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Abstract

In this paper we develop a multiple equilibria one-sector R&D-based growth model,
in which the key aspects are the assumption of complementarities between capital
goods in the production function and the assumption of costly investment in capital.
This second assumption is new to the R&D-based literature.

The equilibrium solutions are obtained when the Preferences curve, which mirrors
consumers’ savings decisions, and the Technology curve, which represents equilibria
on the production side, cross. The combination of the two key assumptions produces
a non-linear Technology curve, which consequently crosses the Preferences curve more
than once, thus generating multiple equilibria. A numerical solutions exercise obtains
two equilibria. Application of the stability under learning criterion allows for the
identification of the two equilibria as stable. Expectations can lead the economy to
either the equilibrium characterised by high-growth and high-interest rates, or to the
equilibrium characterised by low-growth and low-interest rates.

Hence, with this model, we wish to contribute to endogenous growth literature by
providing a mechanism to explain how an economy can experience multiple equilibria
situations.
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1 Introduction
In this paper we develop a multiple equilibria R&D-based growth model, in
which the key aspects are the assumption of complementarities between capital
goods in the production function and the assumption of costly investment in
capital1 . This second assumption is new to the R&D-based literature.
Our model delivers two stable balanced growth path solutions. The equi-

librium solutions are obtained when the Preferences curve, which mirrors con-
sumers’ savings decisions, and the Technology curve, which represents equilibria
on the production side, cross in the space (r, g). The model delivers multiple
equilibria because the Technology curve is composed by both positively sloped
segments and negatively sloped segments, and thus crosses the Preferences curve
more than once.
Our Technology curve has this nonlinear shape because it combines the ef-

fects of complementaries between capital goods and the effects of costly invest-
ment in capital. Complementarity between capital goods generates a positive
relationship between the interest rate and the growth rate. In turn, costly in-
vestment generates a negative relationship between the interest rate and the
growth rate.
A numerical solutions exercise obtains two equilibria. We adopt Evans et

al.’s [1998] assumption that expectations obey an adaptive learning scheme. Ap-
plication of this learning criterion allows us to identify the two equilibria as sta-
ble. Expectations can lead the economy to either the equilibrium characterised
by high-growth and high-interest rates, or to the equilibrium characterised by
low-growth and low-interest rates.
Hence, with this model, we wish to contribute to endogenous growth lit-

erature by providing a mechanism to explain how an economy can experience
multiple equilibria situations.

The model developed in this paper is inspired by Evans, Honkapohja and
Romer’s [1998] model.
Like its inspirational model, the model here introduced assumes that capital

goods enter complementarily to one another in the production function of the
final good.
The proposed model departs from Evans et al.’s [1998] model in two fun-

damental ways. Firstly, Evans et al. [1998] assume that there is a non-linear
trade-off between consumption and total investment. In our model, we assume
a one-sector structure in which consumption, physical capital and new designs
are all produced with the same technology.
The second fundamental departure of our model from Evans et al.’s [1998]

model is that our framework introduces the assumption that final-good produc-
ers incur an investment cost in accumulating capital. This assumption is new
to the R&D-based growth literature.

1We use the expression “costly investment” to mean internal costly investment, as defined
by Romer [1996, Chp. 8].
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The introduction of costly investment also allows us to arrive to the result of
multiple equilibria through mechanisms that are analytically observable, which
makes it rather different from Evans et al.’s [1998] model, which obtains multiple
equilibria with the help of a function that does not have an analytical shape,
but is instead constructed through the attribution of specific values to specific
ranges.

Before moving on to the specification of the model, we refer to the literary
context in which this model is inserted.
Solow [2000] writes that models with multiple steady-states should be on the

“research agenda of growth theory”. In fact, multiple equilibria models are of
potential interest for explaining both macroeconomic fluctuations and economic
development.
Evans et al. [1998] have focused on the first of these issues, producing

growth cycles, with the economy switching stochastically between the two stable
equilibria.
The main interest of our study is the analysis of long-run growth. Hence we

stop at the two stable equilibria result and do not go any further in generating
stochastic growth fluctuations.
There are many strands of literature about models with some kind of inde-

terminacy or multiplicity of equilibria. From the analysis of long-run growth,
frameworks arise which highlight complementarities that are created by exter-
nalities or imperfect competition. These complementarities can lead to multiple
equilibria or to a continuum of equilibria. Recent surveys of these models include
Silvestre’s [1993] and Matsuyama’s [1995].
Growth models can exhibit various forms of indeterminacy or multiplicity

of equilibria. Some papers, like Benhabib, Perli and Xie [1994] generate multi-
plicity of equilibria by demonstrating the existence of a continuum of perfect-
foresight equilibria converging to a single steady-state or the existence of sunspot
solutions in a neighbourhood of this steady-state. These solutions may however
not be robust under a learning criterion like the one used in this Chapter.
Another type of indeterminacy in growth models, described in the survey

by Benhabib and Gali [1995], results from the presence of a finite number of
distinct steady states. These can arise, for instance, due to threshold effects
as in Azariadis and Drazen [1990]. The threshold effects mean that for some
initial values of the state variables, there may be a finite number of discrete
equilibrium paths, each of which leads to a distinct steady-state.
The model introduced in this Chapter also delivers a finite number of distinct

equilibria rather than a continuum of equilibria. However the distinct equilibria
have different growth rates instead of different levels. In addition there are no
threshold effects, as both the high-growth and the low-growth equilibria can
be reached regardless of the initial level conditions. Also since the multiple
equilibria do not depend on the levels of the state variables, their stability is
defined by creating a temporary equilibrium framework and introducing the
learning dynamics for expectations formation.
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The paper is organised as follows. After this Introduction, Section 2 provides
motivation for the use of the assumption of costly investment. Section 3 presents
the specification of our new general equilibrium model, and its main results.
Section 4 closes the present study with Concluding Remarks.

2 Motivation for Costly Investment
Romer [1996, Chp. 8] writes that the baseline model of investment in which
firms can costlessly adjust their capital stocks, despite being a natural model
to consider, does not reflect actual investment. It implies, for instance, that
discrete changes in interest rates generate infinite rates of investment or disin-
vestment.
Let us analyse this question by formulating one simple exercise. Suppose

that firms maximise the present discounted value of their cash flows, facing zero
capital investment costs. We also assume that capital depreciation is zero, for
simplicity:

Max
I

V =

Z ∞
0

(Yt − It) e−rtdt

subject to:

Yt = F (Kt)

and

·
Kt = It,

where F 0(K) < 0.
Thus the current-value Hamiltonian is:

Ht = Ft(Kt, L)− It + qt(It −
·
Kt), (1)

where qt is the current-value of capital accumulation.
The first-order condition is:

dH

dI
= 0⇔ −1 + q = 0⇔ q = 1 (2)

The co-state equation is:

dH

dK
= rq − ·

q ⇔
·
q

q
= r − F 0(K) (3)

The transversality condition is:

lim
t→∞e

−rtqtKt = 0
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As q = 1, the firms maximisation problem leads to the standard condition:

F 0(K) = r (4)

As Hayashi [1982] analyses, in this model the rate of optimal investment is
indeterminate and the optimal level of capital stock can be determined for a
given level of output and a linearly homogeneous production function.
This means that if for instance, the initial level of capital K0 is lower than

the optimal capital level K∗, investment will be infinitely positive. Or, if the
interest rate falls, the stock of capital that satisfies the standard condition 4
increases discretely, and this requires an infinite rate of investment. However,
as investment is limited by aggregate output, it cannot be infinite.
This indeterminacy of investment has led to modifications of the baseline

model. Such modifications involve the introduction of costs to the accumulation
of capital. Hayashi [1982] defines the result of these changes as the modified
neoclassical investment theory, where the representative firm maximises the
present discounted value of its cash flows, subject to capital installation costs:

Max
I

V =

Z ∞
0

[Yt − It − C(I,K)]e−rtdt,

where C(I,K) represents the firm’s investment costs.
The current-value Hamiltonian is then:

Ht = F (Kt)− It − Ct(I,K) + qt(It −
·
Kt), (5)

where q is the current-shadow-value of capital.
Variable q has an economic interpretation: A one-unit increase in the firm’s

capital stock increases the present value of the firm’s cash flow by q, and thus
increases the value of the firm by q. Hence q is the market value of a unit of
capital.
The first two optimality conditions are, then:

dHt
dIt

= 0⇔ qt = 1 + CIt(I,K) (6)

and

dHt
dKt

= rqt − ·
qt ⇔

·
q

q
= r − FK(K)− CK(I,K)

q
(7)

Notice that q is the value of capital in terms of capital’s future marginal
revenue products:

·
qt = rqt − [FKt(K)− CKt(I,K)]
⇔

qt =

Z ∞
t

e−r(τ−t) [FK(K (τ))− CK(I,K (τ))] dτ
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Since the purchase price of capital is assumed to be PK = 1, the ratio of the
market value of a unit of capital to its replacement cost, q

PK
, is equal to q. The

ratio of the market value of a unit of capital to its replacement cost is known as
Tobin’s marginal q (Tobin [1969]). Average q is the ratio of the market value of
the firm to the replacement cost of its total capital stock, V

PKK
= V

K .
It is marginal q that is relevant to investment, but only average q is observ-

able. Thus empirical studies have relied on average q as an approximation to
marginal q. Hayashi [1982] solved this empirical issue by showing that when the
firm is a price-taker, and the production function and the installation function
display constant returns to scale, then marginal q and average q are the same.
The specification for the capital installation function that we use in this

paper is an application of Hayashi’s [1982] cost of investment framework to a
continuous time context, as done by Benavie et al. [1996], Cohen [1993] and
Van Der Ploeg [1996], in models different from the one developed in this paper.

It is, then, assumed that installing It =
·
Kt new units of capital requires the

firms to spend an amount given by:

Jt = It +
1

2
θ
I2t
Kt

(8)

where the installation cost is Ct(I,K) = 1
2θ

I2t
Kt
.

With this installation cost specification, Hayashi’s [1982] result thatmarginal
q equals average q holds, that is:

qt =
Vt
Kt

After this motivation for the capital installation cost function adopted for
our model, we proceed with the specification and results of the model.

3 Specification and Results of the Model
The preferences structure is the standard optimising one. Infinitely lived ho-
mogeneous consumers maximise, subject to a budget constraint, the discounted
value of their representative utility:

Max

Z ∞
0

e−ρtU(Ct)dt , U(C) =
C1−σt

1− σ
,

where variable Ct is consumption in period t, ρ is the rate of time preference
and 1

σ is the elasticity of substitution between consumption at two periods of
time.
A consumer facing a constant interest rate r, chooses to have consumption

growing at the constant rate gc given by the familiar Euler equation:

gc =

·
C

C
=
1

σ
(r − ρ) (9)
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Equation 9 expresses a positive relationship between the interest rate and
the growth rate. It will be called the Preferences curve2.
In this model, general equilibrium solutions are represented as points in the

space (r, g) where the Preferences curve and the Technology curve cross.
The Technology curve is constituted by balanced growth paths that charac-

terise equilibria on the production side of the economy. In this model, technology
is characterised by a combination of the effects of complementarities between
capital goods and the effects of costly investment in physical capital. Each
of these effects produces a different relationship between the interest rate and
the growth rate. The Technology curve will then be composed of positive seg-
ments and negative segments, in the space (r, g). Let us first describe how the
complementarities effect works.

3.1 Complementarity between Capital Goods

The production side consists of three sectors. The final goods sector, the capital
goods sector and the R&D sector.
As in Evans et al.[1998], the final good Y is produced using as inputs labour

L, assumed constant, and a number A of differentiated durable capital goods,
i, each produced in quantity x(i). Capital goods enter complementarily in the
production function. All this is captured by the following production function:

Yt = L
1−α
t

ÃZ At

0

xt(i)
γdi

!φ

, γφ = α , φ > 1 (10)

The restriction γφ = α is imposed to preserve homogeneity of degree one, and
the assumption φ > 1 is made so that capital goods are complementary to one
another, that is, so that an increase in the quantity of one good increases the
marginal productivity of the others.
In addition to the production of final output, there are two other productive

activities: inventing new capital goods and producing physical machines for
each of the already invented types of capital goods.
Assuming that it takes one unit physical capital to produce one unit of any

type of capital good, physical capital K is related to the capital goods by the
rule:

Kt =

Z At

0

xt(i)di,

In this one-sector model, designs are also produced with the same technology
as consumption goods and physical capital3.
We assume that the invention of patent i requires PA iξ units of foregone

output, where PA is the fixed price of one new design, i, in units of foregone

2We follow Rivera-Batiz and Romer [1991] in naming the model’s curves as Preferences
curve and Technology curve.

3A similar assumption is adopted in Rivera-Batiz and Romer [1991].
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output, and iξ represents the additional cost of patent i in terms of foregone
output, meaning that there is a higher cost for designing goods with a higher
index4.
Output is then distributed as:

Yt = Ct +
·
Kt + PA

·
AtA

ξ
t (11)

⇔
Yt = Ct +

·
Wt,

where
·
K represents investment in physical capital and PA

·
AAξ represents invest-

ment in the invention of new designs. In order to solve the system for a single
constant growth rate, we follow Evans et al. [1998] in imposing the following
restriction:

ξ =
φ− 1
1− α

(12)

Variable W stands for total capital:

Wt = Kt + PA
Aξ+1
t

ξ + 1
(13)

Final good producers are price takers in the market for capital goods. In
equilibrium they equate the rental rate on each capital good with its marginal
productivity. That is:

Rt(j) =
dYt
dxt(j)

= φγL1−αxt(j)γ−1
ÃZ At

0

xt(i)
γdi

!φ−1
(14)

⇔

xt(j) =

αL1−α
³R A

0
xt(i)

γdi
´φ−1

Rt(j)


1

1−γ

(15)

Capital good producers are monopolistic competitors. They incur, upfront,
the cost of inventing a new capital good and earn thereafter the profits that the
patent for that good generates.
Once invented, the production of each unit of the specialised capital good

requires one unit of physical capital. Capital depreciation is assumed to be zero,
for simplicity. Each period, the monopolistic firm maximises its profits, taking
as given the demand curve 14 for its good:

Max πt(j) = Rt(j)xt(j)− rtxt(j)
4This extra cost is assumed in order to avoid an explosive growth of new designs.
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This leads to the markup rule:

Rt(j) =
rt
γ

(16)

As this holds for all capital good producers, the prices charged for each
capital good and the quantities supplied of each good are equal across all goods.
That is Rt(j) = R = Rt,and xt(j) = x = xt. Thus it follows that total physical
capital is:

Kt =

Z At

0

xt(i)di = Atxt, (17)

and the aggregate output production function 10 can now be rewritten as:

Yt = L
1−α(Atx

γ
t )

φ (18)

Also Rt equals:

Rt = αL1−αAφ−1
t xα−1t , (19)

and xt can be rewritten as:

xt = LA
ξ
t

µ
α

Rt

¶ 1
1−α

, (20)

The model is solved for its balanced growth path. According to the Euler
equation 9, in a balanced growth path, the interest rate r is constant. Conse-
quently so is R.
Log-differentiation of equation 20 shows that, that in a balanced growth

path, x is growing at the rate:

·
x

x
= gx = ξgA (21)

Consequently, K is growing at the rate:

gk = (1 + ξ)gA,

and log-differentiation of the production function 18 indicates that output is
growing at the same rate as K5:

Yt = L1−α(Atx
γ
t )

φ

= L1−αKα
t A

φ−α
t ,

so:

gy = (1 + ξ)gA (22)

5These growth rates are also the per-capita growth rates, as the labour force is assumed
constant.
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Time differentiation of equation 13 shows that total capital W grows at the
rate:

gw = (1 + ξ)gA

Then equation 11 tells us that consumption grows at the same rate as output:

Yt = Ct +
·
Wt

⇒
·
C

C
=

·
Y

Y

Summing up:

g = gc = gy = gk = gw = (1 + ξ)gA (23)

Determination of the engine of growth, gA, is then the next step.
The growth rate of designs is determined by the free-entry/zero-profit con-

dition that rules the decisions of capital good producers.
The decision to produce a new capital good depends on the comparison

between the discounted stream of net revenues that the patent on this good will
bring in the future, and the cost of the initial investment in a design.
Because firms are monopolistic competitors, at each time t the quantity of

inventions, A, is determined by a zero-profit/free-entry condition which states
that the fixed cost of the last good invented at time t (j = At) must be equal to
the present discounted value of the stream of monopoly rents that it will offer
thereafter. This condition is:

PAtA
ξ
t =

Z ∞
t

e−r(τ−t)πτdτ (24)

⇔
·¡

PAA
ξ
¢
t
= rPAA

ξ
t − πt

⇔
gA =

1

ξ

µ
r − π

PAAξ

¶
,

where the last result follows because in a balanced growth path PA is constant.
Now, with the use of equations 16, 19 and 20, the expression for the capital

goods producers’ profits is obtained:

π = Rx− rx (25)

= (1− γ)αL (γα)
α

1−α Aξr(−
α

1−α )

= ΩAξr(−
α

1−α ),

where Ω = (1− γ)αL (γα)
α

1−α is a constant.
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So equation 24 can be rewritten as:

gA =
1

ξ

µ
r − Ω

PAr
α

1−α

¶
(26)

And, recalling equation 23 the growth rate of output per-capita is:

g =
1 + ξ

ξ

µ
r − Ω

PAr
α

1−α

¶
(27)

Equation 27 expresses a positive relationship between the interest rate and
the growth rate, and is thus upward sloping in the space (r, g). This positive
relationship between r and g is generated by the complementarity of capital
goods. We name it Technology curve - Complementarities (TC).
The intuition behind this positive relationship between the interest rate and

the growth rate is the following: As capital goods are complementary to each
other, a firm that invents a new machine today will face a demand for its
good that increases with the quantities and varieties of other goods that are
introduced tomorrow. So, starting from a point where the interest rate and
the growth rate yield zero profits, consider an increase in the growth rate. If
K and A grow more rapidly, a new invention would generate a higher present
discounted value of profits if the interest rate stayed the same. Competition
for financial resources caused by this perceived opportunity will then raise the
interest rate, thus resulting in a positive relationship between the growth rate
and the interest rate.

3.2 Costly Investment in Capital

As introduced in Section 2, we now assume that installing It =
·
Wt new units of

total capital requires the firms to spend an amount given by:

Jt = It +
1

2
θ
I2t
Wt

(28)

⇔
Jt = It

µ
1 +

1

2
θ
It
Wt

¶
,

where 1
2θ

I2t
Wt

represents the installation cost.
Final good firms choose their investment rate so as to maximise the present

discounted value of their cash flows. In this case, their profit maximisation
problem6 is:

Max
I
Vt =

Z ∞
0

µ
Yt − It − 1

2
θ
I2t
Wt

¶
e−rtdt (29)

6See David Romer [1996, Chp.8] for a discussion on firms’s investment behaviour.
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subject to:

·
Wt = It

Now, notice that aggregate output is equal to:

Yt = L1−αAφ
t x

α
t

= L1−αAφ
t

·
LAξ

t

³α
R

´ 1
1−α

¸α
= LA1+ξt

³α
R

´ α
1−α

and total capital is equal to:

Wt = Kt + PA
Aξ+1
t

ξ + 1

= A1+ξt

·
L
³α
R

´ 1
1−α

+
PA
ξ + 1

¸
So Y

W is equal to:

Y

W
=

LA1+ξt

¡
α
R

¢ α
1−α

A1+ξt

h
L
¡
α
R

¢ 1
1−α + PA

ξ+1

i
=

L
¡
α
R

¢ α
1−αh

L
¡
α
R

¢ 1
1−α + PA

ξ+1

i = B
where B, the marginal productivity of total capital, is constant.
So our current-value Hamiltonian is:

Ht = BWt − It − 1
2
θ
I2t
Wt

+ qt(It −
·
Wt), (30)

where q is the current-value of capital accumulation.
The first-order condition is:

dH

dI
= 0⇔ (31)

⇔ I

W
=
q − 1
θ

and the co-state equation is:

dH

dW
= rq − ·

q ⇔ (32)

⇔
·
q

q
= r − B +

1
2θ
¡
I
W

¢2
q
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The transversality condition is:

lim
t→∞e

−rtqtWt = 0 (33)

The problem is solved for its balanced growth path.
Recall the production function Y = BW . The growth rate of output is:

g =

·
Y

Y
=

·
W

W
=
I

W

This means that equation 31 can be rewritten as:

g =
q − 1
θ
,

and gives a positive relationship between the growth rate g and the value of
capital q.
In a balanced growth path, the growth rate must be constant, which implies

that
·
q
q = 0. So equation 32 becomes:

q =
B + 1

2θ
¡
I
W

¢2
r

(34)

Equation 34 displays a negative relationship between the value of capital q and
the interest rate r.
Hence equations 31 and 34 together imply a negative relationship between

the growth rate g and the interest rate r .
That is, the introduction of a cost for capital installation generates a negative

relationship between the interest rate and the growth rate. The intuition behind
this is that a rise in the interest rate lowers the market value of capital, and
thus lowers investment in capital. This limits capital good firms’ production
capacity and also can reduce R&D activities.
The equation that generates this negative relationship between the interest

rate and the growth rate is obtained through equations 31 and 34 and is:

q =
B + 1

2θ
¡
I
W

¢2
r

(35)

⇔
θg + 1 =

B + 1
2θg

2

r⇔
g =

B + 1
2θg

2

θr
− 1

θ

We name equation 35 as Technology curve - Costly Investment (TI).
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3.3 Composed Technology Curve

We assume that the Technology curve of this economy is equal to the sum of
TC and TI :

T (r) = TC(r) + TI(r) (36)

We express the curve with the growth rate as a function of the interest rate,
as it is easier to treat mathematically. Let us first analyse the slopes of the two
component curves separately:
1] Technology Curve - Complementarities 27:

g =
1 + ξ

ξ

µ
r − Ω

PAr
α

1−α

¶
⇒

dg

dr
=

1 + ξ

ξ
+

α

1− α

1 + ξ

ξ

Ω

PAr
1

1−α
> 0

2] Technology Curve - Costly Investment 35:

g =
B + 1

2θg
2

θr
− 1

θ⇔
1

2
θg2 − θrg +B − r = 0

⇔

g =
θr ±

q
θ2r2 − 2θ (B − r)

θ

The growth rate must be smaller than the interest rate so that present values
will be finite. Thus the equation above becomes:

g = r −
q
θ2r2 − 2θ (B − r)

θ
(37)

First, we have a restriction:

θ2r2 − 2θ (B − r) > 0

⇔
θ
¡
θr2 + 2r − 2B¢ > 0

Now:

θr2 + 2r − 2B = 0⇔ r =
−2 +√4 + 8θB

2θ⇒
4 + 8θB > 0⇔ θB > −1

2

14



Then, we go back to equation 37:

g = r −
q
θ2r2 − 2θ (B − r)

θ⇒
dg

dr
= 1− 1

2

1

θ

¡
2θ2r + 2θ

¢ ¡
θ2r2 − 2θ (B − r)¢− 1

2

= 1− (θr + 1)q
θ2r2 − 2θ (B − r)

The slope of this curve will be negative if:

(θr + 1)q
θ2r2 − 2θ (B − r)

> 1

⇔
(θr + 1) >

q
θ2r2 − 2θ (B − r)

⇔
1 > −2θB ⇔ θB > −1

2
,

which is true.
Concluding, the Technology curve T (r) in this model is defined as:

g =
1 + ξ

ξ

µ
r − Ω

PAr
α

1−α

¶
+ r −

q
θ2r2 − 2θ (B − r)

θ
(38)

Its slope is defined as:

dg

dr
=
1 + ξ

ξ
+

α

1− α

1 + ξ

ξ

Ω

PAr
1

1−α
+ 1− (θr + 1)q

θ2r2 − 2θ (B − r)
(39)

A numerical exercise, presented below, will show that, for certain parameter
values and within a certain range for the interest rate, this curve has a negative
slope and a positive slope, and thus crosses the Preferences curve more than
once. This exercise thus provides a numerical example for our multiple equilibria
result.

3.4 The Equilibrium Solutions

The plot request to Mathematica Programme followed the following steps:
1] Give Numerical Values to Parameters:
Technology Parameters:

α = 0.4, γ = 0.1, φ =
α

γ
= 4, ξ =

φ− 1
1− α

= 5,
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L = 0.356, Ω = (1− γ)αL (γα)
α

1−α = 0.015, PA = 110, θ = 10

Preferences Parameters:

σ = 2, ρ = 0.01

2] Define the Equations:

P (r) =
1

σ
(r − ρ) ,

b(r) = B =
Y

W
=

L (αγ)
α

1−α r
−α
1−α·

L (αγ)
1

1−α
r

1
1−α + PA

ξ+1

¸ ,

f(r) = θ2r2 − 2θ[b(r)− r],

TI(r) = r −
p
f(r)

θ
,

TC(r) =
1 + ξ

ξ

µ
r − Ω

PAr
α

1−α

¶
,

T (r) = TC(r) + TI(r)

3] Plot P (r) and T (r) and the solutions to the system composed by these
two curves, the Preferences curve and the Technology curve.
The numerical exercise produced Figure 1.
As the figure shows, the model delivers two equilibria.
In models with a finite number of steady-states, the standard analysis that

is made to evaluate the stability of the equilibria is based on the reasoning that
for a given class of initial values of the state variable, the equilibrium dynamics
leads the economy away from one equilibrium into another.
Such procedure cannot be used in this model, however, because the dynamic

equations that determine the growth rate do not depend on the state variables.
That is, for any initial values of A and K, the economy can select any of the
perfect-foresight balanced growth paths.
Thus, in order to evaluate the stability of the multiple equilibria obtained in

our model, we follow Evans et al. [1998] and use the criterion of stability under
learning.
This criterion works by going outside of the model to ask what the dynamics

would be if agents learned about the equilibrium values of the variables by
observing the behaviour of the economy.
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Figure 1:

An analysis of this kind requires an extension of the model into a temporary
equilibrium framework. The reasoning is as follows: Households base their
choices on an expected interest rate. So, given an expected interest rate re,
households choose their savings rate, which determines the growth rate of the
economy. Then firms take this growth rate into their business calculations
and plan their production, for which they demand a corresponding amount of
financing which, in turn, determines a unique realised interest rate. This gives
a mapping from expected interest rates into realised interest rates such as:

r = Ψ(re) (40)

Consumers observe the realised interest rate and revise their expectations about
the future expected interest rate accordingly. From mistake to mistake, the
economy will converge to the stable equilibrium if it starts from nearby values
of equilibrium r and g.
To generate explicit dynamics for the interest rate, an adaptive learning

scheme is adopted:

ret+1 = r
e
t + δt(rt − ret ) , δt =

δ

t
(41)

The sequence {δt} is known as the gain sequence. It determines the degree of
the adjustment of expectations to forecast errors7 .

7See Evans et al. [1998] for more details on the expectations adjustment specification.
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The use of equations 40 and 41 for the stability analysis suggests that both
the low-growth and the high-growth equilibria are stable under learning8. For a
given initial expected interest rate, producers make plans that can either imply a
high growth rate or a low growth rate. It follows that the interest rate dynamics
leads the economy to either the high growth rate equilibrium or the low growth
rate equilibrium.
Concluding, this endogenous growth model delivers multiple equilibria through

the combination of complementarity between capital goods and costly installa-
tion of capital. It relies on the role of adaptive expectations to obtain two stable
equilibria.
The model explains how expectations can drive one economy into either of

the equilibria and, hence, it offers an explanation as to how an economy can
end up in either of the opposite stable growth equilibria.

4 Concluding Remarks
This paper has been dedicated to the construction of a multiple equilibria one
sector R&D-based growth model.
The objective is to contribute to growth theory with a mechanism to explain

why expectations can drive an economy to either one of two opposite equilibri-
ums in terms of the growth rate.
The new model is inspired by the multiple equilibria model by Evans, Honkapo-

hja and Romer [1998], which, as in our model, assumes that capital goods enter
complementarily to one another in the production function of the final goods.
However, our proposed model obtains multiple equilibria through different

mechanisms than that of Evans et al., as it departs from their model in two
fundamental ways.
Firstly, Evans et al. assume that there is a non-linear trade-off between

consumption and total investment, the price of capital in terms of consumption
varying positively with the growth rate through a function with no analytical
shape. In comparison, our model has a one-sector structure, that is, it assumes
that the final good, investment in physical capital and new designs are all pro-
duced under the same technology.
Secondly, the new model introduces the assumption that final-good produc-

ers incur an internal investment cost when accumulating total capital which is
used for the invention of new designs and the production of capital goods. This
assumption of costly investment is new to R&D-based growth theory.
The combination of monopolistic competition with complementarities and

the costly installation of capital gives rise to a non-linear Technology curve and
thus generates multiple equilibria. The criterion for evaluating the stability

8The reader is referred to Evans, Honkapohja and Romer [1998] for their subsequent anal-
ysis of growth cycles between the two stable equilibria. These authors produce growth cycles,
as they are interested in using their multiple equilibria model to understand macroeconomic
fluctuations.
Our aim in producing a multiple equilibria model is to explain the diversity of experiences

in terms of long-run, hence we don’t move into the growth cycles analysis.
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of the equilibria is that of stability under learning, which defines two stable
equilibria. One equilibrium is a balanced growth path characterised by high-
growth and high-interest rates, and the other equilibrium is a balanced growth
path characterised by low-growth and low-interest rates.
The proposed model thus attempts to contribute to endogenous growth the-

ory by introducing costly investment in an R&D-based growth model and hence
providing a new mechanism to explain the possibility of one economy experi-
encing multiple equilibria situations.

19



5 Bibliography
Azariadis, C. and Drazen, A. 1990. “Threshold Externalities in Economic De-
velopment.” Quarterly Journal of Economics 105(2): 501-526.
Benavie, A., Grinols, E. and Turnovsky, S.J. 1996 “Adjustment costs and

investment in a stochastic endogenous growth model.” Journal o Monetary
Economics, 38: 77-100.
Benhabib, J. and Gali, J. 1995. “On Growth and Indeterminacy: Some

Theory and Evidence.” Carnegie-Rochester Conference Series on Public Policy,
43: 163-211.
Benhabib, J., Perli, R. and Xie, D. 1994. “Monopolistic Competition, Inde-

terminacy and Growth.” Ricerche Economiche, 48(4): 279-298.
Cohen, D. 1993. “Growth and External Debt.” CEPR Discussion No 778.
Evans, G., Honkapohja, S. and Romer, P. 1998. “Growth Cycles.” American

Economic Revue, Vol 88, N3: 495-515.
Hayashi, F. 1982. “Tobin’s marginal q and average q: a neoclassical inter-

pretation. ” Econometrica 50: 213-224.
Matsuyama, K. 1995. “Complementarities and Cumulative Processes in

Models of Monopolistic Competition.” Journal of Economic Literature 33: 701-
729.
Rivera-Batiz, L. and Romer, P. 1991. “Economic Integration and Endoge-

nous Growth” Quarterly Journal of Economics, May 1991: 531-555.
Romer, D. 1996. Advanced Macroeconomics. Mc-Graw-Hill Companies, Inc.
Silvestre, J. 1993. “The Market-Power Foundations of Macroeconomic Pol-

icy.” Journal of Economic Literature, 31(1): 105-141.
Solow, R.M. 2000. Growth Theory: An Exposition. New York: Oxford

University Press.
Tobin, J. 1969. “A General Equilibrium Approach to Monetary Theory.”

Journal of Money, Credit and Banking, 1: 15-29.
Van Der Ploeg, F. 1996. “Budgetary Policies, Foreign Indebtedness, The

Stock Market and Economic Growth.” Oxford Economic Papers 48: 382-396.

20


