
Directory Attribute Grammars

Alberto Manuel Simões
�

, José João Almeida
�

, Pedro Rangel Henriques
�

�

Departamento de Informática – Universidadeo do Minho
campus de Gualtar – 4710 Braga, Portugal

albie@alfarrabio.di.uminho.pr, jj@di.uminho.pt, prh@di.uminho.pt

Abstract. To publish documents we must take care of documents’ structure and
their formal layout. If a large document is composed by a lot of parts including
text, images, code and so on, they will lay in different files; so file organization
should also be a concern in the mind of the publisher. Normally, we focus on the
structure and design, and forget file organization until this becomes a trouble,
at production stage.
The most common way to organize files is using the file system; directory struc-
ture is very flexible but quickly becomes disorganized.
In this paper we present a way to turn a file system tree into an organized
web page, using a grammatical formalism (hereafter called Directory Attribute
Grammars: DAG = AG + Makefiles).
We developed a tool (similar to a compiler) to publish different formats on the
web, automatically, from the file structure and a DAG specification. This tool al-
lows us to maintain a huge number of documents of different types, and process
them systematically.

1. Introduction

This paper is concerned with Directory Attribute Grammars (DAG1) aimed at the sys-
tematic publishing of documents, as web pages and other electronic formats, from files
organized in a file system tree.

We can see DAG as a Domain Specific Language[van Deursen et al., 2000,
Lämmel and Mernik, 2001] to describe directories’ structure and the way we can pro-
cess each file in the tree. It is a specification language designed specially for that purpose.
On one hand, allows to describe the file system structure and the file processing in a very
easy way and, on other hand embed an engine to process the files in a way very similar to
the Linux makefiles.

The motivation for this work arose from a heavy task we were faced with some
time ago: we needed to organize and publish three hundred XML[Consortium, 1998]
documents of different kinds and related image documents (more than five hundred).

The documents to be processed were already stored in the filesystem, organized
by directories accordingly with their origin. The task we should implement was, roughly
speaking, a set of translations from XML to HTML.

1We know that DAG usually stands for Directed Acyclic Graphs. Forget that meaning while reading our
ideas.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55602323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We would like, not only to make possible the navigation over the archive, but also
to publish the documents in different formats: HTML, Postscript, etc (we should ensure
an easy way to produce more formats when needed). These other format can be of any
kind, which lead us to produce a dynamic catalog whenever the document repository is
changed.

At a first stage, we used the file system as a storing facility because we needed to
store the information and did not have the time not the hardware to set up a database tool.
This way, the file system was the most simple way to store the information, because:

� it is an easy and natural way to store heterogeneous information;
� information is kept in text format, independent of the operating system or tools;
� it is possible to use operating system commands and tools (like CVS, makefiles,

converting utilities, scripting languages, etc.) to maintain and process the docu-
ment files; For example, we keep the file system tree under CVS making it possible
to checkout, at any moment, a recent copy and update in little time the web-site; it
makes possible to correct and edit documents in a concurrent way which is crucial
for cooperative work;

� it is possible to use file system attributes (like time stamps, etc.) to manage in a
smart way the document collection (for instance, avoiding to rebuild unnecessary
documents);

However this approach has a drawback: the file system quickly can become
chaotic and disorganized. This was the reason why we built the DAG tool, to process
the documents tree and to check the file system structure. It main goals are:

� to define a formalism to specify what can be found in the file-system (semantic
structure) to avoid chaos;

� to include in that declarative formalism a description of the file-system transfor-
mations (to build different views of the given documents, to establish relations and
links between them, or to extract other documents from the initial ones);

� to develop a tool to interpret the previous specification, executing the desired trans-
formations.

The above referred transformations should be thought of as a structural processing
of the file-system. Moreover, we do not want to write different processing rules for all
particular element of the file-system. Each rule should affect all elements of the same
type.

While the attribute grammar formalism is good to define our semantic structure
and transformation goals, we want to include some of makefiles’ concepts, mainly the de-
pendencies strategy and the timestamps to avoid unnecessary regeneration of files (some
sort of file system incremental evaluation).

In order to assure an easy and complete access to the set of tools available in the
operating system, we want do express the transformation rules in a scripting language2.

In this paper we will present the Directory Attribute Grammars formalism (section
2.), followed by a detailed example (section 3.). Section 4. is devoted to the Directory

2In the current version, perl[Christiansen and Torkington, 1999, Wall et al.,] was chosen.

2

Attribute Grammars processor. In section 5. we describe an application of DAG and its
processor to a real size case and we show some measures to assess the performance of the
proposed tool.

2. Approaching File System processing with Grammars

An Attribute Grammar [Knuth, 1968, Waite and Goos, 1984, Waite and Carter, 1993,
Deransart and Jourdan, 1990, Alblas and Melichar, 1991] (AG for short) is a well ac-
cepted formalism, in the area of compiler development and language processing, to spec-
ify the syntax and static semantics of (programming) languages. AG is a declarative
formalism, supported on a traditional Context Free Grammar (CFG), that can be extended
to couple also with the dynamic semantics, allowing for the specification of the translator.

An AG is just a standard notation to describe a language and its
transformation, but it is well known that a program to process sentences of
that language can the derived systematically from the specification (the AG).
This systematic construction can be done automatically by a program that
is called a compiler generator3(CG for short) [Johnson, 1975, Dencker, 1980,
Kastens et al., 1982, Kastens, 1991, Parr et al., 1993, Gray et al., 1990, Kasters, 1994,
Sloam, 1994, Saraiva, 2000, Mernik et al., 2000].

A processor developed according to an AG will be called a semantics-directed
translator, in opposition to the traditional syntax-directed translator based on a CFG
with semantic actions. Such a processor is composed by the following modules, that can
be pipelined: a lexical analyzer (that tokenizes the input (source text)); a parser (that per-
forms the syntactic analysis of the token stream to rebuild the derivation tree); a semantic
analyzer (that evaluates the attributes according to semantic equations and checks for
static consistency verifying contextual conditions); and the translator (that uses structural
information and attribute values to produce the desired output).

The processor so far described takes two inputs—an attribute grammar and a
source text (a sentence of the language defined by that AG)—and delivers as output some
result derived from the source text.

That approach—use of an AG to specify a language and its transformation, and
a CG to produce the processor code—saves programming time and is an error-pruning
strategy; it is in fact a nice way to reuse optimized code.

We decided to apply this principle to our problem of processing file-system direc-
tories to catalog and transform documents. For that purpose we establish the following
correspondence between grammar components and file-system components:

� files are terminal symbols;
� directories are non-terminal symbols
� the root directory is the axiom, or start-symbol;
� the structure of each directory (containing other directories and files) is described

by productions, or derivation rules;
� all the information characterizing files and directories—i.e. type, time

stamp, modes, etc.—is described by means of attributes associated with the
3Generally speaking, it is in fact a language processor generator

3

(terminal/non-terminal) symbols.
� semantic equations associated to the productions define how to propagate attribute

values over the tree and how to compute the value of derived attributes;
� translation rules (based on attribute values, also associated with productions) spec-

ify the way the documents in the file-system directories will be transformed.

In a similar way, we can develop a tool to process file-system documents from
the new formalism (introduced above) that we call DAG. Obviously that tool acts like a
language processor generated from an AG.

The two last layers—the semantic analyzer and the translator—exhibit a behavior
very close to their respective counterparts in a traditional language processor.

However, the lexical analyzer has no need to recognize terminals concatenating
source text characters, because files are there with its name. Also the parser has a part
of its task simplified, because the directory tree is already built; what happens is an
operation like tree-pattern matching with variable instantiation. In some sense, in this
case the lexical and syntactic analyzers resemble a structured editor (syntax-directed ed-
itor) [Saraiva, 2000, Reps and Teitelbaum, 1989, GrammaTech, 1995]: it knows the syn-
tax tree for the input and just reads (get values) the terminals belonging to classes (those
that are not simple syntactic sugar. but instead have semantic values).

To use the tool we need a language to describe the DAG. The meta-language for
that is defined in the grammar bellow.

We chose a concise notation (Perl like) which means the language is very min-
imalist concerning syntactic sugar (no keywords) and also structurally minimalist (no
declaration section). In other words, it follows a scripting language approach.

1 dag_file: rules

2 rules: rules attr_rules
3 | attr_rules

4 attr_rules: rule attrs

5 rule: IDENTIFIER ’;’
6 | IDENTIFIER ’--->’ rhs ’;’

7 rhs: rhs quantifier
8 | quantifier

9 quantifier: IDENTIFIER ’*’
10 | IDENTIFIER ’?’
11 | IDENTIFIER ’+’
12 | IDENTIFIER

13 attrs:
14 | attrs attr

15 attr: ’::’ attribute
16 | ’::’ code

17 attribute: IDENTIFIER list (’=’|’&’) ’{’ PERL_CODE ’}’

4

18 code: ’{’ PERL_CODE ’}’

19 list:
20 | ’[’ dep_list ’]’

21 dep_list: IDENTIFIER
22 | dep_list ’,’ IDENTIFIER

Reading the grammar, each file consists of a set of rules. These rules, like normal
grammar rules, consists of a left hand side (the name of the non-terminal symbol —
directory type) and a right hand side with the directory structure. This structure is nothing
more than a sequence of symbols, each one with a quantifier. These identifiers represent
each type of file or directory found. The quantifier represents the number of elements of
that type we can found: any number of times (*), one or more times (+), none or one time
(?) and if no quantifier is written, exactly one time.

For each rule we can write a section of code to be executed before any attribute
calculation, and then any number of attributes equations. There are two special kind of
attributes code: it can return the contents of the attribute or write it directly to disk. This
difference can be noticed in the syntax, which can be ‘=’ or ‘&’.

Each attribute can contain a list of dependencies. These specify the order attributes
should be built.

3. Writing a grammar: an example
For a better understanding, let us see a simple example. Suppose that we want to collect
photos taken in different places/countries around the world, and place them into separate
directories, one directory for each continent and, inside it, a directory for each country.

Then, we will call Continent to directories which have directories inside, and
Country to the other directories. We want to make, for each Continent, a HTML file
with a list of countries inside. For each Country, it would be nice to make a HTML file
with photo thumbnails and respective legends. In fact, we can include an XML document
for each Country with a small legend for each photograph.

So, this structure contains at least four different types of files and directories:
Continent, Country, Photo and XML (a file with photo legends).

Like in standard parser generation, we need a lexical analyzer and a syntax an-
alyzer. On DAG, syntax is the directory structure accepted. The lexical analyzer is a
function from file to type. This function will analyze each file name and return the file’s
type:

���������
	 � 	�������������������������
���������
	���� ! "##$ ##% if

�'&�()�+*,�-� �. if
���/&�()��*
&0��� *
�1��2�*�34�+56��3����3��73��

else
*
�1��2�*�34�859��2�3��*��,

else
. if

�;:<
’*.xml’

=�1��2�=3>��?A@CBD
if
�;:<

’*.jpg’
=�1��2�=3>�+E9�����F�=

Here is the grammar:

5

Attribute Name File Directory
foo _foo_name name/_foo_
.bar __name.bar name/__.bar

foo.bar _foo_name.bar name/_foo_.bar
!foo _name/foo name/_/foo

Table 1: Attribute creation for element name name

1 Continent ---> Country*;

2 Country ---> Photo* XML;

The files we want to generate can be viewed as attributes of the grammar. So,
we can create attributes associated to the grammar symbols that are no more than simple
HTML or image files, stored in the file-system.

As a implementation detail, attribute names are mapped to the real path in the
file-system following a set of internal rules expressed in table 1. Each attribute has a file
name beginning with "_" in order to be not confused with terminal symbols.

It is possible to associate attribute creation for each terminal or non terminal sym-
bol from the grammar. This way, we can write a small perl function to create thumbnails.
Using the Linux convert command, it is very easy.

When we are writing the attribute equations, we need to know the real path of the
files to convert and the real path of the new files to be created (attributes). The Directory
Attribute Grammars has a variable for the current rule information: $_.

1 Continent ---> Country*;

2 Country ---> Photo* XML;

3 Photo;

4 ::TN do{ ‘convert -geometry ’150x150>’ ’$_->{_}’ ’$_->{TN}’‘; }

This grammar differs from the previous one on the last two lines.
Line 3 – we are talking about the Photo type files.
Line 4 – defines the semantic equation for calculating the attribute ::TN4. The four dots
symbol (::) is just syntactic sugar.

In this case, the semantic equation has the form do{...} which means that the
function creates the attribute file itself (in a imperative way).We will see another way
semantic equations can work.

This semantic equation calls the convert command and the only strange thing is
the variable $_ that contains a reference for a hash. This variable represents the current
rule object. The underscore element ($_->{_}) is the name of the file we are processing
and the other ($_->{TN}) is the ::TN attribute file name.

4We use TN to abbreviate thumbnail – a tiny view of the photo.

6

To create a thumbnail gallery for each country we can create another attribute
but this time to the Country rule. If the directory name is France and we want to
create an attribute inside it (as attributes start with an underscore) DAG will call it
France/_index_.html.

1 Continent ---> Country*;

2 Country ---> Photo* XML;

3 ::index.html ={
4 join("\n",map { "
<a href=’".
5 get_legend($XML->{_},$_->{_}).
6 "’>{TN}’>" }
7 @Photo);
8 }

9 Photo;

10 ::TN do{ ‘convert -geometry ’150x150>’ ’$_->{_}’ ’$_->{TN}’‘; }

The semantic equation for this attribute is a little more complex. The general form
={...}means that the following function will return a string that will be the contents of
the attribute file: the definition is done in a functional style. This way, we do not need to
write code for opening, writing and closing the file.

The command is very simple. We are joining with a new line separator a set
of strings; each of them refers to one Photo element inside the Country directory.
Information of each file inside the current directory with type Photo is packaged on
hashes witch references are allocated on the @Photo array.

We process each of the elements of the array with the map keyword that creates
strings with HTML code for link creation and image inclusion. Note that on this string
the $_ variable is referring to each element of @Photo and not to the rule object. So,
$_->{_} is the photo file name and $_->{TN} is the thumbnail file name.

Of course we can write some more HTML code to make a nicer output. Now,
we want to make, for each continent, an index with a link to each country photo album.
We will call this attribute ::index.html although there is one with the same name for
countries, but they are on different directories. The following grammar should do that!

1 Continent ---> Country*;

2 ::index.html ={
3 join("\n",map { "
{’index.html’}’>$_->{_}" }
4 @Country
5 }

6 Country ---> Photo* XML;

7 ::index.html ={
8 join("\n",map { "
<a href=’".
9 get_legend($XML->{_},$_->{_}).

10 "’>{TN}’>" }
11 @Photo);

7

12 }

13 Photo;

14 ::TN do{ ‘convert -geometry ’150x150>’ ’$_->{_}’ ’$_->{TN}’‘; }

The grammar file to make HTML pages is now complete, and we can browse the
photo gallery.

4. The directory attribute grammar processor

The DAG tool is implemented in Perl using PARSE::YAPP to make the syntactic anal-
ysis and using regular expressions for lexical analysis. It is a module that can be used
within any Perl script.

Each attribute equation from DAG generates a Perl function. The semantic actions
from DAG are true Perl code and work as functions. They receive a list of filenames and
must return a file content (or, from another viewpoint, return a file). This list of filenames
include the child file and attributes names, and the current rule filename and attributes
already calculated.

The system works depth first, i.e., when processing a directory, it gets the directory
contents and splits them into directories and file. It then calls itself recursively for every
directory found. Attribute dependency between different generations (a father depending
on a son) is therefore guaranteed and does not need to be checked.

Meanwhile, a method to solve dependency between brother attributes is under
development.

There are some problems with error messages when the semantic equations have
syntatic errors. We are developing another version, this time compiling (as yacc, for
instance) to a perl source file that could be executed only if there are not errors.

Some other features not directly related to grammar exist. For example, attributes
are evaluated only if they are not up to date, like standard Unix makefiles. On the other
hand, if we would like to create this system using makefiles, we would need to create a
makefile for each directory processing.

5. Measuring an Application

This formalism was used to build an Internet website for a virtual
museum[Almeida et al., 2001], “Museu da Pessoa”. So, we used the file system to
store and catalogue the documents to be presented. These include:

� interviews (more than 200 XML transcriptions);
� photos (over 500 images and XML legend files);
� project descriptions (XML files);

The grammar written (according to the meta-language formally introduced in sec-
tion 2.) to set-up the museum from all this material only needs three production rules to
define the basic directoriy types, as follows:

8

1 Project ---> Project* Interview* Photo_album? Synopsis? HTML*;

2 Interview ---> Transcription* Photo_album? Sound? HTML* ;

3 Photo_album ---> GIF* JPG* Photo_legend?;

story.pdf
index.html

index.html
index.html

thumbnails

index.html
index.html

substories

index.htmlindex.html

index.html

Project 1

story.xml

legend.xml

Project 0

Photo
album

Mr. Teixeira
interview

Mr. Luciano
interview

image2image1images

Figure 1: Museu da Pessoa’s web museum

The terminal and non terminal symbols have more than 20 rules associated for
attribute evaluation (to generate HTML pages for all kinds of documents, HTML index
pages for photograph albums, catalogue files, thumbnails and, PDF and postscript files
for each interview and book definition (for user download and read at home).

9

Figure 1 shows the file system structure for a project; it contains two interviews.
One of them, contains a file (story) and another directory, with a photo album (images and
legend) inside. The white blocks are directories, the white sheets are files and the shaded
blocks are generated attributes. In the figure we can see a lot of attributes generated by
the DAG processor from the grammar; the three pictures from HTML pages are attribute
values, but are only some examples.

The following table shows some figures taken from this concrete project:

Tree size 283 Mbytes
Decorated tree size 534 Mbytes

XML files 267 files
DOC files 178 files

GIF and JPG files ��������� < ���
	 files
HTML files 14 files

HTML attributes 1 745 files
JPG attributes 1 056 files
EPS attributes 533 files

PS attributes 223 files
Total attributes 4 926 files

Traverse the tree 2 minutes
Tree build from scratch 2:30 hours

The table does not show all the attribute categories. There are many attributes
used only for catalogue building, conceptual navigation and some temporary attributes.
The total number of files includes them as well.

We should make clear that the biggest slice of time used in the creation of the
decorated tree from scratch is spent shrinking and converting images. The rebuild process
after adding one more project (about 6 interviews and 10 photos for each of them) takes
about 6 minutes.

It is impossible to present a quantitative comparison between this approach and
a traditional one (hand building of the web-site) because we did not done such a thing;
but we are sure that it would take much many hours. However, our claim is that this
approach has all the benefits of an automated processor based on a formal specification
(that represent all the work the user has to do).

6. Conclusions

DAG (Directory Attribute Grammars) formalism and processor was started as a simple
exercise to simplify a complex real task in the context od XML documents publishing,
but quickly it became an useful tool.

We think that DAG notation can be used to add formal level to file-system, in order
do describe the file-system structure, and define how a set of new views should be built.
We believe that DAG helps with the maintenance of archives supported by the file-system.
We are porting other web sites to use this technology as dynamic pages served statically.

10

On the abstract, we said DAG = AG + Makefiles. Although we use the concept
of makefiles to produce only necessary files, the use of makefiles instead of DAG is not
a good idea. In fact, we would need to produce one makefile for each directory, which
would be a painful operation. What we could really do is transform DAG in an automated
makefile producer.

We did not present a comparison of processing times between DAG and other
systems. The reason is that we do not know any other system like this, accomplishing
such a task in a similar way.

Future work

A lot of work is planned to improve this tool, in order to make it more powerful, more
useful, and more flexible. The future (and present) work include:

� improve the error handler: it should be possible to define various levels of errors.
This way, we can have fatal errors (cause execution abortion) or just simple errors
or warnings, reporting the problem to a log file, and resuming the exection; exam-
ples of this last type are files found whithout a type, or files found where that type
is not allowed.

� build a tool – flexer(currently under development) – to generate typeof func-
tions. This tool behaves like a lexical analyser generator of the tradicional com-
piler generator tools. This way, users should not need to write their own typeof
function.

References

Alblas, H. and Melichar, B., editors (1991). Attribute Grammars, Applications and Sys-
tems. Czech Technical University – Prague, Springer-Verlag. Lecture Notes in Com-
puter Science, nu. 545.

Almeida, J. J., Rocha, J. G., Henriques, P. R., Moreira, S., and Simões, A. (2001). Museu
da pessoa – arquitectura. In Encontro Nacional da Associação de Bilbiotecários, Ar-
quivista e Documentalistas, ABAD’01, Porto.

Christiansen, T. and Torkington, N. (1999). Perl Cookbook. O’Reilly and Associates, Inc.

Consortium, W. W. W., editor (10 February 1998). eXtended Markup Language (XML)
version 1.0 recommendation. http://www.w3.org/TR/1998/REC-xml-19980210.html/.

Dencker, P. (1980). Benutzerbeschreibung des PGS. Interner Bericht 8/80, Institüt für
Informatik, Univ. Karlsruhe.

Deransart, P. and Jourdan, M., editors (1990). Attribute Grammars and their Applications.
INRIA, Springer-Verlag. Lecture Notes in Computer Science, nu. 461.

GrammaTech, I. (1995). The Synthesizer Generator Reference Manual, 4.th edition.

Gray, R., Heuring, V., Kram, S., Sloam, A., and Waite, W. (1990). Eli: A complete,
flexible compiler construction system. Research report, Univ. of Colorado at Boulder.

Johnson, S. C. (1975). YACC yet another compiler compiler. Technical Report CSTR32,
Bell Laboratories, Murray Hill.

11

Kastens, U. (1991). Attribute grammars in a compiler construction environment. In
Alblas, H. and Melichar, B., editors, Int. Summer School on Attribute Grammars, Ap-
plications and Systems, pages 380–400. Springer-Verlag. LNCS 545.

Kastens, U., Hutt, B., and Zimmermann, E. (1982). GAG: A practical compiler generator.
In LNCS 141. Springer-Verlag.

Kasters, U. (1994). Construction of application generators using eli. Research Report
tr-ri-94-143, University of Paderborn.

Knuth, D. E. (1968). Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145.

Lämmel, R. and Mernik, M. (2001). Special issue on domain-specific languages. Journal
of computing and information technology, 9(4):i–iii.

Mernik, M., Lenic, M., Avdicausevic, E., and Zumer, V. (2000). Compiler/interpreter
generator system lisa. In IEEE Proceedings of 33rd Hawaii International Conference
on System Sciences.

Parr, T. J., Dietz, H. G., and Cohen, W. E. (1993). Advanced Tutorial PCCTS 1.xx. School
of Electrical Engineering, Purdue University, version 1.xx edition.

Reps, T. and Teitelbaum, T. (1989). The Synthesizer Generator Reference Manual. Texts
and Monographs in Computer Science. Springer-Verlag.

Saraiva, J. (2000). Language-based environments.

Sloam, A. M. (1994). Evaluation of automatically generated compilers. Research report,
Department of Computer Science, James Cook University, Townsv ille.

van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages. Technical
Report SEN-R0032, ISSN 1386-369X, CWI. an annotated bibligraphy.

Waite, W. and Carter, L. R. (1993). An Introduction to Compiler Construction. Harper
Collins College Publishers.

Waite, W. and Goos, G. (1984). Compiler Construction. Texts and Monographs in Com-
puter Science. Springer-Verlag.

Wall, L., Christiansen, T., and Schuartz, R. Programming Perl. O’Reilly and Associates,
Inc.

12

