
Parallel corpora word alignment
and applications

Alberto Manuel Brandão Simões
(ambs@di.uminho.pt)

Dissertação submetida à Universidade do Minho para obtenção do grau de Mestre
em Informática, elaborada sob a orientação de
Pedro Rangel Henriques e José João Almeida

Departamento de Informática
Escola de Engenharia

Universidade do Minho

Braga, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55602362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract Resumo

Parallel corpora are valuable re-
sources on natural language process-
ing and, in special, on the transla-
tion area. They can be used not only
by translators, but also analyzed and
processed by computers to learn and
extract information about the lan-
guages.

Os corpora paralelos são recursos
muito valiosos no processamento da
linguagem natural e, em especial, na
área da tradução. Podem ser usados
não só por tradutores, mas também
analizados e processados por com-
putadores para aprender e extrair in-
formação sobre as ĺınguas.

In this document, we talk about some
processes related with the parallel cor-
pora life cycle. We will focus on the
parallel corpora word alignment.

Neste documento, falamos sobre al-
guns dos processos relacionados com
o ćıclo de vida dos corpora paralelos.
Iremo-nos focar no alinhamento de
corpora paralelo à palavra.

The necessity for a robust word-
aligner arived with the TerminUM
project which goal is to gather par-
allel corpora from different sources,
align, analyze and use them to cre-
ate bilingual resources like terminol-
ogy or translation memories for ma-
chine translation.

A necessidade de um alinhador à
palavra robusto apareceu com o pro-
jecto TerminUM, que tem como prin-
cipal objectivo recolher corpora par-
alelos de diferentes fontes, alinhar e
usá-los para criar recursos bilingues
como terminologia ou memórias de
tradução para tradução automática.

The starting point was Twente-
Aligner, an open-source word aligner
developed by Djoerd Hiemstra. Its re-
sults were interesting but it worked
only for small sized corpora.

O ponto de arranque foi o Twente-
Aligner, um alinhador à palavra
open-source, desenvolvido por Djoerd
Hiemstra. Os seus resultados eram
interessantes mas só funcionava para
corpora de tamanhos pequenos.

The work done began with the re-
engineering of Twente-Aligner, fol-
lowed by the analysis of the alignment
results and the development of sev-
eral tools based on the extracted prob-
abilistic dictionaries.

O trabalho realizado iniciou com
a re-engenharia do Twente-Aligner,
seguida pela análise dos resultados do
alinhamento e o desenvolvimento de
várias ferramentas baseadas nos di-
cionários probabiĺısticos extráıdos.

The re-engineering process was based
on formal methods: the algorithms
and data structures were formalized,
optimized and re-implemented. The
timings and alignment results were
analyzed.

O processo de re-engenharia foi
baseado em métodos formais: os
algoritmos e estruturas de dados
foram formalizados, optmizadados e
re-implementados. Os tempo e resul-
tados de alinhamento foram analiza-
dos.

The speed improvement derived from
the re-engineering process and the
scale-up derived of the alignment by
chunks, permitted the alignment of
bigger corpora. Bigger corpora makes
dictionaries quality raise, and this
makes new problems and new ideas
possible.

Os melhoramentos em veloci-
dade derivados do processo de
re-engenharia e a escalabilidade
derivada do alinhamento por fatias,
permitiu o alinhamento de corpora
maiores. Corpora maiores fazem au-
mentar a qualidade dos dicionários,
o que torna novos problemas e ideias
posśıveis.

The probabilistic dictionaries created
by the alignment process were used in
different tasks. A first pair of tools
was developed to search the dictio-
naries and their relation to the cor-
pora. The probabilistic dictionaries
were used to calculate a measure of
how two sentences are translations
of each other. This naive measure
was used to prototype tools for align-
ing word sequences, to extract multi-
word terminology from corpora, and
a “by example” machine translation
software.

Os dicionários probabilisticos cria-
dos pelo processo de alinhamento
foram usados em tarefas diferentes.
Um primeiro par de ferramentas foi
desenvolvido para procurar nos di-
cionários e a sua relação com os cor-
pora. Os dicionários probabilisticos
foram usados para calcular uma me-
dida de quão duas frases são tradução
uma da outra. Este medida foi
usada para prototipar ferramentas
para o alinhamento de sequências de
palavras, extrair terminologia multi-
palavra dos corpora, e uma aplicação
automática de tradução “por exem-
plo.”

Acknowledgments

Without help, I would never done this work:

• Thanks to my teachers José João Almeida and Pedro Rangel Henriques
encouragement. It was crucial to maintain my motivation on high levels.
For both of them, thanks a lot for the proofreading and ideas;

• Again, thanks for my teacher José João for the ideas, and work done
in cooperation

• Thanks to Djoerd Hiemstra for his work on the Twente-Aligner and
for licensing it as GPL and for his help. Thanks for the motivation on
e-mails sent. Thanks, too, to Pernilla Danielson and Daniel Ridings for
the GPL version of the vanilla aligner.

• Thanks to Diana Santos, for her patience with me and José João, and
for presenting me to Daniel Ridings;

• Thanks to my TerminUM project colleagues: José Alves de Castro for
his work in the Internet grabbing and validation for Parallel Corpora;
and Bruno Martins for his work on the sub-title alignment and K-vec
tools;

• Thanks to Gustavo Carneiro for the bug-hunting help, and some proof-
reading.

• Thanks to Rui Mendes for the proofreading and insults about my En-
glish;

• À minha famı́lia um grande obrigado pelo apoio, sustentação económica
e afectiva. Especialmente aos meus pais pela educação que me deram
e que me continuam a dar.

• Aos meus colegas do laboratório 1.05 do Departamento de Informática
da Universidade do Minho pelos tempos bem passados, jantares, con-
cursos de dardos, jogos de TetriNet e outros divertimentos não men-
cionáveis.

Preface

This document is a master thesis in Computer Science (area of Natural Lan-
guage Processing) submitted to University of Minho, Braga, Portugal.

Through the document I will use the plural instead of the first person.
This choice had two reasons: first, some of the work here presented was done
in cooperation; second, the plural can help the reader to feel inside the work
done.

Finally, I must advice the reader that most examples of parallel corpora
and respective alignment is done with English and Portuguese languages.
This means that a little knowledge of Portuguese can be helpful to understand
completely the examples shown.

Document structure

Chapter 1 introduces the subject, defining the basic concepts used in the
remaining document. It presents an overview of the concepts involved
on parallel corpora creation, alignment and use (corpora life cycle), and
application of the produced resources;

Chapter 2 describes the TerminUM project. It introduces how we are har-
vesting parallel texts from the Internet and how we align them at sen-
tence level;

Chapter 3 describes the re-engineering process, explaining the basic algo-
rithm, together with a discussion about the profiling of Twente-aligner,
the tool our aligner is based on. Times comparisons and corpus size
limitations are discussed;

Chapter 4 analyzes the NATools probabilistic dictionaries, and how they
can be enhanced using simple techniques;

Chapter 5 shows the use of NATools probabilistic dictionaires: how the
translation dictionaries obtained from the word alignment process can

vii

be used in other tools, to obtain useful resources;

Chapter 6 Concludes this dissertation discussion and analysis of the work
done. Explores some new tracks we can explore on future works.

Some complementary information is presented on the appendixes:

Appendix A Introduces a data structures calculus and respective notation.

Appendix B Includes the documentation for some tools developed through
this thesis (also available as man pages).

Contents

1 Introduction 1
1.1 Parallel Corpora Introduction 3

1.1.1 Corpora and Parallel Corpora 3
1.1.2 Parallel Corpora Alignment 5
1.1.3 Parallel Corpora Applications 7
1.1.4 Parallel Corpora Types 8

1.2 NATools overview . 9
1.2.1 Design principles . 10
1.2.2 The NATools package 11

1.3 Document Summary . 12

2 TerminUM Project 15
2.1 The big picture . 15
2.2 Parallel corpora construction 20

2.2.1 Finding candidate pairs 21
2.2.2 Validation of candidate pairs 26

2.3 Sentence alignment . 30
2.3.1 Segmentation Tool . 32
2.3.2 Sentence Aligners . 34

3 From Twente-Aligner to NATools 39
3.1 Twente-Aligner . 39
3.2 NATools Architecture . 41

3.2.1 Pre-Processing . 43
3.2.2 Corpora encoding . 44
3.2.3 Matrix initialization 47
3.2.4 EM-Algorithm . 51
3.2.5 Dictionary creation . 52

3.3 Addition of Dictionaries . 53
3.3.1 Motivation . 53

ix

x Contents

3.3.2 Addition formalization 54
3.4 Timings and measures . 56

3.4.1 From Twente-Aligner to NATools 57
3.4.2 Scalability . 58
3.4.3 Disk usage measures 61

3.5 Re-engineering Conclusions 63

4 Word Alignment Results 65
4.1 Simple alignment . 66
4.2 Simple Multi-word term alignment 69
4.3 Simple Domain Specific Terminology Extraction 71
4.4 Iterative Alignment . 73
4.5 Using Language specific pre-processing 74

4.5.1 English Genitives . 74
4.5.2 Infinitive verbs . 75

4.6 Results Analysis . 78

5 NATools based Tools 79
5.1 NATools Programming Interface 80

5.1.1 Lexicon files’ interface 81
5.1.2 Dictionary mapping files interface 82
5.1.3 Programming with NATools dictionaries 83

5.2 Word search on Parallel Corpora 86
5.3 Dictionary browsing . 88
5.4 Estimation os Translation Probability 89
5.5 Word sequence alignment . 91
5.6 Multi-word terminology extraction 93

5.6.1 Monolingual multi-word term extraction 93
5.6.2 Multilingue multi-word term extraction algorithm . . 93
5.6.3 Results and evaluation 94

5.7 Statistical machine translation 96
5.8 Tools development conclusions 99

6 Conclusions 101

A Mathematical Notation 111

B Software Documentation 115
B.1 Software Installation . 115

B.1.1 Requirements . 115
B.1.2 Compilation . 116

Contents xi

B.2 nat-this . 116
B.3 nat-pre . 117
B.4 nat-initmat . 119
B.5 nat-ipfp . 120
B.6 nat-samplea . 120
B.7 nat-sampleb . 121
B.8 nat-mat2dic . 122
B.9 nat-postbin . 122
B.10 nat-css . 123
B.11 NAT::Lexicon . 124
B.12 NAT::Dict . 126

xii Contents

List of Figures

2.1 Parallel corpora life-cycle . 17
2.2 Overview of the Internet candidate pair retrieval process . . . 21
2.3 Sample page to enter a bilingual site 24
2.4 Schematic view of a bilingual site based on Resnik query struc-

ture . 24
2.5 Example of two pages with bidirectional links 26
2.6 Schematic view of a bilingual site based on bi-directional links 26
2.7 Validation stages . 27
2.8 Modules for a sentence aligner 31
2.9 Model and two examples of segments for a text 33

3.1 Word aligner structure . 42
3.2 Initial co-occurrence matrix diagram 47
3.3 First 1000× 1000 elements of the sparse matrix 49
3.4 Sparse matrix structure for the Bible alignment 49
3.5 Co-occurrence matrix first iteration diagram 51
3.6 Co-occurrence matrix second iteration diagram 51
3.7 Co-occurrence matrix final iteration diagram 52
3.8 Timing evolution regarding corpus size 58
3.9 Timing evolution with chunk alignment 61

4.1 Alignment before Portuguese verb stemming 76
4.2 Alignment after Portuguese verb stemming 77
4.3 Alignment after Portuguese and English verb stemming . . . 77
4.4 Alignment after Portuguese and English special verb stemming 78

5.1 Searching for a word on a parallel corpus 86
5.2 Searching for a words and probable translation 87
5.3 Dictionary navigation CGI . 88
5.4 Word sequence alignment example 92

xiii

xiv List of Figures

5.5 Relation between the number of units found and their occur-
rence number on the corpus 95

5.6 Example-Based Machine Translation example 98

List of Tables

3.1 Initial co-occurrence matrix 48
3.2 Twente-aligner vs NATools times 57
3.3 Times comparison of alignment in a single chunk 58
3.4 Measures for two halves of UEP corpus 59
3.5 Measures for the ten chunks of UEP corpus 59
3.6 Comparison between the times of alignment in two or ten

chunks for the UEP corpus 60
3.7 Measures for the fourteen chunks of EP corpus 60
3.8 Disk usage in corpus analysis step 62
3.9 Disk usage for sparse matrices on disk 62
3.10 Disk usage for the dictionaries files 63
3.11 Disk usage for full alignment 63

4.1 Extract of the alignment for the words “God” and “Deus.” . . 66
4.2 Examples of alignment for “Deus” and “God” 67
4.3 Extract from the alignment for words “gosta” and “loves” . . . 68
4.4 Examples of alignment for “gosta” and “loves” 69
4.5 Extract from the word-pairs alignment result for“Christ Jesus”

and “Jesus Cristo.” . 70
4.6 Examples of alignment for “um pouco” and “a little” 71
4.7 Extract from the word-pairs alignment for “a little” and “um

pouco” word pairs. 71
4.8 Extract from the result of the domain specific terminology

extraction method. 72
4.9 Dictionaries sizes and qualities for the Iterative Alignment . . 73
4.10 Results of alignment using correctly tokenized genitives . . . 75

5.1 Translation probability measure samples 90
5.2 Multi-word terms translations 96

xv

xvi List of Tables

Chapter 1

Introduction

6and Yahweh said, “They are one people and they have one
language. If they carry this through, nothing they decide to do
from now on will be impossible. 7Come! Let us go down and
confuse their language so that they will no longer understand
each other.”

Genesis 11, 6-7

Corpora in general and, particularly, parallel corpora are very important
resources for tasks in the translation field like linguistic studies, information
retrieval systems development or natural language processing. In order to
be useful, these resources must be available in reasonable quantities, because
most application methods are based on statistics. The quality of the results
depends a lot on the size of the corpora, which means robust tools are needed
to build and process them.

The alignment at sentence and word levels makes parallel corpora both
more interesting and more useful. As long as parallel corpora exist, sentence
aligned parallel corpora is an issue which is solved by sentence aligners. Some
of these tools are available as open-source software, while others have free
licenses for non-commercial use, and produce reasonable results.

Regarding word level alignment, there are many interesting articles about
the subject, referring many tools(Melamed, 2000; Hiemstra, 1998; Ahrenberg,
Andersson, and Merkel, 2000). Unfortunately, most of them are not open-
source nor freely available. Those that are available do not scale up to the
size of corpora most researchers wish to align.

With this in mind, word alignment is one area where there is still a dire

1

2 1. Introduction

need of research. Thus, this dissertation focuses upon the creation of better
tools concerning word alignment.

For us, it is very important that the software used and developed follows
the open-source philosophy. Without an open license, we cannot adapt the
software to bigger applications, study the algorithms and implementations
used or correct bugs.

Thus, we chose the only open-source word aligner found, Twente-aligner
(Hiemstra, 1998), to help the bootstrap process for a parallel corpora package.

Starting with a working software tool saves a lot of time, which can be ap-
plied to more interesting work, as there is no need to develop the application
from scratch.

Note that...

The dictionaries generated by Twente-Aligner were nice to look at, but hard to
parse by another application. The solution was to rewrite the code that outputs
the dictionary, to write it in a format that is easier to parse. Thus, if Twente-
Aligner was not open-source its results would be very difficult to use by third-part
software.

This dissertation will present work developed in a package named NA-
Tools(Simões, 2003; Simões and Almeida, 2003)1, which is being developed
under the Linguateca (Santos et al., 2004) and the TerminUM project (Almeida
et al., 2003). This package includes:

• a sentence-alignment tool, with built-in tokenization and segmentation
of texts;

• a word-aligner based on Twente-aligner;

• web navigation scripts over aligned corpora;

• segment-alignment methods, based on word-alignment;

• and other tools2

The remaining of this chapter includes a section with a brief introduction
to Parallel Corpora, corpora types, and applications. Section 1.2 presents a
quick view over the resources and tools developed, while section 1.3 presents
the structure of the document, summarizing each chapter.

1Natura Alignment Tools
2Some of these tools are still in prototype stage: they work but need interface improve-

ments for common usage.

1.1. Parallel Corpora Introduction 3

1.1 Parallel Corpora Introduction

This section presents an introduction to the parallel corpora concept. First,
the concept of corpora and parallel corpora is explained, and the different
levels of parallelism we can find on parallel texts are discussed. It explains
how we can enrich parallel corpora by aligning them. Section 1.1.3 presents a
quick survey of parallel corpora usages. Section 1.1.4 presents a classification
of parallel corpora based on the dependency between original text and its
translation, and on the objective of the translation.

1.1.1 Corpora and Parallel Corpora

Since the invention of writing, men wrote and continue to write large amounts
of documents. When these texts are organized and annotated for a certain
specific use (for example, for natural language processing), we call them cor-
pora.

Definition 1 Corpora is the term used on Linguistics, which corresponds
to a (finite) collection of texts (in a specific language). 3

Note that...

There are many available corpora in different languages, and with different text
categories: journalistic, literary, poetic and so on.
For the Portuguese language, CETEMPúblico (Rocha and Santos, 2000) is one
of the most used monolingual corpus. It consists of over 191 million words of
journalistic text segments from the Público Portuguese newspaper.
Some years after the release of CETEMPúblico, a similar approach was used to
create a Brazilian corpus, based on “Folha de São Paulo” newspaper. CETEN-
Folha consists of 33 million of words.
One example for the English language is the British National Corpus (http:
// www. natcorp. ox. ac. uk/), which contains both written and spoken modern
English.
Normally, corpora include sentence mark-up, Part-Of-Speech, morphological
analysis, and so on (like the first million of words from CETEMPúblico, part of
the AC/DC project(Santos and Bick, 2000)).

A collection of documents in more than one language is called a multilin-
gual corpora.

Multilingual corpora may be classified according to their properties, as
was described in (Abaitua, 2000). The first level of multilingual corpora is

4 1. Introduction

named Texts in different idioms. Normally they are used for quantitative
and/or statistical studies.

Note that...

Quantitative and statistical studies can provide interesting hints about the num-
ber of verbs, adjectives and other morphological categories that appear on a spe-
cific portion of text in two different languages.

Definition 2 Comparable corpora are texts in different languages with
the same main topic3. 3

Note that...

A set of news articles, from journals or news broadcast systems, as they refer
the same event in different languages can be considered Comparable Corpora.
Consider a news item about the September 11 tragedy. Different newspapers, in
different languages will refer the World Trade Center, airplanes, Bin Laden and
a lot of other specific words. This is the case of Comparable Corpora.
This kind of corpora can be used by translators who know day-to-day language
but need to learn how to translate a specific term. In this case, the translator
can find a specific comparable corpora where the term is used, and read the
translation to search for the translation of that specific term.
They can also be used for terminology studies, comparing words used in different
languages for similar concepts.

Definition 3 Parallel corpora is a collection of texts in different lan-
guages where one of them is the original text and the other are their transla-
tions. 3

Note that...

The COMPARA (http: // www. linguateca. pt/ COMPARA/) project is a paral-
lel corpus of Portuguese/English fiction texts with about 40 thousand translation
units (at the end of 2003).
Another example is the well known Aligned Hansards of the 36th Par-
liament of Canada (http: // www. isi. edu/ natural-language/ download/
hansard/). This is a English/French corpus with more than one million trans-
lation units.

3Although comparable corpora, we consider translations from a common third language
as almost-parallel corpora, as we use them for direct alignment.

1.1. Parallel Corpora Introduction 5

To formalize this concept, let us introduce some notation:

• languages are denoted by a calligraphic “L” and a Greek letter index
like Lα or Lγ ;

• a text is written with an uppercase “T” and the respective Greek letter
index: Tα is written in language Lα.

• the translation function T(α,β) applied to a text Tα returns its translated
version: Tβ: T(α,β)(Tα) = Tβ. When languages can be inferred from the
context, we will write Tβ: T (Tα) = Tβ for simplicity.

Definition 4 Two texts Tα, Tβ in two different languages are parallel texts,
or bitexts4(Harris, 1988) if one is the translation of the other5: T(α,β) (Tα) =
Tβ. 3

Given this, we can say that parallel corpora is a set of bitexts. Through-
out this document, “parallel corpora” and “parallel texts” will be used inter-
changeably.

1.1.2 Parallel Corpora Alignment

The first step in extracting useful information from bitexts is
to find corresponding words and/or text segment boundaries
in their two halves (bitext Maps).
Bitexts are of little use, however, without an automatic
method for matching corresponding text units in their two
halves.

(Melamed, 1999)

Although we can add morphological analysis, word lemmas, syntactic analysis
and so on to parallel corpora, these properties are not specific to parallel
corpora.

The first step to enrich parallel corpora is to enhance the parallelism
between units on both texts. This process is called “alignment”. Alignment
can be done at different levels, from paragraphs, sentences, segments, words
and characters.

Usually, alignment tools perform the alignment at sentence and word
levels:

4for more than two texts we say they are multitexts
5or T(β,α) (Tβ) = Tα. For the sake of simplicity we will use always Tα as the original

text (and Lα as the source language)

6 1. Introduction

• Texts are sequences of sentences. To sentence align two texts is to
create relationships between related sentences.

Note that...

Parallel corpora projects, such as COMPARA, or the Hansard of the 36th Par-
liament of Canada, are aligned at sentence level. This makes it easier to find
the corresponding sentence or word in the target language.

• The same idea can be used for the word alignment process: sentences
are sequences of words. So, the word alignment process will add links
between words from the original and the translated text.

Word alignment can be viewed in two different ways:

– for each word, in a sentence, find the corresponding word in the
translated sentence. This means that, for each occurrence of a
word, it has a specific word linked to it.

– for each word from the source corpus, find a set of possible trans-
lations (and its probability) into the target corpus.
This leads to a Probabilistic Translation Dictionary6 (PTD), where
for each different word of the corpus we have a set of possible
translations and their respective probability of correctness. The
following example illustrates this concept7.

1 novo
2 again - 0.608494997024536
3 new - 0.181253835558891
4 young - 0.096220552921295
5 younger - 0.032383352518081
6 back - 0.017278868705034
7 trodden - 0.016316164284944

In this document, we will work with the second kind of alignment, as
its result is more useful, and the first one can be obtained from it with
small effort.

6In this document, when we use “translation dictionary” we are referring to these prob-
abilistic translation dictionaries.

7This extract is from the word alignment of European Parliament corpus, which will be
presented in further detail later.

1.1. Parallel Corpora Introduction 7

Note that...

For multilingual information retrieval, to have a Probabilistic Translation Dic-
tionary is more important than a word-to-word alignment scheme. For example,
the probablistic information can be used to weight retrieved documents relevance.

These two definitions will be formalized in next chapters, but they are
important to help the reader understand the following chapters.

1.1.3 Parallel Corpora Applications

Parallel corpora can be used for many tasks, e.g. teaching, terminological
studies, automatic translation or cross-language information retrieval engines:

• teaching second languages/translation didactics
parallel corpora can be searched by translation students to find trans-
lation samples, gather common errors done, and learn translation tech-
niques. It can also be used in the process of learning a second language.
By reading parallel texts, the student can try to understand the trans-
lated sentence and mentally align concepts and structures with the
original one;

• terminology studies
parallel corpora can be mined to bootstrap or enrich multilingual ter-
minology dictionaries or thesaurus. In fact, when new knowledge areas
appear, new terms will not be present on dictionaries. The word align-
ment process of parallel corpora is very important to aid the extraction
of specific multilingual terminology;

• automatic translation
by studying human translations, developers can learn and infer new
automatic translation algorithms. As translation resources, the sen-
tence aligned corpora can be used to create translation memories to
be used on MBMT (memory-based machine translation), and the full
word aligned corpora can be used for EBMT (example-based machine
translation);

• multilingual edition
as an alternative to the automatic translation, the multilingual edi-
tion intends to generate different languages from a meta-language: it

8 1. Introduction

is defined an artificial language L where all information possible is in-
serted, such that it is possible to generate diverse natural languages
from it. This method can be effective when generating texts in a closed
environment;

• product internationalization
similar to automatic translation, but with a narrower focus;

• multilingual information retrieval
systems that gather documents in different languages, where the query
is written in any language (the original objective of Twente-aligner).
This means that the query must be translated to all languages used on
the database documents. As the translated query is not shown to the
user, word-by-word translation based on translation probability can be
used, with effective results;

1.1.4 Parallel Corpora Types

To discuss parallel text alignment and understand alignment problems, we
will begin by pointing out some translation characteristics. As presented in
(Abaitua, 2000), we can classify translations according to the dependency
between the original text and its translation:

• Type A
when the translated text will completely substitute the original text
in the target language. This is the case of literary translations (where
readers will choose to read only one version of them);

• Type B
when translations will coexist in time and space. This is the case of
bilingual literary editions (where the reader will probably compare the
texts on both languages);

• Type C
when the translations will be used for the same purpose as the origi-
nal, and work in a symmetrical way. This is the case for institutional
documents of the European Union and other multilingual institutions;

or classify them with respect to the translation objective:

• Pragmatic
the translated text will be used for the same communication purpose
as the original;

1.2. NATools overview 9

• Stylistic
the translated text tries to maintain the original text structure and
form of language;

• Semantic
the translated text tries to transmit essentially the same message.

Parallel text alignment problems are highly dependent on these classifi-
cations:

• type A translations cannot be viewed as parallel corpora. The translator
often changes the order of sentences and some content8 as soon as they
maintain the basic idea behind the text;

• type B translations give reasonable results on word alignment, as most
specific terms from the corpora will be coherently translated between
sentences;

• type C translations are the best type of parallel corpora for alignment.
As this type of parallel corpora is normally composed of institutional
documents with laws and other important information, translation is
done accurately, so that no ambiguities are inserted in the text, and
they maintain symmetrical coherence;

Considering the automatic translation objective, stylistic and semantic
translation types can have problems. Stylistic approach makes the translator
look for some similar sound, sentence construction, rhythm, or rhyme. This
means that the translator will change some of the text semantic in favor
of the text style. The semantic approach has the advantage that the text
message and semantic is maintained, but the type of language can change
(as the translation will be addressed to an audience that differs significantly
from the one of the original text).

1.2 NATools overview

This section is a quick overview of NATools. First, the state of Twente-aligner
and our design principles to make it a better tool are presented. Then, a quick
presentation of NATools package contents follows.

8like localization issues (changing inches to millimeters, for example).

10 1. Introduction

1.2.1 Design principles

After choosing Twente-aligner as our base application, we defined our goals
for the re-engineered tool:

• maintain it open-source (GPL):
if the aligner can be useful to someone, it will be a lot more useful if it
is open-source.

• use standard GNU configuration and compilation mechanics:
in Unix, one of the most common problems when installing software is
the anarchic profusion of methods available. One of the most common
and recommended method is the autoconf/automake, which makes it
simple to configure and compile software.

• improve the existing algorithm efficiency:
results presented by Twente-aligner were good, but it used too much
time to align small pieces of parallel corpora. Improving its speed allows
us to produce much more material in smaller amounts of time.

• make it scalable to bigger corpora:
as has been previously mentioned, parallel corpora (and corpora in
general) are needed in big quantities to achieve good results. Then, if
we want to align and build good PTDs, it is crucial to have an aligner
that scales up to big corpora.

• use scripting languages to add levels for pre and post-processing:
Probability translation dictionaries can be used for several interesting
tasks:

– treat corpora before alignment (tokenizing and segmenting it), and
in some cases, apply stemmers and POS taggers;

– create different formats for PTDs;

– build tools to analyze generated PTDs;

– try to use word-aligned corpora for translation tools.

Given these goals, we used the following approach to the aligner re-
engineering:

1. writing formal models of each step of the alignment process;

2. detection of critic data structures and algorithms;

1.2. NATools overview 11

3. code profiling of the problematic areas;

4. calculus of isomorphic data structures for the slowest portions of the
code;

5. re-codification of the application;

After the application of these design principles, the alignment method
achieved a huge efficiency improvement and, consequently, large corpora be-
gan to be alignable.

After some tests with bigger corpora, we noticed that the process needed
more memory than the physical memory available. The solution was to divide
the problem in smaller pieces, align them independently and join the results.
Given the complete independence between the alignment of these pieces, the
use of parallel processing is simplified.

Various corpora were aligned for debugging and testing purposes, includ-
ing the full European Parliament parallel corpora(Koehn, 2002). Some spe-
cific corpora were aligned for their authors: Andrius Utka parallel corpus
(a 6 million English/French parallel corpus constituted by European Par-
liament documents) and for TMX alignment of the “Corpus Lingǘıstico da
Universidade de Vigo9.”

1.2.2 The NATools package

After the re-engineering of Twente-Aligner, we created a NATools package
adding auxiliary programs and scripts.

First, Perl scripts were added to simplify the use of the aligner:

• TMX files can be aligned directly, without requiring format conver-
sion(Simões and Almeida, 2004);

• huge parallel corpora can be aligned directly: the script checks its size,
and splits it into chunks, if needed.

As Twente-Aligner is based on sentence aligned corpora, we added an
implementation(Danielsson and Ridings, 1997) of vanilla aligner (based on
(Gale and Church, 1991)). While not a good aligner10, it is free. Although we

9With Portuguese/English, Portuguese/Galician, Galician/English alignments, available
at http://sli.uvigo.es/CLUVI/

10Vanilla aligner is considered to be the low-level base code for sentence aligners. It just
uses the similarity between sentence sizes to perform the alignment.

12 1. Introduction

included it on the NATools package, the word aligner can be used in corpora
aligned with any sentence aligner. Some other Perl scripts were added to the
vanilla aligner, which makes it an independent and useful tool.

Given the efficiency boost, new research areas appeared. Thus, Perl ap-
plications were developed for11:

• translation ranking:
based on a PTD, qualify or rank translations. This ranking is the
probability of the proposed translation being a correct translation (see
section 5.4):

rank : Tα × Tβ −→ P (T (Tα) = Tβ)

• sequence alignment:
given a measure of translation quality between two sentences, it is pos-
sible to align sequence of words, which are part of a sentence (see sec-
tion 5.5):

sequenceAlign : Sα −→ Sβ

• bilingual multi-word term extraction:
based on a monolingual multi-word term extractor(SENTA, 2003), ex-
tract from the source corpus a set of multi-word terms and find in the
target corpus the corresponding translation (see section 5.6).

extract : Tα × Tβ −→ (w?
α × w?

β)?

• translation “by example:”
based on a PTD and corresponding aligned corpus, try to translate
sentences by aligning small sequences of text. (see section 5.7).

translate : Tα −→ Tβ

1.3 Document Summary

TerminUM Project
The next chapter introduces the TerminUM Project. Our parallel corpora
life-cycle is explained, showing where the word alignment is done, and which
steps we need to perform before using it: parallel corpora harvesting from
the Internet and sentence alignment.

11In the following function prototypes we did not include the dictionaries and parallel
corpora as input for simplicity.

1.3. Document Summary 13

From Twente-Aligner to NATools
On chapter 3, the structure of the NATools word aligner is presented, along
with an explanation of the involved algorithms and reverse engineering of
the original Twente-aligner. The chapter ends with a benchmark of these
two aligners, and an analysis of the resources needed by NATools for corpora
of different sizes.

Word Alignment Results
This chapter is the linguistic analysis of the word alignment results, where we
present extracts of probabilistic translation dictionaries built using NATools.
It includes some experiences done with different kinds of corpora input, like
corpora with stemmed verbs, or corpora with pairs of words.

Tools based on Dictionaries
Chapter 5 describes a variety of tools developed, which use the translation
dictionaries extracted by NATools. These tools range from web-browsing of
parallel corpora and dictionaries to a translation system “by example.”

Conclusions and Future Work
Finally, chapter 6 concludes with an analysis of the work performed and the
usefulness of the tools developed. It includes some ideas for future research
on this area.

14 1. Introduction

Chapter 2

TerminUM Project

The TerminUM Project is part of Natura Project, devoted to Natural Lan-
guage Processing. The TerminUM team is composed by José João Almeida,
José Alves de Castro Bruno Martins and me. We have been working on
different stages of corpora processing.

As told in the introduction, our focus will be the word-aligner derived
from Twente-Aligner, to which we called NATools. Before explaining its
evolution, it is important to explain the context where this development is
taking place. Next section explains the TerminUM goals. Afterwards, the
discussion of the corpora harvesting, segmentation and sentence alignment is
presented. These are the tasks that need to be performed before the word
alignment process begins.

2.1 The big picture

The main goal of the TerminUM Project is to produce multilingual re-
sources and develop tools to manage and enrich them. The base idea of
making parallel corpora freely available is very similar to the work done in
Opus(Tiedemann and Nygaard, 2003; Tiedemann and Nygaard, 2004). Al-
though Opus is working on parallel corpora for any pair of words, TerminUM
is being devoted to parallel corpora where one of the languages is Portuguese.

TerminUM is being developed incrementally and, each time the project
elements meet, new ideas of multilingual resources and corpora treatment
processes emerge. This leads to a step-by-step definition of a corpora life-
cycle corpora, as presented in figure 2.1.

In this diagram, each boxed item is a tool, and italic words are data types.

15

16 2. TerminUM Project

Shadowed boxes are the main focus of this document. The TerminUM project
wants to distribute each of the developed tools independently, as open-source
applications. Each data type should be a resource, available to download by
any user.

Although we call “life cycle” to this diagram, the parallel corpora process-
ing can begin at any point, provided we have the appropriate resources to
initiate the process.

The data types involved in the life-cycle are:

• web ∨ directory
there are vast amounts of parallel corpora available on the web. The
definition of an efficient process to grab parallel corpora from available
resources is very important given that the biggest parallel corpora avail-
able is the web itself. Our life cycle starts with the process of building
parallel corpora, which can be performed directly from Internet web-
sites or from a set of files in our filesystem (see section 2.2);

• candidatePairs ≡
(
file2

)?

texts grabbed from the Internet must pass a set of steps before being
considered bitexts. These files, already in our filesystem and ready to
be validated will be called “candidate (file) pairs”;

• bitexts ≡
(
file2

)?

as defined before (definition 4), bitexts are the texts which passed the
validation process. These texts will be considered as real parallel texts

(fileα × fileβ : fileα ∈ Lα ∧ fileβ ∈ Lβ ∧ T (fileα) = fileβ)?

in subsequent processes.

• parallel books ≡ (textα × textβ)
parallel books, some of which are freely available on the web, can enter
the process directly at this point, as we know they are real translations;

• segmented bitexts ≡
(
(s? × id)2

)?

are bitexts after the cleaning and sentence segmentation processes. The
cleaning process may remove mark-up (tags, labels and commands) spe-
cific of file formats, as well as sentences that are too small (or segments
without real natural language).

The sentence segmentation process divides the text paragraphs into sen-
tences (see section 2.3.1). The paragraph structure is inferred from the
mark-up of the original file and may use language specific knowledge;

2.1. The big picture 17

web ∨ directory

��
guess & retrieval

��
candidatePairs

��
• // validation

��
bitexts

��

parallelBooksoo

sentences

��
segmentedBitexts

��

subtitlesoo

��

.po

��
sentenceAligner

��

subtitleAligner

��

poAligner

��

• // •

sentenceAligned

��

ks +3 TMX

��
wordAlign

��

• // evaluation

��
•

OO

dictionariesoo // •

OO

evalSentences

Figure 2.1: Parallel corpora life-cycle

18 2. TerminUM Project

• sentenceAligned ≡
(
(s× s)? × id2

)?

texts aligned at sentence level consisting of pairs of sentences (and,
optionally, an identifier pair which can be used to know the corpus
where the sentence came from).

• probabilistic translat. dictionaries≡ (wα 7→ (#occ× (wβ + null) 7→ %))2

the word alignment process creates a probabilistic translation dictio-
nary pair (one for each language, as the alignment process is not sym-
metrical).

Each of these dictionaries maps a word (wα) from the source language1

to a tuple with the occurrence of the source word in the source corpus
(#occ), and another map, from words of the target language (wβ) to
the probability (%) that wβ is a good translation of the original word
(wα).

• evalSentences ≡ (sα × sβ ×%)?

as we will propose (section 5.4) a method to quantify (using statistical
information) the translation probability between two segments, we can
develop a tool to produce pairs of segments together with a translation
probability estimation.

• subtitles ≡ (subtitleα)? × (subtitleβ)?

With the advent of DVD and “DivX ;-)” many sites with movie sub-
titles in different languages appeared on the Internet. These subtitles
can be aligned (using timestamps or frame rates) and produce parallel
texts;

For completeness sake, here is an extract of a subtitle file for the Por-
tuguese movie “Canção de Lisboa”:

1 {82069}{82159}- So, I’m not a doctor?|- Thank God you’re
2 still here, doctor.
3 {82199}{82252}See? I really am a doctor!
4 {82290}{82360}Doctor,|one of your patients is very sick.
5 {82407}{82473}I need you to come with me|right away,
6 {82498}{82553}otherwise, he may pass away.
7 {82576}{82628}Let’s see him then.|Come on.
8 {82628}{82713}Stay here and play with the lions.|They’re
9 harmless pets.

10 {82719}{82767}You know, duty calls.
11 {82810}{82873}So, am I a doctor or not?|Let’s go.

1Note that the source language for one of the dictionaries is the target of the other and
vice-versa.

2.1. The big picture 19

12 {82875}{82914}- Call me doctor.|- Yes, doctor.
13 {82914}{82953}- Louder.|- Yes, doctor!
14 {82953}{83005}So, am I a doctor or not?
15 {83057}{83121}- Here’s your patient.|- My patient?
16 {83135}{83198}There’s some|misunderstanding here.

Numbers between curly brackets are the first frame of the movie where
the subtitle will be shown, and the frame where it should disappear.
Next to them is the subtitle itself, where the vertical bar is used to
change lines.

• .po ≡ (id 7→ messageα)× (id 7→ messageβ)
Open source projects like Gnome or KDE use a GNU tool for localiza-
tion which produce files known as .po files. Each .po file has relation-
ships between an identifier and a message on the file language.

An example of a .po file for Portuguese is:

1 #: src/dlg-add.c:124 src/window.c:1915 src/window.c:1948
2 msgid "Could not add the files to the archive"
3 msgstr "N~ao foi possı́vel adicionar os ficheiros ao arquivo"

4 #: src/dlg-add.c:274 src/toolbar.h:56
5 msgid "Add"
6 msgstr "Adicionar"

7 #: src/dlg-add.c:285
8 msgid "_Add only if newer"
9 msgstr "_Adicionar se mais recente"

10 #: src/dlg-add.c:286
11 msgid "_Include subfolders"
12 msgstr "_Incluir sub-pastas"

Each group consists of a comment (where the message was found), an
identifier for the message (normally the message in the original lan-
guage) and the message in the target language.

Two of these files can be easily aligned using the message msgid. It is
important to use two files and not msgid together with msgstr given
that the identifier of the message can be out-of-date.

Although it is possible to follow the complete corpora life-cycle, this is
not required. In fact, some of these tools are important because they can
be used independently. This is true because it is common to need a specific
resource in the middle of the life-cycle, or to have some corpora in a given

20 2. TerminUM Project

state and needing to perform only a few steps to reach another state of the
life-cycle.

Each one of the life-cycle processes are, by themselves, an area of study
and research.

Next follows a synthesis of the process that will be discussed in the rest
of the document:

The first step is the parallel text acquisition. This is performed looking by
a directory of files and trying to find files and their respective translations,
or using some heuristics to retrieve parallel texts from the Internet in an
automatic way. From this process we get pairs of texts which will need to
pass a validation step to be considered real parallel texts. The retrieval and
validation steps are presented in section 2.2 (Almeida, Simões, and Castro,
2002).

To align parallel texts at sentence level we need to divide each text in
sentences (or paragraphs, or segments) and, using heuristics and dictionar-
ies, relate them. This process is known as sentence alignment and will be
discussed in section 2.3.

The word alignment process is based on Twente-aligner (Hiemstra, 1998;
Hiemstra, August 1996) and is the main focus of the document. Chapter 3
presents the discussion on the method and implementation of the original
Twente-aligner and how it was improved. Chapter 4 shows word-alignment
results and discusses their quality according to the used corpora. Chapter 5
presents tools which use the alignment dictionaries for corpora browsing,
sentence segment aligning, translation evaluation, statistical translation and
multi-word term extraction.

For more information about the alignment of subtitles and international-
ization messages check (Almeida et al., 2003), as this topic will not be covered
in this document.

2.2 Parallel corpora construction

To use the Internet as a parallel corpora source there are two main tasks
we must perform: the retrieval of the candidate parallel corpora and its
validation(Almeida, Simões, and Castro, 2002; Almeida, Castro, and Simões,
2002).

The first step is not just a download issue. We should only download pages
we suppose to be parallel. This means we need heuristics to detect parallel

2.2. Parallel corpora construction 21

pages (a process that is described on section 2.2.1), so we can retrieve them
from the web. These pages will be called candidate file pairs.

Definition 5 A Candidate file pair2 is a pair of files that we expect to
contain parallel texts. 3

The retrieved candidate pairs must pass a validation stage to be consid-
ered parallel texts. In fact, candidate file pairs (Fα, Fβ) can be such that
T (Fα) = Fβ ∧ Fα ∈ Lα ∧ Fβ ∈ Lβ is not guaranteed. The validation process
is discussed on section 2.2.2.

2.2.1 Finding candidate pairs

The process of grabbing parallel corpora aims to find candidate file pairs in
the Internet. This is specially useful because there are few other parallel
corpora sources as translated documents (articles, books) freely available.

↓a
(URLs)?

↓b ⇓1︸ ︷︷ ︸
↓c

↓d
web site
⇓4 ↓e︸ ︷︷ ︸

web search local
(file2)? engine directory
⇓2 ⇓3 ⇓5︸ ︷︷ ︸

(File2)?

Figure 2.2: Overview of the Internet candidate pair retrieval process

There are different ways to detect parallel corpora from the Internet.
Figure 2.2 illustrates them. On this figure, simple arrows are entry points for
the retrieval process:

a) many tools create lists of URLs, like web spiders. These lists can be
used to extract candidate parallel texts;

2Through this document “candidate pairs” will be used instead of “candidate file pairs”
for simplicity.

22 2. TerminUM Project

Note that...

It is possible to write programs to retrieve a web page, extract links, and follow
them. The resulting list of URLs can be something like:

1 http://escrital.pt/images/main8.jpg

2 http://gasa3.dcea.fct.unl.pt/gasa/gasa98/eco/dentes/img008.jpg

3 http://ftpdem.ubi.pt/dsp/ftp/d10free/mssql.zip

4 http://www.digiserve.pt/dsrvlogo_novo.gif

5 http://www.deec.isel.ipl.pt/eventos/je.../jetc99/pdf/art_60.pdf

6 http://www.cm-arcos-valdevez.pt/videopor.html

7 http://astrologia.sapo.pt/css/main.css

8 http://www.madinfo.pt/organismos/ceha/livros/Ed/Tania/back

9 http://www.bioportugal.pt/30.gif

10 http://www.joaquim-luis-cav.pt/imagens/botao1.jpg

11 http://www.adral.pt/_derived/index.htm_cmp_expeditn110_bnr.gif

12 http://www.metacortex.pt/img_prototipo/prototipo_r2_c1.gif

13 http://planeta.clix.pt/concurso/Concurso_ficheiros/filelist.xml

From these URL’s we can exclude images and file types without textual content.
Other files can be translated to textual formats for corpora creation.

b) you may have pairs of URLs which you know (or hope) to be parallel
texts;

c) there are some techniques to find parallel texts directly on the Internet
using web search engines;

d) you may know a web-site where several parallel texts exist;

e) after downloading a set of files, it is necessary to look for parallel texts
in the file system;

The processed represented by the double arrows in figure 2.2 will be de-
scribed in the next subsections and correspond vaguely to each entry point.

Using a list of URLs

From a list of URLs we can use heuristics to detect blocks that seem to refer
to documents and their translations.

When web-masters build web-sites in more than one language they tend
to use a systematic way of structuring web-pages names. For example, it
is common to use a directory for each language (giving the name of the

2.2. Parallel corpora construction 23

language to the directory), to use a prefix or suffix to web-page files, to use
CGI options, and so on.

Our strategy is to rely on this organization of web-sites when searching
for language tags3 on their URLs. This means we look for URLs that are
very similar.

For example, the following URLs have a language tag, and should be
normalized to a common string.

http://www.ex.pt/index_pt.html http://www.ex.pt/index_en.html

By removing the language tags and adjacent non-letters, these URLs would
be normalized to www.ex.pt/indexhtml4. This process must also handle
cases where the file in the main language does not contain the language tag.

Note that...

Given a list of more than eighteen million URLs from the Portuguese web, the
block detection algorithm was applied to extract parallel corpora from the web.
These are some examples of detected URLs blocks:

1 http://www.portugal-linha.pt/endereco/pt0001.html (pt)

2 http://www.portugal-linha.pt/endereco/de0001.html (de)

3 http://www.portugal-linha.pt/endereco/it0001.html (it)

4 http://www.portugal-linha.pt/endereco/no0001.html (no)

5 http://emcdda.kpnqwest.pt/pt/chap2/political.html (pt)

6 http://emcdda.kpnqwest.pt/en/chap2/political.html (en)

7 http://emcdda.kpnqwest.pt/de/chap2/political.html (de)

8 http://emcdda.kpnqwest.pt/pt/chap4/situation.html (pt)

9 http://emcdda.kpnqwest.pt/de/chap4/situation.html (de)

10 http://emcdda.kpnqwest.pt/en/chap4/situation.html (en)

Blocks with more than one URL consist of possible translations, where
we can find candidate file pairs. We use the language tag to identify the URL
language (this result is later confirmed with a language identifier, as shown
on section 2.2.2).

Given two languages and a list of URLs, the process creates blocks and
downloads respective files creating a list of candidate pair filenames.

3(ISO 639, 1992) defines tags to represent languages. For example, for English it defines
the following abbreviations: ’english’, ’en’ and ’eng’

4Domain portion of the URL is not processed

24 2. TerminUM Project

Using a list of filename pairs

The user can supply a list of URL pairs. These files will be downloaded and
enter directly in the validation step. This step does not need to guess from
the web. In fact, it is more a way to concatenate methods than a real method
to infer parallelism.

Using a web search engine

(Resnik, 1998) presents an algorithm to detect candidate pairs using a web
search engine like Google5 or Altavista6.

The idea is to find candidate pairs based on a query in a search engine.
The query will ask for pages with at least two hyperlinks, each one containing
one of the languages being searched.

These pages are normally used for bilingual web-sites front pages, where
the user is presented with the choice for a language. Figure 2.3 shows a page
with entry points for a Portuguese and an English version (figure 2.4 presents
the schematic view of this kind of page).

Figure 2.3: Sample page to enter a bilingual site

Figure 2.4: Schematic view of a bilingual site based on Resnik query structure

For Altavista(Overture Systems, 2004) we could write the following query:

1 (anchor:"portuguese" OR anchor:"portugues")
2 AND (anchor:"english" OR anchor:"ingles")

5http://www.google.com
6http://www.altavista.com

2.2. Parallel corpora construction 25

This method returns a big quantity of candidate pairs. We need to select
a subset of the results obtained using some heuristics (use only some coun-
tries, some domains, remove suspicious addresses and so on). This subset of
candidate pairs is then retrieved and a filename list is created. This list is
then used in the validation step.

Using a known web-site

There are some organisms we know to have documentation in different lan-
guages — like European institutions (normally with documents for each coun-
try of the Union), Canadian government pages (in English and French), and
so on.

We can supply a web-site address and all the web-site pages will be down-
loaded. The downloaded pages will be then processed as explained below for
files in a local directory.

Using a local directory

To detect candidate pairs from a local directory we first try to use the same
process used for a list of URLs (see subsection 2.2.1).

If the method fails or gives too few candidate pairs we can use two different
approaches: a combinatory strategy or a mutual link strategy.

Combinatory strategy: create a list of combinations for the files in the
directory. As this solution can give us an enormous list, files are processed
with a language identifier tool (see subsection 2.2.2) and then, we only add
to the list files on the desired languages and whose parent directories follow
(for example) one of these conditions:

• both directories belong to the same dictionary (/x/y/z and /x/y/w);

• both directories have the same depth, and share a common parent
(/z/x/y and /z/a/b);

• one of the directories is a parent of the other (/x and /x/y/z);

The pairs obtained by combining files are then validated for parallelism as
is explained in the next section. This method should be used only when
no other method wields acceptable results, given the high computational
requirements.

26 2. TerminUM Project

Mutual link strategy: another issue to be addressed is the existence of
bidirectional links. The idea is to find pages (say A) containing a link with a
language name to another file (say B) where the file B has a link to the file A
with another language name. This is very common on sites where the web-
master wants users to go directly from one page to its translation in another
language. Figure 2.6 shows a schematic view of this web-site structure, while
figure 2.5 shows a sample web-page.

This page in English

Na Comissão Europeia...

←→
Esta página em Português

In European Commission...

Figure 2.5: Example of two pages with bidirectional links

Figure 2.6: Schematic view of a bilingual site based on bi-directional links

All these methods should return a list of filename pairs referring to local
files. These files will be tested for translation probability, using heuristics
based on file statistics.

2.2.2 Validation of candidate pairs

None of the previous methods give us certainty to have parallel texts. In fact,
some of the methods produce pairs where none of the files are in the chosen
languages.

This process validates a set of aspects from the candidate pairs. Results
are measured and weighted. Candidate pairs which do not have a good result
have to be discarded (unfortunately this process may discard real transla-
tions).

Figure 2.7 shows some validation stages. The validation is always grow-
ing and new stages appearing. We can divide these stages in three major
categories: language identification, file type check and file content check.

2.2. Parallel corpora construction 27

(File2)?

↓
language identification

↓
file type validation

↓
file size comparison

↓
similarity checking

↓
(File2)?

Figure 2.7: Validation stages

Language identification

Language identification is crucial as we don’t have any assurance that the
candidate pairs we retrieved from the Internet are in the languages we are
trying to use. If the files are not in the desired languages, they must be
discarded.

The language identification module (Lingua::Identify(de Castro, 2004))
uses implementations of various known methods for language identification
like the “small word technique”, the “trigram method”(Grefenstette, 1995)
and prefix and suffix techniques. Although with different names, all these
techniques rely one the same idea: there are some words, trigrams, suffixes
and prefixes which are very common in a specific language. The module has a
database relating language names to the most used words, trigrams, suffixes
(and word endings) and prefixes (and word beginnings) on that language.
The module then calculates statistically what is the most probable language.

Note that...

The most common Portuguese words are “ de”, “ que”, “ a”, “ e” and some more.
Common word beginnings are “ par”, “ con”, “ est” while common word endings
include “ ção”, “ nte”, “ ara”.

28 2. TerminUM Project

File type validation

Candidate pairs should have the same file type. In fact, they should be in a
known file type, as we must know how to extract the text from the files.

The file type validation is performed using a Perl module available on
CPAN and named File::Munger. It uses heuristics and magic7 (File::MMagic
(Darwin, 1997)) to detect file types.

After detecting the file type, File::Munger is used to access file specific
information, like:

• file size;

• text content;

• meta-information, like title, author for LATEX files, document types for
XML, image sizes, and so on.

This step will discard pairs with no matching file types or with unknown file
types.

File contents check

This step includes not only content comparison but also comparison of some
meta-data like file size and file names.

Each of these methods requires a minimum similarity value and, if the
candidate pair yields a lower result, it is removed from the candidate list.
This leads to the removal of non-translation pairs and the cancellation of
tests for these files, reducing the processing time. All these minimum values
may be configured by setting program parameters.

Resulting values from the methods are used to compute a weighted aver-
age of all the methods to check if the final value is above a given threshold.

File size comparison Files which are translations of each other have, with
high probability, a similar size. This is the idea behind this test. We com-
pute the size of each file ignoring file mark-up(tags and/or commands). The
resulting file size will be used not only to compute file similarity but also to
discard files with small textual content.

7This is the way the author defines it. In fact, it is a set of specific bit headers which are
compared – xor’ed – with file headers to detect their file-type. This is used, for example,
by the “file” unix command

2.2. Parallel corpora construction 29

When computing sizes for two files we use the following formula to cal-
culate a size comparison measure:

sizeComp(f1, f2) =
min (size (f1) , size (f2))
max (size (f1) , size (f2))

Then, using a certain threshold, we can discard file pairs with big dispar-
ities regarding file size. The threshold values are dependent of the languages
being compared, but for European languages typical values lie between 10%
and 15%.

Similarity checking Before the explanation of the similarity checks per-
formed, we must introduce some concepts:

Definition 6 The edit distance between two strings is the number of simple
operations (insertion or remotion of characters) needed to transform the first
on the second string.

Edit distance was first introduced by Vladimir Levenshtein in 1965 and is
referred many times as the Levenshtein distance. 3

Note that...

The edit distance between the words “ they” and “ them” is two: remove “y” and
add “m”.

Definition 7 The maximum edit distance possible between two strings is
the sum of their lengths. This value is the number of operations necessary to
remove all characters from the first string, and insert all the characters from
the second one. 3

The similarity between two strings is their edit distance divided by their
maximum edit distance:

similarity(α, β) =
edit distance(α, β)

max possible dist(α, β)

The concept of edit distance can be used to compare non-textual contents
of files. For that purpose, we extract punctuation, dates, HTML tags, PDF
or RTF commands and build a string for each one of them. Then, they will
be compared using the edit distance.

30 2. TerminUM Project

Note that...

Punctuation lists extracted from two files (something like !!!.??... and
!!..??..!) can be compared for similarity, and yield a good measure of trans-
lation probability.

While simple, this method can easily discard true translation pairs, and
accept wrong pairs. Meanwhile, its use together with all the other methods
tends to be reasonable to get true translation pairs.

2.3 Sentence alignment

In the introduction of this document, a brief introduction about what is a
sentence aligner was presented: a tool to create correspondences between
sentences on two parallel texts.

There are different tools for sentence alignment and they tend to have
different functionalities. Some authors include in the alignment task the pro-
cess of segmentation of the text into sentences. Others claim that the aligners
must not divide the text, but should simply receive it already segmented.

To clarify these differences, and find relevant modules, we looked at three
different tools, and how they work:

Trados WinAlign is an interactive aligner from Trados(TRADOS, Ireland
Ltd, 2001) for Microsoft Windows. Given two texts in the same format,
the program is configured to break sentences in specific places. Then,
the tool will perform the alignment, and visually present the result.
The user can interactively edit the alignment;

easy-align is part of the IMS Workbench(IMS Corpus Workbench, 1994-
2002). This tool works over CQP(König, March 8, 1999 (CQP V2.2))
managed corpora. During the process of CQP corpora creation, the text
is tokenized (divided in tokens) and then, easy-align uses this format
to segment and align.

vanilla aligner is an implementation of (Gale and Church, 1991) algorithm
implemented by (Danielsson and Ridings, 1997). It uses a pair of tok-
enized and segmented files, returning a pair of aligned text files.

These three tools are slightly different:

2.3. Sentence alignment 31

• only WinAlign includes a segmentation tool;

• the sentence alignment task is performed by all of the tools;

• all sentence aligners need a segmented text;

• only WinAlign has an interactive editor.

So, it is possible to define three independent modules, as can be seen on
figure 2.8: segmentation, alignment and edition.

Figure 2.8: Modules for a sentence aligner

In this section, we will focus on the implementation of segmentation and
alignment tools. The edition module will not be addressed because it is an
interactive task. This makes it impossible to treat large amounts of text or
to glue applications together.

We will start with the formalization of these two modules. As was previ-
ously explained, sentences are obviously necessary in order to align corpora
at the sentence level. This task is performed by segmentation tools: starting
from a text, these tools must be able to extract a list of sentences. We can
define a segmentation function (denoted the “sentences” function) as:

sentences : text −→ sentence?

Applying this function to two parallel texts, we get a pair of sentence
lists. Notice that the number of sentences on each list is not necessarily the
same:

sentences(textα)× sentences(textβ) = sentencen
α × sentencem

β

The alignment process should take this output and return aligned sen-
tences, one from each language. This would be the ideal definition but not
the real one:

sentalign : sentencen
α × sentencem

β −→ (sentenceα × sentenceβ)?

32 2. TerminUM Project

This is not the real definition because it is common to have sentences
that we translate to two or more sentences in the target language. In some
other cases, the translator removes (or inserts new) sentences. So, the real
definition for the sentence alignment process should be:

sentalign : sentencen
α × sentencem

β −→ (sentencep
α × sentenceq

β)?

Next subsections will present:

• a module for Portuguese text segmentation, and a proposal of a method
for the evaluation of segmentation tools;

• two sentence aligners tested in the TerminUM project.

2.3.1 Segmentation Tool

Our tests with sentence and word alignments were performed using languages
based on Latin characters: Portuguese, English, French, Spanish and Gali-
cian.

Although different, we used the same segmentation tool for all these lan-
guages: Lingua::PT::Segmentador(Almeida et al., 2004). This is a Perl
module for Portuguese text segmentation. Its goal is to simplify code reusabil-
ity between Portuguese natural language research centers.

The segmentation tool needs to know where a sentence starts and where
it ends. Ends of sentences are normally detected by the use of a punctuation
mark, but this heuristic raises a lot of problems because we use punctuation
marks for many other things: abbreviations, decimal digits, e-mails, URLs
and others.

Some abbreviations are easy to find using regular expressions like e-mails,
Internet addresses or decimal digits. For these, we use a list of regular ex-
pressions to match them in the text. For each successful match, we replace
that text with a specific token (saving the relationship between the token and
the text in an auxiliary matrix). These tokens are replaced back after full
segmentation. To handle abbreviations we can use a list. This is the simpler
way to track them, but fails whenever a new abbreviation is found.

An example of a difficult text to segment follows:

1 O Dr. Silva é arq. e está a trabalhar num proj. enorme.
2 A área do edifı́cio a ser construı́do irá exceder os 200 m.
3 quadrados. Junto, e até à av. Continental, irá ser
4 construı́do um estádio para o F.C.B.

2.3. Sentence alignment 33

5 Esta obra monumental está orçada em 9.4 milh~oes de euros.
6 A data de conclus~ao está prevista para daqui a 5 meses.

Segmentation Tools evaluation

Although segmentation is not a focus of this document, some ideas about
their evaluation were proposed by the Linguateca Project to the Portuguese
community for Natural Language Processing during Avalon’03. This section
tries to explain briefly how segmentation tools can be evaluated and how the
proposed evaluation method can contribute to better segmentation tools.

The best way to examine a program without looking at its algorithm
and/or implementation, is seeding it with some input, and look to its output:
like a black box. To use this process in the segmentation tools evaluation we
must feed them with texts, and look at the sequence of returned sentences.
If we want to be able to evaluate them automatically (using a program for
that purpose) we need a model that will be used to evaluate the answers. So,
we need a set of texts and the corresponding sequence of sentences returned
by the segmentation tool.

Figure 2.9: Model and two examples of segments for a text

Figure 2.9 shows a model and the output of two segmentation tools: A
and B. Looking to this example, we will define three different methods of
evaluation:

• the rigid comparison mode adds a point for each cut in the right place,
and subtracts a point for each cut failed and for each cut in the wrong
place. Using this method we have

A = 6− 2 = 4
B = 8− 1 = 7

and B would be better than A.

34 2. TerminUM Project

• the lazy comparison considers that the model is too difficult: some of
the cuts are very difficult to find. So, if some of the segments to be
evaluated contain two or more segments from the model, ignore the
error. Meanwhile, cuts in the wrong place continue to be bad. Using
this method, we have:

A = 6− 0 = 6
B = 8− 1 = 7

With this type of comparison, one could choose B because it finds more
correct cuts. Meanwhile, A can be a good option given that it does not
guess wrong cuts.

• finally, we can assign a different weight to each cut. If it is found,
add its weight, if not found, subtract its weight, and subtract a given
amount for each wrong cut. Although this method can be useful to give
importance to some cuts, wrong cuts will have too low cost.

2.3.2 Sentence Aligners

The methods used to align parallel texts at the sentence level can be classi-
fied(Véronis, 2000) as statistical or linguistic methods. Other authors(Abaitua,
2000) suggest an hybrid method:

statistical method uses quantitative measures and their similarities be-
tween corpora (like sentence size, sentence character number, word oc-
currences and co-occurrences) to create an alignment relationship;

linguistic method uses linguistic knowledge like morphological analyzers,
bilingual dictionaries, word list pairs, and so on, to relate sentences;

hybrid method combines the statistical and linguistic methods, using gram-
matical categories identification to achieve accurate statistical informa-
tion.

For more detail on alignment methods and their implementation check (Caseli,
2003), where seven alignment methods are described and compared.

As we needed sentence aligned texts to serve as input for we used easy-
align to prepare them. Later, the vanilla aligner was studied because easy-
align is not open-source nor freely available8. The following two subsections
present some details about these tools.

8We wanted to have a sentence aligner application in the NATools bundle.

2.3. Sentence alignment 35

Easy-align

Easy-align is an hybrid sentence aligner which is part of (IMS Corpus Work-
bench, 1994-2002). This set of applications was first developed for mono-
lingual corpus management, namely with Corpus Query Workbench (König,
March 8, 1999 (CQP V2.2)).

The alignment process appeared later using the same corpus engine. The
idea behind CWB for parallel corpora is based on the inclusion of each lan-
guage independently in the corpora database: then, easy-align uses these
corpora to perform the alignment. Optionally, easy-align can use a bilingual
lexicon (pairs of words) to achieve better results in the alignment process.

Easy-align is a robust aligner and produces very good alignments. Al-
though not freely available nor open-source, it is available for the research
community. We must also thank Stephen Evert (main developer of easy-
align) for all the help using and configuring easy-align.

Vanilla Aligner

Vanilla aligner is a public domain sentence aligner implementing (Gale and
Church, 1991) algorithm. Our implementation is based on (Danielsson and
Ridings, 1997).

The aligner looks to each language text as a sequence of paragraphs, where
each one is a sequence of sentences. The alignment will be done synchronizing
paragraphs and aligning sentences looking to their relative size.

On each text file, the aligner expects a word or mark per line. Marks
represent sentence and paragraph ends (for example .EOP: End Of Paragraph
— .EOS: End Of Sentence). These marks are customizable on the command
line.

1 align -D ’.EOP’ -d ’.EOS’ file.en file.de

The “end of paragraph” mark is a rigid delimiter and is used for synchro-
nization. The “end of sentence” mark is a soft delimiter and can be ignored
by the aligner.

The idea behind this aligner algorithm is that a sentence and its transla-
tion will have approximately the same size (character count). This proves to
be true in a high number of cases. When this is not true, and a big difference
is found (sα � sβ), it is common to have a small sentence after sβ (say s′β)
whose size is the difference between sα and sβ: sα = sβ + s′β. This kind of

36 2. TerminUM Project

algorithm is applied to the whole text, calculating holes: sentences that do
not align correctly with any other sentence.

The current algorithm aligns 1 to 1 sentence (the optimal case), 0 to 1
(when the translator adds a sentence), 1 to 0 (when the translator removes a
sentence), 2 to 1 (when the translator creates a sentence joining the semantics
of two original sentences), 1 to 2 (when the translator splits a sentence into
two) and 2 to 2 (when the source language has a small sentence followed by
a bigger one, and in the target language, there is a big sentence followed by
a smaller one).

In (Danielsson and Ridings, 1997) this alignment process if fully pre-
sented, explaining for example that 3 to 1 or 1 to 3 alignment could only
be possible if we delete the 0 to 1 and 1 to 0 possibilities. This happens as
the algorithm would be unable to distinguish between a (1− 2, 0− 1) and a
(1− 3) sequence.

As the aligner method relies on the supposition that lengths of the original
and translation sentences are very similar, it cannot be used in disparate
languages like Hebrew and English where this does not occur. In these cases
some other methods should be used as discussed on (Yaacov Choueka and
Dagan, 2000).

Although with worse results than easy-align, this tool is very important
given that is is open source, which means it can be used in a didactic context
(to teach natural language processing and in particular sentence alignment)
and serve as base for research for enhanced aligners.

A lot more can be said about segmentation, sentence alignment, and
their evaluation. Evaluation methods for these two categories of tools will be
proposed very soon by Linguateca.

For segmentation and alignment tools of the TerminUM project we think
that it is important to:

• handle big quantities of texts: corpora are typically quite big, growing
easily to thousands of Megabytes;

• glue with other tools: it is impossible to handle big quantities of corpora
using interactive processes. Output of these tools must be computer
readable (parsable);

• open-source: TerminUM is related to the teaching of Natural Language
Processing and Terminology and Translation Tools and, as such, it is

2.3. Sentence alignment 37

important to be able to learn from these tools as to enhance them and
test new techniques.

38 2. TerminUM Project

Chapter 3

From Twente-Aligner to
NATools

Learning French is trivial: the word for horse is cheval, and
everything else follows in the same way.

Alan J. Perlis

This chapter introduces the Twente-Aligner algorithm and enumerates
its problems (why we changed it) and how we improved it (software re-
engineering) in order to obtain the initial version of the NATools word aligner.
A discussion on the importance of a probabilistic dictionary data type is for-
malized, and defined how two objects of this type can be summed up to-
gether. It concludes with a comparative study of both tools (Twente-Aligner
and NATools) in terms of time and an analysis of the disk space needed for
the alignment.

3.1 Twente-Aligner

Twente-Aligner is a word aligner developed by Djoerd Hiemstra (Hiemstra,
1998; Hiemstra, August 1996), for the project Twenty-One. This project’s
main goal is to put environmental organizations, research organizations and
companies working together in the creation, distribution and use of com-
mon interest documents about ecology and sustainable development. These
documents are written in different languages which makes information re-
trieval difficult. Twente-Aligner was developed to extract terminology from

39

40 3. From Twente-Aligner to NATools

the “Agenda 21”1 parallel corpus to help in Cross Language Information Re-
trieval.

Twente-Aligner is open-source and licensed as GPL, making it a good
starting point because it is possible to study the code, experiment and re-
engineer it. Re-engineering was very important given a set of problems found
on the Twente-Aligner original version:

• Interface Problems:
the output from the alignment was given in a table whose format is
extremely readable by humans but which is very difficult to use (e.g.
to parse) by subsequent programs. Following is an example of the
output generated by Twente-Aligner.

1 a ability about
2 ------------------ ------------------ ------------------
3 un 0.43 capacité 0.53 environ 0.43
4 une 0.24 dépend 0.35 sur 0.15
5 à 0.04 Or 0.03 mers 0.08
6 Le 0.04 disponibles 0.03 Elaboration 0.07
7 de 0.04 incertitude 0.03 concernant 0.06
8 la 0.03 empêche 0.02 offertes 0.02
9 les 0.03 polluants 0.02

10 en 0.02 lieu 0.02

11 ACCELERATE Accelerating acceptable
12 ------------------ ------------------ ------------------
13 accélérer 0.60 accélération 0.80 acceptables 0.47
14 ACCELERER 0.20 étendre 0.20 acceptable 0.25
15 redoubler 0.12 Elaborer 0.16
16 atténuer 0.08 mondiale 0.04
17 Observer 0.03
18 conceptuel 0.02
19 définitions 0.02

Another problem of interface was the use of Twente-Aligner. It consists
of a set of five different tools developed to be used in pipeline. Each of
them takes as input the output of the other, until the last one, which
produces the alignment result. Although it is nice to have different
applications, dividing the big problem in small problems, to have to
remember how to run each one independently is not practical.

1The United Nations conference on ecology and sustainable development in Rio de
Janeiro in 1992

3.2. NATools Architecture 41

• Robustness Problems:
the original Twente-Aligner worked for small corpora. When it was used
on large corpora it broke down with illegal memory accesses. When the
code was analyzed, we discovered not only many places where the code
accesses out-of-bounds positions of arrays, but also many memory leaks.

• Scalability Problems:
after the memory leak problems were solved, Twente-Aligner was robust
enough to align medium size corpora. The alignment took a lot of
time, but worked. Meanwhile, when experimented with large corpora,
it could not align anything at all, given the physical limits of available
memory.

The next section explains the NATools architecture with a special emphasis
on the places where re-engineering was done to solve these problems.

3.2 NATools Architecture

Twente-Aligner was re-engineered in order to develop the NATools word-
aligner, making it more robust, scalable and fast. This section explains the
different steps involved in the NATools word aligner algorithm, including
notes about how that particular portion of the code was re-engineered.

The aligner is based on statistical methods, counting co-occurrences of
words from each language. To do the alignment we need the steps shown on
figure 3.1, and quickly introduced here:

pre-process this first step cleans and prepares each corpus file. The process
is language dependent. It includes the tokenization process and other
forms of pre-processing whose goal is to enhance the alignment results
as we will see on section 3.2.1;

encode encodes the corpora files into a binary format, where each word of
the corpus is represented by an integer. It also creates a lexicon table
with a bijection between identifiers and words.

mkMatrix prepares a sparse matrix with words’ co-occurrences, used in the
statistical alignment process;

EM-algorithm this algorithm’s goal is to transform the sparse matrix: it
enhances word translation cells and removes noise.

42 3. From Twente-Aligner to NATools

corpusα

��

corpusβ

��
pre-proc1

��

pre-proc2

��
fileα

��

fileβ

��
encode1

��

encode2

��
lexα × crpα

��

// •

��

crpβ × lexβoo

��

mkMatrix

��
matrix

��
EM-Algorithm

��
matrix

��
• // mkDictionary

��

•oo

dic(α→ β) •oo // dic(β → α)

Figure 3.1: Word aligner structure

3.2. NATools Architecture 43

mkDictionary the final step on the alignment process is to interpret the
resulting matrix, using the original lexicon tables and the matrix en-
hanced by the EM-algorithm, and to create a pair of dictionaries.

These tools work in pipeline, each one creating files the others will use. While
some of the created files are only temporary, and used to communicate from
one tool to the next, other files are crucial for subsequent use of the aligned
lexicon. A top level script is provided so that the user does not need to know
how to use each component of the aligner.

3.2.1 Pre-Processing

This is the only step in the alignment process that did not exist in the original
Twente-Aligner. It is, in most cases, a simple tokenization process. In some
cases, we can add a specific method to transform the corpora, and obtain
more interesting alignment results.

Tokenization

The corpus’ tokenization takes as input a text file, and returns a sequence of
tokens (words surrounded by spaces, which will be considered by the word
alignment process):

tokenize : text −→ token?

The input text for the word aligner must be sentence aligned. Thus, instead
of a text, the tokenizer will receive a sequence of sentences or segments. It
should maintain this division, and return a sequence of sequences of tokens:

tokenize : sentencen −→ (token?)n

Tokenization should take care of different situations:

• abbreviations
each language has specific abbreviations, which must be detected, or
we can mistake abbreviation dots for sentence boundaries. If possi-
ble, these abbreviations should be expanded so that abbreviations and
expanded versions can be considered the same word;

• numbers
numbers are likely to contain dots, or special symbols that can be con-
sidered sentence or word boundaries. They must be detected and pro-
tected;

44 3. From Twente-Aligner to NATools

• Internet tokens
URIs and e-mails should not be considered as standard text, or they
will be tokenized too. As these strings are not likely to be translated,
we can remove them from the corpus for alignment purposes, or protect
them;

• language specific issues
some languages have some specific issues which should be treated at
this point, like the genitive in English, where it should be considered
independently of the name it is associated with.

Corpora specific treatment

The normal word alignment process looks at words2 as a simple sequence of
characters. With the use of a pre-processing tool with knowledge about the
language being processed, we can obtain more interesting results in the word
alignment:

• One common problem when aligning English with Portuguese, is the
big number of forms Portuguese verbs can take. This makes the co-
occurrence of each form with the respective English form very low. A
solution to this problem passes by the use of a pre-processing tool to
stem Portuguese verbs. Section 4.5 explains with bigger detail how this
was performed, and the results obtained;

• A different pre-processor can glue words in pairs, joining them by an
underscore, for example. As the aligner looks to the tokens as sequences
of characters, it will align pairs with pairs. This is a simple method
to find multi-word unit translations. Check section 4.2 for a detailed
explanation of this process.

• Another example, not discussed in this document, is to glue words with
their respective Part-Of-Speech. This will allow homograph words to
be distinguished.

3.2.2 Corpora encoding

After applying the correct language pre-processor to each text, we obtain the
following data type:

(token?
α)n × (token?

β)n

2We will use “words” instead of “tokens” because it simplifies the text, and our main
interest is in the alignment of “word tokens” and not the other tokens found on corpora.

3.2. NATools Architecture 45

which is a pair of sequences, of sequences of tokens.
Afterwards, the encoding process will first verify that the number of sen-

tences (the size of each sequence of sequences of tokens) is the same (because
the texts must be sentence aligned).

If the sizes match, each element of the pair will be treated independently.
For each corpus, we will encode each different word with an identifier (a
positive integer) and create two auxiliary files: a lexicon and a corpus file:

encode : (token?
α)n × (token?

β)n −→ (Lexα × Crpα)× (Lexβ × Crpβ)

In following steps each word will be coded as a number. However, the
same identifier might refer to different words in different corpora. This oper-
ation is performed to achieve an efficiency gain, given that to compare words
is more time-consuming than to compare integers. Besides the gain in effi-
ciency, this will also provide a memory gain as integers are usually smaller
than words.

Lexicon files

The lexicon file maps each different word to an unique identifier, and includes
information about its number of occurrences:

Lexα = wα ⇀ (id× occurrenceCount)

Corpora files

The corpus file is a sequence of identifiers (integers) delimited by the zero
integer:

Crpα = (id? × 1)n ≡ (id?)n id ∈ π?
1(ran(Lexα))

This structure was enriched with a set of flags for each identifier. At
the moment, these flags are being used to know how the original word was
capitalized. Future versions could include more information, like the morpho-
logical class of each word. This would restrict the alignment to be performed
only between words in the same morphological class.

Reverse Engineering

The file encoding with the original Twente-Aligner takes about 180 sec-
onds to process a parallel Portuguese – English Bible (about 805K words).

As the first step for our analysis, we started by formalizing the data
structures used in the original code. The full text is loaded to a text-buffer

46 3. From Twente-Aligner to NATools

and the sentences processed one at a time. For each word found, we search
it on a list of words to check if it is a known word. For new words, a new
identifier is created, while for existing words, their respective identifier is
used.

The data structure for this original list can be formalized as

List = (word× id× occurrenceCount)?

without any type of condition (which means, for example, it is not sorted).
Every time a new word appears in the corpus, the full list should be searched.
If not found, the word is added to the end of the list. For each word in the
corpus we do a medium of n

2 comparisons, where n is the size of the list. For
the full corpus with k words, we got about

∑k
n=1

n
2 comparisons.

The proposed data structure is a binary search tree wich can be defined
as

BT (X) = (X ×BT (X)2) + 1

where
X = word× id× occurrenceCount

As we know from the computer science literature for each word we get log2(n)
searches, where n is the number of words in the list. This means that for the
full corpus we got

∑k
n=1 log2(n) comparisons.

Here it should be noticed that the binary tree is not being balanced be-
cause a normal corpus should have so different and random words that the
tree will be very stable (unless you are aligning a sorted list of words).

Some other technical improvements were performed in this step:

• instead of duplicating each word when it is inserted into the binary
tree, reuse the memory space from the original text;

• an auxiliary array with size equal to the number of different words was
created to make it possible to directly access the tree node given to the
word identifier;

• the corpus file is written in zipped format (using zlib library) reducing
the disk space used;

The re-engineered version of this step takes about 4 seconds to process the
same 805K word parallel corpora. More measures may be found in section 3.4.

3.2. NATools Architecture 47

3.2.3 Matrix initialization

This step creates a sparse matrix for the word alignment process, using the
two enconded corpora files created in the previous step:

mkMatrix : Crpα × Crpβ −→Matα,β

In this matrix, the row indexes represent each word identifier on the
source corpus, and column indexes represent each word identifier on the target
corpus. Each cell includes the number of times that two words (the one
identified by the row index and the one identified by the column index) occur
in the same aligned sentence:

Matα,β = (i, j) ⇀ count ≡ (wα, wβ) ⇀ count

where:

• 1 ≤ i ≤ m with m the number of words on Crpα (wα ∈ Crpα);

• 1 ≤ j ≤ n with n the number of words on Crpβ (wβ ∈ Crpβ);

• count the number of times words represented by i and j (wα, wβ)
appear on sentences sα,k and sβ,k which are aligned.

To understand the basic idea of the alignment process let us consider
three sentences, presented in figure 3.2. When initializing the matrix, the
algorithm does not know the translation of each word. So, it creates all
possible relationships between them. This alignment is represented by a co-
occurrence matrix, shown on table 3.1.

a

�� B
BB

BB
BB

B casa

��~~||
||

||
||

. . . a

�� B
BB

BB
BB

B

((PPPPPPPPPPPPPP casa

~~||
||

||
||

�� B
BB

BB
BB

B azul

��~~||
||

||
||

vvnnnnnnnnnnnnn
. . . a

�� B
BB

BB
BB

B flor

��~~||
||

||
||

the house . . . the blue house . . . the flower

Figure 3.2: Initial co-occurrence matrix diagram

This relation is then enhanced using the EM-Algorithm that will be dis-
cussed in the next section.

Reverse Engineering

48 3. From Twente-Aligner to NATools

the house blue flower
a 3 2 1 1

casa 2 2 1 0
azul 1 1 1 0
flor 1 0 0 1

Table 3.1: Initial co-occurrence matrix

This step was taking too much time with the original Twente-aligner data
structures. For the same Bible we mentioned in the previous section (about
805K words) this step takes 390 seconds.

Again, the data structure was analyzed and formalized. The matrix was
implemented as a big chunk of memory divided in the number of rows of the
matrix. Each cell contained the column number and the co-occurrence value.

Mat = ((col × occ)n)m

where m is the number of rows in the matrix and n is the number of cells for
each row.

Although each row was accessed directly by a simple calculation (size of
each row times the index of the row) it was very slow. One reason was that
each time a row had more elements than the number of cells available, the
full matrix was reallocated and elements copied for each row (this was not a
problem for small sized corpora).

To get a clear picture of how sparse the matrix is, we performed a small
modification to the code for the matrix allocation function to print to a text
file each cell it uses. From this map of Cartesian points we drawn figures 3.3
and 3.4. These figures are the first 1000 × 1000 and the full matrix for the
bible alignment.

The different levels of sparse space for each row/column depends on how
frequent words are. Most frequent words will have co-relation with most of
the other words, leading to filled rows and/or columns.

The analysis of these matrices shows that it is not correct to give the
same size to each row, as they have very different number of elements.

The new data structure is based on the original but with separate chunks
for each row, which are allocated with a small amount of memory and grow
according to the needs:

Mat = row ⇀ (col × occ)?

This simple operation made the amount of memory needed diminish, and

3.2. NATools Architecture 49

Figure 3.3: First 1000 × 1000 elements of the sparse matrix for the Bible
alignment

Figure 3.4: Sparse matrix structure for the Bible alignment

50 3. From Twente-Aligner to NATools

the process a little faster. At this point we used a profiler (gprof) to analyze
what were the most frequently used functions3

1 Each sample counts as 0.01 seconds.
2 % cumulative self self total
3 time seconds seconds calls ms/call ms/call name
4 66.78 7.82 7.82 19936334 0.00 0.00 SearchItem
5 13.83 9.44 1.62 17628303 0.00 0.00 IncValue
6 11.96 10.84 1.40 1 1400.00 11664.00 InitEstimate
7 2.13 11.09 0.25 2308931 0.00 0.00 Put
8 1.79 11.30 0.21 2308031 0.00 0.00 PutValue
9 1.28 11.45 0.15 15319372 0.00 0.00 Inc

10 1.02 11.57 0.12 15321714 0.00 0.00 Get
11 (...)

As the next step (the EM-Algorithm) uses the same data-structure, we
applied the same profiling tool to check if there were any relations:

1 Each sample counts as 0.01 seconds.
2 % cumulative self self total
3 time seconds seconds calls ms/call ms/call name
4 81.33 62.39 62.39 27174 2.30 2.30 GetPartMatx
5 8.15 68.64 6.25 27174 0.23 0.23 IPFP
6 5.29 72.70 4.06 11437914 0.00 0.00 SearchItem
7 1.33 73.72 1.02 11244130 0.00 0.00 IncValue
8 0.93 74.43 0.71 11244130 0.00 0.00 OddsRatio
9 0.59 74.88 0.45 2 225.00 256.09 MatrixTotal

10 0.53 75.29 0.41 33890507 0.00 0.00 Get
11 (...)

These extracts show that functions Get, Inc, IncValue, SearchItem and
OddsRatio are called very frequently. An analysis of the code and the number
of calls for each of these functions, we noticed that SearchItem is called from
the other functions and concluded it was the critical one.

The purpose of this function was to search for a given column on each
row. Although the values are sorted, the search was linear. This time, we
implemented a binary search over the buffer.

These two changes made this step take 5% of the original time (21 sec-
onds instead of the original 390 seconds) and EM-Algorithm takes about 270
seconds instead of the original 2128 seconds (12% of the original time).

3In these two extracts times are from the algorithm after re-engineering of the data
structure given that we did not save the original measures (oops!) but the most important
part of these extracts is the number of calls for each function.

3.2. NATools Architecture 51

3.2.4 EM-Algorithm

The EM-Algorithm’s (Entropy Maximization Algorithm) purpose is to iterate
over the matrix created on the previous step, removing noise and enhancing
the points of correct translations(Hiemstra, August 1996).

The signature for this step is simply:

EMAlgorithm : Mα,β −→Mα,β

Let us look again at our example from figure 3.2. The EM-Algorithm will
realize that there are a lot of correspondences between “a” and “the”. This
conclusion will result in the enhancement of the relationship between both
words, as shown on figure 3.5.

a

��
�O
�O
�O

 B
BB

BB
BB

B casa

��~~||
||

||
||

. . . a

��
�O
�O
�O

 B
BB

BB
BB

B

((PPPPPPPPPPPPPP casa

~~||
||

||
||

�� B
BB

BB
BB

B azul

��~~||
||

||
||

vvnnnnnnnnnnnnn
. . . a

��
�O
�O
�O

 B
BB

BB
BB

B flor

��~~||
||

||
||

the house . . . the blue house . . . the flower

Figure 3.5: Co-occurrence matrix first iteration diagram

The same can be inferred from the relation between “casa” and “house”.
As this process continues it becomes apparent that other connections like
“flor” and “flower” are correct (Pigeon hole principle). This would lead to a
new version like the one shown on figure 3.6.

a

��
�O
�O
�O

 B
BB

BB
BB

B casa

��
�O
�O
�O

~~||
||

||
||

. . . a

��
�O
�O
�O

 B
BB

BB
BB

B

((PPPPPPPPPPPPPP casa

~~||
||

||
||

�� `
 `
 `
 `
 `

azul

��~~||
||

||
||

vvnnnnnnnnnnnnn
. . . a

��
�O
�O
�O

 B
BB

BB
BB

B flor

�� �O
�O
�O

~~||
||

||
||

the house . . . the blue house . . . the flower

Figure 3.6: Co-occurrence matrix second iteration diagram

Finally, remaining words are connected. The resulting alignment is shown
on figure 3.7. This algorithm has the advantage of convergence.

From the alignment we can estimate the translation probabilities like:

P (T (a) = the) = 0.453

P (T (casa) = house) = 0.876

52 3. From Twente-Aligner to NATools

a

��
�O
�O
�O

casa

��
�O
�O
�O

. . . a

��
�O
�O
�O

casa

 `
 `
 `
 `
 `

azul

~~ ~>
~>
~>
~>

. . . a

��
�O
�O
�O

flor

�� �O
�O
�O

the house . . . the blue house . . . the flower

Figure 3.7: Co-occurrence matrix final iteration diagram

P (T (azul) = blue) = 0.563

Note that...

This probabilistic information included into the dictionary is very useful. As
discussed on (Melamed, 2000), in a cross-language information retrieval (CLIR)
tool, a word-to-word translation dictionary would give the same importance for
each translation. With probabilistic information we can gather the documents
which seems more related with the original word.

From the matrices’ figures shown in the previous section, we conclude
that the main diagonal is normally the point of translation which means that
both languages use very similar word sequences. The same would not be true
for English and Hebrew, for example, but this method would also work for
these languages, as sentences are treated as simple word bags instead of word
sequences.

For a formal and detailed description of EM-Algorithm see Djoerd Hiem-
stra’s master thesis (Hiemstra, August 1996).

3.2.5 Dictionary creation

After the iteration of the EM-Algorithm, the matrix should be traversed
and interpreted to extract a pair of dictionaries. We need to extract two
dictionaries because we do not have a symmetric matrix.

mkDictionary : Lexα × Lexβ ×Mα,β −→ D(Lα,Lβ)×D(Lβ,Lα)

where
D(Lα,Lβ) = wα ⇀ (occur × wβ ⇀ P (T (wα) = wβ))

3.3. Addition of Dictionaries 53

The dictionary maps each word from the source language (wα) to the
number of times the word occurs in the source corpus, and a table of possible
translations. Each one of these translations has an estimated probability of
being the correct translation.

The quality of the probability dictionary obtained depends heavily on the
translation quality of the used corpora.

3.3 Addition of Dictionaries

NATools dictionaries will be considered a data type. We will define an oper-
ation over dictionaries that we call Addition of Dictionaries.

This operation is an important process when aligning huge corpora. It
can also be useful when aligning different corpora with the objective of joining
them in a single dictionary.

3.3.1 Motivation

Although the changes presented in the previous section makes NATools able
to align big corpora, it is still impossible to align huge corpora given that
time and specially memory needs become unacceptable.

The natural approach is to split the corpus into several chunks and align
them independently. The problem is that we obtain several different dictio-
naries instead of only one for the full corpus.

To solve this problem, an algorithm to sum dictionaries was developed
(and will be discussed shortly). This way, we can join the created dictionaries
and use all the chunks together as a single parallel corpus.

With this method, we changed the alignment process to check corpus size
before alignment. If it is too big for single alignment, it is spliced, aligned by
chunks, and summed up.

As the lexicon file is the same for all chunks (where words are being
added), when aligning the last chunk this file will contain all words of the
corpus. This means that the matrix used for this last alignment will have the
same dimensions as the matrix one would use to align the entire corpus at
the same time. Meanwhile, not all of these words appear in the chunk, and
as such, the matrix will be very sparse.

As stated on the law known as “Zipf law”, if you take a big corpus and
add some more text, new words will appear (Zipf, 1932). This means that
each time a new chunk is processed new words appear.

54 3. From Twente-Aligner to NATools

Addition of dictionaries is also useful to concentrate results on a single
dictionary. This means that we can align different corpora and at the end add
their dictionaries together, building a bigger and, hopefully, better dictionary.

3.3.2 Addition formalization

Let us consider two dictionaries (D1(Lα,Lβ) and D2(Lα,Lβ)). To simplify
the notation let us abbreviate them to D1 and D2, and define some auxiliary
functions:

• %(wα, wβ ,D) = π2(D(wα))(wβ)
the probability of wβ being a correct translation of wα based on dictio-
nary D;

• #(wα,D) = π1(D(wα))
the number of occurrences of word wα on the source corpus, based on
dictionary D;

• size(D) =
∑

wα∈dom(D) π1(D(wα))
the total number of words on the source corpus of dictionary D;

We want to define a formula to calculate D1+2 = D1 +D2. For each word
on the source language we need to:

• calculate the number of occurrences on both source corpora:

#(wα,D1+2) = #(wα,D1) + #(wα,D2)

• sum the probabilities of translation by each word of the target corpora.
This cannot be a simple addition of values because we must preserve
a probability value: it must range between 0 and 1 (or 0 and 100).
The simple way to solve this problem could be a simple mean:

%(wα, wβ,D1+2) =
%(wα, wβ,D1) + %(wα, wβ,D2)

2

This formula has a big problem: both probabilities of the original dic-
tionaries will weight the same on the final result. This is not fair be-
cause one of the dictionaries can contain a result based on many more
occurrences than the other. To solve this problem, we can define the
following formula which will weight probabilities according to their
respective word occurrence count:

3.3. Addition of Dictionaries 55

%(wα, wβ,D1)×#(wα,D1) + %(wα, wβ,D2)×#(wα,D2)
#(wα,D1) + #(wα,D2)

Again, in case we have a little corpus with specific content and a big
generic one, a word can occur much more on the big corpus but be a
word more relevant on the small one. The relevance of a word in
a corpus increases with the probability of getting that word
when choosing a random word from the corpus. We can define
yet another formula to take this in consideration:

%(wα, wβ ,D1)× #(wα,D1)
size(D1) + %(wα, wβ,D2)× #(wα,D2)

size(D2)

#(wα,D1)
size(D1) + #(wα,D2)

size(D2)

which can be simplified to

%(wα, wβ,D1)#(wα,D1)size(D2) + %(wα, wβ,D2)#(wα,D2)size(D1)
#(wα,D1)size(D2) + #(wα,D2)size(D1)

This is the formula used in case a word is proposed as translation on
both dictionaries.

If a word wα is translated as wβ only in one dictionary (say D1), then
the formula shown above will be simplified to

%(wα, wβ ,D1)×#(wα,D1)× size(D2) + 0×#(wα,D2)× size(D1)
#(wα,D1)× size(D2) + #(wα,D2)× size(D1)

which is equivalent to

%(wα, wβ,D1)×#(wα,D1)× size(D2)
#(wα,D1)× size(D2) + #(wα,D2)× size(D1)

Another case is when a word wα exists on the source corpus of one
dictionary (for example D1) but not on the other (D2). This means
that the null probability is the zero element.

In this case, we get:

%(wα, wβ,D1)×#(wα,D1)× size(D2) + %(wα, wβ,D2)× 0× size(D1)
#(wα,D1)× size(D2) + 0× size(D1)

56 3. From Twente-Aligner to NATools

which is simplified to

%(wα, wβ,D1)×#(wα,D1)× size(D2)
#(wα,D1)× size(D2)

= %(wα, wβ ,D1)

This formula should also be such that the dictionary added with
himself is itself : %(wα, wβ ,D1+2) = %(wα, wβ,D1) when D1 = D2.
So, in this case we get

%(wα, wβ ,D1+1) =
%(wα, wβ ,D1)× #(wα,D1)

size(D1) + %(wα, wβ,D1)× #(wα,D1)
size(D1)

#(wα,D1)
size(D1) + #(wα,D1)

size(D1)

which can be simplified to

%(wα, wβ,D1)×
(

#(wα,D1)
size(D1) + #(wα,D1)

size(D1)

)
#(wα,D1)
size(D1) + #(wα,D1)

size(D1)

= %(wα, wβ,D1)

This database addition was implemented on the NAT::Dict Perl module
using this last formula proposed, and latter ported to C for higher execution
velocity.

3.4 Timings and measures

In this section, we will present measures about times and sizes of files in the
word alignment process. In order to analyze the tools in different situations,
we will use corpora with different characteristics: different sizes, different
noise levels and in different languages.

• Tom Sawyer (TS)
A parallel Portuguese/English classic from Mark Twain.

• Harry Potter, and the Sorcerer’s Stone (HP)
The first book from the Harry Potter series, parallel Portuguese/English;

• Anacom (IPC)
An automatically generated parallel Portuguese/English corpus, taken
from the web-site of the Portuguese communications authority: http:
//www.ipc.pt. The corpus was not manually reviewed and as such,
contains a lot of noise;

3.4. Timings and measures 57

• Bible (Bib)
The already presented Portuguese/English Bible, where one of them is
not the translation of the other, but they are both translations from a
third language4

• 1/2UtkaEuroParl (HUEP)
This is half of a 6 million word English/French parallel corpus created
by Andrius Utka from the Center of Linguistic Corpus of Birmingham
University constituted by European Parliament documents.

• UtkaEuroParl (UEP)
The full version of the 6 million word English/French parallel corpus
created by Andrius Utka.

• EuroParl (EP)
A multilingual corpus for evaluation of machine translation(Koehn,
2002) available in pairs from English to other ten languages. The used
pair was Portuguese/English which contains roughly 20 million words
in 740,000 sentences per language

3.4.1 From Twente-Aligner to NATools

Although time comparisons between the original Twente-aligner and NATools
were presented through section 3.2, table 3.2 presents them again for easier
comparison. These statistics, from the already presented parallel Bible of
805 thousand words, were measured on an Intel Pentium IV, running at 1.7
GHz, 256 MB of RAM memory and running Linux.

Twente NATools
Corpus analysis 180 sec 4 sec

Matrix initial. 390 sec 21 sec
EM-Algorithm 2128 sec 270 sec

Table 3.2: Efficiency comparison between Twente-aligner and NATools im-
plementations using a parallel Bible

4Some authors consider this kind of corpora comparable and not parallel. Although not
a favorable example, this corpus produced very interesting results.

58 3. From Twente-Aligner to NATools

3.4.2 Scalability

Only the first five of the presented corpora list can be aligned in a single
chunk using our work machine. The last on the list, HUEP was our test
study for tests on the scalability limit. These five corpus sizes and times of
the different alignment steps are shown on table 3.3.

TS HP IPC Bib HUEP
K words 77 94 118 805 3 500

Corpus analysis 0.5 sec 1 sec 1 sec 5 sec 67 sec
Matrix initial. 6 sec 8 sec 4 sec 57 sec 893 sec
EM-Algorithm 42 sec 73 sec 44 sec 468 sec 5 523 sec

Table 3.3: Times comparison for five different corpora alignment on a single
chunk

The evolution of the time required to analyze the corpus, create the sparse
matrix and iterate over the matrix is shown on figure 3.8. We notice that
each of these operations presents a different evolution pattern.

Figure 3.8: Timing evolution regarding corpus size. From top to bottom,
EM-Algorithm, matrix initialization and corpus analysis

As explained before, the UEP corpus was the first corpus we could not
align in only one chunk. For that reason, we aligned the two halves and
computed some measures, which we present on table 3.4.

This table shows also the size of the matrices we need to allocate. Al-

3.4. Timings and measures 59

though they are sparse, the size of each matrix was about 500MB.

First half Second half
K sentences 190 261
K EN words 3 295 3 798
K FR words 3 705 4 165

Matrix size (rows× columns) 61 324 × 71 143 59 888 × 70 270
Corpus analysis 68 sec 71 sec

Matrix initialization 894 sec 731 sec
EM-Algorithm 5 524 sec 4 792 sec

Table 3.4: Measures for two halves of UEP corpus

Although this alignment was performed with about 190 thousand sen-
tences, the machine used had 512 MB of RAM memory. With 256 MB of
RAM we could not align more than 60 thousand sentences. That is the reason
to use by default 50 thousand sentences as a limit for single chunk alignment.
To rely on the sentence number instead of the number of words makes this
process easier and faster.

Using the auto-splitter script 10 chunks of about 50 thousand sentences
each were created.

Chunk Analysis Initialization EM-Algorithm Total
1 26 sec 175 sec 1231 sec 1432 sec
2 31 sec 181 sec 1099 sec 1311 sec
3 14 sec 242 sec 1286 sec 1542 sec
4 31 sec 222 sec 1067 sec 1320 sec
5 40 sec 276 sec 1473 sec 1789 sec
6 21 sec 247 sec 2007 sec 2275 sec
7 12 sec 180 sec 1138 sec 1330 sec
8 12 sec 156 sec 665 sec 833 sec
9 3 sec 14 sec 632 sec 649 sec
10 12 sec 2 sec 12 sec 26 sec

Total 202 sec 1695 sec 10610 sec 12507 sec

Table 3.5: Measures for the ten chunks of UEP corpus

Table 3.6 compares the times between a two or ten chunk alignment. As
we can see the difference is very low: about 400 seconds in 12 000 seconds
(3.3%). Although the time difference is not big, the difference on usability
of the machine during the alignment is much better as a far lower amount

60 3. From Twente-Aligner to NATools

of memory is required. The time for the dictionary addition can be ignored
given that it is very small.

2 chunks 10 chunks
Corpus analysis 139 sec 202 sec

Matrix initialization 1 625 sec 1 695 sec
EM-Algorithm 10 316 sec 10 610 sec

Total 12 080 sec 12 507 sec

Table 3.6: Comparison between the times of alignment in two or ten chunks
for the UEP corpus

Finally, the EP corpus was aligned automatically in 14 chunks. Table 3.7
shows the times for each chunk and marginal totals.

Chunk Analysis Initialization EM-Algorithm Total
1 45 sec 207 sec 1662 sec 1914 sec
2 17 sec 234 sec 1660 sec 1911 sec
3 22 sec 277 sec 1556 sec 1855 sec
4 18 sec 244 sec 1493 sec 1755 sec
5 18 sec 294 sec 1734 sec 2046 sec
6 18 sec 281 sec 1733 sec 2032 sec
7 65 sec 282 sec 1698 sec 2045 sec
8 70 sec 253 sec 1577 sec 1900 sec
9 66 sec 262 sec 1640 sec 1968 sec
10 17 sec 245 sec 1756 sec 2018 sec
11 20 sec 306 sec 1556 sec 1882 sec
12 18 sec 229 sec 1675 sec 1922 sec
13 17 sec 219 sec 1443 sec 1679 sec
14 6 sec 100 sec 444 sec 550 sec

Total 417 sec 3433 sec 21627 sec 25477 sec

Table 3.7: Measures for the fourteen chunks of EP corpus

When comparing table 3.5 with table 3.7, we notice that the times per
chunk are very similar. This can be useful to estimate the required time
based on the number of chunks.

Figure 3.9 shows a graphic similar to figure 3.8 but where we added
information about these two large corpora. It is interesting to realize that the
time requirements evolution is very similar to the alignmnet without chunk
creation.

3.4. Timings and measures 61

Figure 3.9: Timing evolution regarding corpus size, with chunk alignment.
From top to bottom, EM-Algorithm, matrix initialization and corpus analysis

3.4.3 Disk usage measures

The alignment process creates lots of big files. In this section, we will see
what is the relation between the corpus size and the disk usage for alignment.

From the created files, some of them are important, which correspond to
data we want to use after alignment, while others are only temporary files,
created to connect the various tools in a pipeline. There is a NATools option
so that the aligner deletes temporary files as soon as they are not needed.
This can be very useful in cases we do not have sufficient disk space. To
maintain files in the disk makes a posterior alignment faster because only
outdated files are recreated.

Corpus Analysis

The corpus encoding step creates three files per corpus: a lexicon file (.lex)
a corpus file (.crp) and an index for the corpus file (.crp.index).

Table 3.8 shows disk usage for each one of these files for our study corpora.
None of these files are temporary, and as such, cannot be deleted.

From this table we conclude that the lexicon file size evolution is not linear
with the size of the corpus, because it is related with the number of different
words on the corpus, and their size. The corpus index files are proportional
to the number of sentences on each corpus. Because they are aligned, the

62 3. From Twente-Aligner to NATools

text lexicon corpus index
Lα Lβ Lα Lβ Lα Lβ Lα Lβ

TS 536 394 123 147 150 132 25 25
HP 567 496 93 163 173 170 29 29

IPC 682 665 82 99 133 135 82 82
Bib 4 172 4 124 270 548 1 232 1 251 127 127

UEP 43 185 49 074 1 621 1 878 11 748 13 104 1 816 1 816
EP 105 414 113 852 1 125 1 698 31 272 34 060 2 664 2 664

Table 3.8: Disk usage (in KB) in corpus analysis step

number of sentences for both languages is the same.
The corpus files are compressed using gzip. Uncompressing on of the

languages of the EP corpus, we get the size of 159 904 KB instead of the
original 34 060 KB (about 500% of the original file).

Matrix allocation, iterative method and pre-dictionary

The matrix allocation process creates a sparse matrix and saves it on disk,
then the iterative method reads that matrix file, iterates over it and saves it
with another name. This means that the matrix file is temporary, but can
be deleted only after we have the second matrix on disk: thus we need space
to store simultaneously two matrices on disk. Table 3.9 shows disk usage for
these files, for some of our corpora.

The table also presents the size of the pre-dictionary files, ready to be
transformed in the two translation dictionaries.

Original Iterated Pre-dictionary
TS 11 420 12 688 475
HP 10 963 12 318 416

IPC 8 323 9 088 216
Bib 55 651 61 643 1 251

UEP 10 × 90 000 10 × 98 447 10 × 1 892
EP 14 × 90 000 14 × 98 447 14 × 2 089

Table 3.9: Disk usage (in KB) for sparse matrices on disk

3.5. Re-engineering Conclusions 63

Dictionaries

Finally, the two dictionaries created are zipped. We will present the sizes for
them in both formats. The unzipped size is very important because subse-
quent uses of the dictionary will load it directly to memory. This means that
the unzipped size is the memory needed to load the dictionary. Table 3.10
shows these measures.

Zipped Unzipped
Lα Lβ Lα Lβ

TS 150 155 528 599
HP 119 149 408 666

IPC 71 71 354 417
Bib 301 536 1 130 2 149

UEP 2 113 2 128 6 369 7 240
EP 1 792 3 383 4 540 6 561

Table 3.10: Disk usage (in KB) for the dictionaries files

Full disk usage

Table 3.11 shows how much disk space is needed for the full alignment, and
the disk space really necessary, after deleting temporary files.

All files Needed files
TS 25 916 944
HP 27 972 956
IPC 19 424 820
Bib 128 552 4 436

UEP 1 722 701 36 054
EP 78 486

Table 3.11: Disk usage (in KB) for full alignment

3.5 Re-engineering Conclusions

The work performed to re-engineer Twente-Aligner into NATools was suc-
cessful, not only because it became faster, but also more robust and able to
align real-size parallel corpora.

64 3. From Twente-Aligner to NATools

The dictionary addition helped NATools to be able to scale-up and to
provide ways to accumulate dictionaries, creating bigger and better ones.
Also, given that the alignment of the chunks can be done independently, it
is easy to add parallel processing.

To have the word-alignment dictionaries with probability estimations
helps us to start new projects and apply new ideas. Being able to obtain
these dictionaries in big quantities makes these projects more interesting. In
chapter 5 some examples of applications using probability dictionaries are
shown.

Chapter 4

Word Alignment Results

Although general purpose machine readable bilingual dictio-
naries are sometimes available, and although some methods
for acquiring translation lexicons automatically from large
corpora have been proposed, less attention has been paid to
the problem of acquiring bilingual terminology specific to a
domain, especially given domain-specific parallel corpora of
only limited size.

(Resnik and Melamed, 1997)

This chapter presents NATools in terms of its alignment results(Tiedemann,
1997). Each section presents extracts from NATools dictionaries, where the
alignment was done using different techniques.

First section shows results using the bare alignment. Following sections
present different alignment processes:

• multi-word term extraction gluing words in tuples: joining two words
with a character different from a space, the aligner will consider the full
token as a single word, thus aligning word pairs with word pairs;

• domain specific term extraction using an algorithm presented at (Resnik
and Melamed, 1997) based on the remotion of common usage lexicon
from the generated dictionaries;

• iterate the alignment process, where on each iteration the words with
high correlation values are removed from the input on the following
iteration;

65

66 4. Word Alignment Results

• perform a language specific pre-processing issue like the tokenization of
English possessives or the use of a morphological analyzer to enhance
relationship between verbs.

4.1 Simple alignment

The dictionaries created by the word aligner map words from one language to
a set of words in the other language, together with translation probabilities.

Let us look to a simple extract from the Bible1. Table 4.1 shows the
words proposed as translations for the Portuguese word “Deus” (God) and
respective translations for the English word “God”.

Deus God
God 0.86 Deus 1.00

(null) 0.04
God’s 0.03

He 0.01
Yahweh 0.01

him 0.01

Table 4.1: Extract of the alignment for the words “God” and “Deus.”
Extract from the Bible alignment for the words “God” and “Deus.”

From this table, we can conclude:

• the translation in Portuguese for the English word “God” is, undoubtly,
the word “Deus”;

• the translation in English for the Portuguese word “Deus” is, almost
surely, the “God” word;

• on 4% cases of alignment, the Portuguese word “Deus” is aligned with
the null word. This means that on some sentences where the “Deus”
word appears, the translation sentence does not include any word with
high probability of translation. See table 4.2 first set of examples for
some of these situations.

• the source corpus was not correctly tokenized. The genitive “God’s”
should be split on two different words: “God”and a symbol to represent

1Notice that this is an adverse corpora, because it consists of two parallel translations
from a third language.

4.1. Simple alignment 67

Portuguese English
1 Fechado em si mesmo, o homem

não aceita o que vem do esṕırito
de Deus.

The one who remains on the psy-
chologic level does not understand
the things of the Spirit.

Eu, como bom arquitecto, lancei
os alicerces conforme o dom que
Deus me concedeu; outro constrói
por cima do alicerce.

I, as a good architect, according to
the capacity given to me, I laid the
foundation, and another is to build
upon it.

2 Depois os Levitas transportaram a
Arca de Deus, apoiada em varais
sobre os Ombros, conforme moisés
lhes havia mandado, segundo a
palavra de Deus.

and the Levites carried the ark of
God with the poles on their shoul-
ders, as Moses had ordered accord-
ing to the command of Yahweh.

“Vai e diz a David: ’Assim diz
Javé: proponho-te três coisas. Es-
colhe uma, e Eu a executarei.”

“Go and say to David, ’Yahweh
says this: I offer you three things;
choose one of them for me to do to
you.”

3 Mas Deus escolheu o que é lou-
cura no mundo, para confundir os
sábios; e Deus escolheu o que é
fraqueza no mundo, para confundir
o que é forte.

Yet God has chosen what the
world considers foolish, to shame
the wise; He has chosen what the
world considers weak to shame the
strong.

Se dizemos que estamos em co-
munhão com Deus e no entanto
andamos nas trevas, somos men-
tirosos e não praticamos a Ver-
dade.

If we say we are in fellowship with
Him, while we walk in darkness, we
lie instead of being in truth.

Table 4.2: Examples of alignment for “Deus” and “God”

68 4. Word Alignment Results

the genitive construction. If this was done, the probability for the
correct translation would be enhanced.

• “Yahweh,” is translated in some of the Bible books as “Javé” and in
others as“Deus”, while the English Bible is more consistent. The second
set of examples from table 4.2 shows some examples.

• finally, personnel pronouns like “He” and “Him” appear given the the
use of the pronoun instead of the real noun, as shown on the third set
of examples from table 4.2.

Let us see another alignment extract, again from the parallel Bible. Ta-
ble 4.3 shows the dictionary for the verb “gostar/to love.” This is a more
difficult situation for the aligner than the previous example.

gosta loves
loves 0.50 ama 0.67

pleases 0.34 gosta 0.08
pleasing 0.17 amas 0.05

estima 0.03
conquista 0.02

acabará 0.02
curta 0.02

Table 4.3: Extract from the Bible alignment for the “gosta”and“loves”words

This example is not as good as the previous one, but is surely more
interesting:

• the most used Portuguese translations for “loves” is “ama” from the
“amar” verb, or “gosta” (which is translated as “like”, too). This can
be seen in the other column of the table: “gosta” is being translated as
“loves” and “likes” (first set of examples on table 4.4).

• while “estima” can be used in some contexts as a translation of “loves”,
the other words, “conquista”, “acabará” and “curta” does not seem to
be translations of “loves” at all. As it can be seen on the second set of
examples from table 4.4, these weird alignments are interesting cases
for linguistic studies.

4.2. Simple Multi-word term alignment 69

Portuguese English
1 Se alguém ama o mundo, o amor

do Pai não está nele.
If anyone loves the world, the love
of the Father is not in him.

quem gosta de vinho e carne boa
jamais ficará rico.

he who loves wine and perfume will
never grow rich.

Javé detesta balanças falsas e
gosta de peso justo.

Yahweh detests a false scale but a
just weight pleases him.

2 porque ele estima o nosso povo e
até nos construiu uma sinagoga.

for he loves our people and even
built a synagogue for us.

Javé detesta a boca mentirosa,
mas o homem sincero conquista o
seu favor.

Yahweh hates the lips of liars and
loves those who speak the truth.

Table 4.4: Examples of alignment for “gosta” and “loves”

4.2 Simple Multi-word term alignment

Given the efficiency boost in the alignment process, some new tests became
feasible. In this section we will talk about a simple bilingual multi-word term
extraction method. It was not thought as a real and fundamental method
for bilingual multi-word term extraction, but as an experiment which gave
some interesting results. A more realistic method for bilingual multi-word
term extraction will be shown on section 5.6.

This simple method is based on the junction of words from the corpus
into n-tuples. For example, for n = 2 we will join words into pairs:

1 Flitwick told me in secret that I got a
2 hundred and twelve percent on his exam .

1 BEGIN_Flitwick Flitwick_told told_me me_in
2 in_secret secret_that that_I I_got got_a
3 a_hundred hundred_and and_twelve twelve_percent
4 percent_on on_his his_exam exam_. ._END

This new corpus will have many more different words than the original
one, which means that the alignment process will create a bigger matrix. This
matrix will count co-occurrences for word pairs, instead of co-occurrences for
simple words.

Table 4.5 shows a good result example for this alignment process using
the Bible corpus, with the “Christ Jesus” term. Follows some considerations
about this alignment:

70 4. Word Alignment Results

Jesus Cristo Christ Jesus
Christ Jesus 0.67 Jesus Cristo 0.94
Jesus Christ 0.26 (null) 0.04
(null) 0.03 Cristo , 0.01
Messiah , 0.01
Christ who 0.01
the Messiah 0.01

Table 4.5: Extract from the word-pairs alignment result for “Christ Jesus”
and “Jesus Cristo.”

• in the English Bible, “Jesus Cristo” is translated as “Christ Jesus” but
in some books also as “Jesus Christ”;

• in English, “Messiah” is used to translate “Jesus Cristo” while in Por-
tuguese the probable translation (“Messias”) is rarely used;

Table 4.7 shows another example of alignment, also from the Bible, for
the adverbial phrase “a little”. This is a more difficult and more interesting
alignment:

• the correct (most common) translation is given with more than 50% of
probability;

• there is an huge number of alignments with the null token, probably
given that the Bibles are not direct translations and as such the original
translators can ignore or add sometimes this adverbial phrase without
changing the meaning. The first set of examples from table 4.6 shows
some of these cases.

• there are some weird alignments as “me a”, “your company”, “e ,” or
“BEGIN Daqui”, but with very small probabilities.

• some other alignments can be explained by different uses of the term
(extracts from the corpus can be seen on table 4.6, second set of exam-
ples).

Bigger groups (three or more words) were tried but results were not really
interesting: process time raised a lot, accordingly with the number of words
we put together; the alignment matrix became too huge to be usable; multi-
words were not found or, when found, on little quantities.

4.3. Simple Domain Specific Terminology Extraction 71

Portuguese English
1 David ficou de pé e tomou a

palavra: “irmãos e povo meu,
escutai-me um pouco.”

Then King David got up and said:
“My brothers and my people, listen
to me.”

Vai e faz como disseste. Mas
primeiro prepara um pãozinho com
o que tens e traz-mo.

Go and do as you have said, but
first make me a little cake of it and
bring it to me;

2 Um pouco mais adiante, lançaram
de novo a sonda e deu vinte e sete
metros.

After a while, they measured it
again and it was twenty-seven me-
ters.

Pouco depois, outro viu Pedro e
disse: “Tu também és um deles.”

A little later someone who saw him
said, “You are also one of them!”

Jesus chamou uma criança,
colocou-a no meio deles,

Then, Jesus called a little child,
set the child in the midst of the
disciples,

Table 4.6: Examples of alignment for “um pouco” and “a little”

um pouco a little
a little 0.68 um pouco 0.54
(null) 0.19 (null) 0.27
a while 0.03 Pouco depois 0.06
me a 0.03 e , 0.03
your company 0.02 uma criança 0.03
BEGIN Then 0.01 BEGIN Daqui 0.02

Table 4.7: Extract from the word-pairs alignment for“a little”and“um pouco”
word pairs.

4.3 Simple Domain Specific Terminology Extrac-
tion

Word alignment of parallel corpora is a method to extract bilingual terminol-
ogy and bootstrap dictionaries. Meanwhile, if the idea is to build a domain
specific dictionary, the distinction of common lexicon from the domain spe-
cific one must be performed. On (Resnik and Melamed, 1997) is proposed a
simple algorithm for a domain specific lexicon acquisition process:

1. Run the automatic lexicon acquisition algorithm on a domain-

72 4. Word Alignment Results

specific parallel corpus.

2. Automatically filter out “general usage” entries that already
appear in a machine readable dictionary (MRD) or other
general usage lexical resources.

3. Manually filter out incorrect or irrelevant entries from the
remaining list.

This algorithm was applied to part of the European Parliament (EP) cor-
pus where “general usage” entries were removed using Jspell morphological
analyzer dictionary(Almeida and Pinto, 1994).

Although the results from this process contain some interesting results
(see table 4.8), more interesting ones could be obtained if we used a controlled
list of words instead of a general morphological analyzer dictionary. Other
reason for the low amount of results is that the EP corpus are transcriptions
from the sessions of the Parliament, where a very general (and oral) language
is used.

Other entries that remained in the dictionary were misspells, numbers,
personal names and non-translated words. Some of them could be removed
using automatically.

Word Translation Probability
10 Sabóia Savoy 0.3825

allowed 0.0182
7 estrategicamente strategically 0.5762

form 0.2128
strategic 0.0936

8 multifuncionais multifunctional 0.4010
17 unicef unicef 0.8146

bought 0.1498
4 geostratégicas geostrateic 0.4010
3 intergovernamentalismo intergovernmentalism 0.2951

things 0.2158
4 democratas extremists2 0.1757

neo 0.1160
10 furanos furanes 0.4006

Table 4.8: Extract from the result of the domain specific terminology extrac-
tion method.

4.4. Iterative Alignment 73

4.4 Iterative Alignment

In (Ahrenberg, Andersson, and Merkel, 2000) an iterative method for word
alignment is presented, based on the basic alignment method, but iterating
the alignment over the corpus.

The method starts with a first alignment. Then, the dictionary is ana-
lyzed: words with high values of relationship are saved and removed from
the original corpus. This new (smaller) corpus is re-aligned and this process
iterated. The algorithm iterates until the source corpus becomes empty.

Our tests were done iterating until the dictionary had only one relation-
ship with probability over a specific threshold (in the test presented here,
70% of translation quality). For the Tom Sawyer (TS) corpus, this process
iterated 8 times.

Iter # entries quality
1 459 72%
2 120 54%
3 51 54%
4 23 75%
5 7 40%
6 5 40%
7 4 75%
8 4 50%
9 1 0%

674

Table 4.9: Dictionaries sizes and qualities for the Iterative Alignment

Table 4.9 shows the number of entries in the dictionary with quality higher
than 70% for each iteration. The quality presented is the percentage of good
translations on this dictionary. This value was obtained analyzing by hand
the first 50 entries of each iteration dictionary.

As it could be seen in table 4.9, if we used the same threshold on the
source corpus, we would get a dictionary of 459 elements, with about 128
bad translations. Using the iterative method we would obtain a 674 element
dictionary, with about 224 incorrect translation. Then, with only one it-
eration we would get 331 good entries, while we get 450 with the iterative
method.

2This is one example to study given the strange relationship.

74 4. Word Alignment Results

4.5 Using Language specific pre-processing

As presented on the previous chapter, the basic alignment process is language
independent because there is a first language dependent layer (which we
named the pre-processing step). This layer can be used to perform operations
on the source corpus to obtain more interesting results with the alignment
process.

This section will present two different ways to pre-process corpora and a
discussion on the obtained results.

4.5.1 English Genitives

As shown on table 4.1, there was an alignment between “Deus” and “God’s”.
This is very common when aligning English texts and the tokenization process
was not done correctly. One simple solution would be to split “God’s” into
three tokens: “God”, “”’ and “s”. This is not the correct way: we should
use “God” and “’s”. This one is better because we know that the apostrophe
is part of the genitive. Meanwhile, this is not the best solution. Cases like
“Jonas’ boat” should not be split into“Jonas”, “”’ and“boat”, but into“Jonas”
“’s”“boat”. This would lead to better word alignment results.

In any case, we can always substitute “’s” by another token like “_GEN_”
if we want it to be easy to find. This means that a sentence like

1 It clearly is not , as Mr Berthu has said , in order to
2 create a European super - state but more , as Mrs Berès
3 has said , to make it clear to today’s citizens and
4 tomorrow’s citizens that what we are in now is a Community
5 of values : values based on democracy , freedom , equality ,
6 solidarity and respect for diversity , values -- and I
7 stress this to Mrs Garaud -- that unite Europeans across
8 frontiers , from the north , the south , the east and the
9 west of the Community .

could be substituted by

1 It clearly is not , as Mr Berthu has said , in order to
2 create a European super - state but more , as Mrs Berès
3 has said , to make it clear to today ’s citizens and
4 tomorrow ’s citizens that what we are in now is a Community
5 of values : values based on democracy , freedom , equality ,
6 solidarity and respect for diversity , values -- and I
7 stress this to Mrs Garaud -- that unite Europeans across

4.5. Using Language specific pre-processing 75

8 frontiers , from the north , the south , the east and the
9 west of the Community .

This kind of input will not consider“tomorrow’s”and“today’s”as different
words from“tomorrow”and“today.” Also,“’s”will be considered as a different
word, and, as such, will be aligned.

For example, for the European Parliament (EP) corpus this tokenized
form will produce the results shown on table 4.10.

’s
0.37 da
0.22 do
0.08 a
0.04 de
0.03 o

Table 4.10: Results of alignment using correctly tokenized genitives

4.5.2 Infinitive verbs

The alignment between English and Portuguese verbs has a big problem:
Portuguese has many more forms for each verb. Thus, the relations between
the English few forms with the huge number of Portuguese forms3 is very
fragile (while in the opposite direction this is not noticed).

To solve this problem we used a morphological analyzer (Jspell (Simões
and Almeida, 2001; Almeida and Pinto, 1994)) with a Portuguese dictionary,
to stem Portuguese verbs.

For example, the following input

1 Senhora Presidente , gostaria de saber se esta semana
2 o Parlamento terá oportunidade de manifestar a sua inequı́voca
3 posiç~ao de descontentamento face à decis~ao , hoje tomada , de
4 n~ao renovar o embargo de armas destinadas à Indonésia , tendo
5 em atenç~ao que a grande maioria da assembleia apoiou o referido
6 embargo quando este foi decretado .

would be substituted with4

1 Senhora Presidente , gostar de saber se esta semana
2 o Parlamento ter oportunidade de manifestar a sua inequı́voca

3Normally, English has 4 form, while there are about 50 for Portuguese.
4Yes, this is the kind of text Tarzan would say!

76 4. Word Alignment Results

3 posiç~ao de descontentamento face à decis~ao , hoje tomar , de
4 n~ao renovar o embargo de armas destinar à Indonésia , tendo
5 em atenç~ao que a grande maioria da assembleia apoiar o referir
6 embargo quando este foi decretar .

These changes on the source corpus will enhance the probability of translation
for verbs from English to Portuguese.

While the probability between English to Portuguese translation raises,
the inverse decreases. This happens because the occurrence number of the
Portuguese verb becomes too high in relation to the different (although few)
English verb forms.

• definir (100%) •

!!D
DD

DD
DD

DD
D

define (25%) •

==zzzzzzzzzz //

!!D
DD

DD
DD

DD
D

��2
22

22
22

22
22

22
22

22
• defino (100%) • // • define

• defines (100%) •

==zzzzzzzzzz

defines (100%) • // • define (50%) • //

FF�����������������
• defines

• definiu (100%) •

!!D
DD

DD
DD

DD
D

defined (33%) •

==zzzzzzzzzz //

!!D
DD

DD
DD

DD
D •definiram (100%)• // • defined

• defini (100%) •

==zzzzzzzzzz

Figure 4.1: Alignment before Portuguese verb stemming

Figure 4.1 shows an alignment for the verb “definir/to define” and some
of their forms5.

5Probabilities in the diagram are not real. They were added without knowledge of
possible occurrences counts. This mean they were calculated using 100/n where n is the
number of relations which source is that word.

4.5. Using Language specific pre-processing 77

So, before the Portuguese verb stemming, we notice two distinct blocks,
one for the past tense, and another with imperative, infinitive and present.
Relation between present and past tense from English to Portuguese is very
low (below 33%) although relation between Portuguese and English is very
high for almost all forms.

defines (100%)•

��@
@@

@@
@@

@@
• defines

define (100%) • // • definir (33%) •

??~~~~~~~~~
//

��@
@@

@@
@@

@@
• define

defined (100%)•

??~~~~~~~~~
• defined

Figure 4.2: Alignment after Portuguese verb stemming

Figure 4.2 shows the same relationship after Portuguese verb stemming.
At this point there is no distinct blocks, and probabilities have changed com-
pletely. English to Portuguese relationship becomes stronger, and relation-
ship from Portuguese to English weakens a lot.

This is a good way to get better relationships between verbs from English
to Portuguese. If we want to enhance relationships in both directions we
have two choices: to stem verbs in both languages (as figure 4.3) or to do a
selective stemming to different tenses.

(to) define (100%)• // • definir (100%) • // • (to) define

Figure 4.3: Alignment after Portuguese and English verb stemming

This last option should retrieve better results. For example6, if we take
care only of the past tense, and stem Portuguese and English verbs to the
infinitive unless they are in the past tense and, in this case, “stem” them to
a common past tense format, we obtain a relation as shown on figure 4.47.

6This example it very naive, given that there are more than one past tense, and the
process should consider each tense separately.

7In figure 4.4 we used /p to denote the past tense.

78 4. Word Alignment Results

(to) define (100%)• // • definir (100%) • // • (to) define

defined (100%) • // •definir/p6 (100%)• // • defined

Figure 4.4: Alignment after Portuguese and English special verb stemming

4.6 Results Analysis

This chapter shows that the NATools alignment results are quite reliable, and
that different ways of using NATools are available. Each one of these exper-
iments gave interesting results leading to new ideas and new experiments.

Although some of the methods return some weird entries in the dictio-
naries, the true is that most of them can be explained by the corpus we were
using. On these and other cases, these bad translations are interesting for
linguistic and cognitive studies.

Finally, most of these experiments were possible given the pre-processing
layer added to the original Twente-Aligner. This layer is very important
giving the user the ability to transform the corpus and tune the way the
alignment is done.

Chapter 5

NATools based Tools

A successful [software] tool is one that was used to do some-
thing undreamed of by its author.

S. C. Johnson

The NATools alignment results in two different objects: probabilistic
dictionaries and parallel corpora. In this chapter, we will show that these
objects are not the end of the road, but the beginning of several new prob-
lems(Tiedemann, 2003).

The possibility to use NATools probabilistic dictionaries as a resource for
new tools and experiments is very important, and that is the reason why we
think NATools probabilistic dictionaries as a data type with an associated
algebra.

This chapter demonstrates how these objects can be used to perform
various tasks:

• word search on parallel corpora
use the sentence aligned text to compare sentences in different lan-
guages, using the web as interface;

• bilingual dictionary browsing
provides ways to search words in the probabilistic dictionary, using a
graphical interface with meaningful colors to show the results. The
interface can be used to check where the word occurs in the corpora,
and why it was aligned with some specific word;

• estimation of translation probability for parallel sentences

79

80 5. NATools based Tools

use the dictionary probabilities to look to a pair of string and give them
a classification regarding their translation quality;

• word sequence alignment
use the word aligned corpora and probabilistic dictionaries to build
aligners for segment of words;

• multi-word term extraction
use a multi-word term extractor for monolingual corpus and align the
terms, extracting a multi-word term bilingual terminology;

• translation by example
use the parallel corpora to search for examples of translations for a
specific sentence, automating the translation;

Before explaining each of these items in detail, next section will explain the
programmers interface (API) for writing programs based on NATools dictio-
naries.

5.1 NATools Programming Interface

NATools probabilistic Dictionaries can be used in different tools, it is crucial
to build a robust API to simplify their manipulation.

The NATools alignment process creates dictionaries and store them on
four files: two lexicon files including information about the corpus’ words,
and two probabilistic dictionary files, including alignment information in both
directions (source to target and target to source languages).

NATDic(Lα,Lβ) = Lexα × Lexβ ×D(Lα,Lβ)×D(Lβ,Lα)

At the moment, a new dictionary file type is being developed to include
in one unique file the two lexicons and the two probability dictionaries.

The interface with these files can be done with Perl or C programming
languages. These interfaces are quite similar and, given that Perl use is
simpler, we will show only its interface. In fact, the Perl interface is written
over the C interface using the Perl facility named XS1.

Next sections explain briefly how to use the NATools programming in-
terface. First two sections show the API for each lexicon and dictionaries

1XS is an interface description file format used to create an extension interface between
Perl and C code (or a C library) which one wishes to use with Perl.

5.1. NATools Programming Interface 81

access, and the last includes some examples of how to combine them to write
programs.

5.1.1 Lexicon files’ interface

Each lexicon files includes the words used in one of the corpora (source or
target one), as defined on section 3.2.2:

Lexα = wα ⇀ (id× occurrenceCount)

The interface with Lexicon files is done using the NAT::Lexicon Perl
module. This module provides the following API2:

• $lex = NAT::Lexicon::open("file.lex")
Constructor for a NAT::Lexicon object, given one lexicon file. At the
moment the Perl interface can open up to ten lexicon files at the same
time. This limit will be removed on next releases.

• $lex->close()
Closes the lexicon object and frees the used memory.

The main purpose of the lexicon file is to map words to identifiers and
vice-versa. Following methods provides ways to access identifiers from words
and vice-versa.

• $lex->word_from_id(2)
This method returns the word whose identifier is passed as argument.

• $lex->id_from_word("dog")
This is the dual method of word_from_id. Given a word from the
lexicon file, returns its identifier;

• $lex->sentence_to_ids("the dog bitten the lazy cat")
It is very common to have to translate each word from a sentence to
identifiers. This method takes care of that, returning a list of identifiers;

• $lex->ids_to_sentence(1, 3, 5, 3, 9, 5, 3)
Given a list of identifiers, this method returns the decoded sentence;

2Given that the occurrence count information is also available on the dictionary proba-
bility files, there is not a method to access to these value on this module. It could be added
later if needed.

82 5. NATools based Tools

5.1.2 Dictionary mapping files interface

Each dictionary map file include the relationship between words from one
language into another and its structure is, as defined on section 3.2.5:

D(Lα,Lβ) = wα ⇀ (occur × wβ ⇀ P (T (wα) = wβ))

The interface to this file is done using the NAT::Dict Perl module. This
module provides the following API3:

• $dic = NAT::Dict::open("file.bin")
This is the constructor of NAT::Dict objects. It receives a filename
of a dictionary file and returns a reference to an object. As with the
Lexicon files, at the moment there can be up to 10 dictionary objects
open at the same time.

• $dic->close()
Closes the object, freeing the used memory.

• $dic->exists($id)
This method is used to check if an identifier exists in the probabilistic
dictionary. Although very uncommon, sometimes the alignment process
discards some words.

• $dic->size()
For some tasks it is important to know the size of the original corpus.
This method returns that value, summing up the occurrence count for
all corpus words.

• $dic->occ($id)
Returns the number of occurrences for a specific word.

• $dic->vals($id)
This is the method to access the translations for a specific word. It
returns a map from word identifiers (from the target corpus) to its
respective probability of translation.

• $dic->add($dic2)
When the alignment is done by chunk the final dictionaries need to
be summed up. This method is used for sum dictionary chunks. This
method can not be used to add any pair of dictionaries, because the
identifiers on each dictionary should represent the same word.

3Note that all the methods on this module use identifiers instead of the real words.

5.1. NATools Programming Interface 83

• $dic->for_each(sub{...})
This is an utility method, very powerful to process each word from a
dictionary. It will cycle through all dictionary words and for each one
of them call a given function, passed as argument. See example on
page 85 for an example of use.

5.1.3 Programming with NATools dictionaries

This section shows some examples of programs using the NATools program-
ming interface.

An interactive dictionary shell

For studying a probabilistic dictionary it is useful to have the ability to search
for words instead of editing the dictionary with a word editor. With that in
mind, the following example was created: a shell which reads words and
prints all the information it knows about that word translations:

1 #!/usr/bin/perl -w

2 use NAT::Dict;
3 use NAT::Lexicon;

4 my $dic1 = NAT::Dict::open(shift());
5 my $lex1 = NAT::Lexicon::open(shift());

6 my $dic2 = NAT::Dict::open(shift());
7 my $lex2 = NAT::Lexicon::open(shift());

8 while(1) {
9 print "Word to search ::> ";

10 chomp(my $word = <>);
11 show_word($dic1,$lex1,$lex2,$word);
12 show_word($dic2,$lex2,$lex1,$word);
13 }

14 sub show_word {
15 my ($dic1,$lex1,$lex2,$word) = @_;
16 my $wid = $lex1->id_from_word($word);
17 if ($wid) {
18 my $count = $dic1->occ($wid);
19 my %probs = @{$dic1->vals($wid)};
20 print " Occurrence count: $count\n";

84 5. NATools based Tools

21 print " Translations:\n";
22 for (sort {$probs{$b} <=> $probs{$a}} keys %probs) {
23 next unless $_;
24 my $trans = $lex2->word_from_id($_);
25 print " $trans => $probs{$_}\n";
26 }
27 }
28 }

This script starts by including the necessary modules and opening the
lexicon and dictionary files. Then, it starts a loop that reads words and,
if found ine one of the two dictionaries, a brief list of their translations is
printed:

1 [ambs@holst test]$./shell Tom-PT.bin Tom-PT.lex \
2 Tom-EN.bin Tom-EN.lex

3 Word to search ::> c~ao

4 Occurrence count: 17
5 Translations:
6 dog => 0.645013034343719
7 stray => 0.189520448446274
8 poodle => 0.133752107620239
9 floated => 0.0306419488042593

10 Word to search ::> gato

11 Occurrence count: 22
12 Translations:
13 cat => 0.909570515155792
14 cats => 0.0532888397574425
15 ripple => 0.0270212069153786
16 troubles => 0.0100118424743414

17 Word to search ::> casa

18 Occurrence count: 115
19 Translations:
20 house => 0.395296275615692
21 home => 0.293731182813644
22 (null) => 0.120877973735332
23 homeward => 0.0427895896136761

24 Word to search ::>

5.1. NATools Programming Interface 85

Creating a bilingual dictionary

The following example shows how to extract a bilingual dictionary from the
probabilistic one: find words wα and wβ such that wβ ∈ T (wα) and wα ∈
T (wβ) and above a given probability threshold.

The function receives two lexicon filenames and two probabilistic dictio-
nary filenames. It returns a list of pairs (wα, wβ).

1 sub calc_dic {
2 my ($dic1, $lex1, $dic2, $lex2) = @_;

3 $dic1 = NAT::Dict::open($dic1);
4 $lex1 = NAT::Lexicon::open($lex1);

5 $dic2 = NAT::Dict::open($dic2);
6 $lex2 = NAT::Lexicon::open($lex2);

7 my @DIC;
8 my $THRESHOLD = 0.7;

9 $dic1->for_each(sub {
10 my %data = @_;

11 my ($w1,$prob1) = @{$data{vals}};
12 return unless $prob1 >= $THRESHOLD;

13 my ($w2,$prob2) = @{$dic2->vals($w1)};
14 return unless $prob2 >= $THRESHOLD;

15 if ($w2 == $data{word}) {
16 push @DIC, [$lex1->word_from_id($data{word}),
17 $lex2->word_from_id($w1)];
18 }
19 });

20 return \@DIC;
21 }

Basically, the first set of lines opens the dictionary and the lexicon files,
defines the variable to store the result, and define a threshold.

Follows a loop, iterating each word (w) on the source language dictionary.
For each word, we get the translation (w1) with bigger probability (prob1).
If its probability is bellow the threshold, we iterate to the next word. If its
probability is above, we apply the same algorithm to the translation of w1

86 5. NATools based Tools

(w2). If both translation probabilities are above the threshold, we add them
to the dictionary array.

5.2 Word search on Parallel Corpora

To consult parallel corpora in the web is a common task. There are several
Internet sites where you can search parallel corpora(Frankenberg-Garcia and
Santos, 2001).

The goal of this tool is to make NATools users able to publish their aligned
corpus in the Internet with search capabilities.

Figure 5.1: Searching for a word on a parallel corpus

The tool consists of a simple Perl CGI using NATools modules which
search pairs of sentences where some word occur. It uses the lexicon and en-
coded corpora files only, which means you do not need to do all the alignment
process to make the corpora search able:

5.3. Dictionary browsing 87

(Lexα × Crpα)× (Lexβ × Crpβ)× (wα + wβ) −→ (sα × sβ)?

Figure 5.1 is a screen-shot of this CGI script. The user is able to choose
the corpus he wants to navigate, and search for a word (or sequence of words)
in any of the two aligned languages.

Figure 5.2: Searching for a words and probable translation on a parallel
corpus

As shown on figure 5.2 it is possible to give a possible translation for the
search query. This makes the CGI able to search for pairs of sentences where
the word we are searching co-occurs with that possible translation:

(Lexα × Crpα)× (Lexβ × Crpβ)× (wα × wβ) −→ (sα × sβ)?

88 5. NATools based Tools

Figure 5.3: Dictionary navigation CGI

5.3 Dictionary browsing

This tool is a browser of dictionaries, very useful to study them, and to check
their translations. Basically, it shows an entry from the dictionaries at two
levels: the probable translations for the word that the user searched, and
probable translations for those translations.

Figure 5.34 shows a screen-shot for this navigation CGI where the entry
for the Portuguese word “vassoura” (broom) is presented (on the HP parallel
corpus).

This CGI has the following properties:

• for each word, translations are sorted by the translation probability,

4This example shows two weird entries. The first, “vassoura-” was not tokenized. Then,
“herrnione” seems an OCR problem (it should be Hermione, the name of Harry Potter
friend).

5.4. Estimation os Translation Probability 89

and with different color levels (green, yellow and red). This makes it
easier to visually identify the most probable translations;

• word search is done on both languages which means that if some word
appears on both languages, the CGI will show one entry for each lan-
guage;

• the script shows two levels of the dictionary: for each possible transla-
tion of the searched word the CGI shows their possible translations;

• if the word being analyzed appear as a possible translation for any of
their possible translations, then that possible translation is presented
on a different color;

• it is possible to follow a link (>>) directly to the CGI presented on
previous section, to search the corpus for pairs of sentences where the
word and one of the possible translations appear. Integration between
different CGIs make each one of them more interesting.

5.4 Estimation os Translation Probability

The translation quality is a very hard property to measure(Santos, Maia,
and Sarmento, 2004). Meanwhile, we can use the probabilistic dictionaries
to calculate an estimation of translation probability. This process cannot be
seen as the evaluation of the correctness of the translation, but a probabilistic
measure.

Our estimative function (QT) between two languages Lα and Lβ can be
prototyped as:

QT : D(Lα,Lβ)×D(Lβ,Lα)× sα × sβ −→ Q

To define our translation probability measure we need to define first the
unidirectional translation probability.

Definition 8 The unidirectional translation probability will be repre-
sented by P (T (sα) = sβ) for two different sentences; sα and sβ.

Each sentence is a sequence of words. Then,

sα = wα,1wα,2 . . . wα,n and sβ = wβ,1wβ,2 . . . wβ,m

On following formulas, consider D as being the dictionary D(Lα,Lβ).
This means that for a word wα, π2(D(wα))(wβ) is the probability of wβ being
a translation of wα.

90 5. NATools based Tools

Thus, we can define the probability of sβ being a translation of sα as

1
n

n∑
i=1

max ({π2(D(wα,i))(wβ,j) : wβ,j ∈ dom(π2(D(wα,i))) ∧ wβ,j ∈ sβ})

3

Definition 9 Given two sentences sα and sβ, the translation probability
measure QT is computed using the probability of sα being a translation of
sβ and vice-versa: P (T (sα) = sβ) and P (T (sβ) = sα).

QT (sα, sβ) =
P (T (sα) = sβ) + P (T (sβ) = sα)

2
.

3

Q English Portuguese
0.261751 vocês os dois - eu mando-vos

uma coruja .
Thanks , said Harry , I ’ ll need
something to look forward to .

0.673549 ” Have you got your own
broom ?

- Tens a tua vassoura ?

0.659810 ” Harry glanced down at his
broom .

Harry deitou um olhar à sua
vassoura .

0.599914 ” Stick out your right hand
over your broom , ” called
Madam Hooch at the front , ”
and say ’ Up !

- Estendam a vossa mão direita
ao longo da vassoura –, gritou
Madame Hooch ,- e digam De
pé .

Table 5.1: Translation probability measure samples

Table 5.15 shows some examples of translation probability measures. This
results can be used for very different purposes:

• classify, validate and test candidate parallel pairs in the automatic ex-
traction of parallel corpora presented on section 2.2.2;

• classify automatically generated TMX files, such that translators can
use that knowledge to reject some translations.

5Notice that the worst translation has 26% of probability given that the current algo-
rithm is using punctuation as words. So, for small sentences like the on in the example,
with lot of punctuation, values are not so low as expected.

5.5. Word sequence alignment 91

• classify sub-sentences to make word sequence alignment, statistical trans-
lation and multi-word term translation dictionaries extraction.

As some of the developed tools need information about translation prob-
ability of aligned sentences, it was developed a tool to create a file with this
information for each pair of sentences.

This tool signature can be described as:

(Crpα × Lexα)× (Crpβ × Lexβ)×D(Lα,Lβ)×D(Lβ,Lα) −→ Q?

5.5 Word sequence alignment

Word sequence alignment is deeply related with the translation probability
measure proposed on previous section. With this word sequence alignment
we do not expect to extract relationships between all word sequences in the
corpus, but instead, we want to have an algorithm to align a small sequence
of words.

This means we want a tool with the following signature6:

ws− align : (Cα × Lα)× (Cβ × Lβ)×D(Lα,Lβ)×D(Lβ,Lα)× w?
α −→ w?

β

In fact, we want something more. Like with the word alignment, with word
sequence alignment we would prefer as a result a mapping from word se-
quences to their translation quality:

(Cα × Lα)× (Cβ × Lβ)×Dα,β ×Dβ,α × w?
α −→

(
w?

β ⇀ P(T (w?
α) = w?

β)
)

The algorithm is based on the sentence alignment of the corpus and in
the translation quality algorithm. Given the parallel corpus, the alignment
dictionaries and a sequence of words to align, we:

1. search on the corpus (which language is the same with the word se-
quence) a set of sentences where the word sequence occurs;

2. use the sentence alignment to get each sentence translation;

3. at this point we have a sequence of pairs of sentences: (sα, sβ)? where7

w?
α < sα;

6for simplicity, and to show the formula in one line only, Crp was abbreviated by C,
Lex by L and dictionaries D(Lα,Lβ) by Dα,β .

7here we use this subset operator (<) to represent the word sequence inclusion, meaning
the sequence of words appears in the sentence in that order.

92 5. NATools based Tools

4. for each pair we will use a sliding window algorithm to retrieve the por-
tion of the target language which is the best translation of the sequence
we want to align:

(a) calculate all possible subsequences from the target sentences with
similar size (for three different window sizes: same number of
words from the source sequence, one more word and one less word)
with the sequence we want to align;

(b) calculate the translation probability between each one of these
sequences and the original sequence, choosing the one with better
quality;

This alignment can be used as a simple translation tool as figure 5.4 shows
— an interaction with a translation shell using the UEP corpus.

1 ==> difficult situation
2 Using 6 occurrences (0.732864 seconds)
3 situation difficile - 0.8025
4 situation très difficile - 0.8025
5 situation aussi difficile - 0.8025

6 ==> sentenced to death
7 Using 1 occurrences (0.214145 seconds)
8 condamné à mort - 0.443333333333333

9 ==> final version
10 Using 7 occurrences (0.843922 seconds)
11 version définitive - 0.5075
12 définitive - 0.09
13 définitif - 0.0875

Figure 5.4: Word sequence alignment example

By default, the script searches all the corpus for occurrences; this can lead
to much time of search. To solve this, the corpus is previously ranked (using
the automatic sentence evaluation method) and only n samples are searched
on the corpus (sorted by translation quality).

This functionality will be added to a Distributed Translation Memory
system(Simões, Almeida, and Guinovart, 2004) such that computer assisted
translation tools can use them to facilitate the translators work.

5.6. Multi-word terminology extraction 93

5.6 Multi-word terminology extraction

Although we had discussed a very simple method for multi-word (biword)
bilingual terminology extraction on section 4.2, in this section we will present
a more general and interesting tool to extract bilingual multi-word terminol-
ogy.

Although there are known efficient methods for monolingual multi-term
terminology extraction, multilingual terminology extraction is still a problem.

5.6.1 Monolingual multi-word term extraction

For the described method we will use a monolingual terminology extractor
presented at (Dias, 2002) and with a C++ implementation discussed in (Gil,
2002). It is included in the senta project(SENTA, 2003). The extractor uses
an hybrid algorithm of the “mutual expectation association measure” and the
“GenLocalMaxs” algorithms.

Looking to the extractor as a black box, it uses a monolingual text and
extracts a set of word sequences, the respective sequence occurrence counter
and a measure value for mutual expectation:

mwuextractor : text −→ (MEvalue× occurrence× word?)?

In fact, this extractor gives something more than word sequences: it
returns patterns. This means that the word sequence can contain gaps:

mwuextractor : text −→ (MEvalue× occurrence× (word + gap)?)?

For the purpose of this thesis the entries which contain gaps will be re-
moved (ignored) as entries with small length (in characters).

Note that the multi-word terms obtained are extracted regarding to their
statistical properties. We cannot see all extracted multi-word terms as true
linguistic terms.

5.6.2 Multilingue multi-word term extraction algorithm

The algorithm we will use can be described as:

1. align the original parallel corpora and create the translation dictionary
as before;

94 5. NATools based Tools

2. use the monolingual terminology extract in the source corpora and filter
it, removing terms with gaps and small length entries;

3. use the word sequence alignment method (described on section 5.5) to
extract from the corpora possible translations from the original multi-
word unit;

Another option could be first to detect multi-word units, join them in a
single word (as done before on section 4.2) and align the corpus. Although
this is possible, has big problems: the corpus need a re-alignment and matrix
sizes grow.

So, the first option has some advantages:

• corpora is already aligned;

• multi-word term detector needs to be ran only in one of the corpus;

• the translation detection and extraction will be done with knowledge
about the languages, which should retrieve better results.

5.6.3 Results and evaluation

First test was done with the Bible. Although the extraction of multi-word
terms is more important for technical corpora, the Anacom corpus is too
noisy and European Parliament corpus are too big to be used directly by the
senta extractor.

The extractor was run on the Portuguese version of the bible for extraction
of multi-word units of maximum size five. The extractor returns all units with
more than two occurrences with size greater or equal to two and smaller than
five: found 22 531 units.

From the units found we need to remove gaps, as they cannot be trans-
lated8. Removing gaps, we remain with 7 295 entries. Figure 5.5 shows
the amount of different units found on relation to the number of times their
appear in the corpus.

From the figure we can check that there are a lot of units (about 3719)
which occur only two times in the corpus. Meanwhile, there is a small number
of units that occur a lot in the corpus.

8In fact, we could translate the string and maintain gaps. It would result on translations
with placeholders (parameterized translations). This is an idea for future work.

5.6. Multi-word terminology extraction 95

Figure 5.5: Relation between the number of units found and their occurrence
number on the corpus

We can say that many of the units found are not real multi-word terms
given the small number of occurrences on such a big corpus. This lead to the
filtering of the list of multi-word units removing units with too low occurrence.

If we remove multi-word units which occur less than five times in the
corpus we remain with 1 856 entires (about 25% of the original list). Although
this process removed a lot of noisy entries, they still exist.

To clean this list we can look to the found strings. Many of them (specially
noisy ones) are very small like “e ,” or “e o”. These entries can be removed by
string size (remove entries with less than some specific number of characters).

Looking to the specific list of the Bible the size chosen was three charac-
ters. This process removed 21 entries.

The word sequence alignment took about 2 minutes for these two thou-
sand entries (about 0.07 seconds for entry). Some of these translations are
very good (specially those which really are multi-word terms). Table 5.2
shows some good and bad translations. From this table we can detect some
problems on the sequence alignment algorithm:

• some really weird translations, like (13);

• articles disappearance, like samples (6) and (7);

• verbs disappearance, like sample (8);

96 5. NATools based Tools

• good translations with extra words, like (19);

Portuguese (input) English (output)
(1) todos os all the
(2) até ao until
(3) entre vós among you
(4) ninguém pode no one can
(5) aqueles que those who
(6) deste mundo world
(7) os judeus jews
(8) deus é god
(9) instintos egóıstas flesh
(10) pedras preciosas precious stones
(11) estas coisas these things
(12) dez mil ten thousand
(13) ao seu educating
(14) esṕırito santo holy spirit
(15) coisa consagrada a Javé thing dedicated to yahweh
(16) no deserto do Sinai the desert of sinai
(17) para sempre e eternamente forever and ever
(18) é caso de lepra is a case of leprosy
(19) perfume agradável a Javé sweet-smelling offering to yahweh
(20) a minha voz suplicante the voice of my pleading

Table 5.2: Multi-word terms translations

5.7 Statistical machine translation

Existing translations contain more solutions to more trans-
lation problems than any other existing resource.

(Isabelle, 1992)

Statistical machine translation is based on the idea that portions of any
sentence can be found on other texts, specially, on parallel ones. We can say
this is not the real truth, but happens for most of the cases.

Relying on this idea, the statistical translation aims to divide a sentence
on small chunks (three, four or more words) and search on parallel corpus for
those sequence occurrence. Found them, the word sequence alignment algo-
rithm can be used to determine the corresponding translations. Optimally,

5.7. Statistical machine translation 97

the translation for those chunks (with overlapping words) can be composed
together to form acceptable sentence translations. Of course the good trans-
lations observed on section 5.6 occurred because the word sequences appear
in the corpus, and most cases, more than one time.

With this in mind, we developed a statistical translator prototype which
will be discussed in this section.

For each sentence sα in the text we want to translate, we split it into
its constituent words (or tokens, as punctuation is considered a word in this
case): wα,1 . . . wα,n.

Then, until there are no words to translate, we take a sequence of k words
wα,i . . . wα,i+k−1 (normally 3 or 4) starting with i = 0 and try to find that
sequence on the base corpus we are using for the translation. This process
was explained in detail on section 5.5.

If the sequence is found, its aligned segment is added to the translation,
and we restart the process with i = i + k. If not found, we take a smaller
size segment (k = k − 1) and retry the alignment. This process is done until
we find a segment to align (in the last case, when we find a word to align).

Figure 5.6 shows a translation example using as base corpora ten percent
of the Portuguese/English european parliament corpus.

The example shows how this method works. First we split the sentence
into words. Then, a sliding window with size of three words starts trying to
translate our original message. In the example, this was done translating “no
parlamento europeu”. As this sequence was found on the corpus with more
than 0.5 percent of quality, the translation was used and we passed to the
next sequence: “existe uma grande”. When translating this one, the corpus
based translation had quality bellow 0.5 percent, it was discarded and the
window shortened (to “existe uma”). The process continues for the rest of
the sentence.

Analyzing this example, we can see:

• the first “no” was lost, given that its translation has a big number of
possible translations (so, a low translation probability);

• the 0.5 percent threshold for translation was too high, at least for the
translation of “existe uma grande”. In the other hand, we could not
lower it too much, or the wrong translation for “grande crise de” would
be chosen;

• some windows should be detected and translated before. For example,
the translation of “grande crise de identidade” could be better if “crise

98 5. NATools based Tools

1 no parlamento europeu existe uma grande crise de identidade

2 no parlamento europeu...
3 european parliament - 0.6215775385499

4 existe uma grande...
5 there was a great - 0.370103897837301

6 existe uma...
7 there exists a - 0.505804251879454

8 grande crise de...
9 crisis here - 0.342034876346588

10 grande crise...
11 crisis - 0.602234557271004

12 de identidade...
13 identity - 0.727038472890854

14 european parliament there exists a crisis identity

Figure 5.6: Example-Based Machine Translation example

de identidade” was translated all together, and “grande” translated in-
dependently.

Although there are a lot of problems in this kind of translation, better
results can be obtained if we:

• enlarge the corpus size — at the moment we need to implement a better
corpus search engine bacuase the present one is consuming too much
memory;

• diversify the corpus types — this example was based only on the Eu-
ropean parliament corpus; if we add some other corpora like Harry
Potter or Tom Sawyer the vocabulary known will enlarge and make
translations better.

5.8. Tools development conclusions 99

5.8 Tools development conclusions

This chapter shown how easy is to write applications using probabilistic trans-
lation dictionaries, using the NATools programmers interface. The tools pre-
sented are, them self, written using the NATools probabilistic dictionaries
API.

The described tools (some of them in prototype stage) show that the word
alignment is not the end of the road, but the beginning of new and different
roads of research.

100 5. NATools based Tools

Chapter 6

Conclusions

A conclusion is simply the place
where someone got tired of thinking.

During this dissertation work was done in the re-engineering of Twente-
Aligner, analysis of its application and usage of their resulting probabilistic
dictionaries using an application programmers interface. From this work, we
conclude:

• open-source tools are very useful resources for re-usability, to learn
new technologies and to be used as a cooperative development ambient
during time.

• NATools is a tools distributed with documentation, installation instruc-
tions and scripts, and a programmer interface toolkit to manage prob-
abilistic dictionaries. The distribution tarball includes command based
tools, programmer interface modules and tool prototypes.

• the re-engineering lead to a speed-up on real corpora alignment. The
use of slicing for big corpora makes its alignment possible: align small
chunks and at the end sum-up the resulting dictionaries.

• translation dictionaries obtained by NATools contain information not
present on traditional translation dictionaries. This probabilistic in-
formation is important in some areas, like disambiguation on cross-
language information retrieval. NATools probabilistic dictionaries can
be combined on traditional translation dictionaries, or used instead of

101

102 6. Conclusions

them. Also, they are a good bootstrap method for new translation
dictionaries.

• the pre-processing step added to the alignment process is very impor-
tant. It can be used to apply some transformations to the source
corpora, like to pass it through a morphological analyzer to enhance
alignment results.

• probabilistic translation dictionaries can be used for different tasks like:

– bilingual multi-word term extraction and creation of specific knowl-
edge area translation dictionaries;

– measure the probability of two sentences being a translation of
each other — although not a precise measure, it it good enough
to rank translations;

– segment alignment can be done using the measure of translation
probability. This is a promising technique for “by example” auto-
matic translation systems;

– to use these dictionaries on new applications is easy using the
programmers interface modules;

Future Work

Many things can be done both to enhance and use alignment results. We can
divide the future work basically on three different topics: work being done,
future work to enhance the aligner, and future work based on the aligner
results:

• at the moment we are working on three different ideas.

– A new file type is being developed to include lexicon and dictionary
files, such that most tools usage will be simplified;

– The programmers interface is being enriched with new functional-
ity; for example, a for_each method with alteration capabilities
— not only to create results based on the dictionary, but change
the dictionary;

– Probabilistic translation dictionaries will be available as a web-
service on a mega-dictionary project;

– They will be also used in the Distributed Translation Memory
web-services to search translations at word sequence level.

103

• new techniques can be used to enhance the alignment process and re-
sults.

– When aligning, use not only words but also their morphological
analysis. This can be helpful in two ways: first, when the same
word has two different meanings, depending on their morphologi-
cal analysis, the aligner can distinguish them; second, it is possible
to align words (or count their co-occurrence) only if they match
relatively the morphological analysis;

– The use of parsing techniques can be used to identify constructions
where the words can be glued before alignment to extract multi-
word expressions.

• probabilistic dictionaries can be used in new and exciting projects like
word-sense disambiguation, sentence alignment or machine translation.

104 6. Conclusions

Bibliography

Abaitua, Joseba. 2000. Tratamiento de corpora bilingües. In La ingenieria
lingǘıstica en la sociedad de la información, July.

Ahrenberg, Lars, Mikael Andersson, and Magnus Merkel, 2000. Parallel text
processing: Alignment and Use of Translation Corpora, volume 13 of Text,
Speech and Language Technology, chapter 5 — “A Knowledge lite ap-
proach to word alignment”, pages 97–116. Kluwer Academic Publishers.

Almeida, J. João and Ulisses Pinto. 1994. Jspell — um módulo para análise
léxica genérica de linguagem natural. In Actas do Congresso da Associ-
ação Portuguesa de Lingúıstica.

Almeida, J. João, Alberto Simões, José Castro, Bruno Martins, and Paulo
Silva. 2003. Projecto TerminUM. In CP3A 2003 – Workshop em Corpora
Paralelos, Aplicações e Algoritmos Associados, pages 7–14. Universidade
do Minho.

Almeida, José João, José Alves Castro, and Alberto Manuel Simões. 2002.
Extracção de corpora paralelo a partir da web: construção e disponibi-
lização. In Actas da Associação Portuguesa de Lingúıstica.

Almeida, José João, Alberto Simões, Diana Santos, and Paulo Rocha.
2004. Lingua::PT::Segmentador. http://www.cpan.org/modules/
by-module/Lingua/Lingua-PT-Segmentador-0.01%.tar.gz.

Almeida, José João, Alberto Manuel Simões, and José Alves Castro. 2002.
Grabbing parallel corpora from the web. In Sociedade Española para el
Procesamiento del Lenguaje Natural, 29, pages 13–20, Sep.

Caseli, Helena Medeiros. 2003. Alinhamento sentencial de textos paralelos
português-inglês. Master’s thesis, ICMC-USP, February.

105

106 Bibliography

Danielsson, Pernilla and Daniel Ridings. 1997. Practical presentation of a
“vanilla” aligner. In TELRI Workshop in alignment and exploitation of
texts, February.

Darwin, Ian. 1997. File::MMagic. http://www.cpan.org/modules/
by-module/File/File::MMagic-1.21.tar.gz.

de Castro, José Alves. 2004. Lingua::Identify. http://www.cpan.org/
modules/by-module/Lingua/Lingua-Identify-0.01.tar.g%z.

Dias, Gaël. 2002. Extraction Automatique d’Associations Lexicales à Par-
tir de Corpora. Ph.D. thesis, New University of Lisbon (Portugal) and
University of Orlëans (France), 17 December.

Frankenberg-Garcia, Ana and Diana Santos, 2001. Apresentando o COM-
PARA, um corpus português-inglês na Web. Cadernos de Tradução, Uni-
versidade de São Paulo.

Gale, William A. and Kenneth Ward Church. 1991. A program for aligning
sentences in bilingual corpora. In Meeting of the Association for Compu-
tational Linguistics, pages 177–184.

Gil, Alexandre Nuno Capinha. 2002. Extracção eficiente de padrões textuais
utilizando algoritmos e estruturas de dados avançadas. Master’s thesis,
Universidade Nova de Lisboa – Faculdade de Ciências e Tecnologia.

Grefenstette, Gregory. 1995. Comparing two language identification schemes.
In JADT 1995, 3rd International Conference on Statistical Analysis of
Textual Data.

Harris, B. 1988. Are you bitextual?, volume 7. Language Technology.

Hiemstra, Djoerd. 1998. Multilingual domain modeling in twenty-one: auto-
matic creation of a bi-directional lexicon from a parallel corpus. Technical
report, University of Twente, Parlevink Group.

Hiemstra, Djoerd. August 1996. Using statistical methods to create a bilin-
gual dictionary. Master’s thesis, Department of Computer Science, Uni-
versity of Twente.

IMS Corpus Workbench. 1994-2002. http://www.ims.uni-
stuttgart.de/projekte/CorpusWorkbench/.

Isabelle, Pierre. 1992. Bi-textual aids for translators. Proceedings of the
8th Annual Conference of the UW Centre for the New OED and Text
Research, pages 1–15.

Bibliography 107

ISO 639. 1992. Language Codes. International Organization for Standard-
ization.

Koehn, Philipp. 2002. Europarl: A multilingual corpus for evaluation of
machine translation. Draft, Unpublished.

König, Oliver Christ & Bruno M. Schulze & Anja Hofmann & Esther. March
8, 1999 (CQP V2.2). The IMS Corpus Workbench: Corpus Query Proces-
sor (CQP): User’s Manual. Institute for Natural Language Processing,
University of Stutgart.

Melamed, I. Dan. 1999. Bitext maps and alignment via pattern recognition.
Computational Linguistics, 25(1):107–130.

Melamed, I. Dan. 2000. Models of translational equivalence among words.
Computational Linguistics, 26(2):221–249.

Overture Systems, Inc. 2004. Altavista. http://www.altavista.com.

Resnik, Philip. 1998. Parallel strands: A preliminary investigation into
mining the web for bilingual text. In L.Gerber D. Farwell and E. Hovy,
editors, Machine Translation and the Information Soup (AMTA-98). Lec-
ture Notes in Artificial Intelligence 1529, Springer.

Resnik, Philip and I. Dan Melamed. 1997. Semi-automatic acquisition of
domain-specific translation lexicons. In 7th ACL Conference on Applied
Natural Language Processing, pages 340–347.

Rocha, Paulo Alexandre and Diana Santos. 2000. CETEMPúblico: Um cor-
pus de grandes dimensões de linguagem jornaĺıstica portuguesa. In Actas
do V Encontro para o processamento computacional da ĺıngua portuguesa
escrita e falada (PROPOR’2000), pages 131–140. Atibaia, São Paulo,
Brasil, 19 a 22 de Novembro.

Santos, Diana and Eckhard Bick. 2000. Providing internet access to por-
tuguese corpora: the ac/dc project. In Second International Confer-
ence on Language Resources and Evaluation, LREC 2000, pages 205–210,
Athens, May-June.

Santos, Diana, Belinda Maia, and Lúıs Sarmento. 2004. Gathering empirical
data to evaluate mt from english to portuguese. In Workshop on the
Amazing Utility of Parallel and Comparable Corpora, Lisboa, Portugal,
May.

108 Bibliography

Santos, Diana, Paulo Rocha, Lúıs Sarmento, Alberto Simões, and Lúıs Costa.
2004. Linguateca — centro de recursos distribúıdo para a ĺıngua por-
tuguesa. http://www.linguateca.pt.

SENTA. 2003. Software for the extraction of n-ary textual associations
(senta). http://senta.di.ubi.pt/.

Simões, Alberto. 2003. Alinhamento de corpora paralelos. In CP3A 2003
– Workshop em Corpora Paralelos: aplicações e algoritmos associados,
pages 71–77. Universidade do Minho. Braga, Jun. 2003.

Simões, Alberto and José João Almeida. 2004. XML::TMX. http://www.
cpan.org/modules/by-module/XML/XML-TMX-0.06.tar.gz.

Simões, Alberto, José João Almeida, and Xavier Gomez Guinovart. 2004.
Memórias de tradução distribúıdas. In José Carlos Ramalho and Alberto
Simões, editors, XATA2004 - XML, Aplicações e Tecnologias Associadas,
pages 59–68, February.

Simões, Alberto M. and J. João Almeida. 2003. Natools – a statistical word
aligner workbench. SEPLN, September.

Simões, Alberto Manuel and José João Almeida. 2001. jspell.pm – um
módulo de análise morfológica para uso em processamento de linguagem
natural. In Actas da Associaçáo Portuguêsa de Lingúıstica, pages 485–
495.

Tiedemann, Jörg. 1997. Automatical lexicon extraction from aligned bilin-
gual corpora. Technical report, University of Magdeburg.

Tiedemann, Jörg. 2003. Recycling Translations - Extraction of Lexical Data
from Parallel Corpora and their Application in Natural Language Pro-
cessing. Ph.D. thesis, Studia Linguistica Upsaliensia 1.

Tiedemann, Jörg and Lars Nygaard. 2003. Opus - an open source parallel
corpus. In The 13th Nordic Conference on Computational Linguistics,
Reykjavik. University of Iceland.

Tiedemann, Jörg and Lars Nygaard. 2004. Opus - an open source parallel
corpus — webpage. http://logos.uio.no/opus/, April.

TRADOS, Ireland Ltd, 2001. Advanced Alignment Guide. Dublin, Ireland,
July.

Bibliography 109

Véronis, Jean, editor. 2000. Parallel Text Processing: alignment and use of
translation corpora, volume 13 of Text speech and language technology.
Kluwer Academic Publishers.

Yaacov Choueka, Ehud S. Canley and Ide Dagan, 2000. Parallel text pro-
cessing: Alignment and Use of Translation Corpora, volume 13 of Text,
Speech and Language Technology, chapter 4 — “A comprehensive bilin-
gual word alignment system — aplication to disparate languages: Hebrew
and English”, pages 69–98. Kluwer Academic Publishers.

Zipf, George Kingsley. 1932. Selective studies and the principle of relative
frequency in language.

110 Bibliography

Appendix A

Mathematical Notation

The good Christian should beware of mathematicians and all
those who make empty prophecies. The danger already exists
that mathematicians have made a covenant with the devil to
darken the spirit and confine man in the bonds of Hell.

St. Augustine

This appendix is a quick introduction to the mathematical notation and
calculus behind the data representations used in this thesis.

Data or object types are normally represented by capitalized strings. For
example, Lex represents an object (in fact, a file which we can see as an
object).

To combine data types we have different operators:

• the product of data types (Lex × Crp) represents the aggregation of
these simple data types on a compound one, with more than one field.
We can see this operator as structs from the C language.

Product is associative:

(LexA× Crp)× LexB ≡ LexA× (Crp× LexB)
≡ LexA× Crp× LexB

When we have a data type like Lex × Lex × Lex . . . × Lex we can
abbreviate using Lexn, where n is the number of items in the product.
In cases where n can change (like lists, or sequences) we use a star
(Lex?).

111

112 A. Mathematical Notation

Over this construct it is possible to use a function named πi where i is an
integer. This function returns the i-th type of a product construction.
For example:

π1(LexA× LexB × LexC) ≡ LexA

π3(LexA× LexB × LexC) ≡ LexC

• the co-product is represented by the sum operator (+) and is an aggre-
gation of data-types where only some one of the types can exist at a
time. See it as the union construct of the C language.

LexA + LexB means a data type which holds one value of the data
type LexA or one value of the data type LexB. It is associative:

LexA + (LexB + LexC) ≡ (LexA + LexB) + LexC

≡ LexA + LexB + LexC

• the finite function is represented by an incomplete arrow (⇀) and is a
map between two data types. It can be seen as an hash table or an
associative array (where indices are not necessarily integers).

ID ⇀ LexA maps identifiers to objects of type LexA. If we have
Map ≡ ID ⇀ LexA, then:

dom(Map) ≡ ID

ran(Map) ≡ LexA

and Map(id) is the value of type LexA associated with an identifier id
of type ID.

Finite functions are not associative:

ID ⇀ (Lang ⇀ Lex) 6≡ (ID ⇀ Lang) ⇀ Lex.

Although the operator is not associative, we normally associate at the
right, which means:

ID ⇀ (Lang ⇀ Lex) ≡ ID ⇀ Lang ⇀ Lex.

• the NULL data-type (or any other data-type which has only one value)
is represented by 1. With this in mind, we can write the following rule:

1×A ≡ A

This data-type is very used to represent a C pointer. In fact, A + 1
represents an object of type A (pointer pointing to an A object) or a 1
(pointer pointing to NULL).

113

Some rules can be proven using this calculus. Since some of them are
useful to understand the mathematics used in this document, they are repro-
duced here:

• product is distributive over the co-product:

A×B + A× C ≡ A× (B + C)

• a sequence is map from the position to the element in that position

An ≡ INn ⇀ A

• a product as key for a finite function can be changed to a finite function:

A×B ⇀ C ≡ A ⇀ (B ⇀ C)

114 A. Mathematical Notation

Appendix B

Software Documentation

Documentation is like sex: when it is good, it is very, very
good; and when it is bad, it is better than nothing.

Dick Brandon

This section includes documentation for commands and modules devel-
oped and which are included in NATools. Notice that this tool is being devel-
oped continuously: so, for up-to-date documentation check the distribution
tarball or the CVS web-site (start at http://natura.di.uminho.pt).

B.1 Software Installation

NATools is distributed in a tarball as GPL open-source software. It is mainly
written in C and Perl with configuration and installation processes written in
autoconf and automake, as usual on gnu software.

B.1.1 Requirements

NATools uses a shell configuration script and a makefile oriented build sys-
tem. You would need also a C compiler and Perl.

Necessary C libraries include:

• common C math library;

• gnu zlib library for access to compresses files, available from http:
//www.gnu.org;

115

116 B. Software Documentation

• glib-2.0 library for some data-structures, code portability and future
unicode support. You can find it at http://www.gtk.org.

• and a bunch of Perl modules, all available from CPAN: http://www.
cpan.org;

B.1.2 Compilation

The compilation process should be simple, as it is handled at all by automake
and autoconf. The following steps should do the task:

1 tar zxvf NATools-x.x.tar.gz
2 cd NATools-x.x
3 ./configure
4 make
5 make check
6 make install

To the configure script it is possible to use a set of switches which can
be viewed using ./configure --help.

B.2 nat-this

The terminology extractor top-level script to apply to a TMX file.

Synopsis

1 nat-this file.tmx

Description

This script is a top level layer to the nat-these script, which aligns directly
a TMX file. The script extract the languages to two separate files and calls
nat-these.

See also

nat-these, NATools documentation;

B.3. nat-pre 117

Copyright

1 Copyright (C)2002-2003 Alberto Simoes and Jose Joao Almeida

2 GNU GENERAL PUBLIC LICENSE (LGPL) Version 2 (June 1991)

B.3 nat-pre

A pre-processor for parallel texts, counting words, checking sentence numbers,
and creating auxiliary files.

Synopsis

1 nat-pre <crp-text1> <crp-text2> <lex1> <lex2> <crp1> <crp2>

Description

This tools is integrated with nat-these command, and is not intended to be
used directly by the user. It is an independent command so that we can use
it inside other programs and/or projects.

The tool objective is to pre-process parallel corpora texts and create aux-
iliary files, to access directly corpus and lexicon information.

The crp-text1 and crp-text2 should be in text format, and should be
sentence aligned texts. Each one of these texts should contain lines with the
single character $ as sentence separator. As the text is aligned, the number
of sentences from both text files should be the same.

To use it, if you have the aligned text files txt_PT and txt_EN, you would
say:

1 nat-pre txt_PT txt_EN txt_PT.lex txt_EN.lex txt_PT.crp txt_PT.lex

Where the .lex files are lexical files and .crp files are corpus files.
If you process more than one pair of files, giving the same lexical file

names, identifiers will be reused, and lexical files expanded.

Internals

Corpus and lexical files are written on binary format, and can be accessed
using NATools source code. Here is a brief description of their format:

118 B. Software Documentation

lexical files

these files describe words used on the corpus. For each different word
(without comparing cases) it is associated an integer identifier. This
file describe this relation.

The format for this file (binary) is:

1 number of words (unsigned integer, 32 bits)

2 ’words number’ times:
3 word identifier (unsigned integer, 32 bits)
4 word occurrences (unsigned integer, 32 bits)
5 word (character sequence, ending with a null)

If you need to access directly these files you should download the NA-
Tools source and use the src/words.[ch] functions.

corpus files

these files describe corpora texts, where words were substituted by the
corresponding integer identifier.

The binary format for this gzipped file is:

1 corpus size: number of words (unsigned integer, 32 bits)

2 corpus size times:
3 word identifier (unsigned integer, 32 bits)
4 flags set (character, 8 different flags)

If you need to access directly these files you should download the NA-
Tools source and use the src/corpus.[ch] functions.

The flags used are:

1. x1
the word appeared all in UPPERCASE;

2. x2
the word appeared Capitalized;

Two other files are created also, named .crp.index which index offsets
for sentences on corpus files.

See also

NATools documentation;

B.4. nat-initmat 119

Copyright

1 Copyright (C)2002-2003 Alberto Simoes and Jose Joao Almeida
2 Copyright (C)1998 Djoerd Hiemstra

3 GNU GENERAL PUBLIC LICENSE (LGPL) Version 2 (June 1991)

B.4 nat-initmat

Initialize a sparse matrix with words co-occurrence.

Synopsis

1 nat-initmat <crp1> <crp2> [<exc1> <exc2>] <matrix>

Description

This tool is used internally by nat-these and is not intended to be used
independently. Basically, this tool takes two corpora files created by nat-
pre and allocates a sparse matrix, where rows indexes correspond to word
identifiers on the source corpus, and column indexes correspond to word
identifiers on the target corpus. Cells count the words co-occurrence on the
same sentence. The matrix file is then created with the matrix information.

Optionally, you can pass to the system two exclude lists, as returned by
the nat-words2id tool. This words will be ignored, and counting will not be
done for them.

The matrix is saved and can be processed later by EM-Algorithm methods
IPFP (nat-ipfp), Sample A (nat-samplea) and Sample B (nat-sampleb).

See also

nat-words2id, nat-pre, NATools documentation

Copyright

1 Copyright (C)2002-2003 Alberto Simoes and Jose Joao Almeida
2 Copyright (C)1998 Djoerd Hiemstra

3 GNU GENERAL PUBLIC LICENSE (LGPL) Version 2 (June 1991)

120 B. Software Documentation

B.5 nat-ipfp

One of the three possible EM-Algorithm implementations of NATools

Synopsis

1 nat-ipfp <steps> <crp1> <crp2> <mat-in> <mat-out>

Description

This program is not intended to be used independently. It is used internally
by nat-these script.

IPFP is an iterative method for the EM-Algorithm. To use it, you must
supply the number of times the method should iterate, both corpus files
(created by nat-pre), the sparse co-ocurrence matrix file (created by nat-
initmat) and the file name where the enhanced matrix should be placed.

See also

NATools, nat-samplea, nat-sampleb

Copyright

1 Copyright (C)2002-2003 Alberto Simoes and Jose Joao Almeida
2 Copyright (C)1998 Djoerd Hiemstra

3 GNU GENERAL PUBLIC LICENSE (LGPL) Version 2 (June 1991)

B.6 nat-samplea

One of the three possible EM-Algorithm implementations of NATools

Synopsis

1 nat-samplea <steps> <crp1> <crp2> <mat-in> <mat-out>

Description

This program is not intended to be used independently. It is used internally
by nat-these script.

B.7. nat-sampleb 121

Sample-a is an iterative method for the EM-Algorithm. To use it, you
must supply the number of times the method should iterate, both corpus files
(created by nat-pre), the sparse co-ocurrence matrix file (created by nat-
initmat) and the file name where the enhanced matrix should be placed.

See also

NATools, nat-ipfp, nat-sampleb

Copyright

1 Copyright (C)2002-2003 Alberto Simoes and Jose Joao Almeida
2 Copyright (C)1998 Djoerd Hiemstra

3 GNU GENERAL PUBLIC LICENSE (LGPL) Version 2 (June 1991)

B.7 nat-sampleb

One of the three possible EM-Algorithm implementations of NATools

Synopsis

1 nat-sampleb <steps> <crp1> <crp2> <mat-in> <mat-out>

Description

This program is not intended to be used independently. It is used internally
by nat-these script.

Sample-b is an iterative method for the EM-Algorithm. To use it, you
must supply the number of times the method should iterate, both corpus files
(created by nat-pre), the sparse co-ocurrence matrix file (created by nat-
initmat) and the file name where the enhanced matrix should be placed.

See also

NATools, nat-ipfp, nat-samplea

122 B. Software Documentation

Copyright

1 Copyright (C)2002-2003 Alberto Simoes and Jose Joao Almeida
2 Copyright (C)1998 Djoerd Hiemstra

3 GNU GENERAL PUBLIC LICENSE (LGPL) Version 2 (June 1991)

B.8 nat-mat2dic

A translator from co-occurrence matrices to a dictionary file.

Synopsis

1 nat-mat2dic <mat-in> <matdic-out>

Description

This command is not intended to be used independently. It is used in con-
junction with nat-ipfp, nat-samplea or nat-sampleb and nat-post.

Translates the co-occurrence matrix after the application of EM-Algorithm.
The dictionary is an intermediary format used by nat-post to write the dic-
tionary on a readable format.

See also

nat-initmat, nat-ipfp, nat-samplea, nat-sampleb and remaining NATools doc-
umentation.

Copyright

1 Copyright (C)2002-2003 Alberto Simoes and Jose Joao Almeida
2 Copyright (C)1998 Djoerd Hiemstra

3 GNU GENERAL PUBLIC LICENSE (LGPL) Version 2 (June 1991)

B.9 nat-postbin

A translator from dictionary file to the Perl readable format.

B.10. nat-css 123

Synopsis

1 nat-postbin <matdic-in> <lex1> <lex2> <out-dic1> <out-dic2>

Description

This command is not intended to be used independently.
nat-postbub reads the dictionary created with nat-mat2dic and lexicon

files created by the nat-pre tool, to write two dictionary files on a very small
binary format.

The internal format can change a lot, so please use NATools to manage
these files.

The format is a gzipped binary file. First 32 bits unsigned integer is the
number of entries in the dictionary. Follows a sequence of MAXENTRY size,
with pairs of translation identifier (32 bits unsigned integer) and probability
(32 bits float).

See also

nat-pre, nat-mat2dic and remaining NATools documentation.

Copyright

1 Copyright (C)2002-2003 Alberto Simoes and Jose Joao Almeida
2 Copyright (C)1998 Djoerd Hiemstra

3 GNU GENERAL PUBLIC LICENSE (LGPL) Version 2 (June 1991)

B.10 nat-css

Corpus Search Sentence utility.

Synopsis

1 nat-css [-q <rank>] <lex1> <crp1> <lex2> <crp2> [<sent_nr> | all]

Description

nat-css is used after the alignment process (using, for example, nat-these
tool). Its objective is to search sentences where one word occurs.

124 B. Software Documentation

The tool has two methods of use:

1 nat-css [-q <rank>] <lex1> <crp1> <lex2> <crp2>

where the tool opens the two lexicon files and the two corpora files in
interactive mode. The user writes a word or a word sequence and the tool
finds its occurrences on the corpus, printing the sentence from crp1 where
it occurs, and aligned sentence from crp2. If the rank is provided, the tool
prints the ranking or quality of the alignment, too.

The other method of operation is:

1 nat-css [-q <rank>] <lex1> <crp1> <lex2> <crp2> (<sent_nr> | all)

where the tool prints the pair of sentences number sent_nr or all the
sentences (if the all option is used). Again, if rank is used, the tool prints
the ranking or quality of the alignment.

See also

nat-rank, nat-these, NATools documentation;

Copyright

1 Copyright (C)2002-2003 Alberto Simoes and Jose Joao Almeida
2 Copyright (C)1998 Djoerd Hiemstra

3 GNU GENERAL PUBLIC LICENSE (LGPL) Version 2 (June 1991)

B.11 NAT::Lexicon

Perl extension to encapsulate NATools Lexicon files

Synopsis

1 use NAT::Lexicon;

2 $lex = NAT::Lexicon::open("file.lex");

3 $word = $lex->word_from_id(2);

4 $id = $lex->id_from_word("cavalo");

B.11. NAT::Lexicon 125

5 @ids = $lex->sentence_to_ids("era uma vez um gato maltez");

6 $sentence = $lex->ids_to_sentence(10,2,3,2,5,4,3,2,5);

7 $lex->close;

Description

This module encapsulates the NATools Lexicon files, making them accessible
using Perl. The implementation is based on OO philosophy. First, you must
open a lexicon file using:

1 $lex = NAT::Lexicon::open("lexicon.file.lex");

When you have all done, do not forget to close it. This makes some
memory frees, and is welcome for the process of opening new lexicon files.

1 $lex->close;

Lexicon files map words to identifiers and vice-versa. Its usage is simple:
use

1 $lex->id_from_word($word)

to get an id for a word. Use

1 $lex->word_from_id($id)

to get back the word from the id. If you need to make big quantities of
conversions to construct or parse a sentence use ids_to_sentence or sen-
tence_to_ids respectively.

See also

See perl(1) and NATools documentation.

AUTHOR

Alberto Manuel Brandao Simoes, <albie@alfarrabio.di.uminho.pt>

126 B. Software Documentation

Copyright AND LICENSE

Copyright 2002-2004 by NATURA Project http://natura.di.uminho.pt
This library is free software; you can redistribute it and/or modify it

under the GNU General Public License 2, which you should find on parent
directory. Distribution of this module should be done including all NATools
package, with respective copyright notice.

B.12 NAT::Dict

Perl extension to encapsulate Dict interface

Synopsis

1 use NAT::Dict;

2 $dic = NAT::Dict::open("file.bin");

3 $dic->save($filename);
4 $dic->close;

5 $dic->add($dic2);

6 $dic->size();

7 $dic->exists($id);
8 $dic->occ($id);
9 $dic->vals($id);

10 $dic->for_each(sub{ ... });

Description

The Dict files (with extension .bin) created by NATools, are mapping from
identifiers of words on one corpus, to identifiers of words on another corpus.
Thus, all operations performed by this module uses identifiers instead of
words.

You can open the dictionary using

1 $dic = NAT::Dict::open("dic.bin");

B.12. NAT::Dict 127

Then, all operations are available by methods, in a OO fashion. After
using the dictionary, do not forget to close it using

1 $dic->close().

The add method receives a dictionary object and adds it with the current
contents. Notice that both dictionaries need to be congruent relatively to
word identifiers. After adding, do not forget to save, if you with, with

1 $dic->save("new.dic.bin");

The size method returns the total number of words on the corpus (the
sum of all word occurrences). To get the number of occurrences for a specific
word, use the occ method, passing as parameter the word identifier.

To check if an identifier exists in the dictionary, you can use the exists
method which returns a boolean value.

The vals method returns an hash table of probable translations for the
identifier supplied. The hash contains as keys the identifiers of the possible
translations, and as values their probability of being a translation.

Finally, the for_each method makes you able to cycle through all word
on the dictionary. It receives a funcion reference as argument.

1 $dic->for_each(sub{ ... });

Each time the function is called, the following is passed as @_:

1 word => $id , occ => $occ , vals => $vals

where $id is the word identifier, $occ the result of calling occ with that
word, and $vals is the result of calling vals with that word.

See also

See perl(1) and NATools documentation.

AUTHOR

Alberto Manuel Brandao Simoes, <albie@alfarrabio.di.uminho.pt>

128 B. Software Documentation

Copyright AND LICENSE

Copyright 2002-2004 by NATURA Project http://natura.di.uminho.pt
This library is free software; you can redistribute it and/or modify it

under the GNU General Public License 2, which you should find on parent
directory. Distribution of this module should be done including all NATools
package, with respective copyright notice.

