
THE SEMIDIRECTLY CLOSED PSEUDOVARIETY

GENERATED BY APERIODIC BRANDT

SEMIGROUPS

M. LURDES TEIXEIRA

Abstract. This paper presents a study of the semidirectly closed
pseudovariety generated by the aperiodic Brandt semigroup B2,
denoted V∗(B2). We construct a basis of pseudoidentities for the
semidirect powers of the pseudovariety generated by B2 which leads
to the main result, which states that V∗(B2) is decidable.

Independently, using some suggestions given by J. Almeida in
his book “Finite Semigroups and Universal Algebra”, we constructed
an algorithm to solve the membership problem in V∗(B2).

1. INTRODUCTION

Recall that a pseudovariety of semigroups is a class of finite semi-
groups closed under taking divisors and finite direct products. The
semidirect product V∗W of two pseudovarieties of semigroups is the
pseudovariety generated by all semidirect products of semigroups of
V by semigroups of W [7]. This definition gives an operation on the
set of pseudovarieties that is associative and whose idempotents are
precisely the semidirectly closed (abbreviated s.c.) pseudovarieties. In
the theory of finite semigroups, the semidirect product is a construc-
tion that has drawn the attention of many authors. The study of the
decidability of semidirect product pseudovarieties assumes particular
relevance, since decidability of pseudovarieties is not preserved by the
semidirect product operation [11].
The pseudovariety V∗(B2) is the smallest s.c. pseudovariety that

contains B2, where B2 is the aperiodic Brandt semigroup with five el-
ements. In the lattice of s.c. pseudovarieties of aperiodic semigroups,
V∗(B2) covers R (the pseudovariety of all semigroups whose Green
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relation R is trivial) and V∗(B2) is a subpseudovariety of ER ∩ LR
(the intersection of the pseudovariety of all semigroups whose subsemi-
groups generated by idempotents are members of R with the pseudo-
variety of all semigroups whose local subsemigroups are in R) [1].
In [13] has been proved that V∗(B2) 6= ER ∩ LR and that the in-
terval [V∗(B2), ER ∩ LR] contains a chain, for the inclusion relation,
of s.c. pseudovarieties isomorphic to the chain of real numbers.
In this work we are going to studyV∗(B2) in order to prove its decid-

ability. The pseudovariety V∗(B2) is the direct union of the semidirect
powers of V(B2) (the pseudovariety generated by B2) whose bases of
pseudoidentities are constructed, recursively, using theorems [6, theo-
rem 5.3] and [4, theorem 5.9]. Such bases are not effective, but they
are used to obtain a decision criterion for the membership problem for
V∗(B2).
In [1], J. Almeida gives a suggestion to study the decidability of the

membership problem of V∗(B2). This arguments and the knowledge of
the validity of some pseudoidentities in V∗(B2) lead to an independent
proof of decidability of V∗(B2), because they allow us to construct an
algorithm of polynomial complexity to solve the membership problem
for V∗(B2).
The basic results that we are going to use, about pseudovarieties of

semigroups and of semigroupoids that contain B2, are proved in [4, 13]
and are based on the theory of finite semigroupoids and some previous
results obtained by B. Tilson in [14] and by N. Reilly in [9].

2. PRELIMINARIES

For general background and terminology from the classical theory of
semigroups, profinite semigroups and semidirect products, the reader
is referred to [8, 1, 5, 14, 6].
In this paper we are not going to consider empty algebras. We are

going to consider topological algebras (total or partial) and, in partic-
ular, finite algebras are supposed to be discrete topological spaces.
In this section we are going to present a brief description of the most

relevant basic concepts and propositions in order to make it easier to
read the following sections.

2.1. Free profinite semigroups.

For a set X endowed with a topology, we say that a semigroup S
is X-generated if there is a continuous function, from X to S, such
that S is the smallest closed semigroup that contains the image of X.
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For a class V of finite semigroups, we say that S is pro-V if it is the
projective limit of semigroups of V .
For a pseudovariety V and a set X, the X-generated elements of

V form a directed system and the respective projective limit will be
denoted ΩXV. The semigroup ΩXV is the free semigroup over X for
the class of all pro-V semigroups, which means that, for every pro-V
semigroup S and continuous function ϕ : X−→S, there is a unique
continuous morphism ϕ : ΩXV−→S extending ϕ. The free semigroup
over X for the variety generated by V is denoted ΩXV and is a dense
subsemigroup of ΩXV.
The elements of ΩXV are usually called implicit operations, since

ΩXV is isomorphic to the semigroup of implicit operations on V over
X. If X is an alphabet that contains x, then the implicit operation
represented by xω is such that, for each finite semigroup S and each
continuous function ϕ : X−→S, if ϕ(x) = s then ϕ(xω) = sn, the
power of s that is idempotent.
Given a profinite set X and a pseudovariety V (usually V = S, the

pseudovariety of all finite semigroups), a pseudoidentity over V is a
formal equality π = ρ where π, ρ ∈ ΩXV. A semigroup S ∈ V satisfies
the pseudoidentity π = ρ, or equivalently, π = ρ holds in S, if for every
continuous function ϕ : X−→S, ϕ(π) = ϕ(ρ) and we write S |= π = ρ.
For a subclass C of V we say that C satisfies the pseudoidentity π = ρ
if all elements of C satisfy π = ρ, and we write C |= π = ρ. For a set
Σ of pseudoidentities, [[Σ]] denotes the class of all finite semigroups in
which all pseudoidentities of Σ hold. In [10] J. Reiterman proves that
the set of pseudovarieties and the set of classes of the form [[Σ]] are
equal, where Σ is a set of pseudoidentities over finite sets. If V = [[Σ]]
then Σ is said to be a basis of pseudoidentities of V.
Given π ∈ ΩXS, ρ ∈ ΩXS is a factor of π if there are π1, π2 ∈ (ΩXS)

1

such that π = π1ρπ2. If ρ ∈ X and π1 = 1 (or π2 = 1) then ρ is denoted
by i(π) (or t(π), respectively). By C(π) we denote the content of π
which is the subset of X consisting of all elements of X that are factors
of π.

2.2. Free profinite semigroupoids and semidirect products.

By a (directed) graph G we mean a partial algebra with a sup-

port set V (G)
◦
∪ E(G) with two sorts of elements, called vertices and

edges respectively, and two binary operations: α : E(G)−→V (G) and
ω : E(G)−→V (G). For c, d ∈ V (G), G(c, d) is the set of edges s
of G such that α(s) = c and ω(s) = d. Two edges s1 and s2 are
said to be consecutive if ω(s1) = α(s2), and are said to be coterminal if
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α(s1) = α(s2) and ω(s1) = ω(s2). A finite sequence of consecutive edges
of G is a path of G. We define the graph G+ as the graph such that
V (G+) = V (G), E(G+) is the set of all paths in G and, for v1v2 . . . vn a
path in G, α(v1v2 . . . vn) = α(v1) and ω(v1v2 . . . vn) = ω(vn). The graph
G is said to be connected if, for every pair of vertices (p, q), there is a
finite sequence of vertices v0, v1, . . . , vn such that v0 = p, vn = q and
G(vi, vi+1) ∪ G(vi+1, vi) 6= ∅, for i = 1, . . . , n − 1, and G is said to be
strongly connected if, for every pair of vertices (p, q), G+(p, q) 6= ∅.
A semigroupoid S is a graph with an associative partial operation,

called composition, whose domain is {(s, t) ∈ E(S)2 : α(t) = ω(s)},
and such that given (s, t) in the domain their composition is an edge
called st which lies in S(α(s), ω(t)). A category S is a semigroupoid
that has an identity element at each vertex, which means that, for every
v ∈ V (S), there is 1v ∈ S(v, v) such that, whenever the compositions
are defined in S, s1v = s and 1vs = s. For a semigroupoid S, we
denote by Sc the smallest category that contains S. Semigroups can
be interpreted as semigroupoids with only one vertex.
For graphs, semigroupoids and categories, morphisms are defined as

functions between graphs, semigroupoids and categories, respectively,
respecting sorts and operations. A morphism between the semigrou-
poids S and T , ψ : S−→T , is said to be:
- faithful if, for every c, d ∈ V (S), the restriction ψ|S(c,d) is injective;
- a quotient morphism if ψ is surjective and the restriction ψ|V (S) is
injective;
- an isomorphism if ψ is bijective.

A semigroupoid S is a quotient of a semigroupoid T if there is a quotient
morphism ψ : T−→S. We say that a semigroupoid S divides a semi-
groupoid T , and we write S ≺ T , if S is a quotient of a semigroupoid
E for which exists a faithful morphism β : E−→T .
A variety (pseudovariety) of semigroupoids V is a class of (finite)

semigroupoids containing a semigroupoid with just one vertex and one
edge which is closed under taking (finite) divisors and (finitary) prod-
ucts and coproducts. For a pseudovariety W of semigroups we define
gW to be the pseudovariety of semigroupoids generated by the ele-
ments ofW.
For semigroupoids we can construct a theory similar to the semi-

group case, by defining free profinite semigroupoids. As in the case of
semigroups, the projective limit of the G-generated semigroupoids of
V, ΩGV, is the free semigroupoid generated by the graph G in the class
of all pro-V semigroupoids. The concept of implicit operation of semi-
groupoids is obtained by extension of the concept of implicit operation
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of semigroups, in such a way that the set of all implicit operations
assumes the structure of a semigroupoid that is isomorphic to ΩGV.
A pseudoidentity is a formal equality between two coterminal edges

π and ρ of ΩGV, denoted (π = ρ,G). In case G is finite and con-
nected, we say that a semigroupoid S ∈ V satisfies a pseudoidentity
(π = ρ,G) (or that (π = ρ,G) holds in S) if ϕ(π) = ϕ(ρ), for every
graph morphism ϕ : G−→S and ϕ : ΩGV−→S the unique continuous
extension of ϕ. Usually we will consider pseudoidentities on Sd (the
pseudovariety of all finite semigroupoids). An extension of Reiterman’s
Theorem is valid, which means that each pseudovariety of semigrou-
poids can be defined by a set of pseudoidentities over finite connected
graphs.
By a labeling of a graph G by ΩXS we mean a pair ((πq)q∈V (G), ε)

where (πq)q∈V (G) is a family of elements of (ΩXS)
1 and ε : E(G)−→ΩXS

is a map. Such labeling is compatible with a pseudovariety V if, for
all s ∈ E(G), V |= (πα(s) · ε(s) = πω(s)). The process to construct a
basis of pseudoidentities for pseudovarieties of semigroups of the form
V∗W is stated in the following theorem.

Theorem 2.1. [6, theorem 5.3] Let V and W be pseudovarieties of
semigroups. If Σ is a pseudoidentity basis of gV, then the set of the
pseudoidentities of the form

πα(u)ε(u) = πα(v)ε(v),

where (u = v,G) ∈ Σ, X is a finite set, ((πq)q∈V (G), ε
′) is a labeling of

G by ΩXS compatible with W and ε : ΩGSd−→ΩXS is the continuous
morphism of semigroupoids constant on vertices and defined on edges
by: ε(s) = ε′(s), for every s ∈ E(G), is a pseudoidentity basis for the
pseudovariety of semigroups V∗W. ¤

2.3. Some results about pseudovarieties which contain B2.

By definition, a Brandt semigroup is a completely 0-simple inverse
semigroup. So a Brandt semigroup is isomorphic to a I×I Rees matrix
semigroup over a 0-group, G0, with the identity matrix. Usually we
denote by Bn the aperiodic Brandt semigroup such that ]I = n. The
set {x2 = x3, x2y2 = y2x2, x(yx)2 = xyx} is an identity basis of the
variety of semigroups generated by B2, V (B2), [15]. The pseudovariety
of semigroups generated by B2, V(B2), is equal to V (B2) ∩ S and so

V(B2) = [[x
2 = x3, x2y2 = y2x2, x(yx)2 = xyx]].
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A generalization of N. Reilly’s solution of the word problem in free
inverse semigroups to the profinite semigroups ΩXV(B2) was obtained
in [4] and the result is presented in theorem 2.2 below. To understand
the meaning of this theorem we need to introduce some notions and
terminology.
For a set X, X−1 = {x−1 : x ∈ X} is a disjoint copy of X. Given

a finite alphabet X and π ∈ ΩXS, δπ is the equivalence relation over
C(π) ∪ C(π)−1 generated by the set

{(x−1, y) : x, y ∈ C(π), xy is a factor of π}.

Given an alphabet X and π ∈ ΩXS, we define Aπ to be the graph:
- V (Aπ) = (C(π) ∪ C(π)

−1)/δπ;
- for any v1, v2 ∈ V (Aπ),

Aπ(v1, v2) = {x ∈ C(π) : [x]δπ = v1 and [x
−1]δπ = v2}.

The vertices [i(π)]δπ and [t(π)
−1]δπ are called the initial vertex and the

final vertex of Aπ, respectively.
Since the V(B2) is finitely generated, ΩXV(B2) = ΩXV(B2) and,

using [9, theorem 3.3], the proof of the next theorem is an obvious
consequence of the fact that the function that associates to each implicit
operation π the relation δπ, is a continuous function.

Theorem 2.2. [4, theorem 5.6 ] Given a finite alphabet X and
π1, π2 ∈ ΩXS, the pseudoidentity π1 = π2 holds in B2 if and only
if:

1. Aπ1 = Aπ2;
2. [i(π1)]δπ1

= [i(π2)]δπ2
and [t(π1)

−1]δπ1
= [t(π2)

−1]δπ2
. ¤

It follows from the definition that, if u is a word factor of π then u
defines a path in Aπ from [i(u)]δπ to [(t(u))

−1]δπ .
In [3] it was proved that E(ΩGSd) can be identified with a subset of

ΩE(G)S (proposition 2.3). Lemma 5.7 in [4] states an opposite relation,

in the sense that, for any finite set X and for each π ∈ ΩXS we can
associate an edge implicit operation in ΩAπ

Sd, again denoted by π.
Note that, if (wn)n is a sequence of words in X

+ converging to π, then
there is an integer p such that, for all n ≥ p, wn labels a path in Aπ

from the initial vertex to the final one and all edges of Aπ occur in wn.
For example, let π = xyωzx and consider the sequence (xyn!zx)n that
converges to π. The graph Aπ is
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[x]δπ [x−1]δπ

and, for every n, xyn!zx denotes a path from [x]δπ to [x
−1]δπ . The

limit of the sequence of paths (xyn!zx)n is the edge implicit operation
denoted by xyωzx.

Theorem 2.3. [4, theorem 5.9] Let V be a pseudovariety of semi-
groups such that B2 ∈ V. If V = [[ui = vi : i ∈ I]] then
gV = [[(ui = vi,Aui) : i ∈ I]]. ¤

Corollary 2.4. The pseudovariety gV(B2) is the pseudovariety

[[(x3 = x2,Ax2), (x2y2 = y2x2,Ax2y2), (x(yx)2 = xyx,Axyx)]].

¤

3. THE SEMIDIRECT POWERS OF V(B2)

The semidirect powers of a pseudovariety of semigroupsW are:

• W0 = [[x = y]] the pseudovariety of trivial semigroups;
• Wn =W∗Wn−1(=Wn−1∗W), for every n ≥ 1.

So, W1 = W, Wn−1 ⊆ Wn, the family (Wn)n≥0 is a chain and
⋃

n≥0W
n is the s.c. pseudovariety generated byW, usually represented

by W∗. The computation of the semidirect powers of V(B2) can be
done recursively using in each step theorems 2.1 and 2.3.

Proposition 3.1. Let G be a graph with a vertex v such that, for every
v′ ∈ V (G) \ {v}, G+(v, v′) 6= ∅. A labeling

((πq)q∈V (G), ε
′ : E(G)−→ΩXS)

is compatible with a pseudovariety V if and only if, for every q ∈ V (G)
and w ∈ G+(v, q), V |= πvε(w) = πq, where ε : ΩGSd−→ΩXS is the
continuous morphism of semigroupoids constant on vertices and defined
on edges by: ε(s) = ε′(s), for every s ∈ E(G).

Proof

The condition is obviously necessary. In order to prove the inverse
implication, let s ∈ E(G) and wα(s) ∈ G

+(v, α(s)). By hypothesis

V |= πvε(wα(s)) = πα(s) and V |= πvε(wα(s)s) = πω(s).

Hence, V |= πα(s)ε(s) = πω(s). ¤



8 M. LURDES TEIXEIRA

Corollary 3.2. Let G be a graph in the conditions of proposition 3.1,
π ∈ ΩXS and ε′ : E(G)−→ΩXS such that, for every q ∈ V (G)
and w1, w2 ∈ G+(v, q), V |= πε(w1) = πε(w2) and, in case v = q,
V |= πε(w1) = π, where ε : ΩGSd−→ΩXS is the continuous mor-
phism of semigroupoids constant on vertices and defined on edges by:
ε(s) = ε′(s), for every s ∈ E(G). Then, the set of the labelings of the
form ((πq)q∈V (G), ε

′) such that πv = π which are compatible with V is
nonempty.

Proof

Let ϕ : ΩXS−→ΩXV be the projection morphism. If we choose
πv = π and, for each q ∈ V (G) \ {v} and some w1 ∈ G+(v, q),
πq ∈ ϕ−1(ϕ(πε(w1))), then we obtain a family (πq)q∈V (G) such that
((πq)q∈V (G), ε

′) define a labeling of G. By proposition 3.1, such labeling
is compatible with V. Making all possible choices we obtain the set of
labelings referred to in the statement. ¤

In the conditions of the corollary 3.2 we will say that π and ε define
a set of labelings of G by ΩXS compatible with V or, more precisely,
π and ε define the set of labelings referred to in the proof.
This result applied to the calculation of the pseudovariety V2(B2),

using theorem 2.1 and the pseudoidentity basis Γ of gV(B2) calculated
in corollary 2.4, leads to the conclusion that

Σ = {πε(u) = πε(v) : X is a finite set, π ∈ (ΩXS)
1

and ε : ΩAu
Sd−→ΩXS define a set of labelings

compatible with V(B2), and (u = v,Au) ∈ Γ}

is a pseudoidentity basis of V2(B2).
Note that for (u = v,Au) ∈ Σ and all labelings member of the set of

labelings defined by fixed π and ε corresponds only one pseudoidentity
on the basis of V2(B2). The verification that a labeling is compatible
with V(B2) is based on theorem 2.2.
In order to give a pseudoidentity basis of pseudovarieties of the form

Vn(B2) we need to prove the following lemmas.

Lemma 3.3. Let π ∈ ΩXS and ρ be a factor of π. Then there is
a graph morphism ϕρ,π : Aρ−→Aπ such that ϕρ,π(Aρ) is the support
graph of C(ρ).

Proof
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Recall that C(ρ) ⊆ C(π) = E(Aπ). Consider the graph morphism

ϕρ,π : Aρ −→ Aπ

[x]δρ 7−→ [x]δπ
x 7−→ x .

Since δρ ⊆ δπ, ϕρ,π is a graph morphism injective on edges. ¤

Lemma 3.4. Let π, u ∈ ΩXS and ε : ΩAu
Sd−→ΩXS be such that π

and ε define a set of labelings of Au compatible with V(B2). If, for
some πa ∈ ΩXS, πb ∈ (ΩXS)

1,

π = πaπb and C(πa) ∩ C(πbε(u)) = ∅,(1)

then πb and ε define a set of labelings of Au compatible with V(B2).

Proof

Let v be the initial vertex of Au, q ∈ V (Au) and w,w
′ ∈ Au(v, q).

Since π = πaπb, the graph Aπε(w) is the union of the subgraphs
ϕπa,πε(w)(Aπa) and ϕπbε(w),πε(w)(Aπbε(w)). These two subgraphs have
only one common vertex: the image under ϕπa,πε(w) of the final ver-
tex of Aπa is equal to the image under ϕπbε(w),πε(w) of the initial ver-
tex of Aπbε(w). Otherwise, the graph Aπε(w′) is the union of the sub-
graphs ϕπa,πε(w′)(Aπa) and ϕπbε(w′),πε(w′)(Aπbε(w′)), ant these two sub-
graphs have only one common vertex: the image under ϕπa,πε(w′) of the
final vertex of Aπa which is the image under ϕπbε(w),πε(w) of the initial
vertex of Aπbε(w). Moreover, by condition (1), the graph morphisms
ϕπa,πε(w), ϕπa,πε(w′), ϕπbε(w),πε(w) and ϕπbε(w′),πε(w′) are injective on edges
and on vertices.
By hypothesis π and ε define a set of labelings of Au compatible

with V(B2), so Aπε(w) = Aπε(w′) and the final vertices are the same
which means that [t(πε(w))]−1

δπε(w)
= [t(πε(w′))]−1

δπε(w′)
. Consequently,

ϕπbε(w),πε(w)(Aπbε(w)) = ϕπbε(w′),πε(w′)(Aπbε(w′)), which implies Aπbε(w) =
Aπbε(w′), and the initial and the final vertices of Aπbε(w) and Aπbε(w′) are
the same, respectively, because

[i(πbε(w))]δπbε(w)
= ϕ−1

πbε(w),πε(w)([t(πa)
−1]δπε(w)

) =

= ϕ−1
πbε(w′),πε(w′)([t(πa)

−1]δπε(w′)) = [i(πbε(w
′))]δπbε(w′)

and

[t(πbε(w))]
−1
δπbε(w)

= ϕ−1
πbε(w),πε(w)([t(πε(w))]

−1
δπε(w)

) =

= ϕ−1
πbε(w′),πε(w′)([t(πε(w

′))]−1
δπε(w′)

) = [t(πbε(w
′))]−1

δπbε(w
′)
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¤

For π, πa, u ∈ ΩXS, πb ∈ ΩXS
1 and ε : ΩAu

Sd−→ΩXS such that
π = πaπb, the pseudoidentity πε(u) = πε(v) is a consequence of
πbε(u) = πbε(v). Hence, for example, as a pseudoidentity basis of
V2(B2) we can consider the set Σ2 of the pseudoidentities such as those
in Σ and such that the values of π do not satisfy the condition (1).

Lemma 3.5. Let π ∈ ΩXS such that i(π) = t(π) and π 6∈ X. Then
Aπ is strongly connected.

Proof

Note that, for every u ∈ ΩXS and for each x ∈ C(u), there is exactly
one edge of Au defined by x, which belongs to a path defined by a word
factor of u.
Let (wn)n be a sequence of words converging to π. Then there is

p ∈ N such that, for all n ≥ p, i(π) = i(wn) = t(wn), B2 |= wn = π
and, consequently, (wn)n≥p is a sequence of paths of Aπ. Moreover, Aπ

is the support of each wn (no proper subgraph of Aπ contains all edges
of wn) and i(π) is the initial and final edge of wn. For n ≥ p, there
is w′n ∈ E(A

+
π ) such that wn = w′ni(π) and, consequently, the support

graph of w′n is Aπ and α(w
′
n) = ω(w′n) = α(wn) is the initial vertex of

Aπ. Hence w
′
n is a path of Aπ such that, for each v ∈ V (Aπ), there

are factors uv ∈ A
+
π (α(w

′
n), v) and u

v ∈ A+
π (v, α(w

′
n)). So, for every

v, v′ ∈ V (Aπ), u
vuv′ ∈ A

+
π (v, v

′) and uv
′

uv ∈ A
+
π (v

′, v). ¤

Note that, if G1 and G2 are strongly connected subgraphs of a graph
G, such that V (G) = V (G1) ∪ V (G2) and V (G1) ∩ V (G2) 6= ∅, then G
is strongly connected.

Lemma 3.6. Let X be a finite set and π ∈ ΩXS such that π = π1π2π3,
where π1, π2, π3 ∈ (ΩXS)

1, and suppose Aπ1π2 and Aπ2π3 are strongly
connected graphs. Then, Aπ is strongly connected.

Proof

The graphAπ is the union of ϕπ1π2,π(Aπ1π2) and ϕπ2π3,π(Aπ2π3), which
are strongly connected graphs and both contain the vertex [i(π2)]δπ , if
π2 6= 1, or the vertex [t(π1)

−1]δπ = [i(π3)]δπ , if π2 = 1. ¤

Lemma 3.7. Let u ∈ ΩXS. If π ∈ ΩXS and ε : ΩAu
Sd−→ΩXS is a

continuous morphism of semigroupoids, which define a set of labelings
of Au compatible with V(B2), then

i. if Au is strongly connected then Aπε(u) = Aπ;
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ii. if π does not have a decomposition as in (1) and C(ε(u)) ⊆ C(π),
then Aπε(u) is strongly connected.

Proof

If Au is strongly connected then there is u
′ ∈ A∗u([t(u)

−1]δu , [i(u)]δu , ).
For any such word u′, B2 |= πε(u)ε(u′) = π and, consequently,
C(ε(u)) ⊆ C(π) and δπ ⊆ δπε(u) ⊆ δπε(u)ε(u′) = δπ. Hence, Aπε(u) = Aπ.

Now, suppose π does not have a decomposition as in (1) and
C(ε(u)) ⊆ C(π). If i(π) = t(ε(u)) then lemma 3.5 leads to the con-
clusion that Aπε(u) is strongly connected. If i(π) 6= t(ε(u)) then, since

C(ε(u)) ⊆ C(π), there are π1, π0, u0 ∈ (ΩXS)
1 such that

πε(u) = l1π1zπ0u0z

where i(π) = l1, t(ε(u)) = z and u0z = ε(u), z 6∈ C(l1π1) and C(l1π1)∩
C(π0u0) 6= ∅ since π can not be factorized as in (1).
If l1 ∈ C(π0u0) then πε(u) is of the form l1 · · · z · · · l1 · · · z and, by

lemmas 3.5 and 3.6, Aπε(u) is strongly connected. Otherwise, there

exist π′1, π2 ∈ (ΩXS)
1 and l2 ∈ X such that π1 = π′1l1π2, l1 6∈ C(π2),

l2 ∈ C(π
′
1) ∩ C(π2zπ0u0z), and

πε(u) = l1π
′
1l1π2zπ0u0z .

If l2 ∈ C(π0u0) then πε(u) is of the form l1 · · · l2 · · · l1 · · · z · · · l2 · · · z
and, using lemmas 3.5 and 3.6, we conclude that Aπε(u) is strongly

connected. If l2 6∈ C(π0u0) then there are π
′
2, π3 ∈ (ΩXS)

1 such that
π2 = π′2l2π3, l2 6∈ C(π3) ⊂ C(π2), and

πε(u) = l1π
′
1l1π

′
2l2π3zπ0u0z .

Hence, Al1···l2···l1π′2l2
is strongly connected and there is l3 ∈ X such that

l3 ∈ C(π
′
1l1π

′
2) ∩ C(π3zπ0u0z).

Since C(π) is finite, after a finite number of steps i, either we con-
clude that Aπε(u) is strongly connected or πi+1 = 1. In the second case,
Al1···li−1π

′
ili
is strongly connected,

πε(u) = l1π
′
1l1π

′
2l2 · · · li−1π

′
ilizπ0u0z

and, for every j ∈ {1, . . . , i}, lj 6∈ C(zπ0u0z). Since π can not be facto-
rized as in (1), then, there is y ∈ C(l1π

′
1l1π

′
2l2 · · · li−1π

′
i) ∩ C(zπ0u0z),

andAπε(u) is the union of ϕl1···π′ili,πε(u)(Al1···π′ili
) and ϕzπ0u0z,πε(u)(Azπ0u0z).

By lemmas 3.5 and 3.6, we conclude that Aπε(u) is strongly connected.
¤
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Applying theorem 2.3 and the above lemmas to the calculation of
gV2(B2), we conclude that

gV2(B2) = [[(πε(u) = πε(v),Aπ) : πε(u) = πε(v) ∈ Σ2]]

where, in each case, Aπε(u) = Aπ is a strongly connected graph.

Theorem 3.8. For each n ≥ 1, let Σn be the set of all pseudoidentities
of the form

πn−1εn−1(πn−2 · · · ε2(π1ε1(u)) · · · ) = πn−1εn−1(πn−2 · · · ε2(π1ε1(v)) · · · ),

where

• (u = v) ∈ {x3 = x2, x2y2 = y2x2, x(yx)2 = xyx},
• for i = 1, . . . , n− 1, Xi is a finite set, πi ∈ ΩXi

S and
εi : ΩAπi−1

Sd−→ΩXi
S define a set of labelings of Aπi−1

compatible

with V(B2), such that each πi can not be factorized as in (1)
relatively to εi(πi−1 · · · ε1(u) · · · ) (by π0 we mean u).

Then Σn is a pseudoidentity basis of Vn(B2), and

Aπn−1 = Aπn−1εn−1(πn−2···ε2(π1ε1(u))... )

is strongly connected.

Proof

The proof is by induction on n. The statement is valid for n = 1, 2,
as we have noted before.
By induction hypothesis suppose that, for some p ≥ 1, the statement

is valid. So, if Γp is the set

{(πp−1εp−1(πp−2 · · · ε1(u)...) = πp−1εp−1(πp−2 · · · ε1(v)...),Aπp−1) :

πp−1εp−1(πp−2 · · · ε1(u)...) = πp−1εp−1(πp−2 · · · ε1(v)...) ∈ Σp},

then gVp(B2) = [[Γp]] and, by lemma 3.7, the graphAπp−1 is equal to the
strongly connected graphAπp−1εp−1(πp−2···ε1(u)... ). Hence, by theorem 2.1,
we conclude that the pseudovariety Vp+1(B2) is defined by the pseu-
doidentities of the form

πpεp(up) = πpεp(vp)

where

• (up = vp,Aπp−1) ∈ Γp,

• Xp a finite set, πp ∈ ΩXp
S and εp : ΩAπp−1

Sd−→ΩXp
S define a set

of labelings of Aπp−1 compatible with V(B2) and, by lemma 3.4,
πp can not be factorized as in (1) relatively to εp(up).
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The graph Aπp−1(= Aup) is strongly connected, by induction hypoth-
esis, and then, by lemma 3.7, Aπp is equal to Aπpεp(up) which is strongly
connected. ¤

Corollary 3.9. The pseudovariety of semigroupoids gVn(B2) is de-
fined by pseudoidentities over strongly connected graphs, for n ≥ 1. ¤

Using the same arguments, we can prove that some pseudoidentities
hold in V∗(B2). As an example, consider an alphabet X such that
{x, y, z, t} ⊆ X and the pseudoidentity

(zxyxtz)ωx(yx)2 = (zxyxtz)ωxyx

which holds in V(B2), by theorem 2.2. The graph A(zxyxtz)ωxyx is pre-
sented in the next picture, where v1 = {z

−1, z, x, t−1, y−1} is the initial
vertex and v2 = {x

−1, t, y} is the final vertex.

• •..................................................................................
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...........................................................................

............
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....................................
..........
............
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........
........
..........
...................................................................................................................

x

y

t

z

v1 v2

Suppose that the pseudoidentity holds in Vi(B2), for some i ≥ 1. The
labeling defined by π = (zxyxtz)ω and ε : ΩA(zxyxtz)ωxyx

Sd−→ΩXS such

that ε(l) = l, for every l ∈ {x, y, z, t}, is compatible with V(B2), since
B2 |= πz = πxy = πxt = π. Hence, by theorem 2.1,

Vi+1(B2) |= (zxyxtz)
ωx(yx)2 = (zxyxtz)ωxyx.

So, for every natural n, Vn(B2) |= (zxyxtz)
ωx(yx)2 = (zxyxtz)ωxyx

and, consequently,

V∗(B2) |= (zxyxtz)
ωx(yx)2 = (zxyxtz)ωxyx.

4. DECIDABILITY OF V∗(B2)

A pseudovarietyV is decidable if there is an algorithm to test whether
a finite semigroup is or is not in V. Theorem 3.8 does not lead to an
effective construction of a basis of pseudoidentities for the semidirect
powers of V(B2), but it nevertheless suggests a proof of decidability of
V∗(B2).

Theorem 4.1. Let S be a finite semigroup with m elements. Then,
S ∈ V∗(B2) if and only if S ∈ Vm+2(B2).
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Proof

To prove the non trivial implication, let S ∈ V∗(B2). Then there is
k ≥ 1 such that S ∈ Vk(B2). If k ≤ m+ 2, then Vk(B2) ⊆ Vm+2(B2)
and, consequently, S ∈ Vm+2(B2).
Suppose k > m + 2. Proving that S ∈ Vm+2(B2) is equivalent to

proving that the pseudoidentities of a basis of Vm+2(B2) hold in S. By
theorem 3.8, we may take all pseudoidentities of the form:

πm+1εm+1(πm · · · ε2(π1ε1(u)) . . . ) = πm+1εm+1(πm · · · ε2(π1ε1(v)) . . . )

where u, v, πi, εi are in the conditions described in the theorem 3.8, for
i = 1, 2, . . . ,m+1. Let λ denote one of these pseudoidentities and, for
m+ 1 ≥ i ≥ j ≥ 1,

pi,j = εm+1 ◦ · · · ◦ εi+1(πiεi(πi−1 · · · εj+1(πj) . . . ))
pui,0 = εm+1 ◦ · · · ◦ εi+1(πiεi(πi−1 · · · ε1(u) . . . ))
pvi,0 = εm+1 ◦ · · · ◦ εi+1(πiεi(πi−1 · · · ε1(v) . . . ))
qi,j = πiεi(πi−1 · · · εj+1(πj) . . . )
qui,0 = πiεi(πi−1 · · · ε1(u) . . . )
qvi,0 = πiεi(πi−1 · · · ε1(v) . . . )

Note that λ is the pseudoidentity qum+1,0 = qvm+1,0.
The expressions

p1,1 = εm+1 ◦ · · · ◦ ε2(π1)
p2,1 = εm+1 ◦ · · · ◦ ε3(π2ε2(π1))
...
pm,1 = εm+1(πmεm(· · · ε2(π1) . . . ))
qm+1,1 = πm+1εm+1(πmεm(· · · ε2(π1) . . . ))

are factors of both members of λ and represent m + 1 elements of
ΩXm+1S. Hence, for each map ϕ : Xm+1−→S, at least two of these

expressions have the same image under the mapping ϕ : ΩXm+1S−→S.
For a fixed ϕ, suppose that these two expressions have indices i and
j and that i > j. In case m + 1 > i > j ≥ 1, then ϕ(pi,1) = ϕ(pj,1),
otherwise, m + 1 = i > j ≥ 1 and ϕ(qm+1,1) = ϕ(pj,1). Consider the
case wherem+1 > i > j ≥ 1 (the proof is similar ifm+1 = i > j ≥ 1).
Then, for l ≥ 1, ϕ(pi,j+1)

l · ϕ(pj,1) = ϕ(pj,1). Consequently, applying ϕ
to both members of λ, we conclude that

ϕ(qum+1,0) = ϕ(qvm+1,0)

if and only if(2)

ϕ
(

qm+1,i+1(pi,j+1)
lpuj,0

)

= ϕ
(

qm+1,i+1(pi,j+1)
lpvj,0

)

.
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Since λ belongs to a basis of pseudoidentities of Vm+2(B2), then the
pseudoidentity

%1 =
(

qui,0 = qvi,0
)

holds in Vi+1(B2) and, by theorem 2.3, gV
i+1(B2) |= (%1,Aπi). Let

X ′
i+1 = Xi,

ε′i+1 : ΩAπi
Sd −→ ΩX′

i+1
S

x ∈ E(Aπi) 7−→ x ,
(3)

π′i+1 = qi,j+1 .

The labelings of Aπi defined by π′i+1 and ε′i+1 are compatible with
V(B2) if and only if

B2 |= π′i+1ε
′
i+1(wq) = π′i+1ε

′
i+1(w

′
q),

for q ∈ V (Aπi) and wq, w
′
q ∈ A

∗
πi
(i(πi)δπi , q), which we may rewrite as

B2 |= qi,j+1wq = qi,j+1w
′
q. Note that qi,j+1, wq, w

′
q ∈ E(ΩAπi

Sd) and
i(wq)δπii(w

′
q) so, the set of pairs

{

(t(qi,j+1)
−1, i(wq))

}

∪ δπi

generate the same equivalence relation as the set
{

(t(qi,j+1)
−1, i(w′q))

}

∪ δπi .

Hence, the compatibility conditions are satisfied and theorem 2.1 leads
to the conclusion that the pseudoidentity

%2 =
(

(qi,j+1)
2 · εi ◦ · · · ◦ εj+1(q

u
j,0) = (qi,j+1)

2 · εi ◦ · · · ◦ εj+1(q
v
j,0)

)

holds in Vi+2(B2), and, by theorem 2.3, gV
i+2(B2) |= (%2,Aπ′i+1

) (note

that Aπ′i+1
= Aπi).

Using the same arguments, by theorems 2.3 and 2.1, making
k − (m + 2) times the choice of the labelings as in (3), we conclude
that the following pseudoidentity, denoted %k−(m+1),

(qi,j+1)
k−(m+1) · εi ◦ · · · ◦ εj+1(q

u
j,0) = (qi,j+1)

k−(m+1) · εi ◦ · · · ◦ εj+1(q
v
j,0)

holds in Vi+k−(m+1). Consequently,

gVi+k−(m+1)(B2) |= (%k−(m+1),Aπi).

Now, for t = 1, . . . , (m+ 1− i), making the choices:

X ′
i+k−(m+1)+t = Xi+t

π′i+k−(m+1)+t = πi+t

ε′i+k−(m+1)+t = εi+t
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we obtain labelings ofAπ′
i+k−(m+2)+t−1

(= Aπi+t−1
) compatible withV(B2),

since the pseudoidentity λ holds in Vm+2(B2). Hence

qm+1,i+1 · (pi,j+1)
k−(m+1) · puj,0 = qm+1,i+1 · (pi,j+1)

k−(m+1) · pvj,0

holds in Vk(B2). Since S ∈ V
k(B2), this pseudoidentity holds in S and

the equivalence (2) leads to the conclusion that ϕ(qum+1,0) = ϕ(qvm+2,0).
So, S satisfies λ.
Finally we can say that S ∈ Vm+2(B2), because S satisfies all pseu-

doidentities of the basis of Vm+2(B2). ¤

Theorem 4.2. The pseudovariety of semigroups V∗(B2) is decidable.

Proof

The pseudovariety V(B2) is decidable, because it is finitely gener-
ated [1]. In fact, for X a finite set, ΩXV(B2) is finite and computable
(these two conditions are equivalent to saying that V(B2) is order-
computable, property that implies decidability [2]).
By [1, theorem 10.2.3], there is a continuous embedding from

ΩXV
n+1(B2) into ΩYV

n(B2) ∗ ΩXV(B2), for every n ≥ 1, where
Y = X × (ΩXV(B2))

1. Hence, if ΩYV
n(B2) and ΩXV(B2) are finite

and computable then ΩXV
n+1(B2) is finite and computable.

By induction on n, we conclude that for every n ≥ 1, the free finitely
generated semigroups of Vn(B2) are finite and computable. Hence,
Vn(B2) is decidable, for every n ≥ 1.
Given a semigroup S, by theorem 4.1, S ∈ V∗(B2) if and only if

S ∈ Vm(B2), where m = ](S) + 2, and, since Vm(B2) is decidable, we
conclude that it is decidable if S is or is not an element of V∗(B2). ¤

5. ANOTHER ALGORITHM TO SOLVE THE

MEMBERSHIP PROBLEM FOR V∗(B2)

In order to establish effective conditions to verify the membership
relation to V∗(B2), as an alternative to theorem 4.1, we follow the sug-
gestions given by J. Almeida in [1, section 10.10] to obtain a proof of
decidability of V∗(B2). Given a semigroup S ∈ ER ∩ LR a decompo-
sition of S based on a theorem of P. Stiffler [12] was suggested , and
the problem becomes to test membership in V∗(B2) of some factors of
S.
Given a finite semigroup S, Idm(S) represents the set of its [0]-

minimal ideals and, for s ∈ S, Js represents the equivalence class of s
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for the Green relation J . So S is a subdirect product of the semigroups

S/{s ∈ S : Js 6≥ Ij \ {0}, Ij ∈ Idm(S)}

which are homomorphic images of S and have a unique [0]-minimal
ideal. Hence, S ∈ V if and only if all these factors belong to V.
Therefore, in the study of the membership relation to a pseudovariety,
we may assume that S has a unique [0]-minimal ideal, I. The semi-
group I is completely [0]-simple or nilpotent and I ∼=M[0](G,R,C, P ),
a Rees matrix semigroup, where P is a regular matrix or a null matrix,
respectively. The set C may be identified with the set of L-classes
(equivalence classes for the Green relation L) of I, which do not contain
the zero element, if it exists. We represent by C∗ the set of all L-classes
of I. Consider the right action of S on C∗ defined by the following
morphism from S to the semigroup TC∗ of all functions C∗ −→ C∗

ϑS : S −→ TC∗

s 7−→ ts
where

ts : C∗ −→ C∗

L 7−→ Ls = {ls : l ∈ L} .

The subsemigroup ϑS(S) of TC∗ is represented by RLM(S).
The following theorem has been proved by P. Stiffler and establishes

a decomposition of a semigroup in terms of semidirect product. For S
and T semigroups, by S ¯ T we denote the wreath product of S by T
which is the semidirect product of S(T 1) by T .

Theorem 5.1. [12, theorem 3.1] With the above notation, let S be
a finite semigroup with a unique [0]-minimal ideal I such that I ∼=
M[0](G,R,C, P ). Then,

i. in case I is regular or ]C > 1,
(a) if S 6= I, S ≺ G¯M ¯RLM(S)¯ S/I,
(b) if S = I, S ≺ G¯M ¯RLM(S)¯ U ;

ii. in case ]C = 1,
(a) if S 6= I, S ≺ G¯M ¯ Sl2 ¯ S/I,
(b) if S = I, S ≺ G¯M ¯ Sl2 ¯ U ;

where M is any monoid such that ]M ≥ ]R, and U is any of the semi-
groups B(1, 2), the right-zero semigroup with two elements, and Sl2,
the semilattice with two elements. ¤

If S is aperiodic then the group G is trivial and if we choose:

• U = Sl2;
• M = 〈1, x1, ..., xr | x

2 = x, xy = yx, 1x = x, x, y ∈ {1, ..., xr}〉
where r = ]R,
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then the factors of S in Stiffler’s decomposition are the semigroups
RLM(S) and S/I, and elements of Sl, the pseudovariety of all semi-
lattices. Consequently, if V is a pseudovariety of aperiodic semigroups
such that Sl ⊆ V, then, S ∈ V∗ if and only if S/I and RLM(S) are
elements of V∗.
The arguments we are going to develop involve induction on ]S. Note

that, for a finite non trivial semigroup S with a unique
[0]-minimal I, ](S/I) < ]S and ]RLM(S) ≤ ]S. If ]RLM(S) = ]S,
then RLM(S) ∼= S. So, the process of successive decompositions is
finite and each terminal semigroup T satisfies, at least, one of the fol-
lowing conditions: T is trivial, T satisfies the conditions of theorem 5.1
case (iib),or T ∼= RLM(T ).
The structure of the semigroups T such that T ∼= RLM(T ) was

studied in [1, section 10.10] and the result is presented in the next
proposition.

Proposition 5.2. Let S ∈ ER∩LR with a unique [0]-minimal ideal I.
With the above notation, if S ∼= RLM(S) then I ∼= B]C and S/I is
nilpotent. ¤

Results of section 3 allow us to improve proposition 5.2.

Proposition 5.3. Let S ∈ ER ∩ LR be a semigroup with a unique
[0]-minimal ideal I and S ∼= RLM(S). Then S ∈ V∗(B2) if and only
if S = I.

Proof

If S = I then, by proposition 5.2, S ∼= Bn where n+1 is the number
of L-classes of I. Since Bn ∈ V(B2), then S ∈ V

∗(B2).
If S 6= I then there is σ ∈ S \ I. Each s ∈ S induces a par-

tial transformation on C, by restriction of ts to C, that is injective.
Let us represent the corresponding morphism as ϑ′S : S−→IC , where
IC is the semigroup of partial injective transformations on C. Since
ϑS is injective and 0 is a fixed point for transformations of RLM(S),
S ∼= RLM(S) ∼= ϑ′S(S). For i = 1, . . . , n, let Li be the L-classes of
I which are elements of C. The non null elements of ϑ′S(I) are the
partial injective transformations, represented by sp,q, whose domain is
a singular set, {Lp}, and whose image set is {Lq}, respectively, where
p, q ∈ {1, . . . , n}. By 0 we represent the empty transformation. So the
domain of the partial injective transformation σ′ = ϑ′S(σ) has two or
more elements, which means that σ′ transforms Li in Lj and Lk in Ll,
for some i, j, k, l ∈ {1, . . . , n} such that i 6= k.
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Consider the pseudoidentity

(zxyxtz)ωx(yx)2 = (zxyxtz)ωxyx

which holds in V∗(B2) (as has been proved at the end of section 3)
and the morphism ψ : Ω{x,y,z,t}S−→ϑ′S(S), continuous extension of
ψ : {x, y, z, t}−→ϑ′S(S) which is defined by

ψ(x) = σ′, ψ(y) = sj,k, ψ(z) = si,i, ψ(t) = sl,i .

Consequently, ψ((zxyxtz)ω) = si,i,
ψ(x(yx)2) = 0,
ψ(xyx) = si,l,

and ψ((zxyxtz)ωx(yx)2) 6= ψ((zxyxtz)ωxyx), which means that
S 6∈ V∗(B2). ¤

Consequently, we obtain another proof that V∗(B2) 6= ER ∩ LR
(see [13]) since there are semigroups S in the conditions of the last
proposition and such that S 6= I. As an example, consider S the
subsemigroup of T{0,1,2,3,4,5} generated by the transformations

(

0 1 2 3 4
0 1 3 0 0

)

and

(

0 1 2 3 4
0 2 0 4 1

)

.

Now we can write an algorithm to test if a member of ER ∩ LR
belongs to V∗(B2):

Algorithm 1

ENTRY: S ∈ ER ∩ LR

1.- If ]S = 1 then S ∈ V∗(B2).
2.- If ]S > 1 then:

2.1- let F = {Ij : Ij ∈ Idm(S)};
2.2- for each Ij ∈ F :

2.2.1- Sj = S/{s ∈ S : Js 6≥ Ij \ {0}}
2.2.2- if RLM(Sj) ∼= Sj and Sj = Ij then Sj ∈ V

∗(B2);
2.2.3- if RLM(Sj) ∼= Sj and Sj 6= Ij then Sj 6∈ V

∗(B2);
2.2.4- if RLM(Sj) 6∼= Sj then,

if RLM(Sj), Sj/Ij ∈ V
∗(B2)

then Sj ∈ V
∗(B2);

else Sj 6∈ V
∗(B2) ;

2.3- if, for j = 1, . . . , ]F , Sj ∈ V
∗(B2)

then S ∈ V∗(B2)
else S 6∈ V∗(B2).

END
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Further considerations on the factors of S in Stiffler’s decomposition
are stated in the following results, which lead to an improved algorithm.

Proposition 5.4. If S ∈ ER ∩ LR is a regular semigroup then
S ∈ V∗(B2).

Proof

The factors of S in the subdirect product, that is the semigroups

Sj = S/{s ∈ S : Js 6≥ Ij \ {0}, Ij ∈ Idm(S)}

are regular and each has only one [0]-minimal ideal. By proposition 5.2,
each one of those semigroups Sj verifies either Sj 6∼= RLM(Sj) or Sj is
equal to its 0-minimal ideal and so Sj ∈ V

∗(B2).
Suppose Sj 6∼= RLM(Sj), for some index j. The semigroups Sj/Ij

and RLM(Sj) are again regular semigroups of ER ∩ LR and conse-
quently, for each one, we may initialize a new decomposition.
Since S is finite, this process finishes after a finite number of steps,

and the terminal semigroups belong toV∗(B2), because they are trivial
semigroups, or satisfy conditions of theorem 5.1 case (iib), or are equal
to the 0-minimal ideal which is of the form Bn, by proposition 5.2. The
final conclusion is that S ∈ V∗(B2). ¤

Corollary 5.5. Let S ∈ ER ∩ LR be a semigroup equal to its unique
[0]-minimal ideal. Then S ∈ V∗(B2).

Proof

Under the hypotheses, S is a completely [0]-simple semigroup, and
so is regular, or S is isomorphic to a nilpotent semigroup with two
elements. So, in both cases, S ∈ V∗(B2). ¤

Lemma 5.6. Let S ∈ ER be a semigroup with only one [0]-minimal
ideal I, which is regular. Then the semigroup RLM(S) has only one
[0]-minimal ideal, which is an aperiodic Brandt semigroup.

Proof

The following proof contains arguments similar to the arguments
used by J. Almeida to obtain the result stated in lemma 5.2.
If S does not have a zero and since I ∈ ER, then I has only one

L-class and RLM(S) is trivial. So, suppose S is a not trivial semi-
group which has a zero. Hence, RLM(S) is non trivial and is the
homomorphic image of S under ϑS. Consequently, ϑS(I) is regular and
is the unique 0-minimal ideal of RLM(S).
Let e, f ∈ I be two idempotents. If eLf then ϑS(e) = ϑS(f), else

ϑS(e) and ϑS(f) are not L-equivalent. So, ϑS(I) does not contain
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L-equivalent idempotents and, since ϑS(I) ∈ ER, does not contain
R-equivalent idempotents. Consequently, the product of idempotents
in ϑS(I) is commutative. Hence we conclude that ϑS(I) is a completely
0-simple inverse semigroup, which means that it is a Brandt semigroup.
Moreover, since I does not contain R-equivalent idempotents, the

elements of ϑS(I) are transformations such that only one element of
the domain may have image not zero. So ϑS(I) is aperiodic ¤

The semigroup RLM(S)/ϑS(I) is the image of S/I by a morphism ϑ
such that pϑS(I) ◦ϑS = ϑ◦pI , where pϑS(I) is the projection of RLM(S)
in RLM(S)/ϑS(I) and pI is the projection of S in S/I. If S satis-
fies lemma 5.6’s conditions, then RLM(S) satisfies them too, and so
RLM(RLM(S)) has only one 0-minimal ideal, which is a Brandt semi-
group isomorphic to the 0-minimal ideal of RLM(S), as we can deduce
from the proof of lemma 5.6. Consequently, RLM(RLM(RLM(S)))
is isomorphic to RLM(RLM(S)).
If S has only one [0]-minimal ideal I which is non regular, then I is

nilpotent, ϑS(I) = 0 and RLM(S) is an image of S/I. In this case,
RLM(S) can have several 0-minimal ideals and ]RLM(S) < ]S.
Given S ∈ ER ∩ LR with r J -classes that do not contain 0,

(Ji)i∈{1,... ,r}, to execute the algorithm 1 is equivalent to test if each
semigroup of the family

F = (S/{a ∈ S : Ja 6≥ Ji})i∈{1,... ,r}

is an element ofV∗(B2) and, S ∈ V
∗(B2) if and only ifV

∗(B2) contains
F . Note that F is partially ordered by the order relation ≺q defined
by: T ≺q D if and only if T is a quotient of D. The minimum element
of F is the trivial semigroup and there are as many maximal elements
as 0-minimal ideals. If a semigroup covers the trivial semigroup then
it is a completely [0]-simple semigroup or a nilpotent semigroup with
two elements.
For each Si ∈ F , we represent its 0-minimal ideal by Ii. So, Si/Ii is

a subdirect product of Fi = (Sik)ik∈K , where K ⊂ {1, . . . , r} and each
Sik ∈ Fi satisfies Sik ≺q Si and Sik 6= Si. Hence, the criterion to test if
Si ∈ V

∗(B2) is the following:

1. if Si = Ii or Si is regular then Si ∈ V
∗(B2);

2. else, if Si ∼= RLM(Si) then Si 6∈ V
∗(B2);

3. otherwise, S ∈ V∗(B2) if and only if Fi ∪ {RLM(Si)} ⊆ V∗(B2).

In case 3 and if Ii is not regular then RLM(Si) is a morphic image of
Si/Ii, then RLM(Si) ∈ V∗(B2) if and only if the semigroups Sj ∈ F ,
such that Sj ≺q (Si/Ii), are members of V

∗(B2). If Ii is regular then,
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by proposition 5.6, RLM(Si) has only one 0-minimal ideal, which is
a Brandt semigroup and, RLM(Si) ∈ V∗(B2) if and only if the semi-
groups Sj ∈ F , such that Sj ≺q (Si/Ii), are members of V

∗(B2) and
RLM(RLM(Si)) is completely 0-simple.
So we can write a new algorithm.

Algorithm 2

ENTRY: S ∈ ER ∩ LR

1.- If either S is regular or S is nilpotent then S ∈ V∗(B2).
2.- Else :
2.1- J = {Jj : Jj non null J -class of S};
2.2- for each j ∈ {1, . . . , ]J}

2.2.1- let Sj = S/{s ∈ S : Js 6≥ Jj};
2.2.2- if either Sj is regular or, ]Sj = 2 and Sj is nilpotent,

then Sj ∈ V
∗(B2);

2.2.3- else if RLM(Sj) ∼= Sj then Sj 6∈ V
∗(B2);

2.2.4- else if RLM(RLM(Sj)) is equal to its 0-minimal ideal
then Sj ∈ V

∗(B2);
else Sj 6∈ V

∗(B2);
2.3- if, for some 1 ≤ j ≤ ]J , Sj 6∈ V

∗(B2)
then S 6∈ V∗(B2);
else S ∈ V∗(B2).

END

Let S be a finite semigroup with n elements. Testing if S ∈ ER∩LR
is equivalent to testing if S |= (exeye)ωx = (exeye)ω, and this can
be done by an algorithm of O(n3) using a table for the function that
associates sω to each s ∈ S, which can be computed in polynomial time
of O(n2). The execution of algorithm 2 is the result of the execution of
a finite number of basic steps, which is bounded by a linear function on
]J . The basic steps are to test if a semigroup is regular or nilpotent,
to compute the J -classes of S, the Rees-quotients of the form Sj and
their homomorphic images RLM(Sj) and RLM(RLM(Sj)), and to
test if RLM(Sj) ∼= Sj. To verify if S is regular or nilpotent we need to
compute no more than 3n2 products of elements of S. The calculation
of the Green classes structure of S takes 2n2 products, since Green
classes of S are defined by comparison of sets of the form aS1 and
of sets of the form S1a, for all a ∈ S. If we know the Green classes
structure of S, the computation of semigroups Sj and of their Green
classes structure is trivial. Given a semigroup T , if we know its Green
classes structure, to compute RLM(T ) takes less than ]T 2 products.
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So, the computation of the semigroups RLM(Sj) and RLM(RLM(Sj))
takes less than 2n2 products. Testing if RLM(Sj) ∼= Sj is equivalent
to testing if ]RLM(Sj) = ]Sj. Consequently, we have an algorithm of
polynomial complexity of O(n3) to test if a finite semigroup S with n
elements belongs to V∗(B2).
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