
Using automated reasoning in the design of an
audio-visual communication system

�

José C. Campos and Michael D. Harrison

Human-Computer Interaction Group
Department of Computer Science, University of York

e-mail:
�
Jose.Campos,Michael.Harrison � @cs.york.ac.uk

Abstract. Formal reasoning about how users and systems interact poses a diffi-
cult challenge. Interactive systems design provides a context in which the subjec-
tive area of human understanding meets the objectivity of computer systems log-
ic. We present results of a case study in the use of automated reasoning to aid the
formal analysis of interactive systems. We show how we can use human-factors
issues to generate properties of interest, and how we can use model checking and
theorem proving to analyse our specifications against those properties. This is part
of ongoing work in the development of a tool to allow the automatic translation
of interactor based specifications into SMV, and in the analysis of the role which
different verification techniques might have during the development of interactive
systems.

1 Introduction

In this paper we present results of an ongoing case study in the use of automated reason-
ing to aid the formal analysis of a proposed design of an interactive system. This case
study is being undertaken as part of the development of a tool to allow the automated
verification (through model checking) of interactor specifications: a “MAL-based inter-
actors” to SMV compiler (cf. [5,4]). We are also interested in discussing the role which
different verification techniques might have during the development of interactive sys-
tems.

When reasoning about models of systems, we can identify important classes of
properties, including:

1. the coherence of the model (for example, type checking), used to answer questions
of the type: “are we building the model right?”;

2. the functional behaviour of the system (for example, safety properties), used to
answer questions of the type: “are we modelling the right functionality?”;

3. how will system and users interact, used to answer questions of the type: “will the
system be easy to use?”.�

Published In D. J. Duke and A. Puerta, editors, Design, Specification and Verification of In-
teractive Systems ’99, Springer Computer Science, pages 167-188. Eurographics, Springer-
Verlag/Wien, 1999. This version with minor correction made in 23/09/99.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55602427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

While properties of type 1 and 2 are, obviously, important, our research deals with
properties of type 3. The ability to identify and verify this type of property is fundamen-
tal, as is confirmed by the recognition that even the best functionality can be rendered
useless by a badly designed user interface.

Formal (mathematically based) methods have proven useful in dealing with class
1 and 2 properties. This is specially true when we can resort to automated tools to aid
reasoning. It is natural therefore to consider the applicability of such methods and tools
to the development of interactive systems. This has been an active area of research in
recent years (see, for example, [18,2,6]).

Formal reasoning about how users and systems interact poses a difficult challenge.
Interactive systems design provides a context in which the subjective area of human
understanding meets the objectivity of computer systems logic. In order to analyse, in a
formal context, aspects of system design which have a degree of subjectivity, we must
find some way to merge both areas. In this paper we show how we can use human-
factors issues to generate properties of interest. We build an interactor based model of a
system, and use the interactors to SMV compiler to enable us to check those properties
against the model, using the SMV [16] model checker. The use of PVS [17], a theorem
prover, is also illustrated. We will also point out how the results of such analysis can
then be fed back into a human-factors context for subjective analysis.

1.1 The case study

We selected for this case-study the ECOM system [1]. ECOM is a audio-visual com-
munication system. Audio-visual communication systems attempt to enhance collabo-
ration and awareness between a community of users distributed over a number of dis-
tinct physical locations. This is done by offering a number of means of contact between
users. These will include audio, video, and any other form of exchange of information
that might be judged appropriate for a specific system.

This type of system presents a tension between the need to promote a sense of
awareness between users, and the need to preserve individual privacy. In order to ad-
dress the privacy issue users are offered some mechanism to control how/by whom they
can be contacted (their accessibility).

One of the features that makes ECOM interesting from a design analysis point of
view is the attempt at integrating two different such mechanisms. ECOM integrates
features from both CAVECAT and RAVE, two previous media space systems (see [1]
for a description). In CAVECAT accessibilities are represented by a door state. There
are four such door states (open, ajar, closed, and locked), each representing a different
accessibility level, with its associated set of allowed connections. Users can select an
appropriate door state and can see the doors states of other users in the system. In this
way users can select an appropriate level of accessibility. If, for example, some user
is in an important meeting, and does not want to be interrupted, he can lock the door
thus preventing connections to him. At the same time users can have a notion of how
accessible other users are, by looking at each other’s door state.

In RAVE accessibilities are set on a per user basis. Users can select a specific type of
connection and specify which users are allowed to establish it. Awareness is promoted

by a panel showing periodically updated snapshots of all users. The idea being that
these snapshot will give an idea of how busy (or not) a user is and hence how receptive
to connections.

CAVECAT allows for an easy change in the accessibility level. However it does not
include the possibility of exceptions to the general setting: you might want the meeting
not to be interrupted unless it is the boss! On the other hand, RAVE allows a better
tailoring of the accessibility setting, but makes it harder to make a global change since
the accessibility setting of every user will have to be updated manually.

ECOM proposes the integration of both mechanisms. Users can set a general acces-
sibility level using the door state metaphor, but a mechanism for exception setting is
introduced that allows for specific users to have different accessibility rights.

Setting exceptions is done by selecting a user, a specific type of connection and the
most conservative door state that still allows the user to connect (see Figure 1). Hence,
if the exception level is set to when Door Ajar, the connection will also be allowed when
the door is open. We will call this the cumulative nature of exceptions. Additionally the

Exceptions

Exceptions...

glancesnapshot

connect

ECOM

message

when door locked

User

User

message

can

always
when door open
when door ajar
when door closed

never

connect
glance
snapshot

Fig. 1. The ECOM system (adapted from [1])

exception can be set to always or never.

By merging both designs, the designers hope to improve on the previous systems by
incorporating the best features of each.

So far we have only described how each individual user sets an accessibility level.
As in CAVECAT, awareness is promoted by presenting the door state of each user to all
other users. One interesting question is whether this mechanism is still valid in the new
system.

2 Checking the Proposed Design

To study the applicability of automated reasoning techniques to this case study, we must
start by selecting some candidate features of the system, that we wish to analyse. We
can resort to a number of sources to aid us in this process:

– off-the-shelf catalogues of design principles — these can be found in the literature
on human computer interaction (see, for example, [7, Chapter four]);

– the results of other approaches to the analysis of the system — in the present case,
some of the decision that were made regarding what properties to check were in-
formed by the results of previous cognitive and formal analysis reported in [1];

– past experience in the development of systems — the critical eye.

We will look at two particular aspects of the system, because they seem interesting,
and also because we hope they will allow us to illustrate the application of different
reasoning techniques. First we will look at the issue of predictability. Being a general
principle, predictability might be looked at from a variety of angles. We will consider
the following angle: “the user should understand from the interface if an operation they
might like to invoke cannot be performed” [7]. This is particularly relevant since we
are attempting to promote a sense of awareness of how available other users are in the
system: if the mechanism to establish connections is not predictable, then users will lose
faith in the state they perceive the system to be in, thus defeating awareness. Hence, we
will evaluate the design against the following criterion:

Can a user predict whether attempting a connection will succeed?

The previous criterion was obtained by applying a generic design principle (pre-
dictability) to the specific system being considered. In the second case we base our
analysis on simple gut feeling. It was the authors’ first impression, on reading the sys-
tems description, that there is redundancy in the levels that can be used to set an excep-
tion. More specifically, we want to investigate whether there is any real need to have
the always and never exception setting levels. We then establish another two criteria for
analysis:

– The effect of setting the exception level to always cannot be achieved by setting it
to some other level.

– The effect of setting the exception level to never cannot be achieved by setting it to
some other level.

We will now try to assess the proposed design against the criteria enumerated above.
To do that we develop models that focus on those aspects of the system that are most
relevant to the principles being analysed (cf. [13,5]). Note that this is yet another in-
stance of the general process of model building: we abstract away what is considered to
be accessory, and focus on what is considered to be relevant. As with any other model,
care must be taken that all which is relevant is conveniently included.

2.1 Predictability

We will now look at the first criterion:

Can a user predict whether attempting a connection will succeed?

We start by building a model of the proposed system. To do that, we have to identify
those aspects of the system which relate to the property we want to investigate. In the
present case we have to model:

– the mechanisms for accessibility and exceptions setting — they have an impact on
which connections can be established;

– the mechanism for establishing connections — it is what we are looking at;
– the mechanism for promoting awareness — it gives users information about other

users.

The model is loosely based on one presented in [1]. We will consider a user panel
representing the interface to a single user, and the system core representing the remain-
der of the system. The user accesses the system core through the user panel.

We will use interactors [12,10] to write the model. Modal Action Logic (MAL) [19]
will be used to specify interactor behaviour. First, some types are introduced:

types
User # all users
Service # available services
Door # door states
Conn = User � Service � User # connections

The type names should be self explanatory. Services represent possible connection
types, and connections are defined as tuples built with two users (the caller and the
callee), and a service (the type of connection).

The system core model is presented in figure 2. Its main task is to manage connec-
tions. At each instant there are a number of connections in progress (attribute curren-
t). Two actions manipulate current: action establish initiates a given connection, and
close ends it. Attribute default associates, with each door state, the valid services for
that state. The validity of a specific connection depends on the level of accessibility of
the callee (which, in turn, is determined by the callee’s door state — cf. attribute ac-
cessibility). However, this mechanism can be overridden by setting exceptions. These
are registered by associating the desired connections with the most conservative door
state that still allows each connection to take place (attribute exceptions).

To simplify reading the specification, a further attribute is used which represents the
allowed connections at each moment (attribute allowed). The process of determining if
a connection is allowed (i.e. the value of attribute allowed) is specified by axiom (5). It
mimics the reasoning just described.

Two more actions are considered: action setexcep introduces an exception into the
system, and action setacc sets the accessibility of a given user. Note that the behaviour
of establish and close has been left deliberately under-specified (see axioms 1 and
2). The axioms state what happens if the parameters to the actions are valid, action
behaviour under invalid conditions is left unspecified. It would have been possible to
specify that the actions can only happen when the parameters are valid, but that would

interactor core
attributes
allowed: � Conn
accessibility: User � Door
current: � Conn
default: Door ��� Service
exceptions: Conn � Door
action
establish(Conn) close(Conn)
setexcep(User,Service,User,Door) setacc(User,Door)
axioms
(1) c � allowed � [establish(c)] current’ = current 	 � c �

unchanged(accessibility, default, exceptions)
(2) c � current � [close(c)] current’ = current -

�
c �

unchanged(accessibility, default, exceptions)
(3) [setexcep(u1,s,u2,d)] exceptions’=exceptions+[(u1,s,u2) � d]

unchanged(accessibility, default, current)
(4) [setacc(u,d)] accessibility’=accessibility+[u � d]

unchanged(exceptions, default, current)
(5) (caller,type,callee) � allowed �
(((caller,type,callee) �� dom(exceptions) �
type � default(accessibility(callee)))

((caller,type,callee) � dom(exceptions) �
exceptions((caller,type,callee)) accessibility(callee)))

Fig. 2. Core

have been too restrictive, as it would limit further development of the model: for ex-
ample, we might wish to add later that an error message should be generated when an
illegal action is attempted.

The user panel is built on top of the core, its model is presented in figure 3. Since,
in the present case, we are looking at a situation where one user is trying to establish a
connection, the model of the user panel is developed only so far as to make the analysis
possible. Hence, the model includes the buttons that are used to request connections
(attribute buttons), the user that has been selected as callee (attribute chosen), and
its door state (attribute door-icon). The callee is set by action select. Finally, the user
panel has an owner, the caller (attribute owner). The axioms should be self explanatory.
Axiom 3 defines that then a button is pressed (buttons(s). ������������� =pressed) a request
to establish the corresponding connection is originated (� ����������� =request(owner, s,
chosen)). The special attribute � ����������� represents the action that has taken place (see
[4]).

In the present context we will use SMV [16] to perform the verification. Since S-
MV is a model checker, the analysis of SMV specifications is completely automated. To
make the model checking of interactor specifications easier, we are developing a com-
piler that generates SMV code directly from interactor specifications. An initial version
of the compiler was introduced in [5]. In [4] the tool is further developed and the cor-
rectness of the translation process from the interactor language to SMV is demonstrated.

interactor userpanel
importing core
attributes
owner: User
vis chosen: [User]
vis buttons: Service � button
vis door-icon: [door] # door state of selected user

action
vis select(User)

axioms
(1) chosen �� nil � door-icon=accessibility(chosen)
(2) chosen = nil � door-icon=nil
(3) buttons(s). ���! #"!$&%#' =pressed �(���) #"�$&%#' =establish(owner,s,chosen)
(4) per(buttons(s).pressed) � chosen �� nil
(5) [select(u)] chosen=u

Fig. 3. User Panel

Having a compiler to SMV means that, given an appropriate interactor specifica-
tion, we can check properties automatically. In the context of model checking, an appro-
priate interactor specification means one that can be expressed as a finite state machine,
and ideally with a minimum of states. In order for that to be true of our specification,
some adjustments must be made. The first step is to make all types finite. From Figure
1 it can be seen that there are four possible connection types (snapshot, glance, connect,
and message), and also four possible door states (open, ajar, closed, and locked). Since
door states are also used to set exceptions, all and none are added as possible door
states (and all attributes except exceptions are restricted to the original four values).
The number of users in the system is arbitrary, three users are used. The types become:

types
User = * user1, user2, user3 + # all users
Service = * snapshot, glance, connect, message + # available services
Door = * all, open, ajar, closed, locked, none + # door states

Since all other types are defined on top of these three, they become finite by definition.
Finally, all structured types have to be rewritten as arrays. Type ,.-0/2131 , for example,
becomes:

PConn = array user1 .. user3 of
array snapshot .. message of array user1 .. user3 of boolean

The same process is applied to all other structured types present in the specification.
We now rewrite the specification to take into consideration these concrete defini-

tions of the types. As an example we show the new version of axiom 5 in interactor
core (compare with figure 2):

allowed[caller][type][callee] 4
(exceptions[caller][type][callee]=null 5
default[accessibility[callee]][type])6

(exceptions[caller][type][callee] 78 null 5
exceptions[caller][type][callee] 9 accessibility[callee])

Inspection of the axiom above, however, reveals an error in the specification: in
the presence of an exception, allowed is calculated by seeing if the door level set for
the exception is greater (more conservative — look at the enumeration order in the
definition of Door) than the accessibility level set by the callee. However, since in the
definition of Door we have all as the smallest value, and none as the greatest, then
setting the exception level to all/none prohibits/allows all connections! This behaviour
is exactly the opposite of what is the reasonable interpretation of both value names. We
need to exchange the position of all and none.

Since the order in which the values were enumerated was based on the order they
appear in the proposed presentation, this might mean that there is some problem with
that aspect of the interface. We will see how to investigate this further in Section 2.2.

In order to verify the proposed design against the criterion set forth above, that
criterion needs to be defined as a CTL formula. Looking at the specification of the user
panel, it can be seen that the user gets information on the callee’s accessibility level
through its door state. We will suppose that the user can remember which connections
are valid for each door state (it could be argued that this information should be encoded
in the interface by disabling illegal buttons for the given door state, as it will be shown
this is not enough). If that is assumed, then the system is predictable if all valid button
presses for each door state result in the corresponding connection being established, i.e.
all valid button presses to the user, are valid button presses to the system. This can be
expressed as a family of CTL formulae:

:<;>=@?3A�ACB#D E�=F;�GIHKJ�L�M N!OP;�Q�R
S�TVU)WFX /3Y�Z[1\78 1[]P^ 6`_ /a/ab] W /�1 8 _c6ed3fhg�g /�1iY U Y�j>kl� ����������� 8nm b#ZoY�Yp5U /iqc1iZFb�r�Yor WFX /3Y�Z[1sjpt W f b!b#ZF1 g j

While looking at how the property is expressed might already give some notion of
the type of problems that the system would suffer from, we will go on and show how
the problem can be detected by model checking the specification.

To make sure the property holds we have to test it for all possible users, and all types
of connections that are valid for each door state. If it fails for any given combination,
then clearly the property does not hold. A problem now arises. The finite state machine
generated by the specification is too big for model checking to be practical. In order to
reduce the size of the finite state machine generated by our specification, we can do two
things: eliminate state variables, and decrease the size of the state variables domain [11].
It should be stressed that this must be done carefully, in order not to affect the meaning
of the specification. More specifically, the simplified version of the specification must
preserve all the behaviour of the original specification regarding the property that we
are checking. Several simplifications were introduced:

– only two types of connection were considered — this is valid since the specifica-
tion/property does not depend on the number of services available;

– the number of door states was reduced to four (all, open, ajar, none) — note that all
and none had to be kept since they are special cases;

– attributes default, owner and callee were hard-coded into the specification — this
is valid since changes in those values are not being considered (i.e. they are thought
of as constants).

With these alterations the specification becomes model checkable. We try the fol-
lowing instance of the property:

S�TVU _ /a/ab] W /�1 8 / m Z[1 6ed3fhg�g /�1 Y>1su m Y X / g kl� ����������� 8vm b#ZoY�Yp5U Yo1iu m Y X / g r f Y�ZFb�whjpt W f b!b#ZF1 g j
and SMV’s reply is (after some editing for readability):

-- specification AG (door_icon = 2 & do_snapshot.ac... is false
-- as demonstrated by the following execution sequence
state 1.1:
allowed[snapshot][user1] = true
current[snapshot][user1] = false
door_icon = open

state 1.2:
action = setexcep(snapshot,user1,none)
allowed[snapshot][user1] = false
current[snapshot][user1] = false
door_icon = open

state 1.3:
button_snapshot.action = press
action = establish(snapshot,user1)
current[snapshot][user1] = false
door_icon = open

resources used:
user time: 8.58 s, system time: 0.09 s
BDD nodes allocated: 206873
Bytes allocated: 4521984
BDD nodes representing transition relation: 47519 + 409

It can be seen that the property does not hold. What the counter example shows is
that the callee might set an exception for the particular connection being tried. This is
done in state 1.2, and the connection becomes not allowed. Unfortunately the caller has
access only to the callee door state (see visibility annotations in the specification), so
the user is unable to predict whether a connection is going to be accepted or not.

The analysis above tells us that the system is not predictable. The user can not
tell whether a request for connection will be successful or not. From the user’s point
of view, this happens because the information that is displayed regarding the callee’s
receptiveness to connections is inappropriate.

Since exceptions can override the accessibility level, what should be presented to
the caller is not the general accessibility level of the callee, but the result of applying

the exceptions regarding the caller to the callee’s accessibility level (and, for instance,
disabling inappropriate buttons). In fact, it could even be argued that the general acces-
sibility level of the callee should not be displayed at all, so as to avoid callers detecting
that they were being in some way segregated. Note how this shows that the initial sug-
gestion of disabling buttons according to the door state only would be inappropriate.

The problem is that two mechanisms with different philosophies are being integrat-
ed. Determining what is the best compromise solution falls outside the scope of for-
mal/automated verification. What these techniques offer is a way to study the different
proposal against specific criteria of quality.

Going back to SMV’s answer, and looking at it from the specification side, we can
see that the property fails because there is a mismatch between the precondition of the
core level action that establishes the connection (action establish), and the precondi-
tions (in the user’s head) of the user interface commands that trigger that action (the
buttons). It is easy to see that a necessary condition for a user interface to be predictable
is that the preconditions at the two levels match. Although this is an indirect test, it still
allows us to detect if a system will not be predictable.

State exploration type properties, like the first property checked above, demand that
the system be reduced to a finite state machine. It is clear that as our specifications
grow in complexity this becomes increasingly hard. Moreover, even if we can express
the system as a finite state machine, it can also happen that this machine is too big and
model checking is not feasible. Checking for the satisfaction of preconditions, on the
other hand, can be done by hand or using a theorem prover. Hence, even if the specifica-
tion is too complex for model checking, we can still analyse it regarding predictability,
verifying if all preconditions at the user interface level match the corresponding sys-
tem level ones. Similarly we can think of analysing if the result of system level actions
matches what the user expects.

2.2 Checking the Presentation

In the previous Section we have seen how we can use model checking to analyse pre-
dictability in ECOM. In this Section we look at two aspects of the proposed presen-
tation. The properties that we will be interested in lend them selves more naturally to
theorem proving, so we will be using PVS.

At this stage we do not yet have a tool to automatically translate our interactor
specifications into the PVS notation. Hence, we had have to perform the translation
manually. This is not hard, as each interactor can be expressed as a PVS theory with
relative ease.

Cumulative exception setting As we have seen, there was an error in the order in
which we first enumerated the door states, and this had influence on how the cumulative
nature of exceptions worked. Since we were using the same order which is used at the
interface, we have reason to suspect that the presentation used for the exceptions might
not be in agreement with the abstract model. More specifically, we want to guarantee
that the proposed interface conveys the notion of cumulative exception setting.

In order to verify this we follow the same process as already applied in [8]. We
develop a model of the proposed interface presentation, and a function (x) which builds
a presentation from an abstract specification. We then develop two operators capturing
the relevant concepts we want to analyse, one for each model. Since we want to study
how the cumulative nature of exceptions is conveyed by the presentation, we will con-
sider how a user determines if a connection is allowed by its current exception setting.
We then have to show that using the operator at the abstract level yields the same result
as mapping the abstract state into a presentation and using the operator defined in the
presentation level (see Figure 4). This type of problem is better solved using theorem

abstract
operator
perceptual

Interface

operator

?ο ρabstract operator = perceptual operator

ρ

State

from Task
Operation

Abstract
Model

Fig. 4. Verifying presentation issues (adapted from [9])

proving (see [3]), so we choose to use PVS [17], a theorem prover.

As stated above, we will consider the case where a user is setting the exception level
for some other given user and specific type of connection service (since those are fixed,
we can omit them from now on). The task is to predict whether the selected exception
level will allow the connection or not.

Since we are only looking at a single user, we can use a simplified version of the
model developed previously. Also, because we will be looking only at how attributes
are mapped in the presentation, we don’t include actions in this restricted version of the
model. At the abstract level we need the accessibility, and exceptions attributes. We can
begin to model this in the PVS notation as the theory:

restrictedpanel y THEORY

BEGIN

Attributes y
TYPE �{z | accessibility y �~} y Door � } �� none

 } �� alld �s� exceptions y Door |c�
...
END restrictedpanel

In the presence of an exception, whether or not a request for establishing a connec-
tion will succeed can be modeled by the following operator, which we add to the theory
above:

willsucceed y zAttributes � bool ����)���&� y Attributes ��y exceptions
�&� �� accessibility

�&� ���

This definition is easily deduced from axiom 5 of core (remember that we are consid-
ering that the user has set an exception).

We now build a model of the actual interface that is being proposed for the system.
For the current purpose we are only interested in the level of accessibility and exception
setting:

rho restrictedpanel y THEORY

BEGIN

Attributes y TYPE ��z | accessibility y AccPanel � exceptions y ExcepPanel |c�
...
END rho restrictedpanel

where the accessibility panel is represented by an array of four buttons (one for each
door state):

AccPanel y TYPE � ARRAY zDoorIcon � bool �
and the exceptions panel is represented by six buttons (one for each possible level):

ExcepPanel y TYPE � ARRAY z ExcepItem � bool �
In order to model the order in which the buttons are present in the interface, we

introduce the operator:

isabove y z ExcepItem � ExcepItem � bool �
We can now write a function that builds a concrete interface from an abstract state:

� y z restrictedpanel �Attributes � rho restrictedpanel �Attributes����)���
rp y restrictedpanel �Attributes ��y� | accessibility y � rho accessibility

�
accessibility

�
rp �����

exceptions y � rho exceptions
�
exceptions

�
rp ��� | ���

where rho accessibility and rho exceptions perform the translation of each of the door
states (accessibility and exceptions setting) to the corresponding array of buttons.

In order for the presentation to convey the notion that exceptions accumulate (i.e.
when an exception level is set, all door states up to that one are allowed) the exception
setting level must vary progressively along the column of buttons. If that happens, the
user will be able to know if a request for a service will succeed based on the relative
position of the current accessibility level and current exception setting level. The re-
quest is allowed if the exception setting is equal or bigger than the current accessibility
(for example, the situation illustrated in Figure 1 allows for glance to happen). This
is conveyed by the following operator, which compares the exception level with the
accessibility setting:

rho willsucceed y z nonempty Attributes � bool ����)���&� y nonempty Attributes ��y�
set access � set excep � isabove

�
set access � set excep ���

WHERE

set access y DoorIcon � identify access
�
accessibility

�&� �����
set excep y ExcepItem � identify excep

�
exceptions

�&� �����
where identify access and identify excep model the cognitive tasks of identifying which
button is selected in each of the panels.

If we try to prove that this is an adequate operator to check for permissions:

equivalence y THEOREM� �
rp y restrictedpanel �Attributes ��y willsucceed

�
rp � � rho willsucceed

� � � rp ���
we end up in a situation where the theorem prover asks us to show that:

[1] isabove(maptoexceplist(OpenDoor), Always)

That is, the prover tells us that, in order for the theorem to be true, the button for when
Door Open must be above the button for Always. This is clearly not true (look at Figure
1). The problem is that, as with the definition of Door in the previous Section, Never
and Always are placed the wrong way around. The order of the buttons in the interface
should be:

1. Never
2. (only if) Door Open
3. (up to) Door Ajar
4. (up to) Door Closed
5. (up to) Door Locked
6. Always

This problem was initially reported in [1]. There, PUM analysis was used to model
the system from an human-factors perspective. Here we show how in the context of a
more software engineering oriented approach, the selection of appropriate abstractions
allows us to reach the same conclusion.

Analysing Redundancy We will now look at the second and third criteria set forth
initially. More specifically, we want to investigate whether there is any difference be-
tween:

– setting the exception level to always or to when door locked;
– setting the exception level to never or to when door open.

This analysis has been prompted by two factors: as a general principle, redundancy
should be avoided at the interface; it is the authors impression that there is redundancy in
the number of buttons used to set the exception level. In order to corroborate/discharge
this suspicion, we will try to prove that there is no difference between the pairs of
buttons mentioned above. For the first case we write:

alwaysvslocked y THEOREM� �&�l� � �3� y Attributes ��y���
exceptions

�&�l� � � alld

exceptions
�&�3� � � locked

accessibility

�&� � � � accessibility
�&� � �����

willsucceed
�&�l� � � willsucceed

�&�3� ���
We are trying to show that given two situations where the accessibility is the same, and
the exception is set to always in one case, and locked in the other, then if a connection
succeeds in one case it will succeed in the other.

Similarly for the second case we write:

nonevsopen y THEOREM� �&� � � � � y Attributes ��y���
exceptions

�&�l� � � none

exceptions
�&�3� � � open

accessibility

�&� � � � accessibility
�&� � �����

willsucceed
�&� � � � willsucceed

�&� � ���
In the first case we are able to prove the theorem. What this points out/proves is

that there is no difference between setting the exception level to Always or to Locked.
Whence, we do not need both levels in the system.

In the second case the proof fails (i.e. we cannot perform it). This happens because
setting the exception level to open still allows some connections while setting it to never
allows no connections at all.

In the light of the results above, we can propose another change to the design of
exception setting:

1. never
2. only if door open
3. up to door ajar
4. up to door closed
5. up to door locked (always)

3 Discussion

3.1 On the tools

We have seen how we can use automated reasoning techniques to help the formal anal-
ysis of interactive systems designs. Two techniques have been used: model checking,
and theorem proving. Traditionally theorem proving is considered more difficult to use,
however the case study shows that this is not necessarily always the case.

In using these tools to analyse interactive systems we are putting them to uses that
were not initially envisaged. This is specially true of model checking. Interactor speci-
fications have proven brittle in terms of the time taken to perform the model checking

step: small changes in the interactor specification can produce huge differences in the
time taken to get an answer. This is aggravated by the fact that it is not easy to pre-
dict how long the model checking process of a particular specification is going to take.
While these problems are inherent to model checking in general, the fact that we are
using such concepts as parametrised actions and sets in our specifications (remember
that each parameter in an action means that the action will originate a number of actions
at the SMV level) seems to make our specifications more susceptible to them. Addition-
ally, bringing the specification down to a model checkable size is a step that must be
done with care and in a stepwise manner..

On the other side, the proofs turned out to be easy to perform, as PVS solved most
of the situations. In general, the sub-cases that were left to prove were easily solved.
The PVS learning curve is not easy though.

In the end, the decision on which is the best tool to apply will always depend on the
style of property we are looking at.

3.2 On the analysis

It is not realistic to assume we can analyse all aspects of an interactive system with
one single model. Hence, the first step in an analysis process must be to decide which
aspects are worth looking into. We have illustrated different possibilities for this step.

The analysis in Section 2.1 was based on a generic design principle: predictabil-
ity. We analysed whether the commands to establish connection were predictable. To
perform this analysis we used SMV, a model checker. We concluded they were not pre-
dictable since there was a mismatch between the actual accessibility settings of a user
and the information made available to the community. Once a problem, and its causes,
are identified, it usually falls out of the scope of the formal approach to decide the best
solution. That solution will have to be reached in collaboration with other user cen-
tered approaches. What formal methods have to offer is the possibility of, given a set of
quality measures, comparing the different proposals.

During the modelling process for the analysis above, our attention was drawn to the
importance of the ordering of the different door states. Here we see how the modelling
process can, in itself, be useful at raising issues. In Section 2.2 we investigate whether
the proposed presentation is coherent with the underlying semantics of the door states.
This analysis is done with PVS, a theorem prover.

Finally, the properties analysed in Section 2.2 are the result of a critical look at
the proposed system. As a generic principal, redundancy at the interface should be
avoided. It was the authors’ impression that redundancy existed in the number of buttons
available for exception setting. A formal analysis, performed with the theorem prover,
enabled us to determine a situation where in fact there was redundancy, and another
where that didn’t happen.

Several approaches to the analysis of the ECOM system were used in [1]. Compar-
ing our analysis with those, we see that our approach can be used to complement the
formal system analysis performed there. We are using automated tools exactly to per-
form that kind of analysis. Regarding the cognitive user modelling approaches (PUM

and CTA), we can see that we were able to reach similar results. However, our results
were obtained while still in the context of a software engineering approach. PUM and
CTA demand human-factors expertize. We see our approach as being complementary
to those in the sense that they can be used to define a set of quality measures which
can then be rigorously analysed using formal methods. Furthermore, they can help in
interpreting the results of such analytic process.

A fourth analysis (PAC-AMODEUS) of the case study is reported. The PAC-AMO-
DEUS analysis is architecture oriented, hence not so much interested in usability issues,
but more in implementation issues.

4 Conclusion

We looked at the use of automated reasoning tools in the formal analysis of an inter-
active system design. While mastering the use of the tools will inevitably take some
effort, they enable us to be more confident of the results of the analysis.

Unlike other approaches to the use of automated reasoning in HCI, we do not focus
on the tool, instead we focus our approach on integrating verification with the develop-
ment process (cf. [5]). Once an interesting aspect of the system has been identified, we
investigate which type of tool will fit best to its analysis. In this way, we are not tied to
a particular type of model, and we have greater freedom in terms of what we can model
and reason about.

Our long term objective is to develop a framework enabling us to integrate formal
software engineering (automated reasoning in particular) with the other disciplines in-
volved in HCI.

Acknowledgements

José Campos is supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal)
under grant PRAXIS XXI/BD/9562/96.

References
1. Victoria Bellotti, Ann Blandford, David Duke, Allan MacLean, Jon May, and Laurence Ni-

gay. Interpersonal access control in computer-mediated communications: A systematic anal-
ysis of the design space. Human-Computer Interaction, 11:357–432, 1996.

2. Peter Bumbulis. Combining Formal Techniques and Prototyping in User Interface Construc-
tion and Verification. PhD thesis, University of Waterloo, 1996.

3. Jos é C. Campos. Automated Reasoning and Interactive Systems Development. DPhil thesis,
Department of Computer Science, University of York, 1999. in preparation.

4. Jos é C. Campos and Michael D. Harrison. Detecting interface mode complexity
with interactor specifications. submitted, 1998.

5. Jos é C. Campos and Michael D. Harrison. The role of verification in interactive systems
design. In Markopoulos and Johnson [15], pages 155–170.

6. Bruno d’Ausbourg. Using model checking for the automatic validation of user interfaces
systems. In Markopoulos and Johnson [15], pages 242–260.

7. Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-Computer Interaction.
Prentice-Hall, 1993.

8. G. Doherty, J. C. Campos, and M. D. Harrison. Representational reasoning and verifica-
tion. In J. I. Siddiqi, editor, Proceedings of the BCS-FACS Workshop: Formal Aspects of the
Human Computer Interaction, pages 193–212. SHU Press, 1998. ISBN 0 86339 7948.

9. Gavin Doherty and Michael D. Harrison. A representational approach to the specification of
presentations. In Harrison and Torres [14], pages 273–290.

10. David J. Duke and Michael D. Harrison. Abstract interaction objects. Computer Graphics
Forum, 12(3):25–36, 1993.

11. Matthew B. Dwyer, Vicki Carr, and Laura Hines. Model checking graphical user interfaces
using abstractions. In Mehdi Jazayeri and Helmut Schauer, editors, Software Engineering
— ESEC/FSE ’97, number 1301 in Lecture Notes in Computer Science, pages 244–261.
Springer, 1997.

12. G. Faconti and F. Paternò. An approach to the formal specification of the components of an
interaction. In C. Vandoni and D. Duce, editors, Eurographics ’90, pages 481–494. North-
Holland, 1990.

13. Bob Fields, Nick Merriam, and Andy Dearden. DMVIS: Design, modelling and validation
of interactive systems. In Harrison and Torres [14], pages 29–44.

14. M. D. Harrison and J. C. Torres, editors. Design, Specification and Verification of Interactive
Systems ’97, Springer Computer Science. Springer-Verlag/Vien, June 1997.

15. P. Markopoulos and P. Johnson, editors. Design, Specification and Verification of Interactive
Systems ’98, Springer Computer Science. Springer-Verlag/Vien, 1998.

16. K. L. McMillan. The SMV system. Carnegie-Mellon University, draft edition, February 1992.
17. S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS Specification and Verifica-

tion System. Computer Science Laboratory, SRI Internatinal, Menlo Park CA 94025, USA,
(beta release) edition, March 1993.

18. Fabio D. Paternò. A Method for Formal Specification and Verification of Interactive Systems.
PhD thesis, Department of Computer Science, University of York, 1995.

19. Mark Ryan, Jos é Fiadeiro, and Tom Maibaum. Sharing actions and attributes in modal action
logic. In T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software, volume
526 of Lecture Notes in Computer Science, pages 569–593. Springer-Verlag, 1991.

A ECOM model (model ckeckable)

define
none = 1
open = 2
locked = 5
all = 6
snapshot = 1
glance = 2
user1 = 1
user2 = 2
null = 0

types
Door = {none, open, locked, all}
OptDoor = {none, open, locked, all, null}
Service = {snapshot, glance}

PConn = array snapshot..glance of \
array user1..user2 of boolean

ConnDoor = array snapshot..glance of array user1..user2 of \
{none, open, locked, all, null}

User = {user1, user2}
UserDoor = array user1..user2 of {open, locked}

interactor core
core modelled from the view point of a caller
attributes

allowed: PConn
accessibility: UserDoor
current: PConn
exceptions: ConnDoor

actions
establish(Service,User) close(Service,User) \
setexcep(Service,User,OptDoor) setacc(User,Door)

axioms
(1)

allowed[s][u] -> [establish(s,u)] \
current[s][u]’ = 1 & current<s><u>’ = current<s><u> \

& unchanged(accessibility, exceptions)\
!allowed[s][u] -> [establish(s,u)] \

unchanged(current, accessibility, exceptions)
(2)

per(close(s,u)) -> current[s][u]
[close(s,u)] \

current[s][u]’=0 & current<s><u>’=current<s><u> \
& unchanged(exceptions, accessibility)

(3)
[setexcep(s,u,d)] \

exceptions[s][u]’=d & exceptions<s><u>’=exceptions<s><u> \
& unchanged(current,accessibility)

(4)
[setacc(u,d)] \

accessibility[u]’=d & accessibility<u>’=accessibility<u> \
& unchanged(current,exceptions)

(5)
allowed[snapshot][user1] <-> \

(exceptions[snapshot][user1]=null -> \
accessibility[user1] in {open, locked}) \

& (exceptions[snapshot][user1]!=null -> \
exceptions[snapshot][user1] >= accessibility[user1])

allowed[snapshot][user2] <-> \
(exceptions[snapshot][user2]=null -> \

accessibility[user2] in {open, locked}) \
& (exceptions[snapshot][user2]!=null -> \

exceptions[snapshot][user2] >= accessibility[user2])
allowed[glance][user1] <-> \

(exceptions[glance][user1]=null -> \

accessibility[user1] in {open}) \
& (exceptions[glance][user1]!=null -> \

exceptions[glance][user1] >= accessibility[user1])
allowed[glance][user2] <-> \

(exceptions[glance][user2]=null -> \
accessibility[user2] in {open}) \

& (exceptions[glance][user2]!=null -> \
exceptions[glance][user2] >= accessibility[user2])

initial state
[] exceptions[snapshot][user1] = open \

& exceptions[glance][user1] = open \
& exceptions[snapshot][user2] = open \
& exceptions[glance][user2] = open \
& !current[snapshot][user1] & !current[glance][user1] \
& !current[snapshot][user2] & !current[glance][user2] \
& accessibility[user1] = open & accessibility[user2] = open

interactor button
attributes

enabled: boolean
actions

press
axioms

per(press) -> enabled
[press] enabled’ = enabled

interactor main
importing

core
includes

button via do_snapshot
button via do_glance

attributes
door_icon: Door

axioms
(1) hard-code user1 as callee

door_icon=accessibility[user1]
(3) we have to

do_snapshot.action=press <-> action=establish_1_1
do_glance.action=press <-> action=establish_2_1

initial state
[] do_snapshot.enabled

test
AG(door_icon=open & do_snapshot.action=press -> \

current[snapshot][user1])

B PVS model

ecom y THEORY

BEGIN

IMPORTING restrictedpanel � rho restrictedpanel

rho accessibility y z �>} y Door � } �� none

 } �� alld ��� AccPanel ����)���&} y �~} y Door � } �� none

 } �� alld ����y
COND} � open � �)���

di y DoorIcon ��y di � OpenDoor ���} � ajar � �)���
di y DoorIcon ��y di � AjarDoor ���} � closed � �)���

di y DoorIcon ��y di � ClosedDoor ���} � locked � �)���
di y DoorIcon ��y di � LockedDoor �

ENDCOND �
rho exceptions y z } y Door � ExcepPanel ����)���&} y Door ��y

COND} � none � �)���
ei y ExcepItem ��y ei � Never ���} � open � �)���
ei y ExcepItem ��y ei � whenOpen ���} � ajar � �)���

ei y ExcepItem ��y ei � whenAjar ���} � closed � �)���
ei y ExcepItem ��y ei � whenClosed ���} � locked � �)���
ei y ExcepItem ��y ei � whenLocked ���} � alld � �)���

ei y ExcepItem ��y ei � Always �
ENDCOND �

� y z restrictedpanel �Attributes � rho restrictedpanel �Attributes ����)���
rp y restrictedpanel �Attributes ��y� | accessibility y � rho accessibility

�
accessibility

�
rp �����

exceptions y � rho exceptions
�
exceptions

�
rp ��� | ���

equivalence y THEOREM� �
rp y restrictedpanel �Attributes ��y willsucceed

�
rp � � rho willsucceed

� � � rp ���
END ecom

restrictedpanel y THEORY

BEGIN

Door y TYPE � �
none � open � ajar � closed � locked � alld �

door order y zDoor � int �
door order none y AXIOM

� � �&} y Door ��y } � none � door order
�&} � ��� �

door order open y AXIOM
� � �&} y Door ��y } � open � door order

�&} � ��� �
door order ajar y AXIOM

� � �&} y Door ��y } � ajar � door order
�&} � ��� �

door order closed y AXIOM
� � �&} y Door ��y } � closed � door order

�&} � �¡ �
door order locked y AXIOM

� � �&} y Door ��y } � locked � door order
�&} � �£¢ �

door order all y AXIOM
� � �&} y Door ��y } � alld � door order

�&} � ��¤ �
CONVERSION door order

Attributes y

TYPE �{z | accessibility y �~} y Door � } �� none

 } �� alld �s� exceptions y Door |c�

willsucceed y zAttributes � bool ����)���&� y Attributes ��y exceptions
�&� �� accessibility

�&� ���
alwaysvslocked y THEOREM� �&�l� � �3� y Attributes ��y���

exceptions
�&� � � � alld

exceptions

�&� � � � locked

accessibility
�&�l� � � accessibility

�&�@� �����
willsucceed

�&�l� � � willsucceed
�&�3� ���

nonevsopen y THEOREM� �&�l� � �3� y Attributes ��y���
exceptions

�&�l� � � none

exceptions
�&� � � � open

accessibility

�&�l� � � accessibility
�&�@� �����

willsucceed
�&�l� � � willsucceed

�&�3� ���
END restrictedpanel

rho restrictedpanel y THEORY

BEGIN

DoorIcon y TYPE � �
OpenDoor � AjarDoor � ClosedDoor � LockedDoor �

AccPanel y TYPE � ARRAY zDoorIcon � bool �
AccPanel is RadioBox y AXIOM� �

ap y AccPanel ��yV¥§¦ � di1 � di2 y DoorIcon ��y di1 �� di1

ap
�
di1 �
 ap

�
di2 �

ExcepItem y TYPE � �
Always � whenOpen � whenAjar � whenClosed � whenLocked � Never �

ExcepPanel y TYPE � ARRAY z ExcepItem � bool �
ExcepPanel is RadioBox y AXIOM� �

ep y ExcepPanel ��yV¥�¦ � ei1 � ei2 y ExcepItem ��y ei1 �� ei1

ep
�
ei1 �
 ep

�
ei2 �

isabove y z ExcepItem � ExcepItem � bool �
isabove transitive y AXIOM� �

ei1 � ei2 � ei3 y ExcepItem ��y�
isabove

�
ei1 � ei2 �
 isabove

�
ei2 � ei3 ����� isabove

�
ei1 � ei3 �

isabove antisymmetric y AXIOM� �
ei1 � ei2 y ExcepItem ��y � isabove

�
ei1 � ei2 ���¨¥ isabove

�
ei2 � ei1 ���

isabove Never whenOpen y AXIOM� � �I©i� � ©o� y ExcepItem ��y�I© � � Never

 © � � whenOpen ��� isabove

�I© � � © � ���
isabove whenOpen whenAjar y AXIOM� � �I©i� � ©o� y ExcepItem ��y�I©s� � whenOpen

 ©�� � whenAjar ��� isabove
�I©i� � ©o� ���

isabove whenAjar whenClosed y AXIOM

� � �I© � � © � y ExcepItem ��y�I©s� � whenAjar

 ©�� � whenClosed ��� isabove

�I©s� � ©o� ���
isabove whenClosed whenLocked y AXIOM� � �I©i� � ©o� y ExcepItem ��y�I© � � whenClosed

 © � � whenLocked ��� isabove
�I© � � © � ���

isabove whenLocked Always y AXIOM� � �I©i� � ©o� y ExcepItem ��y�I© � � whenLocked

 © � � Always �§� isabove

�I© � � © � ���
Attributes y TYPE ��z | accessibility y AccPanel � exceptions y ExcepPanel |c�
nonempty AccPanel y TYPE � �

ap y AccPanel ��¦ � di y DoorIcon ��y ap
�
di �C�

nonempty ExcepPanel y TYPE � �
ep y ExcepPanel ��¦ � ei y ExcepItem ��y ep

�
ei �C�

nonempty Attributes y
TYPE � �>� y Attributes �� ¦ � di y DoorIcon ��y accessibility

�&� � � di ���
� ¦ � ei y ExcepItem ��y exceptions
�&� � � ei �����

maptoexceplist y zDoorIcon � ExcepItem �
maptoexceplist OpenDoor y AXIOM maptoexceplist

�
OpenDoor � � whenOpen

maptoexceplist AjarDoor y AXIOM maptoexceplist
�
AjarDoor � � whenAjar

maptoexceplist ClosedDoor y AXIOM maptoexceplist
�
ClosedDoor � � whenClosed

maptoexceplist LockedDoor y AXIOM maptoexceplist
�
LockedDoor � � whenLocked

CONVERSION maptoexceplist

identify access y z nonempty AccPanel � DoorIcon ����)���
ap y nonempty AccPanel ��y

COND

ap
�
OpenDoor �ª� OpenDoor �

ap
�
AjarDoor �ª� AjarDoor �

ap
�
ClosedDoor �ª� ClosedDoor �

ap
�
LockedDoor �ª� LockedDoor

ENDCOND �
identify excep y z nonempty ExcepPanel � ExcepItem ����)���

ep y nonempty ExcepPanel ��y
COND

ep
�
Always �ª� Always �

ep
�
whenOpen �ª� whenOpen �

ep
�
whenAjar �ª� whenAjar �

ep
�
whenClosed �ª� whenClosed �

ep
�
whenLocked �ª� whenLocked �

ep
�
Never �ª� Never

ENDCOND �
rho willsucceed y z nonempty Attributes � bool ����)���&� y nonempty Attributes ��y�

set access � set excep � isabove
�
set access � set excep ���

WHERE

set access y DoorIcon � identify access
�
accessibility

�&� �����
set excep y ExcepItem � identify excep

�
exceptions

�&� �����
END rho restrictedpanel

