
Electronic Notes in Theoretical Computer Science 86 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume86.html 15 pages

Automatic Visualization of Recursion Trees:
a Case Study on Generic Programming 1

Alcino Cunha 2

Departamento de Informática
Universidade do Minho

4710-057 Braga, Portugal

Abstract

Although the principles behind generic programming are already well understood,
this style of programming is not widespread and examples of applications are rarely
found in the literature. This paper addresses this shortage by presenting a new
method, based on generic programming, to automatically visualize recursion trees
of functions written in Haskell. Crucial to our solution is the fact that almost any
function definition can be automatically factorized into the composition of a fold
after an unfold of some intermediate data structure that models its recursion tree.
By combining this technique with an existing tool for graphical debugging, and by
extensively using Generic Haskell, we achieve a rather concise and elegant solution
to this problem.

1 Introduction

A generic or polytypic function is defined by induction on the structure of
types. It is defined once and for all, and can afterwards be re-used for any
specific data type. The principles behind generic programming are already
well understood [2], and several languages supporting this concept have been
developed, such as PolyP [13] or Generic Haskell [3]. Unfortunately, this
style of programming is not widespread, and we rarely find in the literature
descriptions of applications developed in these languages.

This paper addresses this shortage by presenting a case study on generic
programming. The problem that we are trying to solve is to automatically
and graphically visualize the recursion tree of a Haskell [14] function definition.
This problem does not rise any particular difficulties, however it will be shown
that the use of generic programming allows us to achieve a rather concise and

1 This work was partially supported by FCT project POSI/CHS/44304/2002.
2 Email: alcino@di.uminho.pt

c©2003 Published by Elsevier Science B. V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55602506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cunha

elegant solution. This solution was integrated in a tool that is of practical
interest for the area of program understanding, specially on an educational
setting.

At the core of our solution lies an algorithm that automatically factorizes
a recursive definition into the composition of a fold and an unfold of an inter-
mediate data structure. This algorithm was first presented by Hu, Iwasaki,
and Takeichi in [12], where it was applied to program deforestation. A well
known side-effect of the factorization is that the intermediate data structure
models the recursion tree of the original definition. The visualization of this
structure is defined generically on top of GHood [19], a system to graphically
trace Haskell programs.

This paper is structured as follows. In section 2 we informally show how the
well-known fold and unfold functions on lists can be generalized to arbitrary
data types. This generalization is essential for understanding the factorization
algorithm. Section 3 introduces some theoretical concepts behind the idea of
programming with recursion patterns. In section 4 we show how these re-
cursion patterns can be defined once and for all using Generic Haskell. These
generic definitions simplify the implementation, since we no longer have to de-
rive the specific recursion patterns to operate on the intermediate data types.
In section 5 we present the factorization algorithm very briefly. In section 6
we show how we can use GHood to observe intermediate data structures, and
in section 7 we generalize the observation mechanism in order to animate any
possible recursion tree. The last section presents some concluding remarks.
We assume that the reader has some familiarity with the language Haskell.

2 Recursion Patterns Informally

Each inductive data type is characterized by a standard way of recursively
consuming and producing its values according to its shape. The standard
recursion pattern for consuming values is usually known as fold or catamor-
phism. In the case of lists this corresponds to the standard Haskell function
foldr.

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

The generalization to other data types is straightforward. Let us suppose
that we want to fold over binary trees.

data Tree a = Leaf | Node a (Tree a) (Tree a)

Similarly to foldr, this fold must receive as an argument the value to
return when we reach a leaf, and a function to apply when consuming a node.
This function has to process the result of two recursive calls since the data
type is birecursive. In order to make explicit the duality with the (yet to be
presented) unfolds, we group both parameters in a single function with the

2

Cunha

help of the data type Maybe.

foldT :: (Maybe (a,b,b) -> b) -> Tree a -> b

foldT g Leaf = g Nothing

foldT g (Node x l r) = g (Just (x, foldT g l, foldT g r))

The dual of fold is the unfold or anamorphism. Although already known
for a long time it is still not very used by programmers [6]. This recursion
pattern encodes a standard way of producing a value of a given data type, and
for lists it is defined as unfoldr in one of the standard libraries of Haskell.

unfoldr :: (b -> Maybe (a,b)) -> b -> [a]

unfoldr f b = case f b of Nothing -> []

Just (a,b) -> a : unfoldr f b

The argument function f dictates the generation of the list. If it returns
Nothing the generation stops yielding the empty list. Otherwise it should
return both the value to put at the head of the list being constructed, and
a seed to carry on with the generation. The generalization to trees is again
straightforward.

unfoldT :: (b -> Maybe (a,b,b)) -> b -> Tree a

unfoldT h x = case (h x) of

Nothing -> Leaf

Just (x,l,r) -> Node x (unfoldT h l) (unfoldT h r)

The composition of a fold after an unfold is known as a hylomorphism [17].
Note that since the fixed point operator can be defined as a hylomorphism,
this recursion pattern can express any recursive function [18]. For a wide
class of function definitions the intermediate data structures correspond to
their recursion trees. For example, quick-sort can be easily implemented as
a hylomorphism by using a binary search tree as intermediate data structure
[1]. The unfold should build a search tree containing the elements of the input
list, and the fold just traverses it inorder.

qsort :: (Ord a) => [a] -> [a]

qsort = (foldT g) . (unfoldT h)

where h [] = Nothing

h (x:xs) = Just (x, filter (<=x) xs, filter (>x) xs)

g Nothing = []

g (Just (x,l,r)) = l ++ [x] ++ r

3 Data Types as Fixed Points of Functors

One of the tasks of the method presented in the previous section, is the explicit
definition of the folds and unfolds for each new data type. However, it is
possible to avoid this task by appealing to the theoretical concepts behind data
types and recursion patterns. The framework of the following presentation is
the category CPO of complete partial orders and continuous functions.

3

Cunha

The first insight is that data types can be modeled as least fixed points of
functors. Given a monofunctor F which is locally continuous, there exists a
data type µF and two strict functions inF : F (µF) → µF and outF : µF →
F (µF) which are each others inverse. The data type µF is the least fixed point
of F , the functor that captures the signature of its constructors. The functions
inF and outF are used, respectively, to construct and destruct values of the
data type µF . At least since the work of Meijer and Hutton presented in [18]
it is well known how these concepts can be implemented directly in Haskell.
First we define an explicit fixpoint operator with the keyword newtype to
enforce the isomorphism.

newtype Mu f = In {out :: f (Mu f)}

For each new data type it is necessary to define the functor that captures
its signature (and declare it as an instance of the class Functor), and then
apply Mu in order to obtain the data type. For example, the Tree data type
presented in the previous section could be defined as follows.

data FTree a b = Leaf | Node a b b

instance Functor (FTree a)

where fmap f Leaf = Leaf

fmap f (Node x l r) = Node x (f l) (f r)

type Tree a = Mu (FTree a)

A possible example of a tree with just two integer elements is

tree :: Tree Int

tree = In (Node 2 (In (Node 1 (In Leaf) (In Leaf))) (In Leaf))

Under some particular strictness conditions, the F -algebra (µF, inF) is ini-
tial, and its carrier matches with the carrier of the final F -coalgebra (µF, outF).
This means that given any other F -algebra (B, g) or F -coalgebra (A, h), fold
g and unfold h are the unique functions that make the following diagrams
commute.

µF

fold g

��

F (µF)
inFoo

F (fold g)

��
B FBg

oo

A

unfoldh
��

h // FA

F (unfoldh)
��

µF outF

// F (µF)

The unique definitions for folds and unfolds given by the diagrams can be
directly translated to Haskell (in order to simplify the presentation we also
give an explicit definition for hylomorphisms).

fold :: (Functor f) => (f b -> b) -> Mu f -> b

fold g = g . fmap (fold g) . out

4

Cunha

unfold :: (Functor f) => (a -> f a) -> a -> Mu f

unfold h = In . fmap (unfold h) . h

hylo :: (Functor f) => (f b -> b) -> (a -> f a) -> a -> b

hylo g h = (fold g) . (unfold h)

These definitions can be seen as polytypic functions because they work for
any data type, provided that it is modeled explicitly by the fixed point of a
functor. The quick-sort example presented at the end of the previous section
must be (slightly) adapted to this new methodology.

qsort :: (Ord a) => [a] -> [a]

qsort = hylo g h

where h [] = Leaf

h (x:xs) = Node x (filter (<=x) xs) (filter (>x) xs)

g Leaf = []

g (Node x l r) = l ++ [x] ++ r

4 Generic Recursion Patterns

In order to use these recursion patterns, we still have to implement the map
function for each functor. In order to avoid this task we will use Generic
Haskell [3]. This language extends Haskell with polytypic features and orig-
inates on work by Ralf Hinze [8,9], where generic functions are defined by
induction on the structure of types, by providing equations for the base types
and type constructors (like products and sums). Given this information, a
generic definition can be specialized to any Haskell data type (these are in-
ternally converted into sums of products). The specialization proceeds induc-
tively over the structure of the type, with type abstraction, type application,
and type-level fixed-point being interpreted as their value-level counterparts.

Generic Haskell automatically converts each data type to an isomorphic
type that captures its sum of products structure and records information about
the presence of constructors. This structure type only represents the top-level
structure of the original type. The types in the constructors do not change,
including the recursive occurrences of the original type. The functions that
convert data types into their structure types (and the other way round) are
also automatically created. The constructors of structure types are

data a :+: b = Inl a | Inl b -- sum

data a :*: b = a :*: b -- product

data Unit = Unit -- unit

data Con a = Con a -- constructor

For example, Tree’ is the structure type of our first declaration of Tree.

data Tree a = Leaf | Node a (Tree a) (Tree a)

type Tree’ a = Con Unit :+: Con (a :*: (Tree a :*: Tree a))

5

Cunha

Generic functions are then defined over the constructors of structure types
and base types. The specific function for a data type is obtained by composing
the specialization of the generic function to its structure type with the respec-
tive conversion functions. For example, a generic map function is predefined
in the Generic Haskell libraries as follows 3 .

gmap {| Unit |} = id

gmap {| Int |} = id

gmap {| :+: |} gmapA gmapB (Inl a) = Inl (gmapA a)

gmap {| :+: |} gmapA gmapB (Inr b) = Inr (gmapB b)

gmap {| :*: |} gmapA gmapB (a :*: b) = (gmapA a) :*: (gmapB b)

gmap {| Con c |} gmapA (Con a) = Con (gmapA a)

Notice that different cases in gmap have different types (more precisely, the
number of arguments equals the number of arguments of the type construc-
tor). This is due to the fact that polytypic values possess polykinded types
[9], a restriction that ensures that generic functions can be used with types of
arbitrary kind. The type of gmap is specified in Generic Haskell as follows 4 .

type Map {[*]} t1 t2 = t1 -> t2

type Map {[k -> l]} t1 t2 = forall u1 u2.

Map {[k]} u1 u2 -> Map {[l]} (t1 u1) (t2 u2)

gmap {| t :: k |} :: Map {[k]} t t

For example, since the kind of Tree is * -> * (a constructor that receives
a type as argument and produces a type), the type of the map function for
binary trees can be determined by the following sequence of expansions.

Map {[* -> *]} Tree Tree

forall u1 u2 . Map {[*]} u1 u2 -> Map {[*]} (Tree u1) (Tree u2)

forall u1 u2 . (u1 -> u2) -> (Tree u1 -> Tree u2)

Since in Haskell all type variables are implicitly universally quantified, this
type equals the expected one.

gmap {| Tree |} :: (a -> b) -> Tree a -> Tree b

In the case of the bifunctor FTree, of kind * -> * -> *, the map must
receive two functions as arguments, one to be applied to the elements in the
node, and another one for the recursive parameter.

gmap {| FTree |} :: (a -> b) -> (c -> d) -> FTree a c -> FTree b d

3 The delimiters {| |} enclose a type argument. In a generic function definition they
enclose the type index for a given case. They are also used in the so-called generic application
to require the specialization of a generic function to a specific type. When Con is supplied
as a type index argument it includes an extra argument that is bound to a value providing
information about the constructor name, its arity, etc. This information is necessary to
implement, for example, a generic show function. Similarly, the delimiters {[]} used in
type definitions enclose a kind argument.
4 In Generic Haskell, the type keyword allows one to define a type by induction on the
structure of its kind.

6

Cunha

Besides generic functions, we can also define generic abstractions when a
type variable (of fixed kind) can be abstracted from an expression. Typically
this involves applying predefined generic functions to the type variable. For
example, our recursion patterns can be defined by generic abstractions as
follows [10].

fold {| f :: * -> * |} :: (f b -> b) -> Mu f -> b

fold {| f |} g = g . gmap {| f |} (fold {| f |} g) . out

unfold {| f :: * -> * |} :: (a -> f a) -> a -> Mu f

unfold {| f |} h = In . gmap {| f |} (unfold {| f |} h) . h

hylo {| f :: * -> * |} :: (f b -> b) -> (a -> f a) -> a -> b

hylo {| f |} g h = (fold {| f |} g) . (unfold {| f |} h)

Given these recursion patterns we no longer have to define the map func-
tions for the data types we declare. For example, a quick-sort for integer lists
can now be defined as follows (g and h are exactly the same as before).

qsort :: [Int] -> [Int]

qsort = hylo {| FTree Int |} g h

where ...

However, there is a problem in defining the original polymorphic qsort.
Given a list of type [a], the intermediate data structure should be a binary
tree with elements of type a, defined as the fixed point of FTree a. If Generic
Haskell allowed the definition of scoped type variables (an extension to Haskell
98 described in [15]), one could define qsort as follows.

qsort :: (Ord a) => [a] -> [a]

qsort (l::[a]) = hylo {| FTree a |} g h l

where ...

Unfortunately, since Generic Haskell does not support this extension we
had to resort to a less elegant solution in order to allow for polymorphism.
Instead of having a single definition for hylomorphisms, we define different
functions to be used with monofunctors (hylo1), bifunctors (hylo2), and so
on. As we have seen in the previous section for the FTree example, a poly-
morphic data type is obtained as the fixed point of a monofunctor, which in
turn results from sectioning a bifunctor with the type variable. This means
that the Functor instances should treat the type variable as a type constant
(notice that in the case of FTree the contents of the node were left intact).
When defining the generic recursion patterns for bifunctors this implies that
we will have to pass the identity function as first argument to the generic map.
For example, the fold for bifunctors is defined as follows.

fold2 {| f :: * -> * -> * |} :: (f c b -> b) -> Mu (f c) -> b

fold2 {| f |} g = g . gmap {| f |} id (fold2 {| f |} g) . out

7

Cunha

The polymorphic qsort can then be defined as

qsort :: (Ord a) => [a] -> [a]

qsort = hylo2 {| FTree |} g h

where ...

5 Deriving Hylomorphisms from Recursive Definitions

It is possible to derive automatically a hylomorphism from almost any explicit
recursive definition of a function [12]. The main restrictions to the function
definitions are that no mutual recursion is allowed, the recursive function calls
should not be nested (thus excluding, for example, the usual definition of the
Ackermann function), and, if the function has more than one argument, it
should only induct over the last one (although it can be a tuple), leaving the
remaining unchanged. This restrictions guarantee that the intermediate data
type is a fixed point of a polynomial functor (sum of products), and, as a
side-effect, that it models the recursion tree of the original definition.

We will informally explain how the algorithm works by applying it to the
explicitly recursive definition of the quick-sort function. Our presentation
assumes that all bounded variables are uniquely named. This restriction is
trivially verified in this case.

qsort [] = []

qsort (x:xs) = qsort (filter (<=x) xs) ++ [x] ++

qsort (filter (> x) xs)

The goal is to derive a functor F, and functions g and h in order to obtain
the following hylomorphism (note that after determining F one should choose
the appropriate hylo according to its kind).

qsort = hylo {| F |} g h

The first step is to identify, for the right hand side of each clause, the
recursive calls (shown in italic) and all variables that occur free in those terms
outside of the recursive calls (shown underlined).

qsort [] = []

qsort (x:xs) = qsort (filter (<=x) xs) ++ [x] ++

qsort (filter (> x) xs)

The definition of h is similar to that of qsort, but the right hand sides
are replaced by new data constructors applied to the free variables and the
arguments of recursive calls.

h [] = F1

h (x:xs) = F2 x (filter (<=x) xs) (filter (>x) xs)

In order to define g we first replace the recursive calls in the right hand
sides of qsort by fresh variables, and use as arguments the right hand sides
of h, but with the arguments of recursive calls replaced by the new variables.

8

Cunha

g F1 = []

g (F2 x r1 r2) = r1 ++ [x] ++ r2

The arguments of the functor F are all the free variables plus a single recur-
sive variable r. The constructors have the same definition as the arguments
of g, but with all the fresh variables replaced by r.

data F x r = F1 | F2 x r r

Putting it all together, and using the adequate hylo (in this case F is a
bifunctor), we get the same definition as before.

qsort = hylo2 {| F |} g h

where h [] = F1

h (x:xs) = F2 x (filter (<=x) xs) (filter (>x) xs)

g F1 = []

g (F2 x r1 r2) = r1 ++ [x] ++ r2

As expected, the intermediate data type models the recursion tree of the
original definition. In this example we got binary trees since quick-sort is a
birecursive function.

We implemented this algorithm straightforwardly using some libraries for
parsing and pretty-printing Haskell, combined with a state monad for manag-
ing unique names and other global information. Note that the generic defini-
tions of the recursion patterns can be used for every new functor F.

6 Observing Recursion Trees

GHood [19] is a graphical animation tool built on top of Hood [7] (Haskell
Object Observation Debugger). Hood is a portable debugger for full Haskell,
based on the observation of intermediate data structures. Essentially, it intro-
duces the following combinator with a similar signature to trace (a debugging
primitive offered by all major Haskell distributions), but with a more complex
behavior.

observe :: (Observable a) => String -> a -> a

This function just returns the second argument, but as a side-effect it
stores it into some persistent structure for later rendering. It behaves like an
identity function that can remember its argument. The string parameter is
just a label that allows one to distinguish between different observations in
the same program. The main advantage of observe over trace is that it can
be effectively used without changing the strictness properties of the observed
program.

Instances of Observable for the standard types are predefined. Imple-
menting new instances of this class is very simple due to the high-level com-
binators and monads included in the library. As an example, we present the
implementation for lists that is predefined in the Hood libraries.

9

Cunha

instance (Observable a) => Observable [a] where

observer (a:as) = send ":" (return (:) << a << as)

observer [] = send "[]" (return [])

The function send collects temporal information (when the observation
was done) that is not used by Hood. GHood uses this information to produce
animations. Its graphical visualization system is based on a simple layout
algorithm.

Since the derivation of hylomorphisms exposes the recursion tree as an
intermediate data structure, it is enough to place an observation point in the
hylomorphism definition in order to visualize it.

hylo {| f :: * -> * |} :: (f b -> b) -> (a -> f a) -> a -> b

hylo {| f |} g h = (fold {| f |} g).(observe "Recursion Tree").

(unfold {| f |} h)

It is also necessary to implement instances of the class Observable for all
possible intermediate data types. Since it is not known beforehand what kind
of functor will be derived, it is necessary to provide a generic definition for
observer. In the next section we provide that definition. For example, in the
case of the functor F derived in the previous section, the final instances should
behave as follows.

instance (Observable a) => Observable (Mu (F a)) where

observer (In x) p = In (observer x p)

instance (Observable a, Observable b) => Observable (F a b) where

observer F1 = send "" (return F1)

observer (F2 x l r) = send "" (return F2 << x << l << r)

There are a couple of remarks to be made about these definitions. We
bypass the observation of the fixpoint operator Mu. The goal is that the final
animation should look the same as if the data type had been explicitly declared
in a recursive fashion. The constructors of the data type are not displayed
because their derived names are meaningless. Using these definitions, the
recursion tree of qsort [3,2,4,3,1] is visualized as shown on figure 1.

Another problem with the previous instances is that they imply the defi-
nition of a particular instance for Mu applied to any possible derived functor,
even if the implementation of the observer function is always the same. In
the presence of an extension to the type system allowing for the specification
of polymorphic predicates in an instance declaration, as presented in [11], we
could have a single definition that would look like

instance (forall b . (Observable b) => Observable (f b))

=> Observable (Mu f) where

observer (In x) p = In (observer x p)

Recently, Valery Trifonov has shown how this type of class constrains could,
in general, be simulated in standard Haskell 98 [20]. However, for this par-

10

Cunha

Fig. 1. Recursion tree of qsort [3,2,4,3,1].

ticular example we will rely in a simpler solution suggested by Oleg Kiselyov
[16]. First, we define a single instance of the Observable class for Mu as

instance (Observable (f (Mu f))) => Observable (Mu f) where

observer (In x) p = In (observer x p)

This implies that, for a particular functor f, the instance of Observable

must be made for f (Mu f). The implementation of the observer function
is the same as before. The final instance for the functor F is then

instance (Observable a) => Observable (F a (Mu (F a))) where

observer F1 = send "" (return F1)

observer (F2 x l r) = send "" (return F2 << x << l << r)

7 Generic Observations

In order to explain how we can define a generic observer we will first expand
<< in the previous instance.

instance (Observable a) => Observable (F a (Mu (F a))) where

observer F1 = send "" (return Leaf)

observer (F2 x l r) = send "" (do {x’ <- thunk x;

l’ <- thunk l;

r’ <- thunk r;

return (Node x’ l’ r’)})

In this definition we can see that send runs a state monad (ObserverM) in
order to evaluate a term and simultaneously collect information for the ren-
derer, and thunk is invoked for each child in a node. Even without presenting

11

Cunha

type Observer {[*]} t = t -> ObserverM t

type Observer {[k -> l]} t = forall u . Observer {[k]} u ->

Observer {[l]} (t u)

gobserverm {| t :: k |} :: Observer {[k]} t

gobserverm {| Unit |} = return

gobserverm {| Int |} = return

gobserverm {| :+: |} oA oB (Inl a) = do {a’ <- (oA a);

return (Inl a’)}

gobserverm {| :+: |} oA oB (Inr b) = do {b’ <- (oB b);

return (Inr b’)}

gobserverm {| :*: |} oA oB (a :*: b) = do {a’ <- (oA a);

b’ <- (oB b);

return (a’ :*: b’)}

gobserverm {| Con c |} oA (Con a) = do {a’ <- (oA a);

return (Con a’)}

Fig. 2. Generic embedding into ObserverM

more details, it is clear that the monadic code follows the structure of the
type, and so it is possible to define generically a function to embed a value
into ObserverM, as shown in figure 2.

Notice that if we parameterize this function with a monofunctor f we get a
function with type (a -> ObserverM a) -> f a -> ObserverM (f a). By
passing thunk as parameter we can get a generic definition of observer for
monofunctors that behaves as expected.

gobserver {| f :: *->* |} :: Observable a => f a -> Parent -> f a

gobserver {| f |} x p = send "" (gobserverm {| f |} thunk x) p

Technically speaking, gobserverm is a monadic map for ObserverM. Given
a functor F , and a monad M , the monadic map should transform functions of
type A → M B into functions of type F A → M (F B). This concept was in-
troduced by Fokkinga in [5]. For example, in the standard Prelude of Haskell,
the function mapM implements the monadic map for lists. However, likewise
to the regular map function, given a polynomial functor the monadic map
can be defined by induction on its structure, thus being suitable for polytypic
implementation. In fact, Generic Haskell provides a library MapM where this
function is implemented with two different versions: one that evaluates the
products left-to-right (mapMl) and another that evaluates them right-to-left
(mapMr). If the monad is strong and commutative both yield the same result,
but in general that is not the case. If we abstract the monad ObserverM in
gobserverm we obtain the function mapMl. Given this equivalence, we can
implement the generic observer as follows.

gobserver {| f :: *->* |} :: Observable a => f a -> Parent -> f a

gobserver {| f |} x p = send "" (mapMl {| f |} thunk x) p

12

Cunha

As was the case for recursion patterns, we have to define different generic
observers for monofunctors (gobserver1), bifunctors (gobserver2), etc. The
instance implementation for functor F presented in the previous section can
now be simply obtained as follows.

instance (Observable a) => Observable (F a (Mu (F a))) where

observer = gobserver2 {| F |}

8 Conclusions and Future Work

The techniques presented in this paper were included in an application that,
given a Haskell module, tries to derive hylomorphisms for all the functions
declared in that module. When successful, each original definition is replaced
by the corresponding new one, and the data type that models the recursion
tree is declared, together with the appropriate instances of Observable. The
resulting module is written in Generic Haskell and should be compiled into
regular Haskell. The execution of each transformed function triggers, as a
side-effect, a visualization of its recursion tree.

The main contribution of this paper is a new approach to visualizing recur-
sion trees, that makes intensive use of generic programming in order to make
the task of putting together previously developed tools and techniques easier.
Other specific contributions are the clarification of the use of generic recursion
patterns in polymorphic definitions, and the generic definition of observations
to be used with GHood. In the past [4], we developed a preliminary solution
to this problem, with a proprietary observation mechanism based on monadic
recursion patterns. However, it had several problems, namely, it changed
the strictness properties of the original definitions and it had no support for
polymorphism.

Essentially, we have used generic programming to overcome the limitations
of the Haskell deriving mechanism, which currently supports only a limited
range of classes. There has been some research towards developing specific
mechanisms to overcome these limitations. These mechanisms could have been
used to achieve a similar effect. Hinze and Peyton Jones proposed Derivable
Type Classes [11], a system based on the same theoretical concepts as Generic
Haskell, but that only allows generic definitions in instance declarations. Un-
fortunately, it is not yet fully implemented in any Haskell distribution. An
older system is DrIFT [21], a preprocessor that parses a Haskell module for
special commands that trigger the generation of new code. This is a rather ad
hoc mechanism, which is not as theoretically sound as generic programming.

In the future we intend to develop a new animation backend to replace
GHood, in order to increase the understanding of the functions being observed.
First, it should allow us to visualize the consumption of the intermediate
data structure, showing how the final result is obtained from the recursion
tree. It should also allow more control on the view of nested hylomorphisms.
Sometimes, the parameters of a hylomorphism are also hylomorphisms, and

13

Cunha

to simplify the presentation these should only be visualized as requested. We
also intend to develop more tailored animations to use when one determines
that the function is an instance of a more specific recursion pattern, such as
a function defined with an accumulation parameter.

Acknowledgments

I would like to thank José Barros, Jorge Sousa Pinto, José Bacelar Almeida,
Alexandra Barros, and all the anonymous referees for their helpful comments
on previous versions of this paper. Thanks also to João Saraiva for calling
up the idea of hylomorphism visualization, and Andres Löh for his help with
Generic Haskell.

References

[1] Lex Augusteijn. Sorting morphisms. In D. Swierstra, P. Henriques, and
J. Oliveira, editors, 3rd International Summer School on Advanced Functional
Programming, volume 1608 of LNCS, pages 1–27. Springer Verlag, 1999.

[2] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens.
Generic programming – an introduction. In D. Swierstra, P. Henriques, and
J. Oliveira, editors, 3rd International Summer School on Advanced Functional
Programming, volume 1608 of LNCS, pages 28–115. Springer Verlag, 1999.

[3] Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Löh, and Jan de Wit. The
Generic Haskell user’s guide. Technical Report UU-CS-2001-26, Utrecht
University, 2001.

[4] Alcino Cunha, José Barros, and João Saraiva. Deriving animations from
recursive definitions. In Draft Proceedings of the 14th International Workshop
on the Implementation of Functional Languages (IFL’02), 2002.

[5] Maarten Fokkinga. Monadic maps and folds for arbitrary datatypes.
Memoranda Informatica 94–28, University of Twente, June 1994.

[6] Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. In
Proceedings of the 3rd ACM SIGPLAN International Conference on Functional
Programming (ICFP’98), pages 273–279. ACM Press, 1998.

[7] Andy Gill. Debugging Haskell by observing intermediate data structures. In
G. Hutton, editor, Proceedings of the 4th ACM SIGPLAN Haskell Workshop,
2000.

[8] Ralf Hinze. A new approach to generic functional programming. In Proceedings
of the 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’00), pages 119–132. ACM Press, 2000.

14

Cunha

[9] Ralf Hinze. Polytypic values possess polykinded types. In Roland Backhouse
and José Nuno Oliveira, editors, Mathematics of Program Construction
(proceedings of MPC’00), volume 1837 of LNCS, pages 2–27. Springer-Verlag,
2000.

[10] Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. In Eerke
Boiten and Bernhard Möller, editors, Mathematics of Program Construction
(proceedings of MPC’02), volume 2386 of LNCS, pages 148–174. Springer-
Verlag, 2002.

[11] Ralf Hinze and Simon Peyton Jones. Derivable type classes. In Graham Hutton,
editor, Proceedings of the 2000 ACM SIGPLAN Haskell Workshop, volume 41.1
of ENTCS. Elsevier, 2001.

[12] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural
hylomorphisms from recursive definitions. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP’96),
pages 73–82. ACM Press, 1996.

[13] Patrik Jansson and Johan Jeuring. Polyp – a polytypic programming language
extension. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 470–482. ACM Press, 1997.

[14] Simon Peyton Jones and John Hughes, editors. Haskell 98: A Non-strict, Purely
Functional Language. February 1999.

[15] Simon Peyton Jones and Mark Shields. Lexically-scoped type variables. To be
submitted to The Journal of Functional Programming, March 2002.

[16] Oleg Kiselyov. Re: Type class problem.
Message posted on the Haskell mailing list, August 2003. http://www.mail-
archive.com/haskell@haskell.org/msg13213.html.

[17] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In J. Hughes, editor,
Proceedings of the 5th ACM Conference on Functional Programming Languages
and Computer Architecture (FPCA’91), volume 523 of LNCS. Springer-Verlag,
1991.

[18] Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold
to exponential types. In Proceedings of the 7th ACM Conference on Functional
Programming Languages and Computer Architecture (FPCA’95). ACM Press,
1995.

[19] Claus Reinke. GHood - graphical visualisation and animation of Haskell object
observations. In Ralf Hinze, editor, Proceedings of the 2001 ACM SIGPLAN
Haskell Workshop, volume 59 of ENTCS. Elsevier, 2001.

[20] Valery Trifonov. Simulating quantified class constrains. In Proceedings of the
ACM SIGPLAN 2003 Haskell Workshop, pages 98–102. ACM Press, 2003.

[21] Noel Winstanley and John Meacham. DrIFT User Guide (version 2.0rc3),
2002.

15

	Introduction
	Recursion Patterns Informally
	Data Types as Fixed Points of Functors
	Generic Recursion Patterns
	Deriving Hylomorphisms from Recursive Definitions
	Observing Recursion Trees
	Generic Observations
	Conclusions and Future Work
	References

