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Abstract. The aim of this work is to study the unknown intervals
of the lattice of aperiodic pseudovarieties which are semidirectly
closed and answer questions proposed by J. Almeida in his book
“Finite Semigroups and Universal Algebra”. The main results
state that the intervals [V∗(B2),ER∩LR] and [V∗(B1

2),ER∩A]
are not trivial, and that both contain a chain isomorphic to the
chain of real numbers. These results are a consequence of the
study of the semidirectly closed pseudovariety generated by the
aperiodic Brandt semigroup B2.

1. Introduction

Recall that a pseudovariety of semigroups is a class of finite semi-
groups closed under taking divisors and finite direct products. The
semidirect product of two pseudovarieties of semigroups V and W is
the pseudovariety generated by all semidirect products of semigroups
of V by semigroups ofW, that is denoted by V∗W [9]. This definition
gives an operation on the set of pseudovarieties that is associative and
whose idempotents are precisely the semidirectly closed (abbreviated
s.c.) pseudovarieties.
The intersection of s.c. pseudovarieties is a s.c. pseudovariety, so the

s.c. pseudovarieties form a complete lattice, that is denoted Sc. For
C a class of semigroups, V∗(C) denotes the s.c. pseudovariety gener-
ated by C. The problem of determining all elements of Sc remains
open, but some sublattices are completely known. For example, the
sublattice ScLI of all locally trivial pseudovarieties is known [1, 2], but
in the sublattice ScA of aperiodic pseudovarieties (that contains ScLI)
there are some unknown intervals. In [2] there is a graphical represen-
tation of ScA and the intervals [V

∗(B2), ER∩LR], [V
∗(B1

2), ER∩A],
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[V∗(B1
2 , B(1, 2)), (ER∩A)∗D] and [(ER∩A)∗D,LER∩A] are indi-

cated as unknown. In [4] it was proved that [(ER ∩A)∗D,LER ∩A]
is trivial, but the questions about the other three intervals remained
open. J. Almeida gives a suggestion to study the decidability of mem-
bership problem of V∗(B2) [2] and consequently to study the interval
[V∗(B2), ER ∩ LR], that has been followed by the author with suc-
cess. In this work we prove that V∗(B2) is different from ER∩LR and
V∗(B1

2) is different from ER∩A, and that the corresponding intervals
contain a chain of s.c. pseudovarieties isomorphic to the chain of real
numbers. These results are related with questions number 31 and 32,
about ScA, referred by J. Almeida in his book [2].
The results about pseudovarieties of semigroups and of semigrou-

poids that contain B2 are based on results obtained by N. Reilly in
[14], where he studies the inverse variety generated by B2, and by
results of B. Tilson [17].
As basic tools in our proofs, we use three theorems: [7, theorem 5.3],

[4, theorem 5.9] and a theorem that states an argument similar to
[5, theorem 1.1] based on the definition of a family of semigroups
∗-independent modulo a pseudovariety. The first and second of these
theorems are used to construct bases of pseudoidentities for iterated
semidirect products of pseudovarieties, in which the first factor con-
tains B2, the Brandt aperiodic semigroup with five elements. As a
particular case, we can construct pseudoidentities holding in V∗(W)
for a given pseudovariety W that contains B2, for which a basis of
pseudoidentities is given. The third theorem is used to study order
proprierties of the intervals.

2. Preliminaries

For general background and terminology, the reader is referred to
[13, 2, 6, 7, 17]. This section introduces only essential concepts and
properties.
In this paper we will not consider empty algebras. We say that a

semigroup S divides a semigroup T , which is denoted by S ≺ T , if
there exists a subsemigroup E of T such that S is the image of E
under a morphism. The smallest monoid containing a semigroup S, is
denoted S1.
We will consider topological algebras and will view finite algebras as

discrete topological spaces. For a set X endowed with a topology, we
say that a semigroup S is X-generated if there is a continuous function,
from X to S, such that S is the smallest closed semigroup that contains
the image of X. A profinite set is a projective limit of finite sets, and
a profinite semigroup is a projective limit of finite semigroups. For a
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class V of finite semigroups, we say that S is pro-V if it is the projective
limit of semigroups of V , or equivalently, if it is compact and continuous
morphism onto semigroups of V suffice to separate elements of S.
For a pseudovariety V and a profinite set X, the X-generated el-

ements of V form a direct system and the respective projective limit
will be denoted ΩXV. So the semigroup ΩXV is the free semigroup
on X in the class of all pro-V semigroups, which means that for every
continuous function ϕ : X−→S, where S is a pro-V semigroup, there
is a unique continuous morphism ϕ : ΩXV−→S extending ϕ. Conse-
quently, for two pseudovarieties V and W, if W ⊆ V then there is
a surjective continuous morphism, ψ : ΩXV−→ΩXW, extending the
continuous function ψ : X−→ΩXW. In case V = S, where S is the
pseudovariety of all semigroups, we will denote ψ by ψW. The free
semigroup on X, in the variety generated by V, is denoted ΩXV and
is a dense subsemigroup of ΩXV.
Given a profinite set X and a pseudovariety V, to each element

π of ΩXV we may associate a family of functions (πS)S∈V, where
πS : S

X−→S is such that πS(ϕ) = ϕ(π). This family of functions
is an X-ary implicit operation, which means a family of functions that
preserves semigroup morphism between elements of V. The collection
of all X-ary implicit operations forms a semigroup under the natural
point-wise composition. Hence, the association between elements of
ΩXV and implicit operations is an isomorphism. Consequently each
element of ΩXV will be called an implicit operation and, in partic-
ular, each element of ΩXV is called an explicit operation or a word.
For V = S, ΩXV = X+, the free semigroup on X consisting of all
nonempty words on X. Given π ∈ ΩXV, ρ ∈ ΩXV is a factor of π if
there are π1, π2 ∈ (ΩXV)

1 such that π = π1ρπ2. If V contains the finite
semilattices, then by C(π) we denote the subset of X consisting of all
elements of X that are factors of π, and we call it the content of π. If X
is an alphabet that contains x, then the implicit operation denoted by
xω is the family of functions such that for each finite semigroup S and
each choice of s ∈ S associates sn, the power of s that is idempotent.
Given a profinite set X and a pseudovariety V (usually V = S), a

pseudoidentity is a formal equality π = ρ where π, ρ ∈ ΩXV. A semi-
group S ∈ V satisfies the pseudoidentity π = ρ, or equivalently π = ρ
holds in S, if for every continuous function ϕ : X−→S, ϕ(π) = ϕ(ρ).
For a subclass C ofV we say that C satisfies the pseudoidentity π = ρ if
all elements of C satisfy π = ρ, and we write C |= π = ρ. For a set Σ of
pseudoidentities, [[Σ]] denotes the class of all finite semigroups in which
all pseudoidentities of Σ hold. In [15] J. Reiterman proves that the
set of pseudovarieties and the set of classes of the form [[Σ]] are equal,
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where Σ is a set of pseudoidentities over a finite set X, extending the
Birkhoff Theorem for varieties. If V = [[Σ]] then Σ is said to be a basis
of pseudoidentities of V.
By a (directed) graph G we mean a partial algebra with a sup-

port set V (G)
◦
∪ E(G) with two sorts of elements, called vertices and

edges respectively, and two binary operations: α : E(G)−→V (G) and
ω : E(G)−→V (G). For c, d ∈ V (G), G(c, d) is the set of edges s of
G such that α(s) = c and ω(s) = d. Two edges s1 and s2 are said
to be consecutive if ω(s1) = α(s2), and are said to be coterminal if
α(s1) = α(s2) and ω(s1) = ω(s2).
A semigroupoid is a graph S with an associative partial operation,

called composition, whose domain is {(s, t) ∈ E(S)2 : α(t) = ω(s)},
and such that given (s, t) in the domain their composition is a edge
denoted st which belongs to S(α(s), ω(t)). A category is a semigrou-
poid S that has an identity element at each vertex, that is for every
v ∈ V (S) there is 1v ∈ S(v, v) such that, whenever the compositions
are defined in S, s1v = s and 1vs = s. The identity element can be
understood as a unary operation from vertices to edges. Semigroups
can be interpreted as semigroupoids with only one vertex. For each
semigroupoid S, we can construct a semigroup Scd, called the consoli-
dated semigroup of S, such that the support set is E(S), if ]V (S) = 1,

or E(Scd)
◦
∪ {0}, otherwise, and the composition is defined as in S, if

possible, or equal to 0, otherwise.
For graphs, semigroupoids and categories, morphisms are defined as

functions between graphs, semigroupoids and categories, respectively,
respecting sorts and operations. A morphism between semigroupoids
S and T , ψ : S−→T , is said to be:

1. faithful if, for every c, d ∈ V (S), the restriction ψ|S(c,d) is injective;
2. a quotient morphism if ψ is surjective and the restriction ψ|V (S) is
injective;

3. an isomorphism if ψ is bijective.

A semigroupoid S is a quotient of a semigroupoid T if there is a
quotient morphism ψ : T−→S. We say that a semigroupoid S divides
a semigroupoid T , and we write S ≺ T , if S is a quotient of a semi-
groupoid E and there exists a faithful morphism β : E−→T .
A variety (pseudovariety) of semigroupoids V is a class of (finite)

semigroupoids containing a semigroupoid with just one vertex and one
edge which is closed under taking (finite) divisors and (finitary) prod-
ucts and coproduts. Given a set of semigroupoids W , we denote by
V(W ) the pseudovariety generated by W . For a pseudovariety W
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of semigroups we denote by gW the pseudovariety of semigroupoids
V(W).
We will consider topological graphs and semigroupoids as algebras

whose vertex set and edge set are endowed with a topology, such that
their operations are continuous. Again, every finite partial algebra
will be endowed with the discrete topology on each of its sets. For
a graph G endowed with a topology we say that a semigroupoid S is
G-generated if there is a continuous graph morphism, from G to S, such
that S is the smallest closed semigroupoid that contains the image of
G. A profinite semigroupoid (graph) S is a projective limit of finite
semigroupoids (graphs). A semigroupoid is pro-V if it is a projective
limit of semigroupoids of V.
As in the case of semigroups, the projective limit of the G-generated

semigroupoids of V, ΩGV, is the free semigroupoid generated by G in
the class of all pro-V semigroupoids. The free semigroupoid on G in the
variety generated byV is denoted ΩGV and is a dense subsemigroupoid
of ΩGV. If V = Sd (the pseudovariety of all finite semigroupoids) then
the free semigroupoid on G is G+, the semigroupoid of all nonempty
paths on G with the operation of concatenation.
Given a profinite graph G and a pseudovariety V, a (G-ary) implicit

operation is a family of functions from the set of graph morphisms from
G to S, with values in S, indexed by the elements S of V, that pre-
serves semigroupoid morphisms between elements of V. Each implicit
operation assume values only in edges or only in vertices, in such a
way that the set of all implicit operations assumes the struture of a
semigroupoid. Like in the semigroup case, to each element π of ΩGV

we may associate, by an isomorphism, an implicit operation. A pseu-
doidentity is a formal equality between two coterminal edges π and ρ
of ΩGV, denoted (π = ρ,G). In case G is finite and connected, we
say that a semigroupoid S ∈ V satisfies a pseudoidentity (π = ρ,G),
or equivalently that (π = ρ,G) holds in S, if ϕ(π) = ϕ(ρ), for every
graph morphism ϕ : G−→S, and we write S |= (π = ρ,G). Usually we
will consider pseudoidentities over the pseudovariety Sd. For a set Σ
of pseudoidentities, [[Σ]] denotes the class of all finite semigroupoids in
which all pseudoidentities of Σ hold. Such a class is a pseudovariety
and the set Σ is said to be a basis of pseudoidentities of the pseudo-
variety. An extension of Reiterman’s Theorem can be obtained, by
proving that each pseudovariety of semigroupoids can be defined by a
set of pseudoidentities over finite connected graphs.
Given two semigroups S and T , an action of T over S is a monoid

morphism ϕ : T 1−→End(S), where End(S) is the monoid of all en-
domorphisms of S. The semidirect product of S by T is a semigroup,
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denoted S ∗ϕ T , whose support set is S × T and the composition is
given by (s, t)(s′, t′) = (sϕ(t)(s′), tt′). The semidirect product of two
pseudovarieties V andW is the pseudovariety, denoted V∗W, gener-
ated by all semidirect products of the form S ∗ϕ T with S ∈ V and
T ∈W. The set of pseudovarieties of semigroups with ∗ forms a semi-
group whose idempotents, the s.c. pseudovarieties, form a complete
lattice, since the intersection of any family of s.c. pseudovarieties is a
s.c. pseudovariety. Consequently, given a class C of finite semigroups,
there is the s.c. pseudovariety generated by C, denoted V∗(C). The

join of s.c. pseudovarieties V andW is denoted by V
∗
∨W.

Given two pseudovarieties V and W, we denote by V©m W, the
Mal’cev product of V byW, the pseudovariety generated by the semi-
groups S such that there exists T ∈ W and a morphism ϕ : S−→T
that verifies, for every idempotent e ∈ T , ϕ−1(e) ∈ V.

3. The pseudovariety of semigroups generated by B2

By definition, a Brandt semigroup is a completely 0-simple inverse
semigroup. So a Brandt semigroup is isomorphic to a I×I Rees matrix
semigroup over a 0-group, G0, with the identity matrix. The semi-
group usually denoted B2 is the aperiodic Brandt semigroup with five
elements, which means that in this case ]I = 2 and G0 = {0, 1}.
In general, Bn represents the aperiodic Brandt semigroup such that
]I = n.
Varieties of inverse semigroups have attracted considerable atten-

tion, and Brandt semigroups are relevant for the study of the lattice
of subvarieties of the variety I of all inverse semigroups. In this con-
text E. Kleiman in [10] proves that the variety of inverse semigroups
generated by B2 is

VI(B2) = [xy
2x−1 = xyx−1]I .

The variety of semigroups generated by aperiodic Brandt semigroups
V (B2) was the aim of [18], where A. Trahtman has proved that it has
an identity basis {x2 = x3, x2y2 = y2x2, x(yx)2 = xyx}. The pseu-
dovariety of semigroups generated by B2, denoted V(B2), is equal to
V (B2) ∩ S and so

V(B2) = [[x
2 = x3, x2y2 = y2x2, x(yx)2 = xyx]].

Given an alphabet X, the word problem in a pseudovariety V is
the problem of deciding if a pseudoidentity π = ρ holds in V, where
π, ρ ∈ ΩXS. Independent works on VI(B2) led to the conclusion that
the corresponding word problem is decidable [14, 11, 8]. A generaliza-
tion of N. Reilly’s solution to the profinite semigroups ΩXV(B2) was
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obtained in [4] and the result is presented in theorem 3.2 below. To
understand the meaning of this theorem we need to introduce some
notions and terminology. For a set X, X−1 = {x−1 : x ∈ X} is a
disjoint copy of X.

Definition 3.1. Given a finite alphabet X and π ∈ ΩXS, we define δπ
to be the equivalence relation over C(π) ∪ C(π)−1 generated by the set

{(x−1, y) : x, y ∈ C(π), xy is a factor of π}.

Since C(π) ⊆ X, δπ induces a relation over X, which is denoted,
again, by δπ.
Let X be a finite alphabet. Consider the following functions:

• i1 : ΩXS−→X that associates to each π ∈ ΩXS the element x ∈ X
such that there is ρ ∈ (ΩXS)

1 and π = xρ;
• t1 : ΩXS−→X that associates to each π ∈ ΩXS the element x ∈ X
such that there is ρ ∈ (ΩXS)

1 and π = ρx;
• δ : ΩXS−→P((X ∪X

−1)2) that associates to each implicit oper-
ation π ∈ ΩXS the relation δπ.

The functions i1 and t1 are continuous functions [2]. As the pseudo-
variety V(B2) is finitely generated it is locally finite, which means that,
for every finite set X, ΩXV(B2) is finite and so ΩXV(B2) = ΩXV(B2).
Consequently, using [14, theorem 3.3], proving that δ is a continuous
function is equivalent to proving the following theorem.

Theorem 3.2. [4, theorem 5.6] Given a finite alphabet X and
π1, π2 ∈ ΩXS, the pseudoidentity π1 = π2 holds in B2 if and only
if:

1. δπ1
= δπ2

;
2. (i1(π1), i1(π2)) ∈ δπ1

;
3. (t1(π1)

−1, t1(π2)
−1) ∈ δπ1

. ¤

The next definition leads to a new formulation of the previous theo-
rem that states that the elements of ΩXV(B2) admit a canonical repre-
sentation as birooted graphs (a direct graph with two special vertices:
the initial vertex and the final vertex).

Definition 3.3. Given an alphabet X and π ∈ ΩXS, we define Aπ to
be the graph:

1. V (Aπ) = (C(π) ∪ C(π)
−1)/δπ;

2. for any v1, v2 ∈ V (Aπ),

Aπ(v1, v2) = {x ∈ C(π) : [x]δπ = v1 and [x
−1]δπ = v2}.

The initial vertex of Aπ is [i1(π)]δπ and the final vertex is [t1(π)
−1]δπ .
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Corollary 3.4. Given a finite alphabet X and π1, π2 ∈ ΩXS, the pseu-
doidentity π1 = π2 holds in B2 if and only if:

1. Aπ1
= Aπ2

;
2. [i1(π1)]δπ1

= [i1(π2)]δπ2
and [t1(π1)

−1]δπ1
= [t1(π2)

−1]δπ2
.

¤

It follows from the definition that, if u is a word factor of π then u
defines a path in Aπ from [i1(u)]δπ to [(t1(u))

−1]δπ . If π is a word then
π is a path in Aπ from the initial vertex to the final vertex.

Example 3.5. Let X = {x, y, z}, u1 = xyx, u2 = xyxyx, u3 = xy2x
and u4 = yxyx. So δu1

= δu2
= δu4

are defined, over {x, y, x−1, y−1},
by the partition

{{x−1, y}, {y−1, x}}

and δu3
is defined, over {x, y, x−1, y−1}, by

{{x, x−1, y, y−1}}.

By theorem 3.2, B2 |= u1 = u2 since δu1
= δu2

, i1(u1) = i1(u2) = x
and t−1

1 (u1) = t−1
1 (u2) = x, but B2 6|= u1 = u3 since δu1

6= δu3
, and

B2 6|= u1 = u4 since [i1(u1)]δu1
= [x]δu1

6= [y]δu4
= [i1(u4)]δu4

. The
following picture gives a graphical interpretation of these examples.

Aw

• •
.....................................................................................

................................................................................................................................
...................

....................................................................
................

.
....................

...............................................................................................................................

x

y

[x]δw [y]δw

w ∈ {xyx, xyxyx, yxyx}

Axy2x

•
...........................................................................
............
...

.............
...............
.........
..........
........
........
........
............
.................................................................................................................

x,y

[x]δ
xy2x

4. The pseudovariety of semigroupoids generated by B2

The study of members of the pseudovariety of semigroupoids of the
form gV, where V contains B2, depends on the study of their consoli-
dation semigroups.

Proposition 4.1. [17] Let V be a pseudovariety of semigroups such
that B2 ∈ V. Then a finite semigroupoid S belongs to gV if and only
if Scd belongs to V. ¤

In [3] it was proved that E(ΩGSd) can be identified with a subset of
ΩE(G)S) (proposition 2.3). Lemma 5.7 in [4] states an opposite relation,

in the sense that, for any finite set X and for each π ∈ ΩXS we can
injectively associate an implicit operation in ΩAπSd. This association
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based on the fact that every word factor of π identifies a path in Aπ

and, consequently, if (wn)n is a sequence of words in X
+ converging to

π then there is an order p such that, for all n ≥ p, wn identifies a path
in Aπ from the initial vertex to the final one and all edges occur in wn.
For example, let π = xyωzx and consider the sequence (xyn!zx)n that
converges to π. The graph Aπ is

• •
.....................................................................................

................................................................................................................................
...................

....................................................................
................

.
....................

...............................................................................................................................
..........
...........
..........
........
.......
........
...........
................

.......................................................................
...........
...

...................................................

............................................x

z

y

[x]δw [x−1]δw

and wn denotes a path from [x]δπ to [x
−1]δπ . The limit of the sequence

of paths (wn)n is the edge implicit operation denoted by xy
ωzx.

This correspondence permits to prove that, given a semigroupoid S
and a pseudoidentity u = v such that B2 |= u = v, then Scd |= u = v
if and only if S |= (u = v,Au) [4, lemma 5.8]. Hence, using proposition
4.1, if B2 ∈ V then we can construct a pseudoidentity basis of gV from
a pseudoidentity basis of V, and we can give a solution of the path
problem in ΩGgV(B2), for a finite graph G, extending the theorem
3.2.

Theorem 4.2. [4, theorem 5.9] Let V be a pseudovariety of
semigroups such that B2 ∈ V. If V = [[ui = vi : i ∈ I]] then
gV = [[(ui = vi,Aui) : i ∈ I]]. ¤

As an example of application we can construct a pseudoidentity basis
for gV(B2).

Corollary 4.3. The pseudovariety of semigroupoids generated by B2,
gV(B2), is the pseudovariety

[[(x3 = x2,Ax2), (x2y2 = y2x2,Ax2y2), (x(yx)2 = xyx,Axyx)]]

where

Ax2 Ax2y2 Axyx

•
...........................................................................
............
...

........
.................................................
..........
............
.........
........
.......
.........
............
...........................................................................................................

x

[x]δ
x2

•
...........................................................................
............
...

........
.................................................
..........
............
.........
........
.......
.........
............
...........................................................................................................

x,y

[x]δ
x2y2

• •
.....................................................................................

................................................................................................................................
...................

....................................................................
................

.
....................

...............................................................................................................................[x]δxyx [y]δxyx

x

y

¤
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Recall that, gV(B2) |= (u = v,G) if and only if B2 |= (u = v,G),
which means that, for every graph morphism ϕ : G−→B2, ϕ(u) = ϕ(v).
The restriction of ϕ to E(G) is an evaluation ϕ′ : E(G)−→B2 such that
ϕ′(u) = ϕ(u) and ϕ′(v) = ϕ(v). Consequently ϕ(u) = ϕ(v) if and only
if ϕ′(u) = ϕ′(v).
Conversely, for each ϕ : E(G)−→B2 let ϕ

′ : G−→B2 be the graph
morphism such that ϕ′|E(G) = ϕ and ϕ′|V (G) is trivial. So ϕ

′(u) = ϕ(u),

ϕ′(v) = ϕ(v) and, given u, v ∈ ΩGSd, gV(B2) |= (u = v,G) if and only
if V(B2) |= u = v. The next proposition states the solution for the
path problem in ΩXgV(B2), based on theorem 3.2.

Proposition 4.4. Given a finite graph G and a pseudoidentity
(u = v,G), gV(B2) |= (u = v,G) if and only if

i. the relations δu and δv, over (E(G) ∪ E(G)
−1), are equal;

ii. (i1(u), i1(v)) ∈ δv;
iii. ((t1(u))

−1, (t1(v))
−1) ∈ δv.

¤

5. The pseudovariety V∗(B2)

The purpose of this section is to study the s.c. pseudovariety gener-
ated by the semigroup B2, V

∗(B2).
By the graphical representation of ScA given in [2] we can find

some information about V∗(B2). In particular we can observe that
R ⊂ V∗(B2) ⊆ ER ∩ LR and that R is covered by V∗(B2). About
the interval [V∗(B2),ER ∩ LR], J. Almeida [2] proposed the conjecture
that it is trivial. Recall that:

• R = V∗(Sl2) [16], where Sl2 is the semillatice with two elements;
• ER ∩ LR = [[(exeye)ωx = (exeye)ω]] where e represents an idem-
potent;

• ER ∩ LR is a s.c. pseudovariety since ER and LR are s.c. pseu-
dovarieties [16].

We define recursively the semidirect powers of a pseudovariety of
semigroupsW as:

1. W0 = [[x = y]] the pseudovariety of trivial semigroups, that is the
identity element for semidirect product of pseudovarieties;

2. Wn =W∗Wn−1(=Wn−1∗W) for every n ≥ 1.

As a consequence we have thatW1 =W and

Wn−1 = [[x = y]]∗Wn−1 ⊆W∗Wn−1 =Wn.
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So the family (Wn)n≥0 is a chain and
⋃

n≥0W
n is the s.c. pseudova-

riety generated by W. The computation of the semidirect powers of
V(B2) can be done by induction using in each step [7, theorem 5.3] and
theorem 4.2. For our purposes we do not need to calculate V∗(B2), it
suffices to verify if certain pseudoidentities hold or not in V∗(B2). This
verification is made by induction, on the semidirect power of V(B2),
and using the following corollary of [7, theorem 5.3].

Corollary 5.1. Let V and W be pseudovarieties of semigroups. If
(u = v,G) is a pseudoidentity of semigroupoids that holds in gV, then

πα(u)ε(u) = πα(v)ε(v)

holds in V∗W, where πq ∈ (ΩXS)
1 (q ∈ V (G)), ρs ∈ ΩXS (s ∈ E(S)),

W |= πα(s)ρs = πω(s) for all s ∈ E(G), and ε : ΩGSd−→ΩXS is
the continuous morphism of semigroupoids such that ε(s) = ρs for all
s ∈ E(G). ¤

Examples 5.2.

i. Consider the pseudoidentity x3 = x2 that holds in V(B2). By
induction hypothesis suppose that Vn(B2) |= x2n+1 = x2n, for a
given n ≥ 1. Then gVn(B2) |= (x

2n+1 = x2n,Ax2n), by theorem
4.2, and if we make the choice X = {x}, π = x2 and ρx = x,
as B2 |= x2ρx = x2 by theorem 3.2, we conclude that Vn+1(B2)
satisfies x2x2n+1 = x2x2n, by corollary 5.1. This implies that, for
every n ≥ 0, Vn(B2) |= x2n+1 = x2n, which means that Vn(B2) is
aperiodic and

Vn(B2) |= xω = x2n .

ii. Consider the pseudoidentity

(y2xyxk−1y2)2y2xyxk+1 = (y2xyxk−1y2)2y2xyxk

for k > 1. This pseudoidentity holds in V(B2) by theorem 3.2.
Using the arguments as above, we can deduce pseudoidentities
that are satisfied by V∗(B2). By induction hypothesis suppose
that, for a fixed n ≥ 1,

Vn(B2) |= (y
2xyxk−1y2)2ny2xyxk+1 = (y2xyxk−1y2)2ny2xyxk.

Then gVn(B2) satisfies

((y2xyxk−1y2)2ny2xyxk+1 = (y2xyxk−1y2)2ny2xyxk,Ay2x2)

and, choosingXn = {x, y}, π = (y
2xyxk−1y2)2, ρx = x and ρy = y,

the compatibility pseudoidentities πx = πy = π hold in V(B2).
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Then Vn+1(B2) satisfies

(y2xyxk−1y2)2(n+1)y2xyxk+1 = (y2xyxk−1y2)2(n+1)y2xyxk

and so we conclude that, for all n ≥ 1 and k ≥ 3,

Vn(B2) |= (y
2xyxk−1y2)2ny2xyxk+1 = (y2xyxk−1y2)2ny2xyxk.

This result, together with the result obtained in (i), leads to the
conclusion that, for all k ≥ 3,

V∗(B2) |= (y
2xyxk−1y2)ωy2xyxk+1 = (y2xyxk−1y2)ωy2xyxk.

6. The interval [V∗(B2),ER ∩ LR]

The suggestion given in [2] to solve problem number 31 leads to the
study of the class of semigroups S that have a unique [0]-minimal ideal
I isomorphic to Bn, for some n ≥ 1, and S/I is nilpotent (satisfies
the pseudoidentity xω = 0). By definition of Mal’cev product, all such
semigroups belong to the pseudovariety V(B2)©m N which is contained
in ER∩LR, as may be easily proved. The arguments used in [2, chapter
10] lead to the conclusion that V∗(B2) is equal to ER∩LR if and only
if V(B2)©m N is contained in V∗(B2).
Consider the automaton Am, for m ≥ 3, given by the following

picture, imported from [5]:

• • •

•• ••

.......................................................................................................................................................................................................................... ............................................................................................................................................................................................................. ...................................................................................................................

..................................................................
..........
........
.

...................................................................................................................

..................................................................
..........
........
.

................................................................................ ................................................................................ ......................................................
...............................

......................................................
...............................

...................................................................................................................

........

..........

....................
...............................................

...........................................................................

............
...

.......
............................
..........
............
........
........
........
..........
...................................................................................................................

a

b a

b

b b

b

· · ·

1

4

2

m+1 m 5

3

The transition semigroup of the completion of Am is represented by Sm
and is generated by the transitions:

a =

(

0 1 2 3 ... m+ 1
0 1 3 0 ... 0

)

and

b =

(

0 1 2 3 ... n ... m+ 1
0 2 0 4 ... n+ 1 ... 1

)

.

In case m = 3, the structure in Green classes of S3 is represented in
the following picture.
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b a

b2 ba ab

b2a bab

b2ab

a2 ∗ a2b aba (ab)2

ab2 ab3 ∗ ab3a ab3ab
b2a2 b3 b3a ∗ b3ab
ba2 ba2b (ba)2 (ba)2b∗

0∗
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.......

.......
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.......
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.......

.

So we can realize that S3 is a semigroup of V(B2)©m N. The next
lemma states that the same happens for all Sm. By definition Sm
is a transformation semigroup over Q = {0, 1, . . . ,m + 1}. To each
transformation of Q we may associate a partial transformation over
Q \ {0}. The result is an isomorphic representation of Sm as a semi-
group of injective partial transformations.
For each s ∈ Sm we define:

im(s) = {i ∈ Q : ∃j ∈ Q, s(j) = i}
dom(s) = {i ∈ Q \ {0} : s(i) 6= 0}
rk(s) = ](im(s)) .

From the observation of the automaton, we can easily conclude that,
for every k, l ∈ Q \ {0}, there is an element of Sm , denoted sk,l, such
that sk,l(k) = l and sk,l(j) = 0, for all j ∈ Q \ {0, k}.

Lemma 6.1. Form ≥ 3, the semigroup Sm is a member ofV(B2)©m N.

Proof

Note that every element of Sm takes 0 to 0, so there is only one total
constant transformation which is the zero element of Sm, denoted by 0.
Fix w ∈ Sm \ {0}. Then 0 < rk(w) ≤ max{rk(a), rk(b)} = m + 1

and if w = uav, where u, v ∈ S1
m, then 0 < rk(w) ≤ rk(a) = 3.

Since S is generated by a and b we are going to consider the possible
factorizations of w and calculate the idempotents.
Let w = bn, for m + 1 ≥ n ≥ 1. Since rk(bn) = (m + 1) − (n − 1)

and bm+1 = 0, then wω = 0 and biJ bj implies i = j, for i, j ∈ Q \ {0}.
If w = uav where u, v ∈ S1

m, then there are k, l ∈ Q\{0} and i, j ∈ Q
such that w(k) = i, w(l) = j, and w(p) = 0, for all p ∈ Q \ {k, l}. If
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{k, l} 6= {i, j} or k = l, then rk(wω) ≤ 2. Otherwise rk(wω) = 3 and
w or w2 are idempotents, which means that

(a)
w(i) = i
w(j) = j

or (b)
w(i) = j
w(j) = i .

We are going to proof that there is no element of Sm in such conditions.

i. In case (a):
• if i = 1 or j = 1, then w belongs to the language recognized

by Am with initial and final vertex 1, which is {bab
m−1, a}+, but

rk(an) = 2, for n > 1, and rk(babm−1) = 2;
• if i = 2 or j = 2, then w belongs to the language recognized

by Am with initial and final vertex 2, which is

{abm−1akb : k ≥ 0}+

and so w ≤J ab
m−1anb for n ≥ 0 and rk(abm−1anb) = 2;

• if i, j > 2, then w belongs to the languages recognized by Am

with initial and final vertex i, and with initial and final vertex j,
which means that

w ∈ {bm−i+2akbabi−3 : k ≥ 0}+ ∩ {bm−j+2akbabj−3 : k ≥ 0}+

and so there are ni, nj ≥ 0 such that w ≤J bm−i+2anibabi−3 and
w ≤J bm−j+2anjbabj−3 and consequently, in every case, we con-
clude that rk(wω) ≤ 2.

ii. In case (b), w2 is idempotent and rk(w2) = 3, which means that
w2 is in the situation studied in case (a).

Hence, if e ∈ Sm and e is idempotent then rk(e) ≤ 2.
We must examine now, with more detail, the elements w ∈ Sm such

that rk(w) = 2, which are the elements of the form si,j. All elements w
such that rk(w) = 2 are J -equivalent since, for i, j, k, l ∈ Q \ {0}, si,j
and sk,l are such that si,j = si,ksk,lsl,j. The idempotents of Sm are the
elements si,i, for every i ∈ Q \ {0}, and the element 0. The 0-minimal
ideal of Sm, denoted by Im, is the subsemigroup of all w ∈ Sm such
that rk(w) ≤ 2, or equivalently

Im = {si,j ∈ Sm : i, j ∈ Q \ {0}} ∪ {0}

and the composition operation is characterized by:

si,jsk,l =

{

si,l se j = k
0 if j 6= k

for every i, j, k, l ∈ Q\{0}. As an immediate consequence we have that
Im is a Brandt semigroup and Sm/Im is nilpotent. ¤
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Theorem 6.2. The pseudovariety V∗(B2) is a proper subpseudovarie-
ty of ER ∩ LR.

Proof

In order to prove the proper inclusion, let m ≥ 3. By lemma 6.1,
Sm ∈ ER ∩ LR. Consider the pseudoidentity

λm =
(

(y2xyxm−1y2)ωy2xyxm+1 = (y2xyxm−1y2)ωy2xyxm
)

that holds in V∗(B2) (see example 5.2(ii)) and the application

ϕm : {x, y} −→ Sm
x 7−→ b
y 7−→ a .

The continuous morphism of semigroups ϕm : Ω{x,y}S−→Sm that ex-
tends ϕm is such that :

ϕm((y
2xyxm−1y2)ωy2xyxm) = a2babm =

(

0 1 2 · · · m+ 1
0 2 0 · · · 0

)

ϕm(y
2xyxm−1y2)ωy2xyxm+1) = a2babm+1 = 0

which implies that Sm 6∈ V
∗(B2). ¤

We proceed with the study of the sequence (λm)m≥3 and its relation
with the semigroups Sm in order to obtain some information about the
s.c. pseudovarieties generated by sets of those semigroups.

Lemma 6.3. For m ≥ 3, Sm |= xω = xm+1 and Sm 6|= xω = xm .

Proof

From proof of lemma 6.1 or by [5, lema 7.8], if w ∈ Sm \ {0} then:

i. either w = bn and wk = 0, form+1 > n ≥ 1 and all k > (m+1)/n;
ii. or w = uav, for u, v ∈ S1

m \ {0}, and w
2 is idempotent or w3 = 0.

Since Sm is aperiodic, we conclude that Sm |= xω = xm+1 and m+ 1 is
the least integer satisfying this condition. ¤

For each m ≥ 3 and n ≥ 1, let Cmn denote the set

{uav : u, v ∈ S1
m, (uav)

n 6= 0}.

Lemma 6.4. For every m,n ≥ 3,

Cmn = {a, b
m−1ab} ∪ {sj,j : j ∈ Q \ {0}} .

Proof

Fix w = uav ∈ Cmn . Then w
ω 6= 0 and w or w2 are idempotents,

which means that w or w2 are equal to sj,j, for some j ∈ Q \ {0}. In
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both cases, w(j) = j. Hence, w ∈ Cmn if and only if there is j ∈ Q \ {0}
such that w(j) = j.
Every element w of {a, bm−1ab} ∪ {sj,j : j ∈ Q \ {0} is such that

w ∈ Cmn because there is j ∈ Q \ {0} such that w(j) = j. To establish
the reverse inclusion, we must study the elements w of Sm such that
w(j) = j for some j ∈ Q \ {0}.

• If w(1) = 1 then w belongs to the language recognized by Am with
initial and final vertex 1, which is {babm−1, a}+ . If rk(w) = 2 then
w = s1,1. If rk(w) = 3 then w = a, since rk(a2) = rk(babm−1) = 2.

• If w(2) = 2 then w belongs to the language recognized by Am

with initial and final vertex 2, which is {abm−1akb : k ≥ 0}+ and,
as rk(abm−1) = 2, w = s2,2.

• If w(j) = j, for any j ≥ 3, then s belongs to the language recog-
nized by Am with initial and final vertex j, which is

{bm−j+2akbabj−3 : k ≥ 0}+.

If there is a factor of w, bm−j+2akbabj−3, such that k ≥ 1 then aba
is a factor of w and, since rk(aba) = 2, then w = sj,j. Otherwise,
we must consider several possibilities, using in each case the same
kind of arguments:
– if j > 4 then ab2 is a factor of w and rk(ab2) = 2, so w = sj,j;
– if j = 4 then, or w = bm−1ab and rk(w) = 3, or bm is a factor
of w and w = s4,4, since rk(b

m) = 2;
– if j = 3 then bm is a factor of w and so w = s3,3.

¤

This lemma implies that for n ≥ 3, Cmn does not depend on n and
consequently, in this case, we will omit the index n. The next lemma
completes the description of Cm2 .

Lemma 6.5. For every m ≥ 3, the subset Cm2 of Sm is the set

Cm ∪ {bta, bt−1ab : t ∈ {1,m− 1}}.

Proof

Let C ′2 = C
m
2 \ C

m, which means C ′2 = {s ∈ C
m
2 : s

3 = 0}, and recall
the proof of lemma 6.1. If w ∈ C ′2 then w

2 6= 0 and w3 = 0. Hence
rk(w) = 3 and rk(w2) = 2, which means that there are i, j, k ∈ Q\{0}
all different such that w(i) = k, w(k) = j and w2 = si,j. Note that
rk(a2) = rk(aba) = rk(ab2) = rk(bm) = 2 and, for q 6= m − 1,
rk(bm+1) = rk(abqa) = 1, which implies that none of these trans-
formations can be a factor of w. As a consequence we have w = btabε,
for 0 ≤ t < m − 1 and ε ∈ {0, 1}. If ε = 0 then w = bta and, as
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(bta)2 6= 0 and (bta)3 = 0, t ∈ {1,m − 1}. If ε = 1 then s = btab and,
as (btab)2 6= 0 and (btab)3 = 0, then t ∈ {0,m− 2}. ¤

Lemma 6.6. Given m,n ≥ 3 with m 6= n,

Sm |= (y
2xyxn−1y2)ωx = (y2xyxn−1y2)ωy = (y2xyxn−1y2)ω.

Proof

Let ϕ : {x, y}−→Sm be a map. The element ϕ((y
2xyxn−1y2)ω) is an

idempotent of Sm and so it is equal to 0 or to si,i, for some i ∈ Q\{0}.
If ϕ((y2xyxn−1y2)ω) = 0 then

ϕ((y2xyxn−1y2)ω) =ϕ((y2xyxn−1y2)ωx) =

=ϕ((y2xyxn−1y2)ωy) = 0 .

If ϕ((y2xyxn−1y2)ω) = si,i then ϕ(y
4) 6= 0 and ϕ(xn−1) 6= 0, which

implies that

ϕ(y) ∈ {bk : 1 ≤ k < (m+ 1)/4} ∪ Cm and

ϕ(x) ∈ {bk : 1 ≤ k < (m+ 1)/(n− 1)} ∪ Cmn−1 .

Let us analyze the different possibilities for the values of ϕ(y) and ϕ(x).

1. Consider ϕ(y) ∈ Cm. So, ϕ(y)2 = sj,j, for some j ∈ Q \ {0},
which implies that j = i, i ∈ (dom(ϕ(x)) ∩ im(ϕ(x))) and
ϕ((y2xyxn−1y2)ω) = ϕ((y2xyxn−1y2)ωy) = si,i. Now we have sev-
eral possibilities for the value of ϕ(x).
(a) Suppose ϕ(x) ∈ Cm. So, ϕ(x)n−1 = ϕ(x)2 = si,i, ϕ(x)(i) = i

and ϕ((y2xyxn−1y2)ωx) = si,i.
(b) If n = 3 and ϕ(x) ∈ {bta, bt−1ab : t ∈ {1,m − 1}}, then we

can easily check that ϕ((y2xyxn−1y2)ω = 0.
(c) Suppose ϕ(x) ∈ {bk : 1 ≤ k < (m + 1)/(n − 1)}. Hence

ϕ((y2xyxn−1y2)ω) = si,ib
kϕ(y)bk(n−1)si,i and ϕ(y) 6= si,i be-

cause bk(i) 6= i. So, ϕ(y) = a or ϕ(y) = bm−1ab. If ϕ(y) = a
then ϕ((y2xyxn−1y2)ω) = s1,1b

kabk(n−1)s1,1 and, consequently,
k = 1 and n− 1 = m− 1, which is impossible since m 6= n. If
ϕ(y) = bm−1ab then

ϕ((y2xyxn−1y2)ω) = s4,4b
k+m−1abk(n−1)+1s4,4

and, as s4,4b
k+m−1a 6= 0, k must be 0 which is impossible.

We conclude the study of this case with only one possibility
that is ϕ(x) ∈ Cm and then

ϕ((y2xyxn−1y2)ω) = ϕ((y2xyxn−1y2)ωy) =

= ϕ((y2xyxn−1y2)ωy) = si,i .
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2. If we make the choice ϕ(y) ∈ {bk : 1 ≤ k < (m + 1)/4} then
ϕ((y2xyxn−1y2)ω) must be equal to 0, because:
(a) if ϕ(x) ∈ Cm then there is j ∈ Q \ {0} such that ϕ(x)ω = sj,j

and ϕ((y2xyxn−1y2)ω) = (b2kϕ(x)bksj,jb
2k)ω that is always

equal to 0.
(b) if n = 3 and ϕ(x) ∈ {bta, bt−1ab : t ∈ {1,m − 1}}, then we

must check that every possible choice of ϕ(x) leads to the
conclusion that ϕ((y2xyxn−1y2)ω) = 0;

(c) finally, if ϕ(x) ∈ {bk : 1 ≤ k < (m + 1)/(n − 1)} then
ϕ((y2xyxn−1y2)ω) = bω = 0.

The proof is now complete and for every choice of ϕ : {x, y}−→Sm
we conclude that

ϕ((y2xyxn−1y2)ω) = ϕ((y2xyxn−1y2)ωx) = ϕ((y2xyxn−1y2)ωy) .

¤

Corollary 6.7. For every m,n ≥ 3 with n 6= m, the pseudoidentity

λn =
(

(y2xyxn−1y2)ωy2xyxn+1 = (y2xyxn−1y2)ωy2xyxn
)

holds in Sm. ¤

We denote by S the family {Sm : m ≥ 3} and, for every n ≥ 3, by
Sn the subfamily {Sm : m ≥ 3, m 6= n} .

Theorem 6.8. For m,n ≥ 3, V∗(Sn) satisfies the pseudoidentity λm
if and only if m 6= n.

Proof

Recall that, for each p ≥ 3, Sp 6|= λp, so V
∗(Sn) 6|= λm for every

m ≥ 3 and m 6= n.
By corollary 6.7, we conclude that V(Sn) |= λn. As induction hy-

pothesis suppose that Vt(Sn) |= λn, for t ≥ 1. Using theorem 4.2, we
conclude that

g(Vt(Sn)) |=
(

λn,Ax2y2

)

since A(y2xyxn−1y2)ωy2xyxn+1 = Ax2y2 . By corollary 5.1 we conclude that

V(Sn) |= πx = πy = π

is a sufficient condition to prove that

Vt+1(Sn) |= π(y2xyxn−1y2)ωy2xyxn+1 = π(y2xyxn−1y2)ωy2xyxn
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where X is a finite set that contains {x, y}, and π ∈ ΩXS. Choos-
ing X = {x, y} and π = (y2xyxn−1y2)ω, lemma 6.6 implies that the
sufficient condition is valid. So

Vt+1(Sn) |= (y
2xyxn−1y2)ωy2xyxn+1 = (y2xyxn−1y2)ωy2xyxn .

and the proof is complete, since V∗(Sn) =
⋃

t∈N
Vt(Sn). ¤

Corollary 6.9. Let P1, P2 be different nonempty subsets of S. Then
V∗(P1) is different from V∗(P2).

Proof

If P1 6= P2 then there is n ≥ 3 such that Sn ∈ P1∪P2 and Sn 6∈ P1∩P2.
Suppose Sn ∈ P1, then V

∗(P2) ⊆ V∗(Sn) and V
∗(P2) |= λn. Otherwise

Sn 6|= λn and so V
∗(P1) 6|= λn. Consequently, V

∗(P1) is different from
V∗(P2). ¤

Definition 6.10. Let V be a s.c. pseudovariety and F a family of
finite semigroups. We say that F is ∗-independent modulo V if for
every S ∈ F , S 6∈ V∗(V ∪ F \ {S}).

Since V∗(B2) ⊂ V∗(Sm), for every m ≥ 3, corollary 6.9 is equivalent
to saying that the family S is ∗-independent modulo V∗(B2).
The following proposition is an application of a general argument,

similar to one used in [5, 12].

Proposition 6.11. Let V and W be two s.c. pseudovarieties such
that W contains an infinite countable family of finite semigroups, F ,

∗-independent modulo V. Then the interval [V,V
∗
∨W] of the lattice

of s.c. pseudovarieties contains an infinite chain, which is isomorphic
to the chain of all real numbers (with the usual order).

Proof

Let ϕ : F−→Q be a bijection between F and the set of rational
numbers, and ξ a real number. Consider

Vξ = V∗(V ∪ {S ∈ F : ϕ(S) ≤ ξ})

and a function

θ : R −→ [V,V
∗
∨W]

ξ 7−→ Vξ .

Since F ⊆ W, then V ⊆ Vξ ⊆ V
∗
∨ W and, by the definition, θ is

order preserving (if ξ, ζ are two real numbers such that ξ ≤ ζ then
Vξ ⊆ Vζ). Now, we must prove that θ is an injection. Let ξ and ζ
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be two different real numbers, and suppose that ξ < ζ. Then there
is q ∈ Q such that ξ < q < ζ and consequently ϕ−1(q) ∈ Vζ and
ϕ−1(q) 6∈ Vξ.
Hence the image of θ is a chain of s.c. pseudovarieties isomorphic to

R contained in [V,V
∗
∨W]. ¤

We may now establish the main result of this section, which is an
application of the preceding proposition in case V = V∗(B2) and
W = ER ∩ LR.

Theorem 6.12. The interval of aperiodic s.c. pseudovarieties
[V∗(B2),ER ∩ LR] contains a chain of s.c. pseudovarieties that is
isomorphic to the chain of all real numbers.

¤

7. The interval [V∗(B1
2),ER ∩A]

The arguments used in the preceding section are adapted and applied
to the study of [V∗(B1

2),ER ∩ A]. Consider the families of monoids
M = {S1

m : m ≥ 3} andMn = {S
1
m : m ≥ 3, m 6= n}, for n ≥ 3 .

Proposition 7.1. The family M is contained in ER ∩ A and the
monoid B1

2 belongs to V(S1
m), for any m ≥ 3.

Proof

The set Σ = {xω = xω+1, (yωx)ωyω = (yωx)ω} is a pseudoidentity
basis of ER ∩ A. Since ER ∩ LR ⊂ ER ∩ A, then Sm |= Σ, for
every m ≥ 3. To check if S1

m |= Σ, it suffices to consider the mappings
ϕ : X−→S1

m such that {x, y} ⊆ X and, ϕ(x) = 1 or ϕ(y) = 1. If
ϕ(x) = 1 then we obtain

ϕ(xω) = ϕ(xω+1) = 1 and
ϕ((yωx)ωyω) = ϕ((yωx)ω) = ϕ(y)m+1 .

Otherwise, if ϕ(y) = 1 then

ϕ(xω) = ϕ(xω+1) = ϕ(x)m+1 and
ϕ((yωx)ωyω) = ϕ((yωx)ω) = ϕ(x)m+1 .

Consequently S1
m |= Σ.

For every m ≥ 3, B2 is a subsemigroup of Bm, which is a subsemi-
group of Sm, and so B

1
2 is a subsemigroup of S

1
m, which implies that

B1
2 ∈ V(S

1
m). ¤
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Lemma 7.2. Given m,n ≥ 3 such that m 6= n,

S1
m |= (y

2xyxn−1y2)ωx = (y2xyxn−1y2)ωy = (y2xyxn−1y2)ω .

Proof

Let ϕ : {x, y}−→S1
m be a function such that ϕ(x) = 1 or ϕ(y) = 1.

In the first case

ϕ((y2xyxn−1y2)ωx) = ϕ((y2xyxn−1y2)ωy) = ϕ((y2xyxn−1y2)ω) = ϕ(y)ω

and in the second case

ϕ((y2xyxn−1y2)ωx) = ϕ((y2xyxn−1y2)ωy) = ϕ((y2xyxn−1y2)ω) = ϕ(x)ω .

Lemma 6.6 completes the proof. ¤

Corollary 7.3. Given m,n ≥ 3 such that n 6= m, S1
m |= λn. ¤

Corollary 7.4. For every n ≥ 3, S1
n 6∈ V(Mn). ¤

Theorem 7.5. Given m,n ≥ 3, V∗(Mn) satisfies the pseudoidentity
λm if and only if m = n.

Proof

For every m,n ≥ 3 such that n 6= m, Sm 6|= λm which implies that
S1
m 6|= λm and, as S

1
m ∈ V

∗(Mn), V
∗(Mn) 6|= λm.

By corollary 7.3 we conclude that V(Mn) |= λn. Assume as induc-
tion hypothesis that Vt({Mn}) |= λn, for some t ≥ 1. By proposition
4.2, we conclude that g(Vt(Mn)) |= (λn,Ax2y2) and, by corollary 5.1,
it follows that V(Mn) |= πx = πy = π is a sufficient condition to

Vt+1(Mn) |= π(y2xyxn−1y2)ωy2xyxn+1 = π(y2xyxn−1y2)ωy2xyxn

where X is a finite set that contains {x, y}, and π ∈ ΩXS. Choosing
again X = {x, y} and π = (y2xyxn−1y2)ω, lemma 7.2 implies that the
sufficient condition is valid. Hence

Vt+1(Mn) |= (y
2xyxn−1y2)ωy2xyxn+1 = (y2xyxn−1y2)ωy2xyxn .

The conclusion is that, for every k ∈ N,

Vk(Mn) |= (y
2xyxn−1y2)ωy2xyxn+1 = (y2xyxn−1y2)ωy2xyxn .

Since V∗(Mn) =
⋃

k∈N
Vk(Mn), the final result is that

V∗(Mn) |= λn. ¤

Note that V∗(B1
2) ⊆ V∗(Sm), for every m ≥ 3, and by theorem 7.5

we conclude that, for any m ≥ 3, V∗(B1
2) |= λm, which implies that
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V∗(B1
2) is strictly contained in all s.c. pseudovarieties generated by

nonempty subsets ofM. Consequently the interval [V∗(B1
2),ER ∩A]

is not trivial.

Corollary 7.6. The family M is ∗-independent modulo V∗(B1
2).

Proof

For every m ≥ 3, S1
m 6|= λm and theorem 7.5 guarantees that

V∗(Mm) |= λm. So S
1
m 6∈ V

∗(Mm) and, as V
∗({B1

2} ∪Mm) = V∗(P )
because V∗(B1

2) ⊂ V∗(Mn), the proof is complete. ¤

The application of proposition 6.11, in case V = V∗(B1
2) and

W = ER ∩A, and the last corollary establish the following result.

Theorem 7.7. The interval [V∗(B1
2),ER∩A] contains a chain of s.c.

pseudovarieties isomorphic to the chain of all real numbers.

By [2, theorem 10.10.14] we know that [V∗(B1
2 , B(1, 2)), (ER∩A)∗D]

is trivial if and only if [V∗(B1
2),ER∩A] is trivial. So theorem 7.7 leads

us to the conclusion that [V∗(B1
2 , B(1, 2)), (ER∩A)∗D] is not trivial.
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