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Abstract

Recent papers by Charemza and Syczewska (1998) and Carrion, Sans6 and Ortufio (2001) focused
on the joint use of unit root and stationarity tests. In this paper, the discussion is extended to the case
of cointegration. Critical values for testing the joint con..rmation hypothesis of no cointegration are

computed and a small Monte Carlo experiment evaluates the relative performance of this procedure.
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1 Introduction

The issues of unit roots and cointegration have generated a vast literature in the past few years. More
recently, it has been argued that con..rmatory analysis (i.e., applying unit root tests in conjunction
with stationarity tests) may in some cases lead to a better description of the series, improving upon the
separate use of each type of test (see, for example, Amano and Van Norden, 1992 and the discussion in
Maddala and Kim, 1998). If the two approaches give consistent results, i.e. there is an acceptance and a
rejection of the nulls, one may conclude whether a given series is stationary or not. On the other hand,
if both tests either reject or accept their respective null hypotheses, the results are inconclusive.

Some practical aspects concerning the joint use of unit root and stationarity tests have been addressed
by Charemza and Syczewska (1998) and Carrion, Sans6 and Ortufio (2001). The ..rst authors suggest
that instead of conventional individual critical values for each type of test, one should use symmetric
critical power values. These correspond to the probability of type | error for one type of test and power

for the other test when both cumulative marginal distributions are equal. Thus, Charemza and Syczewska
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(1998), using Monte Carlo methods, tabulate the new critical values needed for the joint con..rmation
hypothesis (JCH) of stationarity when the Augmented Dickey-Fuller (ADF) test and the Kwiatkowski,
Phillips, Schmidt and Shin (1992, KPSS henceforth) are to be used. However, this approach depends on
the parameterization of the autocorrelation in the errors. Hence, Carrion et al. (2001) recommend that
the JCH of a unit root should be tested instead, providing a new set of critical values.

In this paper, we study the application of this methodology to cointegration testing. Following
Charemza and Syczewska (1998) and Carrion et al. (2001), we show how the testing procedure may be
implemented and the related critical values obtained for tests with null hypothesis of no cointegration,
as well as null of cointegration. We address the cases where Engle-Granger’s ADF and Phillips-Ouliaris
Z, and Z, tests are used in conjunction with the KPSS-type test for the null hypothesis of cointegration
developed by McCabe, Leybourne and Shin (1997) (see Gabriel, 2001 for a comparative study of the
properties of null of cointegration tests). Furthermore, the application of the joint con..rmation procedure
is assessed by means of a set of Monte Carlo experiments, establishing some comparisons with the separate
use of each type of test. This is of great interest, since joint testing will be an alternative approach only
if it is able to produce better results that individual testing.

The paper proceeds as follows. The next section establishes the notation for the JCH in the context
of cointegration, while section 3 presents the critical values for the JCH of no cointegration. The Monte

Carlo study is undertaken in section 4 and section 5 concludes.

2 Joint Con..rmation Hypothesis and Cointegration

The ..rst step in order to implement the joint use of null of no cointegration and null of cointegration
tests is to decide whether one wishes to test the JCH of cointegration or no cointegration. A simple

cointegrated model is generally formulated as

Yt = I;/B + uy, @

where y; is a scalar I(1) process and x; is a vector (1) process of dimension k. The variables y; and x;
are said to be cointegrated if w; is 1(0), whereas if w; is I(1) there is no long run equilibrium relationship
between y; and ;.

A common parameterization for the error process is to assume that u; is an autoregressive process
ur = pup—1 + wi, wp ~ n.i.d.(0,0,), With |p| < 1 in the case of cointegration and p = 1 when there
is no cointegration. Another possibility is to assume that under the hypothesis of no cointegration the

disturbance u; may be decomposed into the sum of a random walk and stationary component,
Ut = 7V + €t, (2)

where the random walk is v, = 7,_; + n;, with 7, = 0 and 7, distributed as i.i.d.(0,07;), while the

stationary part ¢, is distributed as i.i.d.(0,02) and is assumed independent of 7,. Cointegration stems



from this formulation when 072, = 0, so that v, = 0 and no longer is a random walk. Note that in this
case the i.i.d. assumption of the errors (u; = &) is not very realistic, since in empirical applications we
should expect some degree of serial correlation. Thus, we may relax this assumption and assume that
et = mer—1 + ¢y, ¢, being i.i.d.(0, 7).

If one chooses to test the JCH of cointegration (meaning 1 (0) errors), the critical values would always
depend on the value autoregressive parameter of the error term, be it p if we specify the null hypothesis
of cointegration as Ho: |p| < 1, or 7 if Hy: 037 = 0, allowing for autocorrelation in &;. It would involve
extensive tabulations for a few particular values of p (or ), very likely to be dizerent from the actual,
unknown value in the empirical situation the researcher is dealing with. Note that this is a similar problem
to that pointed out by Carrion et al. (2001) for the univariate case. Therefore, a way to circumvent this
obstacle is to specify the JCH of no cointegration.

We closely follow the notation of Charemza and Syczewska (1998) and Carrion et al. (2001) by
de..ning the probability of joint con..rmation (PJC) of the null hypothesis of no cointegration as

[ ol o]

/ / fp.x(2p, 2530, T|HY , H)dzp dzx = PJC. (3)
zPIC zPIC

Here, z; (j = D, K) represents the test statistics (in which we maintain the original notation), D for
the ADF t-statistic and K for the KPSS cointegration version of McCabe et al. (1997). The vector of
DGP parameters is denoted as O, T is the sample size, fp x is the joint density function, while 2]’.’*’0
are the critical values from the joint distribution for a given PJC signi..cance level. As discussed in the
above mentioned papers, for each PJC signi..cance level the number of possible critical values is in..nite.
However, if we impose the restriction that the marginal probabilities (MPr) should be equal, then there

is a unique pair (257¢, 2P7¢) satisfying

/ fD(ZD;G),T|HOD)dZD = / fK(ZK;@,T|H1K)dZK = MPr. (4)
Ech EIIzJC

This restriction means that the probability of deciding wrongly when applying each statistic is equal, that
is, when the ADF statistic does not reject the null of no cointegration (type Il error) and the KPSS-type
test rejects a true null of cointegration (type | error). Such pairs (25/¢, 2£7¢) are dubbed symmetric
critical power values (SCPV). Therefore, we ..nd cointegration at a PJC signi..cance level if the joint
ADF-KPSS statistic is in the interval {(—oo, 257¢), (0,2£7¢)}, whereas the converse situation leads to
a non-rejection of the JCH of no cointegration. In principle, this strategy would avoid prioritizing either
the cointegration or no cointegration hypotheses, although in practice this may be questionable, given
the simulation results in Carrion et al. (2001). We will return to this below.

Also note that we may also consider the JCH with the other pairs of tests, changing the notation
conformably. In fact, we will also consider the joint application of the Phillips-Ouliaris Z, and Z; tests,

and KPSS-type test. In the next section, critical values for these cases are presented.



3 Critical Values for the JCH of No Cointegration

As known, critical values for cointegration testing depend not only on the number of regressors k, but
also on the deterministic components that may be present in the cointegration space. We will restrict

our attention to single equation models with a single cointegration vector. Generalizing (1) as
yi = a+ 6t + x,0 + up, (%)

where ¢ denotes a time trend, we consider three cases: no constant (o« = § = 0), constant with no trend
(a # 0,6 = 0) and the model with trend component (« # 0,6 # 0), up to & = 5. Since we are considering
the JCH of no cointegration, u; = u;—1 +w: (p = 1), w; is assumed to be n.i.d.(0,1) and uy = 0. We
also set « = 1 and § = 1 for the relevant cases. After generating n = 50000 replications for sample
sizes T' = 50, 100 and 250, pairs of ADF-KPSS, Z,-KPSS and Z,-KPSS tests are computed. Using OLS,
an appropriate lag length for the ADF test is obtained with a t-test downward selection procedure, by
setting the maximum lag equal to 6 and then testing downward until a signi..cant last lag is found, at the
5% level. Concerning Z,, and Z;, the long run variance is estimated by means of a prewhitened quadratic
spectral kernel with an automatically selected bandwidth estimator, using a ..rst-order autoregression as
a prewhitening ..Iter, as recommended by Andrews and Monahan (1992). As for the KPSS cointegration
statistic, we use Saikkonen’s (1991) dynamic least squares estimator and ..Iter the residuals with an
ARIMA(p, 1,1) model, then using the variance estimator suggested by Leybourne and McCabe (1999)
(see McCabe et al., 1997 and Gabriel, 2001 for more details on the computation of the statistic).
Again, we follow the methodology of Charemza and Syczewska (1998) and Carrion et al. (2001) to
obtain the critical values. Thus, the n pairs of observations are sorted according to the ADF (or Z-
type) test and then 250 fractiles are computed. For each of these ADF (Z-type) fractiles, another 250
fractiles were obtained for the KPSS statistic, which means that we get a 250 x 250 table of empirical
joint frequencies. After cumulating these frequencies and thus obtaining the joint distribution function,
we may tabulate critical values for the desired signi..cance levels. These are shown in Table 1. The
computer routine to obtain these critical values was written in GAUSS! and is an adaptation of the
program used by Charemza and Syczewska (1998). Since the ADF and Z; share the same (marginal)
asymptotic distribution and given that the results obtained in the simulations for these two tests are

practically the same, we only show the critical values for the ADF test.

4 Monte Carlo Experiment

In order to assess the performance of the JCH of no cointegration in terms of classifying the model as
cointegrated or not, we devised a set of Monte Carlo simulations. The DGP similar to the one in Carrion

et al. (2001) and is practically the same as in the previous section, although the errors are allowed to

L Available upon request.



follow an ARMA(1,1) model of the form
Up = pUi—1 + wy + Owy_1, (6)

where p takes the values {0.5,0.9,1} and § = {—0.8,0}. For simplicity, we only consider a model with
a single regressor and a constant term, setting the sample size as 7' = 100 and 250, computing 2500
replications.

The results from this simulation exercise are shown in Table 2 and 3 for 7" = 100 and T' = 250,
respectively. We considered dicerent testing approaches. First, computing each test individually? and
using the respective marginal distributions (i.e. the standard critical values), we gauge the proportion of
times that the tests classify a given DGP as being cointegrated (in the line C) or not (NC), at the 5%
level of signi..cance. This corresponds to the usual power-size analysis. Secondly, and still resorting to
the 5% critical values from the marginal distributions, we count the frequency a realization of the DGP
is classi..ed as cointegrated or not in the following way: (i) if tests for the null of no cointegration (ADF,
Z, and Z;) reject their null and the KPSS null of cointegration test does not, the process is considered
to be cointegrated (C); (ii) if tests for the null of no cointegration do not reject their null and the null
of cointegration test does, the process is considered not to be cointegrated (NC); (iii) if both types of
tests reject their nulls (Inconclusive type A) or do not reject the respective nulls (Inconclusive type B),
no conclusion is achieved. These joint tests are labeled as D-K for ADF and KPSS tests and Z-K for Z,
and KPSS tests. Finally, a similar exercise is carried out, this time using the 5% critical values from the
joint distribution as displayed in Table 1, with the tests denoted as JU (D-K) and JU (Z-K).

From the analysis of Tables 2 and 3, we observe that testing the JCH of no cointegration in the latter
case leads to a very small number of correct decisions when the errors are stationary. This is also the
case for joint testing with standard critical values. Indeed, most of the times an inconclusive response
is obtained, namely rejections by both tests (type A inconclusive answers). Moreover, the results do not
seem to improve for larger sample sizes, when we compare Table 2 and 3. On the other hand, when
the DGP is truly non-cointegrated, the JCH approach is the most accurate in delivering the correct
answer, except when a negative MA component is present. Overall, this is in accordance with the results
for univariate testing in Carrion et al. (2001), although with a much poorer performance. A possible
explanation for these disappointing results may lie on the fact that the particular restriction imposed in
(4) may not be the most appropriate.

Comparing this performance with that of individual tests, we see that the latter have a much more
reliable behaviour in terms of providing the correct decision, both when there is cointegration and when
there is not. The performance of the KPSS cointegration test should be highlighted, given its relative
robustness to serial correlation and most especially to the introduction of negative MA components in
the errors. In fact, the performance of ADF and Z, tests, as well as that of joint tests, seems to sucer

a great deal with a negative MA error structure, which con..rms previous results in the literature. On

2This alternative was not considered in Carrion et al. (2001) for the univariate case.



the other hand, individual tests also have the advantage of not pointing to inconclusive answers, as it
happens with the JCH methodology.

Given these results, it would also be interesting to investigate what the outcome would be if one tested
the JCH of cointegration. As explained earlier, there is the problem with the critical values depending
on the degree of correlation of the errors. However, the researcher could choose an intermediate, though
non-optimal, approximation by ..xing p at an empirically plausible value and use the corresponding
critical values. Such a value could be p = 0.75, which is also recommended and tabulated by Charemza
and Syczewska (1998). Of course, if the true p is larger than 0.75, the critical values would be too
conservative, while the converse would lead to overrejecting the JCH of cointegration. Nevertheless,
despite the arbitrariness of such a choice, this seems a fairly realistic way to proceed.

Therefore, adapting the methodology discussed in section 2 and 3 to the JCH of cointegration, we
computed the 5% critical values for the DGP in this section® and evaluated its performance using the same
set of simulation experiences. The results are also displayed in Tables 2 and 3, under the columns JS (D-
K) and JS(Z-K). We observe that this strategy clearly improves upon that of JCH of no cointegration,
since a lot more of correct decisions are achieved when the DGP is cointegrated. However, this behaviour
is not sustained asymptotically, as the results for 7" = 250 are in general worse. On the other hand,
the ability to detect non-cointegrated models improves with the sample size and attains very reasonable

levels. Still, this approach does not seem to beat the conventional one, with individual testing.

5 Concluding Remarks

In this paper, we extended the joint con..rmation hypothesis approach to the context of cointegration.
Following Charemza and Syczewska (1998) and Carrion et al. (2001), we tabulated critical values for
the JCH of no cointegration. However, our subsequent Monte Carlo simulations question the usefulness
of such a methodology. Indeed, our simulation study, despite its limitations, lead us to conclude that
the joint application of dicerent types of tests may obscure, rather than clarify, the process of deciding
whether a given model is cointegrated or not. In particular, testing the JCH of no cointegration with the
critical values derived here is to be avoided, as it mainly leads to inconclusive answers when the DGP
is truly cointegrated. By reversing the JCH to be tested (that is, cointegration), slightly better results
are achieved. Nevertheless, it seems preferable to use the standard individual testing approach, which
consistently gave better (or at least as good) results. Further research is required, however, as there are
issues that should be addressed, namely that of the performance of the dinerent types of tests under

distinct null hypothesis.

3These are —2.482, —17.023 and 155.421 (T' = 100) and —4.065, —46.76 and 14.712 (T = 250) for the ADF, Z, and

KPSS tests, respectively. A more extensive tabulation is available upon request.
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6 Appendix

Table 1 - Critical values

no constant constant trend
PJC ADF MLS Z, ADF  MLS Z, ADF  MLS Z,
T=50 099 —4.054 0.044 -25.213 —4.703 0.032 —-29.256 —5.212 0.061 —35.144
k=1 095 —=3.301 0.073 -—18.721 —-3.946 0.042 -23.029 —4.498 0.11 —29.081
0.90 —-2983 0.107 -15.731 —=3.592 0.052 —-19.869 —4.184 0.186 —26.181
k=2 099 —4.588 0.03 —28964 —5.095 0.024 —-34.365 —5.552 0.033 —38.768
0.95 —=3.879 0.037 -22.376 —4.426 0.029 -—-29.169 —4.885 0.043 —32.735
090 —-3.572 0.044 -19.32 —4.062 0.033 —-29.914 —4.547 0.051 —29.968
k=3 0.99 —=5.041 0.022 -32.315 —5.477 0.018 —=38.227 —5.895 0.023 —41.641
0.95 —4.332 0.026 —-26.127 —4.826 0.021 —-32.514 -—-5.216 0.027 —36.267
090 —-3.99 0.029 —22981 —4.496 0.024 -29.367 —4.902 0.031 —33.454
k=4 099 —5454 0.012 -35.28 —5.828 0.02 —40.87 —6.199 0.012 —44.105
095 —4.758 0.015 —29.172 —5.152 0.023 -3554 —5491 0.015 —38.913
090 —4.417 0.016 —26.27 —4.818 0.027 -32.602 —-5.164 0.016 —36.238
k=5 099 5843 0.024 —-38.036 —6.241 0.016 —44.003 —6.499 0.024 —46.889
095 —=5.119 0.028 —-31.93 5487 0.02 —-38.662 —5.808 0.029 —41.482
0.90 —4.751 0.031 —-28.859 —5.139 0.022 —-35.764 —5.461 0.033 —38.873
T=100 099 -3.76 0.049 -25977 —4434 0.03 —31.871 —4.937 0.072 —38.553
k=1 0.95 —3.18 0.109 -19.118 —=3.758 0.047 —-23.617 —4.312 0.229 —31.059
0.90 —-2.891 0.241 -16.039 —3.452 0.065 —20.091 —4.017 0.522 —27.416
k=2 099 —4.336 0.03 —31.086 —4.866 0.023 —-38.252 —5.265 0.038 —44.307
0.95 —=3.738 0.046 —-23.508 —-4.19 0.03 —29.60 —4.662 0.06 —36.002
090 —3.427 0.063 —19.998 —3.893 0.036 —25.665 —4.368 0.088 —32.40
k=3 099 —4.791 0.023 -35.89 —5.244 0.018 —43.747 —5.565 0.026 —48.861
095 —4.177 0.03 -27.931 —-4.61 0.022 -35.036 —4.971 0.034 —40.891
090 —3.857 0.036 —24.342 —4.286 0.025 -—-31.219 —4.699 0.042 -36.914
k=4 099 —=5.176 0.017 —40.409 —5.561 0.018 —48.901 —5.897 0.02  —53.931
095 —4.562 0.022 -—-32.02 —-497 0.023 -40.519 —-5.295 0.024 —45.324
090 —4.258 0.025 —28.372 —-4.65 0.026 -36.185 —5.011 0.028 —41.519
k=5 099 —=5.569 0.02 —45.232 -5926 0.016 -53.681 —6.198 0.025 —57.833
095 —4917 0.025 —-36.20 —5.293 0.02 —45.041 —-5.592 0.033 —50.158
0.90 —4.596 0.028 —32.285 —4.963 0.023 —-40.649 —5.306 0.042 —45.057




Table 1 (continued)

no constant constant trend
PJC ADF MLS Z, ADF  MLS Z, ADF  MLS Z,
T=250 099 -3.689 0.065 —-26.856 —4.255 0.035 —-32.179 —4.709 0.136 —40.002
k=1 095 —-3.118 0.37 19473 -3.661 0.073 —-23.887 —4.161 0.929 —31.275
090 —-2.841 1.262 -16.111 -3.371 0.141 -1999 —-3.894 1.73  —27.549
k=2 099 —4.204 0.036 -31.956 —4.717 0.023 -—-39.71  —=5.107 0.053 —47.115
095 —-3.631 0.082 —23.857 —4.064 0.039 —-29.998 —4.533 0.1563 —37.605
090 —3.347 0.221 —-20.333 -—-3.773 0.067 —-25.772 —4.234 0.544 —-32.874
k=3 099 —4.652 0.025 -—-37.666 —5.05 0.018 —45.734 —-543 0.034 —52.589
095 —4.085 0.042 —28.826 —4.438 0.026 —-35907 —4.827 0.06 —42.496
0.90 -=3.779 0.0 —24.863 —4.157 0.035 —31.477 —4.566 0.105 —38.156
k=4 099 —=5.025 0.019 —-43.11 —=5.398 0.017 —-51.947 —-5.70 0.024 —58.243
0.95 —4.432 0.029 -33.709 —4.802 0.025 —41.802 —-5.13 0.036 —48.041
0.90 —4.159 0.039 —-29.494 —4.504 0.031 —-37.198 —4.846 0.06 —43.333
k=5 099 —=5.342 0.019 —-47.301 —5.697 0.015 —=57.523 =598 0.024 —-63.211
0.95 —4.783 0.029 -38.699 —5.117 0.02 —47.442 544 0.038 —53.378
090 —4.498 0.039 —34.129 —4.832 0.025 —42.828 —5.161 0.058 —48.629




Table 2 - Monte Carlo results for ADF, Z,, and KPSS tests (7' = 100)

(p,0) ADF  Z, KPSS D-K Z-K JU(D-K) JU(@Z-K) JS(D-K) JS(Z-K)
(0.5,0) C 0.963 1.00 0.793 0199 0.207 0.04 0.041 0.986 0.994
NC 0.037 0.00 0207 0029 000 0.057 0.00 0.00 0.00
Inc. A 000 000 000 0764 0.793 0.902 0.959 0.006 0.006
Inc. B 0.00 000 000 0008 000 0.001 0.00 0.009 0.00
(0.5,-0.8) C .00 1.00 097 003 003 0.001 0.001 1.00 1.00
NC 000 000 003 000 0.00 0.004 0.00 0.00 0.00
Inc. A 000 000 000 097 097 0.995 0.999 0.00 0.00
Inc. B 0.00 000 000 000 000 0.00 0.00 0.00 0.00
(0.9,0) C 029 0282 0.624 0102 0.11 0.014 0.017 0.648 0.40
NC 071 0718 0.376 0514 053  0.832 0.797 0.054 0.096
Inc. A 0.00 0.00 000 018 0.172 0.126 0.16 0.082 0.04
Inc. B 000 000 000 0.196 0.188 0.029 0.026 0.216 0.464
(0.9,-0.8) C 0927 1.00 0938 006 0.062 0.007 0.008 0.976 0.994
NC 0.073 0.00 0.062 007 0.00 0.106 0.00 0.00 0.00
Inc. A 000 000 000 0868 0.938 0.886 0.992 0.006 0.006
Inc. B 000 000 000 0002 000 0.001 0.00 0.018 0.00
(1,0) C 0.072 0.061 0.062 0.008 0.007 0.00 0.00 0.138 0.054
NC 0928 0.939 0938 0874 0.883 0.971 0.97 0.405 0.534
Inc. A 000 000 000 0063 0.054 0.027 0.028 0.187 0.058
Inc. B 0.00 000 000 0054 0.056 0.002 0.002 0.27 0.354
(1,-0.8) C 0.595 0.977 0.061 0041 0.06 0.004 0.006 0.588 0.76
NC 0.405 0.023 0.939 0.385 0.022 0.475 0.024 0.053 0.003
Inc. A 000 000 000 0554 0917 0.519 0.969 0.18 0.23
Inc. B 000 000 000 002 000 0.002 0.00 0.179 0.007
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Table 3 - Monte Carlo results for ADF, Z,, and KPSS tests (7' = 250)

(p,0) ADF  Z, KPSS D-K Z-K JU(D-K) JU(Z-K) JS(D-K) JS(Z-K)
(0.5,0) C 1.00  1.00 00951 0.049 0.049 0.011 0.011 0.806 0.808
NC 0.00 000 0.049 0.00 0.00 0.00 0.00 0.00 0.00
Inc. A 000 000 000 0951 0.951 0.989 0.989 0.192 0.192
Inc. B 0.00 000 000 000 000 0.001 0.00 0.002 0.00
(0.5,-0.8) C 1.00  1.00 0.998 0.002 0.002 0.00 0.00 0.264 0.264
NC 0.00 0.00 0.002 0.00 0.00 0.00 0.00 0.00 0.00
Inc. A 000 000 000 0998 0998 1.00 1.00 0.736 0.736
Inc. B 000 000 000 000 000 0.00 0.00 0.00 0.00
(0.9,0) C 0.858 0.92 0.702 0.336 0.36 0.121 0.139 0.369 0.061
NC 0.142 0.08 0.298 0.102 0.064 0.262 0.171 0.194 0.264
Inc. A 000 000 000 0522 056 0.581 0.672 0.073 0.004
Inc. B 0.00 000 000 004 0016 0.036 0.018 0.364 0.671
(0.9,-0.8) C 0.997 1.00 0.991 0.009 0.009 0.00 0.00 0.381 0.389
NC 0.003 0.00 0.009 0.003 0.00 0.01 0.00 0.019 0.00
Inc. A 000 000 000 0988 0991 0.99 1.00 0.592 0.611
Inc. B 000 000 000 0002 000 0.001 0.00 0.008 0.00
(1,0) C 0.068 0.06 0.018 0.002 0.002 0.00 0.00 0.002 0.00
NC 0932 094 0982 0916 0.924 0.969 0.967 0.90 0.91
Inc. A 000 000 000 0066 0058 0.03 0.032 0.01 0.00
Inc. B 0.00 000 000 0016 0016 0.002 0.001 0.088 0.09
(1,-0.8) C 040 098 0.004 0.002 0.004 0.001 0.001 0.053 0.157
NC 0.60 0.02 0996 0598 0.02 0.679 0.03 0.65 0.126
Inc. A 000 000 000 0.399 0.976 0.32 0.969 0.181 0.705
Inc. B 0.00 000 000 0.00l 000 0.0 0.00 0.116 0.012
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