
Evolutionary Neural Network Learning Algorithms
for Changing Environments∗

MIGUEL ROCHA1, PAULO CORTEZ2 and JOSÉ NEVES1

1Departamento de Informática / 2Dep. Sistemas de Informação
Universidade do Minho

14710-057 Braga / 24800-058 Guimarães
PORTUGAL

mrocha@di.uminho.pt pcortez@dsi.uminho.pt jneves@di.uminho.pt
http://www.di.uminho.pt/˜pcortez/ http://www.dsi.uminho.pt/˜jneves/

Abstract: Classical Machine Learning methods are usually developed to work in static data sets. Yet, real world
data typically changes over time and there is the need to develop novel adaptive learning algorithms. In this work,
a number of algorithms, combining Neural Network learning models and Evolutionary Computation optimization
techniques, are compared, being held several simulations based on artificial and real world problems. The results
favor the combination of evolution and lifetime learning according to the Baldwin effect framework.

Key-Words: Baldwinian and Lamarckian Effects, Evolutionary Programming, Multilayer Perceptrons.

1 Introduction
In recent years, there has been a remarkable devel-
opment of the Data Mining and Machine Learning
(ML) arenas, which aim at the extraction of patterns or
models from observed data. This interest arose due to
an ever-increasing load of data, which often presents
high complexity, while human experts are limited and
may overlook important details. Yet, the majority of
these techniques use static off-line learning (where the
data is stored and accessed repeatedly), while in many
applications data is rather changing and evolving [5].
In these cases, there is a clear need for adaptive learn-
ing, where the learning function changes over time.

On the other hand, living creatures have survived
in hazardous and dynamic environments for millions
of years, by taking advantage of two interacting pro-
cesses: evolution and lifetime learning. Evolution is a
slow process that takes place at the population level,
determining the basic structure of an organism, while
lifetime learning is responsible for the adaptation at
the individual’s level. In computational terms, these
can be materialized via the Evolutionary and Neural
Computation fields. The former is suitable for global
search and the latter for fine tuning (local search).

When combining evolution and learning, two ma-

∗This work was supported by the FCT project
POSI/ROBO/43904/2002 (partially funded by FEDER).

jor frameworks can be addressed, namely the Lamar-
ckian [4] and Baldwinian strategies [1], which differ
on the fact that acquired traits are recoded into the
chromosome or not. Although there has been past
work in this arena, most of the studies consider only
a subset of the possible strategies or focus mostly on
the benefits of lifetime learning, being the trade-off
between costs and profits rarely considered [9].

In this work, the evolution process is approached
via Evolutionary Programming (EP), where each in-
dividual encodes the weights of a MultiLayer Percep-
tron (MLP) [8]. Lifetime learning is addressed by the
training of the MLP, using a gradient descent based
procedure [7]. Five different strategies will be tested
in several classification tasks, being the comparisons
based on computation time, so that they can be fairer.

2 Changing Environments
The experiments that will be considered in this work
endorse an important ML category, classification
tasks [5], where the aim is to label a specific data item
to a categorical class. In this study, two artificial and
two real world tasks were selected:

6 Bit Classification (6BC) - Set by 26 binary patterns
of 6 inputs and 1 output, whose value is set to 1
if the number of true input bits is odd [7].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55602137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BEGIN
Select P initial examples (from the database)
FOR (each event at time t ∈ {t1, . . . , tN}) DO

Discard E examples
Select new E examples (from the database)

END

Fig. 1: Pseudo-code for the dynamic environments.

Three Color Cube (TCC) - The painting of a 3D
cube made up by a 3x3x3 grid of blocks [4]. The
inputs stand for the blocks’ coordinates on the
X , Y and Z axis and the output denotes a color
(the corners are black, the cubes in the center are
white, the other are gray).

Contraceptive Method Choice (CMC) - Indonesian
contraceptive method adoption, based on a num-
ber of socio-economical attributes (e.g. wife’s
age) [3]. The data has 1473 instances with 9 in-
puts (2 continuous, 4 categorical and 3 binary)
and 3 choices (no use, long-term or short-term).

Car Evaluation Database (CEB) - The evaluation of
cars (4 labels) according to price, technical and
comfort aspects, with a total of 1728 examples
and 6 nominal inputs [3].

Although these tasks are static, is is possible to sim-
ulate changing environments using the dynamic pro-
cess described in Figure 1, which requires the defini-
tion of the following parameters: P , the number of
patterns to be fed to the learning algorithm in each
period; E, the number of examples that are changed
at each event; and t1, . . . , tN , the set of time events
that will induce changes. The last two factors will
influence the type of environment: soft changing (or
concept drift), when changes occur gradually; and
hard changing (or concept shift), when changes occur
abruptly. Both types of environments will be tested:

Soft (S) - one pattern will change at each second
(E = 1, t ∈ {1s, 2s, 3s, . . .}); and

Hard (H) - several patterns will be commuted over a
wider period (ti+1 − ti = 20s for the artificial
tasks and 50s for real ones).

Since the artificial tasks (6BC and TCC) present
few examples, these were adapted according to:

6BCS - the first output patterns (P = 64) are ran-
domly set; then, during each event, one output is
selected to change (from 0 to 1 or the reverse);

Table 1: The MLP topologies.
Task Inputs Hidden Outputs Weights
6BP 6 6 1 49
TCC 3 8 3 59
CMC 21 10 3 253
CEB 21 10 4 264

6BCH - the 6BC task, except that all the desired out-
puts (E = P = 64) will flip periodically;

TCCS - each cube is initially assigned a random
color, and then, at each event, the color of one
randomly chosen cube is changed;

TCCH - the static rules prevail, although the cubes
are periodically repainted (E = P = 27), fol-
lowing a predefined order (black follows gray,
gray follows white and white follows black).

For the tasks CMC and CEB, the parameters were
set to E=1, P=300 (S); and E=50, P=300 (H).

3 Learning Algorithms
Multi-Layer Perceptrons (MLPs) are one of the most
popular Neural Networks, where neurons are grouped
in layers and only forward connections exist [2].
MLPs are appealing due to their capability to model
complex multi-dimensional data, even when noise is
present, often outperforming other ML techniques [6].

In this work, fixed fully connected MLPs were
adopted, with one hidden layer, bias connections and
logistic activation functions. Before learning, the in-
put (output) values were rescaled to the range [−1, 1]
([0, 1]), using a 1-of-C encoding scheme for the nom-
inal attributes (with more than two possible classes).
The topologies were chosen to make the learning pos-
sible with a minimum complexity (Table 3).

Five distinct algorithms will be defined to approach
each learning task:

The Connectionist Model (CM). Under these cir-
cumstances, the learning is achieved by a single
MLP and the training performed by the RPROP
algorithm [7].

The Population of Connectionist Models (PM). A
set of 20 MLP individuals will improve only
via the learning algorithm (RPROP); i.e., no
reproduction or selection procedure is applied.

... ...

������ ����
...

Crossover

Mutation

Selection

Learning

Population

Decode Baldwinian

Lamarckian

Encode

RPROP

Fig. 2: The Baldwinian and Lamarckian strategies.

The Darwinian Model (DM). The learning process
is accomplished by EP, where a population of
20 real-valued chromosomes is evolving, each
coding the weights of a MLP [8]. In each iter-
ation, 50% of the individuals are kept from the
previous generation, being the remaining bred
through the application of a gaussian mutation,
adding a small perturbation to a variable number
of genes (this value is randomly set between 1
and 20% of the total number of weights).

The Lamarckian Model (LM). The LM combines
both lifetime learning and evolutionary ap-
proaches. EP is still used, although the muta-
tion operator is replaced by a random one, which
replaces a number of weights by values in the
range [−1.0, 1.0]. In previous work, this macro-
mutation strategy has achieved better results [8].
Each individual is allowed to learn during its
lifetime, by running the RPROP algorithm for
50 epochs in each generation of the EP process.
Then, the improved weights are encoded back
into the chromosome (Figure 2).

The Baldwinian Model (BM). Similar to the LM,
except that lifetime learning is only used to im-
prove the fitness of the individuals, and the new
weights are not encoded back into the genome
(Figure 2). This means that, in the process of re-
production, the offspring does not inherit the ac-
quired genetic information from their ancestors.

For all models, the initial weights are randomly set
within the range [−1.0; 1.0]. The accuracy is mea-
sured by the Root Mean Squared Error (RMSE):

RMSE =

√

∑P

i=1

∑O

j=1
(Ti,j−MLPi,j)2

PO
(1)

where P denotes the number of the training patterns;
O the number of the MLP outputs; Ti,j the target and
MLPi,j the network value; both for the output j and
the i input pattern. This metric is used as the fitness
value in the evolutionary approaches. For the popula-
tion based models (PM, DM, LM and BM), the overall
accuracy is given by the RMSE of the best individual.

4 Results
All experiments were conducted using Java program-
ming environments, running on a PC with a Pentium
V 2.4 GHz processor. The results were compared
in terms of two parameters: the overall learning’s
accuracy (RMSE), and the process’ efficiency (time
elapsed, in seconds). For all models, at each time slot,
one considers the average of the results obtained in
20 independent runs. Finally, the termination criteria
was set by a time limit T , here set to T = 1000s.

Regarding the soft changing experiments (Figure
5), the CM is incapable of escaping the initial learning
bias, presenting the worst performance. Both PM and
DM show stable patterns, but seem unable to improve.
When combining evolution and learning better results
are achieved, being the BM the best alternative.

For the hard changing tasks, only the best strate-
gies (BM and LM) were plotted, to simplify the vi-
sual analysis (Figure 6). Here, the error ranges are
higher for the artificial tasks, which is explained by
the larger number of commuted patterns. Again, and
despite the more radical changes, the BM still man-
ages to get a steady performance over time, being the
best solution.

To achieve a global accuracy, the values within the
first 200 seconds were discarded (a start-up time set
to allow the tunning of each model); then, a box plot
was computed over the remaining values, including
the statistics (from bottom to top): minimum, mean
minus standard deviation, mean, mean plus standard
deviation and maximum (Figures 3 and 4). Results
confirm that the BM presents the lowest mean val-
ues. Although the standard deviation ranges overlap,
it must be noticed that the 95% confidence intervals
and paired t-student tests show significant differences.

5 Conclusions and Future Work
The results obtained support the idea that the com-
bination of evolution and learning is an interesting
approach, when facing changing environments. Al-
though the simulated environments are commuted pe-

riodically, this information is not used by the pro-
posed learning algorithms, which is useful when
changing events are hard to detect. Even when
changes can be detected, sometimes these are so rapid
that it is not possible to rebuild the learning model.

Referring to the LM vs BM debate, this work sup-
ports the latter when facing changes. One explanation
may be that the BM is evolving not a final solution, but
instead a good set of initial weights.

In the future it is intended to enlarge the exper-
iments to real world domains (e.g. intensive care
units) and other problem types (e.g. reinforcement
learning). Furthermore, the learning algorithms could
be adapted to perform a simultaneous evolution of
neural architectures and weights.

References:
[1] J.M. Baldwin. A New Factor in Evolution. Amer-

ican Naturalist, (30):441–451, 1896.

[2] C. Bishop. Neural Networks for Pattern Recogni-
tion. Oxford University Press, 1995.

[3] C. Blake and C. Merz. UCI Repository of Ma-
chine Learning Databases, 1998.

[4] P. Cortez, M. Rocha, and J. Neves. A Lamarckian
Approach for Neural Network Training. Neural
Processing Letters, 15(2):105–116, April 2002.

[5] M. Goebel and L. Gruenwald. A Survey of
Data Mining and Knowledge Discovery Software
Tools. SIGKDD Explorations, 1(1):20–33, 1999.

[6] T. Lim, W. Loh, and Y. Shih. A Comparison
of Prediction Accuracy, Complexity and Training
Time of Thirty-three Old and New Classification
Algorithms. Machine Learning, 40(3):203–228,
2000.

[7] M. Riedmiller. Supervised Learning in Mul-
tilayer Perceptrons - from Backpropagation to
Adaptive Learning Techniques. Computer Stan-
dards and Interfaces, 16, 1994.

[8] M. Rocha, P. Cortez, and J. Neves. Evolution-
ary Neural Network Learning. In F. Pires and
S. Abreu, editors, EPIA 2003 Proceedings, LNAI
2902, pages 24–28. Springer, 2003.

[9] P. Turney. Myths and Legends of the Baldwin
Effect. In Proc. of ICML96, pages 135–142.
Springer, 1996.

CM PM DM LM BM

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

CM PM DM LM BM

0.
2

0.
3

0.
4

0.
5

0.
6

CM PM DM LM BM
0.

30
0.

35
0.

40
0.

45
CM PM DM LM BM

0.
00

0.
05

0.
10

0.
15

Fig. 3: Box plots for the soft experiments (6BCS ,
TCCS , CMCS and CEBS).

CM PM DM LM BM

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

CM PM DM LM BM

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

CM PM DM LM BM

0.
30

0.
35

0.
40

0.
45

CM PM DM LM BM

0.
00

0.
05

0.
10

0.
15

0.
20

Fig. 4: Box plots for the hard experiments (6BCH ,
TCCH , CMCH and CEBH).

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900

Err
or (

RM
SE

)

Time (seconds)

CM
PM
DM
LM
BM

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900

Err
or (

RM
SE

)

Time (seconds)

CM
PM
DM
LM
BM

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 100 200 300 400 500 600 700 800 900

Err
or (

RM
SE

)

Time (seconds)

CM
PM
DM
LM
BM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100 200 300 400 500 600 700 800 900

Err
or (

RM
SE

)

Time (seconds)

CM
PM
DM
LM
BM

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 500 550 600 650 700 750 800 850 900 950

Fig. 5: Results for soft experiments (6BCS , TCCS , CMCS and CEBS).

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700 800 900

Err
or (

RM
SE

)

Time (seconds)

LM
BM

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900

Err
or (

RM
SE

)

Time (seconds)

LM
BM

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 100 200 300 400 500 600 700 800 900

Err
or (

RM
SE

)

Time (seconds)

LM
BM

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 500 550 600 650 700 750 800 850 900 950

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 100 200 300 400 500 600 700 800 900

Err
or (

RM
SE

)

Time (seconds)

LM
BM

Fig. 6: Results for the hard simulations (6BCH , TCCH , CMCH and CEBH).

