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Abstract

To show that the traditional econometric approach is not able to deal with determin-

istic chaos, we use an extension of Goodwin�s growth cycle model to generate arti�cial

data for output. An EGARCH model is estimated to describe the data generation

process. Although using some traditional econometric tests no evidence of misspeci�-

cation is found the estimated process is qualitatively wrong: it is dynamically stable

when the true process is unstable. We present a speci�c econometric procedure de-

veloped to deal with deterministic chaos: the BDS statistics. Also an explanation for

*I am grateful to Francisco Louçã for his incisive comments.
*This paper was supported by NIPE (Economic Policies Research Unit)
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the little evidence of deterministic chaos in aggregated macroeconomic time series is

suggested.

1 A Model of Growth and Cycles

In 1991 Goodwin extended his 1967 predator-prey model in order to accomplish

growth and cycles. The model generated a Kondratie¤ growth cycle, which also

incorporated Juglar cycles.

He incorporated the Schumpeterian swarm of innovations according to which, after

a weak beginning, the path-breaking innovation proves its importance and more and

more �rms will adopt the innovation. At the end, the rate of adoption will diminish

since the majority of the �rms have already adopted it.

For convenience Goodwin�s system of equations is reproduced here (u and L should

be understood as deviations from equilibrium):

8>>>>>><
>>>>>>:

u0 = hL

L0 = ¡du+ fL¡ ez

z0 = b+ gz (L¡ c)

(1)

where u represents labour�s proportion of national income, L is the rate of employment

and z is a control parameter (e.g. government budget surplus). For su¢ciently high

values of g the system generates deterministic chaos.

To include growth in the above model we can consider the e¤ects of investment in
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Figure 1: Capital Evolution for 50 years

labour productivity. We admit there is a cyclical component in labour productivity

(= °K0

K
, where K stands for the stock of capital). For investment we admit an

historically given �fty years Schumpeterian swarm of innovations. Speci�cally we will

admit that1:

K 0 = men¡qt¡e
n¡qt

(2)

For example, if we calibrate this equation with the values m = 4:5; n = 3; q = 0:15

and K0 = 1 the capital accumulation would be as represented in �gure 1.

1This function is known as the Gompertz curve and it is a special case of the generalized logistic.

The advantage of this formulation relative to the usual simple logistic is that it is more �exible;

namely we are not restricted to a symmetrical curve. If we had used a simple logistic its main

implication would have been a greater variation of the series accumulated in early stages. Stone

(1990) also used this function to describe the population growth dynamics.
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The dynamics of output will be determined by the evolution of employment

(= L¤ + L) and by the evolution of labour productivity (= °K0

K
):

Y 0

Y
=

L0

L¤ + L
+ °

K 0

K
(3)

This formulation has one problem. The investment function in�uences output,

but should also be in�uenced by. To answer, at least partially, to this criticism we

will admit that the employment level has its role in the dynamics of the investment,

so:

K 0 = men¡L¡qt¡e
n¡L¡qt

(4)

In this formulation the employment level enters directly in the investment function,

and it can be interpreted as an accelerator mechanism.

Joining equations 1, 3, and 4, the complete model becomes:8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

u0 = hL

L0 = ¡du+ fL¡ ez

z0 = b+ gz (L¡ c)

K 0 = men¡L¡qt¡e
n¡L¡qt

Y 0 =
³
¡du+fL¡ez

L¤+L
+ °men¡L¡qt¡e

n¡L¡qt

K

´
Y

(5)

To understand the kind of output dynamics generated by this model we calibrate

it with the following parameter values: b = 0:001; c = 0:048; d = 0:5; e = 0:8; f =

0:15; g = 85; L¤ = 0:9; n = 3; p = 35; q = 0:15; ° = 0:3. The data are generated for

4



0

2

4

6

8

00 10 20 30 40 50 60 70 80 90 00

Figure 2: Output Time Evolution

a hundred years. Since the parameters chosen to the investment equation imply a

swarm of �fty years we have to introduce a second swarm of �fty years. So in the

�rst �fty years m takes the value m = 4:5. Beyond that m takes the value m = 135.

The evolution of investment is essentially the same in each half century. The initial

values were u = 0:02; L = 0:04; z = 0; k = 1; y = 1. The results can be observed in

�gure 2. One interesting feature of the time series is that the generated cycles are

not identical, even considering identical capital accumulation dynamics for both half

centuries. We can observe that a chaotic deterministic system can generate a quite

erratic behaviour.

The possibility that an erratic behaviour can be purely deterministic raises an

important question: to what extent are the traditional econometric techniques ap-
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propriate to deal with this new issue? We will try to sketch the answer in the next

point.

2 An Econometric Application to Our Arti�cial Model

Blatt (1983) alerted to the dangerous consequences of an error in the identi�cation

of the stability properties of an economic system. He then asked if the traditional

econometric tools were a good instrument to analyze the stability of an economic

system. To answer this question he made a simple test.

He generated some economic time series with the help of a nonlinear, locally

unstable, macro-model Hicks proposed. With these arti�cial data he tried to estimate

the original model. The results are quite unpleasant: the estimated model did not

identify (not even close) the inherent instability of the original model. Basically, a

dynamically stable model was estimated and the endogenous cycles were attributed

to stochastic shocks, with no statistic evidence of misspeci�cation.

Louçã (1997) made a similar approach. He considered a more general model to

generate arti�cial data for output2 which was able to simulate growth and cycles

endogenously. But, in his treatment of the time series output, he extracted a linear

2The model he used was very similar to the system of equations 5. The main di¤erence is that

he represented the investment dynamics with a simple logistic and did not introduce an accelerator

component in the investment function.
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trend3 and thenmodelled the residuals as a linear autoregressive process. The problem

with Louçã�s approach is that when one tries to apply usual econometric procedures to

time series data it is not possible to forget testing the stationarity of the series before

extracting a (linear) time trend. Depending on the results of that test extracting a

linear time trend may, or may not, be appropriate.

We tested the stationarity of time series represented in �gure 2 (the test used was

the ADF test and was applied after logarithmizing the series). According to the test

result, we could not reject the null hypothesis of nonstationarity for the log of the

output (LY ), while for the growth rate (DLY ) we reject the null hypothesis accepting

the growth rate4 to be stationary around a constant. So an applied econometrist

would not extract a linear trend to stationarize the series. He would rather consider

the growth rate of Y .

So, we try to model DLY as an autoregressive process. The estimated results

are5:

DLYt = 0:0009
(2:836)

+ 1:9571
(29:026)

DLYt¡1 ¡ 1:6237
(¡11:511)

DLYt¡2+

+0:9392
(6:66)

DLYt¡3 ¡ 0:3552
(¡5:273)

DLYt¡4

(6)

3The trend was extracted from logaritmized time series, so it is an exponential trend relative to

the original data.

4DLY is the �rst di¤erence of LY . Since LY = logY; DLY will be the growth rate of Y .

5Since we have considered semi-annual data, we have the growth rate of period t depending on

the previous four semesters.
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where the values in parenthesis are the t-statistics. The R-squared (and the adjusted

R-squared) is about 96%. The residuals show no evidence of serial correlation. The

number of lags chosen was based on the Akaike and Schwarz information criteria and

were strengthened by the fact that higher lags were not statistically signi�cant6.

It is interesting to note that equation 6 is a simple di¤erence equation with an

explicit analytic solution:

DLYt = 0:0104 + 0:6627t (A1 cos (1:4073t) +A2 sin (1:4073t))+

+0:8994t (A3 cos (0:2534t) +A4 sin (0:2534t))

(7)

where A1; A2; A3; and; A4 are arbitrary constants that can be determined with the

help of four initial conditions.

This estimated model �ts perfectly in Slutsky- Frisch�s paradigm: we have an

exogenous trend (determined by the constant 0.01042) and two di¤erent growth cycles

(one with 4: 5years and the other with 24: 8 years) aggregated additively. In �gure 3

we can see how this estimated model would work in the absence of stochastic shocks.

To explain the persistence of cycles in this model, Frisch would suggest the addition

of a stream of exogenous shocks. This is what we do next. We add a stream of

exogenous shocks with mean zero and variance 0.0001444 to equation 6 with the help

of a normal random number generator7. In �gure 4 we compare the original arti�cial

6For example, if we introduced a �fth lag, its P-value would be 0.39.

7The variance was chosen in such a way that the original time series and this new time series

8



-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

00 10 20 30 40 50 60 70 80 90 00

Figure 3: The Estimated Model Dynamics

time series with the time series generated by the estimated model (augmented with

the stochastic shocks)8.

2.1 Problems with Heteroskedasticity

We have so far neglected the possibility of having heteroskedastic disturbances. In

traditional time series analysis it was usual to consider homoskedastic processes (as-

sociating heteroskedasticity to cross-sectional data). But, at least since Engle (1982),

one cannot put aside the possibility of having an Autoregressive Conditional Het-

eroskedasticity (ARCH) model or one of its extensions, as we shall see.

have the same variance.

8Although not reproduced here, we would have reached the same qualitative results if we had

applied the Hodrick-Prescott �lter instead and then �tted an autoregressive process to the residuals.
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Figure 4: Two Simulated Time Series

Consider a pth order ARCH process:

Yt = ¯0

Xt + ²t (8)

²t = ut

vuut$ +

qX
i=1

®i²
2

t¡i (9)

where ut follows a standard normal. It is easy to derive the conditional and uncondi-

tional variances of ²t:

V ar [²tj²t¡1; :::; ²t¡p] = ¾2t = $ +

qX
i=1

®i²
2

t¡i (10)

V ar [²t] =
$

1¡
Pq

i=1 ®i

(11)

In this situation, although the Ordinary Least Squares (OLS) estimator is BLUE it

is not BUE, i.e., it is the best linear unbiased estimator, but there is a more e¢cient
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obs£R2 P-value

1st order 2.979 0.084

2nd order 15.199 0.001

3rd order 15.149 0.002

4th order 16.030 0.003

Table 1: ARCH LM Test

nonlinear estimator. Engle (1982) derived the likelihood function for this model and

also presented a Lagrange Multiplier (LM) test for the ARCH process.

In table 5.2 we can see the results of the ARCH LM test. With these results

an applied econometrist would have to deal with the conditional heteroskedasticity

problem. In our work we begin by considering a Generalized ARCH (GARCH) model

proposed by Bollerslev (1986). The advantage of this approach is that it is usually

more parsimonious with the number of lags needed. In a GARCH(p; q) model the

conditional variance is given by:

¾2t = $ +

qX
i=1

®i²
2

t¡i +

pX
j=1

¯j¾
2

t¡j (12)

Bollerslev et al. (1994) show that this is equivalent to saying that ²2t can be modelled

as an ARMA([max (p; q) ; p]) model. Obviously, if equation 12 is correctly speci�ed

the residuals should not exhibit additional ARCH.

After considering several GARCH models of di¤erent orders we conclude that the

11



standardized residuals continued to exhibit ARCH, indicating that equation 12 was

misspeci�ed.

Nelson (1991) proposed an Exponential GARCH (EGARCH) model. Equation 12

is replaced by:

ln
¡
¾2
t

¢
= $ +

qX
i=1

µ
®i

¯̄
¯̄ ²t¡i

¾t¡i

¯̄
¯̄+ °i

²t¡i

¾t¡i

¶
+

pX
j=1

¯j ln
¡
¾2
t¡j

¢
(13)

When we re-estimate equation 6, admitting that the conditional heteroskedasticity

follows an EGARCH(2; 4)9:

DLYt = 0:00003
(19:830)

+ 3:0965
(281:625)

DLYt¡1 ¡ 3:6082
(¡135:434)

DLYt¡2

+1:8744
(84:615)

DLYt¡3 ¡ 0:3679
(¡55:842)

DLYt¡4

(14)

ln (¾2
t ) = ¡ 7:2006

(¡14:975)
+ 2:1347

(17:355)

¯̄̄
²t¡1

¾t¡1

¯̄̄
¡ 0:0650

(¡0:816)

²t¡1

¾t¡1

+1:8102
(9:183)

¯̄
¯ ²t¡2

¾t¡2

¯̄
¯¡ 0:0242

(¡0:264)

²t¡2

¾t¡2

+0:0583
(0:930)

ln
¡
¾2
t¡1

¢
+ 1:3331

(36:398)
ln
¡
¾2
t¡2

¢

¡0:1151
(¡2:611)

ln
¡
¾2
t¡3

¢
¡ 0:5251

(¡16:551)
ln
¡
¾2
t¡4

¢

(15)

where the values in parenthesis are the z-statistics. As it can be seen, the results of

equation 14 do not di¤er substantially from the results obtained in equation 6. It

is easy to verify that the stability properties do not change. When the ARCH LM

test is applied to the standard residuals, the results are conclusive. As we can see in

9The order of the ARCH process was chosen, basically, with the help of the Akaike and Schwartz

information criterion, and with signi�cance tests.
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obs£R2 P-value

1st order 0.009 0.924

2nd order 1.693 0.429

3rd order 1.936 0.586

4th order 2.096 0.718

Table 2: ARCH LM Test to EGARCH standard residuals

table 5.3, no economist would reject the null hypothesis of conditional homoskedastic

residuals. Even the Jarque-Bera normality test tends to accept the good speci�cation

of the model (the Jarque-Bera statistic has a value of 2.4 with a P -value of 0.3). So,

we would even accept the normality of the standard residuals.

Although we did not perform a battery of tests, so that we cannot be sure the

estimated model would pass in all speci�cation tests, we can see a tendency to accept

this wrong model. We say wrong because equation 14 represents a linear stable model,

when we know the true model is a nonlinear unstable one. Even equation 15 tells us

that, although the conditional variance of the residuals will vary with time, it will

stabilize, unless it is fed with exogenous shocks. The intrinsic instability of the model

is not captured by any of the components of the EGARCH estimates.
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Figure 5: Dimension of Stochastic Processes vs Deterministic Processes

2.2 The BDS Statistic

2.2.1 Dimension of Stochastic Processes

Although nonlinear deterministic models can generate random processes, one impor-

tant di¤erence between deterministic and stochastic processes is that while determin-

istic processes have �nite dimension, stochastic processes have in�nite dimension.

We can see in �gure 5 the phase portrait of a chaotic deterministic series based on

the logistic equation (Y
n+1 = 4Y

n
(1¡ Y

n
)) and of a stochastic series. It is easy to see

that while the deterministic process is one-dimensional, the stochastic series �lls out

the entire area. Thus the stochastic process is at least two dimensional. If we plot a

three-dimensional phase portrait we will conclude that the stochastic process �lls out

the entire cube and so on for higher dimensions. So a stochastic process approaches

an in�nite dimension.
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2.2.2 The Correlation Dimension and the BDS Statistic

Based on the above notion of dimension Brock et al. (1987)10 propose a statistical

procedure to test departures from independently and identically distributed (i.i.d.)

observations.

Consider T observations of a time series (x1, x2, ..., xT ) after removing all non-

stationary components. De�ne them-histories of xt process as the vectors (x1; :::; xm),

(x2; :::; xm+1), ..., (xT¡m+1; :::; xT ). Now de�ne the correlation integral as the fraction

of the distinct pairs of m-histories lying within a distance " in the sup norm11:

C";m;T =
1

(T ¡m+ 1) (T ¡m)

TX
i=1

TX
j=1

i 6=j

H
¡
"¡ supnorm

¡
xi;xj

¢¢
(16)

where xi = (xi; :::; xi+m¡1) and H (x) =

8>><
>>:

0 if x � 0

1 if x > 0

.

Under some assumptions C";m;T converges to a limit C";m. The true correlation

dimension is given by d ln(C";m)
d ln "

. It is possible to show that the correlation dimension

has the Hausdor¤ dimension as its upper bound. If
d ln(C";m;T )

d ln "
increases without bound

with m then one conclude that data is stochastic, if
d ln(C";m;T)

d ln "
tends to a constant

10Brock, W. Dechert, W. and Sheinkman, J. (1987), �A Test for Independence Based on the

Correlation Dimension�, University of Winsconsin, Madison, University of Houston, and University

of Chicago, cit. in Brock et al. (1991).
11Brock (1986) showed that the correlation dimension was independent of the choice of the norm,

so it is not restrictive to consider the sup norm.
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then data is consistent with deterministic chaotic behaviour,

Brock et al. (1986) employed the correlation dimension to obtain a statistical test

of nonlinearity: they proved that under the null (xt i.i.d.) ln (C";m) = m ln (C";1),

which is the basis for the BDS statistic:

BDS =
C";m;T ¡ (C";1;T )

m

¾";m;T

(17)

where ¾";m;T is the standard deviation consistently estimated12. Under the null BDS

has a limiting standard normal distribution. The asymptotic distribution behaves

reasonably well if the sample size is not less than 500, but it behaves poorly for

smaller sample dimensions.

To implement the BDS test, Monte Carlo Simulations of Brock et al. (1991)

suggested that " should vary between 0.5 and 2 standard deviations of the data, and

m between 2 and 5.

2.2.3 BDS Applied to our Model

We now apply the test to the residuals of our model. Since an ARCH model and its

extensions typically assume i.i.d. standard residuals, Bollerslev et al. (1994) suggest

the use of the BDS test as a speci�cation test applied to the standardized residuals of

a model. We have already seen that the Jarque-Bera test applied to the standardized

residuals of our EGARCH(2; 4) did not reject the normality of those residuals. We

12See Brock et al. (1991) for details on how to estimate ¾";m;T :
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m 2 3 4 5

" = 0:5¾ 13:85
(0:00)

18:01
(0:00)

25:44
(0:00)

41:47
(0:00)

" = ¾ 7:16
(0:00)

7:14
(0:00)

7:37
(0:00)

7:80
(0:00)

Table 3: BDS Test to the EGARCH(2,4) residuals

now apply the BDS test to the same residuals. Two di¢culties need to be faced with.

First, the small dimension of the sample. Second, the asymptotic distribution of the

test, which is strongly a¤ected by the �tting of the EGARCH model, and has uet

not been derived.To overcome both problems, we follow a procedure suggested by

Brock et al. (1991), also applied by Louçã (1997): after estimating the BDS statistic

we shue randomly the time series sample and then re-estimate the statistic. This

procedure is repeated 100 times. If the process is purely random the dimension of the

process will be unchanged and so will the estimated statistic. If the process is purely

deterministic, then shuing will destroy the correlation structure of the process. In

table 4.5 we can see the results achieved. In parenthesis we have the proportion of the

statistic values (obtained after reshuing) that are higher (in absolute value) than

the statistic applied to the original series. As we can see, the results of the statistic

point, correctly, to a misspeci�cation of the model.
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2.2.4 Some Problems

The above results suggest that it is easy to determine whether a time series follows

a chaotic process or not. We must take this conclusion very carefully. First, the

rejection of the null hypothesis does not tell us anything about the alternative. For

example, the data generator process may be a stochastic nonlinear model and not a

chaotic deterministic model. Second, there is no practical distinction between a high

dimensional chaotic model and a pure stochastic model, so this test is only appropriate

to detect low dimensional chaos.

An interesting problem, particularly when we are analyzing macroeconomic time

series, is the problem with aggregate data. One of the �aws Schumpeter found in

Keynes� work was the use of aggregate functions (consumption, investment, etc.).

He argued aggregation could mask innovative processes which are speci�c to some

industries. Goodwin (1991) agreed to this idea and defended the use of large mul-

tidimensional systems even though, unfortunately, for simplicity sake, he presented

an aggregated model.To illustrate this problem we can see in table 6 the BDS test

applied to �ve di¤erent series13 and to their average (ft =
at+bt+ct+dt+et

5
). Since the

sample has 2000 observations, we can use the standard normal distribution to �nd the

13The series were generated according to the formula: xt = 4xt¡1 (1¡ xt¡1). The initial values

for series at; bt; ct; dt; and et were, respectively, 0.1, 0.2, 0.3, 0.4, and 0.49. 3000 observations were

generated, being the �rst 1000 thrown away.
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m 2 3 4 5

"

¾
= 0:5 " = ¾ "

¾
= 0:5 " = ¾ "

¾
= 0:5 " = ¾ "

¾
= 0:5 " = ¾

at 709 287 939 273 1239 262 1690 265

bt 691 286 915 265 1191 252 1613 244

ct 733 285 969 270 1265 259 1711 252

dt 692 287 925 269 1218 260 1657 254

et 690 288 912 271 1190 259 1598 252

ft 0.07 -1.08 1.02 -1.36 2.18 -1.25 1.57 -1.18

Table 4: BDS Test to Deterministic Chaotic Time Series

critical values. The results speak for themselves. While for any of the series obtained

from a logistic chaotic equation there is overwhelming evidence of nonlinearities, for

the average of �ve chaotic series that evidence has almost completely disappeared:

it is impossible to reject the null hypothesis at a 5% signi�cance level except for

¡
"

¾
;m

¢
= (0:5; 4).

3 Conclusion

We have showed that the traditional econometric techniques are not able to deal with

the possibility of deterministic chaos. Using the traditional econometric approach one

will tend to accept that the source of the erratic movements is exogenous and that
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the system is dynamically stable, even though the model is known to be inherently

unstable.

Another problem is that speci�c econometric techniques, designed to deal with

the possibility of deterministic chaos, are not as powerful as one might wish: we saw

that aggregation can hide evidence of nonlinearities, a problem that can arise in many

macroeconomic time-series
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