assume that the reader is familiar with notions and basic results on
(finite, profinite) semigroups and pseudovarieties. See [3, 5]. If S is a semi-
group, we denote by SI the monoid S ] 1, where 1 /∈ S, 1.s = s.1 = s for
all s ∈ S ] 1 and the multiplication of SI coincides with that of S on S×S.
Notice that if S is a monoid with identity 1S , then SI is a new monoid with
identity 1 6= 1S . Throughout this paper we will give definitions and results
usually for pseudovarieties of monoids. With the obvious adaptations they
also hold for pseudovarieties of semigroups. To prove the results in this case
it would suffice to take M = SI when a semigroup S is given.

For a pseudovariety of monoids V, we denote by ΩAV the free pro-V
monoid on the finite alphabet A, whose elements may be regarded as |A|-ary
implicit operations on V [3], and by ΩAV the submonoid of ΩAV generated
by A. We denote by M (resp. S) the pseudovariety of all finite monoids
(resp. semigroups). Elements of ΩAM, the free profinite monoid on A, are
called pseudowords and those of ΩAM are called (finite) words. It is well
known that ΩAM \ {1} coincides with ΩAS, the free profinite semigroup on
A. For this reason, we will use preferably the notation ΩAS to represent the
set of non-empty pseudowords. We denote by pV the canonical projection
from ΩAM into ΩAV. For V = Sl, the pseudovariety of semilattices, we
write c instead of pSl and we call c(π) the content of π. The monoid ΩASl is
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isomorphic to (P(A),∪) and c(a) = {a} for all a ∈ A.
Given pseudowords πi, ρi, we denote by Jπi = ρiK the pseudovariety sat-

isfying all pseudoidentities πi = ρi. Recall that a pseudovariety V satisfies a
pseudoidentity π = ρ, written V |= π = ρ, if pV(π) = pV(ρ). The pseudova-
rieties J and R can be defined by pseudoidentities as follows.

J = J(xy)ωx = (xy)ω = y(xy)ωK;

R = J(xy)ωx = (xy)ωK.

Recall that an implicit signature is a set of pseudowords containing bi-
nary multiplication ab ∈ Ω{a,b}M (see [12]). It is non-trivial if it contains at
least a pseudoword which is not a word. We let κ be the signature {aω−1, ab}
containing the unary (ω − 1)-power and the binary monoid multiplication.
Given an implicit signature σ, we denote by Ωσ

AM the free σ-monoid gener-
ated by A. Elements of Ωσ

AM are called σ-words.
The following result [3, Theorem 8.1.10] characterizes idempotents over J

(i.e., elements π ∈ ΩAM such that J satisfies π = π2).

Proposition 2.1 A pseudoword π ∈ ΩAM is idempotent over J if and only
if, for every n > 1, π admits a factorization in n factors with the same
content.

We also recall the solution of the word problem for J, given by the first
author in [2].

Theorem 2.2 Every pseudoword π ∈ ΩAM admits a factorization of the
form π = π0π1 · · · πn where n = 0 and π0 = 1 if π = 1 and, otherwise:

1) each factor πi is either a non-empty word or is idempotent over J;

2) no two consecutive factors πi, πi+1 which are not words have comparable
contents;

3) if πi is a word and i < n, then πi+1 is not a word and the last letter of
πi is not in c(πi+1);

4) if πi is a word and i > 0, then πi−1 is not a word and the first letter of
πi is not in c(πi−1).

If ρ ∈ ΩAM is another pseudoword and ρ = ρ0ρ1 · · · ρm is a factorization
of ρ satisfying the above properties, then J satisfies π = ρ if and only if
n = m and, for each i: πi is a word if and only if ρi is a word, and in this
case, πi = ρi; πi is not a word if and only if ρi is not a word, and in this
case, c(πi) = c(ρi).

Now we slightly refine a statement of [3, Corollary 5.6.2].
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Lemma 2.3 If a pseudoword π ∈ ΩAM is not a word, then there exists a
factorization π = π1ρ

ωπ2. Moreover, if π is idempotent over J then one can
choose ρ such that c(ρ) = c(π).

Proof. Consider the equation π = xyωz in the variables B = A]{x, y, z}
subject to the constraints given by c(y) = c(π), c(x) ∪ c(z) ⊆ A, which
may be expressed in terms of a continuous homomorphism from ΩBM into a
finite semilattice. The lemma will be proved once we show that the equation
has a solution in ΩBM subject to these constraints, that is the equation is
M-inevitable, in the terminology of [5]. In view of a general compactness
theorem [5, Theorem 8.3], it suffices to show that the equation is inevitable
in every finite monoid in the sense that, for every continuous homomorphism
ϕ : ΩBM → M into a finite monoid, there exist π1, ρ, π2 ∈ ΩBM such that
ϕ(π) = ϕ(π1ρ

ωπ2), c(ρ) = c(π) and c(π1) ∪ c(π2) ⊆ A.
Now, by Proposition 2.1, for every n > 1 there exists a factorization of

the form π = u1 · · · un with c(ui) = c(π). If we take n > |M | then, by the
pigeonhole principle, we may write

ϕ(π) = ϕ(u1 · · · ui−1(ui · · · uj−1)
ωuj · · · un)

for some i and j with 1 < i < j 6 n. To prove the claim, put π1 = u1 · · · ui−1,
ρ = ui · · · uj−1, and π2 = uj · · · un.

3 Reducibility

We recall in this section the key notions of reducibility and tameness and
we develop a general method to prove reducibility.

We will always work with pseudowords in ΩAM and consider their prop-
erties in the pseudovariety V for which some form of reducibility is being
considered along with combinatorial properties in a fixed finite monoid M ,
which stipulates constraints. An alternative approach which lies closer to
the roots of the theory uses relational morphisms M → ΩAV. For the bene-
fit of the reader who may be more familiar with the latter method, we recall
briefly how the two approaches are related.

The algorithmic property of hyperdecidability for a pseudovariety of semi-
groups V was introduced in [4] as a general method to compute semidirect
products of semigroup pseudovarieties of the form W ∗ V. It means that it
is decidable, given a finite semigroup S, a finite system of graph equations
(as introduced formally below), and constraints for the variables in S (more
precisely, allowing also the constraints to take values in S1 for the variables
corresponding to the vertices), whether the system is V-inevitable in the
sense that, for any relational morphism µ : S → T with T ∈ V, there is a
solution of the system in T whose values are µ-related with the constraints.
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For instance, the system of equations xyi = yn+1 (i = 1, . . . , n) with con-
straints x ∈ µ(1) and yi ∈ µ(si) (i = 1, . . . , n+ 1) is V-inevitable if and only
if the subset {s1, . . . , sn+1} of S is V-pointlike. This system is associated
with the graph with two vertices and n co-terminal edges.

A compactness argument shows that rather than considering all rela-
tional morphisms S → T , one may consider instead just the canonical rela-
tional morphism S → ΩAV, for any choice of finite set A of generators for S:
a finite system of graph equations with constraints in S is inevitable with
respect to the canonical relational morphism if and only if it is V-inevitable.
Moreover, this is true for arbitrary finite systems of equations [5]. The exten-
sion to more general systems of equations is motivated by two main reasons.
First, systems of the form x2

1 = x1 = x2 = · · · = xn appear in a similar
approach to the calculation of Mal’cev products of pseudovarieties [28]. Sec-
ond, the fact that reversing the multiplication order does not preserve the
class of systems of graph equations means that a proof of hyperdecidabil-
ity for a pseudovariety does not entail that the dual pseudovariety is again
hyperdecidable.

A further step in abstracting a property which is more convenient to han-
dle was done by Steinberg and the first author [12]: algorithmic properties
such as the word problem for free algebras in suitable signatures as well as
computability properties for the signatures were isolated and complemented
with a crucial reducibility property. Reducibility with respect to a signature
means that V-inevitability is always witnessed by terms in the signature.
This property had already been established earlier by Ash [20] for G in a
form which is equivalent to the formulation in terms of systems of graph
equations. Thus, reducibility may be viewed as an attempt to generalize to
other pseudovarieties the conceptual approach in Ash’s seminal paper.

Although tameness (which means reducibility plus suitable basic algo-
rithmic properties) is stronger than hyperdecidability, it turns out that it
is in general easier to prove the former than the latter. Indeed, the ab-
stract property of reducibility of a pseudovariety V does not involve the
construction of any algorithms but just a rather good understanding of the
combinatorial properties of pseudowords over V. On the other hand, hy-
perdecidability follows from tameness in the same way a set of integers is
recursive if (and only if) both it and its complement are recursively enu-
merable. This, in general, leads to theoretical algorithms with no a priori
bound on how many steps will need to be carried out before an answer is
produced. In contrast, in trying to prove hyperdecidability directly, one
often seeks efficient algorithms. The two approaches may be compared for
the pseudovariety J: hyperdecidability was proved in [17] whereas tameness
amounts to an example in [5].
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3.1 Key notions

Definition 3.1 (σ-solution, σ-reducibility, σ-tameness) Let σ be an im-
plicit signature, let A be a finite alphabet, let M be a finite monoid and let
X and P be finite disjoint sets. Elements of X are called variables and el-
ements of P are called parameters. Assume that we are given the following
mappings, pictured in Figure 1:

X Ωσ
X∪PM P

ΩAM

M
ϕ

↪ ↩

γζθ
ψ

Figure 1: Solution θ and involved mappings

− ψ : ΩAM →M is a continuous morphism.

− ϕ : X →M is a mapping giving a constraint in M for each variable.

− γ : P → ΩAM is an evaluation of the parameters such that γ(P ) ⊆ Ωσ
AM.

− θ : X → ΩAM is an evaluation of the variables by pseudowords.

− ζ : Ωσ
X∪PM → ΩAM is the σ-morphism defined by ζ|X = θ and ζ|P = γ.

• Let S ⊆ Ωσ
X∪PM × Ωσ

X∪PM be a finite set of σ-equations and let V be
a pseudovariety. We say that θ is a solution of the system S over V with
respect to (ϕ, γ, ψ) if

{

∀(u, v) ∈ S, V |= ζ(u) = ζ(v)

ψ ◦ θ = ϕ.

If in addition θ(X) ⊆ Ωσ
AM, we call θ a σ-solution of S over V with respect

to (ϕ, γ, ψ).
• Let C ⊆ 2Ωσ

X∪P
M×Ωσ

X∪P
M. We say that V is σ-reducible for C if every

system of C having a solution over V with respect to a tuple (ϕ, γ, ψ) also
has a σ-solution over V with respect to (ϕ, γ, ψ).

• A graph equation system is associated to a finite graph Γ = V ] E.
The set of variables is X = Γ and there are no parameters. Finally, each
edge x

y
−→ z yields the equation xy = z. A pseudovariety V is:

− completely σ-reducible if it is σ-reducible for the class of all finite systems
of σ-equations.

− σ-reducible if it is σ-reducible for the class of all graph equation systems.
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The σ-word problem for V consists in determining whether two σ-terms
represent the same σ-word over V. We say that a recursively enumerable
pseudovariety V is (completely) σ-tame if it is (completely) σ-reducible and
the σ-word problem for V is decidable.

The triple (ϕ, γ, ψ) will be sometimes understood. If P = ∅ (i.e., as for graph
equation systems) we just speak about solutions with respect to (ϕ,ψ).

Connections between tameness and the classical membership problem
were obtained in [12] using standard enumeration arguments. These results
imply in particular the following statement.

Proposition 3.2 Any κ-tame pseudovariety is decidable.

3.2 A general technique to prove reducibility

The main idea to show that some join V∨W is, say, completely σ-reducible,
may be described as follows. Assume that W is completely σ-reducible.
Assume also that each pseudoword π ∈ ΩAM admits a factorization which is
in normal form over V and that the value pV(π), of π over V, is completely
determined by syntactic properties of the factors, like for instance their
contents. For example, over J, simple syntactic properties of normal forms
determine the values of the pseudowords, as stated in Theorem 2.2. Then,
given a system and a solution over V∨W, we transform the system so that it
takes into account these normal form factorizations: for each factor of such a
factorization, we add a variable to our system, and corresponding equations.
The original solution also yields a solution of the modified system. The main
ingredient is then to apply the reducibility of W (thus replacing pseudowords
by σ-words to get a σ-solution over W) while preserving syntactic properties
of each factor through this replacement, to guarantee that equalities over V

between factors of normal forms will be preserved. Since the solution of the
original system was in particular a solution over V, preserving the syntactic
properties of each factor guarantees that the obtained replacement is also a
σ-solution over V. Therefore, we end up with a σ-solution over both V and
W, from which we can obtain a σ-solution over V∨W of the original system.

How do we preserve syntactic properties? Definition 3.1 says that in a
completely σ-reducible pseudovariety, the existence of a solution θ for a sys-
tem given a parameter evaluation and constraints in a finite monoid implies
the existence of a σ-solution θ′ for the same system, parameter evaluation
and constraints. Yet, this tells nothing about possible relationships between
θ and θ′. As argued earlier, one may want θ′ to preserve the content, that is,
that c ◦ θ′ = c ◦ θ. To enforce such relationships, the idea, which has already
been used in other papers such as [14, 15, 23] is the following: start from a
solution θ of a system S over a σ-reducible pseudovariety V, with constraints
ϕ into a monoid M . Then build another system S1, with constraints ϕ1 in
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a new monoid M1, and derive from θ a solution θ1 of S1 respecting the con-
straints ϕ1. Next, use the σ-reducibility of V to get a σ-solution θ ′1 of S1

respecting the constraints given by ϕ1. The important point is that the new
system together with the new constraints shall be built to enforce relevant
relationships between θ1 and θ′1. Finally, recover from θ′1 a solution θ′ of the
original system, preserving the additional properties of θ ′1 we are interested
in.

The next proposition illustrates this technique. It extends [23, Lemma 2.3]
with basically an identical proof. It will be crucial to prove that joins in-
volving R or subpseudovarieties of J preserve κ-reducibility.

Proposition 3.3 With the notation of Definition 3.1, assume that σ is a
non-trivial implicit signature and that C is the class of all finite systems
(resp. of all finite graph equation systems) of σ-equations.

If V is σ-reducible with respect to C and θ is a solution of S ∈ C over V

with respect to (ϕ, γ, ψ), then there exists a σ-solution θ ′ of S over V with
respect to (ϕ, γ, ψ) such that for each x ∈ X,

1) c ◦ θ′(x) = c ◦ θ(x);

2) if θ(x) is a word, then θ′(x) = θ(x);

3) if J |= θ(x) = θ(x)2, then J |= θ′(x) = θ′(x)2.

Proof. We first prove the result when C is the class of all finite systems
of σ-equations. If x is a variable such that θ(x) is a non-empty idempotent
over J, then θ(x) is not a word and by Lemma 2.3 it admits a factorization

θ(x) = π1π
ω
2 π3 with c(π2) = c ◦ θ(x). (3.1)

For each such variable x, add to X three new variables x1, x2, x3 and add to
S two new σ-equations x = x1x2x3, x2 = x2x2. Denote by X1 and S1 these
extensions of X and S respectively. Let θ1 be the extension of θ to X1 such
that θ1(x1) = π1, θ1(x2) = πω2 and θ1(x3) = π3.

Let m be an integer greater than the maximal length of the values under
θ which are words, let Im be the ideal of A∗ formed by the words of length
greater than or equal to m and let Nm = A∗/Im be the Rees quotient of A∗

by Im. Notice that Nm may be seen as the set of all words on the alphabet
A of length at most m − 1, together with a 0 element, where the product
of two words evaluates to their usual product if it is shorter than m and to
0 otherwise. Finally, let M1 be the finite monoid M × Nm × P(A), where
P(A) = ΩASl is the power set of A.

Let ψ1 : ΩAM → M1 be the morphism defined, for each π ∈ ΩAM, by
ψ1(π) = (ψ(π), φ(π), c(π)), where φ : ΩAM → Nm is the unique continuous
morphism extending the canonical morphism from A∗ onto Nm. Let ϕ1 =
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ψ1 ◦ θ1. Since θ is a solution of S with respect to (ϕ, γ, ψ), it is clear that θ1

is a solution of S1 with respect to (ϕ1, γ, ψ1).
Since C is the class of all finite systems of σ-equations, S1 ∈ C. Since V is

σ-reducible with respect to C, there exists a σ-solution θ ′1 of S1 with respect
to (ϕ1, γ, ψ1). In particular, ψ1 ◦ θ

′
1 = ϕ1 = ψ1 ◦ θ1 whence

ψ ◦ θ′1 = ψ ◦ θ1 = ϕ,

φ ◦ θ′1 = φ ◦ θ1,

c ◦ θ′1 = c ◦ θ1.

For each variable x such that θ(x) is a non-empty idempotent over J and
each i ∈ {1, 2, 3}, let txi

= θ′1(xi). Since θ′1 is a σ-solution of S1 with respect
to (ϕ1, γ, ψ1) and x2 = x2x2 is a σ-equation of S1, V satisfies tx2

= tnx2
for

every positive integer n. Therefore, since x = x1x2x3 is a σ-equation of S1,
V also satisfies

θ′1(x) = tx1
tx2
tx3

= tx1
tnx2
tx3

(n > 1). (3.2)

On the other hand, since ψ is a morphism and verifies ψ ◦ θ ′1 = ψ ◦ θ1,

ψ(tx1
tnx2
tx3

) = ψ(tx1
)ψ(tx2

)nψ(tx3
) = ψ(π1)ψ(πω2 )nψ(π3) = ψ(π1π

ω
2 π3),

whence
ψ(tx1

tnx2
tx3

) = ψ ◦ θ(x). (3.3)

Let now ρ = ρ(a1, . . . , ar) be an element of the implicit signature σ which
is not a word and let (wi(a1, . . . , ar))i be a sequence of words converging to ρ.
Then the σ-word ρx2

= ρ(tx2
, . . . , tx2

) is not a word and (wi(tx2
, . . . , tx2

))i
is a sequence which converges to ρx2

. Hence the σ-word

tx = tx1
ρx2

tx3

is not a word and, since for each i there exists an integer ni such that
wi(tx2

, . . . , tx2
) = tni

x2
, we deduce from (3.3) that ψ(tx) = ψ◦θ(x). Moreover,

by (3.2), V satisfies θ′1(x) = tx.
Let, for each variable x ∈ X,

θ′(x) =

{

tx if θ(x) is a non-empty idempotent over J

θ′1(x) otherwise.

By construction θ′ is a σ-solution of S with respect to (ϕ, γ, ψ). Let us
now show that θ′ verifies conditions 1) to 3).

If x ∈ X is such that θ(x) is a word, then

φ ◦ θ′(x) = φ ◦ θ′1(x) by definition of θ′

= φ ◦ θ1(x) since φ ◦ θ′1 = φ ◦ θ1

= φ ◦ θ(x) since θ1 and θ coincide on X.
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Since θ(x) is a word of length at most m− 1, we deduce that θ ′(x) = θ(x),
which proves 2).

If x ∈ X is such that θ(x) is not an idempotent over J, then the proof
that c ◦ θ′(x) = c ◦ θ(x) is analogous to the one above for 2) since in this
case θ′ coincides with θ′1. Suppose now that θ(x) is a non-empty idempotent
over J so that, by (3.1), θ(x) = π1π

ω
2 π3 and c ◦ θ(x) = c(π2). Therefore,

c(π2) = c(πω2 )

= c ◦ θ1(x2) by definition of θ1

= c ◦ θ′1(x2) since c ◦ θ′1 = c ◦ θ1

= c(tx2
).

We show similarly that c(π1) = c(tx1
) and c(π3) = c(tx3

). Hence,

c ◦ θ(x) = c(tx2
) by (3.1)

= c(ρ(tx2
, . . . , tx2

))

= c(tx) since c(tx1
tx3

) = c(π1π3) ⊆ c(tx2
) = c ◦ θ(x)

= c ◦ θ′(x).

This proves 1). Moreover, since c ◦ θ′(x) = c(tx2
) and θ′(x) = tx, it is clear

that, for each n > 1, θ′(x) admits a factorization in n factors with the same
content. By Proposition 2.1, θ′(x) is an idempotent over J and 3) is proved.
This concludes the proof of the proposition when C is the class of all finite
systems of σ-equations.

The proof when S is a graph equation system is similar. The additional
difficulty is that, to be able to apply the σ-reducibility of V, the system S1

constructed from S has to be a graph equation system as well. If θ(x) is not
a word, say θ(x) = π1π

ω
2 π3, then:

• if x is an edge z
x
−→ z′, then we add a new vertex y and we replace x

in the graph defining S by three edges: z
x1−→ y

x2−→ y
x3−→ z′. We let

θ1(x1) = π1π
ω
2 , θ1(x2) = πω2 , θ1(x3) = π3, and θ1(y) = θ(z)π1π

ω
2 ;

• if x is a vertex, then we add two new vertices y1 and y2 and three edges
y1

x1−→ y2
x2−→ y2

x3−→ x to the graph defining S, with the constraint that
y1 is sent to 1 ∈M . We extend θ to θ1 similarly.

The proof then goes as above, see [23, proof of Lemma 2.3] for details.

Remark 3.4 More generally, if a pseudovariety is σ-reducible with respect
to C, then we can constrain the values under θ ′ of each variable with respect
to properties which, as those of 1) and 2) of Proposition 3.3, can be tested
in a finite monoid.
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We now define the notion of refinement of a graph system according
to factorizations of the values of variables under a solution of this system.
This provides a useful tool (similar to that used in the end of the proof of
Proposition 3.3) that will be used several times in the rest of the paper.

Let θ be a solution over V of a graph equation system given by a graph
Γ, with the notation of Definition 3.1. Consider, for each variable x, a fac-
torization π1 · · · πk of θ(x) (where k depends on x). We modify the original
graph equation system by adding some new vertices and edges to the graph,
and we construct from θ a solution θ1 of the new system as follows.

• If x is a vertex, then we add the path

y1
x1−→ y2

x2−→ · · ·
xk−1

−−−→ yk
xk−→ x.

We let θ1(xi) = πi (i = 1, . . . , k), θ1(y1) = 1, θ1(yj+1) = θ1(yj)θ1(xj)
(j = 1, . . . , k − 1) and θ1(x) = θ(x).

• If x is an edge y
x
−→ z, then we replace it by the path

y
x1−→ y1

x2−→ · · ·
xk−1

−−−→ yk−1

xk−→ z.

We let θ1(y) = θ(y), θ1(xi) = πi (i = 1, . . . , k), θ1(y1) = θ1(y)θ1(x1),
θ1(yj+1) = θ1(yj)θ1(xj+1) (j = 1, . . . , k − 2) and θ1(z) = θ(z).

Finally, we define the new constraint ϕ1 by ϕ1 = ψ◦θ1. It is straightforward
that θ1 is a solution of the new system with respect to (ϕ1, ψ). Observe that
the tuples (θ1(xi))16i6k for x ∈ X completely determine θ1.

We call the new graph equation system (resp. the new solution θ1) the re-
finement of the original graph equation system (resp. the original solution θ)
according to the factorization of variable values under θ.

4 Joins involving J

In this section, we show that the property of being (completely) σ-reducible
is preserved under joins with subpseudovarieties of J.

Theorem 4.1 Let V be a pseudovariety contained in J and let σ be a non-
trivial implicit signature. If W is a completely σ-reducible (resp. σ-reducible)
pseudovariety, then V ∨ W is completely σ-reducible (resp. σ-reducible).

In particular, since the trivial pseudovariety is completely σ-reducible,
any subpseudovariety of J is completely σ-reducible.

Proof. We first prove the result when W is completely σ-reducible. With
the notation of Definition 3.1, let ψ : ΩAM →M be a continuous morphism
into a finite monoid. Fix an evaluation γ : P → ΩAM of parameters by
σ-words, and constraints on the variables given by a mapping ϕ : X → M .
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Let θ : X → ΩAM be a solution over V ∨ W of a system S of σ-equations
with respect to (ϕ, γ, ψ). Notice that this implies that θ is both a solution
over V and over W of S with respect to (ϕ, γ, ψ).

For each variable x, there exists a factorization of θ(x) of the form

θ(x) = π0π1 · · · πn (4.1)

satisfying properties 1) –4) of Theorem 2.2. For each x add to X variables
x0, x1, . . . , xn and add to S the σ-equation x = x0x1 · · · xn. Call S1 the
resulting system. Let θ1 be the extension of θ to X1 such that θ1(xi) = πi
for all i. Finally, let ϕ1 = ψ ◦ θ1, so that ϕ(x) = ϕ1(x0)ϕ1(x1) · · ·ϕ1(xn).

By construction, θ1 is a solution of S1 over W with respect to (ϕ1, γ, ψ)
and by hypothesis W is completely σ-reducible. Therefore, there exists a
σ-solution θ′1 of S1 over W with respect to (ϕ1, γ, ψ) satisfying conditions
1) –3) of Proposition 3.3.

Let θ′ be the evaluation of the variables defined, for each x ∈ X, by

θ′(x) = θ′1(x0)θ
′
1(x1) · · · θ

′
1(xn)

and let ζ ′ : Ωσ
X∪PM → Ωσ

AM coincide with γ on P and with θ′ on X. Since
θ′1 is a σ-solution of S1 with respect to (ϕ1, γ, ψ) we have ψ ◦θ′1 = ϕ1. Hence
we get ψ ◦ θ′(x) = ψ ◦ θ′1(x0) · · ·ψ ◦ θ′1(xn) = ϕ1(x0) · · ·ϕ1(xn) = ϕ(x) for
each x ∈ X, so that

ψ ◦ θ′ = ϕ. (4.2)

Since θ′1 is built using Proposition 3.3, we have, for each i, θ′1(xi) = πi
when πi is a word, and θ′1(xi) is a pseudoword with the same content as πi
which is idempotent over J when πi is idempotent over J. This implies by
Theorem 2.2 that J satisfies θ′(x) = θ(x). As V is a subpseudovariety of J,
V also satisfies θ′(x) = θ(x). Since θ is a solution of S over V, we obtain

∀(u = v) ∈ S, V |= ζ ′(u) = ζ ′(v). (4.3)

On the other hand, since θ′1 is a σ-solution of S1 over W and since x =
x0x1 · · · xn is a σ-equation of S1, we deduce that

W |= θ′(x) = θ′1(x0)θ
′
1(x1) · · · θ

′
1(xn) = θ′1(x). (4.4)

Since θ′1 is a solution of S1, which contains S, we get:

∀(u = v) ∈ S, W |= ζ ′(u) = ζ ′(v). (4.5)

Finally, (4.2), (4.3) and (4.5) show that θ′ is a σ-solution of S over V ∨ W

with respect to (ϕ, γ, ψ). Hence, V ∨ W is completely σ-reducible.

In case W is σ-reducible, we start from a graph equation system S. The
only additional difficulty is that the system S1 has to be a graph equation
system, too. It suffices to let S1 (resp. θ1) be the refinement of S (resp. of
θ) according to the factorization (4.1). The proof then proceeds as above.
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Since the σ-word problem for the join V ∨ W of two pseudovarieties
is decidable if and only if it is decidable for both V and W, we deduce
immediately the following corollary from Theorem 4.1.

Corollary 4.2 Let σ be a non-trivial implicit signature and let V be a sub-
pseudovariety of J. If W is a (completely) σ-tame pseudovariety and the
σ-word problem for V is decidable, then V ∨ W is (completely) σ-tame.

This corollary applies, for instance, to the pseudovarieties J and A ∩ Com

with σ = κ. In fact it is well known that the κ-word problem is decidable
for J [2] and A ∩ Com. The κ-word problem for A ∩ Com can be reduced to
the κ-word problem on one generator for the same pseudovariety, and this
problem is trivial (see for instance [3]).

Therefore, since Ab [10] is completely κ-tame, we deduce in particular
that Com = (A∩Com)∨Ab and J∨Ab are completely κ-tame. On the other
hand, since G is κ-tame [20, 12], the pseudovariety J∨G is κ-tame. Similarly,
the pseudovariety ZE, of semigroups whose idempotents are central, is also
κ-tame since ZE = Com∨G = (A∩Com)∨G [3, Section 9.1]. The κ-tameness
of J ∨ G and ZE already follow from [31]. Note that, as observed in [5] it
follows from an example of Coulbois and Khélif [25] that G is not completely
κ-tame. Applications of the corollary include also the pseudovariety LSl of
semigroups which are locally semilattices. Since it is κ-tame [24], V ∨ LSl

is also κ-tame for each subpseudovariety V of J with a decidable κ-word
problem.

5 Joins involving R

In this section, we prove the main result of this paper.

Theorem 5.1 If W ⊆ Jxyω+1z = xyzK is κ-reducible, then so is R ∨ W.

The proof relies on intermediate results presented in sections 5.1 to 5.4. Since
the κ-word problem is decidable for V ∨ W if it is decidable for both V and
W, and since it is also decidable for R (see Theorem 5.6 below) Theorems 5.1
and 5.6 immediately imply

Corollary 5.2 If W ⊆ Jxyω+1z = xyzK is κ-tame, then so is R ∨ W.

Taking into account the tameness results already quoted in the introduction,
we deduce from Corollary 5.2 that R ∨ Ab, R ∨ G, R ∨ OCR and R ∨ CR are
κ-tame.
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5.1 The κ-word problem for R

For π ∈ ΩAS, a factorization of the form π = π1aπ2 with a /∈ c(π1) and
c(π1a) = c(π) is said to be a left basic factorization of π. Using compactness
of ΩAS, continuity of the content function, and the fact that ΩAS is dense
in ΩAS, it is easy to show that every non-empty pseudoword admits at least
one left basic factorization. The following result from [6] is the fundamental
observation for the identification of pseudowords over R.

Proposition 5.3 Let π, ρ ∈ ΩAS and let π = π1aπ2 and ρ = ρ1bρ2 be
left basic factorizations. If R |= π = ρ, then a = b and R satisfies the
pseudoidentities π1 = ρ1 and π2 = ρ2.

Moreover, [15, Proposition 3.5] shows that the left-basic factorization is
unique not only over R, but also over the pseudovariety S of all finite semi-
groups.

Proposition 5.4 Let π, ρ ∈ ΩAS and let π = π1aπ2 and ρ = ρ1bρ2 be left
basic factorizations. If π = ρ, then a = b, π1 = ρ1 and π2 = ρ2.

More generally, as seems to have been first observed in [14] and has been
systematically explored in [29], the fact that a pseudovariety is closed under
certain expansions entails the uniqueness of certain factorizations. Propo-
sitions 5.3 and 5.4 can thus be viewed as consequences of the fact that the
pseudovarieties R and S are both closed under the Rhodes-Karnofsky expan-
sion [29].

One can iterate the left-basic factorization to the right until the content
possibly decreases, as follows. Let

π = π1a1π2a2 · · · πnanπ
′
n (5.1)

where each πiai(πi+1ai+1 · · · πnanπ
′
n) is a left basic factorization (of the prod-

uct) and c(πiai) is constant. We call (5.1) the n-iterated left basic factor-
ization of π. If n is maximum for such a factorization of π, in which case
c(π′n) 6= c(π), then we write ‖π‖ = n. If there is no such maximum, then we
write ‖π‖ = ∞.

Example 5.5 Let π = cba3b(ca)ω+1a(cωb)ω. The 3-iterated left basic fac-
torization of π is

π = cb · a · a2b · c · a(ca)ωacω · b · (cωb)ω−1.

Since the content of the last factor (cωb)ω−1 is strictly contained in the
content of π, it follows that ‖π‖ = 3.

Consider now ρ = (abωa)ωbaω. The 2-iterated left basic factorization
of ρ is ρ = a · b · bω−1 · a · (abωa)ω−1baω. More generally, one checks
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by induction on n that ρ admits a 2n-iterated left basic factorization ρ =
ρ1a1ρ2a2 · · · ρ2na2nρ

′
2n with ρ2i−1 = a, a2i−1 = b, ρ2i = bω−1, a2i = a

(1 6 i 6 n) and ρ′2n = (abωa)ω−nbaω. Therefore ‖ρ‖ = ∞.

To solve the κ-word problem for R, the idea is then to proceed by iter-
atively taking left basic factorizations of the factors of the κ-word π. The
factors πi have a smaller content than that of π. If ‖π‖ is finite, then the
content of some π′n also decreases. Otherwise, one can show [19] that the in-
finite sequence π′i is ultimately periodic and that this can be algorithmically
detected. More precisely, one can show the following statement.

Theorem 5.6 The κ-word problem for R is decidable in linear time.

We introduce now a relevant parameter of pseudowords which will be
important in the sequel. By the cumulative content of π ∈ ΩAM we mean
the set ~c(π) of all a ∈ A such that there exists a factorization of the form
π = π1π2 with ‖π2‖ = ∞ and a ∈ c(π2). Note that, for a ∈ A,

a ∈ ~c(π) if and only if R |= πa = π. (5.2)

For instance, ~c(1) = ∅ and if π and ρ are the pseudowords of Example 5.5,
then ~c(π) = {b, c} and ~c(ρ) = {a, b}.

The next result characterizes pseudowords which are idempotents over
R. It is an immediate corollary of (5.2) and of Proposition 5.3.

Proposition 5.7 Let π ∈ ΩAS. The following conditions are equivalent:

(i) R satisfies π2 = π;

(ii) ‖π‖ = ∞;

(iii) ~c(π) = c(π);

(iv) J satisfies π2 = π.

5.2 Decomposition trees

We now introduce trees whose vertices are labeled by pseudowords used to
describe truncated left basic factorizations iterated to the right. A vertex
labeled with a non-empty pseudoword π will have children labeled π1, a1, . . . ,
πk, ak, π

′
k, in this order, such that π1a1 · · · πkakπ

′
k is a left basic factorization

of π iterated on the right. We insist in ending up with finite trees: if π is
idempotent over R, which by Proposition 5.7 means that ‖π‖ = ∞, we stop
this factorization at some point.

Let ` be a positive integer. An `-decomposition tree is a tuple T =
(V,E, λ, η) where (V,E) is a finite tree, and where λ : V → ΩAM and
η : E → N are mappings, such that
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(i) If a vertex v ∈ V has k children, then the edges from v to its children
are labeled 0, 1, . . . , k−1 under η. The child v ′ of v such that η(v, v′) =
k − 1 is called its last child.

(ii) If v ∈ V is such that λ(v) ∈ A ∪ {1}, then v has no child.

(iii) If v is the last child of w where λ(w) is a non-empty idempotent over
R, then again v has no child. We call such a vertex, and its label, a
remainder.

(iv) In all the other cases, v has at least one child. Let π = λ(v), let

k =

{

‖π‖ if ‖π‖ is finite

` otherwise
(5.3)

and let
π = π1a1 · · · πkakπ

′
k (5.4)

be the k-iterated left basic factorization of π. Then, v has 2k+ 1 chil-
dren, v0, . . . , v2k labeled under λ by π1, a1, . . . , πk, ak, π

′
k respectively.

Moreover, η(v, vi) = i.

Observe that λ(v) uniquely determines the subtree rooted at v. Hence,
one can associate to each π ∈ ΩAM a unique `-decomposition tree T`(π),
such that π labels the root of T`(π). Note also that this tree is similar to
the one introduced in [16], but we insist here in ending up with a finite tree.
This is guaranteed by (5.4): if ‖λ(v)‖ is infinite and v is not a remainder,
then we stop the factorization of λ(v) so that v has exactly 2`+ 1 children;
if ‖λ(v)‖ is finite, then v has 2‖λ(v)‖ + 1 children (so possibly more than
2`+ 1).

Example 5.8 The 2-decomposition tree of π = a3(bcωb)ω is shown on Fig-
ure 2. Since ‖π‖ = 1, the children of the root are labeled according to the
left basic factorization a3b · c · cω−1(bbcω)ω−1b of π, yielding three children.
Among them, the second one is labeled by the letter c, so it is a leaf. The last
one, labeled by ρ = cω−1(bbcω)ω−1b is not a remainder. Therefore, the pro-
cess iterates from the first and last children at the next level. As ‖ρ‖ = ∞,
the 2-iterated left basic factorization cω−1 ·b·b·c·cω−1(bbcω)ω−2b of ρ produces
five children. Since ρ is idempotent over R, the last one is a remainder.

By definition, if v is a child of w and v also has children, then c ◦ λ(v) (
c ◦ λ(w). Therefore, the height of an `-decomposition tree is bounded by
the number of letters in the alphabet. Since it has also finite branching, an
`-decomposition tree is always finite.

The `-decomposition tree of π ∈ ΩAM induces a factorization f`(π) of π,
called the `-decomposition factorization of π, defined by reading the labels of
leaves of the tree from left to right, skipping those labeled by 1 when π 6= 1.
Formally, the `-decomposition factorization of π is defined as follows:
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a3(bcωb)ω

a3b c cω−1(bbcω)ω−1b

cω−1 b b c cω−1(bbcω)ω−2b

1 c 1 c cω−3

a3 b 1

1 a 1 a 1 a 1

Figure 2: The 2-decomposition tree of a3(bcωb)ω

• If π = a ∈ A (resp. π = 1), then f`(π) = a (resp. f`(π) = 1).

• Otherwise, let k be defined by (5.3) and consider the k-iterated fac-
torization (5.4) of π. For each i ∈ {1, . . . , k}, let

ρi =

{

f`(πi) · ai if πi 6= 1

ai otherwise.

Then,
f`(π) = ρ1 · ρ2 · . . . · ρk−1 · ρ

′
k,

where

ρ′k =















ρk if ‖π‖ is finite and π′
k = 1

ρk · f`(π
′
k) if ‖π‖ is finite and π′

k 6= 1

ρk · π
′
k if ‖π‖ is infinite.

Notice that f`(π) depends only on the associated decomposition tree T`(π).
Observe also that, for π 6= 1, the factors involved are letters and remainders,
that is, non-empty labels of the leaves of the `-decomposition tree of π. For
instance, the 2-decomposition factorization of the pseudoword π = a3(bcωb)ω

of Example 5.8 is

f2(π) = a · a · a · b · c · c · c · cω−3 · b · b · c · cω−1(bbcω)ω−2b. (5.5)

Two `-decomposition trees T = (V,E, λ, η) and T ′ = (V ′, E′, λ′, η′) are
said to be equivalent, denoted T ∼ T ′, if there exists a graph isomorphism
f : (V,E) → (V ′, E′) such that

• for each leaf v ∈ V , v is a remainder if and only if f(v) is a remainder;

• λ(v) = λ′ ◦ f(v) for all leaves v ∈ V which are not remainders;

• η(e) = η′ ◦ f(e) for every edge e ∈ E.
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Notice that, by Proposition 5.3, two pseudowords π and ρ are equal over R

if and only if T`(π) ∼ T`(ρ) for every `.

Example 5.9 Let π = a3(bcωb)ω be the κ-word considered in Example 5.8
and let ρ = a3bcω+3b(bc)ω+1. Notice that ρ is the κ-word obtained from
the 2-decomposition factorization f2(π) of π, given in (5.5), by replacing
the factors cω−3 and cω−1(bbcω)ω−2b by cω and (bc)ω respectively. Notice
also that we replaced idempotents over R by idempotents over R with the
same content. As one can verify, by analyzing Figures 2 and 3, the 2-
decomposition trees T2(π) and T2(ρ), of π and ρ, are equivalent (but π and ρ
are not equal over R since cω−1(bbcω)ω−2b and (bc)ω are not equal over R).

a3bcω+3b(bc)ω+1

a3b c cω+2b(bc)ω+1

cω+2 b b c (bc)ω

1 c 1 c cω

a3 b 1

1 a 1 a 1 a 1

Figure 3: The 2-decomposition tree of a3bcω+3b(bc)ω+1

Moreover, the 2-decomposition factorization of ρ is

f2(ρ) = a · a · a · b · c · c · c · cω · b · b · c · (bc)ω,

which is precisely the factorization obtained from f2(π) by replacing the fac-
tors cω−3 and cω−1(bbcω)ω−2b by cω and (bc)ω respectively.

The following technical result is a refinement of equation systems of the
form x1 = · · · = xn, which are related with pointlike sets [5] and which will
be useful to establish κ-tameness for R.

Lemma 5.10 Let W ⊆ Jxyω+1z = xyzK be a pseudovariety, let ψ : ΩAM →
M be a morphism, let u1, . . . , un be κ-words, and let finally ` > |S|n + 2.
Assume that T`(ui) ∼ T`(uj) for all i, j. Then there exist κ-words w1, . . . , wn
such that

R |= w1 = · · · = wn (5.6)

W |= ui = wi (5.7)

ψ(ui) = ψ(wi) (5.8)

c(ui) = c(wi) (5.9)

~c(ui) = ~c(wi) (5.10)
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Proof. For each i, let T`(ui) = (Vi, Ei, λi, ηi). Since T`(ui) ∼ T`(uj) for
all i, j, there exists an isomorphism fi,j from (Vi, Ei, ηi) to (Vj , Ej , ηj). Note
that this isomorphism is in fact unique. In particular fj,k ◦ fi,j = fi,k and
fi,i is the identity on (Vi, Ei, ηi).

We modify the λi-labeling of each `-decomposition tree T`(ui), thus ob-
taining a new tree Ti = (Vi, Ei, µi, ηi), which will be an `-decomposition tree
of the κ-word wi, that is Ti = T`(wi). We define µi from T`(ui) bottom-
up, from the leaves to the root, treating simultaneously all vertices in a set
{yi | yi = f1,i(y1), i ∈ 1, . . . , n} for some y1 ∈ V1. That is, we define µi(yi)
only when µj is already defined on all children of the vertices yj, for all
j = 1, . . . , n. Along the construction, we verify that, for each i = 1, . . . , n:

(a) If yi is not a remainder, then R satisfies µi(yi) = µ1(y1);

(b) W satisfies λi(yi) = µi(yi);

(c) ψ ◦ λi(yi) = ψ ◦ µi(yi);

(d) c ◦ λi(yi) = c ◦ µi(yi).

(e) ~c ◦ λi(yi) = ~c ◦ µi(yi).

We note that, since ui is a κ-word, it follows from [18, Lemma 2.2] that
λi(v) is also a κ-word for all v ∈ Vi.

If y1 is a leaf, then we let µi(yi) = λi(yi). Let us verify (a)–(e). Since
T`(ui) and T`(uj) are equivalent, λi(yi) = λ1(y1) if yi is not a remainder, so
that R satisfies µi(yi) = µ1(y1) in this case. Items (b)–(e) follow immediately
from the equality µi(yi) = λi(yi).

If y1 is not a leaf, then let zi,0, . . . , zi,k be the consecutive children of yi,
and assume that all values µi

(

zi,j
)

have been defined and satisfy (a)–(e).
Since all T`(ui) are equivalent, either zi,k is a remainder for all i = 1, . . . , n
(in case λi(yi) is idempotent over R for all i), or none of the zi,k’s is a
remainder. In the latter case, let µi

(

yi
)

= µi
(

zi,0
)

· · · µi
(

zi,k
)

. Items (a)–(e)
are then obviously fulfilled.

Otherwise, z1,k, . . . , zn,k are remainders, which means that λi(yi) is idem-
potent over R for all i = 1, . . . , n. Therefore, in this case, k = 2`. By defi-
nition of an `-decomposition tree, λi(zi,2j−1) is a letter. Since all T`(ui) are
equivalent, this letter does not depend on i, and we denote it by aj. By the
definition of µi on leaves, µi(zi,2j−1) = aj. We also let ti,j = µi(zi,2j−2) for
i = 1, . . . , n and j = 1, . . . , k. Finally, we let vi = µi(zi,2`). Consider, for
each 2 6 r 6 `, the n-tuple of elements of S

(

ψ(t1,1a1 · · · t1,rar), . . . , ψ(tn,1a1 · · · tn,rar)
)

(5.11)

For each of the `− 1 values 2, . . . , ` of r, the corresponding n-tuple belongs
to Sn, which has |S|n 6 `−2 elements. Hence, at least two of these n-tuples
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are equal, that is, there exist 2 6 r < s 6 ` such that, for all i = 1, . . . , n,

ψ
(

ti,1a1 · · · ti,rar
)

= ψ
(

ti,1a1 · · · ti,rar · (ti,r+1ar+1 · · · ti,sas)
)

= ψ
(

ti,1a1 · · · ti,rar · (ti,r+1ar+1 · · · ti,sas)
ω+1

)

. (5.12)

Define µi(yi) as:

µi(yi) = ti,1a1 · · · ti,rar(ti,r+1ar+1 · · · ti,sas)
ω+1ti,s+1as+1 · · · ti,`a`vi. (5.13)

Let us verify (a)–(e). Since zi,2` is a remainder (hence a leaf), we have
vi = µi(zi,2`) = λi(zi,2`), which by definition of the `-decomposition tree has
content c ◦ λi(yi). By (d), which is assumed to hold on the children of yi,
we get c(ti,jaj) = c(µi(zi,2j−2)µi(zi,2j−1)) = c(λi(zi,2j−2)λi(zi,2j−1)), which
is also c(λi(yi)), again by definition of an `-decomposition tree. To sum up:

∀j ∈ {1, . . . , `}, c(ti,jaj) = c(vi). (5.14)

Hence, R satisfies µi(yi) = ti,1a1 · · · ti,rar(ti,r+1ar+1 · · · ti,sas)
ω+1. Moreover,

by (a) applied on zi,j , we know that R satisfies ti,j = t1,j. This implies that
R satisfies µi(yi) = µ1(y1), which proves (a).

Finally, (b)–(e) follow immediately from the expression (5.13) of µi(yi),
from the fact that all the zi,j ’s satisfy (b)–(e), respectively, and

• for (b), from the fact that W satisfies xyω+1z = xyz.

• for (c), from (5.12).

• for (d) and (e), from the equality (5.14).

Let wi = µi(ri) where ri is the root of T`(ui). Then, properties (5.6)–(5.10)
follow immediately from (a)–(e) respectively, applied to ri.

5.3 Splittings

We use the notation of Definition 3.1 for a graph equation system S. In
particular we consider a finite graph Γ = V ] E associated to S and a
solution θ of S over R. For an edge e ∈ E of the graph Γ, we let αe be the
beginning vertex of e and ωe be its end vertex. Let us examine more closely
each equation, which is of the form xy = z. The following result is immediate
from the uniqueness of left basic factorizations over R (Proposition 5.3) and
over S (Proposition 5.4), and from (5.2).

Lemma 5.11 Let π, ρ, τ ∈ ΩAS be such that R |= πρ = τ and c(ρ) * ~c(π).
Factorize ρ as ρ = ρ1aρ2 where a /∈ ~c(π) and c(ρ1) ⊆ ~c(π). Then τ has a
factorization τ = τ1aτ2 such that R satisfies the pseudoidentities π = τ1 and
ρ2 = τ2.
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Hence, under the above assumptions, for each edge e ∈ E such that
c ◦ θ(e) * ~c ◦ θ(αe), there are factorizations θ(e) = ρ1aρ2 and θ(ωe) = τ1aτ2
such that a /∈ ~c◦θ(αe) and R satisfies the pseudoidentities θ(αe) = τ1 = τ1ρ1

and τ2 = ρ2. We call such factorizations the direct splittings associated with
the edge e and a the corresponding marker. Now, for instance if there are
two edges arriving at the same vertex q, there may be two different splittings
of θ(ωe). We claim such splittings may be merged into multiple splittings.
Again the proof of the following result is immediate in view of the uniqueness
of left basic factorizations over R and over S. It may also be viewed in a more
general setting, in the light of [14] and [29], as a consequence of unambiguity
properties of suitable expansions.

Lemma 5.12 Suppose that a non-empty pseudoword π has two factoriza-
tions π = π1aπ2 = π3bπ4 such that a /∈ ~c(π1), b /∈ ~c(π3). Then exactly one
of the following conditions holds:

1) there are factorizations π1 = π1,1bπ1,2 and π4 = π4,1aπ4,2 such that R

satisfies π1,1 = π3, π1,2 = π4,1, and π2 = π4,2;

2) there are factorizations π2 = π2,1bπ2,2 and π3 = π3,1aπ3,2 such that R

satisfies π1 = π3,1, π2,1 = π3,2, and π2,2 = π4;

3) the pseudovariety R satisfies π1 = π3 and π2 = π4, and a = b.

In case 1), we say that the splitting determined by the marker b precedes
the splitting determined by a and vice versa in case 2). By Lemma 5.12 the
splitting points in a pseudoword are totally ordered under the precedence
relation. The following further consequence of Proposition 5.3 will be useful.

Lemma 5.13 There can be no infinite descending sequence of splitting points
of a pseudoword.

Proof. This is a consequence of the fact, shown in [16], that each pseu-
doword π can be represented by a labeled ordinal, and that if π = π1aπ2

is a factorization such that a /∈ ~c(π1), then the ordinal associated with π1

is smaller than the ordinal corresponding to π. Since the class of ordinals
is well-ordered, there is no infinite descending sequence of ordinals, and the
result follows.

The structure of the graph Γ together with the fact that θ is a solution
over R yield multiple splittings on the θ-labels of each vertex and edge. Thus,
besides the direct splittings, one finds that splittings propagate throughout
the connected components of the graph through the edges: a splitting point
in the label of a vertex αe propagates forward to the label of ωe, while a
splitting point in the label of a vertex ωe may propagate backward to the

22



label of αe, if it occurs in the factor preceding the direct splitting point in
case there is one, and to the rightmost factor of the label of e, otherwise.
Splitting points in the label of an edge e other than its direct splitting can
only come from and only propagate to the label of the vertex ωe. The
splitting points which do not come from direct splittings are called indirect
splitting points.

Lemma 5.14 Given a solution θ over R of a graph equation system, there
is only a finite number of splitting points in the values of variables under θ.

Proof. In view of the above observations about the propagation of split-
tings to the labels of edges, since the graph is finite, if there are infinitely
many splitting points, then infinitely many splitting points can be found at
the label of some vertex. Each indirect splitting point at the label of a vertex
comes from another splitting point by following one edge either forward or
backward. Moreover, each splitting point at the label of a vertex propagates
in one step to the labels of the adjacent vertices, and the number of these
is at most the vertex degree of the graph Γ. Finally, note that every split-
ting point can be traced back to a direct splitting point in a finite number
of steps, and there are at most |E| direct splitting points altogether at the
labels of vertices.

Arguing by contradiction, assume that there are infinitely many split-
ting points. By König’s Lemma [27], there is an infinite path p1, p2, . . . of
distinct splitting points such that each pi+1 is obtained in one step from the
preceding pi. Since the graph Γ and the alphabet A are both finite, there
are indices k and l such that k < l and the splitting points pk and pl occur
at the label π of the same vertex q and involve the same marker a ∈ A. We
have two associated factorizations π = π1aπ2 = π3aπ4.

We first claim that R satisfies the pseudoidentity π1 = π3. Indeed, since
θ is a solution of the system over R, whenever a splitting point at a label of
an edge is propagated either forward or backward along an edge, the R-value
of the factor before the corresponding marker is preserved.

Next, by Lemma 5.12, one of the splittings pk and pl must come before
the other; they do not coincide by the assumption that all the splittings in
the sequence p1, p2, . . . are distinct. Say, π1 = π1,1aπ1,2 with R |= π1,1 = π3 =
π1. Then there is a factorization π1,1 = π1,1,1aπ1,1,2 with R |= π1,1 = π1,1,1,
this new splitting point being again obtained following an undirected cycle
at the vertex q; and so on. This leads to an infinite descending sequence of
splitting points at the label of q, in contradiction with Lemma 5.13. Hence
the overall number of splitting points associated with the graph must be
finite.

For each variable x ∈ Γ such that θ(x) 6= 1, we call the finite factorization
of θ(x) given by its splitting points the splitting factorization of x, and its
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factors the splitting factors of θ(x). By assumption, θ(x) = 1 is the splitting
factorization of x when θ(x) is the empty word.

5.4 Proof of Theorem 5.1

We are now ready to complete the proof of Theorem 5.1. Let W be κ-
reducible and, with the notation of Definition 3.1, let θ be a solution over
R ∨ W with respect to (ϕ,ψ) of a graph equation system S given by a finite
graph Γ. Since θ is in particular a solution over R, the label θ(g) of each
variable g ∈ Γ admits a finite splitting factorization over ΩAM. Let S1 (resp.
θ1) be the refinement of S (resp. θ), defined on page 12, according to the
splitting factorizations of all θ(g), and let Γ1 = V1 ]E1 be the finite graph
associated with S1. Notice that, by definition of this construction, each edge
gi ∈ E1 corresponds to some splitting factor of θ(g) for some g ∈ Γ.

Let x
y
−→ z be an edge of Γ, and let

θ(x) = π1 · · · πk (5.15)

θ(y) = ρπk+1 · · · πk+n (5.16)

be the splitting factorizations of θ(x) and θ(y), where c(ρ) ⊆ ~c(πk) and
the first letter of πk+1 is not in ~c(πk). In view of how the splitting points
propagate, the splitting factorization of θ(z) is of the form

θ(z) = π′1 · · · π
′
kπ

′
k+1 · · · π

′
k+n (5.17)

and R satisfies πi = π′i for each i. Let ei (resp. e′i) be the variable of E1

associated with πi (resp. with π′i). Let ≡ be the smallest equivalence relation

on E1 such that ei ≡ e′i for each edge x
y
−→ z of Γ and each i. It is immediate

that, for each e, f ∈ E1:

e ≡ f =⇒ R |= θ1(e) = θ1(f). (5.18)

Notice that, by definition of the refinement θ1 of θ, for each g ∈ Γ and
each edge gi ∈ E1 corresponding to some splitting factor πi of θ(g), the
label θ1(gi) is precisely πi. Therefore, the next lemma directly follows from
(5.15), (5.16) and (5.17).

Lemma 5.15 Under the above assumptions and with the above notation,
suppose that θ′1 : E1 → Ωκ

AM is a mapping such that, for each e, f ∈ E1:

(i) if e ≡ f , then R satisfies θ′1(e) = θ′1(f);

(ii) ψ ◦ θ′1(e) = ψ ◦ θ1(e);

(iii) c ◦ θ′1(e) = c ◦ θ1(e);

(iv) ~c ◦ θ′1(e) = ~c ◦ θ1(e).
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For each g ∈ Γ, let θ(g) = π1 · · · πr be the splitting factorization of θ(g) and,
for each i, let gi ∈ E1 be the variable corresponding to the factor πi. Let
θ′ : Γ → Ωκ

AM be defined, for each g ∈ Γ, by

θ′(g) = θ′1(g1)θ
′
1(g2) · · · θ

′
1(gr).

Then θ′ is a κ-solution of S over R with respect to (ϕ,ψ).

Our goal is now to define such a mapping θ ′1 in order to obtain a κ-
solution θ′ of S over R. The additional requirement we want to guarantee is
that θ′ is also a solution over W.

Let m = max{|Y | | Y is a ≡-class} and let ` > |S|m + 2. By (5.18),
R satisfies θ1(e) = θ1(f) when e ≡ f . Therefore, the `-decomposition trees
of θ1(e) and θ1(f) are equivalent.

The `-decomposition factorization f`(θ1(e)) of each θ1(e), where e ∈ E1,
yields a new refinement S2 of the system along with a solution θ2. By the
κ-reducibility of W and Proposition 3.3, there exists a κ-solution θ′2 of S2

over W, which preserves the content, word factors and idempotency over R.
Observe however that θ′2 has no reason to be a solution over R of S2.

This mapping θ′2 translates back to a κ-solution θ′′1 of S1 over W. Since
the change from θ2 to θ′2 preserved the content, word factors and idempo-
tency over R, if e, f ∈ E1 are ≡-equivalent then the `-decomposition trees
of θ′′1(e) and θ′′1(f) are equivalent. Indeed (as illustrated in Example 5.9)
we have T`(θ

′′
1(e)) ∼ T`(θ1(e)) for each edge e ∈ E1. On the other hand, if

e ≡ f , then R satisfies θ1(e) = θ1(f) so that T`(θ1(e)) ∼ T`(θ1(f)).
By the choice of `, one can apply Lemma 5.10 in each ≡-class. For each

such class {e1, . . . , en}, with θ′′1(ei) = ui, there exist κ-words w1, . . . , wn sat-
isfying properties (5.6)–(5.10). Define θ′1(ei) = wi, and extend θ′1 to a func-
tion θ′1 : Γ1 → Ωκ

AM by letting θ′1(v) = θ′′1(v) for each v ∈ V1. By (5.6), (5.8),
(5.9) and (5.10), θ′1 satisfies conditions (i)–(iv) of Lemma 5.15. Therefore,
the evaluation θ′ of the variables of Γ defined in that lemma is a κ-solution
of S over R with respect to (ϕ,ψ). On the other hand, by (5.7) and (5.8) and
since θ′′1 is a solution of S1 over W, θ′1 is a solution of S1 over W, too. Hence
θ′ is clearly a κ-solution of S over W. This proves that θ ′ is a κ-solution of
S over R ∨ W and concludes the proof of Theorem 5.1.

6 Final remarks

Theorem 5.1 can be extended to more general pseudovarieties W. For in-
stance, if W is a κ-reducible pseudovariety defined by a pseudoidentity of the
form x1 · · · xry

ω+1ztω = x1 · · · xryzt
ω, which obviously contains Jxyω+1z =

xyzK, one can easily adapt the proof of Lemma 5.10 to this pseudovariety
(it would suffice to choose a convenient n-tuple (5.11)). Since the proof of
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Theorem 5.1 only depends on Lemma 5.10 in what concerns W, one deduces
the following:

Theorem 6.1 If W is a κ-tame pseudovariety which satisfies the pseu-
doidentity x1 · · · xry

ω+1ztω = x1 · · · xryzt
ω, then so is R ∨ W.

One might wonder whether a weaker property than tameness is preserved
by joins with R or J. A natural property to try would be tameness with re-
spect to the class of equation systems of the form x1 = x2 = · · · = xn.
Our proof techniques do not cope with this weaker form of tameness (unlike
the techniques of [31] which work for joins of subpseudovarieties of J with
completely regular pseudovarieties with decidable pointlikes) since we need
to introduce factorizations of a given solution, and to encode these factor-
izations in a new system: we need at least graph equation systems to do
that.

An apparently difficult extension of the results of this paper would be
to prove the complete tameness of R. The main problem is the fact that,
unlike for graph equation systems, it is much more difficult to control the
propagation of splitting points.
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