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Abstract. In this note we consider the estimation of the multivariate distribution
function Fp of the p-dimensional marginal of a stationary associated sequence. We
show, under certain regularity conditions, the almost sure consistency and charac-
terize the asymptotic behavior of the MSE . We also characterize the asymptotic
optimal bandwidth. Under some stronger assumptions on the covariance this band-
width rate is shown to be the same as for the independent case.
Keywords: Association, Kernel estimator, Optimal bandwidth, Mean squared
error.

1 Introduction and assumptions

Estimation of distribution functions has been one of the main problems in
statistics. Given a stationary sequence of random variables we will consider
the estimator of it’s p- dimensional marginal distribution function assuming
some kind of positive dependence. The various types of positive dependence
have received some interest in the literature since the early 1990’s. We will
consider associated random variables as introduced in Esary et al (1967). For
the one-dimensional marginal, the estimator has been studied by Roussas
[Roussas, 1993], [Roussas, 2000] and Cai, Roussas [Cai and Roussas, 1998].
Motivated by the need to approximate covariance functions appearing in the
study of empirical processes Azevedo, Oliveira [Azevedo and Oliveira, 2000]
and Henriques, Oliveira [Henriques and Oliveira, 2002] studied the two di-
mensional case. This note extends results in [Azevedo and Oliveira, 2000]
for the p-dimensional case. We start by recalling the definition of associa-
tion, as stated in Esary et al (1967).

Definition 11 For a finite index set I, the random variables (r.v.’s) {Xi}i∈I
are said to be associated, if for any real-valued coordinatewise increasing
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2 Cećılia Azevedo and Paulo E. Oliveira

functions G and H defined on RI , Cov {G(Xi, i ∈ I), H(Xj , j ∈ I)} ≥ 0,
provided IE

(
G2(Xi, i ∈ I)

)
<∞ and IE

(
H2(Xj , j ∈ I)

)
<∞. A sequence of

r.v’s is said to be associated if any finite subset of the r.v.’s is associated.

Definition 12 A smooth estimate of Fp , d.f. of the random vector X =

(X1, . . . , Xp), with p ≥ 2, F̂n,p is defined, for each x = (x1, . . . , xp) ∈ Rp, by

F̂n,p(x) =
1

n− p

n−p∑

i=1

U

(
x−Xi,p

hn

)
, (1)

where U is a p−variate known d.f., the kernel function and, for each fixed
p and i = 1, . . . , n − p, Xi,p = (Xi+1, . . . , Xi+p). The (bandwidths) hn are
positive numbers tending to 0, as n→∞.

Jin, Shao [Jin and Shao, 1999] have been shown that, under independence,
the optimal bandwidth of the p-dimensional kernel distribution estimator
of Fp has order n−1/3, for all dimensions. For associated samples, several

properties of the univariate estimate F̂n of the marginal d.f. F have been
investigated by Cai, Roussas [Cai and Roussas, 1998]. These authors proved
that the optimal bandwidth rate is of order n−1. The rate n−1/3 becomes op-
timal under some stronger assumptions on the covariance structure. Azevedo,
Oliveira [Azevedo and Oliveira, 2000] studied properties of the bivariate es-

timate F̂n,k of the d.f. of (X1, Xk+1) with fixed k = 1, . . . n−1, characterizing
the optimal bandwidth rate. The results obtained on [Azevedo and Oliveira, 2000]
extended the one-dimensional ones.

The set of conditions bellow are basically the same as in Cai, Rous-
sas [Cai and Roussas, 1998] together with the conditions used by Jin, Shao
[Jin and Shao, 1999] under independence.
Assumptions

(A1) {Xn}n∈N is a strictly stationary sequence of random variables with bounded
density function f and continuous marginal distribution function F ;

(A2) The derivative of f exists and is continuous and bounded;
(A3) The d.f., Fp, of the random vector X = (X1, . . . , Xp) has bounded and

continuous partial derivatives of first and second orders;
(A4) For each positive integer j, the d.f. ofXp,j = (X1, . . . , Xp, Xj+1, . . . , Xj+p),

Fp,j , has bounded and continuous partial derivatives of first and second
order;

(A5) The kernel function U is p−differentiable and u = ∂pU
∂x1...∂xp

is such that:

(i)

∫

Rp

u(x)dx = 1; (ii)

∫

Rp

xu(x)dx = 0; (iii)

∫

Rp

xxT u(x)dx <∞;

(A6) The sequence of bandwidths is such that nh2
n → 0;

(A7)

∞∑

n=1

nCov1/3(X1, Xn) <∞; (A7)
′

∞∑

n=1

Cov1/3(X1, Xn) <∞;
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(A8) V =
∂pU2

∂x1 . . . ∂xp
, is such that

∫

Rp

xxT V(x)dx <∞.

Remark 13 Note that

∫

Rp

V(x)dx = U2(+∞, . . . ,+∞) = 1.

The conditions (A1), (A2) and (A7) have already been used in Cai and Rous-
sas [Cai and Roussas, 1998] for the treatment of the univariate case. Note
further that (A7) implies (A7)

′ which implies the L2[0, 1] weak convergence of
empirical process, as proved in Oliveira and Suquet [Oliveira and Suquet, 1999].

Let us define the auxiliar functions V1,V2, V3 and V4 from Rp to R,
such that for each x = (x1, . . . , xp),

• V1(x) =

p∑

i=1

∂2Fp

∂x2
i

(x)

∫

Rp

a2
iu(a)da+2

p−1∑

j=1

p∑

i=j+1

∂2Fp

∂xj ∂xi
(x)

∫

Rp

aiaju(a)da;

• V2(x) =

p∑

i=1

∂Fp

∂xi
(x)

∫

Rp

aiV(a)da;

• V3(x) =

p∑

i=1

∂2Fp

∂x2
i

(x)

∫

Rp

a2
iV(a)da+2

p−1∑

i=1

p∑

j=i+1

∂2Fp

∂xj ∂xi
(x)

∫

Rp

aiajV(a)da;

• V4(x) =

2p∑

i=1

∂2Fp,j

∂x2
i

(x,x)

∫

R2p

a2
iu(a)da+2

2p−1∑

i=1

2p∑

j=i+1

∂2Fp,j

∂xj ∂xi
(x,x)

∫

R2p

aiaju(a)da.

2 Consistency of the estimator.

In this section we present some results concerning to consistency of the es-
timator (1). We first show that F̂n,p is asymptotic unbiased, characterizing

also the convergence rate of IE
(
F̂n,p(x)

)
. To derive the asymptotic consis-

tency of F̂n,p, we apply a strong law of large numbers to the random variables

U
(

x−Xi,p

hn

)
, i = 1, . . . , n− p. To achieve this last step we shall need to char-

acterize the behavior of each entry of the covariance matrix of the random
vector whose entries are the preceding variables.

Theorem 21 Suppose {Xn}n∈N satisfy (A1), (A3) and (A5). Then, for each
x ∈ Rp,

IE
(
F̂n,p(x)

)
= Fp(x) +

V1(x)

2
h2
n + o(h2

n).

Proof: First note that the kernel estimator (1) can be written as

F̂n,p(x) =

∫

Rp

U

(
x− s

hn

)
dφ̂n(s), (2)
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where φ̂n(x) =
1

n− p

n−p∑

i=1

1I(−∞,x1]×···×(−∞,xp](Xi,p), with 1IA the char-

acteristic function of the set A.
As IE

(
φ̂n(x)

)
= Fp(x), it follows from (2) applying Fubini’s Theorem, that

IE
(
F̂n,p(x)

)
=

∫

Rp

U

(
x− s

hn

)
dFp(s) =

∫

Rp

u(t)Fp(x−thn)dt. Now, by us-

ing a Taylor expansion of order 2 of Fp and taking account of (A3) and (A5),
and of the continuity of the second order partial derivatives of Fp, (A3), the
result follows. ¥
Note that (A3) and (A5) are only required in order to establish a convergence

rate. In fact, the convergence of IE
(
F̂n,p(x)

)
to Fp(x) follows from an ap-

plication of the Dominated Convergence Theorem.
In order to establish the almost sure convergence of (1) we need to control
some covariances. Define
• Inj(x) = Cov

(
U
(

x−X1,p

hn

)
,U

(
x−Xj,p

hn

))

• Ij(x) = Cov
(
1I(−∞,x](X1,p), 1I(−∞,x](Xj,p)

)
.

Lemma 22 Suppose that {Xn}n∈N satisfy (A1), (A3), (A4) and (A5). Then,
for each j > 1, and x ∈ Rp,

(i) Inj(x) = Ij(x) +O(h2
n) = Fp,j(x,x)− F2

p(x) +O(h2
n);

(ii) For j > p− 1, Ij(x) ≤

p∑

k=1

(p− k + 1)Cov 1/3(X1, Xj+k)+

+
∑p−1

k=1(p− k)Cov 1/3(X1, Xj−k+1).

Proof: Condition (i) follows from rewriting the covariance

Inj =

∫

R2p

U
(x− s

hn

)
U
(x− t

hn

)
dFp,j(s, t)−

(∫

Rp

U
(x− s

hn

)
dFp(s)

)2

. For the

first term, writing the function U as an integral and by using Fubini’s Theo-

rem, we have

∫

R2p

u(a)u(b)Fp,j(x−a)(x−b)dadb. So, expanding Fp,j to the

second order and using (A4) and (A5), this integral is equal to Fpj(x,x) +

O(h2
n), which together with the behavior of IE

(
F̂n,p(x)

)
, completes the proof

of (i). To prove condition (ii) we need use the inequality,

Cov
(
1I(−∞,s](Y1), 1I(−∞,t](Y2)

)
≤MCov 1/3(Y1, Y2), (3)

where Y1, Y2 are associated random variables with common distribution func-
tion with a bounded density andM > 0 is constant (see Sadikova [Sadikova, 1966]),
and the following lemma (Lebowitz [Lebowitz, 1972]),

Lemma 23 Let A and B be subsets of {1, . . . , n} and xi real with i ∈ A∪B.
Let HA,B = P (Xi > xi, i ∈ A ∪B)− P (Xj > xj , j ∈ A)P (Xk > xk, k ∈ B).

If (X1, . . . , Xn) is associated then, 0 ≤ HA,B ≤
∑

i∈A,j∈B H{i},{j}.
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In fact, according lemma 23,

Cov
(
1I(−∞,x](X1,p), 1I(−∞,x](Xj,p)

)
≤

≤

p∑

k=1

p∑

i=1

Cov
(
1I(−∞,xk](Xk), 1I(−∞,xj+i](Xj+i)

)
.

Now applying innequality (3), we have

Cov
(
1I(−∞,xk](Xk), 1I(−∞,xj+i](Xj+i)

)
≤M Cov 1/3(Xk, Xj+i), so

Ij(x) ≤ M

p∑

k=1

p∑

i=1

Cov 1/3(Xk, Xj+i). The sequence {Xn}n∈N being station-

ary,
Ij(x) ≤M

∑p
k=1(p−k+1)Cov 1/3(X1, Xj+k)+

∑p−1
k=1(p−k)Cov

1/3(X1, Xj−k+1). ¥

Remark 24 Note that if the covariance sequence

{Cov (X1, Xj+1)}j∈N (4)

is decreasing, Ij(x) ≤ p2Cov 1/3(X1, Xj+1).

Theorem 25 Suppose the variables Xn, n ≥ 1, satisfy (A1), (A2), (A3),

(A4), (A5), (A7) and (A8). Then, for every x ∈ Rp, F̂n,p(x)→ Fp(x) almost
surely.

Proof: As proved in Theorem 21, IE
(
F̂n,p(x)

)
→ Fp(x), so it’s enough to

prove that the variables U
(

x−Xm,p

hn

)
, m ≥ 1 satisfy a strong law of large

numbers. These variables are stationary and associated, as U is coordi-
natewise nondecreasing. Then, according to Newman [Newman, 1980] they
satisfy a strong law of large numbers if

lim
n→∞

1

n− p

n−p∑

j=1

In,j(x) = 0. (5)

From conditions (i) and (ii) of the preceding lemma,

In,j(x) ≤M

p∑

k=1

(p−k+1)Cov 1/3(X1, Xj+k)+

p−1∑

k=1

(p−k)Cov 1/3(X1, Xj−k+1)+

O(h2
n). Now condition (5) is a consequence of (A7) and association, so the

theorem follows. ¥

3 The behavior of the mean square error.

In this section we study the asymptotics and convergence rate of the mean
square error (MSE). This characterization will then be used to derive the op-
timal bandwidth convergence rate. This convergence rate for the bandwidth
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is, as will be explained later, of order n−1, thus a different convergence rate
than the one in the independent case. But if we consider a decreasing rate on
the sequence of the covariances (see Cai, Roussas [Cai and Roussas, 1998])
we obtain a convergence rate of order n−1/3, as in the independent case (see
Jin, Shao [Jin and Shao, 1999]), for all dimensions p.

As usual write MSE
(
F̂n,p(x)

)
= Var

(
F̂n,p(x)

)
+
(
IE
(
F̂n,p(x)

)
− Fp(x)

)2

.

The behavior of IE
(
F̂n,p(x)

)
being known (cf.Theorem 21), we need to de-

scribe the asymptotics and convergence rate for the variance term.

Lemma 31 Suppose the sequence {Xn}n∈N satisfy (A1), (A3), (A4), (A5)
and (A8). Then for all x in Rp,

(i) IE
(
U2
(x−Xi,p

hn

))
= Fp(x)− hnV2(x) +

h2
n

2
V3(x) + o(h2

n)

(ii)
∣∣∣Var

(
U
(

x−Xi,p

hn

))
− Fp(x)(1− Fp(x)) + hnV2(x)

∣∣∣=
= h2

n(V3(x)− Fp(x)V1(x)) + o(h2
n).

Proof: In what concerns to (i), we have, by definition,

IE
(
U2

(
x−Xi,p

hn

))
=
∫

Rp U
2
(

x−s

hn

)
dFp(s)

∫
Rp

(∫
(−∞,x]

V(a)da
)
dFp(s)

By using Fubini Theorem and changing variables,

IE
(
U2

(
x−Xi,p

hn

))
=
∫

Rp V(a)Fp(x − ahn)da. Using a Taylor expansion of

order 2 of Fp and taking account of (A5) and the definitions of V2 and V3,
we have (i). In order to obtain (ii), knowing that

Var
(
U
(

x−Xi,p

hn

))
= IE

(
U2

(
x−Xi,p

hn

))
−
(
IE
(
U
(

x−Xi,p

hn

)))2

, it is suffices

to apply (i) and Theorem 21. ¥

Definition 32 Let σ2(x) = Fp(x)−F
2
p(x)+2

∑∞
j=2

(
Fp,j(x,x)− F2

p(x)
)
and

cn(x) = 2
∑∞

j=n−p+1

(
Fp,j(x,x)− F2

p(x)
)
+ 2

n−p

∑n−p
j=2 (j−1)

(
Fp,j(x,x)− F2

p(x)
)

Theorem 33 Suppose that {Xn}n∈N satisfy (A1), (A3), (A4), (A5), (A6),
(A7) and (A8). Then

(n−p)Var
(
F̂n,p(x)

)
= σ2(x)−hnV2(x)+(n−p−1)h2

n (V4(x)− Fp(x)V1(x))+

O(h2
n)− cn(x).

Proof: Var
(
F̂n,p(x)

)
=

1

(n− p)2

n−p∑

i,j=1

Cov

(
U

(
x−Xi,p

hn

)
,U

(
x−Xj,p

hn

))
.

By stationarity, Var
(
F̂n,p(x)

)
=

1

n− p
Var

(
U

(
x−X1,p

hn

))
+

2

(n− p)2
n−p∑

j=2

(n− p− j + 1)In,p(x) By using the preceding lemma and lemma 22,
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(n−p)Var
(
F̂n,p(x)

)
= Fp(x)−F

2
p(x)−V2(x)hn+(V3(x)−Fp(x)V1(x))h

2
n+

+
2

n− p

n−p∑

j=2

(n−p−j+1)×

(
Fp,j(x,x)− F2

p(x) +
h2
n

2
(V4(x)− Fp(x)V1(x))

)
.

We have now,

(n−p)Var
(
F̂n,p(x)

)
= Fp(x)−F

2
p(x)−V2(x)hn+(V3(x)−Fp(x)V1(x))h

2
n+

+

n−p∑

j=2

(
Fp,j(x,x)− F2

p(x)
)
+ (n− p− j + 1)h2

n (V4(x)− Fp(x)V1(x))−

2

n− p

n−p∑

j=2

(n− p− j + 1)×
(
Fp,j(x,x)− F2

p(x)
)
+O(h2

n).

Replacing

n−p∑

j=2

(
Fp,j(x,x)− F2

p(x)
)
by

∞∑

j=2

(
Fp,j(x,x)− F2

p(x)
)
and sub-

tracting to later result
∞∑

j=n−p+1

(
Fp,j(x,x)− F2

p(x)
)
, we obtain now the ex-

pression for the variance of F̂n,p(x). ¥
We may present now the behavior of the MSE.

Theorem 34 Suppose {Xn}n∈N, satisfy (A1), (A3), (A4), (A5), (A6), (A7)
and (A8). Then,

(n−p)MSE
(
F̂n,p(x)

)
= σ2(x)−hnV2(x)+O(nh2

n)+o(hn+nh2
n)−cn(x).

Note that cn → 0, according to the assumptions made, and that cn is inde-
pendent of the bandwidth choice. It is now evident that an optimization of
the convergence rate of the MSE is achieved by choosing hn = O(n−1) for all

dimensions p. In fact, hn(x) =
V2(x)

2(n−p−1)(V4(x)−Fp(x)V1(x)) .

To obtain, as in the independent case, the asymptotic optimal bandwidth
of order n−1/3, we replace assumptions (A6) and (A7) by,

(A∗
6) nh4

n → 0 (A∗
7)

∑∞
j=1 (Cov (X1, Xj+1))

1−τ
3 <∞, 0 < τ < 1,

as Cai and Roussas, 1998, did in the univariate case and providing that the
sequence of covariances (4) is decreasing.

Theorem 35 Suppose {Xn}n∈N, satisfy (A1), (A3), (A4), (A5), (A8), (A
∗
6)

and (A∗
7). Then,

(n−p)MSE
(
F̂n,p(x)

)
= σ2(x)−hnV2(x)+O(nh4

n)+ o(hn+nh4
n)−cn(x).

Proof: To prove this result we use the identity Inj(x) = Ij(x) + O(h2
n) (cf.

Lema 22). As we noted in Remark 24, if we obtain an upper bound for Ij
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and, consequently, for Inj we may use the following identity

|Inj(x)− Ij(x)| = |Inj(x)− Ij(x)|
τ |Inj(x)− Ij(x)|

1−τ ≤ cτ h2τ
n p2(1−τ)

·
∣∣(Cov 1/3(X1, Xj+1)

)1−τ ∣∣= c̃ h2τ
n

∣∣(Cov 1/3(X1, Xj+1)
)1−τ ∣∣,

where c̃ = cτ p2(1−τ) is constant.

If we consider the following expression for the variance,

(n− p)Var
(
F̂n,p(x)

)
= Var

(
U
(

x−X1,p

hn

))
+

+
2

n− p

n−p∑

j=2

(n− p− j + 1)
∣∣Inj(x)− Ij(x)

∣∣+
n−p∑

j=2

(n− p− j + 1)Ij(x), then,

1

n− p

n−p∑

j=2

(n− p− j + 1)
∣∣Inj(x)− Ij(x)

∣∣≤
n−p∑

j=2

∣∣Inj(x)− Ij(x)
∣∣≤

c̃h2τ
n

∑∞
j=2

(
Cov 1/3(X1, Xj+1)

)1−τ
= O(h2τ

n ), by using (A∗
7). The result now

follows readily. ¥
Once again, is now evident that an optimization of the convergence rate of
the MSE is achieved by choosing hn = O(n−1/3), for all dimensions p.

Corollary 36 Suppose {Xn}n∈N, satisfy (A1), (A3), (A4), (A5), (A
∗
6), (A

∗
7)

and (A8). Suppose further that the covariance sequence (4) is decreasing.
Then, the asymptotic optimal bandwidth {hn}n∈N of kernel estimator of Fp

is, for all dimensions p, in the MSE sense, of order O(n−1/3).

This work has been partially supported by CMAT and FCT under the program

POCI 2010.
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