
Grabbing parallel corpora from the Web

José João Almeida
jj@di.uminho.pt

Alberto Manuel Simões
albie@alfarrabio.di.uminho.pt

Departamento de Informática
Universidade do Minho

José Alves de Castro
jac@natura.di.uminho.pt

Resumen: Los recursos multilingües son útiles para los estudios lingǘısticos, para
la traducción y para muchas otras tareas. Sin embargo, estos recursos son dif́ıciles
de obtener y de organizar. En este documento describimos un conjunto de her-
ramientas diseñadas para ayudar en la tarea de extraer recursos bilingües de la Red
que sirvan para construir corpora paralelos y memorias de traducción. Nuestro ob-
jetivo es construir herramientas que puedan ser compartidas o usadas de manera
independiente.
Palabras clave: Corpora paralelos, extracción de la Red

Abstract: Multilingual resources are useful for linguistic studies, translation, and
many other tasks. Unfortunately, these resources are difficult to obtain and organize.
In this document we describe a set of tools designed to help in the task of mining
bilingual resources from the web, from a specific site, from a file system, from a list
of URLs, or from a translation memory. As a design goal we intend to build tools
that can be used both cooperatively (in pipeline) and also in a independent way.
Keywords: Parallel Corpora, web-mining

1 Introduction

Text parallelization and parallel corpora is
important for natural language processing,
language studies, dictionary creation and can
be easily transformed on translation memo-
ries.

For this, we need to have parallel texts,
but it is difficult to find them. In this docu-
ment we present a web based approach to re-
trieve potential parallel texts from the world
wide web, classify, and create parallel corpora
with them.

Figure 1 shows a general view of the pro-
cess we will present. Each down arrow num-
ber are respective to the following items:

1. To retrieve texts from the Internet we
need to detect text translations in di-
verse languages, and to make it corre-
spond interdependently. In section 2 we
present two ways to get these texts: us-
ing Resnik Parallel Strands, or using a
new approach, named Parallel Guessing.

2. After the potential parallel texts have
been fetched, a process for validation is
started. It will check the probability for
these texts to be parallel and keep only
valid ones. This process uses auxiliary
tools which will be discussed in sec. 3.

3. In the corpora building stage we split
parallel texts into sentences and convert

web ∨ directory
⇓1

(File2)?

⇓2

(File2)?

⇓3

((p? × id)2)?

⇓4

((p× p)? × id2)?

Figure 1: General View of the Process

them to a PML1 file.

4. Follows the alignment itself. In this task,
we can generate translation memories
(TMX2) back and forth.

To make these corpora useful, we decided
to use the IMS CWB to maintain them. In
section 4.3 we show how this tool works, and
how we can build CGI scripts to consult the
parallel corpus.

While this process can be used to produce
the corpora itself, our intent is not only the
material preparation but also to construct a

1Paragraph Markup Language — a XML docu-
ment with only one element, the paragraph one

2Translation Memory eXchange

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55602281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

set of tools to perform various tasks indepen-
dently: align text files which came from dif-
ferent sources than the web, or extract paral-
lel information from the web without making
a real corpus with it.

On section 5 we present our evaluation for
the algorithms and techniques we use.

2 Retrieval of candidate pairs

The origin of a candidate pair doesn’t need to
be local. This diagram illustrates the various
processes to retrieve candidate pairs.

↓
(URLs)?

↓ ⇓1︸ ︷︷ ︸
↓

↓
web site
⇓4 ↓︸ ︷︷ ︸

web search local
(file2)? engine directory
⇓2 ⇓3 ⇓5︸ ︷︷ ︸

(File2)?

Simple arrows symbolize entry points (the
points we can start from). Double arrows are
processes described in the next five subsec-
tions:

1. get file pairs from a list of URLs;

2. using user supplied file pairs;

3. get file pairs from the result of queries
on search engines;

4. trying to guess parallelism from a web
site, consisting of getting them as local
files, and then using process 5;

5. trying to guess parallelism from a set of
directories.

These different approaches are further an-
alyzed in the next subsections.

2.1 Extracting candidate pairs
from a list of URLs

Given a list of URLs (created by a web robot,
for example), that list can be processed to
form blocks of similar URLs, in other words,
create the congruence class for a normaliza-
tion function. This function removes lan-
guage tags (for English, for example, these
tags are english, eng and en3) and converts
all letters to lower case. After doing this for
each one of them, we will have blocks of sim-
ilar URLs associated to their common part.
This is a very fast and reliable process.

3as in ISO 639(ISO 639, 1992).

An example of this process would be the
one of associating the two following URLs,
associating to their common part4

http://www.ex.pt/index_pt.html
http://www.ex.pt/index_en.html

http://www.ex.pt/index_.html

After this step, each block containing at
least two entries is processed to retrieve possi-
ble pairs from it (i.e., considering the two lan-
guages being searched, each two URLs where
each of them contains a tag for one of the
languages).

The resulting list of candidate pairs is then
processed as described in section 2.2, as if it
were a list provided by the user.

2.2 Processing a list of filename
pairs

As the process shown in the previous section
creates a list of candidate pairs, this can also
be created by another program or by the user.
The list contains in each line the pathname
of two files to be compared, separated by a
[TAB].

2.3 Mining the web for candidate
pairs

The algorithm used for web retrieval of can-
didate pairs is based upon the one of Philip
Resnik(Resnik, 1998).

First, a query is submitted to a web search
engine (currently Altavista); the purpose of
this query is to find pages with at least two
hyperlinks, each one of them mentioning one
of the names of each of the languages being
searched. Let’s say we’re looking for candi-
date pairs in Portuguese and English. Web
search engines like Altavista accept queries in
the form5:

(anchor:"portuguese" OR anchor:"portugues")
AND (anchor:"english" OR anchor "anglais")
AND NOT "dictionary"

In the next step of candidate generation,
each page returned by the web search engine
is automatically processed to extract all valid
pairs of URLs (i.e., pairs of hyperlinks, each

4note that the normalization process takes place
only on the directory structure of the URL, not in
the domain name

5The AND NOT "dictionary" part is intended to
discard dictionaries, which are not what we are look-
ing for.

one of them mentioning a name of a language
currently being searched, both of them point-
ing to files of the same known extension).

The candidate pairs are then retrieved
from the web validated and compared as de-
scribed in section 3.

2.4 Extracting candidate pairs
from a site

Given the URL for a site, that site is retrieved
from the web via the GNU Wget (Niksic,
2001), and stored in a directory. That direc-
tory is then browsed as described in section
2.5.

From the set of options Wget provides, we
have chosen the ones that would enable recur-
sive retrieving following relative links only,
not ascending to the parent directory, nor
downloading a file more than once.

2.5 Extracting candidate pairs
from a directory

Given a directory, the first step consists of
searching the list of files in its tree and ap-
plying the same process done for URL lists
(described in section 2.1). If the number of
candidate pairs found is not large enough, we
follow to the next step. Given the directory,
a list of all of its subdirectories to a chosen
level is created. Then, for each pair of direc-
tories (including reflexive pairs), if at least
one of the following conditions is verified6,
all possible combinations of files in the first
directory are tested with files in the second
directory:

• to be the same directory, within a certain
depth (for the value 2, ¡a/b,a/b¿ but not
¡a/b/c,a/b/c>);

• to be in the same depth, and to have
a common parent in a certain distance
(for the value 1, ¡m/a,m/b¿ but not
¡m/a/b,m/c/d¿);

• one of them being a parent of the other,
within a certain depth (for the value 2,
¡d,d/a/b¿ but not ¡d,d/a/b/c¿);

• being on different levels within a certain
distance, and having a common parent

6actually, the four conditions presented reflect the
four main structured ways to store multilingual in-
formation in the web (and possibly on other sources);
with the correct choice of options for these conditions,
one can easily reduce the number of candidate pairs
without loss of true translation pairs.

in a certain distance from the deepest
(for the values 1 and 2, ¡d/a,d/b/c¿ but
not ¡d/a,d/b/c/e¿ or ¡d/a/f,d/b/c/e¿).

3 Validation of candidate pairs

This part of the process works like a filter.
It receives a list of file pairs and will check
if they really are as parallel texts. Next dia-
gram illustrates these operations:

(File2)?
↓

language identification
↓

file type validation
↓

file size comparison
↓

similarity checking
↓

non-text contents comparison
↓

(File2)?

The validation of candidate pairs is di-
vided in three major parts. First, the files
are tested for language identification; next,
some file type validation is done; finally, an
in-depth validation is performed. These three
steps are described in the next subsections.

3.1 Language identification
Since none of the ways to provide candidate
pairs is certain of giving a pair of files in the
languages being searched, a module for lan-
guage identification was built.

This module contains implementations of
the ”small word technique” and the ”trigram
method”(Grefenstette, 1995), as of prefix and
suffix techniques, among others.

It also includes a main method that
chooses the algorithm to use according to the
input text (regarding its size, its number of
words and some other factors), resulting in a
quite reliable and quick process.

If the candidate pairs are not in the de-
sired languages they are immediately dis-
carded. Some of the previous methods to find
candidate pairs can improve performance us-
ing language identification by reducing the
amount of tests.

3.2 File type validation
The module for file comparison extracts
(from the files extensions) the types

of the files and compares them with
its known types, validating pairs like
¡f1.htm,f2.html¿ but not ¡f1.txt,f2.pdf¿
or ¡f1.xpto,f2.xpto¿ (which is of an
unknown format).

3.3 In-depth validation

This in-depth analysis consists of checking
the file sizes, names, final punctuation (!, ?
and .) and non-text contents.

File size comparison is explained in sec-
tion 3.3.1. The filenames are normalized as
explained in section 3.3.2 and compared for
similarity with the algorithm described in
section 3.3.3. The algorithm for similarity be-
tween punctuation strings is the same. The
non-text content comparison is described in
section 3.3.4.

3.3.1 File size comparison
The comparison of file size consists on check-
ing the percentage of space of the bigger file
that the smaller one occupies. The mathe-
matical formula for this is:

sizecomp(f1, f2) =
smaller file size

bigger file size

For this comparison to be made a cleaned
copy of the file is created; i.e., for each file, ev-
erything that is not considered content (nat-
ural language) is discarded. So, for HTML
files, for example, everything inside a tag is
not important.

If we had not discarded tags for HTML
files, pages with no natural language infor-
mation would be considered; this problem is
not restricted to this file type.

3.3.2 String normalization
String normalization is used to compare file-
names, URLs and non-text contents. It con-
sists on removing extensions, converting all
letters to lower case, removing language pre-
fixes, infixes and suffixes (as ”pt” for Por-
tuguese or ”en” for English) and removing
any non-letter character.

For a string as Index pt.html, this pro-
cess would transform it to index. This
has the purpose of equalizing strings like
Index pt.html and index-en.htm, for ex-
ample.

3.3.3 Similarity checking
In order to calculate the similarity between
two strings, we determine the edit distance

and divide it by the maximum possible dis-
tance there could be between them.

The edit distance between two strings is
the amount of simple operations (insertion
and removal of characters) needed so that the
first will match the second.

The resulting number has to be multiplied
by 100 and inverted (subtracted from 100), in
order to give the expected percentage7.

similarity(a, b) = 1− edit distance(a, b)
max possible dist(a, b)

The edit distance is calculated with an ex-
isting perl module, named String::Approx
(Hietaniemi, 2001). The function is used
twice (one for the distance of the first to the
second and other in the opposite direction)
because it is not commutative.

As an example, when comparing the
strings wwwuminho and wwwdiuminho (these
strings have already been normalized), the
edit distance from the first to the second is
2 (two characters must be inserted), and the
distance from the second to the first is also 2
(two characters must be removed). The total
distance is 4.

The maximum distance from a string to
another is the sum of their lengths (removing
all characters from the first and inserting the
ones from the second).

For this example, the result would be 90%.
If we were comparing wwwuminho and

wwwoxford (which are not much similar at
all), the result would have been of 33 per-
cent.

The formula used can be written as:

1− adist(str1, str2) + adist(str2, str1)
2 (length(str1) + length(str2))

where adist is the function of
String::Approx that calculates the edit
distance between two strings.
3.3.4 Non-text content
The next step is to compare non-text content
in the files, such as links and images; they are
extracted using regular expressions which are
part of the program configuration. A simpli-
fied regular expression for extracting HTML
links would be:

7following formulae calculate values between 0 and
1. This is to make them smaller to fit the two column
format.

<a\s+href\s*=\s*"(.*?)"\s*>

The program accepts a configuration
which includes expressions like this one; so,
for HTML files, for example, we have pro-
vided expressions for links and images.

For each of these expressions, the pro-
gram tries to match it inside each file. Then,
the part inside brackets is normalized (as de-
scribed in 3.3.2) and the following result is
calculated:

similar matches

total number of matches

This result is a percentage and is used in
the calculation of the final value, described in
section 3.3.6.

3.3.5 Minimum results required
If the results of size comparison are too small
(for example, 10 percent), we can immedi-
ately discard the candidate pair without con-
tinuing its validation8.

With this in mind, we have provided the
option of configuring a minimum value for
each of the heuristics being used (these values
are dependent of file type).

This process has two good sides. First, it
helps eliminating non-translation pairs. Sec-
ond, the process for comparing two files will
immediately stop when confronted with a too
low value, thus reducing the processing time
involved.

3.3.6 Final results
With the results of size, filename, punctua-
tion and non-text content comparisons, the
final value for the comparison between two
files can be achieved. This is done with
a weighted mean, configurable and indepen-
dent for each file type.

validation(f1, f2) =

let

a = sizecomp(f1, f2)
b = similarity(f1, f2)
c = similarity(punct(f1), punct(f2))
d = content(f1, f2)

in {weighted mean(a, b, c, d)

If the resulting value is bigger than a cho-
sen percentage (which is independent for each
file type), the files are considered to be trans-
lations of each other.

8some studies indicate that, for true translation
pairs, this value would be of at least 80 percent (this
value may vary according to specific languages).

4 From file pairs to parallel
corpora

The parallelization units should not be the
full text, because we are talking about big
text portions. So, we split the text in small
chunks. This process is file type dependent.
For example, HTML will be transformed into
a Paragraph Markup Language (PML) file
only with paragraph (p) tags. At the mo-
ment, this process is done to all types of
structured documents. First, we convert the
original type to HTML and then to PML. For
plain text files, we convert them directly to
PML.

The PML files will be aligned by each re-
sulting paragraph. This alignment can pro-
duce translation memories (in tmx format) or
be sent to a corpora management program
like CQP.

4.1 From HTML to PML

The conversion from HTML to PML is done
using structured document processing. We
define three sets of tags: tags to remove,
but process structurally the contents (id
set), tags to remove including the contents
(remove set), and tags to transform to para-
graphs (transform set).

This way, we can define sets like:
id = {body, html, font, a, b, i, tt, small}
remove = {head,meta, img}
transform = {td, p, br, li, dt, dd, h1 . . .}
Notice that we are trying to break by sen-

tences or, at least, coherent units. If we
would like to align by word, it could be a
better idea to transform tags like a or b to
blocks.

For each tag t found in the source docu-
ment we will check:

• t ∈ id: return the processed contents;

• t ∈ remove: return nothing;

• t ∈ transform: return a p tag with the
processed contents.

The resulting paragraphs will be pro-
cessed by a sentence detector. This tool will
split each paragraph into sentences and put
each one of them in a different ’p’ tag. In
section 4.3 we will present some more infor-
mation regarding this tool.

4.2 From text to PML

This tool uses empty lines to detect para-
graphs. On other cases, it is configurable to

break lines as paragraphs. Notice that we
are speaking of text files and in some cases,
we have complete paragraphs with more than
one sentence on a big line. In these cases, we
must break the file by new lines.

As in the previous section, each paragraph
will be processed by the sentence detector to
split them on smaller chunks of text.

4.3 Lingua::PT::pln

For many of the natural language processing
tool tasks, we have a common base of tools
we use everywhere. This lead us to make a
Perl module to include all common functions.

One common tool is a sentence detector.
Taking text as input, this tool uses some
heuristics to detect if punctuation marks are
sentence delimiters or only used for abbrevi-
ations, URL’s or e-mails.

4.4 From XML to CWB

The xml2cwb was built to make CWB corpus
from a XML file. In order to do that, we need
to:

1. extract the list of used tags and make
the list of the used attributes for each
tag, and build the registry file (in the
CWB specific format);

2. make the tokenization of the files and
convert it to the CWB format (one token
per line with the attributes separated by
tabs);

3. execute the appropriate IMS-CWB com-
mands – cwb-encode and cwb-makeall
with the appropriate options.

xml2cwb can accept the following options:

-lema to calculate the list of possible lem-
mas and part of speech (POS) for each
token in the corpus, in order to make
the query expressions more powerful. To
add the lemma and POS information,
we are using jspell morphological ana-
lyzer(Almeida and Pinto, 1994; Simões
and Almeida, 2001);

-quebra this option turns on extra sentence
separation.

4.5 From TMX to CWB and back

As we said one of our main goals is make
the information reusable. In order to do that
we want to have a rich set of translators to
import/export from different formats.

Translation Memory Exchange (TMX) is
SGML based standard used in machine trans-
lation world to store translation memories
(TM) – a set of translation unit (for example,
sentences) pairs.

Generally, machine translation tools like
Trados(Trados, 1998-2002) or Déjà Vu(Déjà
vu, 1993-2002) accept and export TM in
TMX format. With the tmx2cwb and
cwb2tmx commands, we want to be able to
import/export TM to our system. With
these commands we can export parallel cor-
pora to TMX, edit with TMX tools and im-
port it again.

4.6 PML pairs alignment

The alignment process is done using two spe-
cial files. We do not align each file pair by
itself, as the alignment process is not as quick
as we would like. Instead, for each set of file
in some language, we create another XML
file in which we will put file tags and inside
them, the p tags for that file:

EasyAlign(IMS Corpus Workbench, 1994-
2002) is a text alignment tool that is a part
of IMS CWB tool kit. It tries to align chunk
of text by size, non-text content and other
heuristics. Because we know each alignment
side is a sequence of files, we can force syn-
chronization in each file tag in a way file
contents will not be aligned to different files.

The following pseudo-code shows the mu-
tual alignment process.

1 PMLalig(f1,f2)=
2 c1 = xml2cwb(f1)
3 c2 = xml2cwb(f2)
4 easyAlign(c1,c2,
5 unit=>"p",
6 syncWith=>file:id)
7 easyAlign(c2,c1,
8 unit=>"p",
9 syncWith=>file:id)

10 [add align information to c1 registry]
11 [add align information to c2 registry]

4.7 Generic CGI for CWB corpora

To consult corpora, we have developed a CGI
which provides methods to search a normal
or a parallel corpora. If it is a parallel one,
it shows two columns, each one with one lan-
guage (see figure 2).

The interface makes it possible to search
for words, and get only the first n matches for
that one. Then, you can ask for context infor-
mation, like k words each side of the searched

Figure 2: Querying the extracted corpus with
a CGI

one, or to show the full sentence, or the full
translation memory, for example.

5 Evaluation and results

For the purpose of evaluation, we have exper-
imented with two different approaches.

The process of these experiments and the
respective results are described in the next
subsections.

5.1 First experiment — extracting
candidate pairs from a site

For the first experiment, we have downloaded
an entire site and then randomly selected a
portion from it, consisting of 15 files in Por-
tuguese and 19 files in English. The approach
used was the one described in section 2.5,
thus comparing all files among themselves.

We have configured the program so that
only HTML files would be considered, and
fixed the values for size comparison, name
similarity, punctuation similarity, links and
images, all as 10. As for the required sim-
ilarity for a pair of files to be considered a
parallel translation, we have set that value
to 75 percent.

We have also decided that the required
minimum values for the various heuristics
would be 50 for for size comparison and 0
for all the others.

total number of files 34
files in Portuguese 15
files in English 19
true translation pairs 12
files identified as Portuguese 12 (80%)
files identified as English 16 (84%)
number of comparisons done 192
number of possible comparisons 561
pairs found 13
correct pairs found 11
precision 11/13 = 85%
recall 11/12= 92%
time 3.17 seconds
time per comparison 0.02 seconds

Regarding language identification, 12 files
were correctly identified as being written in
Portuguese and 16 as being written in En-
glish. This translates into an accuracy of 82
percent (however, the 6 files wrongly identi-
fied consisted of frame pages, which means
they are discarded later).

With these 34 files, 561 comparisons are
possible, but after language identification
just 192 are meaningful. The 192 candidate
pairs were evaluated by hand, determining
that 12 of them were parallel translations.

The program identified 13 pairs of files and
was correct for 11 of those 13 file pairs, a
precision of 85 percent. 11 out of 12 true
translation pairs were identified, a recall of
92 percent.

It took 3.17 seconds to perform the entire
operation, which gives about 0.02 seconds per
comparison9.

We can estimate that the program would
take about one minute to evaluate 3000 can-
didate pairs.

5.2 Second experiment — URLs
mining

For the second experiment, a robot retrieved
a list of URLs in the Portuguese domain, re-
sulting in a list with over 800 000 entries.

We then parsed that list of links with
the first approach described in section 2.1.
The result was a list of blocks (2376) from
which we selected the pairs with possible Por-
tuguese and English files (756) using lan-
guage standard tags. Those file pairs were
then retrieved from the web and compared.

9these tests took place in a Pentium IV 1.5 Ghz
with 256 megabytes of real memory, under Linux.

number of URLs found 850 406
number of blocks created 2 376
number of candidate pairs (PT-EN) 756
pairs successfully retrieved 496
pairs identified as true translations 253
time taken for blocks detection 1.01 minute

We should note that these URLs were
grabbed without looking to it’s contents. In
the same point of view, it is true that this
process is a lot faster to find possible candi-
date pairs.

6 Conclusions

Mining the web can be useful for many pur-
poses. Using only the search engines in the
web without any other tool, we can get many
interesting information.

There are simple processes to check if a
pair of files is a translation. In fact, after de-
tecting each one’s language and calculating
similarities, there is a good of probability to
know whether or not the files are translations
of each other. So, if we have a small amount
of pages, we can make a combinatorial com-
parison to detect all translations in various
languages. This can be a chaos when trying
to parallelize a lot of files.

Other simple processes, like the compar-
ison of file and directory names on a well
organized web site, can give good answers
in almost no time. The problem is that we
never know when the web site is correctly or-
ganized.

After obtaining these file pairs, and since
people translate web pages instead of rewrit-
ing them in various languages, there is a good
chance of aligning them immediately without
many complications. On the other hand, the
HTML structure for translated pages are, al-
most every time, the same for each transla-
tion.

Then, we can make a corpora of the
aligned files, and make them accessible via
web for any purpose we should need.

6.1 Future work

The following are some areas for future inves-
tigation.

• Further Evaluation – Though some
preliminary tests have been made, the
whole program must be tested with
other language pairs and on larger can-
didate sets. The various approaches for
candidate retrieval must also be tested.

• Independent Evaluation – We would
like to follow the approach of Resnik
(Resnik, 1999), having at least two hu-
man judges, deciding whether two pages
are translations of each other.

• Multilingual Support – Although the
project was intended for bilingual re-
trieval of corpora, many things in it,
were created considering the possibility
of extension to the multilingual case.

References

Almeida, J. João and Ulisses Pinto. 1994.
Jspell — um módulo para análise léxica
genérica de linguagem natural. In Actas
do Congresso da Associação Portuguesa
de Lingúıstica.

Déjà vu. 1993-2002. Déjà vu. Com-
puter Assisted Translation System,
http://www.atril.com/.

Grefenstette, Gregory. 1995. Comparing
two language identification schemes. In
JADT 1995, 3rd International Conference
on Statistical Analysis of Textual Data.

Hietaniemi, Jarkko. 2001. String::Approx -
Perl extension for approximate matching.

IMS Corpus Workbench. 1994-
2002. http://www.ims.uni-
stuttgart.de/projekte/CorpusWorkbench/.

ISO 639. 1992. Language Codes. Interna-
tional Organization for Standardization.

Niksic, Hrvoje. 2001. GNU Wget Manual.

Resnik, Philip. 1998. Parallel strands:
A preliminary investigation into mining
the web for bilingual text. In D. Far-
well, L. Gerber, and E. Hovy (eds.), Ma-
chine Translation and the Information
Soup (AMTA-98). Lecture Notes in Ar-
tificial Intelligence 1529, Springer.

Resnik, Philip. 1999. Mining the web for
bilingual text. In 37th Annual Meeting of
the ACL’99. College Park, Maryland.

Simões, Alberto and J. João Almeida. 2001.
jspell.pm — um módulo de análise mor-
fológica para uso em processamento de lin-
guagem natural. In Actas da Associação
Portuguesa de Lingúıstica.

Trados. 1998-2002. Trados — lan-
guage technology for your business.
Computer Assisted Translation System,
http://www.trados.com/.

