Reconstructing Depth from Spatiotemporal Curves

Rui Rodrigues Antonio Fernandes
rpr@tom.di.uminho.pt af{@di.uminho.pt

Universidade do Minho, Portugal

Abstract

We present a novel approach for 3D reconstruction
based on multiple video frames taken from a static scene.
Our solution emerges from the spatiotemporal analysis of
video frames. The method is based on a best fitting scheme
for spatiotemporal depth curves, which allows us to
compute 3D world coordinates of the objects within the
scene. As opposed to a large number of current methods,
our technique deals with random camera movements in a
transparent way, and even performs better in these cases
than with pure translation. Robustness against occlusion
and aliasing is inherent to the method as well.

1 Introduction and Context

Structure from Motion (SfM) is a computer vision field
still in progress. It deals with the problem of recovering the
3D structure of a scene from different perspective
projections (e.g. video frames taken with a moving camera)
[1]. The range of applications of SfM techniques includes
3D-scene modelling, virtual view generation, 3D TV,
image/video synthesis and autonomous navigation.

The availability of various perspective projections
allows us to estimate depth (the distance to the camera) of
objects by comparing the projections’ relative displacement
of such objects in different frames, and using knowledge
about camera motion.

Several problems arise in this seemingly simple process.
The first problem is related to camera information, which
often is not readily available and has to be estimated as
well. This is the camera calibration problem.

Second, it is not trivial to determine which parts of a set
of digital images correspond to the same object or local
feature in 3D space. This is known as the correspondence
problem [2]. Some factors that contribute to the
correspondence problem are image noise, periodic textures
and the occlusion of objects.

A third problem arises due to numerical or geometric
instability: the stability problem.

The techniques described in the extensive literature
available on SfM range from block matching algorithms to
stochastic techniques, texture-based to feature-based. Many
of the concepts are inherited from motion estimation
research.

A large number of techniques analyse the case of
consecutive frame pairs or triplets (e.g. trilinear tensor),
estimating motion (depth) for each pair or triplet, and
integrating that estimated data overtime as a post-
processing operation. These techniques face stability
problems in the fusion of the estimated data.

overv(@natlab.research.philips.com

Fabian Ernst
fabian.ernst@philips.com

Kees van Overveld
Philips Research, Eindhoven

The reader is referred to [1] for an overview and
references on SfM methods.

In this paper we focus on fusion. One way to perform
this fusion still at the stage of motion/depth estimation is to
regard video data as 3D information, time being the third
dimension [3]. In this context, a sequence with a given
number of frames can be represented as a colour
distribution on the spatiotemporal domain, resulting in a
spatiotemporal volume — the VideoCube. If the camera
motion between consecutive frames is relatively small, the
similarity =~ between frames allows identifying
spatiotemporal curves and surfaces, corresponding to the
temporal path of objects throughout the scene.

The shape of these spatiotemporal entities is related to
both the camera motion and the position of identifiable
points in world space.

We propose a SfM method which exploits the
VideoCube assuming that camera parameters (both
intrinsic and extrinsic) are known, or at least well
estimated.

The method estimates the depth of a set of points chosen
from the video images based on a set of depth candidates
and a best-fit metric of the spatiotemporal curves
corresponding to those candidates. It is assumed that the
scene is static with little or no highlights.

The main features of our approach are:

-The ability to deal with arbitrary (including non-
smooth) motion paths

-The potential to combine benefits of frame-to-frame
coherence (meaning few occlusion differences on short
time scale) with large baseline (meaning that due to the
large total camera paths, geometric stability can be
achieved). Furthermore, all frames can be used
simultaneously.

- The correspondence problem is tackled with a
stochastically stable matching technique

- Robustness to occlusion, noise and aliasing is inherent
to the method

The paper is organised as follows: The VideoCube is
introduced in section 2, along with a brief overview of the
literature in the area of video spatiotemporal analysis,
followed by the concept of spatiotemporal curves in
Section 3. In section 4, a technique for estimating
spatiotemporal curves is derived and later summarised in
an algorithm. Section 5 contains the results obtained with a
current implementation of the algorithm. Section 6
compares the technique with other SfM and spatiotemporal
based techniques, showing the main differences. Finally,
conclusions and future work close this paper in sections 7
and 8, respectively.

2 The VideoCube

Assume that each point that belongs to an object is
identified by its 3D co-ordinates and can be mapped to one
colour. The set of all points P; with a colour defines the
world w:

w = {<x,y,z> - color | O <x,y,z>0OBJECTS } 1)

A perspective camera placed in this world can be
described by the camera parameters cp

cp=<e, h,v, Kk, f> 2)

where e is the camera position, %, v, k are the normal
vectors (horizontal, vertical and look) defining camera
orientation and fis the focal length of the camera.

Consider a finite plane 77lying at distance f from the eye
and perpendicular to k — the projection plane (Figure 1.a).
There is a subset of w that can be projected on this plane.

The projection P’=<i, j> of a world point P in /Tis the
intersection of the projection line eP with 7T

The depth of a point and its projection are defined as
follows:

Pdepth(P, cp) = cp.ke (P-cp.e) A3
Pproj(P, cp) =
<cp.he (P - cp.e), cp.ve (P-cp.e) > * f/ Pdepth(P, cp)

There is a large set of world points that project to P’ (all
the world points that lie on eP). Due to occlusion, only the
point closest to the camera is registered in 77

Cproj(<i, j>, cp) = “@
W[P] | MINP 0O dom(w) O Pproj(P, cp) = <i, j> (Pdepth(P, cp))

An image is therefore the set of world point colours
projected in all its pixels, considering occlusion and given a
set of camera parameters:

image(cp) = {<i, j> - Cproj(<i, j>, cp) | O <i, j>U 1} ®

Consider now that the camera is moving, following a
path cpt, associating a new set of camera parameters at
each time instant when an image is recorded:

cPt[t] = { t- <€, hls Vi k«a ft> } (6)

A video sequence is defined as the set of images
obtained along the camera path:

vs(cpt) = { image(cpt[t]) | T t O dom(cpt)} (@)

This video sequence however also can be seen as tri-
dimensional data, namely bi-dimensional data varying
along the time dimension. This leads to the VideoCube
concept (Figure 1.b): the spatiotemporal volume

representing projected colour as a function of position in 77
and time (see Figure 2 for an example):

ve(ept) =)
{<i, j, t> - Image(cpt|t]) [i, j] | O <i, j> 0O 1t O t O dom(cpt) }

a) b)

Figure 1 Two frames of a sequence when viewed in:
a) 3D-world space

b) Spatiotemporal space

b)

Figure 2 A VideoCube example
a) One frame of the “doll house” scene
b) The corresponding VideoCube

2.1 Previous VideoCube-related works

One of the papers that first mentioned the VideoCube,
and the “motion as orientation” effect of the paths formed
in the t direction, was done by Adelson and Bergen [3]. It is

oriented to visual perception, and proposes to detect motion
models based on energy and impulse response filters.

Although the works by Duc et al. [5], Wang et al. [6]
and Moschenni et al. [7] are based on spatiotemporal
analysis, they are oriented to segmentation based on
motion, and do not take advantage of the 3D geometrical
features of the VideoCube.

Otsuka et al. [9] try to benefit from the geometry of such
volume by identifying “trajectory surfaces” (surfaces
formed by edges and contours of images in spatiotemporal
space) using Hough transforms [12]. The goal is to estimate
the velocity component of the objects in a scene by
determining the orientation of planes tangent to the
detected surfaces.

Peng [10] slices the VideoCube in predefined
orientations, and divides such slices into strips to detect
line orientations that next are converted to optic flow.

Kim’s work [8] on spatiotemporal analysis for edge
detection and optical flow estimation gives an overview of
the problems with spatiotemporal analysis. He mentions the
under-sampling in time dimension on common video
sequences, and the lack of continuity inside the volume
caused by that under-sampling and by image noise.

On a more probabilistic approach, Caplier and Luthon
[4] extended Markov Random Fields (MRF) to the spatio-
temporal model, defining a Markov Random Volume
(which is an extension of concepts such as Markov chains
and MRF).

These techniques share the fact that they are either
restricted to simple camera motion models or small
movements, or expensive to calculate.

Recently, Imiya and Kawamoto [11] proposed another
Hough transform based approach. It uses a voting scheme
to rate point correspondences over a series of frames, and
to reconstruct world points. The authors randomly select a
pair of points from the spatiotemporal data and check if
they obey to the epipolar constraint. If so, a vote is
accumulated to the corresponding world point.
Reconstruction takes place by choosing the points that
accumulated a larger number of votes. This method results
in a high computational load, due to the large number of
point pairs required.

3 Spatiotemporal Curves

Consider the simple case of uniform (and slow) camera
translation perpendicular to the camera’s view direction.
Assume that the camera moves in a horizontal world plane
y=3_5.

In the plane j = S in the VideoCube, one can easily
identify (nearly straight) line patterns (see Figure 3 and
Figure 4). These lines are related to the relative apparent
displacement of the objects, due to camera motion.

The slope of these lines is a function of the distance of
the objects to the camera. Lines that are nearly parallel to
the time axis correspond to objects more distant (small

apparent motion - large depth) and lines with sharper
angles correspond to closer objects (large apparent motion
— small depth).

Figure 3 A4 sliced VideoCube

Figure 4 Spatiotemporal lines and slope differences

Hence, if all camera parameters are known, depths can
be estimated from the slopes of these lines, and a
reconstruction is possible.

In this simple case, a properly parameterised Hough
transform can detect the lines, and compute accurate
estimates of the slopes (see [9] for an example).

However, if we consider a more complex camera motion
model, such as a piecewise rotation or a superposition of
rotation and translation, creating parameterised motion
models is not feasible. In addition, the practical
implementation of Hough transforms with a parameter
space of more than two dimensions also becomes
unfeasible.

Nevertheless, it is clear that a video sequence resulting
from a given camera movement yields spatiotemporal
curves whose shape is related to the camera motion.

4 Spatiotemporal Curve Estimation

4.1 Goal

We aim to solve the following problem: given a
VideoCube containing a set of implicit spatiotemporal

curves, obtain the set of 3D points that originated such
curves.

4.2 Requirements

The scene must contain only static objects. This assures
that any apparent motion in frames is only due to camera
motion. For this same reason, lighting must also be
constant, and there should be little or no highlights in the
scene. The position of a highlight varies with camera
motion, yielding the same result as with a moving object.

The method assumes that camera parameters such as
focal length, trajectory, and orientation are well estimated.

4.3 Defining the Set of Interest Points (Sip)

Estimating depth for all points (and respective
spatiotemporal curves) in the vc is not feasible. Our
approach reduces the set of points to be estimated by
considering only points that lie on contours in the
individual images.

For this purpose, a transformation of the VideoCube is
performed applying an edge detection filter to each image.
The points to be used in the depth estimation are those
which are present in a transformed VideoCube (#vc),
defined as:

tve = ()]
{<i, j, t> - contours(ve,i, j, t) | O <i, j, t> 0 dom(vc) }

where vc is the original VideoCube. Points that are
successfully detected as part of a contour are assigned
TRUE,; all other points are assigned FALSE.

The set of interest points (sip) is therefore
sip={ P’ | P’ O dom(tvc) O tve[P’] = TRUE } (10)

4.4 Estimating depth for SIP

Depth estimates can be obtained by trying to trace the
spatiotemporal curves that exist on the VideoCube.
However, the development of a tracing algorithm for
spatiotemporal curves is not trivial due to aliasing.

We propose an alternative approach: to search depths for
a given point P’ [J sip by matching the implicit VideoCube
spatiotemporal curves with a set of candidate depth curves
for P°. A depth curve is defined as a spatiotemporal curve
generated based on a candidate depth.

A depth curve can be generated in two steps. First, we
define a reverse projection of a chosen spatiotemporal point
P’ of coordinates <ir, jr, tr>, with given camera
parameters cpt/tr] and an attributed depth 4 as follows:

Dproj(<ir, jr>, d, eptftr]) = an
cp.e +d * (ir * cp.h + jr * cp.v + cp.f * cp.k)

This reverse projection gives us a point in world
coordinates. The corresponding depth curve stc is defined
as:

ste(<ir, jr, tr>, d, cpt) = (12)
{ t- < Ppl‘Oj(Dpl‘Oj(<il‘, jl‘>, d, cpt[tr])’ cpt[t]) s t>|
0t O dom(cpt) }

The set of candidate depth curves scdcp: is thus defined
as:

scd={ dy, dy, ..., ds.} 13)
scdep={ ste(P’, d, cpt) | d Osed }

The real spatiotemporal curve rsc that contains P’ in a
particular frame is unknown. Let P be the world point that
projects as P' in that particular frame.

We shall consider the three possible cases for P:

a) P has a projection in all frames and its projections are
all identified as contour points.

0Ot, <Pproj(P, cpt[t]), t> O dom(tvc) O (14)
Ot, tvc[Pproj(P, cpt[t]), t] = TRUE

b) P has a projection in all frames but in at least one
frame it is not identified as a contour. This can be due
to the occlusion of P, aliasing problems, faulty edge
detection, or noise in the original VideoCube.

Ot, <Pproj(P, cpt[t]), t> O dom(tvc) O (15)
Ot : tvc[Pproj(P, cpt[t]), t| = FALSE

c) The projection of P lies outside #tvc in at least one
frame.

Ot : <Pproj(P, cpt[t]), t> O dom(tvc) (16)

Let P’ = <iref, jref, tref> be a point projection existing
in a reference frame tref, and dc [J scdcp.. The depth curve
dc includes P’ and is built based on a given depth estimate
d, for P’.

In the ideal case a), rsc intersects a contour in all frames
in tve. If the depth estimate for P’ in the reference frame is
correct, dc will also intersect a contour in all frames, i.e.:

0t, tve[de[t]] = TRUE an

where dc/t] is the point intersection of dc at frame 7.

However, the most common situation is b). In this case,
we propose to select the best depth for P’ from sdc by
minimizing a MatchError defined as a function of the
distance between the points of dc and the contours in tve. A
distance transform [13] of fvc is used to provide the
required distances.

dtve(tve) = (18)
{<i, j, t> - distanceToContour(tvc, [i, j, t]) |
0 <i, j, t> 0 dom(tve) }

MatchError(ste, dtve) = z dtve[ste[t], t] (19)
t

The metric MatchError will have a theoretical minimum
when d, matches the real depth d,.. We refer to it as
“theoretical minimum” because, due to aliasing problems
and noise, the depth corresponding to the actual minimum
may be different from d,. We shall come back to this issue
later, for now we will accept the theoretical minimum as
the real minimum.

The problem of depth curve estimate for a point P’ [J
sip, where P’ belongs to a frame ¢ can now be stated as:

MINy MatchError(ste(<P’, t>, d, cpt), dtve) (20)

A search in depth space can be performed in order to
find the minimum of MatchError. Using this approach,
even with aliasing and noise, we can expect to find a depth
d with a MatchError value fairly close to zero, i.e. below
an error threshold. The minimisation process uses the Brent
minimisation algorithm as described in [14], so that for
each point, the initial sdc is extended with new depth
guesses provided by the algorithm.

However, degenerate cases may occur. MatchError can
have multiple well-separated local minima below a
minimum threshold for different depths (Figure 5.a). This
happens, for instance, when a depth curve intersects by
coincidence different contours in different frames.

In this case, we have a number of clearly distinct depth
approved candidates for a point. Points close to the original
point can be tested and if the situation persists then the
point should be dismissed.

Another possible degenerate case is when the camera
path is a simple translation and some contours are aligned
with the direction of the camera movement. In this case we
can expect an interval of depths with a fairly low error
(Figure 5.b). Random camera movements will eliminate
these situations.

In general, random camera movement means more
information about the scene can be extracted as opposed to
simple translations or rotations of the camera. The method
treats random camera movements in a transparent way.

E E

et et
a) D p) D

Figure 5 Match Error as a function of Depth:
a) multiple well separated local minima
b) Interval of depths with a low error

Let us consider now what happens when occlusion
occurs (Figure 6.a). In such cases, the search is unlikely to
achieve MatchError values below the error threshold for
any depth value. An analysis of the individual frame errors
for each depth should be performed to look for frame error
sequences of values above and below a frame error
threshold. If such sequences do exist then we can infer that
the point is indeed occluded, and individual frame errors

above the frame error threshold should be dismissed. A
minimum length for sequences where the frame error
values are below the threshold is required in order to have
confidence in the estimate.

Finally, case c) occurs when the depth curve estimate
lies outside the tvc in some frames (Figure 6.b). It doesn't
make sense to compute a MatchError for these frames and
therefore they should be disregarded. If the number of
frames that can be used to compute MatchError is below a
threshold, then the resulting value should be given a low
level of confidence.

E E

eft AN
a) T b)

a

Figure 6 Match Error as a function of Time (Frames)
a) A possible occlusion case.
b) The estimates for frames in the interval [a,b]
are outside the VideoCube.

4.5 The Algorithm

An algorithm that applies the concepts discussed so far
to the reconstruction of video scenes is now outlined.

Build vc from video frames
Build dtve
Build sip
For each P’ 0 sip
sdc = Initial depth candidates
While MatchError not minimised
Generate scdcps from sdc
Read match values from dtvc
Add new values to MatchError function
Generate new sdc using Brent’s Alg.
Analyze errors to decide P’/ validity
Attribute final depth (world coord) to P’
/* For visualization*/
Build connectivity graph from valid points
in the transformed reference frame
Triangulate and texture

5 Results

In this section, we present some results obtained with
the current implementation of the algorithm.

Sub-section 5.1 uses a simple synthetic scene to
illustrate situations where occlusion and extra-VideoCube
depth curves exist. Sub-sections 5.2 and 5.3 present the
reconstruction of a synthetic and a real scene, respectively.

5.1 Occlusion and Extra-VideoCube ST curves

For this section, we built a synthetic scene consisting of
a camera rotating 180° around a set of three objects (Figure
7) — a torus and two thin blocks.

m: » J
' { i a

‘n

Figure 7 Some frames of the sequence

The tve corresponding to this sequence can be seen in
Figure 8, where the thick contours correspond to the TRUE
values. A sip was chosen from the points of the first (left)
frame, and the lines crossing tvc are the depth curves
corresponding to the selected depth for each point in sip.

Figure 8 A representation of a tvc corresponding to 9
frames (the thick contours correspond to the TRUE

values) and estimated depth curves for a sip

Notice the outlier depth curve (darkest line) extending
from the inner circle of the torus. This is an example of a
depth curve that, although it doesn't match any real
spatiotemporal ~curve, intersects all contours by
coincidence. Notice also how most points in the two blocks
have good depth curves, despite being occluded by the
torus on the frames corresponding to the centre of the
VideoCube. Figure 9.a) illustrates a scdc for a single point,
and Figure 9.b) shows the selected depth curve.

G111 (oo~ o)) | {90

—=o o
SO <>

(ojl:\ Q
D
| - g
P — — N — B)

a)l” b)

Figure 9 Side and top views of
a) scdc for a point, and
b) the selected dc

One can see that the point is well traced outside the
VideoCube, although the section of the dc outside the
VideoCube is not used in the matching. This occurs
because there is enough evidence in the remaining frames
to get a good estimate.

5.2

This scene is made up of 20 coloured boxes, arranged in
a circle. The camera moved with random changes within a
small interval in translation, rotation angle and axis. The
original scene can be seen in Figure 10. The camera
positions are represented by small dots (bottom left of
figure). The small line segments extending from each dot
represent the camera's orientation, and the line connecting
them is the camera path.

Synthetic scene

1L o)

Figure 10 The synthetic scene, including the camera positions

Figure 11 shows three frames from the 40 used for the
reconstruction.

- =
L S 5 . »

> . [i -

\ “ - , -
A% » 2 S .

Figure 11 Three frames of the synthetic scene

A sip of 400 points was processed, from which 279
where considered wvalid. Figure 12 shows the wvalid
reconstructed points (black) superimposed on the ground
truth data (grey).

Figure 12 Point reconstruction vs. ground truth

The final reconstruction, after
texturing, can be seen in Figure 13.

triangulation and

Figure 13 Three views of the reconstruction

The reconstructed boxes lie in a circumference as in the
original frame. These results show good localisation of
objects given the high number of occlusion occurrences
and the number of points and frames used. The visible
artefacts are the consequence of the reduced number of
points used, which are insufficient for an accurate
reconstruction.

5.3

Due to restrictions on the available camera calibration
methods, this sequence was recorded in a single camera
movement, composed of a horizontal translation from left
to right, and a vertical translation from top to bottom. It
contains three objects, as can be seen in Figure 14, where a
subset of the 40 frames used is shown.

NI AN

Figure 14 Three frames of the real scene

Real scene

In the scene reconstruction of Figure 15, a sip of 300
points was built, from which 155 where considered valid.

c)

Figure 15 Four views of the reconstructed scene

Regarding Figure 15, a), b) and c) show the
reconstruction from viewpoints close but outside the
original camera path. In these three cases, the
reconstruction preserves the shape and texture of the
original.

In d) a view from a position and orientation radically
different from the original cameras was used. Although
some distorting artefacts can be seen, the results are still
good in terms of localisation. If we take into account the
fact that no regularisation is in use, the results obtained so
far seem promising.

6 Note on relations with other SfM
approaches

The distance-based match error is comparable to the
match penalty or error measure of block matching
techniques. However, with depth curves, this error is
transparently accumulated over a pre-defined number of
frames, and assigned directly to one single depth. In
block/region matching techniques, the integration is usually
done on a per block/region basis. Therefore, varying
apparent motion of the same block on different frame pairs
leads to matching penalties than are not easily correlated
between each other.

Our method does not rely on camera’s simple motion
models of translation or rotation, as opposed to some of the
classical SfM methods, or spatiotemporal methods, as the
ones presented in section 2. The assumption of irregular
camera motion on our spatiotemporal framework is one of
its strong points. In fact, as seen in the previous sections,
an irregular motion of the camera can disambiguate some
situations where scene objects would be aligned with a
regular camera motion. Furthermore, the technique does
not rely on either small or smooth camera motion between
successive frames.

Implicit constraints to reduce the search space found on
other matching techniques, such as epipolar geometry, also
have their dual on the surface swept by the possible depth
curves of a given point. If a point is projected on a given
frame, its projections on the other frames have to lie on a
spatiotemporal surface shaped by all the possible depth
curves.

Regarding Imiya and Kawamoto’s work, our approach
differs in the fact that we consider an entire camera path
and apply the votes to the entire depth curve. One
advantage of using entire curves as matching entities is that
all information over the entire time interval is taken into
account: depth assignments are not necessarily based on
frame-to-frame similarities. This gives potentially a better
stability. In addition, our method requires a much smaller
number of samples to be used, when compared to the point
pairs needed for their random sampling. This means that
the computational load of our method is substantially
lower.

Finally, classical point tracking methods have the
disadvantage of losing track of points when they are
occluded for some frames, being able to track them later
again, but not able to link the two tracks. In addition,
although they do not require special camera motion, they
require small steps between adjacent camera positions. Our
method overcomes both of these problems transparently.

7 Conclusions

A new technique for depth reconstruction from video
sequences based on spatiotemporal analysis has been
presented. It converts the depth estimation problem into the
problem of matching spatiotemporal curves with the
contours of a transformed VideoCube. A distance-based
rating scheme is used for ranking the match quality that
implicitly reduces the aliasing problem.

It is assumed that the recorded scene is static and has
constant lighting. Camera motion should be known but, as
opposed to other techniques, it is not required to be regular.
In fact, irregular camera movements improve the results in
some situations, when compared to regular movements
(such as translation), as it removes some of the ambiguities
likely to arise from contours aligned with the camera path.

The integrating nature of the algorithm provides inherent
robustness to occlusion. The results show that even without
regularisation, depth estimations with consistent
localisation and reconstruction can be achieved.

8 Future Work

It is known that regularisation plays an important role in
3D reconstruction. It is expected that a careful
implementation will improve this method as well. Such
regularisation should remove outliers resulting from the
degenerate cases presented in 4.4, while preserving
meaningful depth discontinuities, as the ones between
objects in the foreground and in the background.

The set of interest points sip can be based on the set of
corners and feature points in tvc. These points have the
added advantage of being the minimal set that allows
reconstruction. Some redundancy should however be
introduced (in the form of neighbouring points) to replace
corner or feature points not valid.

The method relies so far in geometric information taken
from edge data. This is an advantage in terms of simplicity
of processing, but a disadvantage, as it causes cross-voting.
Photometric (texture) similarity could be wused for
confirmation or disambiguation of estimated depths.

Regarding occlusion, more sofisticated methods to deal
with this problem are being studied. One possible process
would be to iteratively re-estimate depth for points of low
confidence by testing occlusion hypotheses. This could
further improve the overall reconstruction.

Other common problems such as noise in the source
video data, inaccurate camera calibration and sensitivity of
edge detection algorithms also require further testing.

Acknowledgements

The work presented here is supported by Grant PRAXIS
XX1/BD/20322/99, sponsored by Fundagdo para a Ciéncia
e Tecnologia (the Portuguese Foundation for Science and
Technology).

References

[1] T. Jebara, A. Azarbayejani and A. Pentland. 3D structure
from 2D motion. IEEE Signal Processing Magazine, 16(3),
1999.

[2] A. Redert, E. Hendriks, and J. Biemond. Correspondence
estimation in image pairs. [EEE Signal Processing Magazine,
16(3):29-46, 1999.

[3] E. H. Adelson and J. R. Bergen. Spatiotemporal energy
models for the perception of motion. J. of the Optical Society
of America A, 2(2):284-299, 1985.

[4] A. Caplier and F. Luthon. A new spatiotemporal approach
for image analysis application to motion detection. Lecture
Notes in Computer Science, 970:246-253, 1995.

[5] B. Duc, P. Schroeter, and J. Biguen. Spatio-temporal robust
motion estimation and segmentation. Lecture Notes in
Computer Science, 970:238-245, 1995.

[6] J. Y. A. Wang and E. H. Adelson. Spatio-temporal
segmentation of video data. Technical Report 262, MIT
Media Lab Vismod, 1994.

[7] F. Moscheni, S. Bhattacharjee and M. Kunt. Spatiotemporal
segmentation based on region merging. [EEE TPAMI,
20(9):897-915, September 1998.

[8] Z. Kim and K. Wohn. Spatio-temporal analysis of image
sequence: Edge detection and optical flow estimation.
Master's thesis, CS Dept., Kaist, 1996.

[9] K. Otsuka, T. Horikoshi, and S. Suzuki. Image velocity
estimation from trajectory surface in spatiotemporal space. In
CVPRY7, pages 200-205, 1997.

[10] S. Peng. Temporal slice analysis of image sequences. In
CVPR’91, pages 283-288, 1991.

[11] A. Imiya, K. Kawamoto. Random sampling and voting
method for three-dimensional reconstruction. In
International Workshop RobVis 2001, Proceedings, volume
1998 of Lecture Notes in Computer Science, pages 193-200.
Springer, 2001.

[12]J. Illingworth and J. Kittler. A survey of the Hough
transform. Computer Vision, Graphics, and Image
Processing, 44(1):87-116, 1988.

[13] G. Borgefors. Distance transformations in
dimensions. Computer Vision, Graphics,
Processing, 27(3):321-345, 1984.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P.
Flannery. Numerical recipes in C, second edition. Cambridge
University Press, 1993.

arbitrary
and Image

