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Abstract

This paper presents an implementation device for the weak reduction of interaction
nets to interface normal form. The results produced by running several benchmarks
are given, suggesting that weak reduction greatly improves the performance of the
interaction combinators-based implementation of the λ-calculus.

1 Introduction

The main purpose of this paper is to present an implementation mechanism
for weak interaction net reduction. This strategy never triggers reductions in
disconnected parts of the net, and in fact it may stop before all the redexes
in the connected component (with respect to the interface) are reduced. This
mechanism is particularly useful for the evaluation of functional programs.

An interaction net [6] is an undirected graph in which edges are connected
to specific positions (called ports) in the nodes (with at most one edge con-
nected to each port). Each node is labeled with a symbol and has a distin-
guished principal port. Redexes (here called active pairs) are pairs of adjacent
nodes connected by their principal ports. The remaining ports of a node are
called auxiliary. The interface of the net is the set of its free ports (i.e. ports
with no edge connected).

An interaction rule is a graph-rewriting rule which replaces an active pair
by a net such that all the connections (i.e. the interface of the active pair)
are preserved. Figure 1(a) contains an example of such a rule. An interaction
system is a set of rules such that there is at most one applicable rule for each
pair of symbols. The main property of this rewriting framework is strong local
confluence (diamond property), a consequence of the fact that each node is
involved in no more than one active pair. The number of steps required for
fully reducing a net is thus fixed.

1 Email:jsp@di.uminho.pt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55603027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


y

@

λ λ @

(a) (b)

x y x

Fig. 1. (a) Example interaction rule, (b) redrawn for conversion to text format

INs and Functional Programming.

Interaction nets have been used as a technique for the implementation of
functional programs, characterized by a high degree of sharing of computations
– interaction nets are notably used when optimal β-reduction is sought [1,5,8].
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Fig. 2. A net representing the β-redex (λx.t)u – ‘int’ is its interface; principal ports
are marked with a dot; N t and Nu are the nets representing terms t and u, and
the curved wire in the left-hand side represents the bound variable x. A step of
reduction (using the rule of figure 1) results in the net on the right

β-redexes are in general encoded as active pairs consisting of a binary @
agent (standing for application) and a binary λ agent (for abstractions), as
shown in figure 2. To understand why interaction nets are good at sharing,
observe that in the λ-calculus computations are duplicated when a bound vari-
able is substituted in a term where it occurs more than once. These multiple
occurrences would typically be encoded with duplicating agents (denoted by
δ) which copy the substituted term to obtain the required number of copies.

It is then easy to understand that copying forces evaluation, in the sense
that, since the principal port of the @ agent is facing the λ agent, it is not
possible to duplicate a redex by connecting a δ agent to it: the redex must
first be reduced (see figure 3). We remark that this discussion is too simplistic,
since the real problem has to do with the duplication of virtual, rather than
explicit, redexes.

We remark that it is not obvious from the above discussion how to en-
code λ-terms as interaction nets so that net reduction soundly corresponds
to β-reduction – when variables occur non-linearly, some mechanism must be
used to correctly handle the duplication of terms. For instance, each of the
encodings (of expressions into nets) reviewed in section 5 handles this prob-
lem differently. Studying how such an encoding behaves with respect to the
sharing of computations is an extremely complex issue.
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Fig. 3. An attempt to copy a β-redex, forcing evaluation

Garbage collection with Interaction Nets.

ε

N t

Nu

N t

Nu

@

λ

ε

Fig. 4. Erasing a β-redex

In the λ-calculus garbage collection occurs when a bound variable is sub-
stituted in a term where it does not occur; this non-occurrence is encoded by
an erasing agent (ε). Similarly to duplication, erasing a redex implies first
reducing it (see figure 4).
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Fig. 5. Reduction of (λxy.y)t. The term λy.y can be read at the interface after one
step of reduction

To take a concrete example, consider (λxy.y)t −→ λy.y where t is a big
term. Figure 5 shows the corresponding net after one step of reduction, where
the net for t becomes disconnected (unreachable from the interface). Reducing
this net implies reducing (the net representing) t unnecessarily. If t is non-
terminating, this will produce a non-terminating interaction net.



Weak Reduction and Interface Normal Forms.

The above examples show that in some situations full reduction is too
strong since it forces the reduction of disconnected nets which may not ter-
minate. Fernández and Mackie [2] have proposed weak reduction to interface
normal form (WRINF) as an alternative strategy. As in functional program-
ming, where reduction usually stops with weak head normal forms, WRINF
stops as soon as a principal port reaches the interface of the net, doing in
fact the minimum amount of work necessary for that. In particular, no reduc-
tions are performed in disconnected components. If the net encodes a λ-term,
reduction stops with the principal port of a λ agent at the interface.

This Paper.

The author has proposed an abstract machine for full interaction net reduc-
tion [12]. This machine addressed the implementation issues left open by the
calculus (notably those concerning concurrency), by decomposing interaction
steps into finer-grained operations. The present paper continues that work by
proposing a mechanism which implements the WRINF strategy, in the same
spirit of implementation mechanisms for the λ-calculus such as the SECD
machine or Krivine’s machine, that also force specific reduction strategies.

An important issue to consider when λ-terms are encoded as interaction
nets is that the nets that become disconnected may be generated by the encod-
ing, rather than intrinsic to the term (as in the previous examples). Moreover,
these disconnected nets are potentially dangerous in the sense that their reduc-
tion may generate bigger intermediate nets to be garbage-collected. Section 5
contains a major application of weak reduction: a set of experimental results
allow to study the nature of the garbage generated by different encodings of
the λ-calculus, leading to a better understanding of the encodings (and in
particular their time and space behaviour). The results also offer convinc-
ing evidence that weak reduction may dramatically improve the behaviour of
interaction net-based program evaluators.

2 Background

In this paper we use a simpler form of nets for which the interface consists
of a single free port. These are sufficient for representing closed functional
expressions (programs), and moreover all the work here can be easily carried
over to the general case. Rather than elaborating on the graphical formalism
we now turn to the calculus for interaction nets of Fernández and Mackie [2],
simplified for the class of nets we consider.

The Calculus for Interaction Nets.

Nets are reduced in the context of an interaction system 〈Σ,R〉, where
Σ is a set of symbols ranged over by α, β, . . . , each symbol α with an arity
ar(α) ∈ N; and R is a set of interaction rules. Additionally we use a set of



names or variables x, y, z, etc. Terms (ranged over by t, u, . . .) in our language
are either names or of the form α(t) where t is a sequence of terms t1, . . . , tn
and ar(α) = n.

The occurrence of α in α(t) is called an agent (a node in the graph) and
ar(α) corresponds to the number of its auxiliary ports. A net is represented as
a pair 〈t | ∆〉 consisting of a multiset ∆ of unordered pairs of terms (equations)
together with a distinguished term t corresponding to the interface of the net.
Each variable occurs exactly twice in a net.

Representing Nets in the Calculus.

The following observations explain the relation between the language of
the calculus and (graphical) nets:

• A term t = α(t1, . . . , tn) corresponds to a tree, with the principal port of
α at the root, and each ti of the form β(u1, . . . , um) a sub-tree (with the
principal port of β connected to the ith auxiliary port of α). Variables in t

correspond to auxiliary ports which are leaves in the tree.

• The pair of leaves represented by the two occurrences of the same variable
(either in the same or in different trees) is connected by an edge.

• Equations of the form α(t) = β(u) correspond to active pairs.

• The remaining equations (such as x = t) are simply edges.

As an example, consider again the net of figure 5. This will be written as
〈z | @(z, ut) = λ(λ(y, y), ε), ∆t〉, with Σ = {@, λ}. ∆t is the multiset of
equations corresponding to the term t, and ut its interface. Observe that
alternative representations of this net exist, such as the more bureaucratic
〈z | b = λ(λ(a, a), ε), @(z, ut) = b, ∆t〉.

We use the notation ∆1, ∆2 for ∆1 ∪ ∆2 and e, ∆ for {e} ∪ ∆ with e

an equation. The set of names N (t) occurring in a term t is defined in the
obvious way and extended to equations and multisets. Substitution is also
defined as usual; it will be clear from rules Indirection and Collect below
that substitutions are performed to remove pairs of variables from the net,
and as such they can be implemented as assignment (no terms can be erased
or duplicated); t[x := u] denotes the term t where x is substituted by u; even
though no explicit binding operator is present, we assume α-equivalence of
nets for names (denoted by ≡).

An interaction rule r ∈ R is written as an equation t ./ u, where names
occur exactly twice. Rules are converted to this format by connecting together
corresponding free ports in the left- and right-hand sides; one obtains a net
with an active pair that can be written as an equation as explained above.
For instance, the rule in figure 1(a) can be written as @(x, y) ./ λ(x, y) after
being redrawn as in figure 1(b).

We now give the three rules of the calculus, allowing to reduce nets:



Interaction 〈w | α(t) = β(u), ∆〉 −→ 〈w | T, U, ∆〉, where

t = t1, . . . , tj and u = u1, . . . , uk

α(t′1, . . . , t
′
j) ./ β(u′

1, . . . , u
′
k) ∈ R

T = {t1 = t′1, . . . , tj = t′j} and U = {u1 = u′
1, . . . , uk = u′

k}

Indirection 〈w | x = t, u = v, ∆〉 −→ 〈w | u[x := t] = v, ∆〉 if x ∈ N (u)

Collect 〈w | x = t, ∆〉 −→ 〈w[x := t] | ∆〉 if x ∈ N (w)

The first rule of the calculus applies the graphical interaction rules, and the
remaining rules handle the bureaucracy introduced by the textual notation.

Remark 2.1 [Variable Convention] In the interaction rule, α-equivalence is
used to produce a copy of the rule α(t′1, . . . , t

′
j) ./ β(u′

1, . . . , u
′
k) where all

variables are fresh.

Properties.

The calculus (as well as the graphical formalism) enjoys strong confluence
and uniqueness of normal forms. The latter are either of the form 〈w | ∅〉
(called reduced nets) or 〈w | x = u〉 where x ∈ N (u), corresponding to a
cycle – a tree together with an edge connecting its root to one of its leaves.
Cycles represent deadlocked computations; they do not arise in the context of
functional programming (or in general whenever typed nets are used).

Example.

Assuming ∆t empty in our example net, the following reduction sequence
would be possible in the interaction system 〈{@, λ}, {@(x, y) ./ λ(x, y)}〉:

〈z | @(z, ut) = λ(λ(y, y), ε)〉 ≡ 〈z | @(z, ut) = λ(λ(a, a), ε)〉

−→ 〈z | z = x, ut = y, λ(a, a) = x, ε = y〉

−→ 〈z | z = x, λ(a, a) = x, ε = ut〉

−→ 〈z | λ(a, a) = z, ε = ut〉

−→ 〈λ(a, a) | ε = ut〉

where the last net corresponds to the right-hand side of figure 5. The above
reduction sequence corresponds to an application of the Interaction rule,
followed by two applications of Indirection and finally Collect. Reduction
would then proceed to garbage collect ut.



3 Interface Normal Forms and Weak Reduction

A net is in interface normal form [2] when one of the following is connected
to the interface:

• the principal port of an agent, corresponding to a net of the form 〈α(t) | ∆〉;

• an auxiliary port of an agent which is part of some cycle, corresponding to
a net like 〈z | x = α(t), ∆〉 where x, z ∈ N (t).

Observe that reduced nets are interface normal forms: if the equation multiset
is empty, the interface cannot be a variable (otherwise its other occurrence
would have to be in some equation). We shall take interface normal forms as
canonical (i.e., no further reductions are performed). Weak reduction (which
we denote by −→w) is obtained by restricting reduction as follows:

A net 〈z | ∆〉 can only be rewritten by applying rules which involve the
unique equation (t = u) ∈ ∆ such that z ∈ N (t) ∪ N (u).

The following examples show that weak reduction is not deterministic:

(i) Let N = 〈z | y = t, z = α(y)〉. Then N −→w 〈α(y) | y = t〉 and
N −→w 〈z | z = α(t)〉.

(ii) Let N ′ = 〈z | y = t, α(z) = β(y)〉. Then N ′ −→w 〈z | α(z) = β(t)〉 and a
second reduction of N ′ is possible using the Interaction rule.

(iii) Let N ′′ = 〈z | y = t, x = α(z, y), u = β(x)〉. Then N ′′ −→w 〈z | x =
α(z, t), u = β(x)〉 and N ′′ −→w 〈z | y = t, u = β(α(z, y))〉.

Let ⇓ denote weak reduction to canonical form. The first example above
shows that weak reduction does not yield unique canonical forms, for we have
N ⇓ 〈α(y) | y = t〉 and N ⇓ 〈α(t) | ∅〉. Although non-determinism is caused
by the indirection rule (a bureaucratic artifact of the calculus), it cannot be
eliminated by giving lower priority to this rule (see example iii. above).

Remark 3.1 Canonical forms are unique in graphical interaction nets, since
weak reduction corresponds to always reducing the active pair which is closest
to the interface (a deterministic strategy).

Deterministic Calculus for WRINF.

The calculus stands closer to the implementation level than the graphical
formalism (nets in the calculus can easily be seen as data-structures). The first
step towards the design of an abstract machine is then to force determinism
for weak reduction. We do this by introducing the following modified calculus:

Interaction 〈z | α(t) = β(u), ∆〉 −→w 〈z | T, U, ∆〉 if z ∈ N (t) ∪ N (u),
where

t = t1, . . . , tj and u = u1, . . . , uk

α(t′1, . . . , t
′
j) ./ β(u′

1, . . . , u
′
k) ∈ R

T = {t1 = t′1, . . . , tj = t′j} and U = {u1 = u′
1, . . . , uk = u′

k}



Indirection 〈z | x = α(t), u = v, ∆〉 −→w 〈z | u[x := α(t)] = v, ∆〉 if
z ∈ N (t) and x ∈ N (u)

Collect 〈z | z = t, ∆〉 −→w 〈t | ∆〉

These rules apply only to configurations whose interface is a variable; more-
over there are now additional conditions for the first two rules. The key point
is that reduction is directed by where the interface variable occurs.

It is immediate to see that there is a unique reduction for each of the
previous examples using this calculus. Henceforth the symbol −→w will refer
to weak reduction as defined by the calculus.

Properties.

The calculus performs weak reductions only, and clearly a single rule ap-
plies to each net: if the variable in the interface occurs directly as a member in
some equation, rule Collect applies; otherwise it must occur in a term of the
form α(t) and only one of the rules Interaction or Indirection will apply.
This immediately yields uniqueness of normal forms.

The calculus stops exactly with interface normal forms: if the interface is
not a variable or the interface variable occurs in a cycle, no rule applies, and
some rule always applies to a net that is not in interface normal form.

Example.

The following is an example reduction in this calculus:

〈z | b = λ(λ(a, a), ε), @(z, ut) = b〉 −→w 〈z | @(z, ut) = λ(λ(a, a), ε)〉

−→w 〈z | z = x, ut = y, λ(a, a) = x, ε = y〉

−→w 〈x | ut = y, λ(a, a) = x, ε = y〉

−→w 〈λ(a, a) | ut = y, ε = y〉

This reduction sequence is unique and ends with an interface normal form.

4 The Abstract Machine

An efficient algorithm for implementing WRINF can be read from the deter-
ministic calculus. We will express the algorithm as an abstract machine acting
on configurations – the data-structures used to represent interaction nets. For
any net 〈z | ∆〉 the multiset of equations ∆ will be represented by a sequence;
we will enforce the following invariant:

The unique equation where the interface variable z occurs always occupies
the first position in the sequence L representing ∆.

In fact L will contain annotated equations – pairs (e, n), which we will write
simply as en, where e is an equation and n is a positive integer, the address



of the equation in the sequence. The algorithm (specifically the Indirection
rule) requires access to equations other than that where the interface variable
occurs; the notion of address allows for access in constant time. We remark
that an address is simply an integer uniquely assigned to an equation, which
does not necessarily correspond to the position of the equation in the sequence.

Definition 4.1 A configuration is a tuple 〈t | L | φ | P〉, where t is a term
and L a finite sequence of annotated equations. Let Names = N (t) ∪ N (L);
then φ : Names −→ Names is an involutive fixpoint-free function (i.e, φ(x) = y

implies y 6= x and φ(y) = x), and the partial map P : Names −→ N assigns
addresses to names. Each x ∈ Names occurs once in the configuration (either
in t or in L).

The two occurrences of each name x in a net are replaced by a pair of
names x1, x2 such that φ(x1) = x2, following the abstract machine for full
reduction [12]. This allows for nets to be represented as sets of trees, together
with the additional linking information in φ. This splitting of names also
applies to interaction rules.

The invariant on a configuration 〈z | L | φ | P〉 can be restated as follows:
the variable φ(z) always occurs in the head equation in L (see lemma 4.5). P
associates to each variable the address of the equation where it occurs, which
will be essential for preserving the invariant.

Notation and Conventions.

Interaction rules are written as t
Φ
./ u where Φ is the involution collect-

ing the linking information for the split variables. We write P[x 7→ m] for
P ∪ {(x, m)} and φ[x ↔ y] for φ ∪ {(x, y), (y, x)}. The symbol ’,’ is used
as a separator in sequences; the same symbol is overloaded to represent se-
quence concatenation. P\[x1,...,xn] denotes the function obtained by excluding
x1, . . . , xn from the domain of P. The operator tl(·) returns the tail of a se-
quence. In the presentation of the abstract machine, we assume that pairs of
terms are unordered, i.e., if necessary members are swapped before a rule is
applied. The variable convention applies as in section 2.

The abstract machine rules used for rewriting configurations are given in
table 1. We make here some key observations. First of all, we observe that
the rule to apply to a configuration is given by the form of the head equation
in the list (where φ(z) occurs).

• The AgAg rule performs an interaction, since the equation where φ(z)
occurs is an active pair. This rule adds to the involution in the current
configuration the Φ information in the interaction rule.

• The VarVar rule handles the case where the head equation has the form x =
y, where φ(y) is the interface variable z and φ(x) occurs in some equation
whose address (given by P) is m. The rule manipulates the involution
changing φ(z); consequently the equation with address m must be moved



AgAg 〈z | α(t1, . . . , tj) = β(u1, . . . , uk)
n, S | φ | P〉

−→ 〈z | L̂, S | φ ∪ Φ | P \ P0 ∪ P̂〉

where α(t′1, . . . , t
′
j)

Φ
./ β(u′

1, . . . , u
′
k) ∈ R, φ(z) occurs in ti (1 ≤ i ≤ j), and

L̂ = ti = t
′n+k+j−1
i , tj = t

′n+k+j−2
j , . . . , ti+1 = t′n+k+i−1

i+1 , ti−1 = t′n+k+i−2
i−1 ,

. . . , t1 = t′n+k
1 , uk = u′n+k−1

k , . . . , u1 = u′n
1

P0 = {x 7→ n | x ∈ N (t1) ∪ · · · ∪ N (tj) ∪N (u1) ∪ · · · ∪ N (uk)}

P̂ = {x 7→ n | x ∈ N (e), en ∈ tl(L̂)}

VarVar 〈z | x = yn, S1, e
m, S2 | φ[x ↔ x′, y ↔ z] | P[x′ 7→ m]〉

−→ 〈z | en, S1, S2 | φ[x′ ↔ z] | P\[x,y]〉

VarAg 〈z | x = α(t)n, S1, e
m, S2 | φ[x ↔ x′] | P[x′ 7→ m]〉

−→ 〈z | e[x′ := α(t)]n, S1, S2 | φ | P\[x,x′]〉 if x′ 6= z

Interface 〈z | x = α(t)n, S | φ[x ↔ z] | P〉 −→ 〈α(t) | S | φ | P\[x,z]〉

Table 1
Abstract Machine Rules

to the head of the list (to preserve the invariant).

• VarAg corresponds to the remaining case of the Indirection rule of the
calculus. Observe that φ(z) occurs in α(t), which will substitute some
variable in another equation, that must thus be moved to the head of the
list.

• Interface is a restricted version of the Collect rule of the calculus.

With respect to how the P component is updated and used, we remark that it
is not necessary for P to store the addresses of variables occurring in the first
equation in the list. P will not be consulted for variables in this equation (since
we assume cycles do not arise) and it may even contain incorrect addresses for
these variables. For this reason, rules VarVar and VarAg need not update
in P the addresses of variables that are moved to the head of the list. The
AgAg rule on the other hand must update information in P corresponding
to all the equations (but the first) added to the configuration.

We now show how an initial configuration is constructed:

Definition 4.2 From any (non-canonical) interaction net N = 〈z | ∆〉 one
obtains a corresponding initial configuration C(N) = 〈z | L | φ | P〉 by replac-
ing (specializing) the two occurrences of each variable x by x1 and x2 in z and
∆; then φ

.
= {(x1, x2), (x2, x1) | x ∈ N (∆)}; let e1, e2, e3, . . . en be any enu-

meration of the elements of ∆, then L
.
= en

i , en−1
n , . . . , ei

i+1, e
i−1
i−1 , . . . , e

1
1 where

φ(z) ∈ N (ei); P
.
= {(x, n) | x ∈ N (e), en ∈ tlL}.



Definition 4.3 The interpretation of a configuration C = 〈t | L | φ | P〉 is an
interaction net [[C]]

.
= 〈t′ | ∆〉 where t′, ∆ are obtained by replacing in t and

L all pairs of variables x, y such that φ(x) = y by a single (fresh) name vx,y.

The interpretation of a configuration allows to read back a net from it.
The following lemma is straightforward to prove:

Lemma 4.4 Let N be a net; then [[C(N)]] ≡ N .

We now give a series of results concerning properties of the abstract ma-
chine. The reader is referred to the full version of this paper for the proofs of
these results.

Lemma 4.5 Let C0 be an initial configuration and C0 −→∗ C = 〈z | en
0 , L | φ |

P〉; then

(i) For m 6= n, P(x) = m iff x ∈ N (e) with em ∈ L; moreover if e′m ∈ L

then e′ = e.

(ii) φ(z) ∈ N (e0);

Lemma 4.6 Let C0, C, C′ be configurations such that C0 is initial, C0 −→
∗ C,

and C −→ C′; then [[C]] −→w N and N ≡ [[C′]].

Lemma 4.7 Let N , N ′ be nets such that N −→w N ′, and C a configuration
such that [[C]] ≡ N and C0 −→∗ C for some initial configuration C0; then
C −→ C′ and [[C′]] ≡ N ′.

The following correctness result follows in a straightforward way from lem-
mas 4.4, 4.6, and 4.7.

Proposition 4.8 (Correctness) Let N0 be an interaction net; then

C(N0) −→
∗ C iff N0 −→

∗
w N

and N ≡ [[C]]. Here −→∗ denotes the reflexive and transitive closure of a
reduction relation (modulo equivalence of nets in the case of net reduction).

Example.

We take the example interaction net used in section 3:

N = 〈z | b = λ(λ(a, a), ε), @(z, ut) = b〉

An initial configuration for this net is:

C(N) = 〈z1 | @(z2, u
t) = b12, b2 = λ(λ(a1, a2), ε)

1 | a1 ↔ a2, b1 ↔ b2, z1 ↔ z2 |

a1 7→ 1, a2 7→ 1, b2 7→ 1〉

and the following is the interaction rule for @ ./ λ, after variables have been
split:

@(x1, y1)
Φ
./ λ(x2, y2), with Φ = {x1 ↔ x2, y1 ↔ y2}



The unique reduction sequence for this initial configuration is:

C(N) −→ 〈z1 | @(z2, u
t) = λ(λ(a1, a2), ε)

2 |

a1 ↔ a2, z1 ↔ z2 |

a1 7→ 1, a2 7→ 1〉

−→ 〈z1 | z2 = x5
1 , u

t = y4
1 , λ(a1, a2) = x3

2 , ε = y2
2 |

a1 ↔ a2, z1 ↔ z2, x1 ↔ x2, y1 ↔ y2 |

a1 7→ 3, a2 7→ 3, x2 7→ 3, y1 7→ 4, y2 7→ 2〉

−→ 〈z1 | λ(a1, a2) = x5
2 , u

t = y4
1 , ε = y2

2 |

a1 ↔ a2, z1 ↔ x2, y1 ↔ y2 |

a1 7→ 3, a2 7→ 3, x2 7→ 3, y1 7→ 4, y2 7→ 2〉

−→ 〈λ(a1, a2) | ut = y4
1 , ε = y2

2 |

a1 ↔ a2, y1 ↔ y2 |

a1 7→ 3, a2 7→ 3, y1 7→ 4, y2 7→ 2〉

Where rules VarAg, AgAg, VarVar, and Interface were used, in this order.
The last net is a normal form of the abstract machine and has as interpretation
the following net:

N = 〈λ(a, a) | ut = y, ε = y〉

We recall that throughout reduction, the map P may contain “wrong” ad-
dresses for variables occurring in the head of the list.

Implementation Issues.

Consider a configuration 〈t | L | φ | P〉. The sequence of equations L has
an obvious linked implementation, where each node is a pair of trees corre-
sponding to terms with uniquely occurring variables (the leaves in the trees).
t is yet one such term. The involution φ is kept locally as pointers between
pairs of variables (leaves in trees). The P component is also implemented
locally by pointers (stored in variables) to nodes in the linked list.

As an example we explain how the VarAg rule is implemented: the φ

pointer is stored as a field in the structure representing variable x, which
contains the address of the structure representing x′; the P pointer is stored
as a field in x′, and contains the address m of a node in the linked list of
equations; simple pointer operations allow to (i) move the node with address
m to the head of the list and (ii) substitute the term α(t) for x′ in the equation
stored in this node. Since no searching is required, all these operations are
done in constant time.

The AgAg rule is computationally heavier than its equivalent in the full-
reduction version of the abstract machine. In particular, the work involved



in building the P̂ mapping represents the overhead of implementing weak
reduction. This can be done in linear time in the number of variables occurring
in the head equation in the configuration.

5 Application to Encodings of the λ-calculus

In the optimal reduction systems [5,8] the number of graphical rewrite steps
which actually correspond to β-reductions is optimal in the sense of Lévy [9];
however many other steps are needed to support that optimality – the overhead
is quite significant. Asperti and colleagues have addressed this problem by
introducing rewrite rules which do not fit in the strict definition of interaction
but can dramatically improve performance.

Other systems have been proposed that give up optimality, opting instead
to reduce the total number of interactions performed – since interaction steps
are performed in constant time, this is a measure of the actual cost of evalu-
ating an expression. The following two encodings follow the latter approach;
both result from work on translations of Linear Logic [4] proofs into INs:

Yale Encoding [10] This encoding forces closed reduction of the encoded
terms; it captures locally the notion of an exponential box (from Linear
Logic proof nets) by means of boundary agents which allow substitutions to
be carried over inside abstractions. The encoding requires garbage collection
of the boundary agents when a box is opened.

Combinators Encoding [11] This was motivated by the work of Lafont [7],
who introduced a set of agents capable of simulating every interaction net
system. This is the simplest encoding (the combinators interaction system
consists of 3 agents and 6 rules) but surprisingly it results in a high level of
sharing – the number of β-reductions is lower than for Yale. The drawback
is that the total number of interactions is in general very high, and for
this reason the combinators system has not been considered to be useful in
practice. One of the three agents in this system is precisely an eraser agent,
which can easily generate disconnected nets.

This section contains a direct application of weak reduction to these two en-
codings. We saw in section 1 that garbage collection is triggered in λ-terms
containing non-occurring bound variables. We now turn to a different sort of
garbage: our goal here is to study the nature of the disconnected nets gener-
ated by the dynamics of the encoding. The process of garbage collecting these
nets may be harmful in the sense that it may generate bigger intermediate
nets – a situation which would clearly benefit from weak reduction.

This issue has been studied in BOHM, where the encoding of terms gener-
ates garbage which should be collected as soon as possible [1]. This not only
prevents a space explosion but it also affects efficiency. The data given below
allows for a better understanding of how garbage collection should be handled
in the Yale and Combinators encodings, and of whether the encodings behave
significantly better when WRINF is used rather than full reduction.



We give in table 2 experimental results concerning the reduction of two
sequences of λ-terms: N2II and N22II, for N between 1 and 10, where the
numbers correspond to Church numerals. These sequences generate compu-
tations which greatly benefit from the sharing allowed by interaction nets.

The results are given for full reduction and for WRINF implemented by the
abstract machine of section 4. We remark that for these terms both strategies
result in full normal forms (the term λx.x can be read from the interface). The
differences between the two strategies concern reduction in the disconnected
parts of the nets only.

For each term, we give the total number of interactions obtained with each
strategy; the number of interactions which correspond to β-reductions steps;
and finally (under the heading “Space”), the number of cells contained in the
disconnected components of the nets when WRINF is used. Observe that the
machine used here does not perform garbage collection during reduction; the
blocked disconnected nets are simply erased once an interface normal form
has been reached. Their size is thus a measure of the work involved in this
post-reduction garbage collection.

Yale Comb

Full Red. WRINF Space β-steps Full Red. WRINF Space β-steps

22II 43 27 21 9 253 42 65 9

32II 67 44 28 12 559 70 90 12

42II 91 61 35 15 1121 98 115 15

52II 115 78 42 18 2195 126 140 18

‘10’2II 235 163 77 33 65933 266 265 33

222II 127 88 46 20 1269 149 145 18

322II 383 280 110 51 17031 319 270 29

422II 4395 3292 1110 550 4195705 625 507 48

522II 1051207 788464 262750 131369 1203 968 83

‘10’22II 35101 28809 2082

Table 2
Experimental Results

We make the following observations:

(i) The two sequences differ in that (for both encodings) the number of β

steps is linear in N for N2II, and exponential in N for N22II.

(ii) In the latter case, the exponential growth in the number of β steps is
much faster for the Yale encoding than for the Combinators encoding.

(iii) For the Yale encoding the total number of interactions performed is linear
(for both sequences) in the number of β steps; the effect of weak reduction
is to lower the linearity constant.

(iv) For the Combinators encoding the total number of interactions using
full reduction is exponential in N for both sequences; the effect of weak
reduction is to restore its linearity.



With respect to the size of the disconnected nets when WRINF is used, we
remark that for Yale the size of the disconnected nets is equal to the difference
between the number of steps obtained using full reduction and weak reduc-
tion (minus a constant corresponding to the number of eraser agents in the
disconnected net). This means that reduction of the disconnected nets does
not generate more garbage: exactly the same work must be done cleaning up
the disconnected nets (after WRINF) as if full reduction is used. We conclude
that weak reduction is not useful with respect to the garbage generated by
Yale (although it would still be useful for terms generating intrinsic garbage).

In the combinators system weak reduction brings a major revelation: most
of the work involved in (fully) reducing a term is in fact useless for the purpose
of evaluation. The size of the disconnected nets is linear in the number of β-
reductions, while the work saved is exponential; the disconnected nets contain
many potential interactions which are blocked by weak reduction.

Finally, we remark that when weak reduction is used, the Combinators
encoding behaves asymptotically better than Yale, since both the number of
interactions and the size of the disconnected net are linear in the number of
β-steps, which is asymptotically lower than for Yale. In fact the Combinators
encoding seems to behave even better than BOHM for the second sequence
(even though the optimal number of β steps is linear in N, the total work
needed to support that optimality is asymptotically higher than for the Com-
binators encoding).

6 Conclusions and Further Work

We have proposed a simple device for implementing weak reduction of inter-
action nets, thus correcting an operational problem of interaction net-based
implementations of functional languages, which arises when disconnected nets
are generated. In this context, the present work shows that the interaction
combinators are an excellent choice for encoding λ-terms as nets, with respect
to both the number of β-reduction steps and the total number of interactions.

Weak reduction certainly reveals something about the dynamics of the Yale
and Combinators encodings; however, no theoretical results exist allowing to
compare these with the optimal reducer (specifically, concerning the global
work required to support the underlying strategies).

Our experimental results indicate that the size of the disconnected nets
may be quite significant; in particular for the sequence N22II this size grows
exponentially with N, which may cause a space explosion of the evaluator
program. The solution is of course to somehow erase the disconnected nets
as they are generated, without waiting for weak reduction to finish. The
examples in section 1 show that this cannot be done without leaving the
interaction framework: if an eraser agent ε is to erase an active pair, then
it must be capable of interacting with the application agent through one of
its auxiliary ports. The full version of this paper includes some preliminary
work on how the abstract machine can handle non-interaction rules (inspired



by the BOHM garbage collection rules, which are always executed as soon as
possible).
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