
Components as Coalgebras

Luís Manuel Dias Coelho Soares Barbosa

Departamento de Informática
Escola de Engenharia

Universidade do Minho
2001



Tese de doutoramento em Informática, área de Fundamentos da Computação, aprovada por
unanimidade em provas públicas realizadas na Universidade do Minho

This thesis has been partially supported by the LOGCOMP and KARMA projects, under, res-
pectively, contracts PRAXIS XXI 2/2.1/TIT/1658/95 and P0011/IC-PME/II/S - Karma.
Its publication was generously supported by FCT, the Portuguese Foundation for Science and
Technology, and the ALGORITMI Research Center.



Abstract

In the tradition of mathematical modelling in physics and chemistry, constructive
formal specification methods are based on the notion of a software model, under-
stood as a state-based abstract machine which persists and evolves in time, according
to a behavioural model capturing, for example, partiality or (different degrees of)
nondeterminism. This can be identified with the more prosaic notion of a software
component advocated by the software industry as ‘building block’ of large, often dis-
tributed, systems. Such a component typically encapsulates a number of services
through a public interface which provides a limited access to a private state space,
paying tribute to the nowadays widespread object-oriented programming principles.

The tradition of communicating systems formal design, by contrast, has develo-
ped the notion of a process as an abstraction of the behavioural patterns of a compu-
ting system, deliberately ignoring the data and state aspects of software systems.

Both processes and components are among the broad group of computing phe-
nomena which are hardly definable (or simply not definable) algebraically, i.e., in
terms of a complete set of constructors. Their semantics is essentially observational,
in the sense that all that can be traced of their evolution is their interaction with the
environment. Therefore, coalgebras, whose theory has recently witnessed remarkable
developments, appear as a suitable modelling tool.

The basic observation of category theory that universal constructions always come
in pairs, has motivated research on the duality between algebras and coalgebras,
which provides a bridge between models of static (constructive, data-oriented) and
dynamical (observational, behaviour-oriented) systems. At the programming level,
the intuitive symmetry between data and behaviour provides evidence of such a duali-
ty, in its canonical initial-final specialisation.

iii



iv ABSTRACT

This line of thought entails both definitional and proof principles, i.e., a basis
for the development of program calculi directly based on (actually driven by) type
specifications. Moreover, such properties can be expressed in terms of generic pro-
gramming combinators which are used, not only to calculate programs, but also to
program with.

Framed in this context, this thesis addresses the following main themes:

� The investigation of a semantic model for (state-based) software compo-
nents. These are regarded as concrete coalgebras for some

�����
endofunc-

tors, with specified initial conditions, and organise themselves in a bicate-
gorical setting. The model is able to capture both behavioural issues, which
are usually left implicit in state-based specification methods, and interaction
through structured data, which is usually a minor concern on process calculi.
Two basic cases are considered entailing, respectively, a ‘functional’ and an
‘object-oriented’ shape for components. Both cases are parametrized by a
model of behaviour, introduced as a strong (usually commutative) monad.

� The development of corresponding component calculi, also parametric on
the behaviour model, which adds to the genericity of the approach.

� The study of processes and the ‘reconstruction’ of classical (CCS-like) pro-
cess calculi on top of their representation as inhabitants of (the carriers of)
final coalgebras, in an essentially pointfree, calculational style.

� An overall concern for genericity, in the sense that models and calculi for
both components and processes are parametric on the behaviour model and
the interaction discipline, respectively.

� The animation of both processes and components in CHARITY, a functional
programming language entirely based on inductive and coinductive cate-
gorical data types. In particular this leads to the development of a process
calculi interpreter parametric on the interaction discipline.



Preface

Conforme a vida que se tem o verso vem
Alexandre O’Neill, 1965.

Every thesis has a context and this one is no exception. As an undergraduate, I
was in the small group of students who attended the first formal methods class run
by José Nuno Oliveira at Minho. His lively lectures on programming as a true en-
gineering discipline, led a definitive mark in all of us. Shortly afterwards we found
ourselves struggling to apply such methods in industrial projects. I remember myself
encoding systems’ invariants back into commercial languages to filter corrupted regi-
sters in production databases. Since then, I have been involved with model-oriented
specification methods. And eventually I became interested in ways of expressing
models behaviour and defining composition mechanisms able to take into account the
dynamical and architectural issues present in most systems. My first academic dis-
sertation was precisely an attempt to combine VDM with behavioural specifications
given as process algebra expressions or Petri nets.

When José Nuno Oliveira became my supervisor his main research was oriented
toward the development of a transformational calculus for data refinement, named
SETS after Specification in Set. Would a similar calculational style scale up to a set-
ting where software specifications (or components, as we used to call them) included
some behavioural features? What would then be the composition patterns with respect
to which a refinement relation could be proved monotonic? I would like to regard this
thesis as a first step in that direction.

In the summer of 1997, however, most of my understanding of what I was trying
to achieve was confronted by the contact with a few papers on coalgebra theory by

v



vi PREFACE

Bart Jacobs and Jan Rutten. The simple notion of a coalgebra came almost as a revela-
tion in the sense that several constructions and results I had been studying in transition
systems and process calculi appeared to have found their right conceptual place and
achieved a greater level of genericity. This ‘mid-summer’ readings re-shaped all my
work and led to the present outcome.

Later, searching for simple ways to animate my constructions, I visited the CHA-
RITY web-page. The result was almost a coup de foudre: the language provided
explicit support for coinductive types, enforced a discipline for their use, had a sober
syntax and an unusually precise semantics. Bits of CHARITY code are, therefore,
spread along this thesis. It was my intention not only to give a more concrete flavour
to the text but also to suggest an approach to prototype dynamical systems and their
calculi as a vehicle to assess alternative design decisions. Having developed such bits
of code almost with no contact with the CHARITY group, I had the chance of meeting
Robin Cockett during CMCS’01. I am most grateful for his sharp comments and the
interest shown in my prototypes.

By that time I was also involved in the design of CAMILA, a functional prototy-
ping tool for the SETS calculus. It is a pleasure to acknowledge the close collaboration
in this project with José João Almeida, my former roommate and a friend of all times.
The CAMILA seminar I have been running every year, since 1990, at the University of
Bristol as well as the projects I had the chance of supervising there, provided an im-
portant feedback on both the tool and the method. I believe to have learnt a lot along
this process even if, in a sense, it may be partially responsible for the retardation in
finishing the thesis.

During all this time José Nuno Oliveira was not only my formal supervisor, but
also a fruitful source of ideas and questions. I wish to thank him for the confidence
he has deposited on me, his enthusiasm, rigour and active interest in my research. I
owe him a lot.

I also wish to thank the Departamento de Informática, at Minho, for the smooth
working environment I had the chance to benefit from. My gratitude goes to José
Valença and Francisco Moura, respectively its former and present directors. I am also
pleased to mention my colleagues of the former Computer Science group for their
support and the quality of their friendship. In particular, José João Almeida for so
many technical and non technical morning coffees, and José Barros, who was most
helpful in alleviating my teaching loads in critical periods. And, of course, Pedro



PREFACE vii

Henriques and his ability to blend, inside and outside academia, ‘safety’ and ‘live-
ness’, with ‘strong fairness’ and generous ‘availability’. Last but not least, a word for
the GEF people and our sort of ‘Wednesday afternoon club’ where some of us strug-
gled with Mac Lane’s book, Stone dualities and similar stuff.

Parts of the work reported in this thesis benefitted from comments of several peo-
ple. In particular, I wish to thank Jeremy Gibbons, who gave me the opportunity of
presenting it during the ACMMPC Summer School, in Oxford. Let me also mention
Alberto Pardo, Fernando Luís Neves, Gilles Barthe, João Saraiva, José Barros, José
Carlos Bacelar, José João Almeida, José Valença and Tarmo Uustalu. To all of them,
in different occasions, I owe the discussion of an intuition, a reading suggestion, a
comment on a detail or a challenging question.

My gratitude extends, of course, to the members of the Assessment Committee,
in particular, my external examiners, J. J. M. M. Rutten (CWI, Amsterdam) and Luís
F. Monteiro (UNL, Lisbon), for carefully reviewing the thesis.

Finally, I would like to thank my family and friends, who often wondered whether
this thesis would ever be finished, for their support and encouragement. To my pa-
rents for everything they have made possible. They have brought me up stimulating a
variety of interests and the deep conviction that a question mark is far more interes-
ting than a full stop. But, at the same time, the awareness that what really matters is
probably far behind what one may achieve in formal education or professional life.
Since childhood, Aunt Lena has always been around. She taught me words and num-
bers, the ways of combining them, and combining the composites yet again. This is
basically what I am still doing.

Above all, I was lucky to have met Lena, her love and the moving light of her
eyes. For a long time she has tirelessly put up with many of the most stressful things
that have to be done. The rest cannot be put into words. This thesis is dedicated to
our children

Rui, Nuno and Catarina

a lively ‘diagram’ always ready to ‘commute’ ... in ‘non unique’ ways.





Contents

Abstract iii

Preface v

Chapter 1. Introduction 1
1. The Problem and Its Context 1
2. Background 4
3. Outline of Contents and Contributions 17

Chapter 2. Categorical Preliminaries 25
1. Basic Notions 25
2. Universality and Calculation 32

Chapter 3. Algebras, Coalgebras and Categorical Data Types 47
1. Observation And Construction 47
2. Algebraic Structures 55
3. Coalgebraic Structures 60
4. Categorical Data Types 74

Chapter 4. Coalgebraic Models for Processes and Components 89
1. Shapes 89
2. Processes as Codata 97
3. Prototyping Processes 118
4. Some Variants 132
5. From Processes to Components 139

Chapter 5. Components as Arrows 147
1. A (bi)Category of Components 147
2. A Component Algebra 155
3. Interaction 181
4. Some Examples 184
5. Separable Components 194
6. Animating ����� 207

ix



x CONTENTS

Chapter 6. Components as Objects 221
1. An Alternative Model 221
2. Component Algebra Revisited 229
3. Interaction 234
4. A Note on Internal Activity 240
5. Monadic Morphisms 243

Chapter 7. Conclusions and Future Work 249
1. Discussion of Contributions 249
2. Future Work 256
3. Refinement 259
4. Epilogue 271

Appendix A. Monads 273

Appendix B. Bicategories 285
1. Definition 285
2. Examples 288
3. Further Structure 291

Appendix C. Context Laws 297
1. Preliminaries 297
2. � -Laws 299
3.

�
-Laws 310

Appendix D. Proofs 321
1. Proofs for Chapter 4 321
2. Proofs for Chapter 5 340
3. Proofs for Chapter 6 396

Appendix E. A Brief Introduction to CHARITY 409
1. Introduction 409
2. Coinductive Types 410
3. Inductive Types 416
4. Further Recursion Patterns 419
5. Higher-Order Types 421

Appendix. Bibliography 427



CHAPTER 1

Introduction

Summary
This chapter provides the context for and states the problem addressed in
this thesis: what software components ‘are’ and how associated calculi
can be designed on top of coalgebraic component models. The thesis
structure and contributions are outlined, providing a ‘roadmap’ for the
chapters to follow.

1. The Problem and Its Context

1. COMPONENTS. The expression software component, like many others in program-
ming engineering, is so semantically overloaded that referring to it is often a risk.
Therefore, we would like to make it clear, from the outset, what is understood by a
software component in this thesis: the specification of a state-based module, even-
tually acting as a ‘building block’ of larger, often concurrent, systems. Again that
qualification concurrent may convey several different meanings, e.g., independent
evolution, cooperation to achieve a common goal, competition for a shared resource.
Such a component should encapsulate a number of services through a public interface
which provides limited access to its internal state space. Furthermore, it persists and
evolves in time.

In summary, our model for components has to deal with, at least,
� the presence of an internal state space, acting as the component ‘memory’,
� the possibility of interaction with other components during its overall com-

putation,
� the existence of input and output observation universes to ensure the flow of

data.

1



2 1. INTRODUCTION

2. MOTIVATION. The notion of a software component studied in this thesis arises
from a widespread paradigm for formally approaching systems’ design: the so-called
model oriented specification method, of which VDM [Jon86] and Z [Spi92] are well-
known representatives. In such methods, an explicit model of the system being spec-
ified, rather than an axiomatic theory capturing its requirements, is defined. Usually
a distinguished sort plays the role of a state space. State is often taken as a ‘black
box’ accessible only via specified operations, which justifies the qualification of state-
based typically given to such methods. Data and functionality are explicitly defined,
while the temporal ordering of operation calls and, in general, most behavioural is-
sues, are left implicit. Nevertheless, most aspects mentioned in §1 about the informal
characterisation of components may be found in what is called a model in the VDM

meta-language, a schema in Z, a machine in B [Abr96] or a component in CAMILA

[ABNO97].
In broad terms, the research reported in this thesis finds its motivation in the

use of these methods in software projects and, in particular, in the development of the
CAMILA experimental platform for model-oriented software development [ABNO97].
This encompasses an (executable) set-theoretic notation and an inequational calculus
of data structures [Oli90, Oli92b].

However, when using model-oriented specification methods it is often difficult to
identify and reason about the behavioural patterns underlying a specification and their
relative (in)dependence with respect to data and functionality descriptions. Often the
only behavioural information that can be extracted from, say, a VDM specification
amounts to the local constraints recorded in the operations’ pre-conditions. This is,
however, implicit and does not carry enough information neither on the systems ar-
chitecture nor on the intended usage.

On the other hand, such methods lack appropriate structuring mechanisms to
build, in a compositional way, specifications of open, distributed and/or concurrent
software architectures. A diagrammatic notation, reminiscent from circuit design, to
express the composition of state-based modules was proposed in [Oli91], as a base
for the reuse of CAMILA specifications [Oli93]. Even though the semantics of such
a notation has remained informal, basic intuitions from this work acted as an initial
motivation for this thesis.

3. OBJECTIVES. Within the research context mentioned in §2, this thesis intends to
address the following topics:

� The definition of a semantic model for software component specification
entailing a suitable characterisation of observational equivalence and ex-
plicitly parametrized by a notion of behaviour. For example, the behaviour
model of some components may cater for the possibility of termination even



1. THE PROBLEM AND ITS CONTEXT 3

though, in concurrent systems, the existence of ‘terminal states might denote
disaster rather than result’ [Rei88]. Other components may require the ex-
plicit specification of (eventually different degrees of) nondeterminism. The
specification of behaviour seems to be orthogonal, to the description of sys-
tem’s functionality, but is often overlooked in the above mentioned state-
based formalisms.

� The definition of a set of component combinators, able to take into account
the dynamical and architectural issues present in most modern computa-
tional systems. Of course, different assumptions on the components’ model
(either at the interface or operational levels) may entail corresponding spe-
cialisations of the combinator set. In any case, however, their definition has
to be parametrized by the component’s behaviour model.

� The development of associated component calculi to reason about and trans-
form component based designs. The calculational style, often referred to, in
the context of functional programming, as the Bird-Meertens formalism (see
discussion in §14), is a cornerstone in the approach to software engineering
at Minho (see [Oli98] for a tutorial presentation). We would like to scale it
up to the level of components and their behaviour.

4. CONTEXT. The informal characterisation given so far suggests that a component
specification has to deal with both data (static) and behavioural (dynamic) structures.
A third fundamental element is interaction. In a sense, the history of (theoretical)
Computer Science records the efforts in understanding such basic ingredients of any
computational system and their interplay1.

The following section proposes a brief visit to some ‘milestones’ in the litera-
ture in order to settle the background of this thesis. We shall stress, in particular, the
general categorical approach to inductive and coinductive types and the underlying
duality between algebraic and coalgebraic structures in computation. This duality
is the formal basis of the ‘data’ vs ‘behaviour’ symmetry mentioned above. As ex-
pressed by its own title, such is the framework adopted in the thesis to discuss software
components.

Finally, in section 3, the thesis structure and contributions are outlined, as a sort
of a ‘roadmap’ to the chapters to follow.

1A word of advice: not only the interplay but also some form of interchangeablity between data
and behaviour are known from programming practice. Recall, for example, data-oriented vs algorithmic-
oriented solutions to the parsing problem [Knu65] and how the former seems to encode the latter. Or
the representation of data structures by CCS [Mil89] or CSP [Hoa85] processes.



4 1. INTRODUCTION

2. Background

5. DATA. David Parnas [Par72] is usually credited as a pioneer in recognising that
operations (algorithms) should be associated with data representations, just as func-
tions are associated to sets in Universal Algebra. From then on the theory of abstract
data types, starting with the work of the ADJ group [GTWW77, GTW78], emerged as
a fundamental cornerstone in programming theory. It provides an abstract description
of data structures in semantics, regarded as algebraic structures encapsulating data
sorts and operations upon them. A major concern of this line of research was to en-
sure representation independence of data as well as to facilitate formal manipulation.

Reasoning about data structure specification and implementation resorts to the
techniques and methodology of Universal Algebra — a well established branch of
Mathematics, which, at least symbolically, dates back to the publication of Birkhoff
‘variety theorem’ [Bir35] in 1935.

The success of the approach is greatly acknowledged both in the semantics and
pragmatics of software specification (see, for example, [EM85] as a basic reference
at a textbook level and [Wir90] for a tutorial). In particular, it has lead to the de-
velopment of specification languages and systems (such as OBJ [GWM� 96], CIP-L
[BBB � 85], CASL [CoF95] or LARCH [GH93], among many others) and to a broader
understanding of the nature of algorithms, their classification and transformation. Ex-
tensions of this approach are referred to in §9-11, below.

6. PROCESSES. On the other hand, looking at behavioural patterns in an alge-
braic way has been the overall research program on process algebras [Mil80, Hoa85,
Hen88, Mil89, BW90b, Mil99] for the last two decades. This has been carried to an
extent that discards the actual observed data. Actions are just symbols in a formal
language. Such techniques embody a specification style which is in sharp contrast
with the state based methods mentioned in §2. In particular, neither the state space,
nor in fact any data sort, is explicitly defined, the emphasis being put on the temporal
ordering of interactions.

Such approaches have been successful in dealing with highly interactive sys-
tems, in particular with those where complex control algorithms have to be expressed
and where data plays a comparatively minor role. Such is the case, for example, of
the specification of communication protocols, real time control algorithms or control
mechanisms in operating systems.

C. A. Petri [Pet62], in the 1960´s, was probably the first to put forward a model
for concurrent computation, based on network transitions. The theory of networks
named after him (‘Petri nets’, see [Rei85] for a comprehensive tutorial), makes it
explicit that a transition in a system may interact, or depend upon, another transition
occurring in a different system executing alongside.



2. BACKGROUND 5

Since then, there has been a proliferation of both semantic models for concurrency
and associated calculi. Reference [WN95] provides a well structured and comprehen-
sive survey. Reference [Sti92] is a tutorial on specification of concurrent processes
in modal and temporal logics, a line of research made popular after A. Pnueli land-
mark paper [Pnu77]. Associated verification methods are discussed at textbook level
in [MP92]. In any case, the diversity of semantic models proposed (emphasising e.g.,
linear or branching temporal structures, causality or interleaving, synchrony or asyn-
chrony) witnesses both the difficulty of understanding concurrency and the practical
relevance of the topic.

Even in the particular area of process algebras, such a diversity is overwhelming.
It manifests itself on the set of combinators chosen, interaction disciplines adopted,
application domains (ranging from the ‘general-purpose’ mainstream to highly bi-
ased calculi), semantic presentations (operational, as in CCS [Mil89], denotational or
axiomatic, as in CSP [Hoa85] or ACP [BW90b], respectively) and notions of equiva-
lence entailed. In reference [vG90], for example, as many as 155 different semantics
are classified from a modal logic unifying point of view. The absence of a canonical
calculus or theory for concurrent behaviour is commented, with a bit of irony, by J.
Goguen in [GM00] as follows:

The lack of consensus on a suitable set of equations is discouraging, sug-
gesting that these ‘laws of concurrency’ may not have the same status of
‘laws of nature’ in physics, despite occasional claims on the contrary.

Or, as S. Abramsky [Abr94] puts it, ‘may be some key ideas are still missing’.
Reference [Abr94] is the original paper on interaction categories (see [AGN94]

for a detailed tutorial): an attempt to abstract away from concrete process calculi and
single out the core structure which processes collectively possess in the form of a
categorical model [Mac71]. In an interaction category, objects are process types (or
specifications), arrows are processes and composition is regarded as interaction. For
example, in the interaction category of synchronous systems, types are the so-called
‘safety specifications’ (i.e., an action alphabet

�����
and a set of traces, i.e., a non

empty prefix closed subset of
�������

, representing the possible evolutions), processes
are synchronisation trees satisfying the ‘safety specifications’ on types and interaction
is understood, as in [Mil89], as a combination of parallel composition with restriction.

Note that, in general, there is no implicit direction in the arrows: the split of a
process observation universe in merely conventional. A generalized monoidal cate-
gory2 is proposed as the appropriate structure to express the spatial, or ‘architectural’,

2More precisely, a linear category [See89]. Technically, a symmetric monoidal category, closed (in
the sense that the tensor � has a right adjoint � which provides an internalisation of the hom sets, just
as it happens with cartesian product and exponentials in the category 	�

� of sets and functions), with a



6 1. INTRODUCTION

organisation of processes. The temporal dimension, usually given by the prefix com-
binator in process calculi, is captured by ‘delay monads’ on top of the linear structure.
As expected, having axiomatized such a basic, typed framework for processes, a lot of
further structure can be ‘found’ (i.e., determined up to isomorphism) and this categor-
ical pay-off is both the motivation and the strength of the approach. Suitable instan-
tiations of such a framework for different interaction disciplines give rise to different
interaction categories, capturing e.g. asynchrony and even the familiar landscape of
sequential programming and interaction by function calling [Gay95].

Over the last decade, another major contribution in this area has been the devel-
opment of mobile calculi, after Milner’s work on the � -calculus [MPW92]. The basic
idea is a notion of naming (a generalisation of ‘reference’), name passing (generalis-
ing ‘value’ or ‘message passing’) via named channels and name (channel) dynamic
creation.

Both mobile calculi and interaction categories, having almost nothing in common
in their genesis, method or theory, take interaction as the basic, pervasive, notion in
computing, generalising previous work on process calculi. Both aim to provide se-
mantic foundations to programming languages able to combine interaction and con-
currency with types, high-order constructs and polymorphism.

7. SYSTEMS. Abramsky’s interaction categories, mentioned in the last paragraph,
are paradigmatic of a class of specification approaches which resort to category theory
to build typed frameworks for processes — see also, among many others, [KSW97a,
KSW97b, Spo97, CPW98, Sel99]. Most of these approaches abstract from the inter-
nal state of a system and endow its interfaces with extra structure (e.g. a predicate on
the allowed traces) in order to capture particular interaction paradigms.

Departing from this trend, one finds the work of R. Walters and his collaborators
who consider both an explicit description of systems’ internal dynamics and their be-
havioural semantics. Processes, in this sense, are dynamical systems, with an internal
state and input-output interfaces carrying just enough information to assure the flow
of data. The ability to talk both in terms of behaviours (which is the only concern in
most models of concurrency) and machines suggests a bicategorical framework: Wal-
ters’ landmark paper [KSW97a] is suggestively entitled ‘Bicategories of Processes’.

Such bicategories are generated from an underlying symmetric monoidal cate-
gory, leading to an algebra mimicking the basic ‘assembly modes’ in conventional
Engineering: series (composition), parallel (tensor product) and feedback (usually

dualizing object — i.e., an object
�

such that any object � is isomorphic to ��� � ��� � �
— and

finite products. The category � 
	� of sets and relations is a prime example.



2. BACKGROUND 7

taken as a trace, in the sense of [JSV96]). Different notions of behaviour are cap-
tured in a functorial way involving appropriate semantic categories (e.g., relations on
streams).

The overall aim is to develop compositional models of dynamical systems using
monoidal bicategories equipped with some form of feedback operations. Two cases
illustrating the kind of system addressed in this approach are discussed in [KSW97a]
(and further detailed in P. Katis thesis [Kat96]) : circuits and flowcharts based on the
monoidal structure imposed on the category of sets by, respectively, Cartesian product
and disjoint union. This line of thought is documented in a series of papers of which
[KSW00] provides a comprehensive overview. A particularly successful application
can be found in the development of an alternative approach to (asynchronous) circuit
theory — see H. Weld thesis [Wel98] and, more recently, [KSWW01]. This last
reference introduces a family of traced monoidal categories of binary circuits (and
corresponding behaviour notions). A number of circuit classes are discussed paving
the way to a formal taxonomy, which by itself provides evidence of the maturity of
the approach.

The semantic model for software components proposed in this thesis (namely, in
chapter 5) is strongly influenced by this work. Therefore, we shall come back to it
later, when discussing the thesis contributions (in chapter 7).

8. HYBRID FRAMEWORKS. There are several accounts in the literature of com-
bining process calculi with some sort of mechanism for the specification of the data
handled by processes. Perhaps the best known example is LOTOS [BB87, ISO88],
which combines an axiomatic, algebraic specification language (ACT ONE [EFH83])
with CCS. LOTOS is an official ISO specification language for open distributed sys-
tems. Reference [GP95] provides another example in the same line of research. Such
hybridizations are not restricted to process algebras: they also appear, for example,
associated to temporal logic specifications [SFSE89, CR97] and Petri nets. In alge-
braic Petri nets [Rei91], for example, elements of the ‘token’ set, whose distribution
along the net represents its global state, are regarded as an algebraic specification of
a data structure.

Combinations of behavioural formalisms with state-based specifications have also
been studied. An important reference is [BD99] which summarises a long research
collaboration between the authors around the semantic integration of Z and CSP. The
literature on this sort of hybrid approaches is extensive and eventually also considers
the incorporation of object-orientation (§10) features, see e.g., [DRS95, Fic97]. Such
combinations are often placed at the methodological level, with a pragmatic intention,
and less often at the level of semantics. Some mere notational overlaps, still quite
common, are not worthwhile mentioning.



8 1. INTRODUCTION

Often a paradigm may put under new light an old problem of a different one,
and this is probably the right justification for comparative research. An interesting
example is C. Jones proposal [Jon96] of a design notation extending VDM with some
object primitives to address the control of interference in concurrent systems, a prob-
lem which, as he himself recognises in [Jon83], may invalidate conventional pre/post-
condition reasoning.

9. Others have thought that perhaps a deeper interplay between algebraic specifica-
tions and behavioural descriptions consists in either enriching an algebraic data spec-
ification with sorts whose inhabitants correspond to processes (or states of transition
systems), or in allowing the specification of a data type itself to evolve in time. A
well known example of the former is J. Meseguer’s rewriting logic [Mes92] in which
actions are regarded as inference steps in a logic which is essentially equational logic
without symmetry. Rewriting logic is animated in MAUDE (see [Mes00] for a recent,
detailed overview), whose dynamics is based on the concurrent transformation of a
‘soup’ of objects and messages.

On the other hand, the latter approach associates a different algebraic specification
to each configuration of the system: a state transformation becomes a transition from
one algebra to another. Such an approach, first proposed in the so-called ‘reflexive
semantics’ for object orientation [GM87], is particularly biased toward this paradigm
(§10), rather than to concurrency semantics. The underlying theory is implemented
in FOOPS [GM87, RS92] which, just as MAUDE, is an extension of OBJ (§5).

A similar direction is taken by ‘evolving algebras’ [Gur93] (also known as ‘ab-
stract state machines’), in which systems are described as labelled transition systems
whose states are algebras.

10. OBJECTS. Object-orientation [GR83, Mey88] has emerged in the last decades as
a popular programming paradigm, whose origins can be traced back to the SIMULA

proposal [DMN68]. Such an informal concept of object as an entity whose ‘memory’
and ‘identity’ persists over time, offering a controlled access through an interface
of attributes and methods, was intuitive and immediately attractive to programmers.
However, programming languages that support object-orientation pose difficult and
subtle semantic problems and the paradigm still lacks a commonly recognised formal
foundation (see references [SFSE89, ESS90, HP95, Pra95, AC96], as well as the
‘algebraic’ approaches mentioned in next paragraph). Most research has focused on
type systems and models for inheritance, but also, more recently, on local state and
interaction issues. [GK96], and the references therein, give an updated account of
problems and achievements.



2. BACKGROUND 9

Semantically, an object can not be regarded as a process in the sense of §6 above,
as static aspects are also involved. On the other hand, it cannot be simply modeled by
an algebraic structure as it relies on an internal state, typically regarded as a ‘black
box’, and exhibits non functional behaviour.

From a practical point of view, it has been recognised that object-oriented lan-
guages, successful as they are for implementing and packaging software components,
offer too limited mechanisms for their interconnection. As [ND95] points out, a pos-
sible explanation is that ‘object-oriented source code exposes class hierarchies, but
not object interactions’.

11. BEHAVIOURAL SATISFACTION. Research on foundations of object-oriented
languages and, in particular, on what a suitable notion of a type for objects could be,
has stressed some symmetries with the theory of abstract data types (§5). The key
idea underlying such extensions is that of behavioural satisfaction, after H. Reichel’s
[Rei81] seminal work on possible unifications of initial and final semantics (§13). It
conveys the intuition that the satisfaction of a specification by a computational system
is usually not strict but observational, in the sense that it appears to be satisfied under
any experiment carried out on the system. Therefore, behavioural equivalence stands
for equality under all experiments or observation contexts. An early reference on ob-
servational semantics for algebraic specifications is [GGM76], but see also [ST85] for
an overview. Another OBJ-like language, CAFEOBJ [DF98], was the first to automate
behavioural satisfaction.

A important development, leading to a recently active research area, is the ‘hidden-
sort algebra’ approach. Hidden-sort algebra embodies a fundamental distinction be-
tween data that is used to model values (e.g., in object attributes) and data used for
internal states, which can only be observed in an indirect way. Therefore data sorts
are divided into visible and hidden, the satisfaction of equations involving the lat-
ter being proved only up to the observable output — i.e., the result of experiments,
which technically correspond to ‘contexts’, i.e. terms typed in visible sorts. The orig-
inal papers on this subject are [Gog91] and [GD94] and a comprehensive introduction
can be found in [GM00]. The integration of static and dynamic aspects of the object
paradigm in this setting is studied in [Veg97]. A logic for reasoning on hidden spec-
ifications and the implementation of a support system — BOBJ — appeared recently
in G. Rosu’s thesis [Ros00].

12. A BASIC DUALITY. After this brief incursion around the notions of data struc-
ture, process and object, time has come to frame them in a more general setting. The
main point to emphasise is that the intuitive symmetry between data and behaviour



10 1. INTRODUCTION

that pervades Computer Science, can be understood as a precise mathematical du-
ality between algebraic and coalgebraic structures. Concise notions of what such
structures are and their dual nature are revealed under the light of category theory
[Mac71].

As mentioned above in §6, when reviewing ‘interaction categories’, in a cate-
gorical setting models of computation are represented by categories whose objects
and arrows model respectively types and computations. In fact, the original work on
abstract data types referred in §5, was carried out in such a basis. Therefore, data
type signatures, thought of as their external interfaces, define type constructors mod-
eled as endofunctors in the appropriate category. Given one such a functor, say � , a
corresponding algebraic structure (i.e., a � -algebra) is simply a map

��� �����	�
�
which specifies how values of � are generated using a collection of constructors,
whose signature is registered in the ‘shape’ of � . A canonical representative of the
envisaged structure arises as a (least) solution, i.e., a fixpoint, of equation �
������ .
It corresponds to the initial (term) algebra for this signature. Recall that initiality of
the term algebra means there exists a unique homomorphism from it to any other � -
algebra. The two sides of this universal property — existence and uniqueness — en-
tail, respectively, the so-called inductive definition and proof principles (see [GTW78]
for an early account).

An advantage of working inside a categorical model is that, once the basic defini-
tions are settled, a lot of structure comes for free. The ‘categorical trilogy’ — functo-
riality, naturality and universality — leads to canonical constructions by constraining
what should be acceptable as a structural characterisation. Universal constructions, in
particular, are paradigmatic: if they exist, they do so in essentially an unique way3.
Categorical frameworks convey, in fact, what S. Abramsky calls a ‘major shift from
stipulation to observation of structure’ [Abr94]. Moreover, thinking categorically
provides further levels of abstraction, in the sense that underlying mathematical ‘uni-
verses’ need not to be fixed once and for all.

Another ‘magic’ word in the categorical way of thinking is duality, which ba-
sically means that universals always come in pairs. As discussed below, ‘arrow re-
versal’ paves the way to the generalisation of constructive (initial, inductive) data
structures (like the natural numbers or finite trees) to the dual realm of observable
(final, coinductive) structures able to model ‘infinite’ or ‘circular’ objects or, more
generally, to provide semantic universes for behaviours.

3A popular example, related to polymorphism in programming, is Wadler’s theorems for free
[Wad89].



2. BACKGROUND 11

13. COALGEBRAS. As a matter of fact, there are several phenomena in computing
which are hardly definable (or even simply not definable) as algebras, i.e., in terms
of a complete set of constructors. Think, again, of processes, transition systems, ob-
jects, stream-like structures used in lazy programming languages, ‘infinite’ or non
well-founded objects arising in semantics, and so on. Such ‘systems’ are inherently
dynamic, do possess an observable behaviour, but their internal configurations re-
main hidden and have therefore to be identified if not distinguishable by observation.
Furthermore, the formalisation of the possibly infinite behaviour they may exhibit
requires infinite structures, whereas elements of an initial algebra are always finite.
Coalgebraic structures seem appropriate to deal with such issues.

While data entities in an algebra are built by constructors and considered to be
different if differently constructed, coalgebras deal with entities which are observed,
or decomposed, by observers (or ‘destructors’). Any two internal configurations are
identified if they cannot be distinguished by observation. Given an endofunctor � , a
� -coalgebra is a map

� ��� � � � �

which may be thought of as a transition structure, of shape � , on object
�

, usually
referred to as its carrier or state space. The shape of � describes not only the way
the state is (partially) accessed, through observers, but also how it evolves, through
actions. � specifies a signature of actions and observers over a carrier but it omits
its constructors. As a consequence equality has to be replaced by bisimilarity (i.e.,
equality with respect to the observation structure provided by � ) and coinduction
replaces induction as a proof principle.

The dual concept to initial algebra is that of final coalgebra. For a given � , it
consists of all possible behaviours up to bisimilarity, in the same sense that an initial
algebra collects all terms up to isomorphism. It is also a (greatest) fixpoint of a func-
tor equation and provides a suitable universe for reasoning about behavioural issues.
In this context, final coalgebras are called coinductive or left datatypes in [Hag87b]
or [CS92], codata and codatatypes in [Kie98b, Kie98a], final systems in [Rut00] or
object types in [Jac96b].

The relevance of coalgebraic concepts and tools was first recognised in program-
ming semantics — see, for example, P. Aczel foundational work on ‘non well-founded
sets’ and the semantics of processes [Acz88, Acz93]; H. Reichel characterisation of
behavioural satisfaction [Rei81] and J. Rutten, G. Plotkin and D. Turi work on final
semantics [RT94, Tur96, TP97]. The methodology of final semantics starts from a
universe of ‘behaviours’ built as a final coalgebra for a functor � determined by the
operational semantics of the language. Then, syntax is casted into a � -coalgebra
such that behaviour equivalence is the equivalence induced on terms by the unique
arrow to the final ‘universe’. The whole process is semantics-driven — one looks



12 1. INTRODUCTION

for an ‘explanation’ of behaviour. Dually, initial semantics [GTWW77] is syntax-
driven: one starts from a term algebra for a functor � and builds another � -algebra of
‘meanings’ (or ‘denotations’) of the syntactic objects. The semantic map is now the
unique arrow from the initial algebra. The approach is difficult to apply to the sort of
‘infinite’, ‘operational’ or ‘circular’ entities mentioned above, leading to heavy math-
ematical structures and contrived encodings. A basic reference on the final semantics
approach is [TR98]; detailed applications are given in M. Lenisa’s thesis [Len98].
Aczel’s excellent tutorial [Acz97] provides a motivating introduction.

Although previously known in Universal Algebra, coalgebras began to be seri-
ously considered only after the categorical account of both algebraic and coalgebraic
structures of a type � (i.e., for an endofunctor � in an arbitrary category) has pro-
vided the right generic framework in which several phenomena and theories fit. The
systematic study of their theory, essentially along the lines of Universal Algebra, was
initiated by J. Rutten in [Rut96] (later published as [Rut00]). This rapidly expanded
to a broad research topic, as an increasing number of contributions appeared on both
the theory, applications and rephrasing of ‘old’ results in seemingly unrelated areas.
Part of this research is documented in the proceedings of the Coalgebraic Methods in
Computer Science workshop series, starting in 1998. Reference [JR97] provides an
introductory tutorial.

14. CATEGORICAL DATA TYPES. The study of such a broad notion of abstract data
type, in the initial algebraic and final coalgebraic trends, dates back to the ADJ group
in the 1970’s (and also [Wan79, Rei81]). It was later ‘rediscovered’ and brought back
to fashion by T. Hagino landmark thesis [Hag87a]. This research area is now usually
referred to as the theory of categorical data types (some early contributions include
[Hag87b, Wra88, Mal90a]).

Generic combinators, parametric on the functor encoding the type signature, arise
as universal arrows. They encode several recursion patterns which depend on the
shape of the structure which the algorithm consumes, generates or, simply, ‘rests
on’ (as a virtual data structure). In particular, iteration (respectively, coiteration)
is modelled by the inductive (coinductive) extension of an algebra (coalgebra), i.e.,
the unique arrow from (to) the initial (final) algebra (coalgebra). Such constructions
become known in the area of constructive algoritmics [Mal90b, Fok92b, BM97], as,
respectively, catamorphisms and anamorphisms. A number of specialisations of such
basic schemata have been proposed, several of which are covered in M. Fokkinga
thesis [Fok92b], with an emphasis on the inductive side (see also [UV99] for a recent
development). L. Meertens introduced paramorphisms in [Mee92] which correspond
to primitive recursion. The dual notion of apomorphism is due to T. Uustalu and V.
Vene [VU97]. Recently, more generic schemes have been studied: they are not only



2. BACKGROUND 13

parametric on the functor capturing the type signature, but also on a comonad with
a distributive law which encodes the recursive call pattern of a particular recursion
scheme for the underlying inductive type (see [UVP01] and, for a similar motivation
on the coinductive side, [Bar01b]).

Such a research area, devoted to the development of program calculi directly
based on, i.e., actually driven by, type specifications, builds upon both the generic-
ity and the calculational style [Fok92a] entailed by category theory, the latter arising
from the fact that most categorical properties can be formulated as (usually equa-
tional) laws. This has had a fundamental impact on algorithm derivation and transfor-
mation, mainly on the framework of functional programming. In fact, since John
McCarthy original papers [McC60, McC63], and, later, Backus FP [Bac78] — a
functional language based on combinators related by algebraic laws — functional
programming and program calculi have developed in an intertwined way. Around the
end of the eighties, the so-called Bird-Meertens formalism [Bir87, BM87], originally
an equational theory of sequences which formed the basis of a calculus for trans-
forming list based programs, had emerged. R. Backhouse [Bac88] published on the
basic role of category-theoretic universals in programming and G. Malcolm [Mal90b]
made the community aware of the foundational work of Hagino. Since then the area
has known a remarkable progress, as witnessed by the vast bibliography published
on both the theory and applications (e.g., [MFP91, Mee92, Fok92b, BH93, Jeu93,
Aug93, Gib93, BM94, DM94, Fok96, Hoo96, Par98, VU97]; see also [BM97] as a
textbook and [BJJM98] for a tutorial introduction).

Furthermore, such generic combinators have been incorporated on real program-
ming languages as polytypic functionals, generalising the well-known map, fold
and unfold constructs, in functional languages (see, eg, [She93, JC94, JJ97]). There
are also programming languages entirely based on categorical data types. CHARITY

[CF92] is probably the paradigmatic one. D. Kieburtz ADL [KL95] (see [Kie98b] for
applications to reactive programming) should also be mentioned.

In programming, the basic symmetry between initial and final types makes itself
more intuitive in languages, like CHARITY, in which all programs are guaranteed
to terminate (in the sense that only total functions can be programmed). Reference
[Tur95] provides a lively discussion on the merits of such a discipline of typed total
functional programming. Nevertheless, categorical data types can be interpreted in
more structured categories and the program construction principles they entail suc-
cessfully applied in, for example, languages incorporating partial functions. Such
is, typically, the case of HASKELL [HPW92] whose semantics is given upon a cate-
gory of pointed complete partial orders, imposing a definition ordering on each type.
This is an example of an algebraically compact category [Fre91] — categories where
the initial algebra and final coalgebra of a functor, when existent, are canonnically



14 1. INTRODUCTION

isomorphic. This ‘collapsing’ of fixpoints makes it possible to encode into a single
morphism (said the hylomorphism) the common algorithmic principle of unfold and
then fold, i.e., unfold the argument to populate an intermediate (virtual) data struc-
ture and, then, fold over such a structure to build the intended result [MFP91]. On
the other hand, however, it obscures, or even prevents, the direct ‘manipulation’ of
‘infinite’, ‘circular’ objects.

15. COALGEBRAIC MODELLING. Mathematically, coalgebras are the formal du-
als of algebras, and it is exactly in this sense that they are responsible for ‘half the
picture’ in categorical data types. As mentioned above, only recently, however, coal-
gebra theory itself has received enough attention and eventually emerged as a com-
mon framework to describe ‘state based’, dynamical, systems. Since then, coalge-
braic modelling and reasoning principles have been applied in several areas. Exam-
ples range from automata [Rut98] to objects [Rei95, Jac96b], from process semantics
[Len98, Sch98, Wol99] to hybrid transition systems [Jac96a].

B. Jacobs and his group, following earlier work by H. Reichel [Rei95, HR95]
have coined the term coalgebraic specification [Jac97, Jac02] to denote a style of ax-
iomatic specification involving equations up to bisimilarity acting as constraints on
system’s observable behaviour. Models of coalgebraic specifications are subcoalge-
bras of the final coalgebra, just as models for algebraic specifications are quotients
of initial algebras. CCSL is a recent proposal of a specification language for classes,
including object-oriented structuring mechanisms (e.g., inheritance and aggregation).
The language is integrated with a proof assistant. This allows the identification of the
functor underlying the specification signature, the automatic generation of the cor-
responding invariant and bisimulation definitions, as well as assisted proof, e.g., for
the verification of specification assertions. Both [RJT01] and [HHJT98] are recent
references on this on-going project.

There is a close relationship between coalgebraic specification, and the ‘hidden
algebra’ approach referred earlier on §11, as pointed out in, e.g., [Mal96] and [Cir98].
Even though nothing is essentially coalgebraic in ‘hidden algebra’, several construc-
tions (e.g., behavioural equivalence, final models, cofree extensions) can be elegantly
regarded as constructions on coalgebras. In particular, the coalgebraic notion of a
state space corresponds to (the product of) hidden sorts in hidden-sort algebra. In
general, every hidden signature gives rise to an endofunctor whose coalgebras are the
hidden models of the signature.

In a broad perspective, coalgebraic modelling explores the close relationship be-
tween coalgebras and modal and temporal logics, whose role in the specification of
system’s dynamics is well-established. The basic idea, developed namely in [Mos99]
and [Jac99b], consists of associating a modal language to the functor induced by the



2. BACKGROUND 15

specification signature, having the logic assertions interpreted over the (Kripke mod-
els defined by the) transition systems induced by � -coalgebras.

16. COMPONENTS REVISITED. Further to the context and background just reviewed,
one may ask how the notion of a component studied in this thesis fits in the emerg-
ing component-based programming paradigm [Szy98, MM99]. Rather than a spec-
ification framework, such a terminology covers a program development style where
reusable off-the-shelf components are glued together to build new applications. Usu-
ally components are regarded as ‘static abstractions with plugs’ [SN99], implemented
and used according to language independent platforms (such as, e.g., COM [Mic92])
and interconnected through scripting languages (such as VISUALBASIC, PERL, or
even HASKELL, as recently advocated in [LMH98]).

This emerging programming paradigm retains from object-orientation the basic
principle of encapsulation of data and code, but shifts the emphasis from (class) in-
heritance to (object) composition to avoid interference between the former and encap-
sulation. Thus, a way is paved to a development methodology based on third-party
assembly of components. The paradigm is often illustrated by the visual metaphor
of a palette of computational units, treated as black boxes, and a canvas into which
they can be dropped. Connections are established by drawing wires, corresponding to
some sort of interfacing code.

As has always been the case with object-orientation (and even with programming
in the broadest sense), component-orientation has grown up to a popular technology
before consensual definitions and principles, let alone formal foundations, have been
put forward. We believe it is not yet a ‘paradigm’ on its own but rather a collection
of technologies and a research concern common to different communities. In 1999, a
seminar organised by P. Wadler and K. Weihe was suggestively entitled Component-
Based Programming under Different Paradigms. The quotation which follows is ex-
tracted from the final report [WW99]:

The meaning of this word [component] is intuitive: programs are broken
down into primitive building blocks, which may be flexibly plugged together
according to well-defined protocols. In fact, each of the above mentioned
programming paradigms [object-oriented, template-oriented, functional,
...] may be viewed as an attempt to realise such a component-based pro-
gramming style. However, the definition of components and the techniques
for combining them varies significantly.

Or, as P. Wadler emphasises in his own contribution to the report, ‘just as Eskimos
need fifty words for ice, perhaps we need many words for components’. In such a



16 1. INTRODUCTION

broad sense, we believe this thesis adds some contribution to a (formal) perspective
on the topic.

17. SOFTWARE ARCHITECTURES. Closely related to the emergence of component-
based programming, the discipline of software architecture has arisen as the sys-
tematic study of the overall organisation of software systems. In a sense, software
architecture scales up ‘componentware’ in a way similar to what has happened in the
hardware field, as the size and complexity of computer systems increased.

During the last decade, a number of organisational patterns have been recognised
in the software design practice — just recall expressions like ‘client-server’, ‘layered
model’, ‘pipeline architecture’, ‘blackboard system’, ‘object community’ and so on.
Reference [GS93] provides a tutorial introduction to the area, from a qualitative point
of view, and [Gog96] is pure ‘food for thought’.

We are, however, far away from having a suitable taxonomy of architectural
paradigms; let alone a mathematical theory. What seems to be reasonably consen-
sual is the need to describe an architecture in terms of collections of components,
in one hand, and connectors (which may turn out to be just special kinds of com-
ponents), on the other. Some formal description notations have been proposed. The
WRIGHT methodology [AG97], for example, resorts to a process notation (a subset of
CSP [Hoa85]) to describe both components’ behaviour at specific ports and the glue
specification at connector level. This combines the behavioural patterns expected for
any components willing to be connected using that specific connector. The emphasis
is put on maximising reuse to which, as one could expect, corresponds the technical
problem of formally defining and ensuring static and dynamical compatibility.

There is a variety of approaches dealing with similar problems in a sound, for-
mal way. The literature includes references such as [MQ94], [Nie93] (the latter re-
stricted to an object-oriented framework) and [MDEK95], [SN99], both based on the
� -calculus [Mil99], as well as recent work by J. Fiadeiro and collaborators at Lisbon
(see, e.g., [FL97, WF98, WLF01]).



3. OUTLINE OF CONTENTS AND CONTRIBUTIONS 17

3. Outline of Contents and Contributions

18. OVERVIEW. As stated in §3, this thesis intends to propose a semantical model for
software components, parametric on a notion of behaviour, and to develop a calculus
to reason about component based designs.

Regarded as state-based, dynamical systems, components are modelled as coal-
gebras for a class of endofunctors in

�����
, with specified initial conditions. Two basic

classes of functors, differing on the degree in which output may depend on input, are
considered. Each of them entails a notion of bisimilarity and gives rise to a family of
calculi parametrized by a strong monad which captures a particular behaviour model.
Partiality and nondeterminism are typical examples, but, of course, not the only ones.

Components are, thus, concrete coalgebras, over a state space supporting a set
of observers and actions which are explicitly specified. For each inhabitant of the
state space, the corresponding behaviour, or ‘process’, arises by coinductive exten-
sion (i.e., as its anamorphic image). In fact, processes, but not components, can be
regarded as inhabitants of a final coalgebra. Coinductive types provide an abstraction
for behaviours, just as inductive types characterise data. Both of them, as canonical
representatives of, respectively, coalgebraic and algebraic structures, can be formally
manipulated in computer programs, provided the programming language has enough
expressive power. Animating components’ behaviour in a language supporting coin-
ductive types, is a recurrent theme along the thesis.

Regarding behaviours as ‘duals’ to data objects such as, say, finite lists or trees,
raises a related question also addressed in the thesis: process calculi, being about a
particular sort of behaviours, could they be developed and their laws proved along the
lines one gets used to in (data-oriented) program calculi?

19. CONTRIBUTIONS. The thesis main contributions are organised in two areas:
� The development of CCS-like process calculi in a generic framework whereby

reasoning is carried out in a calculational style.
� The study of components as concrete coalgebras and the development of the

corresponding calculi, again in a generic framework.

These two areas share the same (coalgebraic) modelling discipline and a common
concern, which we would like to see as the driving motto of the whole work: gener-
icity. This means that the proposed models and calculi are parametric with respect
to the underlying interaction discipline (in the case of processes) and the behaviour
model (in that of components).

The way this is achieved in the thesis is sketched in the following paragraphs
which detail its contents. A somewhat more detailed discussion of the thesis con-
tributions, in comparison with the literature, is, however, delayed to the concluding



18 1. INTRODUCTION

chapter, after the complete presentation of the work. Should the reader prefer to see
the thesis contributions put in perspective right now, a quick visit to the first section
of chapter 7 would be the natural complement to this introduction.

20. ORGANISATION. Chapters 2 and 3 as well as appendixes A, B and E provide
the background material for the thesis.

Processes as codata are studied in chapter 4. The chapter, however, begins with
a brief ‘exercise’ on coalgebraic modelling and its last section introduces the compo-
nent models and discusses their relationship to processes. This acts as a ‘bridge’ to
the following chapters.

The development of calculi for components characterised by either a ‘functional’
or ‘object-like’ shape, is the main subject of chapters 5 and 6, respectively. In both
cases genericity is achieved by the monadic parametrization mentioned above. In
order to correctly handle such a parametrization, a pointfree calculational proof style
is adopted. This leads to easy to follow (but sometimes long) proofs, most of them
collected in appendix D for increased readability. Appendix C, on the other hand,
states and proves a number of laws relating common ‘housekeeping’ morphisms (such
as associativity) with monad’s unit, multiplication and strength. Such ‘context laws’
are required by several proofs of components’ properties and constitute a sort of ‘side-
product’ of this thesis.

Finally, chapter 7 concludes, compares and introduces some research topics for
future work. A particular mention is made to component refinement.

A ‘roadmap’ to the themes addressed in the thesis is suggested in the following
paragraphs.

21. PROCESSES AS CODATA. Chapter 4 is an attempt to develop process calculi
on top of a representation of processes as inhabitants of coinductive types, i.e., final
coalgebras for suitable

� ���
endofunctors. Most of this chapter is concerned with

functor ��� � ���������
	

which gives rise to a family of CCS-like calculi. The set
� ���

of actions is equipped
with the structure of a positive monoid with a zero element, which specifies an in-
teraction discipline. Different calculi arise by varying either this monoid (leading
to different interaction disciplines within the same behaviour model) or the process
structure itself, replacing

�
by another monad. This leads to different behaviour

paradigms under the same interaction discipline.
Final semantics for processes is an active research area, namely after Aczel’s

landmark paper [Acz93]. Our emphasis is, however, placed on the design side: we in-
tend to define process combinators just as (dually to, to be exact) we build operations



3. OUTLINE OF CONTENTS AND CONTRIBUTIONS 19

on binary trees, and to reason about them in the same calculational style. Placing data
and behaviour at a similar level conveys the idea that process models can be chosen
and specified according to a given application area, in the same way that a suitable
data structure is defined to meet a particular engineering problem. Moreover it leads
to a generic approach to process calculi design and entails a purely calculational (basi-
cally equational and pointfree) proof style. This circumvents the explicit construction
of bisimulations used in most of the literature on process calculi. In particular, a
‘conditional fusion’ theorem is proved and its use is illustrated in the derivation of
conditional laws. Part of this work appeared in [Bar01a].

22. COMPONENTS AS ARROWS. Following a fundamental intuition of functional
programming, software components are considered in chapter 5 as arrows between
two observation universes, thought of as input and output interfaces. Functions from,
say, � to � are written as � � � � ��� and defined as inhabitants of the exponential
type, i.e., ������� . Similarly, components will be written as �

� � � �	� . But how
should we ‘fill in the dots’ in expression � ��
�
�
 ?

Such suitably typed arrows should compose and the resulting construction should
have, at least, the structure of a category. The shared observational universe involved
in a composition situation acts, as it actually does in functional composition, as an
interaction space.

Filling in the dots, components �
� � �	�
� will be introduced in this chapter as

seeded concrete coalgebras for the following family of
�����

endofunctors

� � � �
� ��� � � 	 �

where � is a strong monad intended to capture a particular behavioural model.
In order to deal with static, as well as dynamic, aspects of components, we will

have to consider arbitrary coalgebras defined over concrete state spaces, instead of
restricting ourselves to work within final coalgebras. This decision stems from our
starting focus on model-oriented specification methods: we want to deal explicitly
with the structure of the state spaces, to compare them and, eventually, to discuss the
effects of their transformations in the overall component behaviour. There is however
a price to be paid: the presence of concrete state spaces makes the usual axioms for a
category only verifiable up to isomorphism, ending up with the looser structure of a
bicategory [Ben67].

Therefore, a bicategory ��� � , with interfaces as objects, components and com-
ponent morphisms as arrows and 2-cells, respectively, is defined where composition
amounts to a pipe-like interconnection of independent components. A more general
interaction scheme is captured by total and partial feedback operators. Several other
aggregation combinators, a wrapping mechanism and the lifting of functions to ��� �



20 1. INTRODUCTION

are studied. All the definitions and the resulting calculus are parametric with respect
to the underlying behavioural model, relying only on standard properties of the under-
lying monad, namely strength and, for a few cases, commutativity. Our approach is
in debt to the work of R. Walters and his collaborators on ‘bicategories of processes’
(see §7), which we generalise in a sense to be discussed later in §7.5.

A category � � � of behaviours is derived from ��� � by reducing objects of its hom
categories to their anamorphic images in the final � � -coalgebra. ��� � hom categories
become simply hom sets, but the component algebra lifts naturally to this setting, now
as a ‘process calculus’: its laws become valid up to equality. This derived category
will play an important role in the overall framework as a space for prototyping (§25).

23. SEPARABLE COMPONENTS. Component calculi developed in the thesis are
concerned with component interconnection and interaction, but they are ‘blind’ with
respect to their internal structure. Being aware of some details of such a structure
— for example, some properties of the state space or the specification format for the
coalgebra dynamics — enables a finer ‘tuning’ of the calculi. In chapter 5, a parti-
cular class of components, called separable, are studied. A separable component is
specified as a collection of actions over a shared state space, each of them with a
specific interface. Packing them into a � � -coalgebra, results in an additive interface
such that each input stimulus produces a result whose type is known and unique. Most
components defined in model-oriented frameworks fall in such a class. It is shown
how this restriction entails a richer ontology of interaction mechanisms captured by
new feedback combinators.

24. COMPONENTS AS OBJECTS. If chapter 5 regards components as ‘(monadic)
functions with memory’, chapter 6 adopts an ‘object-oriented’ perspective. In partic-
ular, observers (or ‘attributes’) are unrelated to actions (or ‘methods’) and can, there-
fore, be accessed in parallel. In this way, components ���� � � become coalgebras
for

� � � � �
� �

again parametric on a behaviour strong monad � .
The component calculus developed in chapter 5 is revisited in this new setting.

Although the definitions of the combinators have to be adjusted, most of the previous
results remain valid. Moreover, interaction, modelled by feedback combinators which
connect a ‘multiplicative’ output to an ‘additive’ input, becomes easier to deal with
as feedback parameters can be hidden.

There is, however, a fundamental difficulty concerning the definition of an ap-
propriate bicategory as (sequential, or pipelining) composition fails to be associative.
This justifies the introduction of a broader definition of a component morphism (called



3. OUTLINE OF CONTENTS AND CONTRIBUTIONS 21

a next comorphism) entailing an equally broader notion of bisimilarity. The seed value
considered in the ‘functional’ model of chapter 5 has also to be replaced by a seed
predicate, i.e., a collection of seed values.

Having succeeded in defining a new bicategory of components, the calculus is,
however, introduced in a derived category —

� �
� —- in which components are objects

(another justification for the chapter’s name!). The motivation for this is to avoid the
technical restriction to next comorphisms, given that several, although not all, the
relevant laws can be given as straight bisimilarity equations.

Last but not least, this paves the way to a further generalisation of component
morphisms. The basic idea is to relate components with different types at the level of
morphisms, these being defined up to a natural transformation ����� � encoding interface
conversion. Transformation ����� � is determined by functions � on the output and,
contravariantly, � on the input. Moreover, � can be any arrow in the Kleisli category
for the behaviour monad � , i.e., � will be typed as �

� �	� �	� � � instead of being just
a function from � � to � . This means that extra structure in the input conversion can be
absorbed by the underlying behaviour model. Some properties of such morphisms are
proved. In particular, the resulting category is shown to be cofibred over the interface
space.

Another element considered in this chapter is the incorporation of internal ac-
tivity, independent of the component’s environment. This is done in a simple way,
conveying the intuition that, when interacting with a component, the current value of
its state space may be different from the one left by a former interaction. Part of the
results in this chapter appeared in [Bar00].

25. PROTOTYPING. Along chapters 4, 5 and 6, we resort to the experimental pro-
gramming language CHARITY [CF92] to prototype some of the proposed construc-
tions, namely the process calculi and the component algebras studied. As a program-
ming language, CHARITY is based on the term logic of distributive categories and
provides a definitional mechanism for categorical data types, i.e., for both initial al-
gebras and final coalgebras. The latter are regarded in this thesis as ‘behavioural
structures’: behaviours are, in fact, elements of ��� � and we are therefore given a tool
to animate components’ evolution and interconnection.

On the other hand, we believe that prototyping plays an important role in any spe-
cification method, as it supports a stepwise development style. With such a tool each
design stage can be immediately animated and quick feedback about its behaviour
gathered. Functional programming languages have been a favourite vehicle for rapid
prototyping of formal specifications, at least since P. Henderson’s me too [Hen84]
proposal for animating VDM. Should our intention be not limited to prototyping



22 1. INTRODUCTION

system’s static functionality, a language with coinductive data types offers a new level
of experiments.

26. CONTEXT LAWS. As mentioned above, appendix C states and proves several
generic laws relating ‘housekeeping’ morphisms with monad’s unit, multiplication,
strength and strength distribution. They are essential to most proofs of the compo-
nents’ laws. And we would like to regard them them as an ‘add-in’ to the ‘pointfree
calculator toolbox’.

In most cases we have proceeded on a ‘demand driven’ basis. Albeit being non
exhaustive, we believe they may be useful in other situations of context manipulation
in expressions involving strength and the monad definitional morphisms.

27. BACKGROUND. Chapters 2 and 3, as well as appendixes A, B and E, provide
some background material for the whole thesis. Chapter 2 is an introduction to basic
category theory, complemented in appendixes A and B with a review of some specific
concepts and results on monads and bicategories, respectively. Chapter 3, on its turn,
introduces algebras and coalgebras for a functor. It also makes an incursion into
the categorical approach to data types, as a framework in which both data structures
and behavioural patterns can be abstracted, as, respectively, initial algebras and final
coalgebras.

In retrospect, we have to admit that a thick time slice of our PhD work was de-
voted to study and, hopefully, to master, a number of core concepts and techniques in
these areas. Their account in these chapters of the thesis is, of course, not original,
but reflects our own perception of them and, even our learning process. This can be
seen in the overall organisation and the introductory motivation to chapter 3.

The final section of chapter 3 attempts to provide an introduction to strong data
types and the corresponding universals, along the same lines the ‘non strong’ picture is
previously reviewed. The outcome is slightly different from what can be found in the
‘standard’ references, namely in the CHARITY accompanying papers [CS92, CS95].
The latter resort to a fibrational setting which is probably less familiar to a computer
science audience.

Finally, a brief introduction to the CHARITY language is provided in appendix E,
which includes an exercise in defining sets and partial functions, and some associated
operators, as higher-order coinductive types.

28. A REMARK ON NOTATION. Elementary category theory will be used throughout
this thesis to formulate and organise results. In particular,

�����
, the category of sets

and set-theoretic functions, is assumed as the underlying universe.



3. OUTLINE OF CONTENTS AND CONTRIBUTIONS 23

The notation is hopefully clear and standard. However, a few remarks are in order.
First note that we explicitly denote composites of arrows and vertical composition of
natural transformations (more generally, of 2-cells in a bicategory) by ����� . Horizon-
tal composition of natural transformations (more generally, of 2-cells) is denoted by
� � � and used in diagrammatic order. Expression parentheses are omitted wherever
possible (their use is to disambiguate expressions). In particular, the application of
morphisms to arguments is denoted by juxtaposition and angle brackets are used to
represent tuples. In some occasions, lambda expressions are used to denote elements
of exponentials.

A final convention: binary connectives always associate to the left and morphism
application binds more tightly than composition. Therefore, an expression �������
	
stands for

�
�����

	
��	 . Likewise, �

�
��� � 	 and � �
� � are different morphisms.

This thesis is organised in paragraphs, each of which addresses a single topic.
Every definition, lemma or simple remark, appears in an independent paragraph.
Paragraph’s are numbered sequentially within each chapter. A reference to paragraph
� of chapter � is indicated by § � , if it is placed inside that chapter, or by § ��� � other-
wise.





CHAPTER 2

Categorical Preliminaries

Summary
It is remarkable that so many computational phenomena and concepts
in programming semantics find a categorical ‘explanation’ which is both
concise and generic. Software components, studied in the subsequent
chapters, turn out to be one of them, as emphasised in the title of this
thesis. This chapter provides a brief introduction to some concepts of
elementary category theory, up to the notion of an adjunction. It also
introduces the basic notation used throughout the thesis.

1. Basic Notions

1. INTRODUCTION. In the introductory material of [McL92], Colin McLarty com-
ments on the development of category theory as follows:

The spread of applications led to a general theory, and what had been a
tool for handling structures became more and more a means of defining
them. (...) In the 1960s, Lawvere began to give purely categorical descrip-
tions of new and old structures, and developed several styles of categorical
foundations for mathematics. This lead to new applications, notably in
logic and computer science.

The notion of a coalgebra, which pervades this thesis, is one of such old-new struc-
tures, easily recognised in a variety of computational phenomena, but whose gen-
erality and expressive power became clear only under the light of category theory.
This chapter offers an introduction to basic category theory by presenting some core
concepts, notation and laws. Algebras and coalgebras for an endofunctor and their

25



26 2. CATEGORICAL PRELIMINARIES

‘canonical’ representatives, known as categorical datatypes, will be introduced later,
in chapter 3. Two topics not covered in the main text, namely monads and bicate-
gories, are deferred to appendixes A and B, respectively, for easier reference and to
avoid a too lengthy background chapter.

Our exposition of background material expresses a personal way of understanding
the basic concepts and results reviewed. The reader is referred to standard textbooks,
namely [Mac71] and [Bor94a], for proofs and a more detailed exposition. [BW90a]
and [Wal91] are intended for a computer science audience, but several other introduc-
tory texts exist. One we have found particularly sharp and clear is [McL92]. On the
other hand, to build up one’s own intuitions, [LS97] remains a ‘conceptual’ pearl.

2. CATEGORIES. Roughly speaking, categories deal with arrows and their composi-
tion, in the same sense that sets deal with elements, their aggregation and membership.
An arrow is an abstraction of the familiar notion of a function in set theory or of a
homomorphism in algebra. Depicted as � � � � ��� , it may be thought of as a trans-
formation, or, simply, a connection, between two objects � and � , called its source
(or domain) and target (or codomain), respectively. The sources and targets of all the
arrows in a category, form the class of its objects. If the same object is both the target
of an arrow � and the source of another arrow � , � and � are said to be composable.
Arrow composition is thus a partial operation and what the axioms for a category say
is that arrows and arrow composition form a sort of generalized monoid. Formally,

3. DEFINITION. A category � consists of
� a class ����� � � 	 of objects � , � , � , ...
� for each pair of objects � and � , a set of arrows with source � and target� , called a hom set and denoted by �	� ��
���
 .
� for each triple of objects � , � and � , an operation, called � -composition,

�
� �	� ��
���
 � ��� ��
���
 �	� ��� ��
���


such that
� � -composition is associative and there exists, for each object � , a special

arrow � ��� (or simply � if no confusion with the object � itself arises),
called the identity on � , which is both a pre- and post-unit of composition.
This is neatly expressed by the commutativity of the following diagrams:

�
�

//

��� �   AAAAAAA �
�
��

� � �
  AAAAAAAA �

�
//

�   AAAAAAA ��� � �
��

�

��@@@@@@@

� �
// � � �

// �



1. BASIC NOTIONS 27

i.e., by

�
� � � � � �

�
�
� � � 	 (2.1)

� ��� � � � � (2.2)

� � � ��� � � (2.3)

� Arrows uniquely determine their source and target objects, i.e., for all � and� , the sets �	� � 
���
 are pairwise disjoint.

4. EXAMPLES. A prime example of a category is
�����

, the category of sets and set-
theoretic functions. Another example is � ��� in which functions are replaced by binary
relations. Composition is then relational product: given arrows ��� � � � and	 �
� � � , their composite is the relation ��
 	 ����
 � 
 	����
� � ��������� � � 
 � 
 ��� �	�� 
 � 
 	�� ����� ). Other typical examples of a category arise by considering algebraic
structures and their homomorphisms or, even, by looking at a particular such structure
as a category itself. For example, a poset forms a category by taking as arrows all
the pairs of elements � , � such that ��� � . Composition and identities are given,
respectively, by the transitivity and reflexivity of the order relation.

There are also several standard ways of obtaining new categories from old. The
simplest one consists of formally reversing all the arrows of a category � . The result,
denoted by �! #" , is referred to as the dual category of � . Another useful construction
is the product category: given two categories � and $ , their product category has as
objects (resp. arrows) pairs 
&% 
 ��� (resp. 
 � 
 �'� ) of a � and a $ -object (resp. arrow).
Identities and composition are defined componentwise.

5. UNIVERSALITY. If there is a ‘main topic’ in category theory, this is certainly
the study of universal properties. Roughly speaking, an entity ( is universal among a
family of ‘similar’ entities if it is the case that every other entity in the family can be
reduced or traced back to ( . For example, an object ) is said to be final in a category
� if, from every other object � in � , there exists a unique arrow * � to ) . Therefore,
there is a canonical, in the sense of unique, way to relate every object in � to ) —
finality is thus an universal property.

A nice thing about universal properties is the fact they always ‘come in pairs’: the
dual of an universal is still an universal. Dualizing finality, we arrive at initiality: an
object is initial in � if there is one and only one arrow in � from it to any other object
in the category.

Universal properties, like finality or initiality, can be recognised, usually under
a different terminology, in many branches of Mathematics. Moreover, they happen
to play a major role in the structure of ‘mathematical spaces’. Therefore, category



28 2. CATEGORICAL PRELIMINARIES

theory provides a setting for studying abstractly such ‘spaces’ and their relationships.

6. FINAL AND INITIAL OBJECTS. In
�����

the empty set has exactly the properties
of an initial object. On the other hand, if we seek for final objects, we will end up
recognising that any singleton set will do. The usual notation for the empty set is � , a
symbol close to � . To stress the duality, any (actually, the) singleton will be denoted
by � . The same symbols will be used for initial and final objects in any category.
The corresponding universal properties state the existence, for each object � in the
category, of two unique arrows * � � � �	� � and � � � � �	� � such that, for any
� � � �	��� :

* � � � � * � (2.4)

� ��� � � � � (2.5)

7. POINTS. One way of thinking of an arrow �
� � � � � is as an ‘element’ of

� , which is not given once and for all, but depends on � . Following [McL92], we
shall call � a generalized element of � and � its stage of definition. This suggests
the alternative notation � ���
� for arrow �

� ��� � � . The composite � � � , for
� � � �	��� , can thus be written as ��� .

A special kind of elements of an object � consists of arrows into � whose source
is the final object � (§6) in the category (if it exists). They are called points (or global
elements) of � . In some categories every arrow � � � � � � is fully determined
by its effect on the points of � . Should this be the case, the category is said to be
well pointed. Again

�����
is a good example: being well pointed is just a categorical

version of the well known fact that ‘a set is determined by its elements’. In
�����

, which
will be the working universe in this thesis, we shall make explicit the correspondence
between elements � � � and points �

� � � � � , by denoting function application
by juxtaposition, i.e., � � � �
� � .

8. ISOMORPHISM. What is ‘inside’ � ? More generally, in what sense an universal
entity is, in fact, the universal? In category theory, elements and extensionality have
been abstracted away and therefore the internal structure of � objects is not available
when reasoning at the level of � . Objects that cannot be distinguished in the language
of category theory are called isomorphic. Think, for a moment in sets like � � � , ��� � � ,
� abc � or �
	 � . From a categorical point of view they have to be characterised in terms
of their behaviour under ingoing or outgoing arrows. And it turns out that all that can
be said of them, from this point of view, is that they fulfil the properties of a final



1. BASIC NOTIONS 29

object. As it is not possible to distinguish them further, the symbol � has been taken
to denote their isomorphism class. In other words, we may say that each such set is
the final element in

�����
up to isomorphism. In fact, all objects defined by universal

constructions are unique up to isomorphism.

9. DEFINITION. The very notion of isomorphism is stated in the language of arrows.
An arrow � � � �	��� is an isomorphism if there is another arrow �

� � �	� � such
that

�
� � � � � � (2.6)

� � � � � � � (2.7)

If such a � exists it is said the inverse of � and written ��� . A right (resp. left) inverse
to � is also called a section (resp. retraction). If there is an isomorphism between two
objects � and � , they are said to be isomorphic and we write � �� � .

10. CANCELLATION. A weaker requirement an arrow may satisfy is cancellation.
Like existence of inverse, it has a right and a left version. We say � � � � � �
is cancellable on the right, an epimorphism, or, simply, an epi, if, for every 	���
 	�� �� � � � ,

	�� � � � 	�� � � � 	�� � 	�� (2.8)

Dually, it is said to be cancellable on the left, a monomorphism, or, simply, a mono,
if, for every �	� 
 �
� � � � � � ,

��� ��� � ��� �	��� ��� � �
� (2.9)

Cancellation propagates through composition, in the sense that, in any category, any
composition of monos (resp. epis) is still a mono (resp. an epi).

11. MONOMORPHISMS. If we think of �
� and ��� as generalized elements of � (§7),
the definition of a mono above looks familiar: for all, ����
 �	� � � � ,

� � � � � � � � � � � � � (2.10)

resembles the definition of an injective function. In fact, a mono is an injection over
generalized elements and happens to be an injection in

� ���
and in most categories of

sets with structure.

12. EPIMORPHISMS. On the other hand, an epi does not convey entirely the notion
of a surjection. In fact, what the definition of an epi � � � �	��� says is that � covers
a ‘sufficiently large’ part of � , in the sense that, to be distinguished, arrows from �
must disagree somewhere in the part covered by � . The stronger property of being



30 2. CATEGORICAL PRELIMINARIES

right invertible (2.6) is required to capture surjectivity. In the language of generalized
elements, the latter reads,

for each � and � � � � , there exists an � � � � such that �
� � �

One can easily show that a right invertible arrow is also an epi, said a split epi. In
�����

,
but not in many other cases, all epis are split.

13. FUNCTORS. Once a structure has been introduced, the natural next step one gets
used to from Universal Algebra, is to look for an appropriate definition of a morphism
that preserves such a structure. A functor is exactly such a morphism for categories
(i.e., a homomorphism of categories). Therefore, it preserves the typing of arrows and
identities and distributes over composition. Formally,

14. DEFINITION. A functor � � � � � $ from a category � to a category $ is a
mapping assigning to each � � ����� � � 	 an object ��� in ����� � $ 	 and, similarly, to
each � � �	� ��
���
 an arrow � � � $ � � ��
 � � 
 such that

� � � � � � ��� � (2.11)

�
�
��� � 	 � � ��� � � (2.12)

15. CAT. As expected, functors with compatible typing can be composed. Functor
composition will be represented in the sequel by � or, more often, by juxtaposition.
Moreover, for each category � there is a an identity functor denoted by � or

�����
(or

simply
���

) which is the identity on both objects and arrows. Therefore, categories and
functors form themselves a category ��� � .

16. SPECIAL FUNCTORS. A functor from a category � to itself is said to be an
endofunctor. On the other hand, a functor whose source is a product category is
called a bifunctor and is often represented by an infix operator. Given a bifunctor
� � � � $
� � �

and an object % of � , a % -section of � is the functor �	� � $ � � �

obtained from � by fixing its first argument.
Associated with each object � � ��� � � � 	 , there is also the constant functor on �

which maps every object to � and every morphism to the identity on � . This functor
will be simply written � (or � , if the context is ambiguous).



1. BASIC NOTIONS 31

17. NATURAL TRANSFORMATIONS. Functors can be seen not only as arrows in
� � � , but also as objects of other categories, provided a suitable notion of morphism is
defined. This is exactly what a natural transformation is. Formally,

18. DEFINITION. Given two functors ��
 � � � � � $ a natural transformation
� � � � � �

is a family of $ -arrows, indexed by the objects of � , such that, for any
� -arrow � � � � ��� the following diagram commutes:

�
�
��

� �
���

//
�

�
��

� �
� �
��� � � � � // � �

i.e.,

� � � � � � � ��� � � (2.13)

Each � � is referred to as the component of � at the object � .

19. VERTICAL COMPOSITION. Suppose � ,
�

and � are functors from � to $ and
that there are natural transformations � � � � � �

and � � � � � � � . Then, � and � �
can be composed originating � � � � � � � � � , by defining�

� � � �
	 � � � �� � � � (2.14)

This is known as the vertical composition of natural transformations. Thus, we may
form the functor category, $

�
, of functors from � to $ and natural transformations.

Notice that, for each functor � in $
�

, the family of identity arrows � � � � in $ gives
rise to a trivial natural transformation denoted by �

�
, which acts as an identity in $

�
.

20. HORIZONTAL COMPOSITION. There is also a notion of composition for natural
transformations between pairs of composable functors. It will be denoted by by � and
used in diagrammatic order. Suppose � and

�
are functors from � to $ and � � and�

� are functors from $ to
�

. If there exist natural transformations � � � � � �
and

� �
� � � � � �

� , their horizontal composite is � � � � � � � � � � �
�
�

whose component
at � is given by �

� � � �
	 � � �

� � � � � �� � � � �� � � � � � � (2.15)

as, by definition of � and � � , the following diagram commutes:



32 2. CATEGORICAL PRELIMINARIES

� � ���
���� �

//
� � � �

��

� ��� ����� �

%%KKKKKKKKKK

�
� � �

� � � �
��

� � � � � �	 �
// � �

� �

Particular cases of this situation occur when � or � � are the identity ��
 on a functor
� . We may, then, pre- or post-compose � with ��
 , yielding

� ��
����� � � ��
 � � � �	� � �
with

�
� � 	 � � � � � (2.16)

� � 
����� ��
 � � � � � �	� � � with
�
� � 	 � � � 


�
(2.17)

where ��
 � � � � � $ , � � � � � �
and � is a functor from $ to

�
, in the first case,

and from � to � , in the second. Vertical and horizontal composition of natural trans-
formations interact via the interchange law (see §B.4). In fact, natural transformations
are 2-cells (§B.7) in a particularly common 2-category, as detailed in appendix B.

2. Universality and Calculation

21. From a programming point of view, it is remarkable that the basic properties
captured in the categorical framework — such as universality, functoriality and natu-
rality — can be phrased in a ‘calculational’ style. This means that such properties can
be formulated as (usually equational) laws and used to manipulate and reason about
objects and arrows of the underlying category. Such a ‘calculational’ style matches
nicely a main concern in computer science — the seek for program calculi able to
promote programming to a modern engineering discipline.

In the next paragraphs we will recall the product and coproduct constructions
and some associated laws that turn out to be most useful in calculation. Product and
coproduct are the categorical generalisation of Cartesian product and disjoint union
in

�����
. In a sense, they capture the duality between co-occurrence and choice, which

may explain their major role in modelling computational systems. From §24 on,
universal constructions, like product and coproduct, or final and initial object, will be
revisited in this broader, more comprehensive setting.



2. UNIVERSALITY AND CALCULATION 33

22. PRODUCT. The product of two objects � and � in a category � is an object
� � � defined as the source of two arrows � � � � � � � � � and � � � � � � �	� � ,
called the projections, which satisfy the following universal property: for any other� � ����� � � 	 and arrows � � � �	� � and �

� � � � � , there is a unique arrow

 � 
 �'� � � � � � � � , usually called the split of � and � , that makes the following
diagram to commute:

�
�

{{wwwwwwwww �

##GGGGGGGGG
� ��� ���
��

� � � ����oo ��� // �

This universal property can be written as
� � 
 � 
 �'�
	 ��� � � � � � ��� � � � � (2.18)

where � means existence and � means uniqueness. Form (2.18) the following laws
are easily derived:

�
� � 
 � 
 �'� � ��
 ��� � 
 � 
 �'� � � (2.19)


 �
��
 ����� � � ���
� � (2.20)


 � 
 � � � � � 
 � � � 
 � � � � (2.21)

which exemplify, for the product construction, what is sometimes called a cancel-
lation, reflection and fusion result, respectively. Structural equality is also derivable
from (2.18):


 � 
 �'� � 
 � 
 � ��� � � � � � � �
(2.22)

23. COPRODUCT. The sum, or coproduct, of � and � in a category � is the dual
construction — actually it simply is the product in �  #" . That is to say, an object
��� � defined as the target of two arrows � � � � � � ��� � and � � � � � � ��� � ,
called the injections, which satisfy the following universal property: for any other� � ����� � � 	 and arrows � � � �	� � and �

� � �	� � , there is a unique arrow� � 
 � 
 � ��� � � � � , usually called the either (or case) of � and � , that makes the
following diagram to commute:



34 2. CATEGORICAL PRELIMINARIES

�
� �
//

�
##GGGGGGGGG � � �

� ��� ���
��

�� �
oo

�
{{wwwwwwwww

�
Again this universal property can be written as

� � � � 
 � 
 	 �
� � � � � � � � � � � � (2.23)

from which one infers correspondent cancellation, reflection and fusion results:

� � 
 � 
 � � � � � 
 � � 
 � 
 � � � � � (2.24)

� � ��
�� � 
 � � � � �
�

(2.25)

� � � � 
 � 
 � � ��� � 
 � � � 
 (2.26)

Products and sums interact through the following exchange law

� 
 � 
 �'��
 
 � � 
 � � � 
 � 
 � � 
 � � 
 
 � � 
 � � 
 � (2.27)

provable by either
�

(2.18) or � (2.23) universality.

24. UNIVERSALITY REVISITED. If categories can be thought of as particular math-
ematical spaces and functors as structure-preserving translations between them, an
adjunction between, say, two functors � � � � � $ and

� � $ � � � , can be regarded
as a source of universals in � and $ . In fact, products and coproducts, final and initial
objects and, in general, any universal construction arise in such a context. The con-
ceptual relevance of the notion of an adjunction, which pervades category theory and,
in a sense, Mathematics as a whole, justifies a somewhat more detailed introduction
here. We will then revisit products and sums and introduce function spaces from the
categorical point of view.

We have said in §5 that, by an entity being universal among a collection of similar
ones, it is understood that there exists a unique way in which every other entity in the
collection can be reduced to (or factored through) it. It turns out that a very general
way to express such collections is as families of arrows, said from � to � ,

� � � � � � � ��� � � ����� � � 	 �
for � a functor from � to $ and � an object of $ .

An arrow ( � in such a family is universal if there is, for every � � � � �	� � , a
unique arrow ��� � � �	� � � in � , such that � factors through ( � as expressed by
the commutativity of the following diagram:



2. UNIVERSALITY AND CALCULATION 35

�
���

��

� �
�
���

��

�

""FFFFFFFFF

� � � � �����
// �

i.e., � � ( � � � � � .
For the moment, think of

� � just as an object of � , related to � in a way that
will become clear soon. This object, as well as ( � , is of course unique (up to isomor-
phism). Finally, notice how the intuitive idea of reducing is formally captured in the
notion of factorisation.

25. PRODUCT REVISITED. Let us instantiate this definition with a familiar example.
Take � as

� � � �	��� � � , the diagonal functor from � to its product category. Let� � 
 � ��
�� ��� be an object of � � � . If it exists, an universal arrow from
�

to � will
be a pair ( � � 
 � � 
 � � � of arrows such that, for each � � � arrow

� � 
 � � 
 � ��� � � � �	� �
there exists a unique � � such that


 � � 
 � ��� � 
 � � 
 � � � � � � �

Diagrammatically,

�
� �

��

� �
� � �

��

��� � � � � � � �
##FFFFFFFFF

� � � � � �
�
� �
�
� � // �

As composition on � � � is defined componentwise, this can be written as

� � � � � � � � and ��� � � � � � �
It is then straightforward to recognise

� � as the product � � � � � , � � and � � as the
associated projections � � and � � , and � � as the split of � � and � � . We, therefore,
conclude that the pair 
 � � 
 ����� is the universal arrow in the family � � � � � �	�

 � ��
�� ����� � � ����� � � 	 � and, for any � the split 
 ��� 
 � � � of its components is the
induced unique arrow.



36 2. CATEGORICAL PRELIMINARIES

26. PRODUCT AS A FUNCTOR. If the construction mentioned in the previous para-
graph can be repeated for every object in � � � , we get along all the binary products
on � . Moreover,

�
emerges as a correspondence between pairs of � -objects and

their product, which can be made functorial as follows. Let 
 � � 
 � � � � 
 � � 
 � � � �	�

�� ��
 � � � be a morphism in � � � . Then, define,

�
�
� �

� �
�

 � � 
 � � � � ( ��� � � � � � 	 �

and simplify �

 � � 
 � � � � ( ��� � � � � � 	 �

� �����
	���
 	���� definition ��

 � ��
 � ��� � 
 �
��
 �
� � 	 �

� � composition in ����� ��

 � � � ����
 � � � ����� 	 �

� ��� � definition �

 � � � � � 
 � � � � � �

Back into the general case, note that in §24 we have been rather vague about construc-
tion

� � . Provided universal arrows ( can be defined for each object of � , the answer
is now obvious:

�
is a functor from $ to � , whose action

� �
, on a $ -morphism� � � � � � , is defined by the following diagram,

� �
� �
�
� � � � 	 � �

��

� � �
� � � � � 	 � �

��

� � � 	
##FFFFFFFFF

� � � � � ��� // �

But let us come back again to the example at hands. Once product has been found
functorial, the kit of laws introduced in §22 is automatically extended with the func-
torial laws (2.11) and (2.12), as well as a derived result showing a product of two
arrows being ‘absorbed’ by a split of other two:�

�
��� 	

� 
 � 
 � � � 
 � � � 
 � � � � (2.28)

27. UNIVERSAL BECOMES NATURAL. Another consequence of the existence of
universal arrows ( � from � to � , for each object � � ����� � $ 	 , is the emergence of a



2. UNIVERSALITY AND CALCULATION 37

natural transformation

( � � � � � ���

that is, for the product case,

( � � � � � ��� � � �

i.e.,

��� �
�
� � �

	 � �
� ��� and � � �
�
� � �

	 � � � �
� (2.29)

Another natural transformation which happens to play a complementary role with
respect to ( � , is defined by considering the family of � -arrows corresponding to iden-
tities on objects � � : � � ��� � � � �
For products, we have � � ��� � � � � �

whose component, for each object � of � , is� � �
� � � � � 	 � � � �	� � � �

28. THE DUAL PICTURE. Each

� �
can also be described as an universal arrow in

the family of arrows

� � � � � � � � ��� � ����� � $ 	 �
for

�
a functor from $ to � and � an object of � .

Being universal in such a family of arrows (said from � to
�

) means, again, the
existence of a unique factorisation. I.e., for all �

� � � � � � , there is a unique arrow
� �
� � � �	� � such that � � �

� � �
� �

. In a diagram,

�
� �

//

�
""FFFFFFFF
� � �

� �
�

��

� �
�
�

��� � �
� � can, as we have first done with

� � in §24, be thought of as a mere object of $
depending on � . However, as

�
is defined for all objects of � , � can be made into

a functor from � to $ . In particular, for any
��� � �	� � , � �

is defined by the
following diagram:



38 2. CATEGORICAL PRELIMINARIES

� � 	
//

� � � � ""EEEEEEEEE
� � �

� � � � � � �
�

��

� �
� �
�
� � � � � �

�
��� � � � �

Finally, note that, if, in the beginning of this paragraph,

�
has been defined in terms of

the unique factorisations of identities under ( , the converse is also true. In fact, ( can
be defined as a natural transformation from � � to

�����
whose components are given by

( � �
� � � � � 	 � . As noticed above, we end up with two ‘twin’ (inter-definable) natural

transformations ( and

�
.

29. EXAMPLE. As an example, take
�

as the diagonal functor
�

and seek for uni-
versal arrows from � � 
 � ��
 � ��� to

�
. The definition reads as expected: there is an

arrow

� � � 
�� � 
 � ��� such that, for each arrow � � 
 ����
 ����� � � �	� � � in � � � ,
there is a unique � �

� ��� � � � such that � � � � � � 
�� � 
 � � � , i.e.,

� � � � � � � � and � � � � � � � �
Clearly, ��� is the coproduct � � � � � and

� �
is the pair of injections 
 � � � � � �	�

� � ��� ��
�� � � � ��� � � � ��� ��� . Furthermore, 
 � ��
 � ���
�

is, by uniqueness, the
either of

�
� and

�
� . As such a construction is possible for every object in � � � , the

coproduct construction becomes a functor. Given an arrow 
 � ��
 � ��� � 
 � � 
 � ��� �	�

�� ��
 � � � define �

� � � � �
� �
��� � � � � � � 
 � ��
 � ��� 	 � � � � � � � ��
�� � � � ��


as expected, which paves the way for the dual ‘absorption’ law for sums:

� � 
 � 
 � � � � �
	 � � � � ��
 � � � 
 (2.30)

30. ADJUNCTIONS. As we have just seen, the existence of an universal arrow from
a functor � � �
� � $ to every $ -object � defines uniquely (up to isomorphism, of
course!) a new functor

� � $�� ��� . This is called the right adjoint of � . Similarly,
if there exists an universal arrow from every � -object � to functor

�
, a functor � is

uniquely defined. � is then called the left adjoint of
�

. This kind of relation between�
and � is known as an adjunction. Adjoint functors are written ��� �

.
As expected, there are two dual ways of defining an adjunction. In fact, the un-

derlying symmetry in this notion can be made explicit by observing that

�
is obtained

by reducing identities under � to ( and, similarly, ( results from the reduction of
identities under

�
to

�
. Formally,



2. UNIVERSALITY AND CALCULATION 39

31. DEFINITION. A functor � � � � � $ is left adjoint to another functor
� � $ �	�

� , written
��� �

if there is a natural transformation ( � � � � � ��� �
such that, for all � in � and� , � � � � � � � in $ , there exists a unique arrow �

� � �	� � � such that
� � ( � � � � . Usually, � is written as � � in order to emphasise its uniqueness upon � .

Alternatively, if there is a natural transformation

� � ��� � � � � � such that, for all
� and �

� � �	� � � in � and � in $ , there exists a unique arrow � � �
� �	� �
such that � � � �
�

� �
. Dually, � is written as � � .

In both cases, these (equivalent) definitions guarantee the existence of ‘enough’
universals. In consequence, an adjunction gives rise to a (natural) bijective correspon-
dence between arrows � � �
� �	� � , in $ , and �

� � �	� � � , in � , captured by
the following equivalence

� � � �
�
�
	 � � ( � � � (2.31)

Yet another popular definition of � � �
is formulated simply in terms of the following

conditions (known as the ‘triangle equalities’) on

�
and ( :

� ( �
�
� � � � (2.32)

( � � �
�
� �

�
(2.33)

In any case,

�
(resp. ( ) is called the unit (resp. counit) of the adjunction.

32. LIMITS AND COLIMITS. In §§25, 29 we have discussed, in some detail, how
products and coproducts arise as, respectively, left and right adjoints to the diagonal
functor. In fact, adjunctions � � � and

� � �
are particular cases of two fundamental

families of adjunctions: the ones that give rise to limits and colimits in general. A
basic observation is the isomorphism between $ � $ and the functor category $ � ,
where

�
is the category with two objects and no arrows other than the associated

identities. We may now generalise the notion of a diagonal functor and look for
its right and left adjoints. First the generalized diagonal functor

��� � � � � �
�

is
defined, for � is any small category. Clearly

� � is the usual
�

.
Next, take

��� � �
� � �
�
, which maps every object in � into the unique functor

from � to � . Its right adjoint, if it exists at all, maps this unique object of �
�

into the
final object of � and the corresponding

� �
, for all � � ����� � � 	 , coincides with * � .

Dually, a left adjoint would give the initial object and identify ( � with � � .
We can think of functors from � to � as � -shaped diagrams in � . In general,

right (resp. left) adjoints to
���

give the limit (resp. colimit) of such diagrams. For
example, taking � as the category with three objects depicted as follows

� � � �
	 � �



40 2. CATEGORICAL PRELIMINARIES

the right adjoint to
� �

defines pullbacks. Similarly, pushouts arise by reversing the
arrows in � above and taking the left adjoint to the same ‘diagonal’ functor.

A basic result on adjunctions states that, in an adjunction situation � � �
, the left

adjoint, � , preserves all colimits while, dually, the right adjoint
�

does the same for
limits.

33. EXPONENTIALS. The categorical version of the usual notion of a function space
in

�����
also arises, as one could expect, from an adjunction situation. The rather heavy

use in this thesis of its laws justifies a detailed introduction here.
Let % be an object of � and suppose that

��� � % , the % -section of the product
bifunctor, has a right adjoint which we shall denote by

��� �
. This means that for all � �

� � % � ��� , there exists a unique � � � � � ��� � such that � � ( � �
�
� � � % 	 , both

the object � � and the universal ( � being uniquely determined up to isomorphism.
Diagrammatically,

�
� �

��

� � %
� �
� � �
�

��

�

##GGGGGGGGGG

� � � � � % � � // �
Following the general construction of §26,

��� �
extends to a functor by defining, for� � � � � � , � � � � � � � � � �
� �
� ( � 	 � (2.34)

Are we done? In fact, note that � � has exactly the characteristic properties of the
set of functions from % to � in

�����
. Bijection ��� � � corresponds, in this particular

context, to currying: the well-known isomorphism between (binary) functions from
� � % to � and (unary) functions from � to the set of functions from % to � . Being
so popular, this terminology is also adopted in an arbitrary category: � � is called the
curry of � and is written � .

The family ( � � � � � % � � � is, of course, the counit of adjunction
����� % � ��� �

On the other hand, its unit has

� � � � �	� �
� � % 	 � as components. In

�����
, (

corresponds to function evaluation and

�
to a function constructor:

( 
 � 
 � � � � ��
� � � � � 
 � 
 � �



2. UNIVERSALITY AND CALCULATION 41

Counit ( is more commonly named
���

, after evaluation. We shall refer to

�
as ��� ,

after stamping, and, again, such designations will carry over to general case.

34. EXPONENTIAL LAWS. Adjunction
��� � % � ��� �

entails an universal charac-
terisation of exponentials:

� � � 	 � � ���
�
� � � � �
	 (2.35)

from which the following laws are derived

� � ���
�
�
� � � �
	 (2.36)

��� � � � � � (2.37)

��� � � � �
� � (2.38)

� � � � � �
�
� � � � 	 (2.39)

In an arbitrary category with exponentials � ,
� � represents, as a � -object, the

arrows from % to
�

. Consequently, the action of
��� �

on each arrow � � � �	� �
should internalise composition with � . In

�����
it is easy to verify that this is indeed

the case. For �
� % �	� �

and
� � % , a simple calculation yields,�
� � �

	 �

� ��� � � on arrows (2.34) �� �
� � ��� 	 � 	 �

� � uncurrying �
��� ��� 
 � 
 � �

� � function composition �
�
�
��� 
 � 
 � � 	

� � 
�� definition �
�
�
�
� 	

� � function composition ��
��� � 	 �

In an arbitrary category, however, we cannot talk about ‘applying’ a morphism to an
‘element’ of an object. We have, then, to state and prove the intended result in the
language of generalized elements (§7). A generalized element of an exponential

� �
is an arrow �

� ) � � � � , which corresponds uniquely, under the adjunction, to
�
� ) � % � � �

. Keeping in mind that, in the generalized elements notation, � � �



42 2. CATEGORICAL PRELIMINARIES

corresponds to � � � � , the ‘internalisation’ result takes the form of an ‘absorption’
property for exponentials:

��� � � � � � � (2.40)

Proof. Consider the following diagram

����� ���	� //
�

%%KKKKKKKKKKK

 � ������
 ��� //
�����
��

� � ���
�����
��


� // �

and note that the left triangle commutes by definition of � and the square because ��� is natural.
Therefore,

��� � �!���#" �	$%� � ���'& �	$ � ���'&
( ) � functor *
��� � �!��� " �	$%� � � � ���'&

( ) exponential universal property (2.35) *
��� � � � � � �

+
Notice that the pointwise calculation above can be rephrased, using this result, and
taking � as a point, i.e., �

� � � � � � . In this case, � � � equals �
� � as proved
above, but now ��� � is itself a point of � � , which corresponds to morphism �
� � . In
other words,

� � � ��� _

35. THE EXPONENTIAL BIFUNCTOR. The exponential functor above can be made
into a bifunctor by defining, for each

� � % � � � , an arrow �
� � �-, � � � � as

follows:

�
�/.

� ,
0 " //

�
�1, � % 	 �

�
� �
�32 � � � �

//
�
�-, � � 	 � 465 � // � �

Note that the exponential bifunctor is contravariant in its second argument. More-
over, �

�
can be proved equal to post-composition with

�
, i.e., �

� � _ �
�

.



2. UNIVERSALITY AND CALCULATION 43

36. CARTESIAN CATEGORIES. Categories are classified according to the structure
they exhibit. A category with all finite products, or, equivalently, with binary products
and final object, is called Cartesian.

Observe that the product construction on a category has the structure (up to iso-
morphism) of an Abelian monoid. To establish notation, let us represent associativity,
commutativity and right and left units by the following isomorphisms, natural on

�
,

� and % :

�
� � � � � % � � � � � � � % 	

� � � � � �	� � � �
�
� � � � �	� �

� � � � � �	� �

whose inverses are, respectively, � � , � (notice � is its own inverse), � � and
�
� . In any

Cartesian category they are defined as follows:

� � 
 �
� � �
��
 
 ��� � �
� 
 ����� �
� � 
 ����
 �
� �

� � � 
 * � 
 � � � ��
�
� 
 � � � 
�* � �

37. HOUSEKEEPING MORPHISMS. The following morphisms provide a shorthand
notation for typical combinations of � and � . We call them exchange morphisms as
they change the position of some factors in a multiplicative expression. They are
particularly useful to handle ‘housekeeping’ tasks when calculating in a cartesian
category.

� �
� � � � � % � � � � % � �
� � � �

� � � � �
	
� �

�
� � � � � � � % 	 � � � � � � � % 	
� � �

�
�
� � � 	 � � �

�
� � � � � � % � � 	 � � � � % � � � � � 	

� � �
�

� �
� � �
	 � � � � � � �

� � ��� �
� 	
� �



44 2. CATEGORICAL PRELIMINARIES

If the category has finite coproducts, we shall refer to the corresponding associativity,
commutativity and unit morphisms as

� �
� � � � � % �	� � �

�
� � % 	

� �
� � � � � � � � �

�

�
� � � � � � �

�
�
� � � � � � �

and consider the additive versions of the ‘exchange’ morphisms:

� �

�
� � � � � % � � � � % � �

�
�

�
� � �

�
� � % 	 �	� � �

� � � % 	
�

�
� � � � � 	 �

�
% �
� 	 �	�

� � � % 	 �
�
� � � 	

38. CARTESIAN CLOSEDNESS. A Cartesian category in which product has a right
adjoint is classified as Cartesian closed (or ccc, for short). Such a category has expo-
nentials, and therefore the capacity of representing hom-sets as objects and internal-
ising composition.

� ���
is a prime example.

39. DISTRIBUTIVITY. Suppose a category has both finite products and coproducts.
If, additionally, binary products distribute over finite coproducts, the category is called
distributive. Being distributive means there exist two natural isomorphisms

� � � � � � � 	 � % �	�
� � � % 	 �

�
� � % 	

�
� � � � � � � �

as finite coproducts are generated from binary and nullary coproducts. The latter is,
of course, the initial object in the category. ‘Right’ versions of these isomorphisms
are obtained by pre-composing them with � . We shall denote them as

�
�
� % � � � �

� 	 �	�
�
% � � 	 �

�
% � � 	 and � �

� � � � �	� � .
�����

, as any other ccc with coproducts,
is distributive. On the other hand, � ��� is not. Although distributivity is a much weaker
notion than, for instance, cartesian closedness, it has been proposed, notably by R. C.
Walters [Wal89], as ‘the’ natural semantic framework for datatypes and programming.
It is also the basic requirement on the semantic category underlying CHARITY (see
appendix E). References [Coc93] and [CLW93] provide details on this topic.

Let us make a brief incursion on distributivity. First notice that the inverse of
���

can be defined easily as ���
� � � � � � % 
�� � � % 




2. UNIVERSALITY AND CALCULATION 45

or, by application of the exchange law (2.27), as a split involving the same arrows.
On the other hand,

���
has no pointfree definition in terms of eithers or splits alone.

However, if the category is ccc, it can be defined pointfree as follows:

� � � � 	 � %
� � � � � 0 " � � �� � 0 " � � � //

� � � % � � � % 	 � � % 465 // � � % � � � %
Let us check the correctness of this definition. This involves two facts

� �
� �
��� � � �

and
� �
�
���
� � � � which will be proved as an exercise in using the categorical ‘tool kit’

introduced along this chapter.

Proof. First verify
��� � � ���

� ) � � definition *
��� � � � � �	$���� � � �
	���
�� �� �
	���� ���'&

� ) 
�� natural *
��� �	$ ��� � � ���'& �	$�� � � � �
	���
�� �� �
	���� ���'&

� ) � functor *
��� �	$ ��� � � ��� � � � �
	���
�� �� �
	���� ���'&

� )�� -fusion, exponential functor *
��� ��� $ ��� � ��� � & � �
	���
 $ ��� � ��� � & � �
	���� ���

� ) � � � definition, � -cancellation *
��� ��� $�� � ���'& � �
	���
�� � ���'& � �
	���� ���

� )�� � natural *
��� ��� 	�� ��� � 
�	�� ��� � � ���

� )�� fusion *
��� �	$!	�� ����� � 
�� � � ���'&

� )�� reflection *
��� �	$!	�� ���'&

� ) adjunction (2.31) *
" ��#%$'& ")( ���

and then
��� � ��� �



46 2. CATEGORICAL PRELIMINARIES

� ) � � and � � � definition *
��� �	$�� � � � �
	���
�� �� � 	���� ���'& ����� � ��� 
�� � ��� �

� )�� fusion *
��� ��� $���� � � �
	���
�� �� �
	�� � ���'& �	$�� � ���'& 
 $���� � � �
	���
�� �� �
	���� ���'& �	$�� � � �'& �

� ) � functor and � cancellation *
��� ��� $�� � � �
	�� & ��� 
 $ � �� �
	�� & ��� �

� )�� fusion *
� � � �	$ $ � � � �
	�� & ���'& 
 � � �	$ $ � �� �
	�� & ���'& �

� ) � functor *
� � � �	$�� � � ���'& �	$ 	�� ���'& 
 ��� �	$ � �� ���'& �	$!	�� ���'& �

� ) 
�� natural and (2.31) *
��� � 
�� � �

� )�� reflection *
" ��#%$ ��� ( & # " ��� ( +

40. CONDITIONALS. In a distributive category conditional expressions can be mod-
elled by coproducts. In this thesis we adopt the McCarthy conditional constructor
written as

�
� � � 
 � 	 , where �

� � �	� �
is a predicate. Intuitively,

�
� � � 
 � 	

reduces to � if � evaluates to
�

� �
�

and to � otherwise. The conditional construct is
defined as �

� � � 
 � 	 � 
 � 
 �'� � � �
where � � � � � � � � �

is determined by predicate � as follows

� � � � �
� �
�
�
�
// � � � � � � 	

�
�

// � � � � � � �
���

�
���
// � � �

Reference [Gib97] provides a comprehensive set of laws to calculate with condition-
als. The following will be used in this thesis:�

�
�
� � � 
 � 	 � �

� � �
� � 
 � � � 	 (2.41)�

� � � 
 � 	 � � � �
� �

� � �
� � 
 � � � 	 (2.42)�
� � � 
 � 	 � �

� �
�
� � � 
 � 	 
 � � � � 
 � 	 	 (2.43)



CHAPTER 3

Algebras, Coalgebras and Categorical Data Types

Summary
One way of thinking about a coalgebra is as a transition structure with
a particular shape encoding the ways in which a state space is accessed
through observers and actions. The semantics of such a structure is ob-
servational, in the sense that its internal configurations remain hidden
and have, therefore, to be identified, if not distinguishable by observa-
tion. This chapter provides some intuition on the notions of a coalgebra
and its dual, and presents some background material needed along the
thesis. In particular, algebras and coalgebras for an endofunctor, and
the related concepts of comorphism and bisimulation, are reviewed in
some detail. This leads to an incursion on categorical data types, as a
framework in which both data structures and behavioural patterns can
be abstracted.

1. Observation And Construction

1. FUNCTIONS. One of the most elementary models of a computational process is
that of a function

� � � � � �
which specifies a transformation rule between two structures � and � . The behaviour
of a function is captured by the output it produces, which is completely determined by
the supplied input. In a (metaphorical) sense, this may be dubbed as the ‘engineer’s
view’ of reality: here is a recipe (a tool, a technology) to build gnus from gnats.

Often, however, reality is not so simple. For example, one may know how to
produce ‘gnus’ from ‘gnats’ but not in all cases. This is expressed by observing
the output of � in a more refined context: � is replaced by ��� � and � is said
to be a partial function. In other situations one may recognise that there is some

47



48 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

environmental (or context) information about ‘gnats’ that, for some reason, should
be hidden from input. It may be the case that such information is too extensive to be
supplied to � by its user, or that it is shared by other functions as well. It might also be
the case that building gnus would eventually modify the environment, thus influencing
latter production of more ‘gnus’. For

�
a denotation of such context information, the

signature of � becomes

� � � � �
�
� � � 	��

In both cases � can be typed as

� � � �	�
� �
for � � ��� � � and � �

� ��� � � 	 �
, respectively. Informally, � can be thought

of as a type transformer providing a shape for the output of � . Technically, � is a
functor (§2.14) which, to facilitate composition and manipulation of such functions,
is often required to be a monad (§A.2). In this way, the ‘universe’ in which � �
� �	� � � lives and is reasoned about is the Kleisli category for � (§A.7). In fact,
monads in functional programming offer a general technique to smoothly incorporate,
and delimit, ‘computational effects’ of this kind without compromising the purely
functional semantics of such languages, in particular, referential transparency.

2. STATE. A function computed within a context is often referred to as ‘state-based’,
in the sense the word ‘state’ has in automaton theory — the internal memory of the
automaton which both constraints and is constrained by the execution of actions. In
fact, the ‘nature’ of � � � �	�

�
� � � 	 �

as a ‘state-based function’ is made more
explicit by rewriting its signature as

� � � � �
�
� � � 	 �

This, in turn, may suggest an alternative model for computations, which (again in a
metaphorical sense) one may dub as the ‘natural scientist’s view’. Instead of a recipe
to build ‘gnus’ from ‘gnats’, the simple awareness that there exist gnus and gnats
and that their evolution can be observed. That observation may entail some form
of interference is well known, even from Physics, and thus the underlying notion of
computation is not necessarily a passive one.

The able ‘natural scientist’ will equip herself with the right ‘lens’ — that is, a tool
to observe with, which necessarily entails a particular shape for observation. Also
note that the emphasis is now placed on the state itself: the input and output parame-
ters may or may not become relevant, depending on the particular kind of observation
one may want to perform. In other words, one’s focus becomes the ‘nature’, or the
‘universe’ or, more pragmatically, the state space. That we can observe ‘gnus’ being
produced out of ‘gnats’ is just one, among other possible observations. The basic



1. OBSERVATION AND CONSTRUCTION 49

ingredients required to support an ‘observational’, or ‘state-based’, view of computa-
tional processes may be summarised as follows:

a lens:
�����

a functor �

an observation structure: universe �� � �����
universe a � -coalgebra

Formally, in
�����

, a coalgebra for a functor � is a set
�

, which corresponds to the
object being observed (the ‘universe’), and a function � � � �	� � �

. Such a
function is often referred to as the coalgebra dynamics.

3. COLOURS. There is, of course, a great diversity of ‘lenses’ and, for the same
‘lens’, a variety of observation structures, i.e., of coalgebras. Moreover, such struc-
tures can be related and compared. For this one only needs what in Universal Algebra
is known as a homomorphism, i.e., a structure-preserving map. In our case the struc-
ture to be preserved is the shape of � as an observation tool. Therefore, a � -coalgebra
morphism (or comorphism, as abbreviated in the sequel)

�
between, say, coalgebras �

and � is just a function between the respective carriers (‘universes’ or ‘state-spaces’)
making the following diagram to commute:

� � //

�
��

� �

� �
��� � // � �

Let us consider some possible lenses. An extreme case is the opaque lens: no mat-
ter what we try to observe through it, the outcome is always the same. Formally, such
a lens is the constant functor � (§2.16) which maps every object to � and every mor-
phism to the identity on � . Since � is the final object (§2.6) in

�����
, all � -coalgebras

reduce to * .
A slightly more interesting lens is

�
, which allows states to be classified into two

different classes: black or white. This makes it possible to identify subsets of the
‘universe’

�
under observation, as an observation structure � for this functor will

map elements of
�

to one or another element of
�

.
Should an arbitrary set � be chosen to colour one’s lens, the possible observa-

tions become more discriminating. A coalgebra for � is a ‘colouring’ device in the
sense that elements of the universe are classified (i.e., regarded as distinct) by being
assigned to different elements of � . Of course, a map

�
between such two observation



50 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

structures � and � should be a colour-preserving function, i.e., equation

� � � � �

must hold. This means that if two elements of the universe are grouped together by � ,
their images under

�
remain together when compared by � .

4. INTERFACES. A ‘colour set’ as � ,
�

or � above, can be regarded as a classifier of
the state space. Coalgebras, for such constant functors, are pure observers providing
a limited access to the state space by mapping into the ‘colour set’. In object-oriented
programming they are known as attributes. Naturally, the same ‘universe’ can be ob-
served through different attributes and, furthermore, such observations can be carried
out on parallel. Thus, the shape of a ‘multi-attribute’ lens is

����� � � �� ��� �
�

where � is a finite set of attribute names. The corresponding observation structure, a
function mapping

�
to a (finite) product, is defined as a � -indexed split


�� � � � ��� � � � � �� ��� �
�

of attributes � � from
�

to � � .
A very common assumption in state-based computations is that the state itself

is a ‘black box’: it may evolve either internally or as a reaction to external stimuli,
but the only way one has to become aware of such an evolution is by observing the
values of its attributes. The product of their types forms the output interface of the
coalgebra. No direct access to the state space is possible. Under this assumption the
‘transparent’ lens is not particularly useful. Technically, this lens corresponds to the
identity functor

���
. An observation structure for

���
amounts to a function

� � � �	� �

This means that, by using � , the state
�

can indeed be modified, an ability we hadn’t
before. But, on the other hand, the absence of attributes makes any meaningful ob-
servation impossible. The best we can say, if no direct access to

�
is allowed, is just

that things happen.
A better alternative is to combine attributes with such state modifiers, or update

operations, to model the ‘universe’ evolution. The latter will be called actions here; in
the object paradigm they are known as methods. Such a combination leads to a richer
stock of lens. We might consider, for example, that



1. OBSERVATION AND CONSTRUCTION 51

(1) things happen and disappear or stop, i.e.
����� � � � � �

The observation structures for this functor are the partial functions. Accor-
dingly, morphisms between them consist of functions that preserve partial-
ity.

(2) things happen and, in doing so, some of their attributes become visible, i.e.,
(non trivial) output is produced:

����� � � � � �
(3) the evolution of things is triggered by some external stimulus, i.e., additional

input is accepted: ����� � � � �
(4) we are not completely sure about what has happened, in the sense that the

evolution of the system being observed may be nondeterministic. In this
case, the lens above can be combined with

����� � �
�
�

where
�
�

is the finite powerset of
�

.

In the third example, the action also has an input interface. Typically, actions over
the same state space cannot happen simultaneously and, therefore, if more than one
is specified in a particular structure, in each execution the input supplied will also
select the action to be activated. In some cases, the input is there only for selection
purposes: actions with trivial input (i.e., � � � ) correspond to buttons that can be
pressed. Then the input interface organises itself as a coproduct. A possible shape for
a sophisticated lens with both attributes and actions is

����� � � �� ��� �
� � ����� ��� ���

whose coalgebras are


 
 � � � � ��� 
	��
 �
� � � � � � ����� �

where ��
 �
� can be specified as

��
 �
� � � � � 
 � ��� � � � �

where
�

� � is the suitable distribution law and each � �
��� � � � � � �

is an elementary
action. There are, of course, other alternatives to combine actions and attributes into
sophisticated observation structures.



52 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

5. COMBINING LENSES. The tree below depicts several combinations of three of
the basic alternative lenses of §4 (nondeterministic observations are left aside for the
moment):

��� � � � ��� // ��� � � � ��� ��� (a)

� � � �

88qqqqqqqqqq

&&MMMMMMMMMM

��� � � � � ��� // � ��� � � � � ��� � � (b)

� � � � � ��� � // ��� � � � � ��� � � � (c)

� � //

EE


























��4444444444444444444444444 � � ���

88qqqqqqqqqq

&&MMMMMMMMMM

� � � ��� ��� // � � � � � ��� ��� (d)

� � � � � // ��� � � � � � ��� (e)

� � �

88qqqqqqqqqqq

&&MMMMMMMMMMM

� � � ��� // � � � � � � ��� � (f)

It is instructive to see what happens in each case if the state space ‘collapses’, i.e., if
the ‘universe’ becomes trivial or, formally, if

�
is identified with � :



1. OBSERVATION AND CONSTRUCTION 53

(a) (b) (c) (d) (e) (f)

� � ��� ��� ��� ��� ��� ��� ��� � ��� � � ��� � ���

We conclude that (b) as a set is isomorphic to the space of partial functions, (e) is just
a pointed set and (a) a pointed function space. On the other hand, (d) is a set and a
predicate and in (f) the structure has boiled down simply to a set and a Boolean flag.

6. INTERACTION. Another way of regarding observation structures is as transition
systems over the state space. For example, coalgebras over both

��� � and
��� � � can

be described in terms of transitions of the form
� ��	� � �

where � , � ��� �
and � ��� or � � � in, respectively, the former and the latter case.

Depending on how this transition relation is interpreted, we may classify the system
as reactive or active, respectively.

� In the first case � ��	� � � means that, for a coalgebra � ,
�
� � 	 � � � � .

Therefore � models a reactive system in which the transition can be read as
state � is able to accept � and move into state � � .

� In the second case, the transition relation reads as generate � in state � and
then become � � . Rather than a stimulus, � is an outcome and such a system
is called active.

This distinction may not be intrinsic to the system being observed. It is essentially
a distinction on the shape of observation. The lenses of the two examples comple-
ment each other. Recall that, similarly, finite automaton theory deals with automata
accepting (recognising) or generating a particular language.

7. OBSERVATION EQUIVALENCE. Given a particular lens � and a � -observation
structure � , when can two states be taken as ‘equivalent’? If it is not possible to
access their internal structure, all we can say is that they should be identified if all the
observations that can be made over one and the other exhibit the same outcome and
this remains true along the whole evolution of the system. Thinking of observation
structures as transition systems, the notion of bisimulation [Par81, Mil80] can be
recalled as precisely such a relation.

Whatever is observed of a system constitutes its behaviour, i.e., the possible pat-
terns of interaction with the observer. Two states are said bisimilar if they have (or



54 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

generate, or unfold to) the same behaviour. Thus, equivalence means indistinguisha-
bility under observation. What coalgebra theory offers is a notion of bisimulation
parametric on the particular ‘lens’ used. In other words, bisimilarity acquires a shape.
An important fact is that, providing lens � is ‘smooth enough’, there exists a canoni-
cal representation embodying all � -behaviours into a � -coalgebra as well. Canonical
in the sense that, from every other observation structure for the same lens, there is
one and just one morphism to it. Technically, such a coalgebra, usually denoted by� � ��� � � � � � � , is said to be the final coalgebra. The unique morphism mapping
any other coalgebra � to it, which unfolds � to its behaviour, is represented by � � � 	 
 �
and is called the anamorphism generated by � [MFP91], the coinductive extension of
� [TR98] or, simply, the final semantics of the states of � [RT94].

8. CONSTRUCTION STRIKES BACK. On the other hand, and returning to our metaphor
, the ‘engineer’s view’ emphasises the possibility of at least some (essentially finite)
things being not only observed, but actually built. In this case, one works not with a
‘lens’ but with a ‘toolbox’. The assembly process is specified in a similar (but dual)
way to the one used to define observation structures. I.e, the engineer will become
equipped with,

a tool box:
����

a functor �

an assembly process:
����

artifact ��	� artifact a � -algebra

Notice that in the picture ‘artifact’ has replaced ‘universe’, to stress that one is now
dealing with ‘culture’ (as opposed to ‘nature’) and, which is far more relevant, that
the arrow has been reversed. Formally, an assembly process is a � -algebra. As a
function this amounts to a collection of constructors. Because an artifact cannot be
built simultaneously in two different ways (i.e., constructors), the external structure
or shape of the toolbox is usually a coproduct and the algebra arises as an either of
constructors. For example, for the binary tree ‘artifact’, the suitable toolbox will be

����
� � � �
� � � � � � � �

This means that binary trees can either be built via a constant constructor, yielding the
trivial, empty tree, or via the aggregation of some data to two previously constructed



2. ALGEBRAIC STRUCTURES 55

trees, thus building a larger one. An assembly process arises then as

� 
 � � � � 
 � � � 
 
 �
�� �
� �	� �

Of course, ‘assembly processes’ can be related and compared. In fact, the notion of an
algebra for a functor generalises the classical concept of an algebra; morphisms of the
former also generalise classical homomorphisms as functions preserving construc-
tion. Again, if the toolbox is smooth enough, there exist a canonical representative of
the assembly process: the initial algebra, which may be regarded as the formal analog

to the ‘smallest’ machine able to produce all possible
����

-artifacts.
In the next two sections algebraic and coalgebraic structures will be reviewed

in deeper detail. As expected, initial algebras turn out to be inductive data types,
i.e., abstract descriptions of data structures. Dually, final coalgebras entail a notion
of behaviour types, representing the dynamics of systems. Both of these structures,
referred to as categorical data types, may be directly used in programming.

2. Algebraic Structures

9. Functors (§2.14) provide a sensible abstraction for the somewhat more vague no-
tion of a type of a mathematical structure. And, in particular, for the even vaguer
concept of a module interface in programming. Following the intuitions in the previ-
ous section, they specify the kind of ‘lenses’ available and the contents of ‘toolboxes’.
There are two main reasons for this. First, the type of a structure depends normally on
types of other (sub-)structures and the very definition of a functor conveys this idea
of parameterization. Secondly, a functor characterises, not only the structure itself,
but also the transformations which preserve it. In fact, the action of a functor on a
morphism � applies the transformation embodied in � to all the elements ‘built into’
the structure without changing the shape of the structure itself.

In this section, we will review structures intended to ‘store’ data elements in par-
ticular configurations. It turns out that the shapes (or types) of such configurations
are suitably described by functors and the structures themselves arise as algebras for
such functors.

10. POLYNOMIAL FUNCTORS. Despite of the wide scope of the previous paragraph,
we shall restrict our attention in this thesis to a particularly well-behaved class of
endofunctors. We start by considering the so-called polynomial functors. The class
is inductively defined as the least collection of functors containing the identity

���
and

constant functors � for all objects � in the category, closed by functor composition



56 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

and finite application of product (§2.26) and coproduct (§2.29) functors. The termi-
nology arises from the fact that, in a distributive category, any polynomial functor can
be written in the form

� � �
��� %

�
� �

�

for � a natural number and %
�

a constant coefficient.
Polynomial functors are standard in presenting algebraic signatures. In this thesis,

however, we will need to extend the inductive definition above to include

� � � �
�

(the covariant exponential functor (§2.33) )

� � �
�
� (the finite powerset functor )

Functors in this class will be referred to in the sequel as extended polynomial. A more
general class of functors — called regular — is obtained by further extending the
definition to include type functors (§49).

11. ALGEBRAS. Syntactically, a data structure is described by a set of operations
which specify how its values are to be produced. A sequence, for example, is either
empty or built by adding an element to the front of a pre-existing sequence. A binary
tree signature includes an empty constant and a node constructor whereby data and
two other trees are aggregated to become the root node of a new tree, and so on.
Notice that these two examples can be modeled by polynomial (§10) functors, which
are basically � -ary sums (of alternatives) of � -ary products (of information associated
to each alternative). For example,

������� � � � � � natural numbers

� � 4
	 � � � �
� � � � � � sequences

� �
� �
� � � �
� � � � � � � � binary trees

�
� 4�� � � � � � � � � � � leaf trees

All constructors of a given type can be grouped together into a single operation. For
example, the constructors of a sequence are

��� � � 
������ � 
 � � � � � � � � � �	� �
In general, if the shape of one of these structures is specified by a functor � , the
structure itself is given as a map

��� �����	�
�



2. ALGEBRAIC STRUCTURES 57

i.e., as a � -algebra. Concrete structures are, therefore, obtained by specifying both
the carrier set � and map

�
. Formally, we define,

12. DEFINITION. For a given endofunctor � , a � -algebra is a pair 
 ��
 � � consisting
of an object � , referred to as the carrier of

�
, and a map

� � � � � � � . A � -
algebra morphism, or simply, a � -morphism, between two � -algebras

�
and 
 is a

map
�

between their carriers such that the following diagram commutes,

� � � //
� �

��

� �
��

��� �
// �

� -algebras and � -morphisms form a category �
�

where both composition and iden-
tities are inherited from � . In the sequel, unless explicitly mentioned, we will be
working on

�����
�

.

13. COMPATIBLE RELATIONS. A basic relation that can be established between two
� -algebras is one that preserves their shape. Formally, given two � -algebras 
 � 
 � �
and 
 � 
 
 � , a compatible relation � is a relation on � � � that can itself be extended
to a � -algebra � such that the canonical projections become � -algebra morphisms.
This may be expressed by the commutativity of the following diagram:

���

� ��

���
�
��

� � �
oo

� ���
// ���
�
��

� ����
oo

���
// �

It is well known that both the kernel and the graph of a � -algebra morphism are
compatible relations. Conversely, if the graph of a map

�
between the carriers of two

algebras is a compatible relation, then
�

is a � -algebra morphism. Should such a
relation be also an equivalence, it would be called a ( � -)congruence, a concept which
plays a fundamental role in algebraic specification.

14. INITIAL ALGEBRAS. As we have mentioned in §8, there is a particular � -
algebra which is canonical in the sense that only equally constructed elements can be
identified. This is, of course, the term algebra, which happens to be the initial object
(§2.6) in �

�
. Notice, by the way, that the final object in this category always exists

(if � itself has a final object � ): the trivial � -algebra 
 � 
�* � � � � � �!� . The initial
algebra will be denoted by � � � �	� � � �
� �



58 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

Being initial means that there exists a unique � -algebra morphism from
� �

to each
other � -algebra 
 � 
 � � . This morphism depends, of course, on

�
and is said to be the

inductive extension of
�

[TR98] or the catamorphism generated by
�

[MFP91]. It is
written as

� � � 
 	 � or, simply,
� � � 
 	 , if the functor is clear from the context. As any other

universal construction, it is unique up to isomorphism, which justifies the particle the
used above.

Formally, a catamorphism is characterised as the unique � -morphism making the
following diagram to commute

��� � // �

�	� ��� � //

� � �
� � � �

OO

� �
� � � � � �
OO

or, alternatively, by the following universal property:

� �
� � � 
 	 � 	 �

�
� � � � � � � (3.1)

15. CATA LAWS. From the universal property of catamorphisms (3.1) the following
results are easily derived:� � � 
 	 � � � � � � � � � � 
 	 (3.2)� � � � 
 	 � � � � � (3.3)�

�
� � � 
 	 � � � 
 
 	 if

�
�
� � 
 � � � (3.4)

Equations (3.2), (3.3) and (3.4) above are usually referred to as, respectively, the
cancellation, reflection and fusion laws for catamorphisms.

16. INDUCTION. Like any other universal construction, a catamorphism entails an
existence property and an uniqueness one. Existence gives us a definition principle:
to define a (circular) function from an initial algebra amounts to equip the target set
with an algebra structure as well. In other words, a function is defined by providing a
specification of its output for each of the constructors.

Uniqueness, on the other hand, gives a proof principle. Suppose we want to prove
a predicate

�
over an initial algebra, i.e., that the set defined by

�
coincides with � � .

If it is possible to prove that the inclusion �
� ��� � � � is a � -algebra morphism,

we are done. In fact, we have equipped
�

with a � -algebra structure and, therefore,
the composite of the corresponding catamorphism with � is unique and, necessarily,
coincides with � � � � . More simply, this amounts to prove that

�
is closed under the



2. ALGEBRAIC STRUCTURES 59

algebra constructors, which is easily recognised as the familiar structural induction
principle.

Another way of stating this is to note that initial algebras have no proper sub-
algebras, which again is a direct consequence of initiality. Some intuition on the
(quite special) nature of initial algebras is gathered from the following result:

17. LEMMA. The equality relation � � � is the least � -compatible relation definable
on the initial algebra

� �
. That is, ‘equality equals compatibility’.

Proof. Let �������	� � �
� 
���
 be a compatible relation. Its projections are � -morphisms, but,
by initiality,

� � �	$ � ��� & � � � � �	$ � � � & � � " �����
Therefore, � � � ��� , for any � . The result follows from the (trivial) fact that � � � is itself a
� -compatible relation.

+

18. ‘ALGEBRAS’ ARE ALGEBRAS. An expected, but fundamental, observation is
that the notion of a � -algebra over

�����
subsumes the its classical homonym in Uni-

versal Algebra. Classically, an algebra is defined as a set plus a (finite) collection of
constructors � �

�
� � � � �

� � �
� � � � � . Denoting by � �

�
the arity of operator � �

�
,

this can be described as an algebra for functor

� � �
� �
� �
� �����

which captures its signature. Clearly, a � -morphism is just a classical homomorphism
for the given class of algebras. Then the free term algebra over a set

�
of variables

arises simply as the initial algebra, not for � , but for � � � � � � . � � -algebras have
the form � � 
 � 
 � � ��� � �	� � , for any carrier � . Let


 ��� 
 � � � � with
� �

� � � � 
 � � 

be the initial � � -algebra, where ��� is, as usual, the set of terms with variables taken
from

�
, � � the inclusion of variables from

�
as terms, and � � � ��� � � ���

the term formation operation, obviously a � -algebra. Given another � -algebra
� �

� � �	� � and a valuation function � � � �	� � on the carrier of
�
, the in-

duced unique morphism from the free algebra arises as catamorphism
� �

� � � � 
 � 
 
 	 � � .
Therefore,



60 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

� � $ � � � 
 � � � & ���( ) law (3.1) *
� ��� � � � � � 
 � � � ��� �

( ) definitions *� ��� � 

	�� � � � ��
 � � �	$ � ��
 " � (
( ) � fusion and absorption *

� � ��� 
 � ��	�� � � � �'� � � 
 � �

which (omitting variable injection operators and the superscripts in � � � � �
�

, the inter-
pretation of constructor � �

�
in
� �

� ) can be re-written in the more familiar format:� � �
�

 � � 
 � � � 
 ��� � � � � �

�

 � �

� 
 � � � 
 � �
� ���� � � �
where � � �

�
stands for the interpretation in

�
of constructor � �

�
. It follows that, for

a fixed
�
, every valuation function � corresponds bijectively to a � -morphism from


 ��� 
 � � to 
 � 
 � � . And this for every algebra
�
. Moreover, this bijection is natural

both in
�

and 
 ��
 � � . In other words, and recalling §2.30, the forgetful functor � �
�
�
� ��� , which sends an algebra to its carrier, has a left adjoint � �

� �
� � � � ���

�

mapping each set
�

into 
 � � 
 � � . That is,

� �
� �
���

�
As left adjoints preserve colimits (§2.32), it turns out that, if � has an initial object
and � �

� �
�

exists, � �
� �
�
� is the initial object in �

�
, i.e., the initial algebra. In

�����
, its

carrier is, of course, ��� , the set of closed terms.

3. Coalgebraic Structures

19. FROM ALGEBRAS TO COALGEBRAS. Once known how to build a data struc-
ture, one can reverse its ‘assembly process’. Taking, as in §11, the simple case of
sequences, such a decomposition is performed by the familiar selectors �

�
�
�

and
�
� � � ,

for nonempty sequences, which can be joined together in


 � � � � 
 � � � � � � � � � � � � � � �
This reversal of our point of view (recall the introductory discussion in section 1)
yields a different understanding of what � may stand for. First notice that what is
structured in 
 � � � � 
 � � � � � is its target, instead of its source as before. Target product



3. COALGEBRAIC STRUCTURES 61

� � � � � � captures the fact that both the head and the tail of a sequence may be
selected (or accessed, or observed) simultaneously. The emphasis on observation
opens a broader understanding of the structure being defined. In fact, once one is
no longer focused on how to construct � , but simply on what can be observed from
it, finiteness is no longer required. Therefore, � can be more accurately thought
of as a state space of a machine generating an infinite sequence of values of type
� � � � . Elements of � can no longer be distinguished by construction, but should
rather be identified when generating the same infinite sequence. That is, when it
becomes impossible to distinguish them by the observations allowed by the shape (or
‘lens’) � .

Infinite sequences are common in programming. In practice they are represented
by a particular state in a particular state machine. Formally, by an element of the
carrier of a particular coalgebra, as described next.

20. DEFINITION. Given an endofunctor � , a � -coalgebra is a pair 
 � 
 � � consisting
of an object

�
, referred to as the carrier of � , and a map � � � � � � �

. A � -
coalgebra morphism, or simply, a � -comorphism between two � -coalgebras, 
 � 
 � �
and 
 � 
 � � , is a map

�
between carriers

�
and
�

such that the following diagram
commutes:

� � //

�
��

� �

� �
���

�
// � �

� -coalgebras and � -comorphisms form a category � � where both composition and
identities are inherited from � .

21. UNIVERSAL COALGEBRA. The study of coalgebras along the lines of Uni-
versal Algebra, initiated by J. Rutten in [Rut95] and [Rut96] (of which a revised
version [Rut00] appeared recently), assumes coalgebra carriers’ are sets, and, there-
fore, constitutes an exploration of

����� �
, for different

�����
endofunctors � . It should

be mentioned, however, that both the study of concrete coalgebras over different base
categories [TR98, Mon00] and the development of

�����
-independent, i.e., purely cat-

egorical, presentations of coalgebra theory (see, among others [TR98, PW98, GS98]
and chapter 1 in A. Kurz thesis [Kur01]) have emerged as active research areas.

22. BISIMULATION. The role of bisimulations in coalgebra theory is similar to that
of compatible relations (§13) in algebras. Informally, two states of a � -coalgebra
(or of two different � -coalgebras) are related by a bisimulation if their observation
produces equal results and this is maintained along all possible transitions. I. e., each



62 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

one can mimic the other’s evolution. The notion was introduced in process calculi by
[Par81] and [Mil80] to capture a particular kind of observational equivalence. Later
[AM88] gave a categorical definition of bisimulation which applies, not only to the
kind of transition systems underlying the operational semantics of process calculi,
but also to arbitrary coalgebras. As anticipated in §7, bisimulation acquired a shape.
Formally,

23. DEFINITION. Given two � -coalgebras 
 � 
 � � and 
 � 
 � � , for a
� ���

endofunctor � ,
a � -bisimulation is a relation � � � � �

which can be extended to a coalgebra � such
that projections � � and � � lift to � -comorphisms, as expressed by the commutativity
of the following diagram:

�

� ��

�
�
��

� �
oo

� �
// �
�

��
� � ���

� ���
oo

� � �
// � �

The definition generalises to an arbitrary base category � , replacing relation � by a
monic span 
 � 
 ��� 
 ����� in � whose legs lift to � -coalgebra morphisms, or, in other
words, such that there is a � -coalgebra structure � � � � � � � making the diagram
below to commute:

� � �
""EEEEEEEEE� �

||yyyyyyyyy

�

��

�

�

��

�

�

��

� � � � �
""EEEEEEEE� � �

||yyyyyyyy

� � � �

Notice that a span 
 � 
 � � 
 � � � is monic iff, for any arrows � 
 � � � � � � , � � � � � � � � �
and � � ��� � ��� � � implies � � � . Should � have binary products, being a monic span
equivales to require split 
 � � 
 ����� � � �	� � � �

to be monic as well.

24. BISIMULATIONS AND COMORPHISMS. Bisimulations provide a ‘relational’
view of comorphisms. In fact, the graph — � � � � � � — of a � -comorphism

� � � �	�
� is a � -bisimulation [Rut00]. An immediate, but fundamental, corollary of this result
is the fact that, in every coalgebra 
 � 
 � � , the diagonal � � is a bisimulation. This
follows from � � � � � � � ��� � � , the identity � � � being trivially a comorphism.



3. COALGEBRAIC STRUCTURES 63

25. PROPERTIES. [Rut00] proves several results on bisimulations in
� ��� �

. In par-
ticular, it is shown that the converse of a bisimulation and, if � preserves weak pull-
backs, the composition of two bisimulations are still bisimulations. As a corollary,
the (relational) direct and inverse images of a bisimulation, as well as the kernel of
a comorphism, are bisimulations as well. To see this, it is enough to look at their
definitions, where 
 denotes relational composition (§2.4),� � � 
 � �

� � � � � � 	 � 
 � 
 � � � � � ��
� � � 
 � � � � � � � 
 � 


�
� � � � � � 	 �

� �
�
� � � � � � � � 


�
� � � � � � 	 �

and conclude by the property above and §24. Moreover, as
� �

�
�

is transitive, it gives
rise to an equivalence bisimulation.

26. REMARK. Some constructions in � � depend on extra properties of functor � .
As just mentioned, preservation of weak pullbacks is one of them. Recall that a weak
universal is a construction which shares all the properties of the standard one but
uniqueness. Its role is crucial namely in the proofs that composition of bisimulations
and kernels of comorphisms are still bisimulations as well as to state the existence of
a greatest bisimulation (§28). Also notice its use in the proof of the ‘full abstraction
lemma’ in §35.

Another important property, in
� ��� �

, is boundedness. This essentially means that
there exists a set � such that, for any coalgebra 
 � 
 � � , the size of any sub-coalgebra
(§30) of � generated by any single element � � �

, is bounded by the size of � . This
is a rather technical condition to avoid cardinality problems, namely, when discussing
existence conditions for final coalgebras (§33). Both conditions hold for the extended
polynomial functors defined in §10 and used in this thesis [Rut00].

27. A CATEGORY OF BISIMULATIONS. Bisimulations on coalgebras 
 � 
 � � and

 � 
 � � form a category � �

�
� 
 � 	 whose arrows �

� 
 � 
 � � 
 � � � � � 
�� 
 	 � 
 	 � � are
morphisms �

� � � � � , in the base category � , such that � � � 	 � � � and � � � 	 � � � ,
i.e., the following diagram commutes:

� � �
��@@@@@@@� �

��~~~~~~~

�

��

� �

�

� �
??~~~~~~~

� �
__@@@@@@@



64 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

28. � -BISIMILARITY. Clearly, every morphism � in � �
�
� 
 � 	 is a monic in � .

Proof. Let � as in §27 and
�

, � stand for two arbitrary
�

morphisms with codomain � . Then,

�
� � ���

� �
� ) Leibniz *

� � � � � � � � � � � � � and � � � � � � � � � � � � �
� )�� is a � � ���
	�� � morphism *


 � � � � 
 � � � and 
 � � � � 
 � � �
� )���� 	�� � 	�� ��� is a monic span *� � �

+
That bisimulations are ordered by � -monics, as proved above, implies the existence
of at most one arrow between any two bisimulations and generalises the well known
fact that

�����
bisimulations are partially ordered by inclusion.

In
�����

the union of two bisimulations is also a bisimulation. Furthermore the set
of all bisimulations between two coalgebras forms a complete lattice. The greatest
bisimulation on, say, coalgebras � and � , is an equivalence relation, written as

� � � �
� �

or simply, � if the context is clear. Whenever the dependence on functor � is to be
stressed, the notation �

�
�
�
�
� � (or �

�
) will be adopted.

29. REMARK In general, coalgebra � in the definition of bisimulation (§23) is not
uniquely determined — a counter example for the finite powerset functor is given in
[Rut00]. Uniqueness is achieved, however, for polynomial endofunctors in

�����
and,

more generally, for functors preserving pullbacks (which, therefore, preserve monic
spans). Such a lack of uniqueness makes difficult the definition of constructions like
the union of bisimulations or the greatest bisimulation: some conditions on either
� or � are needed to show the existence of not uniquely defined structures. For
example, to obtain greatest bisimulations one may recur to either the above mentioned
preservation of weak pullbacks by � or the fact that all epis are split in � (see [Rut00,
Kur01]).

This explains why, in more generic approaches to coalgebra theory, some alterna-
tives to the notion of a bisimulation have been proposed. A beautiful one consists of
replacing, in the definition of bisimulation, ‘monic spans’ by ‘epi cospans’, a cospan
being simply a pair of arrows with a common codomain. This leads to the definition



3. COALGEBRAIC STRUCTURES 65

of what is called a cocongruence in [Kur01] or a compatible correlation in [Wol00]
between two coalgebras 
 � 
 � � and 
 � 
 � � . It is given by an epi copsan 
 � 
 � ��
 ����� in
� whose legs lift to comorphisms as expressed by the commutativity of

�

�

��

�

�

��

� � <<yyyyyyyyy �

�

��

� �bbEEEEEEEEE

� �

� �

� � � <<yyyyyyyy
� �

� � �bbEEEEEEEE

The interest of this definition is that � above is uniquely determined and, moreover,
the greatest cocongruence on two coalgebras exists under rather general conditions
[Kur01]. Intuitively, cocongruences capture behavioural equivalence because, given
two states � � �

and
� � � , ��� � � ��� � only if the behaviour they unfold to is the

same, as comorphisms preserve behaviour (§24).
Such a relation � on

� � �
determined by a particular cocongruence (i.e.,


 � 
 � � � � iff ��� � � ��� �
) is a bisimulation if � preserves weak pullbacks, but

seems more appropriate to capture behavioural equivalence on more general situa-
tions — see [AM88] and, mainly, [Kur01] for a full discussion.

As we shall restrict ourselves in this thesis to a particularly well behaved class
of

�����
endofunctors (§10), bisimulations provide all we need and this paragraph can

be taken just as a curiosity. We would like to stress, however, the ‘beauty’ of the
definition above which is the true dual of that of compatible relations on algebras
mentioned in §13 (compare the diagrams!). As [Kur01] notes, the two crucial tools in
algebra and coalgebra — compatible relations and correlations — can be simply and
dually defined as, respectively, monic spans in �

�
and epi cospans in � � .

30. SUB-COALGEBRA. Let 
 � 
 � � be a � -coalgebra. A subset �
� �

�
� � �

generates
a sub-coalgebra of � , if the inclusion � lifts to a � -comorphism. Note that the coalge-
braic structure associated to � is uniquely determined.

Proof. Consider the following diagram:

� � // � �

� �
�

//?�

�
OO

� � �?�

� �
OO



66 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

Note that � 	
is either the empty map, if

� � ��� , and we are done as � arises as the initial
coalgebra, or a mono in all other cases, because functors preserve split monos (§2.11) with
non empty domain (incidentally, they also preserve split epis). Now notice that � , as a ����� -
arrow, factorizes � � 	 through a mono (i.e., � 	 ). The result follows from the fact that, in such
conditions, the factorisation is unique.

+

Sub-coalgebras are related to bisimulations through the following result: a subset
�
�

of
�

generates a sub-coalgebra iff � � � is a bisimulation. Note also the following
characterisation of monos and epis in

�����
:

31. EPIS, MONOS, ISOS. Both epi and monomorphisms in
�����

lift to epi and
monomorphisms in

����� �
. Consequently, isomorphisms lift as well. The converse

holds for epis, but for monomorphisms in
����� �

to be also monomorphisms as
�����

-
arrows, it is required that � preserves weak pullbacks (see [Rut00] for a proof).

32. NATURAL TRANSFORMATIONS. Given endofunctors � and � , any natural trans-
formation (§2.17) � � � � � � provides a way to ‘translate’ � to � -coalgebras
[Rut00]. In fact, � induces a functor from � � to � 
 which maps a � -coalgebra 
 � 
 � �
into a � -coalgebra 
 � 
 � � � � � , and is the identity on morphisms. Moreover, this
functor preserves bisimulation, i.e.,

� �
�

�
� � � � �


��� �
�
� � (3.5)

33. FINAL COALGEBRAS. Successive observations of (or experiments with) a � -
coalgebra � reveals its behavioural patterns. These are defined in terms of the results
of the observers as recorded in the shape � . Then, just as the initial algebra is canon-
nically defined over the terms generated by successive application of constructors, it
is also possible to define a canonical coalgebra in terms of such ‘pure’ observations.
Such a coalgebra is the final object (§2.6) in � � , if it exists, and will be denoted by� � .

Being final means that there exists a unique � -comorphism to � � from each other
coalgebra 
 � 
 � � . This is called the coinductive extension of � [TR98] or the anamor-
phism generated by � [MFP91], and written as � � � 	 
 � or, simply, � � � 	 
 , if the functor is



3. COALGEBRAIC STRUCTURES 67

clear from context. In other words, an anamorphism is defined as the unique comor-
phism making the following diagram to commute:

� � � �
// � � �

� � //

� �
�
� � �

OO

� �

� � �
�
� � �

OO

or, alternatively, by the following universal law:
� � � � � 	 
 � 	 � � � � � � � � � (3.6)

For each � � �
, � � � 	 
 � � can be thought of as the (observable) behaviour of a sequence

of � transitions starting at state � . This explains yet another alternative designation
for an anamorphism: unfold. On its turn, � in � � � 	 
 � � , is called the seed of the
anamorphism.

As in the algebraic case, the existence part of the universal property provides a
definition principle for (circular) functions to the final coalgebra which amounts to
equip their source with a coalgebraic structure specifying the ‘one-step’ dynamics.
Then the corresponding anamorphism gives the rest. In other words, such functions
are defined by specifying their output under all different observers. The uniqueness
part, on the other hand, offers a powerful proof principle — coinduction — discussed
in §36.

34. ANA LAWS. The following laws follow from the universal property of anamor-
phisms — equation (3.6). Comparing with §15, one easily recognises them as the
cancellation, reflection and fusion result for anamorphisms, respectively.

� � � � � � 	 
 � � � � � 	 
 � � (3.7)

� � � � 	 
 � � � � � (3.8)

� � � 	 
 � � � � � � 	 
 if � �
� � � � � � (3.9)

35. LEMMA. We are ready to state and prove the fundamental characterisation result
on final coalgebras, referred to, in [TR98], as the full abstraction theorem for final
semantics. Let � preserve weak pullbacks. Given two � -coalgebras 
 � 
 � � and 
 � 
 � � ,
any two states � � � and

� � � satisfy
� �

�
�
�
�
� � � � � � � 	 
 � � � � � � 	 
 � � (3.10)

Proof.



68 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

�

Let ��� � � ��� 
���

be a bisimulation such that ��� 
���
�� � . Then, projections � � and � � lift

to � -comorphisms, i.e., � �	� � � 
 � 
�

� � � 
 � 
 and � ��� � � 
 � 
�

� � � 
 � 
 . Now, composites� $ � & � � � � � and
� $ � & � � � � � are comorphisms to the final coalgebra with identical source. By

finality, they coincide.�
We begin by defining relation � � ) ��� 
���
�� � ����� � $ � & � � � � � $ � & � � � * . All we have to do
is to prove that � lifts to a bisimulation, i.e., we have to equip � with a coalgebraic structure�

such that projections lift to comorphisms. Relation � is, in fact, the pullback (in ����� ) of� $ � & � � and
� $ � & � � . As � preserves weak pullbacks (§31), the following diagram is also, at least,

a weak pullback:

� � ��� �
//

��� �
��

� �

�	� # � ( � �
��� � �	� # � ( � �

// ��� �
Now notice that � can be made a cone over the diagram for which � � is a weak pullback:

�
��� � �

%%
� � � �

��

�
!!� � ��� �

//

��� �
��

� �

�	� # � ( � �
��� � �	� # � ( � �

// ��� �
Here

�
plays the role of a mediating morphism to the weak pullback. It is, of course, not

necessarily unique, but this is not required in the definition of a bisimulation. Moreover,
combining this with the first part of the theorem, we conclude that � � 
���


is, not only, a
bisimulation, but the greatest one, i.e., it coincides with � �  �"!#! �%$ . +

Finally notice that, although the proof was presented in
� ���

, the argument extends
to an arbitrary category � . It suffices to recall that, in general, a � -bisimulation is
defined as a span whose legs lift to comorphisms (§23) and define � directly as the
pullback of the two anamorphisms. The general result stating that if � preserves weak
pullbacks, then any pullback in � lifts to a bisimulation, is due to Aczel and Mendler
[AM88].

36. COINDUCTION. The previous result shows that the final coalgebra � � acts as a
state classifier for any other � -coalgebra and, moreover, that bisimulation provides a



3. COALGEBRAIC STRUCTURES 69

local proof theory for behavioural equality. This is exactly the core of the coinduc-
tion principle which may be stated, for every bisimulation � on a coalgebra 
 � 
 � �
satisfying it,

� � �
� �
�

Therefore, in such a coalgebra, to prove the equality of two states, it is enough to
find a bisimulation containing them. Coalgebras that satisfy the coinduction principle
are called simple. An alternative, equivalent, characterisation stresses the fact that
�
� �
� is the greatest bisimulation in such a coalgebra. This is indeed the case of

the final coalgebra, since the projections of any bisimulation 
 � � � � � � � 
 �!� are
comorphisms to � � and, therefore, by finality, � � � � � � 	 
 � � � � .

37. COFREE COALGEBRAS. Let us open a parenthesis to investigate the coalge-
braic dual to free algebras discussed in §18. Free algebras are initial algebras with
additional terms to represent variables. Dually, a � -cofree coalgebra [Jac95] is a final
� -coalgebra in which states (thought of as behaviours) are coloured by elements of a
set
�

(recall the informal discussion on ‘lenses’ in the introduction to this chapter).
Formally, they are final coalgebras for functor � � � � � � , i.e.,


 � 
 ( � � � � � � � � � � �

where ( � � � � � � is the state colouring morphism. Suppose, now, we are given
a � -coalgebra � � � � � � �

and a ‘colour assignment’ � � � �	� �
from the

carrier of � . The induced unique morphism to the cofree coalgebra is anamorphism� � � � 
 � 
 � � 	 
 � � . This is, in fact, an extension of the ‘colour assignment’ to behaviours
generated from � , as a simple calculation shows,

� � � $ � � 
 �

 & � � �( ) ana universal (3.6) *
� � � � � � � � � � � � 
 �



( ) definitions *
� � 
�� 
 � � � $ � ��" � ( � � � 
 �



( ) � -fusion and absorption *
� � � � 
��3� � 
 � � � � � 
 �



This can be re-written as a coinductive definition of
�

:
�
� � � 	 � � � � � 	

(
� � � 	 � � �



70 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

This is an example of definition by coinduction: the function being defined,
�

, is
specified by analysing its value under each observer. Considering the common case
in which the most external shape of � is a product with � factors, the first clause
unfolds to a collection of equations, one for each observer � �

�
, with � � � ,

� �
� � � � 	 � � � � �

�
� �

	

Similarly to what happens in the free algebra case, it turns out that there exists a
bijective correspondence between arrows � � � �	� �

in � and � -comorphisms
from 
 � 
 � � to 
 � � 
 � � , the last being obviously a � -coalgebra. Being natural both in�

and 
 � 
 � � , this bijection witnesses an adjunction

�
�
� � � �

� �
�

between the forgetful functor to � and the functor which associates each
�

to coal-
gebra 
 � � 
 � � . As right adjoints preserve limits (§2.32), it turns out that, if � has a
final object � and � � � �

� �
�

exists, � � � �
� �
�

� is the final object in � � , i.e., the final
coalgebra. This leads us to the question of existence of final coalgebras.

38. EXISTENCE. In most cases being aware of the existence of a final coalgebra is all
one needs to know. In fact, like any other universal, the use of the final coalgebra is
completely determined by the universal property rather than by the internal structure
of its carrier. Note, however, that this may be contrasted with a common and fruitful
procedure used in coalgebraic reasoning which consists of exhibiting the underlying
final coalgebra of some mathematical objects, such as streams or languages, to apply
coinduction in the study of their properties (see, for example, [Jac96a, Rut98] or
[Rut01]).

The next few paragraphs discuss briefly existence of final coalgebras, to conclude
that they do exist for all functors considered in this thesis. Some concrete examples
of final coalgebras are mentioned in §§43 and 44. Prior to that we shall recall a well
known result which characterises both final coalgebras and initial algebras as fixpoints
of functors.

39. LAMBEK LEMMA. The final object in � � , if it exists, is an isomorphism.

Proof. Let � � � ��� 

� ����� be the final � -coalgebra. Because � � � � ����� 

� � ����� is a
� -coalgebra as well anamorphism

� $ � � � & � � exists. The composite
� $ � � � & � � � � � � � � 

� � �

is also a comorphism and, by finality, coincides with
" ��� �

. So
� $ � � � & � � � � � � " ��� �

and the
proof is half done. For the other half, note



3. COALGEBRAIC STRUCTURES 71

� � ��� $ � � � & � �
� ) comorphism *

� � $ � � � & � � � � � �
� )�� functor *

� $�� $ � � � & � � � � � &
� ) just proved *

� " � � �
� )�� functor *

" ��# ��� ��� � (
+

As isomorphisms are self-dual, this also entails that the initial algebra of a functor, if
it exists, is an isomorphism. Such was the original statement of the lemma in [Bar70],
where it is credited to J. Lambek. As a corollary, notice that � �� � � � � � � 	 
 � .

40. FIXPOINTS. Lambek Lemma characterises both initial algebras and final coalge-
bras for a functor � as fixpoints of the equation

� �� � �
The initial algebra is said to be the least fixpoint of � , up to isomorphism, and the
final coalgebra the greatest. The terminology arises from an analogy with what hap-
pens in a partial order 
 � 
 � � seen as a category. A functor, in such a setting, is just a
monotone function and, therefore a coalgebra (respectively, an algebra) is an element
� of
�

such that � � � � (respectively, � � � � ). The final coalgebra is, then, an
element � � � � such that, for all � � � , � � � � � � � � . By Tarski’s theorem,
[Tar55], this is the greatest fixpoint of � with respect to � . Dually, the initial algebra
arises as the least fixpoint. By analogy, least and greatest fixpoints of an endofunctor
in an arbitrary category are defined as the initial algebra and the final coalgebra, re-
spectively. As [MA86] remarks

This defines what we mean by least and greatest in the general
case. There is no pre-established order.

41. REMARK. The replacement of isomorphism by strict equality in an universe of
sets raises foundational problems. In particular, the strict greatest fixpoint of most
functors � would violate the foundation axiom of classical set theory which states



72 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

the well-foundedness of the membership relation, i.e., the no existence of infinitely
descending chains � � � � � � � � � � � . This observation lead to the development
of non-well-founded set theory [Acz88], in which the axiom is replaced by an ‘anti-
foundation axiom’. Such non standard set theory arose in the work of P. Aczel to
provide a final semantics for CCS processes as elements of strict final coalgebras for
functor �

� � � ��� 	
in the category � � � � � of large sets (or classes), where � stands

for the (unrestricted) powerset functor.
From the point of view of category theory, such a ‘foundational shift’ seems

avoidable, to a great extent, as final coalgebras do exist in
�����

and � � � � � with classi-
cal foundations, as Aczel himself proved in [Acz88, AM88]. M. Barr [Bar92], in a
polemic with J. Bairwise, illustrated this point of view in the following terms:

It is unfortunate that such solutions [resorting to anti-foundation] exist,
for their main effect is to avoid giving serious consideration to the real
problem: the irrelevance of actual elements in mathematics.

The theory of non-well-founded sets has, however, an interest in its own, namely
on research of set theoretic foundations for corecursion; see [BM96] where several
modelling applications are given, in particular in the area of artificial intelligence.

42. CONSTRUCTION OF FINAL COALGEBRAS. There is, however, a fundamental
restriction which may prevent the existence of final coalgebras: cardinality. In par-
ticular, Lambek lemma implies that a final coalgebra for the unrestricted powerset
functor in

�����
cannot exist, as it would violate Cantor’s theorem. The problem is

avoided by moving to the large category � � � � � , as [AM88] does, and is, of course,
non existent for the finite powerset functor we have been considering. In general, car-
dinality restrictions are avoided if we require � to be bounded (§26). [Rut00] proves
that all extended polynomial functors (§10) are indeed bounded. In this paragraph we
shall briefly review the construction of final coalgebras in

�����
.

The general method for building final coalgebras for polynomial functors is a
generalisation of Kleene’s theorem for finding fixpoints in complete partial orders.
Basically, a fixpoint arises as the limit of a descending chain

�
�	 �
� �

� �	 �
� � �
� � �	 � 
�
�


where �
�
� � � �

���
� . More concretely, this can be seen as the set

��
 ��� 
 ����
 �
� 
�
�
�
 ��� � � � � � � � �
�
�
* 	 � � � � � �

�
for all � �



3. COALGEBRAIC STRUCTURES 73

This method requires � to preserve limits of descending chains, a condition usually
known as � -continuity, which is indeed the case of polynomial functors and the co-
variant exponential functor. A dual requirement, and a dual procedure, computes
initial algebras. Recall that the original Kleene theorem can also be used to compute
both least and greatest fixpoints. See [SP82] for an early reference and [MA86] for a
detailed proof and examples.

43. EXAMPLES. For the cases covered by the Kleene method we can obtain concrete
descriptions of the final coalgebras. Moreover, they arise as completions of the corre-
sponding initial algebras. Let us see some examples in

�����
.

� The trivial example is the final coalgebra for the identity functor
���

: it is, as
expected, 
 � 
 � � � � .

� For functor � � � � � � the carrier of the final coalgebra is the set � � of
infinite sequences of � , with 
 � � � � 
 � � � � � as the dynamics. This extends to
��� � � ��� � � , for the usual ‘list’ functor � � � � � � � � .

� Functor � � � � � � � , which is the type of (deterministic) systems with an
observer (or attribute) � and a parametrized action � , has as final coalgebra


 ��
 ��� � � � � � � � � � �
� �

where

� � � � � � �
� � � � � � 	 � �

� 	 � 
 � � 	

which amounts to infinite trees whose branches are labelled by sequences of
inputs and leafs by values of � .

� The final coalgebra for the more general shape

� � � �
�

�
� � � � � � � 	 ���

is constructed in [Jac96b]. Its carrier is the space of functions from � � � �
to
�
� � � � � � �

� �
	
, subject to an invariant that assures type compatibility

(i.e., an input on � � will produce output in � � and % � ) and completion (in
the sense that when a node labelled by an output value of type � � , for any�
, is reached, the tree is completed by an infinite tree whose nodes are all

labelled by that same value). Again branches are labelled by inputs and
nodes by values from � � � � � � �

� � . The root, however, is not labelled.



74 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

44. POWERSET. Kleene’s theorem does not apply to the (finite) powerset functor. In
this case, existence of final coalgebras has been proved by M. Barr [Bar93]. Roughly,
the intuition is to take the coproduct of all � -coalgebras and, then, quotienting it by
the greatest bisimulation. Because such coproduct may not exist, the argument is
reformulated in terms of a set of ‘generators’.

For the common case � � �
���
� � � 	 , this yields, as one would expect

from the semantics of process calculi, the set of rooted finitely branching trees, with
branches labelled by � , quotiented by the greatest bisimulation.

45. THE STRUCTURE OF � � . What M. Barr actually proved in [Bar93] is that the
forgetful functor

� � ������� � � �����
has a right adjoint. This is, of course, � � � �

� �
�

(§37) and, as
�����

has a final object, � � � �
� �

�

� gives the final coalgebra. Further-
more, the paper unveils much of the structure of

����� �
for an arbitrary functor � . In

particular, it is shown that coproducts and coequalizers exist and their carrier coin-
cides with the same construction in

�����
. [Rut00] shows a similar result for all limits

that are preserved by � . The structure of � � , in the general case, has been studied by
a number of people ([Rut00, GS98, Wor98, PW98, Ada00], among others).

4. Categorical Data Types

46. INTRODUCTION. In the previous sections we have seen how algebras and coal-
gebras for an endofunctor � provide simple mathematical models for a variety of
phenomena in programming. In particular, their initial and final representatives be-
come suitable abstract descriptions of finite data structures, in the former case, and
behavioural patterns, in the latter. They are often mentioned as inductive (or ini-
tial) and coinductive (or final) categorical types, respectively, after T. Hagino thesis
[Hag87b].

Furthermore, in both cases, they come equipped with a definitional and a proof
principle, arising from a core universal property. Such a property is expressed by the
existence and uniqueness of a special arrow in the respective category of algebras
or coalgebras. As so it can be turned into a programming combinator and used,
not only to calculate programs, but also to program with. Cata and anamorphisms
are typical examples, but, of course, not the only ones. Paramorphisms [Mee92]
and apomorphisms [VU97] capture more general primitive recursion and primitive
corecursion schemes; they are mentioned in appendix E. See [Fok92b] for the ‘family
album’.

The functional language CHARITY [CF92] provides a programming notation en-
tirely based on such connectives. This has motivated the use of CHARITY in this
thesis to prototype some of the proposed constructions on components.



4. CATEGORICAL DATA TYPES 75

The purpose of this section is twofold. First, we review how the construction of
initial algebras and final coalgebras can be made functorial (§§47 and 49). Secondly,
we recall a common assumption in this area: the requirement that functors should be
strong (§50). In fact, such a requirement is basic in CHARITY. Therefore, this section
details the construction of the strong versions of the above mentioned combinators as
they are used in the language. This complements the more ‘programming-oriented’
introduction to CHARITY provided in appendix E. Note that our presentation differs
from the one followed in CHARITY accompanying papers (e.g., [CS92, CS95]), which
resorts to a fibrational setting, perhaps less familiar to a computer science audience.

47. COTYPE FUNCTORS. Functors used to capture the shape (or signature) of the
examples discussed in §43 are parametric on the output and input universes (repre-
sented there by � and � , respectively). The carrier of the final coalgebra, is defined in
terms of observations and involves, naturally, these parameters. Even if, of course, it
does not depend on which concrete sets symbols � and � stand for. This means that
its construction can be made functorial, as follows.

First of all, functor � has to be expressed as a � -ary functor (§2.16), e.g.,

� 
 � 
 � � � � � �
� 
 � 
 � 
 � � � � � � �

from which we extract the section correspondent to the observation parameters (e.g.,
��� or ��� � � ). Without loss of generality, consider � � , for

�
standing for the above

mentioned parameters. This section induces both a coinductive and an inductive type,
parametric on

�
, arising, respectively, as its final coalgebra and initial algebra. In

other words (§40), as the greatest and least fixpoints to the following equation

� �� � 
 � 
 � �
Following the convention established in §14 and §33, their carriers will be denoted
by
� �
	 and � � 	 , respectively. Then define a functor

� � � � � � � , called the cotype
functor for � , such that

� � � � � �
	

� � � � � � � � � 
 � � � � � 	 � � � 	 	 
 �



76 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

for � � � �	� � . The action on morphisms of
� �

	 is explained by the following
diagram:

� � � � � �
// � � � � �

� �
	

� � �
OO

� � 	
// � � � � 	

� � ���
� �
� � 	 �

// � � � � 	

� � � � �
OO

Notice that
� �

	 � is well defined as it is the unique � -comorphism making the dia-
gram to commute.

48. LAWS. This cotype functor satisfies the following laws, each of them proved by
direct application of the anamorphism laws (§34):

� � � � � � � � � � � (3.11)
� � �

� � � 	 � � �
� �
� � � (3.12)

� � ��� � � � 	 
 � � � � � � � 
 � � � � 	 
 � (3.13)

The first two are the usual functoriality properties. Equation (3.13), on the other hand,
is usually referred to as the absorption law for anamorphisms.

49. TYPE FUNCTORS. Dually, a functor assigning to each object
�

the initial � � -
algebra can be defined and proved to satisfy dual laws. It is called the � -type functor
and given by:

� � � � � � 	
� � � �

� � � � � � � � � 
 � ��� � � 	 
 	 �
for � � � � � � . Again its action on morphisms arises from the following diagram:

� � � � 	 � � 	
//

�
	
�
� �

��

� � 	
�
� �

��
� � � � �

� � ���
� �
� � � �

// � � � � � � � � // � � �
Type functors are extensively used in functional programming, see e.g., [Bir98]. As
expected they verify the duals of laws in §48.

50. STRONG TYPES. A data type is strong if its signature is captured by a so-called
strong functor. As detailed below, a functor � is strong if it possess a (tensorial)
strength, i.e., a natural transformation

�

�� � � � � � � �
� ��� � � 	



4. CATEGORICAL DATA TYPES 77

subject to certain conditions. Its effect is to distribute context “ � ” along functor �
(see §54 for a set of examples). If types are modeled in such a setting, the univer-
sal combinators (e.g., cata and anamorphisms) will possess a somewhat more general
shape, able to deal with the presence of extra parameters in the functions being de-
fined. And this is possible even in case the underlying category is not cartesian closed
(and therefore currying is not available).

There is, however, another reason supporting the strongness requirement, and
probably a more fundamental one when building categorical models for, e.g., func-
tional programming. In fact, a basic requirement in such models is the need for arrows
to internalise, for every functor capturing a type signature, its action on morphisms.
Such a collection of arrows will, therefore, give semantics to a generalised map func-
tional.

The task of mimicking the action of a functor � on morphisms within the (se-
mantic) category, is again accomplished by a natural transformation �

�
, called the

functorial strength. It turns out that both notions of strength are the two sides of the
same coin in the sense that, for the same functor, one uniquely determines the other.

In the sequel we provide a brief introduction to both concepts and, then, quickly
turn into the analysis of strongly final coalgebras (and strongly initial algebras) and
their properties.

The basic results on strength can be found on [Koc72]. A standard reference on
strong data types is [CS92]. A subsequent paper [CS95] describes a term logic for
programming with them, which is implemented in the experimental language CHA-
RITY [CF92].

51. FUNCTORIAL STRENGTH. As mentioned above, a functorial strength �
�

is a
natural transformation which internalises the action of a functor � on morphisms. Its
component, at arbitrary objects ��
�� , is a map

�
��
�
� � �	� � 
���
 � � ��� � ��
 � ��


satisfying

�

� �
� �

//� �
�
��

��� � � 
 � ��
 ��� � 
���
 � ��� ��
���
 � //

� �� 
 � � � �� 
 �
��

�	� � 
���

� �� 
 �
��

�	� � 
���

� �� 
 �

99ttttttttt

��� � ��
 � ��
 � ��� � � 
 � ��
 � // ��� � � 
 � ��

Of course, if � is Cartesian closed (§2.38), homsets have internal representations as
exponentials and, consequently, functorial strength assumes the more familiar form
�
��
�
� � �

�
� � � �

� �
. The subject is far more elaborate than we can glimpse

here. It arises in the context of enriched category theory [Kel82], a branch of research



78 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

lead by the idea of internalising: ‘meta’ notions normally lying on top of a category,
become (internally) represented by (families of) morphisms in the category itself. In
a Cartesian closed category, a functor with functorial strength is said to be enriched
over the exponential, which is thus another common designation for a strong functor.
Notice that the axioms for functorial strength captured by the two diagrams above are
no more than an internal representation of the properties of a functor: identities are
preserved and the functor commutes with composition.

52. TENSORIAL STRENGTH. The notion of a tensorial strength provides an alter-
native way of establishing the strongness of a functor via a first-order formulation.
Moreover, it explicitly offers a way of distributing ‘context’, and therefore, dealing
with extra parameters in a computation. We review the concept below and discuss its
formulation for the kind of functors used in the thesis.

Let � be a category with finite products and � an endofunctor in � . � is said to
have a (tensorial) strength if there exists a natural transformation

�

�� � � � � � � �
� ��� � � 	

called a right strength, or simply a strength, such that, for all � 
 � 
�� � ����� � � 	 ,
equations

� � � �
� � �

(3.14)

��� � � �
� � �

�
�
�

�
� � � �
	 � � � (3.15)

hold. These equations express the unit and the associativity law for �
�

and can be
represented as

� � � �
� �� � 
 �

//

� � �
''PPPPPPPPPPPPPP
�
�
� � � 	

� � � � � �
��
� �

� � �
�
� � � 	 � �� � 
 ��� �

//

� �
��

�
�
� �

�
� � � 	 	
� � �
���

� � � � 	 � � � �� � 
 �
� � � �

// �
�
� � � 	 � � � �� � � � 
 �

// �
� �
� � � 	 � � 	

Dually, a natural transformation �

�
�
� � � � � � �

�
� � ���
	

satisfying similar
laws is called a left strength. Assuming � implicit, note that � � � � � � �

�
� � and



4. CATEGORICAL DATA TYPES 79

�
� � � � � � � � � . The unit and associativity axioms also hold for the left strength, in the

dual form:

� � � � � � � (3.16)

� � � � � � � � �
� � ��� � �

	
� � (3.17)

53. REMARK. As anticipated in §50, �

�
� (or its ‘right’ version) and �

�
can be

mutually defined by

�

�
� � ���

�
�
�
�
� ��� � � � 	 (3.18)

�
�
� � � � 465 � � �� � ��� (3.19)

where ��� and
���

are, respectively, the unit and counit of the product-exponential ad-
junction (§2.33). This correspondence is proved in [Kel82].

54. A STRENGTH CATALOGUE. First of all, there is a tensorial strength for all
polynomial functors (§10) in any distributive category. A pointfree definition, by
induction on the structure of polynomial functors, is as follows:

�
��
� 
 � � ��� � � � � � �

�
�

�
�
� 
 � � � � � � � � � � � � � � �

�

� � ��
� 
 � � � �

� ��
� 
 � � �

��
� � � 
 �

� � � � � � � � � � �
�
� � � 	

and

�

� � � ��
� 
 � �

�
�

��
� 
 �

�
�

� ��
� 
 �
	
� 
 � � � � � � 
 � � � � � � �

� � � � � � � � 	 � � � �
�
� � � 	 � � �

�
� � � 	

�

�
�
� ��

� 
 � �
�

�

��
� 
 � � �

� ��
� 
 �
	
�
��� �
� �
�
� � �
�

� � � � � � � � 	 � � � �
�
� � � 	 � � �

�
� � � 	

Secondly, this result extends to all regular functors. In particular, the strength for
type functors has been established by [Spe93]. For our purposes here, it is enough,
however, to define strength for two extra cases:

��� �
and

�
. We have:

� �
� � �

0 " //
�
� �

� � � � � 	 � � � 	 //
�
� �

� � � � � 	
�

� 465 �
� �
� 	

//
�
� � � � 	

� � �� � 
 �
// �
�
� � � 	

�



80 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

and
�
� � � �

���� � � 
 �
//
���
� � � � 	

�
� �� � 
 �

//
�
�
�
� � � 	

where, �

��
� 
 �
� � � � � � �

���
� � � 	 is defined in the obvious way:
� 
 � 
 � � � ��
 ��
 � � � � � � �

55. STRONG NATURAL TRANSFORMATION. A natural transformation
� � � � � �

between strong functors is called strong iff it verifies
�
� �

�� � �

�
�
� � � � � 	 (3.20)

It is known that, regarded as natural transformations, the identity, projections, and
universal arrows to (respectively, from) the final (respectively, initial) objects in a cat-
egory are all strong. The same applies to products, splits and eithers of strong natural
transformations, as well as to the pre- or post-composition of such a transformation
with a strong functor.

56. STRONG UNFOLD. Let � be a strong functor and � � � � � � � � � � its final
coalgebra. Suppose

�
is any set and consider �

� � � % �	� � �
a � -coalgebra with

context % . That is to say, a coalgebra in which the output of the observers depends
not only on the carrier

�
but also on some ‘external’ context % . To compute the

behaviour of � , for different seeds (which are now pairs of state and context), we have
to solve uniquely the equation implicit in the following diagram, i.e., to determine the
morphism � ����� � � � � such that the diagram commutes

� � � �
// � � �

� � %
�
�
� � � �

//

�
�
�  �

�
�
�

OO

� � � % � ��
// �

�
� � % 	

� �
�
�  �

�
�
�

OO

There are two possible ways to address this question. One is rather trivial: the diagram
makes a new � -coalgebra over the product

� � % explicit, and all we have to do is to
take the associated anamorphism. So,

� ����� � ��� � � � � �

��
� 
 � 
 �
��� 	 
 � (3.21)

The second alternative, although of course equivalent, is conceptually more appealing.
Furthermore the ‘machinery’ involved also applies in the dual case of defining a strong



4. CATEGORICAL DATA TYPES 81

fold (§61), in which there is not a straightforward answer. The basic idea is to define
� ����� � � � � as an anamorphism for � itself, not in the current category � , but somewhere
else.

57. SOMEWHERE ELSE. Consider the category �
�

whose objects are the same of
� , but whose arrows are � -arrows typed as � � % � � � . Given two arrows, say
� � � � % � ��� and �

� � � % � � � , their composition is defined as

��� � � ��� 
 � 
 �
� � (3.22)

cf.,

� � % �
//

� ��� � � � %%KKKKKKKKK �
� � % �

// �
It is easy to check that this form of composition is associative and has � � � � � % �	�
� as unit.

We may also define a functor from � to �
�

to embed our working category in the
latter. Clearly, such a functor is the identity on objects, but maps arrows � � � �	� �
to �

� � ��� �
� (3.23)

This category is, in fact, the Kleisli category for the product comonad. Recall that
a comonad [BW85] is just the formal dual of a monad, which also finds relevant
applications in semantics (see, e.g., [BG92]). However, in the sequel, we will not
resort to any specific comonadic property.

58. COALGEBRAS IN �
�

. Let us go back to the strong functor of §56. There is a
‘correspondent’ functor on �

�
given by�

� � � � � (3.24)�
� � � � ��� �

�� � 
 � (3.25)

where � � � � % � ��� . With a slightly terminological overload, we shall call
�
� the

lifting of � to �
�

. Clearly, �
�

�
� �

�
� � (3.26)



82 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

because
�� ��

� )��� definition (3.25) *
� ���� ���

� ) (3.23) *
� $%� � � � & � ���

� )�� functor *
� ��� � � � � ���

� )���� �	��
 ��� � � law (C.12) *
� ��� � �

� ) (3.23) *
�� �

Therefore, a
�
� -coalgebra is an arrow � � � � �

�
� �

in �
�
, i.e., a � -arrow

� � � � % � � � �
. In the same setting, a

�
� -comorphism is a � -morphism

�
making

the left diagram to commute:

� � //

�
��

�
� �

�
� �
��

� � % � //

�
��

� � � � � %
�
� �
��� � //

�
� �

� � � % � // � �

The diagram on the right is the interpretation of the one on the left in the original
category. In the sequel, we shall resort to such diagrams as they make the structure

involved more explicit. The equation implicit in the diagram is, of course,
�
� � � � �

� � � , which corresponds to the usual condition for a coalgebra morphism (§20).
Expressed in � it reads: � � � �

�� � 
 � � 
 � 
 �
� � � � � 
 � 
 ����� .
59. FINAL COALGEBRAS IN �

�
. Is there a final

�
� -coalgebra? Fortunately the

answer is yes and the suitable candidate is just around the corner:
�� � , i.e., � � � �
� ,



4. CATEGORICAL DATA TYPES 83

which happens to be final for each % in the category of
�
� -coalgebras. Because of

this fact, � � is called strongly final. The justification lies in a theorem asserting that
in a ccc, every final coalgebra (and, dually, any initial algebra) is strongly so (cf.,
proposition 4.3 in [CS92]).

We can now rephrase the � � � � � � � diagram in §56 as an anamorphism diagram in
�
�

,

� � �� �
//
�
� � �

�

�
//

�
�
�  �

�
�
�

OO

�
� �

�
� �

�
�  �

�
�
�

OO

By finality, � � � � � � � � is � � � 	 
 �� . The simple calculation which follows shows this is

equivalent to the definition of � ����� � � � � given in §56.
������ ��� � � � ��� ��� �� � ���	� ��� � � � �( )�
 definition *
������ ��� � � � � � � � 
 � � 
 � �� � � ����� ��� � � � � 
 � � 


( ) �� definition *
����� ��� � � � � � � ���
�� 


� � � 
 � � 
 � �� � � ����� ��� � � � � 
 � � 

( )�� � is strongly final *

����� ��� � � � � � � �� 
�� 

� � � 
 � � 
 � � � � � � � ���	� ��� � � � � 
 � � 


( ) � cancellation *
����� ��� � � � � � � ���
�� 


� � � 
 � � 
 � � � � �	� ��� � � � �

60. LAWS. We are now ready to state the universal property of unfolds for a strong
type,

� � � ����� � � � � 	
�� � � � � �

� � � � (3.27)



84 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

from which the following cancellation and reflection results are easily derived:

�� � � � ����� � ��� � �
�
� � ����� � � � � � � (3.28)

� � � � � � � �� � � � � � � (3.29)

Moreover, for two coalgebras � and � and a coalgebra morphism � between them (i.e.,

such that � � � �
�
� � � � ), one gets the following fusion law for unfolds:

� ����� � � � � � � � � � � � � � � � (3.30)

To conclude, we prove that, for a ‘normal’ coalgebra �
��� �	�
� �

, � � � � � � � �� is the
lifting to �

�
of the corresponding anamorphism.

Proof. Replace � by
�� $ � & � � in (3.27). Then,

�� �� $ � & � � � ��
� ) (3.26) *

�� � $ � & � � � ��
� ) functor *

�� � $ � & � � � �
� ) ana universal (3.6) *

�
� � ��� $ � & � �

� ) functor *
�� � � �� $ � & � �

+

61. STRONG FOLD. A dual construction gives the definition of a strong fold. That is
to say, a strong fold is just a catamorphism in �

�
. To see this first recall that, in a ccc,

an initial algebra is also strongly initial. Therefore, consider �
� � � � % �	� �

a � -algebra over D, with context C, which amounts to a
�
� -algebra in �

�
, and define

��� � ��� � as the induced catamorphism there. As usual, this is the unique arrow which



4. CATEGORICAL DATA TYPES 85

makes the following diagram to commute,

�
�	� �

�� � //

�
� �  �

�
� �

��

� �

�  �

�
� �

���
��� � // �

where
�� �

is, as before,
� �
� �
� . We may now rephrase the equation implicit in the

diagram in the context of � :

��� � � � � � �� � � � �
�� ��� � � � �( ) 
 definition *

��� � � � � � � �� � 
 � � 
 � �
� � �� ��� � � � � 
 � � 


( )�� � is strongly initial, �� definition *
��� � � � � � � � � � � � 
 � � 
 � �

� ��� ��� � � � � � � ���� � 


 � � 


( ) � absorption *
��� � � � � �	$ � � � " � & � � � � 
 � � 
 � �

� ��� ��� � � � � � � �� � � 


 � � 


( ) � reflection *
��� � � � � �	$ � � � " � & � �

� � � ��� � � � � � � ���� � 


 � � 


We have, thus, defined the universal property for this functional:

� � ��� � � � � 	 � �
�� � � � �

�
� � (3.31)

As one would expect, all laws in §60 have a dual version here. The corresponding
cancellation, reflection and fusion laws are, respectively,

��� � ��� � � �� � � � �
�
� ��� � ��� � (3.32)

��� � � � �� � � � � � � (3.33)

� � � � � �
�
� � � � � � � � � � � � ��� � ��� � (3.34)

Furthermore, for a ‘normal’ algebra �
� ����� � � , � � � � � �

� corresponds exactly to

the lifting to �
�

of the corresponding catamorphism, i.e., to
�� � � 
 	 � . Notice, however,



86 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

that ��� � � � �
� , for the general case, cannot be expressed as a catamorphism in � , which

makes this shift to ‘somewhere else’ necessary to characterise it.

62. STRONG MAP. The action of a functor � on morphisms ‘with context’, i.e.,
morphisms � � � � % � � � , is defined as the correspondent action of the lifting
of � on � seen as a �

�
morphism. For notational reasons, and to emphasise the

correspondence with the CHARITY (abstract) combinators’ notation [CS95], this will
be denoted by � � � � � . Therefore, define

� � � � � �
�
� � � � � � %

� �� � 
 �
// �

�
� � % 	

�
�
// � �

In order to ‘complete the picture’, we shall now give the strong versions of type and
cotype functors.

63. COTYPE FUNCTORS REVISITED. The fact that � � (resp.,
� �

), in a ccc, is
strongly final (resp., initial), opens the possibility of defining strong cotype (resp.,
type) functors. We shall denote them by

� �
(resp.,

� �
). Their action on objects is,

as expected,

� � � � � �
	

� � � � � � 	
Let us see how to define the action of

� �
on a morphism � � � � % �	� � . The

construction is similar to the one used in the definition of standard cotype functors
(§47). As depicted in the diagram below, in a strong setting it is defined as an unfold:

� � � � � �����
�

�
� �

// � " � � �

� � 
 ���
� � �

OO

�
�
� �

// � $ � � 
 � $ � � 
 ���
�� #
� ���
� � ! � ( // � " � � 
 � " � � 
 ���

� � � � �
OO

� � � is, then, defined as the arrow making the diagram to commute, i.e.,

�� � � � � � � � � � � � � � �� � � � � � � 
 � 	 � �� � 	



4. CATEGORICAL DATA TYPES 87

which is expressed in terms of � -arrows as,

�� � � � � � � � � " � � � � �� $ " � � � $ 
 � & � �� � �
( ) 
 , �� � � definition *

� � � � � � � � � � � 
 � � 
 � �� $ � � � 
 � & � �� � �
( ) 
 , �� 	 definition and � cancellation *

� � � � � � � � �� $ � � � 
 � & � � � � � � � � 
 � � 
( ) � absorption, � reflection *
� � � � � � � � �� $ � � � 
 � & �	$ � � � ��" � � &

As this is an � ����� � � diagram, we have

� � � � � ����� � � � � � �� � � � � � � 
 � 	 � �� � 	 	 (3.35)

Now, notice that the lifting of the standard cotype functor applied to the same � yields
arrow

� � � � � � � �
� � � � � � �
� �

� ��
(3.36)

Naturally, we would like to see the strong cotype functor as the lifting to �
�

of the
‘standard’ one. The strength �

� ��
for the cotype functor can actually be defined such

that
� � � � � � ��� �

� ��
. This is proved for the (dual) type functor case, in [Par96].

Using the � � � notation, the definition of
� � � looks like

� � � � � � � � ����� � � � � � � � � �
�

� � � � � � 
 � 	 � �� � 	 	
which, from a programming point of view, would serve as the definition of the � � �
combinator for coinductive types as a functional in a programming language.

64. TYPE FUNCTORS REVISITED. A dual construction is used to define the action
on morphisms of the strong type functor. As expected, it arises as a � ����� . The actual
definition is

� � � � ��� � ��� 	 �� � � � �� � � � � � � 
 � 	
as follows from the diagram below.



88 3. ALGEBRAS, COALGEBRAS AND CATEGORICAL DATA TYPES

� $�� � 
 ���
�
�
� �

//

� ��� � �
��

� � 
 � � 
 ���
�
� �

��� $ � � � � $ � � � ���
�� #
� ���
� � ! � ( // � " � � � � " � � � ���

�
�
� �

// � � �

Again we may use the � � � notation and write

� � � � � � � ��� � ��� 	 � �� � � � � � � �
�

� � � � � � 
 � 	 	
as a definition of the � � � combinator for inductive types.



CHAPTER 4

Coalgebraic Models for Processes and Components

Summary
This chapter develops coalgebraic models of both processes and software
components. Processes are introduced as inhabitants of the carriers of
final coalgebras upon which the usual process combinators are defined.
This leads to a ‘reconstruction’ of a basic process calculus along the
lines of the ‘Bird-Meertens’ formalism. In particular, process proper-
ties are proved in an equational, essentially pointfree, way and the con-
structions put forward are directly prototyped in a functional language
supporting coinductive types. If processes, as ‘pure’ behaviours, are ele-
ments of final coalgebras, just as sequences or trees are elements of ini-
tial algebras, software components have to deal with both behaviour and
data, in the form of input/output and state information. They are thus
described as concrete coalgebras, with specified initial conditions and
parametric on a behaviour captured by a strong monad.

1. Shapes

1. PROCESSES AND COMPONENTS. This chapter discusses both processes and
components from a coalgebraic point of view. The former, as ‘pure’ behaviours are
studied as elements of coinductive data types, i.e., inhabitants of (the carrier of) a final
coalgebra. The latter are regarded as state-based interactive systems and modelled as
concrete coalgebras.

After this introductory section on coalgebraic modelling, sections 2, 3 and 4 are
entirely devoted to the development of a family of CCS-like process calculi along the
lines of the so-called Bird-Meertens formalism [Bir87, BM87] and their animation
in CHARITY. Finally, section 5 introduces the component models to be used in the

89



90 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

following chapters. Their parameterization by a strong monad to capture particular
behaviour models is emphasised.

Before that, however, we shall go through a small ‘warming up’ exercise to in-
vestigate some elementary shapes for dynamic systems. It turns out that very simple
functors are enough to model a variety of such systems common in, e.g., process cal-
culi or automaton theory. For each

�����
-endofunctor � , we shall ask ourselves how

� -coalgebras look like and what the appropriate notions of comorphism and bisimu-
lation are. This will unveil what should be understood by behavioural equivalence in
each case. We shall also take the opportunity to introduce the notion of an invariant
wrt a coalgebraic structure and refer briefly (i.e., as far as such concepts are needed in
later sections) recent work by B. Jacobs and others on associated modal languages.

2. SHAPES. In modelling data structures as � -algebras, the choice of functor �
fixes the associated syntactic information — � is, in fact, an abstract description of
the structure’s signature (or ‘abstract grammar’). Such a choice is equally relevant
when regarding dynamical systems as coalgebras. In this case, � captures both a
signature of actions and observers — the system’s interface — as well as a particular
behavioural model. These two aspects are orthogonal and, as argued in the sequel,
should be dealt separately as far as possible.

The table below suggests a possible taxonomy of functors for dynamic systems.
The second column consists of functors whose coalgebras are models of deterministic
systems. The third column introduces nondeterminism, as usually considered in, e.g.,
process calculi or automaton theory. Rows, on the other hand, classify systems by the
interface they exhibit. The degenerated cases simply lack any accessible interface.
Reactive systems accept external stimuli, of type � , which trigger their evolution.
Active systems, on the other hand, provide a state observer of type � and an action
whose occurrence does not depend on any external stimulus.



1. SHAPES 91

Deterministic Systems Non Deterministic Systems

Degenerated ��� � � � � �
�
�

(1) (4)

Active � � � � � � � � � � � � �
(2) (5)

� � �
���
� � � 	

(5’)

Reactive � � � � � � � �
���
� 	 �

(3) (6)

For each case, let us consider two � -coalgebras, � and � , over carriers
�

and
�

,
respectively, and investigate what comorphisms and bisimulation are, recalling §3.20
and §3.23:

� � � � � � is a comorphism � � � � � � � � �

 � 
 �'� is a bisimulation on � and � � � � � � � � � � ��� � � �
� � � � � � ���

CASE 1. For the identity functor, coalgebras simply are functions with the same
source and target, i.e., carrier

�
. Moreover, any transition respecting relation is a

bisimulation, because

�
� � � � � � ��� � ��� � � � � � �
�
� � � equality �


 � � � � 
 � � � �!� � 
 � � � � 
 � � � � �
� � � fusion, � absorption �


 �
� 
 ��� � � � � � � � � 
 �
��
 �
� �
� � � reflection �
� � � � �

The final coalgebra is 
 � 
 � � � � .



92 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

CASE 2. Coalgebra dynamics for this functor are splits 
��
�

 �
�
� of an attribute�

�
� � �	� � and an action �

�
� � �	� �

. An arbitrary coalgebra can thus be
written as � � 
 � 
 
��

�

 �
�
� � . The condition on comorphisms yields� � ��� � 	 � 
��

�

 �
�
� � 
�� � 
 � � � � �

� � � absorption �

 �
�

 � � �
�
� � 
 � � � � 
 � � � � �

� � going pointwise �
�
�
� �

�
� � � � 	 � � � �

���
�
	 � �

�
�
�
�
� 	 �

Similarly, the proof rule for bisimulation becomes� � � � �
� 	 � 
�� � 
 � � � � 
��
�

 �
�
� � �
� �

� � ��� �
� 	 � 
�� � 
 � � � � 
�� � 
 � � � � �
�
� � � absorption, � fusion �


�� � 
 �
� � � � � � 
 �
�
� �
� 
 �
�
� �
�#� � 
�� � 
 �
� � � � � � 
�� � � ��� 
 � � � �
���

� � rearranging �
� � � �

�
� �
� � � � � ��� � 
 ��� ��� � 
 ��� ��� � � � 
 �

�
� �
� 
 � � � �����

� � � fusion, � absorption �
� � � �

�
� �
� � � � � ��� � 
 ��� 
 �
��� ��� � � �

�
�
�
�
� 	
� 
 �
��
 ��� �

� � � reflection �
� � � �

�
� � � � � � � � � � � � � �

�
�
�
�

� � going pointwise �

 � 
 � � � � � �

�
� � � � � � 
 �

�
� 
 � � � � � �

In this case, the final coalgebra is well-known: its carrier is � � , the set of � -streams
and its dynamics is given by the split of the ‘head’ and the ‘tail’ functions over them.

CASE 3. Coalgebra dynamics for this functor can be expressed by a function
� � � � � �	� �

in curried form. The bisimulation rule becomes

� �� � � � � � ��� � � �� � � � � � �
�
� � exponential absorption �

� � � � � � � � � � � � � � � � � � �
� � exponential fusion �

�
� � � � � �
�
��� � � �
	 � ��� � � � � �

�
�
� � � � 	



1. SHAPES 93

� � exponential universal �
�
� � � � � �

�
��� � � �
	 � ��� � � � � �

�
�
� � � � 	

� � � universal �
� � 
 � �

�
��� � � �
	 
 � � � �
� � � � 	 �

� � going pointwise �

 � 
 � � � � � �

�
� � � 
 � 
 � 
 � � 
 � 
 � 
 � � � � �

The entries in the second column of the table are obtained from the corresponding
ones in the first column by composing with the finite powerset functor, which captures
nondeterminism as a (particular) behavioural effect.

CASE 4. Coalgebra dynamics are functions from
�

to the finite powerset of
�

,
which are isomorphic to (image finite) binary relations on

�
. The comorphism con-

dition yields the following equality� �
� � � � � �

� � going pointwise �
� �

� � � � � 	 iff � � �
� � � 	

� � equivalence ��
� � � � �

�
� � �

� � � 	 � �
� � �

� � � 	 � � � �
�
� � � � �

�
	

The first implication is a preservation condition which corresponds to the usual cha-
racterisation of a morphism between relations or transition systems (see, e.g., [WN95]).
However, the notion of a comorphism is much stronger as it also entails the second
implication. Thinking of a relation � as a (nondeterministic) transition system given
by

� �	� �
iff 
 � 
 � � ���

this second implication means that transitions are also reflected backwards.
In general, the commutativity of the square defining a comorphism gives rise to

two implications which capture, not only the preservation of the coalgebra dynamics,
but also its reflection. This may give some intuition on why comorphisms entail
bisimulation. For this particular case, a relation � is a bisimulation iff


 � 
 � � � � � � � � �
� � �'� � ��� � 
 � 
 ��� � � � � � � ��� ��� � � �

� � 
 � 
 ��� � �

CASES 5 AND 6. These remaining cases amount to combinations of (4) with (2) and
(3), respectively. Notice, in particular, that (5) and (5’) witness two possible compo-
sitions of functors (2) and (4), both having meaningful computational interpretations.



94 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

Case (5) models objects able to evolve silently in a nondeterministic way while being
observed in � . The bisimulation rule is


 � 
 � � � � � �
�
� � � � � �

� � ����� � ��� ������� � � 
 � 
 ��� � � � � � ����� � ��� � ����� � � 
 � 
 �!� � �
Systems with shape (5’), on the other hand, evolve nondeterministically producing a
visible effect of type � . As argued in the next section, this captures a possible shape
for (image finite) CCS-like processes. Bisimulation in this case corresponds to what
is called strict bisimulation in the CCS literature:


 � 
 � � � � � � ��� � � � � � � ��� ��� � � � � ��� � 
 � 
 ��� � � � � ��� � � � � � � � � �	� � � � � � � � 
 � 
 ��� � �
Case (6) is the corresponding reactive version.

3. TRANSITIONS. Just as any transition system can be coded back as a coalgebra,
any coalgebra 
 � 
 � � � �	� � � � specifies a ( � -shaped) transition structure over its
carrier

�
. For extended polynomial

� ���
endofunctors (§3.10) such a structure may

be expressed as a binary relation �	�
�
� � � �

, defined in terms of the structural
membership relation � � � � � � �

, i.e.,

� � �
�
� � iff � � � � � �

where � � is defined by induction of the structure of � :

� � �

�
� iff � � �

� � � � iff � �
�
�
�

� � � � � � � � iff � � � � �
� � 
 � � � � ��� �
� � � � �

� � � iff

�
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � �
� � iff � � ��� � � � � � �
� � � � � iff � � � � � � � � � � �

4. EXAMPLES. Referring again to the table in §2, the transition relations associated
to cases (1) and (4) are, respectively,

� � �
�
� � iff � �	� � �



1. SHAPES 95

and

� � �
�
� � iff � � � � �

Cases (5) and (6) yield, respectively,
� � �
�
� � iff � � � ���

�
� � 	

and

� � �
�
� � iff �

�
� � � � � �

�
� � 	 �

In some cases it is convenient to express the coalgebra dynamics as a family of binary
relations indexed by the ‘interface’ parameters involved in the definition of � . Case
(5), for example, could give rise to

�
�
�	�
�
� � iff � � �
� � � � � � ��� �

and case (5’) to
�

�
� �
�
� � iff 
 � 
 � � � � �

which corresponds to the transition relation generated by structural membership re-
garding � as a bifunctor (in � and � ).

5. INVARIANTS. A predicate
� � � � � �

over the carrier of a � -coalgebra 
 � 
 � �
� � � � � � is said to be a � -invariant if it is closed under the coalgebra dynamics.
This may be formalised as follows. First define, for

�
such a predicate, combinator

�

�
: �

�

�
� 	 � iff � � � � �

�
� �

� � �
which means that

�

�
�

holds in all states whose immediate successor states (if any),
under coalgebra � , if any, satisfy

�
. Then

�
is an invariant iff

�
�

�

�
�

6. MODAL LANGUAGES. Combinator
�

�
above can be regarded as a modal com-

binator which corresponds to the familiar (weak) next operator in modal logics. The
key observation is that, in this case, the structure upon which the operator is inter-
preted is the transition system defined by the coalgebra � . In fact, it has been recently
recognised by a number of authors (notably in [Mos99] and [Jac99b]) that a modal
language associated to a coalgebra � is determined by its shape, as recorded by the
relevant functor. As one could expect, the topic is a ‘big issue’ in coalgebra theory.
As usual, we shall however restrict ourselves to a brief introduction to Jacobs’ ap-
proach [Jac99b] in order to characterise a few notions used in the sequel. We shall



96 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

also consider only coalgebras in
� ���

, although most results can be carried to more
general contexts.

The above mentioned next operator is introduced in [Jac99b] in a slightly differ-
ent, but equivalent, way. The basic machinery is the extension of predicates, con-
sidered themselves as sets, along (extended) polynomial functors, which appears in
a very general setting in [HJ98]. The extension is computed by a function

� 	 � ��
� � �

�
��� defined inductively on the structure of functor � . Of course,

� � 	 �

coincides with � �
, considering

�
as a set itself. The interest of the definition below

lies in providing a convenient way to deal with the different cases. Moreover, it allows
the explicit description of a left adjoint

� 	 �
which, ‘unlifting’ the predicate, paves the

way to the introduction of ‘past’ modalities. A concrete description of
� � 	 �

and
� � 	 �

in
�����

is as follows:

� $�� & � $�� & �
� � � �
� � �

� � � � � ) ��� � 
 � � 
 � � � � $�� & � ��� � � � $�� & � � * $ ) � � �
	�� ��
 ��� � 
 � � 
 ��� * & � �� $ ) � � ��	�� ��
 ��� � 
 � � 
 ��� * & � �
� � 
 � � ) � � � � � � � � $�� & � � * � ) � � � � � � � � $�� & � � * $ ) � � � � � � � ��� * & � �� $ ) � � � � � � � ��� * & � �
��� ) � �������

� 

� � � $�� & � * $ ) � � � � � � � � ��� * & �� � )�� ��� �
� �"! 
 � � � � � � $�� & � * $�#$� & �

Jacobs then defines the basic modal operators
�

and % as

�

�
� � � � � � � � � �

� � 	 � �
%
�
� �

�
� � � � � � � � 	 �

respectively. The set
�

�
�

contains those states whose immediate successors with
respect to � , if any, satisfy

�
. Similarly %

�
�

contains all states which are immediate
successors of states satisfying

�
. This corresponds to the strong last operator in modal

logic (as the definition of
� 	 �

involves an existential quantifier). For each coalgebra
� , the operators

�

�
and %
�

are related through a Galois connection

%
�
�
� � �

� iff
�
� � �

�
�
�



2. PROCESSES AS CODATA 97

therefore associating to each � a Galois algebra [Kar98], which is essentially a com-
plete Boolean algebra carrying a Galois connection. Therefore, a � -invariant can be
defined in two alternative ways as

�
is a � -invariant iff

� � �

�
�

iff %
�
� � �

The infinite extensions of
�

�
and %
�

characterise the (future) ‘box’ and (past) ‘dia-
mond’ operators relative to a coalgebra � . Therefore, [Jac99b] introduces �

�
�

as the
greatest fixpoint of

�

� �
��� �

�
� and �

�
�

as the least fixpoint of
�

� �
� � %
�
� .

Informally, �
�
�

reads ‘
�

holds now and in all successor states’ whereas �
�
�

reads
‘
�

holds now or at some predecessor state’. A simple argument shows that �
�

�
is

the greatest invariant contained in
�

and, dually, �
�

�
stands for the least invari-

ant containing
�

. By construction, the two combinators also give rise to a Galois
connection.

Although we have already introduced all that is needed in the sequel, this para-
graph should not end without underlying the remarkable fact that every coalgebra, for
a large class of functors, determine a Galois algebra, thus providing a very precise
link between coalgebra theory and (linear) temporal logic. Moreover, a similar result
holds for ‘branching’ functors — e.g., � � � � � �

�
. In this case modal operators

become indexed by ‘navigation’ paths in the structure. This link with branching-time
temporal logic is explored in [Kur98, Jac99b].

2. Processes as Codata

7. PROCESSES. This section is an attempt to apply the reasoning principles and
calculational style underlying the so-called Bird-Meertens formalism to the design,
in a coalgebraic setting, of process calculi. Processes are taken as inhabitants of
the carriers of final coalgebras, whereas process combinators arise as (coinductively
defined) morphisms to the carrier of such a coalgebra. This approach has a number of
advantages:

� First of all, it provides a uniform treatment of processes and other computa-
tional structures, e.g., data structures, both represented as categorical types
for functors capturing signatures of, respectively, observers and construc-
tors. Placing data and behaviour at a similar level conveys the idea that
process models can be chosen and specified according to a given applica-
tion area, in the same way that a suitable data structure is defined to meet a
particular engineering problem. Moreover, processes and data become ex-
pressible in programming languages supporting categorical types, such as
CHARITY [CF92], providing a convenient way to prototype processes and
compare alternative design decisions for their calculi.



98 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

� Proofs are carried out in a purely calculational (basically equational and
pointfree) style, therefore circumventing the explicit construction of bisim-
ulations used in most of the literature on process calculi. In particular, a
‘conditional fusion’ result will be proved in order to handle conditional laws.

� Finally, the approach is independent of any particular process calculus and
makes explicit the different ingredients present in the design of such cal-
culi. In particular, structural aspects of the underlying behaviour model
(e.g., dichotomies such as active vs reactive, deterministic vs nondetermin-
istic) become clearly separated from the interaction structure which defines
the synchronisation discipline.

8. PROCESS STRUCTURE. In designing a process calculus, its operational semantics
is usually given in terms of a transition relation

��	� over processes witnessing the
actions in which a process gets committed and the resulting ‘continuations’, i.e., the
behaviours subsequently exhibited. The relation is indexed by the elements � of a set� ���

of action names, usually equipped with some extra structure to support particular
interaction disciplines. For the moment, assume that actions are generated from a set
�

of labels, i.e., a set of formal names. As a rule, the
� � � �����

embedding
� � � �����

will be left implicit.
A first design decision concerns the definition of what should be understood by

the collection of ‘continuation behaviours’. As a rule this is defined as a set, in order
to express nondeterminism. Other, more restrictive, possibilities consider a sequence
or even just a single continuation, modelling, respectively, ‘ordered’ nondeterminism
or determinism. In general, all such different notions will be abstracted into a functor
� .

An orthogonal decision concerns the intended interpretation of the transition re-
lation (recall §3.6), usually left implicit or underspecified in process calculi. We may,
however, distinguish between

� An ‘active’ interpretation, in which a transition � ��	� � is informally
characterised as ‘� evolves to � by performing an action � ’, both � and �
being solely determined by � .

� A ‘reactive’ interpretation, informally reading ‘� reacts to an external stim-
ulus � by evolving to � ’.

Processes will then be taken as inhabitants of the carrier of the final coalgebra � �� � � � � , with � defined as �
� � � � � ���
	

, in the ‘active’ interpretation, and as�
�
��� 	 �����

, in the ‘reactive’ one.



2. PROCESSES AS CODATA 99

Following, along this section, the main trend in the process calculi literature, we
shall focus on the particular case where � is the finite powerset functor. We shall then
consider both

� the ‘active’ interpretation: processes are elements of the final coalgebra � �� � �
��� � ��� � � 	

, and the transition relation is defined as

� ��	� � iff 
 � 
 � � � � �

� the ‘reactive’ one, taking processes as elements of the final coalgebra � � �� � �
� � � 	 � � �

and the transition relation defined as

� �� � � iff � �
� � � � 	 �

For notation convenience, � � will be written as � , for � � � � � ��� �	�
� �

.

The first case, fully developed in the sequel, corresponds to the most common in-
terpretation of, e.g., CCS (as in, for example, [Acz93]). The ‘reactive’ case will be
mentioned only in section 4 together with some other variants to process modelling.

The restriction to the finite powerset avoids cardinality problems and assures the
existence of a final coalgebra for � . This means that, we shall be dealing only with
image-finite processes, a not too severe restriction in practice which may be partially
circumvented by a suitable definition of the structure of

�����
(§20).

9. DYNAMIC COMBINATORS. The cornerstone in designing a process calculus is
the judicious selection of a (hopefully small) set of process combinators. In [Mil89],
R. Milner classifies these into two distinct groups. The first group consists of all
combinators which persist through action, i.e., which are present before and after a
transition occurs. They are called static and used to set up process’ architectures,
specifying how their components are linked and which parts of their interface are
public or private. Dynamic combinators, on the other hand, are ‘consumed’ up on
action occurrence, disappearing from the expression representing the process con-
tinuation. In the following paragraphs the usual CCS dynamic combinators — i.e.,
inaction, prefix and nondeterministic choice — are defined as operators on the final
universe of processes considered above. Notice that, being non recursive, they have a
direct (coinductive) definition which depends solely on the chosen process structure,
as detailed in the following paragraphs.

10. INACTION. The inactive process is represented by a constant � � � � � � � �
upon

which no relevant observation can be made. Therefore, it is defined coinductively as
� ��� � � � �



100 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

11. PREFIX. The usual way of introducing extension in time in process calculi is by
prefixing processes by actions. This is captured by an

�����
-indexed family of operators

� �
� � �	� �

, for � � � ���
, defined as

� ��� � � � � � � �
�
�
� ��� �

where
�
�
� ��� � � 
 � 
 � � � .

12. CHOICE. The actions in the nondeterministic choice of two processes � and �
corresponds to the collection of all possible actions of � and � . Therefore, the choice
operator � � � � � �	� �

can only be defined in a process model in which the
observations form a collection. In particular, choice is absent in any deterministic
process calculus. For the chosen powerset functor, under the ‘active’ interpretation,
choice takes the form

� � � � �
�
� � � � 	

13. LEMMA. Structure 
 ��� � 
�� � � � is an Abelian idempotent monoid.

Proof. The equalities to be verified are stated below both as (the familiar) equations over
process variables � , � and 
 , and in an equivalent pointfree version which we shall favour in
this text:

$ � 
 � & 
 
 � � 
 $ � 
 
 & ( 
 �	$ 
 ��" � & � 
 �	$ " � � 
 & ��� (4.1)

� 
 � " � � � ( 
 �	$ " � � � " � & � � � � " �
(4.2)

� 
 � � � ( 
 ��� � " �
(4.3)

� 
 � � � 
 � ( 
 �
	 � 
 (4.4)

The verification, in each case, is a simple calculation, resorting to the corresponding properties
of set union. Moreover, finality makes � an isomorphism (§3.39) and therefore, to prove
� � � � it is enough to show that �

� � � � � � � , because

� � � � � � � �
� )�� isomorphism *

� � � � � � � � � � � � � �( )�� � � � �	� � *
� � � �



2. PROCESSES AS CODATA 101

— a fact we shall often resort to in the sequel. As an illustration, equation (4.4) is proven as
follows:

� � 
 �
	
( ) definition *

� �	$ � � � & �
	
( )�� natural *

� �
	 �	$ � � � &
( )�� commutative *

� �	$ � � � &
( ) definition *

� � 

The remaining equalities are proved in [Appendix D, page 321]. +

14. STATIC COMBINATORS. Persistence through action occurrence enforces the re-
cursive definition of static combinators. So these will arise as anamorphisms (§3.33)
generated by suitable ‘gene’ coalgebras. Again, we first consider combinators which
depend only on the process structure. This is typically the case of interleaving and
restriction.

15. INTERLEAVING. Although interleaving, a binary operator
� � � � � �	� �

, is
not considered as a combinator in most process calculi, it represents the simplest form
of ‘parallel’ aggregation in the sense that it is independent of any particular interac-
tion discipline. The following definition captures the intuition that the observations
over the interleaving of two processes correspond to all possible interleavings of the
observations of its arguments. Formally,

� � � � ��� 	 

where� �

� � � � �
//
� � � � 	 � � � � � 	

�
�

� � � � � � � � � � �
//
� ��� � ����� � 	 � � 	 � � � � ��� � ��� � � 	 	

� �
�
� �

//
��� ������� � � � � 	 	 � ��� � ����� � � � � 	 	 � //

��� � ��� � � � � � 	 	



102 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

Notice that morphisms �
� � ��� ����� � � 	 � � �	�

��� � ����� � � � � 	 	
and � �

� � ���� � ��� � � 	 �	�
��� ����� � � � � � 	 	

used in the last paragraph are, respectively, the
right and left strength associated to functor

��� ����� ����� 	
. Therefore, recalling §3.52,

�
�
� � �

��� � � � � 	 � � � and � � � � �
��� � � � �

	
� �

�

16. LEMMA. The interleaving combinator forms, together with � � � , an Abelian
monoid.

Proof. As one could expect, proofs of properties of static combinators often resort to the
anamorphism fusion law (§3.34). The proof of commutativity is carried out below, as an
example. The remaining properties in this lemma are proved in [Appendix D, page 323].
Commutativity states that ��� �'� ��� � , i.e., going pointfree, that � �
	 ��� . Now,

� � 	 ���
( ) definition *

� $ ��� & � �
	 � � $ ��� & �
� ) ana fusion (3.9) *��� �
	 � � $ " � � 	 & �����

The last equation is justified by the following calculation:��� �
	
� ) definition *

� �	$ ��� � ��� & �	$ $ � � " � & � $ " � � � & & ���1� 	
� )
	 natural *

� �	$ ��� � ��� & �	$ $ � � " � & � $ " � � � & & �	$!	 � 	 & ���
� )�� natural *

� �	$ � � � � � & �	$ 	 � 	 & �	$�$ " � � � & � $ � � " � &�& ���
� ) � functor *

� �	$ � � �
	 � � � �
	 & �	$ $ " � � � & � $ � � " � & & ���
� ) 
 � , 
 � natural (C.5) and (C.6) *

� �	$ � $ " � � 	 & � � � � � $ " � � 	 & � � � & �	$�$ " � � � & � $ � ��" � & & ���
� ) � functor *

� �	$ � $ " � � 	 & � � $ " � � 	 &�& �	$ ��� � ��� & �	$ $ " � � � & � $ � � " � &�& ���
� )�� natural *



2. PROCESSES AS CODATA 103

� $ " � � 	 & � � ��$ � � � � � & �	$ $ " � � � & � $ � � " � &�& ���
� )�� commutative *

� $ " � � 	 & � � � 	3�	$ � � � � � & �	$ $ " � � � & � $ � � " � &�& � �
� )�� natural *

� $ " � � 	 & � � ��$ ��� � � � & �	$ $ � � " � & � $ " � � � &�& �
	����
� ) routine: � � 	 � 	 *

� $ " � � 	 & � � ��$ ��� � � � & �	$ $ � � " � & � $ " � � � &�& ���
� ) definition *

� $ " � � 	 & �����
+

17. RESTRICTION. Given a subset � � �
, the restriction combinator

� � forbids the
occurrence of any actions in � . Formally,� � � � � ��� � 	 

where � � � � � � //

��� ������� � 	�� � � 4 � � // ��� � � ��� � 	

where � � � � � � � � 	 � � � � 	 � � � ���� � � .
Restriction commutes with both choice and interleaving. Later we shall see that such
results have to be weakened in the presence of interaction. Basic properties of

� �
are proved in the next two paragraphs, making use of the following immediate conse-
quence of (3.6): to prove equality

� �
	 , it is enough to show that both � � � � � �
�
�

and � � 	 � � 	 � � .

18. LEMMA. For any � � �
and � � � ���

, the interaction of restriction with choice,
prefix and interleaving is established by the following laws:� � � � � � �

� � � � � � 	 (4.5)� � � � � � �
� � � � � � 	 (4.6)� � ��� � �

�
� � � � � � � 
 � � � � � 	 (4.7)

Proof. [Appendix D, page 325]. +



104 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

19. LEMMA. For any � � �
,

� � � � � � � � (4.8)

Proof. [Appendix D, page 328].
+

20. INTERACTION STRUCTURE. Process combinators introduced so far depend
solely on the process structure, as recorded in the underlying functor. To specify
interaction, however, there is a need to introduce some structure on the set

� ���
of

actions. For this purpose, we axiomatize the interaction structure underlying a pro-
cess calculus as an Abelian positive monoid 
 � ��� ��� 
 ��� with a zero element � . It is
assumed that neither � nor � belong to the set

�
of labels. The intuition is that

�

determines the interaction discipline whereas � represents the absence of interaction:
a zero element is such that, for all � � � � �

, �
� � � � . On the other hand, a positive

monoid entails �
�
� � � � iff � � � � � � .

In some situations � may be seen as an idle action, but its role, in the general
case, is to equip the behaviour functor with a monadic structure, which would not be
the case if

�����
were defined simply as an Abelian semigroup. In summary, the role

of both � and � is essentially technical in the description of the interaction discipline.
This structure is similar to what is called a synchronisation algebra in [WN95] apart
from some minor details. In particular, Winskel synchronisation algebras carry a spe-
cific constant � to denote asynchronous occurrence and

�
does not necessarily possess

a unit. The monoid structure, however, allows for a more uniform characterisation of
behaviour models. On the other hand, the definition of parallel composition, in terms
of synchronous product and interleaving, avoids the need for � .

21. EXAMPLES. A simple example of an interaction structure captures the notion of
action co-occurrence:

�
is defined as �

� � � 
 � 
 � � , for all � 
 � � �����
different from

� and � . Action equality is defined as that of the ‘frontiers’ of
�����

terms, in order
to assure

�
associativity. A formal definition encoded in CHARITY is given in §39

below.
CCS synchronisation discipline [Mil89] provides another example. In this case

the set
�

of labels carries an involutive operation represented by an horizontal bar as
in � , for � � �

. Two actions � and � are said to be complementary. A special action,
denoted by �

�� �
, is introduced to represent the result of a synchronisation between

a pair of complementary actions. Therefore,
�

evaluates to � whenever applied to a



2. PROCESSES AS CODATA 105

pair of complementary actions and to � in all other cases (except, obviously, if one of
the arguments is � ).

Wherever specialising our constructions to the CCS case we follow the standard
notational convention under which complements are considered implicitly. In par-
ticular, the restriction combinator

� � , for � � �
is interpreted as

� � � � , where
� � � � � ��� � � . Similarly, the parameter � of a renaming (see below) specifies
only the ‘action’ part, although it is assumed that if � � � �

then � � � �
.

As a final remark, note that the structure of
� ���

my be further elaborated to in-
crease the expressiveness of the calculus. For example, one may consider actions
parametrized by data types entailing an interpretation of the elements of

�����
as chan-

nel names through which data flow, which corresponds closely to ‘CCS with value
passing’ [Mil89]. Moreover, this allows us to partially circumvent the restriction to
image finite processes, mentioned above as a basic limitation of this approach. In fact,
only the set of channels, but not that of messages (seen as pairs channel/data) arising
in any particular derivation must remain finite.

22. RENAMING. Once an interaction structure is fixed, any homomorphism � �� ��� � � �����
lifts to a renaming combinator � � 
 between processes, defined as

� � 
 � � � � � � � 	 

where

�
� � � � � � //

��� � � � � � 	 � � �
� � � �

//
��� � � � � � 	

23. LEMMA. Renaming preserves identity and composition of homomorphisms, i.e.,

� � � 
 � � � (4.9)

� � 
 � � � � 
 � � ��� � � 
 (4.10)

for any � 
 � � � � � � �	� � ���
.

Proof. [Appendix D, page 329].

+



106 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

24. LEMMA. Renaming extends along prefix and commutes with both choice and
interleaving, i.e.,

� � 
 ��� � � �
� � 	 � � � � 
 (4.11)

� � 
 � � � � � � � � 
 � � � 
 	 (4.12)

� � 
 � � � �
�
� � � 
 � � � 
 	 (4.13)

for any � � � ��� �	� �����
, � � � ���

.

Proof. [Appendix D, page 330]. +

25. CONDITIONAL LAWS. Some process equalities hold only if some ‘side condi-
tions’ are fulfilled. Let us study how such laws are handled in this framework, starting
from a very simple example. Let � � � � � � � stand for the substitution of � by

�
, i.e.,

a homomorphism over
�����

which is the identity in all actions but � . In several cases,
but not in all, renaming with � has no effect. Can this be expressed by a general law?
A simple calculation yields

� � � � " �
( ) renaming definition and ana reflection (3.8) *

� $ � � � � & � � � $ � & �
� ) ana fusion (3.9) and identity *� � � � � �

Intuitively, the last equality holds for � � � � � � � only if � does not show up as
an action in the immediate continuations of the process. This condition is formally
expressed by the following predicate:

� � � � � � � 

�
�
� � � 
 � � � � � � �

Note, however, that
�

is stated as a local condition on the immediate continuations of
any process candidate to satisfy the given equality. Therefore, it cannot be directly
taken as a sufficient condition for � � 
 � � � . In fact, to proceed, predicate

�
has to be

made into a � -invariant in the sense of §5. This is justified by the following lemma.

26. LEMMA. Let
�

and � be � -coalgebras and
�

a predicate on the carrier of � . Then
the following ‘conditional’ fusion law holds� �

�
� �
�
� � � � ��� 	 	 �

�
��� �

�
� � � � 	 
 � � � � � � � 	 
 � 	 	 (4.14)



2. PROCESSES AS CODATA 107

Proof. Let � be the carrier of � and
	��

the embedding of the subset of � classified by
�

, i.e.,��� 	�� � ��� ��� ��� . Recall that any � -invariant
�

induces a subcoalgebra � � . Consequently,
		�

becomes a comorphism from � � to � . Then
� � $ � � � � � � � � &

( )�

� definition *� � � ��	�� � � � � � ��	��
� )���������� *� � � ��	���� � � � � � � ��	���� �
( )�
�� � � is a comorphism from � � to ��*

� � � ��	���� � � � � � � 	���� � � � �
( )�� functor *

� � � ��	���� � � � $ � ��	���� � & � � �
� ) ana fusion (3.9) *

� $ � & � � � � ��	���� � � � $ � � & � �
( )�
 � � � being a comorphism implies � ��� � �  � � � ��� �  � � 
 � � � *

� $ � & � � � � ��	���� � � � $ � & � � ��	���� �
( )�

� definition *!#" � � $�� $ � & � � � � � � $ � & � � &

The proof still works if
!$" �

is replaced by any other � -invariant contained in
�

. As
!%" �

is
the greatest such invariant, it provides the most ‘generous’ condition. +

27. UNFOLDING � � �
. Applying the previous lemma to the example of §25, leads

to � � � � � ��
 � � � � � �

�

for
� � � � � � � 


�
�
� � � 
 � ��� � � � � . Recall from §5 that � �

�
is defined as the greatest

fixpoint of &
� � � � � � �

� �
Looking at predicates as sets,

&
is a function over a complete lattice — 


� � 
 � � —
whose monotony is easily proved by induction on the functor structure. Therefore,
a concrete representation for � �

�
can be computed by the Knaster-Tarski theorem



108 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

[Tar55] as the union of all post-fixpoints of
&

, i.e.,

� �

� ��� � 	 �
� � � 	 � � � �

�
	 �

Being a post-fixpoint means that, for each 	 above and any process � ,
� � 	 � � � � � � � �

�
	

� � � � � � � � � � � � � � �
� 	 	 � � � � � � _ � �

� � � � � � � � � � � � � � � � � �
��� ����� � � 	 � � � � � � � � � �

� � �
�

� �
� 	 	 ����� � _ ���

� � � � � � � � � � � � � � � � � �
��� ����� � � 	 � � � � � � � � � �

� � �
� �
� � � 	 ���

� � � � � � � � � � � �
� �

��� � � 	 � � 	 �

Seen as a set, predicate
�

is given by
� ��� � � � �

� �
� � � � 	 � � � ��� � ��� . Therefore,

� �

� � � � 	 �
� � � � � � � � � � 	 �

� � �
�
� � � 	 � � � � � � � 	 �

� � �
��� � � 	 � � 	 	 	 �

In words, this is the set of all processes whose derivations never exhibit action � . Also
notice our attention can be restricted to actions embedded from

�
. In fact, as � is, by

definition, a homomorphism in
�����

, it is necessarily the identity on � , � or any other
‘special’ action introduced as a constant in

� ���
.

In CCS, the set of all labels (seen as actions) in which a process � can commit
itself, i.e., that appear in at least one derivation of � , is called the sort of � and denoted
by � � � 	 . [Mil89] provides a syntactic criterion to compute a majoring approximation
of � � � 	 by induction on the process expression. A semantic definition can, however,
be given as � � � 	 � �

� � � � � � � � ��� � � ��� � � �
�
� 	 �
�
�

� �
�

where � � � � � is as defined in §17 and, again, the embedding of
�

in
� � �

is left implicit.
The law under study may then be rewritten as

� � � � � ��
 � � � � �� � ���
where

�� � is defined as
�
� � �

�� � . Going pointwise we end up with the familiar
CCS law � � � � � � ��
 � � � � 
 � ���� � � 	 (by convention, the parameter of the CCS

renaming operator represents ‘coactions’ implicitly, cf. §21).

28. PRODUCT. This paragraph introduces another static process combinator, synchro-
nous product, which corresponds to the simultaneous execution of two processes. In
each step, the resulting action is determined by the interaction structure for the calcu-
lus. Formally,

� � � � ��� 	 




2. PROCESSES AS CODATA 109

where ���
� � � � �

�

�
� �
//
��� ������� � 	 � ��� ����� � � 	 � � //

��� ������� � � � � 	 	 0 4 �

//
��� ����� � � � � � 	 	

This definition involves the distribution law for strong monads (§A.10) and �
��� �

� � � � ��� ��� , which filters out all synchronisation failures (recall � is the zero element of
the interaction structure, representing absence of synchronisation).

29. REMARK. In the definition above, interaction is catered by
� �

— the distributive
law for the strong monad

��� ������� ��� 	
(see §A.10). In fact, the monoidal structure in� ���

adopted in §20 extends functor
��� � � � ����� 	

to a strong monad. Moreover, as
�

is commutative, so is the resulting monad. This makes it irrelevant to choose
� �

or
its left version

�
� in the definition of � . Recall, from appendix A, that

� �
amounts to

the composition of the left and the right strengths in the correspondent Kleisli cate-
gory. On its turn, Kleisli composition (§A.7) involves the application of the monad
multiplication � to ‘flatten’ the result. For a monoid monad, this requires the suit-
able application of the underlying monoidal operation, which, in our case, fixes the
interaction discipline. To make the point clear, let us explicitly describe

� �
for this

monad. ��� #%$	��
 �
� � (�

� )�� � definition *
�
� #%$	��
 �
� � (� � �

� #%$	��
 �
� ��(�
� ) 
 definition *

�
� #%$	��
 �
� � ( � � $ " � � �

� #%$	��
 ��� ��(� & � �
� #%$	��
 ��� ��(�

� )�� for � ������� � � � � *
� �

#%$	��
 ��� ��( � �
� � � �

�
� � � $ " � � �

� # $	��
 ��� � (� & � �
� # $	��
 ��� � (�

� )�� for ������� � � � � *
� $ $�� ��" � & ��� � & � �

� � � �
�
� � � $ 
�� � � �

� # $	��
 ��� � (� & � �
� # $	��
 ��� � (�

� )�� � natural and definition *� � � $ � $ $�� � " � & ��� � & � �
�
� & � � $ 
�� � � �

� #%$	��
 ��� ��(� & � �
� #%$	��
 ��� ��(�

i.e., going pointwise,
�
� ����� � � �

�
�� 
 � ��
 � ��� � ��
 � � � � 
 
 � 
 � � � � � 
 � 
 � � � �

� � 
 � � 
 � � � � �
� �



110 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

30. LEMMA. Synchronous product is commutative, associative and has � � � as a zero
element, i.e.,

� � � � � (4.15)

� �
�
�
� � � 	 � � �

� � � � � 	 � � (4.16)

� �
� � ��� � � � 	 � � � � � � � � * (4.17)

Proof. [Appendix D, page 333]. +

31. LEMMA. Synchronous product distributes over choice and, conditionally, over
restriction and renaming, i.e., for any � � �

and renaming homomorphism � ,

� �
� � � � � 	 � � � � � �

�
	
� � � � (4.18)� � � � � � �

� � � � � � 	 � � � � ��� � � _ �
�
�
�

� � � � � ��� (4.19)

� � 
 � � � � � � � � 
 � � � 
 	 � � ��� _ ��� � � � � � � _ �
� � � � ��� � (4.20)

where � � �
� � � � � � � 	 � � �

� � � 	 � � � � � 	 abbreviates 
 � ��� � � 
 � � � ��� � .
The first law, which going pointwise reads

� �
�
� � � 	 �

�
� � � 	 �

�
� � � 	

is characteristic of the synchronous product but (obviously) fails for interleaving. So
it does not generalise to the usual parallel composition found in process calculi.

Proof. We shall prove (4.19) below, as an example of how the side condition is derived from
the proof of a conditional law. The remaining cases are proved in [Appendix D, page 336].
We begin by unfolding expression � ��� �	$��

�
� �

�
&
:

� ��� �	$��
�
� �

�
&

� ) comorphism *
� $ " � � � & ����� �	$��

�
� �

�
&

� ) � definition *
� $ " � � � & �
	 � � �

�
� �	$ � � � & �	$��

�
� �

�
&

� ) � functor *
� $ " � � � & �
	 � � �

�
� �	$ � ���

�
� � ���

�
&

� ) comorphism *
� $ " � � � & �
	 � � �

�
� �	$ � $ " � � �

�
& �����	� & � $ � $ " � � �

�
& ���
�	� &



2. PROCESSES AS CODATA 111

� ) � functor *
� $ " � � � & �
	 � � �

�
� �	$ � $ " � � �

�
& � � $ " � � �

�
& & �	$ ���	� � �
� � &

� )�� � natural *
� $ " � � � & �
	 � � � � $ " � � $�� �

� �
�
&�& � � � �	$ ��� � � �
� � &

� )�� 
	� � � � � 
������	� and
� � � 
�� natural *

� $ " � � � & � � $ " � � $��
�
� �

�
& & �
	 � � �

�
� �	$ ���	� � �
�	� &

� ) � functor *
� $ " � � � �	$��

�
� �

�
&�& �
	 � � �

�
� �	$ �
�	� � ���	� &

Next a similar calculation is done for �
� �
�
� �

, trying to arrive to an expression
� $ " � � $��

�
��� & & �

�
, with

� � 	 � � �
�
� �	$ ���	� � �
�	� & as above.

� ���
�
���

� ) comorphism *
� $ " � � �

�
& ����� � ���

� ) ��
 � definition *
� $ " � � �

�
& �
� � � � � �

� � ���
� ) comorphism *

� $ " � � �
�
& �
� � � � � �

� � $ " � � � & �����
� ) ��� definition *

� $ " � � �
�
& �
� � � � � �

� � $ " � � � & �
	 � � �
�
� �	$ � � � &

� ) � � � 
�� � natural *
� $ " � � �

�
& � � $ " � � � & �
� � � � � �

�
	 � � �
�
� �	$ � � � &

�� )�� *
� $ " � � �

�
& � � $ " � � � & �
	 � � �

�
� ��$�� � � � � � �

� � � � � � &
�	$ � � � &

� ) � functor *
� $ " � � $��

�
��� & & �
	 � � �

�
� �	$�� � � � � �

� � � � � � � � �
� � &

� ) ��
 � definition *
� $ " � � $��

�
��� & & �
	 � � �

�
� �	$ ��� � � �
� � &

We have succeeded only partially: the step marked with a � does not hold universally. We are
left with the task of establishing under what conditions, if any, the following equality holds:

� � � � � �
�
	 � � �

�
� � 	 � � �

�
� �	$�� � � � � �

� � � � � � �
&



112 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

Unfolding definitions and going pointwise for a while, we get
$ � � � � � �

�
	 � � �
�
� & � � � 
 � � 
 �

� $�� � � � � �
�
	 � � & ) � � � � � 
 � � 
 � � 
�
�� 
 � � � $ � � � & � � � 
 � 
 � � � � � � � 
 � � 
 � � � *

� � � � � � � ) � � �
� � 
 � � 
 � � 
�
 � 
�� � � $ � � � & � � � 
 � 
 � � � � � � � 
 � � 
�� � � � � � � �������*

� ) � � � � � 
 � � 
 � � 
�
 � � � 
 � 
 � � � � � � � 
 � � 
 � � � � � � � ������ � � � � �	�� � *

On the other hand,
$ 	 � � �

�
� �	$�� � � � � �

� � � � � � �
& & � � � 
 � � 
 �

� $!	 � � �
�
� & � ) � � 
 � 
 � � � � �
�� � * 
 ) � � � 
 � � 
 � � � � � � �� � * 


� 	 � � ) � � � � � 
 � � 
 � � 
 
 � 
�� � � $ � � � & � � � 
 � 
 � � � � � � � 
 � � 
 � � � � �
�� � � � � �� � *
� ) � � � � � 
 � � 
 � � 
�
 � � � 
 � 
 � � � � � � � 
 � � 
 � � � � ���� � � � � �� � � � � � �������*

Clearly the two sets can be identified iff, for all possible � and � � , such that � � � �
���� ,� � � ���� � ( ���� � � � � �� �
. Therefore, step � is only possible if the expression scope is

restricted to pairs of processes satisfying the following predicate:
� � � 
 � 
 � ��� � # � � � � � ( � !

� � � #
�
� � � � ( � 
 � � � � ���� � $ � � � � �� � ( ���� � � � � �� � &

which is lifted to the invariant

�	� " ��� ��� _ � � 	 ��� " � � " � � � !
�
�

+
In §36 we investigate the implication of this invariant for particular interaction struc-
tures such as those of CCS and CSP.

32. PARALLEL. Let us finally address the parallel composition process combinator.
This is defined operationally in CCS by the following inference rules:

� �� � � �
� � � �� � � � � �

� �� � � �
� � � �� � � � � �

� �� � � � � ��	� � �
� � � �

�	� � � � � �

This definition conveys the intuition that the evolution of � � � consists of all possible
derivations of � and � plus the ones associated to the synchronisations allowed by
the particular interaction structure for CCS, as described in §21. In general, parallel
composition can be expressed in terms of interleaving and synchronous product, the
last being, as discussed above, suitably parametrized by the interaction structure. The



2. PROCESSES AS CODATA 113

required combination of
�

and � is ‘genetic’ in the sense that is performed at the level
of the ‘genes’ for

�
and � , as follows:

� � � � ��� 	 

where

� �
� � � � �

//
� � � � 	 � � � � � 	 �

��� � � � �
//

��� ������� � � � � 	 	 � ��� � � ��� � � � � 	 	 � //
��� ������� � � � � 	 	

33. PARALLEL LAWS. As expected, parallel composition shares some properties
with both

�
and � . In particular, it gives rise, with � � � , to an Abelian monoid and

distributes along renaming and restriction in certain cases. On the other hand, it lacks
a zero element and does not distribute through choice. We focus our attention below
to the proof of two of these properties: commutativity and (conditional) distribution
through restriction. In both cases, the ‘re-use’ of the proofs of the corresponding
results for

�
and � will be emphasised.

34. LEMMA. Parallel composition is commutative, i.e., � � � � � .
Proof.

� ��	 � �
( )�� definition *

� $ ��� & � �
	 � � $ ��� & �
� ) ana fusion (3.9) *�����
	 � � $ " � � 	 & �����

and the last equation holds because��� �
	
� )��
	 definition *

� �	$ ��� � �
� & ���1� 	
� )
	 natural *

� �	$ ��� � �
� & �	$ 	 � 	 & � �
� ) reusing � � � � � � � � � � � � � � � and � � � � � � � � � � � � � � �



114 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

from proofs of §16 and (4.15) in §30 *
� �	$ � $ " � � 	 & ��� � � � $ " � � 	 & ��� � & ���

� ) � functor and � natural *
� $ " � � 	 & � � �	$ � � � ��� & ���

� )�� 	 definition *
� $ " � � 	 & �����

+

35. LEMMA. Parallel composition interacts with restriction according to� � � � � � �
� � � � � � 	 � � � � ��� � � _ �

�
�
�

� � � � � ��� �
for any � � �

.

Proof. As usual, we try to equate the composites of � with both sides of the equation to
identify a common coalgebra

� � . Notice that a similar argument has been used in previous
paragraphs to show a similar result about � and

�
. Thus,

� � � �	$��
�
� �

�
&

� ) comorphism *
� $ " � ��� & ����� �	$��

�
� �

�
&

� )��
	 definition *
� $ " � ��� & � � �	$ ��� � �
� & ���1�%$��

�
� �

�
&

� ) reusing proofs of (4.6) (§18) and (4.19) (§31) *
� $ " � ��� & � � �
$ $ � $ " � � $��

�
� �

�
& & � � �	$ ��� � � � & �	$ $ ���	� ��" � & � $ " � � �
� � & & ��� &

�
$ � $ " � � $��

�
� �

�
&�& �
	 � � �

�
� �	$ �
�	� ���
� � &�&

���
� )�� naturality *

� $ " � ��� & � � $ " � � $��
�
� �

�
& & � �

$ $ � �	$ � � � � � & �	$�$ �
� � � " � & � $ " � � �
� � &�& ��� &
�

	 � � �
�
� �	$ �
� � �����	� & &



2. PROCESSES AS CODATA 115

���
� ) functors *

� $ " � ��� �	$��
�
� �

�
&�& � �

$ $ � �	$ ��� � � � & �	$�$ �
� � � " � & � $ " � � �
�	� &�& ��� &
�

	 � � �
�
� �	$ �
� � �����	� & &

���
On the other hand,

� ���
�
� �

� ) comorphism *
� $ " � � �

�
& ���
�	� � �

� )�� 
 � definition *
� $ " � � �

�
& �
� � � � � �

� � � �
� ) comorphism *

� $ " � � �
�
& �
� � � � � �

� � $ " � ��� & �����
� )��
	 definition *

� $ " � � �
�
& �
� � � � � �

� � $ " � ��� & � � �	$ ��� � �
� & ���
� ) � � � 
�� � natural *

� $ " � � �
�
& � � $ " � � � & �
� � � � � �

� � �	$ ��� � �
� & ���
� )�� natural and � functor *

� $ " � � $��
�
� � & & � � �	$�� � � � � �

� � � � � � �
& �	$ ��� � � � & ���

� ) � functor *
� $ " � � $��

�
� � & & � � �	$�� � � � � �

����� � � � � � � �
���
� & ���

� ) reusing proofs of (4.6) (§18) and (4.19) (§31) *
� $ " � � $��

�
� � & � � �

$ $ � �	$ ��� � � � & �	$�$ �
� � � " � & � $ " � � �
�	� &�& ��� &
�

	 � � �
�
� �	$ �
� � � �
�	� &�&

���
At this point a common coalgebra has been identified:� � � � �	$ $ � �	$ ��� � � � & �	$�$ �
�	� � " � & � $ " � � �
�	� &�& ��� & � 	 � � �

�
� �	$ �
�	� � ���	� & & ���



116 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

and, thus, we are almost ready to conclude. However, it has to be remarked that, on reusing
the proof of (4.19) in the last step of this derivation, we must also take into account the
predicate which constrains the substitution made. Clearly, the same predicate

�
derived in §31

is again the local condition requested to validate the derivation here. We may then conclude
the validity of the law, subject to the restriction given by

��� " ��� � � _ � � 	 ��� " � � " � ��� � !
� � �

+

36. We may now ask what form invariants � � � ��� � � _ �
�
�
�

� � � � � ��� and � � � � � � � _ �
�
�
�

� � � � � ��� �
take given a particular interaction structure. For example

�
has only three possible re-

sults under CCS’s interaction discipline — � , � and � — and so the result of
�

never
belongs to

�
. Therefore, as � � �

, condition � �
�
�
�� � holds and

�
becomes

� ��� � � ��� � � �
�
� � � � � � � � � � �

�
� �

�
� ���� � � �

�
� �
�� � � �

�� � � � �
�� �

� � CCS interaction structure �
� ��� � � ��� � � �

�
� � � � � � � � � � �

�
�
�
�
�
� � � �



�
�
� � � �

	
� �

�� � � � �
�� �

� ������� � ��� iff � � � � ��� �
� ��� � � ��� � � �

�
� � � � � � � � � � �

�
� �

�
� � � � � �

�� � � � �
�� �

� ������� � � 
 iff � � � � �
� ��� � � ��� � � �

�
� � � � � � � � � � �

�
� � � � � � �

�� � � �
�� �

� � rearranging �� �
�
� � � 	 � �

� �
�
� � � 	 � �

�
� � � 	 � �

where the overbar notation stands here for the lifting of the involutive CCS comple-
ment operation to sets of actions.

Another question concerns the relation between � � � � � � � _ �
�
�
�

� � � � � ��� � and the pred-
icate � � � ��� � � _ �

�
�
�

� � � � � ��� arising in the proof of a similar law for � in §31. Although
both of them are defined after the same local condition

�
, they stand for closures

under different coalgebras and are, consequently, distinct predicates. Formally,

� � � ��� � � _ �
�
�
�

� � � � � ��� � � � � for
�
� �

���
�

� �
�
� � � � � � � � 	

� � � ��� � � _ �
�
�
�

� � � � � ��� � � � � �
�

for
�
� ��

�
� � �
�
�

�
� �

� �
	
�
� � ��� � � � � 	 � � � ��� � � � 	 	 � � 	 � � ��� � � �

�
� ��� � � � � � 	 	 � �



2. PROCESSES AS CODATA 117

In fact, the number of derivations that have to be considered under
�

is much greater
in the second case. In particular, � � � ��� � � _ �

�
�
�

� � � � � ��� does not consider configura-
tions representing interleavings. For example, if one of the processes exhausts after
� steps, the condition on the actions is not required to hold after that. On the other
hand, in � � � ��� � � _ �

�
�
�

� � � � � ����� , �
is closed wrt the transitions on

�
� , which include

both interleavings and synchronisations. Therefore, and recalling the notion of sort,
we conclude that � � � � � � � _ �

�
�
�

� � � � � ��� � � � � � 	 � � � � 	 � � � � � 	 � � arriving to
the familiar CCS presentation of this result:�

� � � 	 � � � � � � � � � � � � � � 	 � � � � 	 � � � � � 	 � �
This reasoning illustrates the claim that our approach to process calculi allows

us to ‘discover’ the appropriate restriction a law is constrained by, instead of ‘postu-
lating’ it and verifying its suitability. It also makes explicit that such conditions are
essentially dependent only on the calculus underlying interaction structure. Consider,
for example, what would happen to the law at hands should a CSP-like interaction dis-
cipline be adopted instead. In CSP [Hoa85] only equally named actions synchronise,
leading to the following definition of

�
:

�
�
� � � , �

� � � � �
� � � and �

� � � � in all other cases

Therefore, condition �
�
� � �� � �

�
�

�
� �
�� � � �

�� � � � �
�� � 	

becomes
trivially true and the law holds without any side condition.

37. ANOTHER EXAMPLE. Another example involving the derivation of side con-
ditions appeared in the proof of (4.20) in §31. The situation is similar to the one
discussed above as a similar result can be stated for � and the required condition re-
sults again from the same local condition

� 
 � 
 � � � � ��� � �
�
� � � �
�
� � � � � �
�
� � � �
�
� �

�
� ���� ��� � � � � � � �� �

Let us briefly examine its form under the CCS interaction discipline. In such a setting,
�
�
� � �� � implies that �

�
� � � � or �

�
� � � � . Hence, when does the equivalence

�
�
� � �� �
� � � � � � � �� � hold? Clearly, the implication from left to right holds

trivially because � is a homomorphism on the interaction structure:

�
�
� � � �

� � Leibniz ( � stands for either � or 
 ) �
�
�
�
�
� �
	 � � �

� ��� is an ����� -homomorphism �
� � � � � � � �



118 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

The implication in the opposite direction, however, reads

� � � � � � � � � �
�
� � � �

which, � being an
� ���

-homomorphism, is equivalent to

�
�
�
�
� �
	 � � � � �

�
� � � �

again for � standing for either � or � . This holds only if � is mono. Thus, for the CCS

case, the generated invariant — � ��� _ ��� � � � � � � _ �
� � � � � � � — requires the injectivity

of � or, at least, of its restriction to the relevant process sorts. The resulting law is
usually written in CCS as follows:�

� � � 	 � � 
 � � � � 
 � � � � 
 � � restricted to � � � � � 	 � � � � � � 	 is mono

3. Prototyping Processes

38. PROCESS STRUCTURE. One advantage of thinking about processes as inhab-
itants of (coinductive) types is the possibility of developing prototypes for process
calculi in functional languages supporting such types. Once a prototype implementa-
tion of a particular calculus is developed, processes can be defined in the language and
their execution traced. Of course prototyping is not a formal proof procedure. How-
ever, experiments can be carried out within the calculus which allow the experimenter
to observe processes’ evolution and eventually to assess different design decisions.

In this section the process combinators defined earlier in this chapter are presented
as CHARITY programs. The reader is referred to appendix E for an introduction to the
language. The direct correspondence between the formal definitions and the CHARI-
TY code makes detailed explanations of the prototypes unnecessary. Just notice that
some ‘housekeeping’ morphisms, like � or

�
used earlier on, are more conveniently

handled by the CHARITY term logic.
Our starting point is the following declaration of a process space as the coinduc-

tive type Pr(A), parametrized by a specification A of the interaction structure. In
CHARITY,

data C -> Pr(A) = bh: C -> set(A * C).

The following paragraphs provide two possible specifications of the interaction dis-
cipline followed by an encoding of the process combinators introduced earlier on.
Finally, from §44 onwards, we introduce a term language for processes and show
how an interpreter for it can be easily derived by resorting, again, to universal con-
structions.



3. PROTOTYPING PROCESSES 119

39. INTERACTION STRUCTURES. As discussed in §8 and 20, interaction structures
are parametrized by a set

�
of labels. Therefore, for each process calculus, actions

over
�

are introduced as an inductive type Ac(L) upon which an equality function
and a product

�
are defined. Two interaction structures are defined below, corre-

sponding to the examples in §21. In the first case the product of two actions a and
b, different from � and � , corresponds to their co-occurrence and is represented by
syn(a,b). The second case, on the other hand, captures CCS interaction discipline.

CO-OCCURRENCE. In this case no special structure is assumed on the set of labels
L. The type of actions, parametric on L, is therefore defined inductively as follows

data Ac(L) -> A =
act: L -> A | syn: A * A -> A | nop: 1 -> A | idle: 1 -> A.

The embedding of labels into actions is explicitly represented by constructor act.
The distinguished actions � and � are denoted by nop and idle, respectively. The
specification is complete with a definition of action product

�
, encoded below as func-

tion prodAc, and an equality predicate eqA on actions, both parametric on L. The
actual CHARITY code for

�
is as follows,

def prodAc : Ac(L) * Ac(L) -> Ac(L)
= (nop, _ ) => nop | (_ ,nop) => nop | (idle, x) => x
| (x ,idle) => x | (a1, a2) => syn(a1, a2).

Comparing two actions amounts to compute the ‘contour’ of the trees representing the
corresponding terms, as mentioned in §21. Such a function is, of course, a Ac(L)
catamorphism. Thus,

def eqA{eqL: L * L -> bool} : Act(L) * Act(L) -> bool
= (a1, a2) => eq_list{eqL} (contour a1, contour a2).

def contour: Act(L) -> list(L)
= a => {| nop: () => [nop] | idle: () => [idle]

| act: l => [l]
| syn: (x,y) => append (x,y)
|} a.

CCS. The specification of an interaction structure for CCS requires the introduction
of the involutive complement operation on labels. Thus,



120 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

data Lb(N) -> I = name: N -> I | inv: I -> I.

def eqL{eqN: N * N -> bool} : Lb(N) * Lb(N) -> bool
= (name(m), name(n)) => eqN(m,n)
| (inv(name(m)), inv(name(n))) => eqN(m,n)
| _ => false.

Then the algebra of actions is defined as

data Ac(L) -> A =
act: L -> A | tau: 1 -> A | nop: 1 -> A | idle: 1 -> A.

together with

def eqA{eqL: L * L -> bool} : Ac(L) * Ac(L) ->bool
= (act(l), act(k)) => eqL(l,k)
| (tau, tau) => true
| (nop, nop) => true
| (idle, idle) => true
| _ => false.

def prodAc{eqL: Lb(N) * Lb(N) -> bool} :
Ac(Lb(N)) * Ac(Lb(N)) -> Ac(Lb(N))

= (act(l), act(k)) => { true => tau | false => nop }
or(eqL(l,inv(k)), eqL(inv(l),k))

| (idle, x) => x
| (x, idle) => x
| _ => nop.

40. DYNAMIC COMBINATORS. The next step is the introduction of the three dy-
namic combinators, inaction, prefix and choice. Their formal definitions (in §10, §11
and §12) are directly translated to CHARITY, originating functions bnil, bpre and
bcho, respectively.

def bnil: 1 -> Pr(A)
= () => (bh: empty).

def bpre: A * Pr(A) -> Pr(A)
= (a, t) => (bh: sing(a,t)).

def bcho: Pr(A) * Pr(A) -> Pr(A)
= (t1, t2) => (bh: union(bh t1, bh t2)).



3. PROTOTYPING PROCESSES 121

41. STATIC COMBINATORS. Also in this case the formal definitions are directly
translated to the prototyping language. Compare, for example, function bint below
with the definition of interleaving given in §15.

def bint: Pr(Ac(L)) * Pr(Ac(L)) -> Pr(Ac(L))
= (t1, t2) =>
(| (r1,r2) => bh:

union(taur(bh r1, r2), taul(bh r2, r1))
|) (t1,t2).

where auxiliary functions taur and taul encode the right and left strengths, �
�

and
� � , associated to the functor representing the process structure:

def taur: set(Ac(L) * B) * B -> set(Ac(L) * (B * B))
= (s,t) => set{(a,x) => (a, (x,t))} s.

def taul: set(Ac(L) * B) * B -> set(Ac(L) * (B * B))
= (s,t) => set{(a,x) => (a, (t,x))} s.

Similarly, renaming and restriction are encoded below as functions bren and bret,
respectively. For convenience, the renaming homomorphism is represented as a map-
ping of type map(Ac(Lb(N)),Ac(Lb(N))). Of course, this extends to a homo-
morphism by completing with the identity.

def bren{eqL: Lb(N) * Lb(N) -> bool}:
Pr(Ac(Lb(N))) * map(Ac(Lb(N)),Ac(Lb(N)))
-> Pr(Ac(Lb(N)))

= (t, h) =>
(| r => bh:
set{x => { ff => x

| ss a => (a, p1 x)
} app{eqA{eqL}}(compren h, p0 x)} (bh r)

|) t.

def bret{eqL: Lb(N) * Lb(N) -> bool}:
Pr(Ac(Lb(N))) * set(Lb(N))
-> Pr(Ac(Lb(N)))

= (t, k) =>
(| r => bh:

filter{x => not member{eqA{eqL}}(p0 x, compret k)}
(bh r)

|) t.

It remains to explain the meaning of functions compret and compren. First of all,
note that the restriction set � of labels has to be extended to a set of actions, by appli-
cation of the embedding act, before being used in bret. Additionally, it may also



122 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

be ‘completed’ in order to cope with some syntactic conventions appearing in particu-
lar calculi. For example, to model CCS, it becomes necessary to close � with respect
to label complement (i.e., constructor inv in the CCS label algebra implementation
given above). Both tasks are achieved by the function compret, which should be
tuned to the syntactic particularities of the calculus considered. For the CCS example,
it will look like

def compret: set(Lb(N)) -> set(Ac(Lb(N)))
= s =>
union( set{l => act(l)} s, set{l => act(inv(l))} s ).

Function compren, in the specification of bren, does a similar completion of the
renaming homomorphism.

Finally, we consider prototyping synchronous product and parallel. Again the
resulting CHARITY functions, bsyn and bpar, follow closely the formal definitions.

def bsyn{eqL: Lb(N) * Lb(N) -> bool}:
Pr(Ac(Lb(N))) * Pr(Ac(Lb(N))) -> Pr(Ac(Lb(N)))

= (t1, t2) =>
(| (r1,r2) =>

bh: sel{eqL} deltar{eqL} (bh r1, bh r2)
|) (t1,t2).

def bpar{eqL: Lb(N) * Lb(N) -> bool}:
Pr(Ac(Lb(N))) * Pr(Ac(Lb(N))) -> Pr(Ac(Lb(N)))

= (t1, t2) =>
(| (r1,r2) =>

bh: union( sel{eqL} deltar{eqL} (bh r1, bh r2),
union(taur(bh r1, r2), taul(bh r2, r1)) )

|) (t1,t2).

where deltar and sel, implementing morphisms
� �

and �
���

, respectively, are de-
fined as follows:

def sel{eqL: L * L -> bool}:
set(Ac(L) * (B * B)) -> set(Ac(L) * (B * B))

= s => filter{x => not eqA{eqL}(p0 x, nop)} s.

def deltar{eql: Lb(N) * Lb(N) -> bool}:
set(Ac(Lb(N)) * B) * set(Ac(Lb(N)) * B)
-> set(Ac(Lb(N)) * (B * B))

= (l1, l2) =>
set{(x,y) => (prodAc{eql}(p0 x, p0 y), (p1 x, p1 y))}

(flatten set{ x => set{ y => (x,y) } l2 } l1).



3. PROTOTYPING PROCESSES 123

42. ANIMATING PROCESSES. Once the specifications of process combinators have
been translated into CHARITY, a functional implementation of a (family of) of calculi
becomes available in which experiments can be carried out. By an experiment we
mean that a process expression is supplied to the system and its evolution traced. In
fact, all the allowed derivations are computed step by step, resorting to the evaluation
mechanism of CHARITY (§E.5) for coinductive types. Animating processes is not
essentially different from animating data oriented specifications in any of the rapid
prototyping systems popular among the formal methods community, apart from the
underlying shift to a coinductive setting. As a small example, consider the following
CCS expression: �

� �
�
� � � � � � 	 � ��� �

which is represented in the prototype by

bret{eqL{eq_string}}(
bpar{eqL{eq_string}}
(bpre(act(name("a")), bpre(act(name("b")), bnil)),
bpre(act(inv(name("b"))), bnil)), [name("b")]).

The notation is a bit verbose, namely because of parameterization requirements and
the fact that all the embeddings (of identifiers into labels, through name, and of labels
into actions, through act) are made explicit. In any case, at the level of a ‘proof-of-
concept’, expressiveness, and not notation, is the key issue. CHARITY’s evaluation
of this expression is completed in three steps, as shown below. In each of them,
the immediate derivatives of the process are computed, so that a progressively more
complete picture of the derivation tree is revealed. The overall evaluation process is
driven by the user, who can decide, at each derivation step, to pursue or stop execution:

(bh: ...)
Right display mode:
(q - quit, return - more) >>

(bh: [(act(name("a")), (bh: ...))])
Right display mode:
(q - quit, return - more) >>

(bh: [(act(name("a")), (bh: [(tau, (bh: ...))]))])
Right display mode:
(q - quit, return - more) >>

(bh: [(act(name("a")), (bh: [(tau, (bh: []))]))])
: Pr(Ac(Lb(list(char))))



124 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

As the process denoted by this expression is finite, evaluation eventually terminates,
the result of the last step representing the complete tree. Finite behaviour is, however,
the exception, rather than the rule, in concurrent systems. But how can infinite be-
haviour be represented (and animated) in this setting? Such is the motivation for the
following paragraphs.

43. RECURSIVE PROCESSES. As mentioned above, we have not yet any way of
prototyping recursive processes, unless the dynamics of each particular example is
supplied as a particular ‘gene’ coalgebra. This is, of course, an unsatisfactory solu-
tion.

The obvious way to deal with recursive processes in general consists of defining a
language whose terms stand for process expressions, including a construction involv-
ing process variables as valid terms. Such variables should be bounded, in whatever
one may take as the interpreter environment, by process equations of the form

� � 
 � �

where
�

is a variable and 
 � � a process expression. We have, however, to proceed
with some care as it is well-known that not all defining equations determine process
behaviour in an unique way. For example, any process is a solution to

� � �
and

equations like
� � � � � admit different, non bisimilar, solutions. One way of ensuring

the existence of unique solutions, is to require that all variables occurring on the right
hand side of an equation are guarded, in the sense that they are bounded by a prefix
combinator. This has been proved in [Mil89] to be a sound criteria for the existence of
unique solutions to (what is referred there as) strict bisimulation equations. Recall that
this corresponds to equality in the final coalgebra. In fact, in [Mil89], guardedness is
only required for variables wrt expressions in which they occurred. The extension, as-
sumed hereafter, of this requirement to all variables in an expression does not appear
to be a major restriction, while facilitating the development of the interpreter. There-
fore, we shall consider in the process language a prefix-like construction — pvar —
to introduce (guarded) variables in an expression.

Summing up we are left with the tasks of defining a term language for processes,
its interpretation in the (final) semantic model and a suitable representation of an
environment collecting the relevant process defining equations. Let us tackle these
requirements one at a time.

44. A PROCESS LANGUAGE. As expected, a term language for processes, over
a set L of labels, is defined as an inductive type. The CHARITY declaration below
introduces Ln(L) as the initial algebra for a functor � induced by the following



3. PROTOTYPING PROCESSES 125

BNF description:
�
P ����� � pnil

�
ppre( � 	 � P � ) �

pcho(
�
P � 	 � P � ) �

pint(
�
P � 	 � P � ) �

psyn(
�
P � 	 � P � ) �

ppar(
�
P � 	 � P � ) �

pret(
�
P � 	 � )

�
pren(

�
P � 	 � ) �

pvar( � 	 
 )
where � � Ac(L), � � L, � is a process variable and � is a renaming Ac(L)

homomorphism. Constructors pnil, ppre, pcho, pint, psyn, ppar, pret and
pren correspond to the different process combinators. The only exception is pvar,
which builds a new process given an action and a process variable. Its semantics
will be later defined similarly to the one of the prefix combinator, according to the
discussion in §43. The CHARITY declaration follows:

data Ln(L) -> P =
pnil: 1 -> P | ppre: Ac(L) * P -> P |
pcho: P * P -> P | pint: P * P -> P |
psyn: P * P -> P | ppar: P * P -> P |
pret: P * set(L) -> P |
pren : P * map(Ac(L), Ac(L)) -> P |
pvar: Ac(L) * string -> P.

Note that the definition is sufficiently generic, as it is parametric on L and resorts to
whatever interaction structure is provided for Ac(L).

45. THE STRATEGY. How can Ln(L) expressions be interpreted as processes?
Within the initial algebra approach to semantics, once fixed the syntax, a seman-
tic � -algebra would be designed and the interpretation defined as the associated
catamorphism. Our semantic universe, however, is the final coalgebra for functor���
Ac(L)

����� 	
, and, therefore, the dual approach of final semantics comes in order.

What has to be done is then to cast the syntax, i.e., the set of terms Ln(L), into a���
Ac(L)

����� 	
-coalgebra. The interpreter will now arise as the associated anamor-

phism.
Let function sem

�
Ln(L) � � Pr(Ac(L)) stand for the desired interpreter.

The ‘gene’ for this anamorphism is a ‘syntactic’ coalgebra

syn
�
Ln(L) � �

���
Ac(L)

�
Ln(L))

which computes the ‘syntactical’ derivations of process terms. Observe, now, that the
‘canonical’ way to define syn is as a � -catamorphism. Its ‘gene’ is denoted by

�
syn

in the sequel1. The diagram below contains the ‘full’ picture. Notice that
�
syn is

1It may be instructive to pay some attention to the behaviour of function �
syn. Let

� 	�� be actions and � 	�� process expressions (i.e., inhabitants of Ln(L)). Then, � syn will map
pcho( � � � 	�� �
	 , � � � 	�� �
	 ) to � � � 	�� � 	 � � 	�� ��	 . Similarly, psyn( � � � 	�� �
	 , � � � 	�� �
	 ) will be mapped to
set � �
� 	 psyn( � ,� ) � ��� in action product of � and � , once filtered synchronisation failures 	 .



126 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

actually the only function to be supplied by the programmer. Then, we get for free

syn �
� � � syn 
 	��

and

sem � � � syn 	 
 � � Ac(L) � �

�
�

Thus,

Pr(Ac(L))
� //

���
Ac(L)

�
Pr(Ac(L))

	

Ln(L)

sem

OO

syn //
���
Ac(L)

�
Ln(L)

	
� �
� � �

sem �
OO

� Ln(L)

�

OO

�
syn // �

���
Ac(L)

�
Ln(L)

	
� syn

OO

where � and
�

are, respectively, the final
���
Ac(L)

� ��� 	
-coalgebra and the initial

� -algebra.

46. ENVIRONMENT. Our last question concerns the introduction of an environment
to the interpreter in order to collect all the process defining equations relevant to drive
experiments on a particular network of processes. Such an environment � can be
thought of as a mapping assigning to each process variable an expression in Ln(L).
Assuming variable identifiers are modeled by strings, � will be typed in CHARITY

as map(string, Ln(L)). Clearly, � acts as a supplier of context information to
the interpretation function sem, which becomes typed as

sem
�
Ln(L)

� � � � Pr(Ac(L))

All types in CHARITY are strong and, therefore, this extra parameter is smoothly
accommodated in the framework. In fact, both sem and syn become defined as,
respectively, a strong unfold (§3.56) for

���
Ac(L)

����� 	
and a strong fold (§3.61)

for � . Our previous diagram remains valid, but has to be interpreted in the Kleisli
category for the product comonad. Its interpretation in the original category, along
the lines discussed in chapter 3, is depicted in the diagram below, which makes the
structure involved explicit. Notice that � � and

�
� are, respectively, the corresponding

final coalgebra and initial algebra in the Kleisli, defined simply as � � � � and
�
� � � as



3. PROTOTYPING PROCESSES 127

explained in §3.59. Thus,

Pr(Ac(L)) ���
� � // � � Ac(L) � Pr(Ac(L)) �

Pr(Ac(L))

Ln(L) ���

sem

OO

syn // � � Ac(L) � Ln(L) � � � Ac(L) � Ln(L) � ���

OO

Ln(L)

�
Ln(L) ���

� �
OO

// � � � Ac(L) � Ln(L) � � � � Ac(L) � Ln(L) � ���

�
syn

OO

Formally, the interpretation function arises as

sem � � � � � � � � � Ac(L) � �

�
� syn

where

syn � � � � � � � syn
More precisely, as the definition of syn is made in terms of both the computations on
the substructures of its argument and these substructures themselves, it arises in fact
as a strong paramorphism (§E.10). This is simply implemented by the CHARITY fold
combinator and the annotation #, as explained in §E.10.

47. INTERPRETATION. We are ready to present the actual code for the interpretation
function sem. Not much remains to be said about this definition, as the encoding
of each process combinator has already been detailed in the beginning of this sec-
tion. The interpretation of the new construction pvar(a,i) is as expected: the
continuation process arises as the interpretation of the process expression associated
to variable i, if i is collected in the environment, or pnil otherwise. Thus,

def sem{eqL: Lb(N) * Lb(N) -> bool}:
Ln(Lb(N)) * map(string, Ln(Lb(N))) -> Pr(Ac(Lb(N)))

= (exp,m) => (| e => bh: syn{eqL}(e,m) |) exp.

where



128 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

def syn{eqL: Lb(N) * Lb(N) -> bool}:
Ln(Lb(N)) * map(string, Ln(Lb(N)))
-> set(Ac(Lb(N)) * Ln(Lb(N)))

= (pr,m) =>
{| pnil: () => empty
| ppre: (a,l) => sing(a, p1 #)
| pvar: (a,s) => { ss(p) => sing(a, p)

| ff => empty
} app{eq_string}(m,s)

| pcho: (lp,lq) => union(lp, lq)
| pint: (lp,lq) =>

union(stau1(lp, p1 #), stau1(lq, p0 #))
| psyn: (lp,lq) =>

ssel{eqL} sdelta1{eqL} (lp,lq)
| ppar: (lp,lq) =>

union(union(stau2(lp, p1 #), stau2(lq, p0 #)),
ssel{eqL} sdelta2{eqL} (lp,lq))

| pret: (l,k) =>
set{x => (p0 x, pret(p1 x, k))}
filter{x => not member{eqA{eqL}}

(p0 x, compren k)} l
| pren: (l,h) =>

set{x => { ff => (p0 x, pren(p1 x, h))
| ss a => (a, pren(p1 x, h))
} app{eqA{eqL}}(compret h, p0 x) } l

|} pr.

To fully understand the definition above, observe that the derivations of a process
expression are (a set of pairs of actions and) process expressions, whereas, in the pre-
vious definition of ‘stand-alone’ combinators, they were defined in terms of processes
themselves. As an illustration, compare the entry corresponding to renaming in the
‘gene’ of syn with the definition of bren in §40. The same observation justifies the
following auxiliary definitions of stau1, stau2, ssel, sdelta1 and sdelta2,
whose role is similar to the original taur, sel and deltar functions in §40.

def stau1: set(Ac(L) * Ln(L)) * Ln(L) -> set(Ac(L) * Ln(L))
= (s,p) => set{(a,x) => (a, pint(x,p))} s.

def stau2: set(Ac(L) * Ln(L)) * Ln(L) -> set(Ac(L) * Ln(L))
= (s,p) => set{(a,x) => (a, ppar(x,p))} s.



3. PROTOTYPING PROCESSES 129

def ssel{eql: L * L -> bool}: set(Ac(L) * B)
-> set(Ac(L) * B)
= s => filter{x => not eqA{eql}(p0 x, nop)} s.

def sdelta1{eql: Lb(N) * Lb(N) -> bool}:
set(Ac(Lb(N)) * Ln(Lb(N))) * set(Ac(Lb(N)) * Ln(Lb(N)))
-> set(Ac(Lb(N)) * Ln(Lb(N)))

= (l1, l2) =>
set{(x,y) => (prodAc{eql}(p0 x, p0 y), psyn(p1 x, p1 y))}

(flatten set{ x => set{ y => (x,y) } l2 } l1).

def sdelta2{eql: Lb(N) * Lb(N) -> bool}:
set(Ac(Lb(N)) * Ln(Lb(N))) * set(Ac(Lb(N)) * Ln(Lb(N)))

-> set(Ac(Lb(N)) * Ln(Lb(N)))
= (l1, l2) =>

set{(x,y) => (prodAc{eql}(p0 x, p0 y), ppar(p1 x, p1 y))}
(flatten set{ x => set{ y => (x,y) } l2 } l1).

48. PROTOTYPING RECURSIVE PROCESSES. Consider the following example,
due to C. Stirling [Sti95], of a CCS process describing a controller for a road-railway
junction. Actions

�
��� and

� ��� � � model, respectively, a car and a train approaching
the junction. The system is controlled by a process � � � � ��� which enforces a strict
sequencing of the control signs that allow or forbid traffic in each branch of the junc-
tion. The latter are associated to a traffic light with actions ��� 
 
 � and � 
 � and the
rail barrier responding to actions � � and

���
. Finally, actions

� � � � 	 	 and
� � � � 	 	 are

supplied (externally) by sensors in the junction to communicate that a car, in the first
case, and a train, in the second, have effectively crossed the junction.

� � � � . �
��� � � � � � � � � 	 	 � ��� � � � � �

��� ��� . � ��� � � � ����
 
 � � � � � � 	 	 � � 
 � � ��� ���
� � � � ���

.
��� 
 
 � � � 
 � � � � � � ��� � � � � ��� � � � � � ���

% .
�
� � � � � ��� ��� � � � � � ��� 	 � � � � � � � � � � � �

�

�
� � � �

The whole junction is modeled by a composition of three processes each of which is
separately defined. Therefore, the system is represented in the prototyper (suitably
instantiated with the CCS interaction structure) as shown below.



130 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

sem{eqL{eq_string}}(
pret( ppar( ppar(pvar(act(name("iR")),"ROAD"),

pvar(act(name("iT")),"TRAIN")),
pvar(act(name("iS")),"SIGNAL") )

[name("up"), name("green"), name("red"), name("dw")]),
[("ROAD", ppre(act(name("car")), ppre(act(name("up")),

ppre(act(inv(name("ccross"))),
pvar(act(inv(name("dw"))), "ROAD"))))),

("TRAIN", ppre(act(name("train")),
ppre(act(name("green")),
ppre(act(inv(name("tcross"))),
pvar(act(inv(name("red"))), "TRAIN"))))),

("SIGNAL", pcho(
ppre(act(inv(name("green"))),

pvar(act(name("red")), "SIGNAL")),
ppre(act(inv(name("up"))),

pvar(act(name("dw")), "SIGNAL")) )) ]).

Processes � � � � , ��� ��� and � � � � ��� , along with the respective defining equations, are
grouped in the environment for % . We have, however, to deal with a syntactic re-
striction of our process language. In fact, process variables in Ln(L) always appear
within a pvar constructor and, therefore, ‘dummy’ initial actions were introduced.
Conceptually, we may think about them as ‘triggers’ of the associated processes. This
is not, however, a fundamental restriction of the approach, as other design solutions
would have been possible for Ln(L). For example, we could have allowed process
variables to occur freely in an expression, provided that process expressions in the
environment were tested for guardedness and their initial actions properly computed.
The adopted solution seems reasonable for illustration purposes and very simple to
implement.

49. REMARK. The CHARITY implementation of an interpreter for Ln(L) assumes
an effective representation of sets and set-theoretic operators. In practice, however,
our implementation of sets is based on sequences, a common trick in functional lan-
guages. This fact may introduce some undesirable behaviour in the prototype. The
problem arises in the use of set union, whose implementation resorts to sequence
concatenation. Being implemented by an operator on an inductive type, union is
evaluated eagerly. So, suppose a parallel composition of a finite with an infinite pro-
cess is being computed. When the evaluation of the first argument to the underlying
union ends, the CHARITY machine takes the current evaluation of the second, which
correspond to a partial result, and terminates! The problem manifests itself whenever
the evaluation of a first argument to a union terminates. As is easily foreseen, this



3. PROTOTYPING PROCESSES 131

may happen in several situations: not only when the corresponding process is finite,
but also as a result of a restriction enforcing the death of the process.

A solution to this problem will have to provide a better representation for sets,
but this seems difficult to implement. For example, the coinductive representation of
sets by their characteristic functions, discussed in appendix E, cannot be used here
as CHARITY does not allow the ‘state variable’ in a coinductive declaration to occur
contravariantly. The declaration of Pr(A) would become invalid in first place.

An alternative solution, which we have implemented, consists in extending all
terminating processes by an infinite sequence of a special action dead. The deriva-
tion tree is completed by appending to each leaf such a linear special branch. This
does not introduce any semantic problem — we are just adopting a different repre-
sentation for inaction! — and actually solves the problem by avoiding termination in
the evaluation of union.

From a programming point of view, the solution involves a minor change in the
interpreter: in the code for syn the entries corresponding to pnil, pvar and pret
are modified as follows:

...
| pnil: () => sing(dead,pnil)
| pvar: (a,s) => { ss(p) => sing(a, p)

| ff => sing(dead,pnil)
} app{eq_string}(m,s)

...
| pret: (l,k) =>

set{x => { true => (p0 x, pret(p1 x, k))
| false => (dead, pnil)
} not member{eqA{eqL}}(p0 x, complren k)

...

Notice that in the first two cases empty is replaced by the derivation sing(dead,
pnil). In the case of restriction, the forbidden derivations are also replaced by
sing(dead, pnil), instead of being simply omitted. This enforces replacement
of the filter construction (used previously) by an explicit transformation of each ele-
ment of the derivation set.

The only disadvantage of this solution is the eventual proliferation of dead sym-
bols along the evaluation output, which may decrease readability of such a (already
verbose) text. As commented in chapter 7, a more elaborated prototyping kernel for
processes, currently under development, incorporates some editing functions appli-
cable to CHARITY outputs which, besides providing a pretty-printer functionality, do
filter, in each evaluation step, the unpleasant dead symbols, thus restoring the origi-
nal derivation trees (or their successive approximations).



132 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

4. Some Variants

50. PROCESSES. In the beginning of this chapter it was remarked that the proposed
approach to process calculi design could cope with a variety of particular cases, be-
cause the emphasis was placed on the common underlying structures rather than on
the distinctive particularities. A first, major, source of genericity has already been in-
troduced by separating the behaviour from the interaction structures. Note that all the
process combinators introduced are either independent of any particular interaction
discipline or parametrized by it.

In this section we shall briefly examine what happens in case the behaviour struc-
ture itself is changed. Recall that processes were previously defined as inhabitants of
the carrier of the final coalgebra for

� � �
� ����� ����� 	

where � was taken as the finite powerset functor. Later on we have shown that, as-
suming a monoidal structure over

�����
, the behaviour model captured by

��� � ���������
	
becomes a strong monad. The definitions of some combinators build upon this and,
in particular, synchronous product relies on the monad distribution law

� �
. Commuta-

tivity of � , and consequently of � , depends on the monoid underlying the interaction
structure being itself Abelian. Therefore, a first line of enquire followed in the sequel
consists of replacing � by different monads and extracting corresponding families of
calculi still parametrized by the interaction structure.

51. PARTIAL PROCESSES. The simplest case takes � as the identity
���

. The result is,
of course, a universe of deterministic (and perpetual) processes. We shall investigate
a further elaboration of this, replacing

���
by

��� � � . Therefore, processes, as elements
of the carrier of the final coalgebra for

� �
� ����� �����
	 � �

are deterministic but also partial in the sense that derivation to a ‘dead’ state is always
possible. Such a process universe is introduced in CHARITY through the following
declaration:

data C -> PartialPr(A) = bh: C -> SF(A * C).

The resulting calculus is far less expressive than the one previously discussed. In fact
derivations do not form any kind of collection and, therefore, nondeterminism is ruled
out. Similarly, combinators which explore nondeterminism lack a counterpart here.
Such is the case of choice, interleaving and, as a generalisation of the latter, parallel.
On the other hand, the composition of

��� � � with the monoidal monad generated



4. SOME VARIANTS 133

by
� ���

is still a strong Abelian monad, and therefore synchronous product is still
definable along the lines of §28. Let us explore what we have been left with.

52. DYNAMIC COMBINATORS. Inaction and prefix are defined as

� ��� � � � � �
and

� � � � � � � � � � � ��� �
where

�
�
� ��� � is as before. Choice, as explained above, is ruled out. We may, however,

consider a deterministic choice combinator — � � — which gives precedence to, say,
the first argument. This is to say that the derivation of � � � � would be the derivation
of � but if � , but not � , becomes inert. Formally,

� � � � �
� � � �

�
�
//
� � ��� � � � � 	 �

� ����� � � � � 	�
�

//
� � ����� � � 	 � � ����� � � � � 	 	 �

�
� �

� � � � � � � � 	 	
�
� �

�
� � �
�
� � � //

� � � ����� � 	 � � � ��� � � 	 �
� � ��� � � 	 	 �

� � � � � � � � 	
� � � � � � � � � � ���

� �
�
// � ��� � � � �

The combinator is, of course, non commutative.

53. STATIC COMBINATORS. On the other hand, product, restriction and re-
naming can be defined in a rather generic way as anamorphisms whose ‘genes’ are
parametrized by the monad � :

�
� � � � � � // �

� � � � � � 	 � � �
� � � �

// �
� � � � � � 	

��� � � � � // �
� � � � � � 	 � � � 4 � ��� // �

� � � � � � 	
� �
� � � � �

�

�
� �
// �

� � ��� � � 	 � �
� � ��� � � 	 � ��� 	���� �	� 
���

// �
� � ��� � � � � � 	 	

0 4 � �
// �

� ����� � � � � � 	 	

where
� � � � � � � �

�
��

is the distribution law associated to the composed monad �
� � ��� �

��� 	
, therefore encapsulating the

�
operation on actions. On the other hand, �

��� �
and

� � � � � � � explore the � structure in order to rule out synchronisation failures, in the



134 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

first case, and to perform the action restriction in the second. For � � � � � � ��� � � ,

� � � � � � �

�
�
�
� � � � � � � �
� 	 � � � � * 
 � � 	 
�� � 


is expressed by a conditional, whereas, for � �
�

, such a conditional was iterated
over a set. Again �

��� �

�
�
�
� � � � � � � ��� �

�
�
�
.

Proofs of properties of partial processes also follow the structure and style used
before. As an illustration, we shall prove here the following lemma, which corre-
sponds to the result in §19.

54. LEMMA. For any � � �
,
� � � � � � � � .

Proof.

�
�
���
� �

�
�( ) definition *

� $ �
�	� & � ���
� �

� $ �
�	� & �
� ) ana fusion (3.9) *�
� � ���

� �
$�$ " � � �

�
& 
�� & �����	�

and this equality holds because�
�	� ���
�

� )���
 � definition *
� $ $��

�
� � � & � � � � �%
 � � & 
�� � � � � ���

�
� ) comorphism *

� $ $��
�
� � � & � � � � �%
 � � & 
�� � � �	$�$ " � � �

�
& 
 " � & ��� $��

�
� � � � � � � � 
 � � & 
�� � � � �

� )�� fusion *
� $ $��

�
� � � & � � � � �%
 � � & 
�� � �

�!� $ $ " � � �
�
& 
 " � & �	$�$ �

�
� � � & � � � � � 
 � � & 
 $�$ " � � �

�
& 
 " � & ��� � � � �

� ) conditional (2.41), � cancellation *
� $ $��

�
� � � & � � � � �%
 � � & 
�� � �

�!� $ $��
�
� � � & � $ $ " � � �

�
& 
 " � & ��� � � � 
 $�$ " � � �

�
& 
 " � & ��� � & 
�� � � � �

� )�� cancellation *
� $ $��

�
� � � & � � � � �%
 � � & 
�� � � ��� $ $��

�
� � � & � � � � � 
 � � �	$ " � � �

�
&�& 
�� � � � �

� )�� fusion, � cancellation *
� � $�$ �

�
� � � & � � � � � 
 � � & 
�� � � �	$ $��

�
� � � & � � � � � 
 � � �	$ " � � �

�
&�& 
�� � � � �



4. SOME VARIANTS 135

� ) conditional (2.43), � cancellation *
� $ $��

�
� � � & � � � � � & 
 � � �	$ " � � �

�
&�& 
�� � � � �

� )�� cancellation *
� $ $��

�
� � � & � $�$ " � � �

�
& 
 " � & ��� � �
� 
 $ $ " � � �

�
& 
 " � & ��� � & 
�� � � � �

� ) conditional (2.41), � cancellation *$�$ " � � �
�
& 
 " � & ��� $ $��

�
� � � & � � � �
� 
 � � & 
�� � � � �

� )�� 
 � definition *$�$ " � � �
�
& 
 " � & ���
� �

+

55. ORDERED NO DETERMINISM. Another possibility for � is the type functor
associated to the sequence data type. The resulting process universe is then the final
coalgebra for

� �
� � � � ����� 	 �

which is declared in CHARITY as follows:

data C -> OrderedPr(A) = bh: C -> list(A * C).

In this case there exists, for each process, a collection of derivations, thus expressing a
form of nondeterminism. Such collection is, however, modelled by a sequence which
imposes an order (e.g., of probability, cost, etc.) on them. Clearly

��� �
is a strong

monad and its composition with
� � ��� � ��� 	

is well defined and also strong. However,
the resulting monad is not commutative, even when the interaction structure is an
Abelian monoid. As a consequence, commutativity is lost in several combinators
and, in particular, we get two non bisimilar versions of product, based, respectively,
in

� �
and

�
� . Recall, from §A.10, that equation

� � � �
� holds only for commutative

monads.

56. REACTIVE PROCESSES. So far we have been working under what has been la-
belled in §8 the ‘active’ interpretation of processes. In the same paragraph, however,
an alternative interpretation was suggested in which the behaviour of a process results
from reaction to external stimuli rather than from commitment into actions. Such a
distinction, which is often left implicit in the literature on process calculi, can be eas-
ily accommodated in the approach we have been discussing. Formally, an universe
for reactive processes is specified as a final coalgebra � for

� �
�
�
��� 	 �����



136 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

where � captures, as usual, the underlying behaviour structure.
In the remaining of this section we shall revisit the process combinators in this

new setting, taking as � the finite powerset monad. Of course, all the variants for
� discussed above would do as well and the remarks on the expressiveness of the
resulting calculi remain valid.

57. DYNAMIC COMBINATORS. The definitions of inaction, prefix and choice follow
closely the ones already considered for ‘active’ processes, reflecting, however, the fact
that

� ���
appears now as an exponent. Note, for example, how prefixing a process �

by an action � results in a new process which is blind for every stimulus different
from � . Under the ‘active’ interpretation such a process appears with a singular set of
derivations witnessing commitment to � . Formally,

� ��� � � � � � *
� � � � �

� �
� � ����� 	 � � � � � � ����
 � � * 	

for any � � � � �
, and

� � � � �
�
� � � � 	 � � � �

where � � � �
�
� � � 	 � � � � �

� � � 	 � � � � � 	 is defined as 
 � � � � � 
 �
� � � � � .
58. RESTRICTION AND RENAMING. For any � � �

and renaming homomorphism
� , combinators modelling restriction and renaming are given by

� � � � � � � 	 
 where
�
� �

� � �� � ���
� 	 � � 
 � � * 	
and

� � 
 � � � � � 	 
 where
�
� � � �

� � ��� � 	
Note, once again, that both � and the restriction set � act by constraining the set
of meaningful stimuli before the effective derivation is computed. Recall that, under
the ‘active’ interpretation, their effect was defined over the (previously computed)
derivations (§17 and §22).

59. PARALLEL COMPOSITION. Synchronous product is defined, in this setting, as

� � � � ��� 	 




4. SOME VARIANTS 137

where
���
� � � � �

�

�
� �
//
� � � � � � � � � � � " �  

�
//
��� � � � � � 	 � � �

� � � �� � 	�� �
//
� ��� � � � 	 ����� � 	���� //

��� � � � 	 �����

where

� � � � 
 � � 
 � � � � � � � � � � ��� � 
 ��
 � � ��� 
 � � � � ��� � � � � � � � � � � � � � � �
�
� � � 	

Recall from §28, that, in the ‘active’ case, interaction was neatly captured by the
distribution law for the

��� � � ��� ���
	
monad, which is no longer the case here. This

entails the need to introduce function � � � � . Additionally, � � � � filters out synchroni-
sation failures and thus replaces �

���
.

On the other hand, the definition of the interleaving combinator matches with the
one for the ‘active’ case, but requires the replacement of set union by

�
�

� � � 
 � � 
 � � � � � � � � � � � � � �
Thus,

� � � � � � 	 
 with

� �
� � � � �

//
� � � � 	 � � � � � 	 � �

� � � � � � � � � � �
//
� � � � � � � � 	 � � � � � � � � � 	

� �
�
� �

//
��� � � � 	 ����� � ��� � � � 	 � � ��� 4 ��� 4 // ��� � � � 	 � � �

where, of course, the right and left strengths are relative to the
� � ��� 	 ��� �

monad. The
same observation applies to parallel composition, which arises, once again, as a com-
bination of product and interleaving at ‘genes’ level. Comparing with the definition
in §32, set union is, again, replaced by �

�
� � � . Formally,

� � � � ��� 	 

where
� �
� � � � �

//
� � � � 	 � � � � � 	 �

��� � � � �
//
��� � � � 	 � � � � ��� � � � 	 ��� �

� 4 ��� 4 //
��� � � � 	 � � �

60. PROPERTIES. The basic properties of this model for reactive processes coincide
with the properties of the corresponding calculus of ‘active’ processes developed in
section 2. The proof style is also similar, although calculation resorts now heavily on



138 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

the properties of exponentials (§2.33). As an illustration, we prove below the result
corresponding to law (4.5).

61. LEMMA. For any � � �
,� � � � � � �

� � � � � � 	

Proof.

� ���
�
� 


� ) comorphism *
� �

�
$	��
 � �

�
� 


� ) � � definition *
� �

�
$	��
 � $ $ �

�
� � � & � � 
 � �
� & � 


� ) exponential fusion *
� �

�
$	��
 � $ $ �

�
� � � & � � 
 � �
� & �	$ 
 ��" � &

� ) conditional (2.42) *
� �

�
$	��
 � $ $ �

�
� � � �	$ 
 � " � & & � � �	$ 
 � " � & 
 � �
����$ 
 ��" � & &

� ) � and � definitions *
� �

�
$	��
 � $ $ �

�
� � � & � � �	$ � � � & ��� ��� 
 � � � &

� ) � and � definitions *
� �

�
$	��
 � $ $ �

�
� � � & � � �	$ � � � & ��� ��� 
 � �	$ $ � ��� & � $ � �
� & & ��� ��� &

� ) conditional (2.41) *
� �

�
$	��
 � � �	$�$ �

�
� � � & � $ � � � & ��� ��� 
 $�$ � ��� & � $ � �
� & & ��� ��� &

� ) � � � � � � � � � � � � and conditional (2.42) *
� �

�
$	��
 � � �	$�$ �

�
� � � � � � & � $ � � � & 
 $ $ � �
� & � $ � ��� &�& & ��� ���

� ) conditional distribution over � and � � � definition *
� �

�
$	��
 � � �	$�$ $��

�
� � � & � � 
 $ � �
� & & � $�$ � �

� � � & � � 
 $ � ��� &�& & ��� ���
� ) exponential absorption, �

�
definition *

� �
�
� � �	$ �

�
� �

�
& ��� ���

� ) � natural *



5. FROM PROCESSES TO COMPONENTS 139

� �	$ � �
�
� � �

�
& �	$ �

�
� �

�
& ��� ���

� ) � functor *
� �	$ � �

�
���
�
� � �

�
���
�
& ��� ���

� ) comorphism *
� �	$ $ � �	$��

�
��" � & & � $ � �	$��

�
� " � &�& & ��� ���

� ) � functor *
� �	$ � � � & �	$ $��

�
� " � & � $��

�
� " � & & ��� ���

� ) � � � natural *
� �	$ � � � & ��� ��� �	$ $��

�
� �

�
& � " � &

� ) exponential fusion *
� �	$ � � � & ��� ��� �	$��

�
� �

�
&

� ) � definition *
� � 
 �	$��

�
� �

�
&

+

5. From Processes to Components

62. COMPONENTS. In chapter 1 software components have been characterised as
dynamic systems with a public interface and a private encapsulated state. The rele-
vance of state information precludes a ‘process-like’ view of components, as inhabi-
tants of a final coalgebra. Components are themselves concrete coalgebras. For each
value of the state space, a corresponding ‘process’, or behaviour, arises by computing
its anamorphic image. Components do have, however an underlying behaviour model
built in their ‘shapes’. Therefore, and with respect to the simple systems taxonomy
discussed in section 1, we shall

� consider the simultaneous presence of an input and an output observation
universes, whose types will be referred to as the interface types;

� abstract away from a particular behavioural model (like determinism or non-
determinism), by parameterizing the signature functor specification by a
strong monad intended to capture such model.



140 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

63. SHAPES. Keeping in mind the requirements above, components will be modelled
as concrete coalgebras with specified initial conditions (typically a distinguished ini-
tial state, referred to as the seed value). Our first step is then to choose a family of
functors to suitably capture components’ interfaces. Such is the topic of the present
section, which paves the way to the development of component calculi in the follow-
ing chapters. Our starting point is the following family of

� ���
endofunctors:

� � � � � � � � �
� ��� � � 	 �

where the sets � , � � and � , � � are, respectively, the input and output observation
universes which ensure the flow of data. On the other hand, � is a strong monad
intended to capture a particular behaviour model (see §64 later on).

Each � � -coalgebra � over carrier
�

is written as split a 
 �
�

 �
�
� , where �

�
� � �

� � � � � � is the observer, attribute or output function, and �
�
� � � � � � �

�
� � � 	

stands for the coalgebra action, method or update function.
More specialised notions of a component will arise by instantiating � � -interface

parameters. Instantiations with � are interesting as they collapse part of the observa-
tion structure. For example, by making � � � � � � � , one obtains � � � �

� ��� � � 	 � ,
a shape for functional components. A possible classification follows.

� ‘Functional’ components:

� �� � � � �
� ��� � � 	 �

� ‘Silent’ components:

� �� � � � � �
�
�

� ‘Action’ components:

� �� � �
� ��� � � 	

� ‘Object’ components:

� �� � � � �
�
� �

Note that, by trivialising the behaviour monad, i.e., making � � ���
, the resulting

‘functional’ and ‘object’ components correspond, respectively, to the so-called Mealy
and Moore machines in automaton theory. Recall that in a Moore automaton [Moo66]
each state is associated to an output symbol, whereas such symbols are associated to
transitions, rather than states, in a Mealy machine [Mea55].

‘Silent’ components, on the other hand, have structured attributes but their inter-
nal evolution is not triggered by the environment — at least by a no trivial stimulus.
Finally, ‘action’ components also evolve with no external explicit trigger, but do pro-
duce an output in each evolution step. Taking � � � � �

, as a set of formal symbols
standing for action names, and instantiating � with the (finite) powerset functor, the



5. FROM PROCESSES TO COMPONENTS 141

resulting (final) ‘action’ components would lead us back to CCS processes, as dis-
cussed earlier in this chapter.

We shall focus on the ‘functional’ and the ‘object’ shapes, since these capture
the basic requirements we have made for a component model. However, they entail
quite different interaction disciplines which justify a separate treatment. Therefore,
the former will be dealt with in the next chapter and the latter in chapter 6.

64. BEHAVIOUR MONADS. As mentioned in the previous paragraph, the functor
� � is parametrized by a (strong) monad (§A.9), � , acting as a behavioural model.
This means that the computation of a component action will not simply produce an
output and a continuation state, but a � -structure of such pairs. The monadic structure
provides the basic tools to handle such computations. Unit (

�
) and multiplication ( � ),

provide, respectively, a value embedding and a ‘flatten’ operation to reduce nested
behavioural annotations. Strength, in either right ( �

�
) or left ( � � ) versions, on the

other hand, becomes crucial to handle context information. We have already resorted
to a monadic structure in the study of process calculi in the previous sections. Such
a structure becomes even more relevant now as all the component combinators, to be
introduced along the next two chapters, are totally parametric on the monad, therefore
abstracting away from any concrete behavioural model. It also turns out that monad
commutativity (§A.10) is a welcome property, although not crucial.

Several possibilities can be considered, on a pragmatic basis, in the definition of
� . The simplest case is, obviously, the identity monad,

���
. Components, would then

behave in a totally deterministic way. More interesting possibilities, capturing more
complex behavioural features, include:

� Partiality, i.e., the possibility of deadlock or failure, captured by the usual
maybe monad, � � ��� � � (§A.3).

� Nondeterminism, introduced by the (finite) powerset monad, � �
�

(§A.3).
� Ordered nondeterminism, based on the (finite) sequence monad, � � ��� �

.
� Monoidal stamping, with � � ��� ���

. Notice that, for � to form a monad
parameter

�
should support a monoidal structure to be used in the definition

of

�
and � (§A.5).

� ‘Metric’ nondeterminism capturing situations in which, among the possible
future evolutions of the component, some are more probable (cheaper, or
more secure, or more ...) than others. In fact, for � finite, isomorphism�
� �� ��� � (where

�
� � denotes the space of partial functions from�

to � ) suggests the extension of finite powerset to mappings, expressing a
richer notion of nondeterminism in which each possible state is assigned a
confidence level.



142 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

All of them are known to be strong monads in
�����

. The first two and the last one
are commutative; the third is not. Commutativity of ‘monoidal stamping’ depends,
of course, on commutativity of the underlying monoid. Moreover, they can safely be
composed (§A.11).

65. THE BAG MONAD. The formal model for what we have called ‘metric nonde-
terminism’ is the bag monad. This is based on a structure 
 � 
�� 
 � � , where both �
and � define Abelian monoids over

�
and the latter distributes over the former. A

bag of � is defined as a partial function space � � � , modelled in the sequel as���
� � � 	

subject to the following functional dependence invariant:

�
� � � � � � � �

� � � � � � � � � � � � � � � �

There are two basic operations on bags: bag union, denoted by ��� , and bag product,
denoted

� � , defined by:

� � � � � � � ��
 � �
�
� � 
 � 	 � � �

�
� � 
 � 	 
 � � � � � � � � � �

� � � � � � �� �
� �

�
� � �

�
� �
�
� �

	 	

and � �
�
� 
 
 	 � ��� � � � � � 	 � where � � � � � � 


Note that
�

and
�

are valid operators over bags as the underlying structure is a set.
On the other hand, invariant �

� � , makes meaningful the following operators borrowed
from the algebra of mappings:

� �
�
� 
 � 	 � �

�
�
� �

�
� 	 � � � � � ��� � � � � where
� � � �

�
� �

To characterise the bag monad we have to define the action of a functor � � � � ���� ��� � � 	 �
�
" on functions and, of course,

�
and � . Strength is inherited from the

powerset monad. Thus, denoting by � � the reduction of � � ,

� � � � � ��� � �
���

� � � � �
�
� � � � 	 	

�
� � � � � � 
 � � 
 � � * �

� ��� � �
� � �

The following are two possible instantiations of this monad entailing two be-
haviour models that might be interesting to consider:

� Cost components: based on � � � � for
� � 
	� 
 � 
 � � , which is just the

usual notion of a bag or multiset. Components with such a behaviour model
assign a cost to each alternative, which may be interpreted as, e.g., a perfor-
mance measure. Such ‘costs’ are added when components get composed.



5. FROM PROCESSES TO COMPONENTS 143

This corresponds to the nondeterministic generalisation of monoidal stamp-
ing above.

� Probabilistic components: based on
� � 
 � ��
 � 
 
 � � ��
 � � with the addi-

tional requirement that, for each � � � � � � , �
� �

� � 	 � � � . This assigns
probabilities to each possible evolution of a component, introducing a (ele-
mentary) form of probabilistic nondeterminism.

66. BEHAVIOURAL CONVERSION. Sometimes there is a need to change the be-
havioural model of a particular component. This is typically the case when trying
to compose two components originally defined under distinct behavioural assump-
tions. The condition under which such a conversion becomes possible is the exis-
tence of a monad morphism (§A.12) between the two models. Every such morphism� � � � � � � lifts to a natural transformation

�
� � � � � � � � �

transforming each � � component into a � �
�

one, over the same state space.

67. EXAMPLE. Not all behavioural conversions are possible, the rule being that the
target monad should have ‘enough’ structure to embed the other. In any case, all that
is left to verify is the existence of a monad morphism. As an example, we shall prove
here that partial components can always be converted into nondeterministic ones.

Let � � ��� � � and � � �
�

, as usual. We claim that
� � � � � � � 
 � 
 is a monad

morphism.

Proof. Recall the definitions of these monads from §A.3. The two conditions stated on §A.12
have to be verified. Thus, � �����

� )�� � definition *
� 	 " ��� 
 � � ��� �

� )�� cancellation *
	 " ���

� )�� � � definition *
�	� �

and � � � �
� )�� � definition *



144 4. COALGEBRAIC MODELS FOR PROCESSES AND COMPONENTS

� 	 " ��� 
 � � ��� " � 
�� � �
� )�� fusion *

�%� 	 " ��� 
 � � � " � 
 � 	 " ��� 
 � � ��� � �
� )�� cancellation, identity *

�%� 	 " ��� 
 � ��
 � �

� ) set union *
�%� � � 	 " ��� �
	 " ��� 
 � �%	 " ��� � � � 
 � � � �

� )�� fusion *� �!� � 	 " ��� �
	 " ��� 
�	 " ��� � � ��
 � �
� )�� fusion, identity *� �!� 	 " ��� ��� 	 " ��� 
 � ��
 � � " � �
� )�� absorption *� �!� 	 " ��� 
 � � �	$�� 	 " ��� 
 � � 
 � &
� )�� � � and � definitions *

� � � � � ��� �
+

This extends to the following natural transformation between ‘functional’ compo-
nents: � � �

� ����� � � � 	 � � �
��� ��� � � 	 �

Similarly, for ‘object’ components, yields

� � � � � � � � � � ��� � � 	 � � � � � � ��� �

Another example of a behavioural conversion is given by the following monad mor-
phism from � � � � for the probabilistic case above, to the finite powerset, suggested
in [Man98]: � � �

�
�
� � � � � � � �

where
� � � ��
 � 
 is a threshold value and � � � � � � � � � � � � � ��� ��� � � . Lifted to

components it provides a ‘plain’ nondeterministic view of ‘probabilistic’ components,
retaining only their ‘most probable’ behaviour.



5. FROM PROCESSES TO COMPONENTS 145

68. This chapter introduced coalgebraic models for both processes and components.
We have also shown how process calculi can be developed in a parametric and es-
sentially pointfree way and their prototype implementations encoded in CHARITY.
The next step is to develop similar calculi for software components. Two difficul-
ties seem to arise. Firstly, components are inherently more complex than processes,
as discussed in this last section. On the other hand, if there is no such thing as a
‘canonical’ process calculus, the characterisation of what a good notion of software
component and component calculus is also remains an open question. The next two
chapters intend to bring a preliminary contribution to this topic.





CHAPTER 5

Components as Arrows

Summary
This chapter introduces an algebra of components modelled as concrete
seeded coalgebras for the class of 	 

� endofunctors �

� � � � � � � � ��� ,
where � stands for a strong monad. It is shown how component inter-
faces and components themselves become, respectively, the objects and
arrows of a bicategory � � � . Several combinators are defined on top of
this structure and their properties investigated. A category of behaviours
is derived from � � � as the appropriate universe to discuss components
from a purely behavioural point of view. It is also shown how compo-
nents’ behaviour can be prototyped in CHARITY.

1. A (bi)Category of Components

1. INTRODUCTION. This chapter introduces a calculus of software components
modeled as seeded coalgebras for

� � � �
� ��� � � 	 � (5.1)

where � is a strong monad and � , � denote the types of input and output parameters,
respectively. In §4.63 such components were referred to as functional to stress the
explicit input-output correspondence. In fact, for � � ���

, � � -coalgebras over the
singleton set � correspond exactly to functions from � to � . A relationship with what
is called a Mealy machine [Mea55] in automata theory has already been mentioned
in the previous chapter.

Components defined in this way organise themselves into a bicategory ��� � whose
objects are sets, standing for interface (or observation) universes, arrows are seeded
� � -coalgebras and 2-cells are the correspondent comorphisms. Whenever clear from
the context, ��� � will be simply referred to as ��� . Formally,

147



148 5. COMPONENTS AS ARROWS

2. DEFINITION. The bicategory ��� � is defined by
� A collection of sets, acting as component interfaces.
� For each pair 
 � 
 � � of objects, a hom-category ���

�
� 
 � 	 , whose objects are

seeded � �� � � -coalgebras and arrows are seed preserving comorphisms. More
specifically, a component � is specified as a pair 
 �

�
� �

�

 �
�
� �
�
�	�

�
�
�

�
� � 	 ��� , where �

�
is the seed value and the coalgebra dynamics is

captured by currying a state-transition function �
�
� �
�
� � �	� �

�
�

�
� � 	 .

An arrow
� � 
 �

�
� �

�

 �
�
� � � 
 � � � � � 
 � � � satisfies the following

comorphism and seed preservation conditions:

�
�
�
� � � � � � �

�
(5.2)� �

�
� � � (5.3)

Composition is inherited from
�����

and the identity �
�
� � � � � , on compo-

nent � , is defined as the identity � � � � on the carrier of � 1.
� For each triple of objects 
 � 
 ��
 � � , a composition law given by a functor

�
� � � � �

� ���
�
� 
 � 	�� ���

�
� 
 � 	 � � ��� � � 
 � 	

whose action on objects and 2-cells is, respectively,
– � � � � 
 
 �

�

 � � � � �

�
� � � 
 �

�
�
� � where �

�
�
� � �
�
� � � � � �	�

�
�
�

�
� � � � � 	 is detailed as follows:

�
�
�
� � �

�
� � � � �

� �� � � � � �

�
� � � � � � � � � �

� �	� � � �
�
�

�
� � 	 � � �

� �� � � � � �
�
�

�
� � � � � 	 � � ��� � � �

� �	� � � �
�
�

�
� � � � � � 	 	

� �
� � � � � �

� � � � � � �
�
�

�
�
�
�
� � � � 	 	 � � �

� � � � � � �
�
�

�
� � � � � � 	 	

� � � �� � � � � � �
�
�

�
� � � � � 	

�
� � � � � �

�
�

�
� � � � � 	

–
� � � � � � �

� For each object � , an identity law given by a functor

��� ��� � � � � � ��� � ��
 � 	

whose action on objects is the constant component 
 	 � � 
 ���  #"�� � � , where
���  #"�� � �

�
� � � � � , which, by a slight abuse of notation, is also referred to

1For notational simplicity, we shall use a simple arrow ( �	� ) to declare any sort of morphism,
including 2-cells, with the exception of natural transformations in 	�

� . Should the notational convention
of appendix B be strictly followed, 2-cells, such as the identity � � above, would be written as � � � � ��

� .



1. A (BI)CATEGORY OF COMPONENTS 149

as ��� ��� � . Similarly, the action on morphisms is the constant comorphism� � � .

3. DIAGRAMS. Components are represented diagrammatically by rectangular boxes
whose borders are marked with the respective input and output interface types. An
input interface is marked by symbol � , usually on the left of the box top line. The
output type, on the other hand, follows a � on the right of the box bottom line. Using
this convention, the composition law and its identity are pictured as

��

��	�

��

�

� �
��

��	�

��

�

� �	�
��

��	�

��

�

� � �

and

��

��	�

��

�

��� � � �

Note that composition in ��� models pipelining. A pipe is formed by placing both
components side by side and connecting the output of � to the input of � . Wherever
� receives input, it executes and the output is fed to � . The monadic effect is propa-
gated. For example, if � has the capacity of deadlocking and indeed deadlocks when
receiving a particular stimulus, so does � � � .

4. LEMMA. Let � be a strong monad. Then, ��� � defined in §2 forms a bicategory.

Proof. Clearly each
� ��$ � 
�� &

is a category, more exactly the category of
�3$ � � � � &��

-coalgebras
over � ��� . It remains to be proved that both � � ! � ! � and

� ���	�
� are functors, for each

�
,
�

and�
, as well as the existence of natural isomorphisms encoding � associativity and unit. The

reader is referred to appendix B, in particular to §B.2 and §B.6, for the definition of a bicate-
gory.

The first part is almost trivial. For
� ���	�

� , let � be the object in the singleton category
�
. Then 
���
���� ��� ��
  �� ��� ! ��������� � $ � " ��� � � ��� � �

" � �
and preservation of composition holds

trivially as
� ���	�

� is a constant functor. The two functoriality axioms are also easily verified
for � � ! � ! � . In fact, 
 � �!
 � � " ��"$# � " �%"%& � " �%"$# � "%& �'
 ��( � , and, for

� 
 � � (resp. �



� � )� � $ � 
 � &
(resp.

� ��$ � 
�� &
) -morphisms,



150 5. COMPONENTS AS ARROWS

$ � � � & � $ � � � � � & � $ � � � & � $ � � � � � & � $ � � � � & �	$ � � � � & � $ � � � � & �	$ � � � � &
as expected. It has to be shown, however, that, given

� � � 

� � � and � � � 

� � � , � � �
is actually a

� ��$ � 
�� &
-morphism from � � � to � � ��� � . Therefore, we have to show that

� � �
satisfies the comorphism condition

�3$ � � � & � � � ��( � � � � � ( � � �	$ � � � &
Applying exponential absorption and fusion to the left hand and right hand side of this ex-
pression, respectively, we get

�3$ $ � � � & � " � & � �
��( � � � � � ( � � �	$ $ � � � & ��" � &

. As curry is an
isomorphism, it is enough to verify that

�3$ $ � � � & ��" � & � �
��( � � � � � ( � � �	$ $ � � � & ��" � &

In the sequel this transformation will be used in other similar situations. Thus,
�

� � ( � � ��$ $ � � � & � " � &
� ) � definition *

� ��� � � � ��� � � ���3$ " � � � � � & ���3$ � ��� � & � � � �	$ � � � ��" � & ��� � �	$�$ � � � & � " � &
� )�� � natural, functors *

� ��� � � � ��� � � ���3$ " � � � � � & ���3$ � ��� � & � � � �	$ $ � � � �	$ � ��" � & & � � & ��� �
� ) assumption: � ��� � � � � � � � � � � � � ��� � � � � , functors *

� ��� � � � ��� � � ���3$ " � � � � � & ���3$ � ��� � & � ��� �	$ �3$ � ��" � & � � & �	$ � �
��" � & ��� �

� ) 
 � natural (C.5) *
� ��� � � � ��� � � ���3$ " � � � � � & ���3$ � ��� � & ���3$�$ � ��" � & � � & � � � �	$ � �

��" � & ��� �
� )	� , � � natural *

� ��� � � � ��� � � ���3$ " � � � � � & ���3$ � � $ � � " � &�& ���3$ � ��� � & � ��� �	$ � �
��" � & ��� �

� ) assumption: � ��
 � � � � � � � � � � � � ��
 � � � � , functors *
� ��� � � � ��� � � ���3$ � � �3$ � � " � &�& ���3$ " � � � �

& ���3$ � ��� � & � � � �	$ � �
� " � & ��� �

� ) 
 � natural (C.6) *
� ��� � � � ��� �3$ � � $ � � " � &�& ��� � � ���3$ " � � � �

& ���3$ � ��� � & � � � �	$ � �
� " � & ��� �

� )	� natural *
� ��� �3$ $ � � � & � " � & ��� � � � ��� � � ���3$ " � � � �

& ���3$ � ��� � & � ��� �	$ � �
� " � & ��� �

� )�� natural (C.16) *
�3$ $ � � � & � " � & � � ��� � � � ��� � � ���3$ " � � � �

& ���3$ � ��� � & � � � �	$ � �
� " � & ��� �

� ) � definition *



1. A (BI)CATEGORY OF COMPONENTS 151

�3$ $ � � � & � " � & � �
��( �

Finally notice that
� � � preserves seeds because$ � � � & � ��( � � $ � � � & ��� �


 � �

 � � � � �


 � � �

 ����� � � 
 � � � 
 � � � � ( � �

We still have to show the existence of natural isomorphisms
� � ! � ! � ! � � � � ! � ! �

� $ � � ! � ! �
� � � & � � � � ! � ! � � $ � � � � � ! � ! �

&
� � ! � � � � ! � ! � � $ � ���	� � � � � & � � � �
� � ! � � � � ! � ! � � $ � � ��� ��� � � & � � � �

whose components are invertible 2-cells
�

� ! � ! � �
$ � � � & � 
 

� � � $ � � 
 &

� �
� � ���	� � � � 

� ��

�
� � � � ���	� � 
 � �

for all components � , � and 
 of the appropriate types. Our task is simplified by the fact that
each of these 2-cells is a component of a natural isomorphism in ����� : respectively, associativ-
ity, right and left units. For example,

�
� ! � ! � amounts to

� "$#
!
"%&
!
"
� in ����� . As a consequence,

the coherence conditions hold trivially. Therefore, we are left with proving that such arrows
are in fact 2-cells in

� � � . Clearly, in all three cases seeds are preserved. We check, now, the
comorphism condition for the right unit, � . The proofs of the two remaining cases (concerning�
and

�
) are deferred to [Appendix D, page 340].

Let � � � 

� �
be a component. The proof that � (more exactly, � " # ) is a comorphism

from
� ��� � � � � to � amounts to show the commutativity of the following diagram

$ � � �
�
&

������� �
���
#
��

�
// �

� � #
��

�3$ $ � � �
�
& � � & � � # � � � � ( � // �3$ �

�
� � & �

i.e.,
�3$ � � " � & � � � ��
���� � ( � � � �

� � , or, as noted above,
�3$ � � " � & � � ��
���� � ( � � � �

��$ � � " � &
. Thus

�3$ � � " � & � � � 
���� � ( �

� ) � definition *
�3$ � � " � & � � ��� � � � ��� � � ���3$ " � � � �

& ���3$ � ��� � & � � � �	$ � � " � & ��� �
� )�� strong (C.18) *

�3$ � � " � & � � ��� � � � ��� � � ���3$ " � � � �
& ���3$ � ��� � & ��� ��� �

� )�� and � natural (C.16) and (C.17) *
� ��� ���3$ � ��" � & ��� � � � � � �	$ " � � �

�
& ��� ��� � ��� �

� ) monad associativity (C.15) and � � � � � � *



152 5. COMPONENTS AS ARROWS

�3$ � � " � & ��� � � � � � �	$ " � � �
�
& ���

� ) routine: � � � � � � � � � � � *
�3$ � � " � & � � � ��$ " � � �

�
& ���

� ) 
 � unit (C.2) *
� �	$ " � � � �

& ���
� ) � natural *
�

�
� � ���

� ) routine: � � � � � � � � *
�

�
�	$ � � " � &

+

5. REMARK. Recognising that components form a bicategory, amounts not only
to define the first two combinators of the component’s calculus, but also to set up
its basic laws. Recall from §3.24 that the graph of a comorphism is a bisimulation.
Therefore, the existence of a seed preserving comorphism between two components
makes them � � -bisimilar. That is exactly what we have done in the proof above,
leading to the following laws, for appropriately typed components � , � and � :

��� ��� � � � � � � �
� ��� ��� � (5.4)�
� � � 	 � � � � �

�
� � � 	 (5.5)

6. BEHAVIOUR. The coalgebraic specification of a component describes immediate
reactions to possible state/input configurations. Its extension in time becomes the
component’s behaviour. Formally, the behaviour � � � 	 
 of a component � is computed
by applying the induced anamorphism (§3.33) to the seed value of � . I.e.,

� � � 	 
 � � � �
�
	 
 �
�

Behaviours organise themselves in a category ��� � , or, simply, ��� , whose objects
are sets and each arrow

� � � �	� � is an element of
�
� � � , the carrier of the final

coalgebra � � � � for functor �
� ��� � � 	 � . To define composition in ��� , first note that

the definition of �
�
�
�

in §2 actually introduces an operator — � — between coalgebras:
�
�
�
�

could actually have been written as �
�
� �
�
. Therefore, we may define composition



1. A (BI)CATEGORY OF COMPONENTS 153

in ��� by a family of combinators, for each � , � and � ,

�
� � � � �

��� � ���
�
� 
 � 	 �

���
�
� 
 � 	 � � ���

�
� 
 � 	

�
� � � � �

��� � � � � � � � � � � � �
	 


On the other hand, identities are given by

��� � � � ��� � � �	� � �
�
� 
 � 	

��� ��� � ��� � � � ���  #" � � 	 
 	
i.e., the behaviour of component ��� � � � , for each � .

7. REMARK. It should be observed how the structure of � � mirrors whatever
structure ��� possesses. In fact, the former is isomorphic to a sub-(bi)category of
the latter whose arrows are components defined over the corresponding final coal-
gebra. Alternatively, we may think of ��� as constructed by quotienting ��� by the
greatest � � -bisimulation. However, as final coalgebras are fully abstract with respect
to bisimulation (§3.35), the bicategorical structure collapses: the hom-categories be-
come simply hom-sets. Moreover, as discussed in the next section, some tensors in
��� � become universal constructions in ��� , for some particular instances of � . That
is also the reason why properties holding in ��� up to bisimulation, do hold ‘on the
nose’ in the behaviours category. For example, we may rephrase laws (5.4) and (5.5),
for suitably typed behaviours

�
,
�

and
�
, in ��� , as

��� ��� � � � � � � � � ��� ��� ��
� � � 	 � � � � �

� � � � 	

Prior to this, however, we have to check the lemma which follows.

8. LEMMA. ��� , as defined in §6, is a category and construction � � 	 
 can be made
into a 2-functor from ��� to ��� .

Proof. Let
� � � 
 � �

be a behaviour. Then,
� � � ���	� �

� ) definition of � in Bh *
� $ � � ! � � � ���	� � & � � � 
�� 


� ) law (5.4), ana definition *
� $ � � ! � & � �

� ) ana reflection (3.8) *



154 5. COMPONENTS AS ARROWS

�

A similar calculation establishes
� ���	� � � � � �

. On the other hand, for suitably typed be-
haviours

�
,
�

and
�
, $ � � � & � �

� ) definition of � in Bh *
� $�$ � � ! � � � � ! �

& � � � ! � & � ��� � 
 � 
�

� 

� ) law (5.5), ana definition *

� $ � � ! � � $ � � ! � � � � ! � & & � � � 
 � � 
���
 

� ) definition of � in Bh *

� � $ � � � &
So
���

is as a category. Now, to establish
� $ & �

as a 2-functor (§B.12 and 13), take the identity
on objects as the object correspondence and, for each pair of objects � � 
�� 
 a functor � � ! � �
� � $ � 
�� & 

� ����$ � 
�� &

such that � � ! � � � � $ �
�
& � � � and � � ! � � � " � �

� � � , for every
� � $ � 
�� &

object � and arrow
�

. Note that each
���	$ � 
�� &

is simply a set (i.e., a discrete category).
Therefore, checking the functoriality conditions for � � ! � becomes trivial. Finally, because
of the bicategorical structure collapse, the functorial laws hold as effective equalities, and not
only up to a natural transformation, i.e.,

� $ � ���	�
�
� � & � � � ��� � �

���
� $ $ � � � � � & & � � � $ � & � � ��� � $ � & �

The first equality is a direct consequence of the definition of
� ��� �

�
���

. To establish the second
one, recall, from the proof of §4, that, for composable components � and � , the product of two
comorphisms with source in � and � , respectively, to, say, � � and � � , is still a comorphism from
the composite � � � to � � � � � . In particular, � � ! � � � � ! �

� $�� $ �
�
& � � � $ � �

& � & � �3$�� $ � �
& � � � $ � �

& � & � �
��( � .

Therefore, the fusion law for anamorphisms justifies the following calculation
� $�$ � � � � � & & �

� )�� definition *
� $ �

��( �
& � ��� �


 � �



� ) ana fusion (3.9) *
� $ � � ! � � � � ! �

& � �	$�� $ �
�
& � � � $ � �

& � & ��� �

 � �



� ) � definition in �
	 *

� ��� �	$�� $ � �
& � � � $ � �

& � & � � �

 � �



� ) function application *

� ��� � � $ � �
& � � �


 � $ � �
& � � �






2. A COMPONENT ALGEBRA 155

� )�� definition *
� $ � & � � ��� � $ � & �

+

2. A Component Algebra

9. This section investigates the structure of ��� � by introducing an algebra of � � -
components. The algebra is parametric on the behaviour model. Therefore, the defini-
tion of its combinators relies on generic properties of the strong monad � . It is shown
that they are either lax endofunctors (§B.13) in ��� � or simply functors between fam-
ilies of hom-categories. Their definition carries naturally to ��� � , where they show up
as behaviour connectives, defining a particular (typed) ‘process’ algebra.

Let us begin with the simple observation that functions can be regarded as a par-
ticular case of components, whose interfaces are given by their domain and codomain
types. Formally,

10. REPRESENTATION OF FUNCTIONS. A function � � � � � � is represented in
��� as �

� � � 
 	 � � 
 ��� ��� �
i.e., as a coalgebra over � whose action is given by the currying of

��� ��� � � � �
� � �

�
// � � �

� � � � � �
// �
�
� � � 	

For example, taking � as the finite powerset monad, we get

��� ��� 	 � � � � � 
 	 
 ���'� �
In fact, any

� ���
function lifts to ��� and keeps some, but not usually all, of its proper-

ties. Some cases are discussed in §§13, 14 and 15. First, however, we prove that, up
to bisimulation, function lifting is functorial.

11. LEMMA. Let �
� � �	� � and � � � �	� � be functions. Then,�

��� � � �
�
�
� �

�
� � (5.6)� � � � � � ��� ��� � (5.7)

Proof. Equation (5.7) is an immediate consequence of the definition: it can actually be written
as an equality. On the other hand, equation (5.6) is proved by showing that � � � � � � 

� � is



156 5. COMPONENTS AS ARROWS

a comorphism from
� � � � � � � to

� � � � � . As seeds are trivially preserved (because � � � 
 � 
 � �
),

� is also a
� �

arrow and we are done. Therefore, all that remains to be proved is
�3$ � � " � & � � ��� � � � ��� � � ���3$ " � � ��� � � & ���3$ � ��� � & � ��� �	$ ��� � � ��" � & ��� �

� ) definition *
�3$ � � " � & � � ��� � � � ��� � � ���3$ " � � � �	$ " � � � & & ���3$ � ��� � & � � � �	$ � �	$ " � � � & ��" � & ��� �

� )�� natural (C.16) *
� ��� �3$ � � " � & ��� � � � ��� � � ���3$ " � � � �	$ " � � � & & � �3$ � ��� � & � � � �	$ � �	$ " � � � & ��" � & ��� �

� ) routine: � � � � � � � � � � � *
� ��� � � � � � � ���3$ " � � � ��$ " � � � & & ���3$ � � � � & � ��� �	$ � �	$ " � � � & ��" � & ��� �

� ) 
 � unit (C.2) *
� ��� � ���3$ " � � � �	$ " � � � &�& ���3$ � ��� � & � ��� �	$ � ��$ " � � � & � " � & ��� �

� ) � natural *
� ��� � ���3$ " � � � & ��� � ���3$ � ��� � & � � � �	$ � �	$ " � � � & ��" � & ��� �

� ) monad unit (C.14) *
�3$ " � � � & ��� � ���3$ � ��� � & � � � �	$ � �	$ " � � � & � " � & ��� �

� ) routine: � � � � � � � � � � � � � � � , functors *
�3$ " � � � & ���'	 ���3$ � ��" � & � � � �	$ � � " � & �	$�$ " � � � & � " � & ��� �

� )�� strong (C.18) *
�3$ " � � � & ���'	 ���3$ � ��" � & ��� �	$�$ " � � � & � " � & ��� �

� )�� natural (C.17) *
� �	$ " � � � & �
	 �	$ � ��" � & �	$�$ " � � � & � " � & ��� �

� ) routine: � � � ��� � � � � � � � � � � � � � , � � natural *
� �	$ " � � � & �	$ � ��" � & ��� � ��� � �	$ " � � � &

� )�� � � � � � *
� �	$ " � � � & �	$ � ��" � & �	$ " � � � &

� ) � functor *
� �	$ " � � $ � � � & & �	$ � � " � &

� ) definition *
��� � � � � �	$ � � " � &

+



2. A COMPONENT ALGEBRA 157

12. REMARK. Note the irrelevance of the state space in any component intended
to represent a function. In fact, consider an alternative representation of � in ��� as
� � � 
 � � � 


�
�
� � �

� � � � � 	 � , for an arbitrary set
�

and � � �
. Then, � � �

�
� � ,

witnessed by * � ��� �	� � . Clearly, * � preserves seeds and

�
naturality entails�

� � � �
�
* � � � 	 � �

�
* � � � � 	 �

�
�
� � �

� � � � � 	
which establishes * � as a comorphism from � � to

�
� � .

13. LEMMA. Isomorphisms, split monos and split epis lift to ��� as, respectively,
isomorphisms, split monos and split epis.

Proof. Let
� � 
 

� � be a � � � -isomorphism. Then

� � � � � � � �
� ) law (5.6) *

� � � � � �
� ) � isomorphism *

� " � $ �

� ) law (5.7) *� ���	� $
Conversely,

� � � � � � � � � � � � � � � � � " � " � � � ���	� " . For
�

a split epi (respectively, a split
mono) consider the first (respectively, second) part of the proof above, taking

� �
as a section

(respectively, a retraction) of
�

. This result is broadly applicable as every epi and every mono
with non empty source split in � ��� . +

14. INITIAL OBJECT. Lifting canonical
� ���

arrows to ��� is a simple way to ex-
plore the structure of ��� itself. For instance, consider the lifting of � �

� � � � �
(§2.6). Clearly, � � keeps its naturality as, for any �

� � � � � , the following diagram
commutes up to bisimulation,

� � // �

�

��� � �
OO

����� �

??��������

because both
�
� �
�

and
�
� � � are the inert components: the absence of input makes

reaction impossible. More formally, let us prove that�
� �
� � � �

�
� � � (5.8)



158 5. COMPONENTS AS ARROWS

holds.

Proof. We will show that
� � � "$# � � � �

�


� �

is an arrow in
� �

from
��� � � � � to

� � . Seeds
being trivially preserved (because

� � ��
 � �

 � � � � � � � � ), what remains to be shown is the

comorphism condition, i.e., the commutativity of the following diagram:

� � �
������

��� � #
��

�
// �

�	��� � �
��

�3$ $ � � �
�
& � � &�
 � # � � � ��(
� // �3$ � � � &�


Thus,

�3$ � � " � & 
 � � � � � � ( �

� ) � ��� � �	� � 	 for any function � � � ��� � ���1*
�3$ � � " � & 
 � � � # # � � "$# ( � � ( ��� � # � � "$# (

� ) exponential absorption (2.40) *
�3$ � � " � & � � � # # � � "$# ( � � ( ��� � # � � "$# (

� ) initiality (2.5) *
� � # � � � ( ��� � � � "$#

� ) � � natural *
� � # � � � ( ��� � � �	$�� # � � " # ( ��" � &

� ) � ��� � �	� � 	 for any function � � � ��� � ��� and � ��� definition *
� � � � � �	$ � # � � " # ( � " � &

� ) exponential fusion (2.39) *
� � � � � � � � � "$#

+

Equation (5.8) lifts to an equality in ��� , as does any other bisimulation equation in
��� , as discussed in §6. Therefore, � is the initial object in ��� .



2. A COMPONENT ALGEBRA 159

15. LIFTING * . A different situation occurs when lifting * �
� � � � � because

naturality is lost. In fact, the following diagram fails to commute for non trivial �

� � //

� � � �
��

�

� � � ����������

�
To check this, take � as the finite powerset monad. Clearly, � �

�
* � � will deadlock

whenever � does. By ‘deadlocking’ we mean the empty set of responses is produced.
On the other hand,

�
* �
�

never deadlocks as this is prevented by the definition of func-
tion lifting in §10. Therefore, the two components are not bisimilar and so � does not
become the final object in � � � , for non trivial monads. It is, however, the final object
in the behaviours category of deterministic components (i.e., for � � ���

).

16. WIRES. Components over � which are defined from identities using only the
structural properties of the underlying category — i.e., arrows associated to products,
coproducts and exponentials — are called wires. Their role is essentially to provide
‘interconnection buses’ between other components. As it will become evident soon,
the fact that ��� has interface types as objects, often requires wiring in order to perform
a legal connection.

Typical examples of wires are the liftings of some canonical isomorphisms —
like � , � ,

�
or � . Connecting components through isomorphisms leads to a particularly

simple notion of interchangeablity (to be discussed later in §7.18): bisimilarity up to
an isomorphic rearranging of the interface (referred to as ‘up to isomorphic wiring’ in
the sequel). Clearly, however, some components are bisimilar only up to non isomor-
phic wiring. Examples of this last sort of connectors are the liftings of embeddings,
projections, and, in particular, codiagonals and diagonals given by

� � � � � � � � � � � � � 
 � � � 

� � � �	� � � � � 
 � � � 
 � � � �

used to merge input and replicate output types. For example, a component �
� � �	�

� can be prepared to accept input from different sources and, simultaneously, to de-
liver output to distinct targets by performing the composition�

� � � �
�
�
� �

which is typed as � � � �	� � � �

17. WRAPPING. The pre- and post-composition of a component with ��� -lifted func-
tions, can be encapsulated in an unique combinator, called wrapping, which may



160 5. COMPONENTS AS ARROWS

be thought of as an extension of the renaming connective found in process calculi
(as seen in chapter 4). Let �

� � �	� � be a component and consider functions
� � � � � � � and �

� � �	� � � . Component � wrapped by � and � is denoted by
� � � 
 � 
 and has type � � � � � � . It is defined by input pre-composition with � and
output post-composition with � . Formally, the wrapping combinator is a functor

��� � 
 � 
 � ��� � � 
 � 	 � � ��� � � � 
 � �
	

which is the identity on morphisms and maps a component 
 �
�
� �

�

 �
�
� into 
 �

�
�

�

�

 �
�
� ��� ��� � , where

�
�
� ��� ��� � �

�
� � �

� � �
�� � � � � �

�
� � � �

� � � � � �
�
�

�
� � 	 � �

� � �
� �

� � �	� � � �
�
�

�
� � �

	

18. LEMMA. For any functions � � � � � � � and �
� � � � � � , the wrapping

combinator ��� � 
 � 
 is a functor from ���
�
� 
 � 	 to ���

�
� � 
 � �

	
.

Proof. Having defined

 � � 
 � � as the identity on morphisms, the functoriality conditions hold

trivially once proved that any
� � $ � 
�� &

-arrow
� � � 

� � is also a

� � $ � � 
�� � & -arrow from
� � � 
 � � to � � � 
 � � . Therefore,

� � � � ! � � �	$ � � " � &
� ) wrapping definition *

�3$ " � � � & � � �
�	$ " � � � & �	$ � � " � &

� ) assumption: � � � � � � *
�3$ " � � � & ���3$ � � " � & � �

�
�	$ " � � � &

� ) � functor, identity *
�3$ � ��" � & ���3$ " � � � & � � �

�	$ " � � � &
� ) wrapping definition *

�3$ � ��" � & � �
� � � ! � �

+

19. LEMMA. For any component �
� � � � � and functions � � � � � � � , � � ��� �	�

� � , � � � � � � � and � �
� � � �	� � ,�
� � � 
 � 
 	 � � � 
 � � 
 � � � �
� � � 
 � � � � 
 (5.9)



2. A COMPONENT ALGEBRA 161

Proof.

� #
� � � ! � � ( � � � ! � � �

� ) wrapping definition *
�3$ " � � � � & � � � � � ! � � �	$ " � � � � &

� ) wrapping definition *
�3$ " � � � � & ���3$ " � � � & � � �

�	$ " � � � & �	$ " � � � � &
� ) functors *

�3$ " � � $ � � � � & & � � �
�	$ " � � $%� � � � & &

� ) wrapping definition *
�

� � � � � � ! � � � � �
+

20. LEMMA. For any component �
� ��� � � and functions � � � � � � � and

�
� � � � � � ,

� � � 
 � 
 �
�
� � � � �

�
�
�

(5.10)

Proof. [Appendix D, page 344]. +

21. SPECIAL COMPONENTS. Some simple components arise by lifting elementary
functions to ��� . We have already remarked in §14 that the lifting of the canonical
arrow associated to the initial

�����
object plays the role of an inert component, unable

to react to the outside world. It seems convenient to give this component a name:

� � � �
� � �

�
� � � (5.11)

In particular, we define the � � � component as

� � � � ��� � �
� � �

�
� � � �

� � � � � (5.12)

typed as � � � � � � � � . Note that any component �
� � �	� � can be made inert by

wrapping. For example,
� � � � 
�* � 
 � � � � �

� �
(5.13)



162 5. COMPONENTS AS ARROWS

Proof.

� � � � 
 � � �

� ) law (5.10) *
��� � � � � � � � � �

� ) law (5.8) *
��� � � � � � � �

� ) law (5.6) *
� � � � � � �

� ) initiality (2.5) *
��� � �

� ) definition *
" ��� � � �

+
A somewhat dual role is played by component

� ��� � � � � � � � (5.14)

Notice that � ��� � � � �	� � is always willing to propagate an unstructured stimulus
(e.g., the push of a button) leading to a (similarly) unstructured reaction (e.g., exciting
a led).

22. EXTERNAL CHOICE. Components can be aggregated in a number of ways
different ways, besides the ‘pipeline’ composition already discussed in §2. In the
following paragraphs we shall consider three such combinators and characterise them
as lax functors in ��� .

The first composition pattern to be considered is external choice. Let �
� � �	� �

and � � � � � � be two components defined by 
 �
�
� �

�

 �
�
� and 
 � � � � � 
 � � � ,

respectively. When interacting with the composed system, environment will be al-
lowed to choose either to input a value of type � or one of type

�
, which will trigger

the corresponding component (� or � , respectively), producing the associated output.
This is pictured as

��

��	�

��

�

� �

�
�

��	�

��

�

� �	�
�� �
�

��	�

��

� � �

� � �



2. A COMPONENT ALGEBRA 163

A formal definition follows.

23. DEFINITION. External choice is defined as a lax functor
� � ��� � ����� � ��� ,

which consists of
� An action on objects given by

� � � � � � �

� A family of functors
�

� � � � � � �
� ���

�
� 
 � 	 � ��� � � 
 � 	 �	� ��� � � � � 
 � � � 	

yielding
� � � � 
 
 �

�

 � � � � �

�
� � � 
 �

�
� � �

where

�
�
� � � �

�
� � � � � � � � 	

�
� //

�

�
� � � � � � �

�
� � � � �

� � � �
// �

�
� � � � � � �

�
� � � � � � 	��� � � � �

� � � � �
// �

�
�

�
� � 	 � � � � �

�
�
�
�
� � � � 	

� � �
� �

// �
�
�

�
� � � � � 	 � �

�
�

�
� � � � � � 	 	

� � � � � � � // �
�
�

�
� � � � � 	 � �

�
�

�
� � � � � 	� � �

� � � � � � � � �
� � � � ��� �

// �
�
�

�
� � � � � � � � 	 	

and which maps pairs of arrows 
 � ��
 � ��� into
�
�
� �

� .

24. LEMMA. Combinator
�

is a lax functor in ��� . In particular, for any components
� , � , � � and � � , �

� � � �
	 �
�
� � � � 	 �

�
�
� � 	 �

�
� � � � � 	 (5.15)��� ��� � � � � � ��� ��� � � ��� ��� � � (5.16)

Proof. The following steps have to be undertaken:
� For any sets

�
,
�

, � and � , � � ! � ! � ! � is a functor from
� � $ � 
�� &'� � ��$

�

 � & to� ��$ � 
 �


�� 
 � & . Let
� � � 

� � � and � � � 
 � � � be component morphisms

relating � 
 � � � � 

� �
and � 
 � � � � 
 � � , respectively. Having defined

� � � as� � � , the functoriality conditions arise directly from product functoriality. In fact,$ � � � � & � $ � � � � & � $ � � � � & � $ � � � � & � $ � � � � � & � $ � � � & � $ � � � � � & � $ � � � & .
Similarly, 
 � � 
 � � 
 �

� 
 � � " � " # � " � " & � 
 " # � " & � 
 ��� � . One has, however,



164 5. COMPONENTS AS ARROWS

to check that
� � � is a

� �
morphism from � � � to � � � � � . This is proved in

[Appendix D, page 346].
� For each tuple � � 
 � � 
 � 
 � � 
�� 
�� � 
 of objects, there exists a natural transformation

� � � � � & � � ! �
&
� � ! �

& � � � $ � � ! � ! � � ! � �
� � � ! � ! � � ! � �

& � � � � ! � ! � � ! � � � $ � � ! � ! �
� � � � ! � � ! � �

&
whose component � � ! � ! � � ! � � , for each � � � 

� �

, � � � 
 � �
, � � � � � 

�� � and � � � � � 

� � � is a

� �
2-cell, i.e., a seed preserving comorphism from$ � � � & � $ � � � � � & to

$ � � � � & � $ � � � � & . Let us take each � �"! � ! � � ! � � as the component
� "$# ! "%& ! " # � ! " & � � $ �

�
� �

�
& � $ �

� � � �
� � & 
 � $ �

�
� �

� � & � $ �
�
� �

� � & of the
� ��� natural isomorphism � . Then, naturality comes for free and seed preservation
is trivially verified. The comorphism condition, however, has to be checked (see
[Appendix D, page 346]). Also note that coherence is easily verified since the action
of both � and � on 2-cells is function product. Therefore,

$ �
�
� & � � � $ " � � � & �$ � � � & � � �	$ " � � � & � � �	$ � ��" � & ��� � � �	$ � � " � & ��� .

� Finally, for each pair � � 
 � � 
 of objects, there exists a natural transformation

� � � � ���	�
� � � � �

� � � ! � � ! � ! � � �
$ � ���	�

�
��� ���	�

� �
&

i.e., a
� �

2-cell from
� ��� �

� � � � to
� ���	�

� � � ���	� � � . � � is then a seed preserving
comorphism connecting carriers

� ��
���� � �

� � � � to
� ��
���� � � � 
���� � � � � � � . By

taking � � as � �� � � 
 � � � �
, naturality, seed preservation and coherence are

immediately established. That � �� satisfies the comorphism condition is shown in
[Appendix D, page 346].

+

25. LEMMA. Let � and � be functions. Then
�
� � �

�
�
�
�

�
� � �

�
(5.17)

Proof. [Appendix D, page 356]. +

26. LEMMA. Up to isomorphic wiring,
�

is a symmetric tensor product in each
hom-category, with � � � as unit, i.e.,�

� � � 	 � � �
�
� �

�
� � � 	 	 � � � 
 � � � 
 (5.18)

� � � � � � � � �

� 
 �

� � 
 (5.19)
� � � � � � � � � � 
 � � � 
 (5.20)
� � � �

�
� � � 	 � � � 
 � � 
 (5.21)



2. A COMPONENT ALGEBRA 165

Proof. In general, to prove a bisimulation equation � � � , a function
� � �

�


� �

� has to
be identified and shown to form a seed preserving comorphism. Therefore, equations (5.18),
(5.19), (5.20) and (5.21) are proved by establishing as

� �
2-cells the � � � natural isomorphisms�

, � , �
and

	
, respectively. Seed preservation is obvious in all cases. The verification of the

comorphism conditions can be found in [Appendix D, page 357]. Notice that (5.20) can be
obtained from (5.19), and the other way round, using � commutativity (5.21). In appendix D,
however, we give a direct proof.

+

27. REMARK. Laws (5.18) to (5.21) can be alternatively stated as the observa-
tion that the canonical

� ���
isomorphisms � � , �

� ,
�

� and � � , once lifted to ��� , keep
their naturality up to bisimulation. Consider, for example, the case of �

� . Naturality
preservation means that

� � � � � � 	 �
�

�

�
�
�

�
�

�
� � �

� � Leibniz �� � � � � � 	 �
�

�

�
� �

�
�

� �
�
�

�
�

�
� � � �

�
�

� �
�

� � ��� isomorphism and lemma §13 �� � � � � � 	 �
�

�

�
� � � �

�
�

� �
�

which, by lemma §20, equivales to equation (5.19).
As a general remark, note that component laws admit different formulations de-

pending on wiring. For example, equations (5.19) and (5.20) may also be presented
as � � � � � � 	 � �

� � 
 �

� 
 � � �
�
� � � � � 	 � � � � 
 � � 


Finally observe that in the lemma above, and wherever the expression ‘up to isomor-
phic wiring’ is used, the bisimulation involved is witnessed by a 2-cell isomorphism.

28. AN EITHER CONSTRUCTION. After studying the choice combinator in some
detail, the question arises as whether there is a counterpart in ��� to the either con-
struction in

� ���
. The answer is only partly positive. Let �

� � �	� � and � ��� �	� �
be two components sharing a common output type � , and define

� � 
 � 
 � �
� � � 	 �

�
� �



166 5. COMPONENTS AS ARROWS

Lemma §29 below shows that the following diagram commutes up to bisimulation:

�

� ""EEEEEEEEE

� � � �
// � � �

�
�
�
�
�

��

�

�
||yyyyyyyyy

� � � �
oo

�
i.e.,

�
� � � � � � 
 � 
 � � (5.22)�
� � � � � � 
 � 
 � � (5.23)

However, � � 
 � 
 is not the unique arrow making the diagram to commute. Therefore,

29. LEMMA. The choice combinator,
�

, lifts to a weak coproduct in � � .

Proof. A weak coproduct is defined like a coproduct but for the uniqueness of the mediating
arrow (the either construction). Existence, i.e., the validity of (5.22) and (5.23), is proved in
[Appendix D, page 365]. The lemma follows by lifting the diagram to

���
.

What we would like to stress here is the impossibility of turning either into an universal
construction in

���
. The basic observation is that codiagonal � does not keep its naturality

when lifted to
� �

. In fact, a counterexample can be found even in the simple setting of
deterministic components (i.e., with

� � � �
). Let � � � � ��� 
 �

�

 � � 

���

be such
that, upon receiving an input

	
,
	

is added to the current state value and the result sent to the
output. Consider the following sequence of inputs (of type

� 
 �
): � � � � ��� 
�� ��� 
�� �	� 
 
 
 
 
 .

The reaction to � of
�

�
� � $ � � � & is � � 
 � 
�
�
 
 
�
 
 while � � � � � , resorting only to one copy of

� , produces � � 
���
 
�
 
 
�
 
 
 . +

30. Failing universality means there is not a fusion law for
�

, even in the determinis-
tic case. However, cancellation, reflection and absorption laws do hold strictly in ���
and, up to bisimulation, in ��� . Cancellation has just been proved in §29. The other
two are considered in the following lemma.

31. LEMMA. For suitably typed components � , � , � � and � � ,
� � � � � 
 � � � � 
 � ��� ��� � � � (5.24)�

� � � 	 � � � � 
 � � 
 � � �
� � � 
 � � � � 
 (5.25)



2. A COMPONENT ALGEBRA 167

Proof.
� � � � � 
 � � � � �

� ) definition of either in � � *
$ � � � � � � � � � & � � � �

� ) law (5.17) *
� � � 
 � � � � � � �

� ) law (5.6) *
� $ � � 
 � � & � � �

� )�� absorption *
� ��� � 
�� � � �

� )�� reflection *
� " � � & � �

� ) law (5.7) *� ���	� � & �
which establishes (5.24). For equation (5.25) consider,$ � � � & � � � � 
 ��� �

� ) definition of either in � � *
$ � � � & � $�$ � � � � � & � � � � &

� ) � associative (5.5) *
$ $ � � � & � $ � � � � � & & � � � �

� )�� functor (5.15) *
$ $ � � � � & � $ � � ��� &�& � � � �

� ) definition of either in � � *
� � � � � 
 � � � � �

+

32. REMARK. As expected, the
�

combinator can be written in terms of an either
construction on components. In fact, for �

� � �	� � and � � � � � � , we obtain
� � � � � � � � � � � 
 �
� � � � � 
 (5.26)



168 5. COMPONENTS AS ARROWS

Proof.

� � �
� ) law (5.4) *
$ � � � & � � ���	� � &

�
� )�� reflection (5.24) *$ � � � & � � � � � � 
 � � � � �
� )�� absorption (5.25) *

� � � � � � � 
 � � � � � � �
+

This leads to the basic observation that, once lifted to ��� , ����� coproduct embeddings
keep their naturality, i.e., �

� � � �
�
� � � 	 � � �

�
� � � (5.27)�

� � � �
�
� � � 	 � � �

�
� � � (5.28)

Proof.
� � � � � $ � � � &

� ) law (5.26) *
� � � � � � � � � � � � 
 � � � � � � �

� )�� cancellation (5.22) *
� � � � � �

+
A direct corollary of this fact is the following ‘idempotency’ result:

� �
�
� � � �

�
� � � �

�
� � � 	 (5.29)

33. PARALLEL. After the study of the choice combinator we proceed to that of the
parallel combinator. This corresponds to a synchronous product: both components
are executed simultaneously when triggered by a pair of input values. Note, however,
that the behaviour effect, captured by monad � , propagates. For example, if � can
express component failure and one of the arguments fails, the product will fail as well.
Considering components �

� � �	� � and �
� � � � � , this is pictured as follows



2. A COMPONENT ALGEBRA 169

��

��	�

��

�

� �
�
�

��	�

��

�

� �	�
��
� �

��	�

��

� � �

� � �

Formally,

34. DEFINITION. The parallel combinator is defined as a lax functor
� � ��� � ��� �	�

��� , consisting of
� An action on objects given by

� � � � � � �

� A family of functors
�
� � � �

� ���
�
� 
 � 	 � ��� � � 
 � 	 � � ��� � � � � 
 � � � 	

yielding
� � � � 
 
 �

�

 � � � � �

�
� � � 
 �

�
� � �

where

�
�
� � � �

�
� � � � � � � � 	 �

// �

�
� � �

�
� � � � 	��� � � �

// �
�
�

�
� � 	 � �

�
� � � � 	

� �

// �
�
�

�
� � � � � � � � 	 	

� � // �
�
�

�
� � � � � � � � 	 	

and maps pairs of arrows 
 � ��
 � ��� into
�
�
� �

� .

35. LEMMA. Combinator
�

is a lax functor in ��� � , for � a commutative monad. In
particular, for any components � , � , � � and � � ,�

� � � �
	 �
�
� � � � 	 �

�
�
� � 	 �

�
� � � � � 	 (5.30)��� ��� � � � � � ��� ��� � � ��� ��� � � (5.31)

Proof. The argument structure is similar to the one in the proof of Lemma §24. We first check
that, for any sets

�
,
�

, � and � , � � ! � ! � ! � is a functor from
� � $ � 
�� & � � � $

�

 � & to

� � $ � �
�

�� � � & . The functoriality conditions come, again, directly from product functoriality. It

remains to be proved that, given
� � � 

� � � and � � � 
 � � � , � � � is a

� �
-morphism from

��� � to � � � � � . The proof can be found in [Appendix D, page 367].



170 5. COMPONENTS AS ARROWS

Next one has check the existence, for each tuple � � 
 � � 
 � 
 � � 
�� 
�� � 
 of objects, of a
natural transformation

��� � � � � � � ! � � � � ! � � � � �
$
� � ! � ! � � ! � �

�
� � ! � ! � � ! � �

& � � � � ! � ! � � ! � � � $ � � ! � ! �
� � � � ! � � ! � �

&
whose components � �"! � ! � � ! � � , for each � � � 

� �

, � � � 

� �
, � � � � � 

� � � and

� � � � � 

� � � are
� �

2-cells, i.e., seed preserving comorphisms from
$ � � � & � $ � � �

� � & to
$ � � � � & � $ � � � � & . Similarly, for each pair � � 
 � � 
 of objects, we look for a natural

transformation

��� � � ���	�
� � � � �

� � � ! � � ! � ! � � �
$ � ���	�

�
��� ���	�

� �
&

��� must be a seed preserving comorphism connecting the carriers
� ��
���� ��� � � � � to

� ��
���� � � � 
���� � � �� � �
.

As before, we take each � � ! � ! � � ! � � as the component � "$#
!
"%&
!
" # � ! " & � � $ �

�
� �

�
& � $ �

� � ��
� � & 

�/$ �

�
� �

� � & � $ �
�
� �

� � & of � ��� natural isomorphism � , and ��� as � �� � � 

�
� � �

. Therefore, naturality, seed preservation and coherence in both cases are immediately
established. In [Appendix D, page 367] we prove the comorphism conditions. Note that the
commutativity of

�
is essential to establish � � ! � ! � � ! � � as a comorphism. +

36. LEMMA. Let � and � be functions. Then�
� � �

�
�
�
�

�
� � �

�
(5.32)

Proof. [Appendix D, page 370]. +

37. LEMMA. Up to isomorphic wiring and assuming the underlying monad � is
commutative,

�
is a symmetric tensor product in each hom-category, with � � � � as unit

and � � � as a zero element. Thus,�
� � � 	 � � �

�
� �

�
� � � 	 	 � � 
 � � 
 (5.33)

� � � �
�
� � � 	 � � 
 � 
 (5.34)

� ��� � � � � � � � 
 � � 
 (5.35)

� � � � � � � � � � �
� 
 �
�
� 
 (5.36)

Proof. The laws above match with the observation that canonical � ��� isomorphisms
�
, � , � and� �

, once lifted to
� �

, keep their naturality up to bisimulation. Bisimulation is established by
exhibiting a

� �
2-cell connecting both sides of each equation. This can be found in [Appen-

dix D, page 371].



2. A COMPONENT ALGEBRA 171

+

38. REMARK. In the lemma above, commutativity of the underlying monad � is
only required to prove law (5.34). Assuming this law, the ‘left’ versions of equations
(5.35) and (5.36), i.e.,

� � � � � � � � � � 
 � � 
 (5.37)
� � � � � � � � � � � � 
 � � � 
 (5.38)

arise directly. For example,

� � � ��� �
� � law (5.34) �� � ��� � � � 	 � � 
 � 

� � law (5.35) �

� � � 
 � � 
 � � 
 � 

� � law (5.9) �

� � � � � 
 � � � � 

� � routine: � � � � � and � � � � � � � �

� � � 
 � � 

Direct proofs of these equations can also be given, along arguments similar to the
ones used in the proof of the corresponding ‘right versions’ in §37. Therefore, their
validity does not depend on the underlying monad being commutative.

39. IS SPLIT DEFINABLE? A construction dual to the one discussed in §28 is cer-
tainly definable for

�
. For this purpose, let �

� � � � � and � � � �	� � be two
components sharing a common input type � and define


 � 
 � � � �
� � �

�
� � � 	

This construction, however, fails to be a real split as, in the general case, the following
diagram does not commute up to bisimulation,

�
�

{{wwwwwwwwww
�

##GGGGGGGGGG
�
�
�
� �

��
� � � �� ��� �oo

� ��� � // �



172 5. COMPONENTS AS ARROWS

To see why, consider one of the equations in the diagram, for example,


 � 
 � � � � ��� � � � (5.39)

and try to establish bisimilarity by checking if � � � �
�
� � � �	� �

�
is a comorphism.

A tentative calculation goes as follows:

�
�
�
� � � � 	 ��� �

�
�
� � � � ��� �

� � definitions �
�
�
�
� � ��� 	 � � � �

�
� �
�
�
�
�
�
� 	
� � �

� � � � � 	
� � routine: � � � � � � � � ��� �

� �
� � � � � � � �
�
� �
�
�
�
�
�
� 	
� � �

� � � � � 	
� � � � � � �

� �
� � �
� �
�
�
�
�
�
� 	
� � �

� � � � � 	
� � � �

�
� �
�
�
�
�
�
� 	
� � �

� � � � � 	
� � � cancellation �

�
�
� �
� � � �

� � � � � 	

� � routine: � � � � � � � � ��� �
�
�
�
�
�
� � �
� 	 �

� � � � � 	
� � routine: � � � 	 � � � �

�
�
�
�
�
� � � �
	

The problem arises in the step marked with a � , because equality � ��� � �
� � ��� does

not hold in general. It clearly holds for the identity and fails for � a non commutative
monad. Taking � as the powerset monad, the equality holds unless the left argument is
the empty set: for example, for non empty � ,

�
� � � � �

�
	 
 � 
 � � � � �� � � ��� 
 ��
 � � .

However, the diagram above commutes for the non empty powerset monad. This
expresses a nondeterministic behaviour which excludes the possibility of failure.

This seems to be the general rule concerning the existence of splits for compo-
nents based on commutative monads: the exclusion of failure. Intuitively, equation
(5.39) fails because the eventual failure of � propagates, leading to the failure of 
 � 
 � � .

It should be stressed that even in cases where cancellation fails (and consequently,
construction 
 � 
 � � can hardly be called a split) the following reflection and absorption



2. A COMPONENT ALGEBRA 173

laws hold, the latter only in ��� � for � a commutative monad:



�
�
� � 
 � �
� � � � ��� ��� � � � (5.40)


 � 
 � � � � � � � � � 	 � 
 �
� � � 
 � � � � � (5.41)

Proof. Let us check (5.40) in the first place:

� � � � � 
 � � � � 

� ) definition *

� � � � $ � � � � � � � � � &
� ) law (5.32) *

� � � � � � � � � � �
� ) law (5.6) *

� $ � � � � � & ��� �
� ) � absorption and identity in � � *� ���	� � � �

Concerning (5.41):

� � 
 � 
 � $ � � � ��� &
� ) definition *

� � � � $ � � � & � $ � � � ��� &
� ) laws (5.5) and (5.30) *

� � � � $�$ � � � � & � $ � � ��� & &
� ) definition *

� � � � � 
 � � � � 

Notice that law (5.30), used in the last proof, requires

�
to be commutative. +

40. LIFTING
�

. Recall from §29 that the either construction is definable in every bi-
category of components, but, once lifted to the corresponding category of behaviours,
fails the universal property. The reason is that the codiagonal arrow does not keep
its naturality when lifted to ��� � . Dually, let us look at the diagonal case. Should
naturality be preserved the following equation would hold in ��� :�

� � �
�
� � � 	 � � �

�
� �

(5.42)



174 5. COMPONENTS AS ARROWS

The obvious candidate to establish bisimilarity is
� � �
�
� � �

�
� �
�
, which is clearly

seed preserving. The following calculation would prove the comorphism condition if
it were not the case that, again, the step marked with a � is not valid in general.

� �
�
�
�
� �
�
� � � 	

� � �
definition �

� � �
�
� �
�
�
�
�
�
�
	
� � �

�
� � � 	

� � routine: � � � 	 � 	 � � 	 �
� � �

�
� �
�
�
�
�
�
�
	
� �

� � 	 natural �
� � �

�
� � � � �

�� � � �
� � � � � � �

�� � routine: � � 	 � 	 � 	 �
�
�
� � � �
	 � � � � � � � 	 � �

�� � definition �
�
�
� � � �
	 � �

�
� � � �

In fact,
�
� � � � � � does not hold for any monad involving the notion of a collection.

As a counter example compute
�

�
� � �

	 ��� 
 � � � � ��� 
 � � 
 ��� 
 � � 
 � � 
 � � 
 � � 
 � ��� and� �
� 	 ��� 
 � � ��� ��� 
 � � 
 � � 
 � ��� . On the other hand, it can be easily checked that (5.42)

holds for the identity or the maybe monad, while the corresponding law for
�

never
holds. This means that the existence of a split construction satisfying cancellation
depends crucially on � . The discussion above is summed up in the following results.

41. LEMMA. For � such that the lifting of
�

to ��� � preserves naturality, the split
construction defined in §39 obeys to the following fusion law:

� � 
 � 
 � � � 
 � � � 
 � � � � (5.43)

Proof.


 � � � 
 � 

� ) definition *


 � $ � � � � $ ��� � & &



2. A COMPONENT ALGEBRA 175

� ) law (5.5) *$ 
 � � � � & � $ � � � &
� ) assumption (5.42) and law (5.5) again *

� � � � $�$ 
 � 
 & � $ ��� � & &
� ) law (5.30) *

� � � � $�$ 
 � � & � $ 
 � � &�&
� ) definition *

� 
 � � 
 
 � � 

+

Note that this result holds even where
�

cancellation fails — which is typically the
case of the bicategory of partial components.

42. LEMMA. If
�

cancellation holds in ��� � and the lifting of
�

preserves naturality,
then the

�
combinator lifts to a product in ��� � . This is the case when � is the identity

monad. Therefore,
�

lifts to a product in the category of behaviours of deterministic
components.

Proof. Let us suppose that � � 
 � 
 is definable such that � � 
 � 
 � � � � � � � and � � 
 � 
 � � � � � � � and
that there exists another component 
 satisfying the same equalities. Then, by � transitivity,

 � � � � � � � � 
 � 
 � � � � � and similarly for � and � � . Thus

� � 
 � 

� ) � cancellation (5.39) *

� � � 
 � 
 � � � � � 
 � � 
 � 
 � � � � � 

� ) assumption *

� 
 � � � � � 
 
 � � � � � 

� ) � fusion (5.43) *


 � � � � � � 
 � � � � 

� ) � reflection (5.40) *


 � � ���	� � � �
� ) law (5.4) *




+



176 5. COMPONENTS AS ARROWS

43. REMARK. Just as
�

can be expressed in terms of the either construction (§32),
the parallel combinator satisfies

� � � � 

�
� � � � � 
 � � � � � � � (5.44)

provided � is commutative, even if
�

cancellation fails.

Proof.

� � 
 � 

� ) law (5.4) *
� ���	� � � � � � � 
 � 


� ) � reflection (5.40) *
� � � � � 
 � � � � 
 � � � 
 � 


� ) � absorption (5.41) *
� � � � � � � 
 � � � � � � 


+
Note, however, that

�����
product projections, once lifted to ��� , keep naturality only if�

cancellation holds:


 � 
 � � � � �
� �
� � law (5.44) �



�
�
� � � � 
 � ��� � � � � � � �
� �

� � �
cancellation (5.39) ��

� � � � �

There is a simple, yet useful, special case: projection naturality is preserved wherever
one of the

�
arguments is the lifting of a function, because

�
� � always exhibits a

‘deterministic and total’ behaviour embedded in the � structure, no matter how special
such a structure is. Formally,

� �
� � � � 	 �

�
� � � �

�
� � � � � (5.45)�

� �
�
� � 	 �

�
� � � �

�
� � � � � (5.46)



2. A COMPONENT ALGEBRA 177

Proof. To verify (5.45), we just check that � � $ � � �
�
& � � 
 � � � �

� is a comorphism. The
proof of (5.46) is similar, but explicitly requires the commutativity of

�
.

�3$ � � � � & � � � � � � �

� ) definitions of � ��� and
� *

�3$ � � � � & ��� � �
�
� �	$ $ � �	$ � ��" � & & � � �

& � �
� ) routine: � � � � � � � � � � � and � � definition *

� � � � � ��� ��� � ��� �	$ $ � �	$ � � " � & & � � �
& � �

� )�� natural (C.16) *
� ��� � � � ��� � � � � � �	$ $ � �	$ � � " � & & � � �

& � �
� ) laws (C.18) and (C.13) *

� ��� � � ��� �	$ $ � ��" � & � � �
& � �

� )�� natural (C.17) *
� ��� � � � �	$ $ � � " � & � � �

& � �
� ) � cancellation *

� ��� � � �
� � � � �

� ) monad unit (C.14) *
� �
� � � � �

� ) routine: � � � � � � � � � � � *
� �
�	$ � � � � &

+

44. CONCURRENT COMPONENTS. The last combinator is concurrent composition,
denoted by � . It combines choice and parallel, in the sense that � and � can be exe-
cuted independently or jointly, depending on the input supplied. The corresponding
diagram is

��

��	�

��

�

�
�

�
�

��	�

��

�

� �	�
����
�

��	�

��

���	�

� � �

Formally,



178 5. COMPONENTS AS ARROWS

45. DEFINITION. Concurrent composition is defined as a lax functor �
� ��� �

��� � � ��� , consisting of

� An action on objects given by

� � � � � � � � � � �

� A family of functors

� � � � �
� ���

�
� 
 � 	 � ��� � � 
 � 	 � � ��� � � � � � � � � 
 � � � � � � � 	

yielding

� � � � 
 
 � � 
 � � � � �

�
� � � 
 �

�
�
� �

where �
�
�
�

is defined as:

�

�
� � � � � ��� � 	

�
� // �

�
� � � � � � � � 	 � �

�
� � � � � � � � 	� ��� � � � ��� �

// �
�
�

�
� � � � � � � � 	 	 � �

�
�

�
� � � � � � � � 	 	� � �

� � � � � � � � �
� � � � ��� �

// �
�
�

�
� � � � � � �	� 	 	

and mapping pairs of arrows 
 � � 
 � � � into
�
�
� �

� .

46. LEMMA. � is a lax functor in ��� � , for � a commutative monad. In particular,
for any components � , � , � � and � � ,

�
� � � �

	 �
�
� � � � 	 �

�
�
� � 	 �

�
� � � � � 	 (5.47)��� ��� � � � � � ��� ��� � � ��� ��� � � (5.48)

Proof. The proof follows the argument used when proving corresponding results for � and
� (§§24 and 35). In particular, the verification that � is well defined on arrows (entailing,
for any sets

�
,
�

, � and � , the definition of a functor � � ! � ! � ! � from
� � $ � 
�� & � � ��$

�

 � & to� � $ �

� �

��

� � & ) is straightforward once assumed identical results for � and � . Therefore,
let us focus on the proof of equations (5.47) and (5.48). A proof ‘from first principles’ would
exhibit the family of ‘associative’ and ‘unit’ natural transformations, as done for the other
two tensors discussed above. Here again � � � natural isomorphisms � and � � are the obvious



2. A COMPONENT ALGEBRA 179

choices. Thus, for example, the unit law (5.48) is established by the following calculation:

� ��
���� ��� � 
���� � � �	$ � � � " � &
� )�� definition *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��
���� � � � 
���� � � 
 � � 
���� � � ��
���� � � & � � � �	$ � � ��" � &
� ) laws (5.16) for � and (5.31) for

� *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��
���� � �

� � 
 � � 
���� ��� � � & � � � �	$ � � � " � &
� ) identity definition in � � *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & � � � �	$ � � ��" � &
� ) law (C.64) *

� � � � � � � � �	$ � � � " � &
� ) � � isomorphism *

� �	$ � � � " � &
� ) identity definition in � � *

�3$ � � ��" � & � � ��
���� ����� �
Next we give a more direct proof of law (5.47), by explicitly re-using the proofs of the similar
laws for � and � . We start by unfolding the definitions:

� #
�
�

� � ( ( # �
�

� � (
� ) � definition *

� ��� � � � ��� � � ���3$ " � � � �
�

� � & ��� � ��� � � � � � �	$ � �
�

� � � " � & ��� �
� )�� definition *

� ��� � � � ��� ��� ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & & ���3$ " � � � � &� � � ��� � � � � � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � � " � & �	$�$ �
��� � � 
 � � � � � & � " � & �	$ � � ��" � & ��� �

...

� ) details in [Appendix D, page 373] *
...� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & �	$ � � � 
 � � � & �	$ �3$ " � � � � � � � & 
 �3$ " � � � � � � � &�&� $ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � ��� � � � " � 
 " � � �

� � � � & �	$ � � 
 � � & �	$ � � 
 � � & � � �
� ) � definition *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � #
��� � � ( ( # � � � � ( 
 � # � � � � ( ( # � � � � ( & � � �



180 5. COMPONENTS AS ARROWS

Note that � # ��� � � ( ( # � � � � ( and � # � � � � ( ( # � � � � ( can be replaced, respectively, by � # ��( � ( �
#

� � ( � � ( and� #
��( � ( � #

� � ( � � ( , according to laws (5.15) in §5.24 and (5.30) in §5.35. The substitution is, of
course, up to bisimulation. And, in particular, recall that law (5.30) in §5.35 assumes the
behaviour monad

�
to be commutative. In any case, however, we may conclude � #

��( � ( � # � � ( � � ( ,
by the definition of � and up to bisimulation. The proof details are supplied in [Appendix D,
page 373]. +

47. LEMMA. Up to isomorphic wiring and assuming the underlying monad � is
commutative, � is a symmetric tensor product in each hom-category with � � � as unit.
Thus, �

� � � 	 � � �
�
� �

�
� � � 	 	 � � � 
 � � � 
 (5.49)

� � � �
�
� � � 	 � � � 
 � � 
 (5.50)

� � � � � � � � � � 
 � � � 
 (5.51)
� � � � � � � � � � 
 � � � 
 (5.52)

where wiring resorts to the following
� ���

natural isomorphisms

� � � � � � �
� � ��� � 	

�
� � � � �

�
�
�

� 	

� � � � �
� � ��� � 	 � �

�
�
� � 	� � �

� � ��� � 	 � � �
� � �
� � � ��� 	 � � �

Proof. As discussed in the proof of lemma §46, we are interested in re-using the proofs of
corresponding results concerning � and � , which can be done in two possible ways. The
simplest one proceeds by unfolding one of the sides of the equation until previous laws can be
applied. Substitutions made at this point are, of course, up to a bisimulation. Then we proceed
by equational reasoning until the expression on the other side of the equation is reached. In
doing this we prove that both sides, as

� �
arrows, are, not equal, but bisimilar. Nothing is

said, however, about the particular comorphism which witnesses such bisimilarity.
Alternatively, such a comorphism can be identified — as a function connecting the cor-

responding state spaces — and proved to be seed preserving and actually a comorphism. This
is the procedure we have taken in most proofs earlier on, when no previous component’s laws
were being re-used. The trouble in adopting it when re-use is desirable is that it requires
not only to re-use the law but also its proof. More exactly, whenever re-using a bisimulation
equation, the comorphism which witnesses it has to become explicit.

In [Appendix D, page 376] we illustrate both procedures in the detailed proof of equation
(5.52). The other proofs are also sketched, although they offer no particular difficulty as



3. INTERACTION 181

similar results have already been established for both � and � . As expected, only equation
(5.50) requires the commutativity of the underlying behaviour monad. +

48. LEMMA. The intuition about the relationship between � and both
�

and
�

is
formally expressed by the following laws, for any components � and � :�

� � � �
�
� � � 	 �

�
� � � 	 �

�
� � � (5.53)�

� � � �
�
� � � 	 �

�
� � � 	 �

�
� � � (5.54)

Proof. We prove both equalities on the equivalent formulation in terms of wrapping. Under
such a formulation they appear as strict

� �
arrow’s equalities. Thus,

� #
�
�

� ( � � � ! � ���
� ) � and wrapping definitions *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � #
��� � ( 
 � # � � � ( & � � � �	$ " � � � � &

� ) law (C.55) *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � #

��� � ( 
 � # � � � ( & ��� �
� ) � absorption *

� �3$ " � � � � & � � #
��� � ( 
 �3$ " � � � � & � � #

� � � ( � ��� �
� ) � cancellation *

�3$ " � � � � & � � #
��� � (

� ) � and wrapping definitions *
� #

��� � ( � " � 
�� � �

and, similarly, for (5.54). +

3. Interaction

49. INTERACTION. So far component interaction has been centred upon sequential
composition (§2), which is the ��� counterpart to functional composition in

�����
. The

basic interaction model is input to output connection. This section introduces two
combinators which push forward such model. The first one, in §50, is feedback: the
output of a component � is directly linked to its input thus forcing the feed back of the



182 5. COMPONENTS AS ARROWS

information produced. The second one (§51) is a partial feedback combinator which
generalises sequential composition by connecting some input to some output wires
and, consequently, forcing part of the output of a component to be fed back as input.
Notice that both combinators are ‘partial’ in the sense that their definition is made in
terms of functors among some families of ��� hom-categories.

50. FEEDBACK. The feedback combinator is defined, for each object � , as a family
of functors

� � ���
� ��
�� 	 � � ��� � ��
�� 	 which is the identity on arrows and maps each

component �
� � �	� � to

� � � � � � � � 
 �
�
� �

�

 �
�
� �

where

�
�
� � �

�
� � ���

// �
�
�

�
� � 	 � � �

// � �
�
�

�
� � 	 � // �

�
�

�
� � 	

That is to say: �
�
� � �
�
� �
�
, recalling that � is the Kleisli composition (§A.7) for � .

Note that, in general, �
�

will not be bisimilar to � � � (in the latter case each copy of
� will maintain its own private state space).

51. PARTIAL FEEDBACK. The partial feedback combinator applies to components
of type � � � �	� � � � , for � , � and � arbitrary. The feed back component is
executed for any input. Execution terminates if the result is of type � . Should it
be of type � , it is fed back and � runs again for that value. Formally, it is defined,
for each tuple of objects � , � and � , as a family of functors � � � � ���

�
� � ��
 � �� 	 � � ��� � � � ��
 � � � 	 which are the identity on arrows and map each component

� � � � � � � � � � to �
� � � � � � � � � � � given by

� � � � 
 �
�
� �

�

 �
�
� � �

where

�
�
� � � �

�
� � � � � 	 ���

// �
�
�

�
� � � � � 	 	

�
�
� // �

�
�

�
� � � �

�
� � 	

� �
� � � � �

�

� � � � � �
// �
�
�

�
� � � � � 	 � �

�
� � � � � 	 	

� � �
� � � �

// �
�
�
�
�

�
� � � � � 	 	 � �

�
�

�
� � � � � 	 	 	

��� // � �
�
�

�
� � � � � 	 	

�
// �
�
�

�
� � � � � 	 	



3. INTERACTION 183

52. LEMMA. Both feedback combinators introduced in §§50, 51 are endofunctors in
the suitable hom-categories.

Proof. As the action of both functors is the identity on arrows, the functoriality conditions
hold trivially once proved that any arrow

� � � 

� � , for � and � suitably typed, is still an
arrow from ��� (respectively, ����� ) to ��� (respectively, ����� ). As seeds are strictly preserved
in both cases, what remains to be shown is the comorphism condition for both combinators.
This can be found in [Appendix D, page 380]. +

53. LEMMA. Both combinators specialise to components representing functions
according to the following laws: let � � � � � � and �

� � � � �	� � � � , then,�
� � �

�
�
�
� � � (5.55)�

�
� � � �

� � � ��
 � � � � 
 � � � (5.56)

Proof. The proof can be found in [Appendix D, page 382]. Notice the intuition about equation
(5.56) is that applying partial feedback to a function � lifted to

� �
amounts to (the lifting of)

a conditional composition of � with itself, depending on input. +

54. LEMMA. Let �
� � � � � and � � � � � � be components. Then

� �

� � � �

� 
 �

� � 
 � � � �

� � 
 �

� 
 (5.57)

� � � �

�
�
� � � 	 � � (5.58)

� � � � �
�
� � � 	 � � � � � 
 � � 
 (5.59)

Proof. The proofs of both (5.57) and (5.58) are given in [Appendix D, page 383]. Notice that
(5.59) is a direct consequence of (5.58) and � commutativity (5.21). +

55. REMARK. Note that all laws in §53 and §54, with the exception of (5.59) which
uses a � equation, are actually strict ��� arrow equalities, and not just bisimulations.
Also notice that equation (5.58) generalises to�

� � � 	 � � � 
 � � � 
 � � �
�
� � � � � 	 � � � 
 � � � 
 (5.60)

for �
��� � � � � � � � .



184 5. COMPONENTS AS ARROWS

56. The following two lemmas relate feedback combinators with the other operators
in the algebra. Note that all equations are strict ��� arrow equalities. However, validity
of (5.63) and (5.64) will depend on the commutativity of the behaviour monad � . Also
note that there are no laws relating partial feedback to either

�
or � , as shown by an

inspection of the relevant interface structures.

57. LEMMA. Let �
� � � � � and � � � � � � be components and �

� � � � � be
a
�����

isomorphism. Then

� � � ��
 � � 
 � � � ��
 � � 
 � (5.61)�
� � � 	 � � � � � � �

(5.62)�
� � � 	 � � � � � � �

(5.63)�
� � � 	 � � � �

� � �
(5.64)

Proof. [Appendix D, page 387]. +

58. LEMMA. Let �
� � � � �	� � � � and � � � � � � be components, � � � � �	� � ,

�
� � � � � � functions and �

� � �	� � a
� ���

isomorphism. Then

� � � � � ��� 
 � ��� � 
 � � � � ����
 �
��� � 
 ��� (5.65)�
� � � 	 � � �

� 
 � �

� 
 � � �
�
� � � � � 	 � � �

� 
 � �

� 
 (5.66)

Proof. [Appendix D, page 389]. +

4. Some Examples

59. THE GAME OF LIFE. This section provides a few examples which illustrate the
component model developed in this chapter. The first one is the game of life, a simple
model of cellular behaviour which has been popularised as a common screen locker
for computers. The game is based on a grid of cells each of which sends and receives
elementary stimulus to and from its four adjacent neighbours. A stimulus is a Boolean
value indicating whether the cell is either ‘alive’ or ‘dead’. The following few rules
govern the survival, death and birth of cell generations:



4. SOME EXAMPLES 185

� Each living cell with less than two or more than three living neighbours dies
in the next generation.

� Each dead cell with exactly three living neighbours becomes alive.
� Each living cell with less than two or three living neighbours survives until

the next generation.

Each cell will be specified as a component � ��� � whose input is a tuple of four Boolean
values, each one to be supplied by one of the four adjacent cells. The cell reacts
to such a stimulus by computing its new state — ‘dead’ or ‘alive’ — and making
it available as an output to its neighbours, used to compute the next cell generation.
Formally, we define

� ��� � � � � � � � � � � � � � 
 � � �
� � � 
 � � 4 � � �

where

�
� 4 � � 
 � 
 � � � ��� � � � � � � � � � �

���
��� �	 
 � �

�
�
� 
 � � � � � � � � � � �

� �
� � � ��
 � 
 � �
� 	


 � � �
� 
 � � �

� � � � � � � �
�
�
� ��� � � 	


 � 
 � � � ��� ����� ��� �
Function

� � � � � � above, counts the number of living stimuli (i.e., the number of
�

� �
�

values) in a four Boolean tuple. So,
� � 4 � � � � and � � ���

.
The game’s behaviour is, of course, deterministic and all cells in the grid react

simultaneously to produce the new generation. To form a grid of � cells we simply
connect them using the parallel combinator

�
. The crucial point is to devise a wiring

scheme to guarantee that the joint output of the � connected cells is appropriately fed
back. The composed system is pictured below, where component

� � � � �
�
� � �����

concentrates and correctly distributes the output.
The � cells are organised as a fully connected matrix of

�
rows and � columns

( � � � � � ), so that the neighbours of cell 
 ��
 � � are 
 � � ��
 � � , 
 � � ��
 � � , 
 ��
 � � ��� and

 ��
 � � ��� (in the ‘west’, ‘east’, ‘north’ and ‘south’ directions, respectively) computed
in the

�
and � rings (i.e., � � � � � , � � � � � and � � � � � , � � � � � ).



186 5. COMPONENTS AS ARROWS

�

��	�

��

� �
� ��� � � � ��� � � 
�
�
 � � ��� �

� ���

�

��	�

��

� � �

� � �

 
 
  

 
 
  

To specify � � � we adopt the following convention: the first cell in the
�

-expression
has coordinates 
 ��
 ��� , second is 
 ��
 � � and so on until column � is reached; the next
cell is then 
 � 
 ��� . Under this convention the output produced by cell 
 ��
 � � is selected
from the global output tuple as the

� �
�
� �

�
� � �

	 	
-projection, i.e.

� �
� �
�
� � � � �

�
� � �

� �
� �
�
� � � � � � �

� � � �
�
�
� � �

Now, the input to cell 
 ��
 � � is simply the split of the outputs of its neighbours, i.e.,

� � �
�
� � � � �

�
�	� � �

� � �
�
� � � � 
 � �

� �
�
�
�
4 � � � � 
�� �

� �
�
4 � �

�
� � � 
�� �

� �
�
�
� �
� � � � 
�� �

� �
� �
� �
�
� � � �

where
� � � � � � �

� � � � � 
 � � �
	

and � � � � � � �
� � � � ��
 � � �

	
. Finally,

� � � is defined as the lifting of split
� � 
 � � �

�
� � � � ��
 � � � � � � �

Finally,
�
� �

��� � � � � � �
� ��� � � � ��� � � 
�
�
 � � ��� � 	 � � � �

	 �

where

� � � �
�
� �



4. SOME EXAMPLES 187

Clearly, by law (5.10),
�
� �

��� � � � �
� �
� ��� � � � ��� � � 
�
�
 � � ��� ��	 � � � 
 � 
 	 � . In any case, the

feedback combinator is responsible for extending the game’s behaviour to the infinite,
once the component has been stimulated with an initial input.

60. THE WIRING PROBLEM. Consider a component �
� � � � �	� � � � . Liftings

of canonical
�����

injections and projections provide a simple way to restrict access to
� . For example �

� � � � �
�
�
�
� �

restricts the use of � to the first input, while selecting only the second factor of its
output. Notice, however, that the first factor of the output is lost.

On the other hand, in an additive output situation unused parcels cannot be hidden
but simply collapsed into, say, the trivial type � . For example, if � ’s output is � � � ,
the ‘best’ we can get is � � � by wrapping � as � � � � 
 � � ��* 
 . Output of type � may
be interpreted as a signal of some activity going on (e.g., the turning of a led), but,
in general, � cannot be forced to suppress it. In the next section we shall discuss
a particular class of components in which a proper restriction can be enforced. For
the moment, however, the next two paragraphs discuss two common wiring situations
which require the introduction of auxiliary components.

61. MERGING. Suppose a component �
� � � � �	� � , which requires a pair of input

stimuli, is to be used in a situation where � and
�

values are produced by two different
sources. The idea is to guarantee that alternative inputs get packed and appropriately
supplied to � . Packing, however, introduces a time dimension as typically both inputs
will not be simultaneously available. Therefore we specify a merging component
whose state space is % � � � � �

� � � � � � � � , depending on both inputs being
already known, and thus ready to be forward to � , or only one of them, or even none,
being so. In the latter cases the output of

� �
� � � would simply be � . The fact that

% � � � is isomorphic to
�
� � � 	 �

�
� � � 	 suggests the following specification:

� �
� � � � � � � �	� � �

�
� � � 	 � 
 
 � � 	 
�� � 	 � �

�
� � � 	 �

�
� � � 	 
 � � 4 ��� 4 �

where

�
� 4 ��� 4 
 � 
 � � �

�
�

� 
 
 � 
 � ��� � 	 � 
 � � ��� � � �
� � � 	 �
�
� � � � 	 
 � � � 	 	 	 � � � � ��� � ��� 	


 

�
��� � 	 
 � � 
 � � ��� � � ��� � � 	 � �

� � � � 	 
 � � � 	 	 	 � � � � ��� � � � 	
where, following a well established convention, we denote the updated value of the
state variable � by � � and make use of injection predicates —

� ��� �!) �
	

— popu-
larised in the VDM meta-language [Jon83]. The inclusion of the monad unit

�
makes

the definition generic for the class of components we have been dealing within this
chapter.



188 5. COMPONENTS AS ARROWS

By aggregating
� �

� � � and � , the relevant stimuli will be passed to � whenever
possible. This is achieved by partial feedback which, on its turn, requires additional
wiring to be applied. The result of such a composition is

� �
� �

� � � � � 	 � � � 
 � �

� 
 	 � � � �
cf.,

�

��	�

��

� �
� � �

� � �

� �
�
� � � 	

�

��	�

��

�

� � �

�

The type of
� �

� � � � � is
�
� � � 	 �

�
� � � 	 �	�

�
� �

�
� � � 	 	 � � . Thus the need

for the � �

� output wrapping to fit the typing of the partial feedback combinator.

62. DELAYED PROJECTIONS. The other common situation mentioned in §60 con-
cerns the lost of part of a multiplicative output. Given � � � � � � � � and
� � � � � � , should � and � be linked as in

� �
�
��� � � � � � �	� �

the � typed � output will not be re-usable any more. A simple wiring scheme, referred
to as a delayed projection, will prevent this situation by propagating the unused output
along the composition. This is achieved by packing � with an identity component for
� , i.e.,



4. SOME EXAMPLES 189

�

��	�

��

�

�

� � �

�

��	�

��

��� ��� � � �

� � �

� � �

Formally,
� �

� ��� � � � � � 	

The wiring correctness, i.e., the fact that both components exhibit the same behaviour
if the � output is to be discarded, is easily established:�

�
�
� ��� ��� � � � 	 	 �

�
��� �

� � law (5.5) �
� �

� � ��� ��� � � � 	 �
�
��� �

	

� � law (5.45) �
� �

� �
��� � � � 	

� � law (5.5) ��
�
�

�
�
� �

	 � �

63. A FOLDER FROM TWO STACKS. The purpose of the next example is to illustrate
how new components can be built from old ones, relying solely on the old functional-
ity available. The example is the construction of a folder from two stack components.
Although these components are parametric on the type of stacked objects, we will
refer to these as ‘pages’, by analogy with a folder in which new ‘pages’ are inserted
on the righthandside pile and retrieved (‘read’) from the lefthandside one.

A static, VDM-like specification of the component we have in mind can be found
in [Oli92a]. According to this specification, the � � � � � � component should provide
operations to read, insert a new page, turn a page right and turn a page left. Reading



190 5. COMPONENTS AS ARROWS

returns the page which one can read once the folder is open at some position. Inser-
tion takes as argument the page to be inserted. The other two operations are simply
state updates. Let

�
be the type of a page. The � � � � � � buttons, or actions, have the

following signatures ��� �	 � �
� � � � �

�
� � � �	� �
� � 
 � �

� � �	� �
which may be represented in the following picture, where input and output types are
decorated with the corresponding action names:

�

��	�

��

� � � � � �

� � � � � � � � � � �
� � � � �

�
� �

�
� � � � � ��� 
 � � 
 � � � � �

Now, think of a pre-existing component
� �
� � � , modelling the stack of

�
data type and

offering the usual operations:

��� �	
� � � � � � � �

��� � � � � � �

� � � � � � �	� � �

��	�

��

� �
� � �
� � � � �

� � � � �

The picture on the right avoids decorations by ‘adding’ input and output types from
left to right in the same order as they appear in the signature on the left, starting
from

� � � . A stack can be modelled as a partial component, letting the maybe monad
capture exceptions, but we shall not be concerned with its ‘internals’ here — just
assume it behaves as it is expected to.

Our exercise is to build � � � � � � using two stacks to model of the left and right piles
of pages, respectively. The intuition is that the � � � � action of the right stack will be
connected to the ��� � of the left one to model

�
� , the ‘turn page right’ action, and that

a symmetric connection be used to model
�#�

. The �
�

operation consumes the ‘front’
page — the one which can be accessed by

� � � on the left stack. Clearly, action
� � � on

the right stack will not be used. On the other hand, two roles are assigned to its � � � �



4. SOME EXAMPLES 191

action: to be part of the
�

� realisation, as mentioned above, and to directly model page
insertion into the folder, i.e., action ��� .

According to this plan, the assembly of the � � � � � � starts by defining � � � �
� �

as a� �
� � � component suitably wrapped to meet the above mentioned constraints. At the

input level we need to hide access to the
� � � button, resorting to � � , and replicate the

input to � � � � by wrapping � with the codiagonal
���

. At the output level, because of
its additive structure, we cannot get rid of the

� � � result. It is possible, however, to
associate it to the � � � � output and collapse both into � , via * � �

�
. Thus, define

� � � �
� � � � �

� � � � � � � � 
 � � � ��* � �
� 	 � � � 
 � � �

�
� � � 	 �	� � � �

Then, taking
� �

�
� � � ���

� � � , we form the
�

composition of both components:

� � � �
� � � � �

�
� � � � � �

�
� � � 	 	 �

�
� � � � � 	 � �

�
� � � 	 �

�
� � � � � 	

The next step builds the desirable connections using partial feedback over this
composite. Supposing both the input and output type expressions are re-written in
the additive left associative canonical form, in order to identify its components posi-
tionally, the intended � � � � - ��� � connections are formed by feeding back the fourth
output parcel ( ��� � in

� �
�
� �

) to the third input one ( � � � � in � � � �
� �

) to model
�

� and,
similarly, the first output parcel to the sixth input one to model

�#�
. Formally, to be

able to apply the partial feedback combinator, the two stacks composition has to be
wrapped by a pair of suitable isomorphisms. In a diagram we have

�

��	�

��

� � �

�
� � � �

� � � � �
�
� � 	 � � � 
 � ��


�
� � � � � � � 	 �

�
� � � 	

�
� � � � � 	 �

�
� � � 	

(5.67)

and, formally,

� �
� � � � � � � � � � �

� �
� � � �

� � � � �
�
� � 	 � � � 
 � ��
 	 � � �

�



192 5. COMPONENTS AS ARROWS

where

� � �
���
� � � � ��
�� � � � 
 
�� � � � 
 
�� � � ��� 
 � � � � 
�� � � �����

� � � �
� � � ��
�� � � ��
 


�
� � � � � 
�� � � 
 
�� � � � �

Finally, to conform
� �

� � � � � � � � � � to the � � � � � � interface, we will restrict the feed back
input — by pre-composing with � � � � — and collapse both the trivial output and the
feed back one to � , by post-composing with ��� � �

� � � ��
�� � 
 
�� � 
 
�� � � * � �
� � . Therefore,

we complete the exercise by defining

� � � � � � �
� �
� � � �

� � � � �
�
� � 	 � � � 
 � ��
 	 � � �

� � � 
 � ��

which respects the intended interface.

64. NOTATION. The � � � � � � example above unveils a notational problem in the
straight application of the component algebra in practical situations. In particular,
the use of partial feedback requires a huge amount of (isomorphic) wiring which de-
grades readability. The problem is, in fact, more general and a proper solution will
probably require the introduction of a formal diagrammatic notation for composing
components in which most wiring schemes are suitably encoded. Of course, the com-
ponent algebra introduced earlier in this chapter will provide the semantics of such
a notation. Although this thesis does not go further into this direction, a particular
strategy to deal with feedbacks in a simpler, hopefully clearer, way is presented next.

The idea is to introduce a derived feedback operator in which the connected inter-
face points are explicitly referred — all the effectively required wiring is left implicit.
A first approach could use the actual action names as arguments of the combinator.
For example, the folder construction would be denoted as

� � � � � � �
�
� � � �

� � � � �
�
� � 	 � � ��� "  #" � 
	� " � 0 ��� 
	� "  #" � �
� " � 0 � � � 
�
�
 


assuming actions on � � � �
� � � � �

�
� �

have been renamed as indicated. Of course, the
subsequent wiring to conform the � � � � � � interface has to be written in terms of the
� � � �

� � � � �
�
� �

interface.
Such a solution, although notionally convenient in some situations, is not general

enough for a number of reasons. First of all because often we want to feed back
not the result of a particular action but just part of it or even only parcels of different
outputs. In general, moreover, we refrain from associating interface types to explicitly
named actions.

Positional specification appears to be a better solution. We assume that, prior to
applying feedback, both the input and output interfaces are re-written into the additive



4. SOME EXAMPLES 193

left associative (‘normal’) form. If input and output parcels are numbered sequen-
tially, from left to right, a connection between, say, output � and input � will be writ-
ten as � � � � . Under this convention diagram (5.67), corresponding to

� �
� � � � � � � � � � ,

would be replaced by

�

��	�

��

� � � � � 
�� � � � �

� � � �
� � � � �

�
� �

� � � � � � � � � � �

� � � � � � � � �
Such a notation is non ambiguous (at the cost of forcing explicit parcel aggregation if
needed) and extends to the more general situation of nested feedback as discussed in
the next paragraph.

65. INTERACTION SEQUENCES. Nested feedbacks occur wherever a given output
is used as an input whose result is again supplied to the component. Such a process
may continue revealing an ordered interaction pattern. Consider, for example, a com-
ponent �

� � � � � � � � � which interacts in, say, the following way: whenever
a � output is produced it is fed back to � and if, as a result, a � output is produced it
is fed back as well. Such a component would be written as� � �

� � � � 
 � � 
 	 � � 	 � � � 
 � � 
 	 ��� (5.68)

This expression, as any other written in the component algebra notation, specifies the
component’s ‘one-step’ dynamics. Its (eventually infinite) behaviour, in which such
interaction scheme repeats itself indefinitely, is only revealed by the component’s
anamorphic image.

It is easy to grasp that, in non trivial cases, the amount of wiring needed to specify
nested feedbacks is rather large and a serious notational drawback. A possible sim-
plification consists in extending the positional access convention discussed in §64 to
cope with the interaction order. We assume the input and output indexes are always
relative to the original interface (i.e., before feedback application) re-written in the
additive left associative normal form. The feedback expression, which decorates the
derived feedback combinator, however, is no longer a set of input-output points —



194 5. COMPONENTS AS ARROWS

which we call now a plain interaction — but a sequence of them. Formally, define

� � � 
���� ��� � � � �
���
� � � � � 	

� � 
 � � � � � 
 ��� ��� � � � �
where � � �� � � �� � , subject to a data type invariant ensuring, for each 	 �
� � � 
 � � ��� � � � , the absence of repeated output (respectively, input) indexes. As a ten-
tative convention, we decorate such indexes with, respectively, � and � . Plain inter-
actions are written as sets and those are separated by a semi-colon in an interaction
sequence. For example, expression (5.68) above would be simply written as

� � �  �
�
� ��� �  �

�
� �

We shall not proceed further with this topic which has to do more with the pragmatics
of the component’s algebra than with its semantics. We shall now discuss a special
and rather common, class of components in which both feedback and restriction can
be formulated in an alternative way.

5. Separable Components

66. OVERVIEW. Often a component is specified as a collection of actions over a
shared state space, each of which exhibiting its own input and output types. Packing
them together results in a component with an additive interface such that each type of
input stimulus produces a result whose type is known and unique (among the possible
results). Such components arise typically in the practical use of model oriented spec-
ification methods, such as VDM or Z. In particular, they admit combinators which
restrict interfaces. In the next paragraphs a restriction combinator and a generalisa-
tion of the feed back interaction scheme, called hook, will be defined and some of
their properties investigated.

67. BASIC DEFINITION. To be precise, let us call separable a component �
� � �

� � � � � � whose dynamics �
�

can be split into two independent coalgebras

��� �
�
� �
�
� � �

�
�

�
� � 	 �

and

� � �
�
� �
�
� � �

�
�

�
� � 	 �

This notation suggests that � � � and � � � can also be regarded as independent compo-
nents, with different interfaces, but defined over the same state space

�

�
and seed

value �
�
. Therefore the dynamics of � arises as the currying of

�
�
� � � � � ��� � � 	 � � � �

�

 � � � ��� � � 	 � � � �

�

 � � �



5. SEPARABLE COMPONENTS 195

Clearly, for each behaviour monad � and objects � , � , � and � , separable compo-
nents form a subcategory of the corresponding ��� � hom category ��� �

�
� � � 
 � � � 	 .

Moreover, ��� -arrows connecting separable components are characterised by the fol-
lowing property:

68. LEMMA. Let � 
 � � � � � �	� � � � be separable. Then
� � � � � � iff the

same
�

, seen as an arrow in the underlying category, is also a comorphism from � � �
to � � � and � � � to � � � (with a slight abuse of notation we shall write

� � � � � � � � � �
and

� � � � � �	� � � � ).

Proof. We first prove the right to left implication. Assume
� � 
 
 � 
 � 
 
 � and

� � 
 
 � 

�

 
 � . Then

�3$ � ��" � & � �
�

� ) � separable *
�3$ � ��" � & ��� �3$ " � � � � & � � ���

�

 �3$ " � � � � & � � ���

�
� � � �

� )�� fusion, identity and � absorption *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � ��" � & � � ���

�

 �3$ � � " � & � � ���

�
& � � �

� ) assumption: � � ��� � � � ��� � and � � � � � � � � � � *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��� �

�	$ � � " � & 
 � ��� �
�	$ � � " � &�& � � �

� ) � � natural *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��� �


 � ��� �
& � � � �	$ � � " � &

� ) � separable *
� �
�	$ � ��" � &

For the reverse implication, assume
� � � 
 � � . Then,

� � � 

� �
( ) comorphism condition and � , � separable *

�3$ � � " � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ���
�

 � ���

�
& � � �

� � �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��� �

 � ��� �

& � � � �	$ � ��" � &
( )�� fusion, � absorption and � � natural *

� �3$ " � � � � & ���3$ � ��" � & � � ���
�

 �3$ " � � � � & ���3$ � ��" � & � � ���

�
� � � �

� � �3$ " � � � � & � � ��� �
�	$ � ��" � & 
 �3$ " � � � � & � � ��� �

�	$ � � " � & � � � �
( ) equality *

�3$ " � � � � & ���3$ � � " � & � � ���
� � �3$ " � � � � & � � ��� �

�	$ � � " � &



196 5. COMPONENTS AS ARROWS

and
�3$ " � � � � & ���3$ � � " � & � � ���

� � �3$ " � � � � & � � ��� �
�	$ � � " � &

� ) � *
�3$ � � " � & � � ���

� � � ��� �
��$ � ��" � &

and
�3$ � � " � & � � ���

� � � ��� �
��$ � ��" � &

� ) comorphism condition *� � 
 
 � 

� 
 
 � and
� � 
 
 � 

� 
 
 �

where the � step is justified as follows. If
� �� � , � � is a split mono and so is

�3$ " � � � � & , because
any functor preserves split monos, and we are done. If

� � � , the result holds trivially as both
�3$ � ��" � & � � ���

� and � ��� �
�	$ � � " � &

have source
�

�
� � and any function from such a domain

to an arbitrary set � can be written as
� ! ��� � " # . An similar argument establishes the second

equation. +

69. STATE EXTENSION. Before analysing restriction and hook, the two extra com-
binators applicable to separable components, let us introduce the notion of state ex-
tension which will be required later and is generally useful in a number of situations.
Let �

� � �	� � be a component,
�

a set and
� � � . Then, define

� � 
 � 
 � � � 
 
 �
�

 � � � �

�
� � 
 �
�

� � � � � � �

 � 
 � � � � � 
 
 � 
 �

�
� � � � �

�

 � � � � � � �

�
�

— where

�
�

� � � � � � � �

�
� � � � � � //

�

�
� � � � � � � � �

// �
�
�

�
� � 	 � �

� �
// �
�
�

�
� � � � 	 � � � // �

�
�

�
� � � � 	

and

� � � � � �
�
�
� � � �

�
� � � // � � � �

�
� � 	

� � � � �
// � �

�
�
�

�
� � 	

� �

// �
� � � � �

�
� � 	 	 � � � // �

� � � �

�
� � 	

— as the right or left state extension of � over
�

. Clearly, both constructions are
functorial in ��� �

�
� 
 � 	 , defining, for comorphism

�
,
�
� 
 � 
 � � � � � � � and 
 � 
 � � �� � � � � � . Moreover, the behaviour of the extended component coincides with that

of � itself, i.e.
� � 
 � 
 � � � � � 
 � 
 � � � � (5.69)



5. SEPARABLE COMPONENTS 197

for any 
 � 
 � � .
Proof. We check that � � � " � � �

�
� � 
 � �

� is a comorphism from � � � � 
 � 
 to � . The
left case is similarly verified.

�3$ � � � " � & � �
�
�  ��

!
� $

� ) definition *
�3$ � � � " � & ��� � � � � � �	$ � �

� " � & ��� �
� ) routine: � � � � � � � � � � � � � *

� � � � ��� �	$ �
�
��" � & ��� �

� ) law (C.12) *
� � �	$ �

�
��" � & ��� �

� ) � cancellation *
�

�
� � � ��� �

� ) routine: � � � � � � � � � ��� � � *
�

�
�	$ � � ��" � &

+

70. RESTRICTION. Let ��� �
�
� 
 � 	 �
�

denote the sub-category of ��� �
�
� 
 � 	 whose

objects are separable components. Then, for each � , � ,
�

and � , a restriction oper-
ator is defined as a family of functors

� � ��� �
�
� � � 
 � � � 	 �

�
� �	��� �

�
� 
 � 	 �
�which, being the identity on arrows, map each component �

� � � � � � � � � to
�
� � � � � � � 
 �

�
� �
�

 �
� �
�
� (5.70)

As
� � � �

for any comorphism
� � � �	� � , the functoriality conditions hold

trivially. Also note that a similar (right) restriction operator is easily defined as

�
� � �

�
� � � � 
 � � 
 	

71. LEMMA. Let �
� � � � � � � � � separable. Then,

�
� � � � � �

�
�
�

�
� � � (5.71)



198 5. COMPONENTS AS ARROWS

Proof. Both components have type
� 

� � 
 � . By law (5.10),

� � � � � � � � ��� � 
 " � � . Thus,

�
� � � � ! � � �

� ) wrapping definition and � separable *
� �3$ " � � � � & � � ���

�

 �3$ " � � � � & � � ���

�
� � � � �	$ " � � � � &

� ) law (C.55) *
� �3$ " � � � � & � � ���

�

 �3$ " � � � � & � � ���

�
� ��� �

� ) � cancellation *
�3$ " � � � � & � � ���

�

� ) restriction definition *
�3$ " � � � � & � ���

�

� ) wrapping definition *
� �

� � � � ! � � �
which, again by (5.10), is bisimilar to

� � � � � � � . +

72. The result above formalises the intuition that restricting the input of a separable
component also implies an output restriction, even if this is not directly expressed
by the interface. For example, the output of

�
� � � � � is never of type � , even if the

expression is typed � �	� � � � . The following lemma establishes under what
conditions separability propagates under different forms of composition.

73. LEMMA. Let �
� � � � � � � � � , � � � � � � � � � ) , � � � � � � � � � �

and
� � � � � �	� � � � be separable components. Then, � � � , � � � � � 
 � � � � � 
 , � �

and
� � � are separable with

� � � � �
�
�
�
� � � � �

�
� � � � and � � � �

�
�
�
� � � � �

�
� � � �

� � � � �
�
� � � ��� � � � � � � � � � � �

�
� ��� � � � and � � � �

�
� � � ��� � � � � � � � � � � �

�
� ��� � � �

� � � � � � � � � � � � � � and � � � � � � � � � � � � � � � � � � , where � denotes, as usual, the
Kleisli composition for the behaviour monad �

Furthermore, let �
� � � � �	� � � � and � � � �	� � be separable components.

Then,
�
� � � 	 � � �

� 
 � �

� 
 ,
�
� � � 	 � ��� � 
 ��� 
 and

�
� � � 	 � � � 
 � ��
 , where � � � �

� �

� �
�

� �
	
� �

�
and � � � �

� �
�

� �

� �
�

�
	
, are separable with

� � � � � �
�
� �

� � � � � � � � � � � � � � �
�
� �

and � � � � �
�
� �

� � � � � � � � � � � � � � �
�

� � �
� � � � �

� � � � � �
�
� �

� �
�

� � �
�

� � � � � � �
�
� �

and � � � � �
�
� �

� �
�

� � �
�

� � � � � � �
�
� �

� � � � � �
�
�

�
� � �
�
� �  � � � ��� �

�
�

�
and � � � � �

�
�

�
� � �
�
� �  � � � � � �

�
�

�



5. SEPARABLE COMPONENTS 199

Proof. Consider first the case of sequential composition. The proof proceeds by showing that
� � � can be re-written as

�
� ( � � � �3$ " � � � � & � � ��� #

��( � ( 
 �3$ " � � � � & � � ��� #
��( � ( � � � �

where � ��� # ��( � ( and � ��� # ��( � ( are replaced by the conjecture given. A simple, although lengthy,
calculation, will establish the result. The other cases are immediate. For the second group
of compositions the proof argument is similar. Note, however, the need for introducing ap-
propriate wiring to conform the result of the composition to the interface scheme of separable
components. For example, the type of � � 
 is

$ � 
 � 
 
 & 
 $ $ � 
 � & � 
 & 
 � $ � 
 � 
 � & 
$�$ � 
 � & � � & whereas, to conform to definition in §67, type
$ � 
 
 
 � � 
 & 
 $ � 
 � � 
 & 

�$ � 
 � 
 � � � & 
 $ � 
 � � � & is required. Proof details are given in [Appendix D, page 390].+

74. RESTRICTION LAWS. The following laws, relating restriction to further oper-
ators of the component’s algebra, are a direct corollary of lemma §73. Notice that,
once separability propagation has been proved, the definition of restriction applies
normally. Thus, let �

� � � � �	��� � � , � � � � � � � � � ) be separable and
� � � �	� � any component. Then,

�
� � � 
 � � 
 � �

�
� � � � � 
 � � � � � 
 	 (5.72)

�
� � � � �

�
�
�
� � 	 (5.73)

�
� � � �

�
� �
� � � 	 � � �

� 
 � �

� 
 	 (5.74)
�
� � � �

�
� �
� � � 	 � ��� � 
 ��� 
 	 (5.75)

�
� � � �

�
� �
� � � 	 � � � �

� �
�

� �
	
� �

� 
 �

� �
�

� �

� �
�

�
	 
 	 (5.76)

Furthermore, for �
� � � � �	� � � � and � � � � � �	� � � � separable,�

�
� 	 � �

�
� �

(5.77)�
� � 	 � � �

� � � � (5.78)

75. FEEDBACK REVISITED. Let �
� � � � �	� � � � be a separable component.

Then, a � output fed back will always produce a � one. Thus, a new feedback
combinator, which actually restricts the component interface, may be defined as

�
��� �

� � �	� � � 
 �
�
� �

�

 � �
�
�
�
�



200 5. COMPONENTS AS ARROWS

where

� �
�
�
�
� �

�
� �

� ��� � � � ��� �
// �
�
�

�
� � 	

76. EXAMPLE. A particular case of a separable component is � � � � � ��� �	� � � � ,
where � � � �	� � and � � � �	� � . Clearly,

� � � � � � � � � � (5.79)

Proof. As a corollary of lemma §73, � � 
 is separable with � ��� # � � � ( � � �
�  � � ! " � $ and� ��� # � � � ( � �  � & ! "%& $ � � . Note that, by law (5.69), � � � � � 
 � � 
 � � and, similarly, 

� � � �


 �
�

 �


 . Then,

���
� � ���
	

� ) hook definition *
� ��� �  � & ! " & $ � � � � �

�  � � ! " � $
� ) state extension definition *

� ��� � � � ��� � � ���3$ " � � � � & ��� � ��� � � � � � �	$ � �
��" � & ��� �

� ) � definition *
� � ( �

+

77. LEMMA. Let �
� � � � � � � � � be a separable component. Then,

�
� � � �

�
� � � �

�
� � � �

�
� � � � 
 � � 
 	 � � (5.80)

Proof. This result plays a role similar to lemma §71, in the sense that it also formalises an
intuition, this time about feeding back into separable components: the feed back factor could
be dropped from the interface. Proof supplied in [Appendix D, page 394]. +

78. THE HOOK COMBINATOR. A more general situation arises wherever � has type

� � � � � � � �	� � � � � �



5. SEPARABLE COMPONENTS 201

and is separable into three ‘threads’ � � � , � � � and � � � , with � � � and � � � composable
(actually, according to definition §67, two ‘threads’

�
� � � � � � � 	 and � � � , the first one

expressed as a sum). Then, for each � , � ,
�

, � and � , the hook combinator is defined
as a family of functors

�
� � �

� ��� �
�
� � � � ��
�� � � � � 	 �

�
� � ��� �

�
� � � 
 � � � 	 �

�which, being the identity on arrows, map each component �
� � � � ��� � � � � � � �

to �
� � �

� � � � � � � � � � 
 �
�
� �

�

 � �
�
�
�
�

where

� �
�
�
�
� �

�
� � � � � 	

�
� //

�

�
� � � �

�
� �

� ��� � � � � ��� � � � � ��� �
// �
�
�

�
� � 	 � �

�
�

�
� � 	� � �

� � � � � � � � �
� � � � ��� �

// �
�
�

�
� � � � � 	 	

Note that this definition subsumes the one in §75: by isomorphic wiring the interface
of �

� � � � � � � � � can be re-written as � � � � � �	� � � � � � which is
separable, with the original � threads in the first and third positions and � � � � � � � � in
the second.

79. LEMMA. For each � , � ,
�

, � and � , the hook combinator defined above is a
functor from ��� �

�
� � � � ��
�� � � � � 	 �

�
to ��� �

�
� � � 
 � � � 	 �

�
.

Proof. The basic proof step will show that a comorphism
� � � 

� � is still a comorphism� � � � � � 
 �

�
� � � . Then the functoriality conditions hold trivially. Thus,

�3$ � ��" � & � � �
�
� 	

� ) hook definition *
�3$ � ��" � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$�$ ��� �

� � � ��� �
& 
 � ���

�
& � � �

� )�� fusion and absorption, 
 definition *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � ��" � & � � ��� � � � �

� � ���
�

 �3$ � � " � & � � ���

�
& � � �

� )�� natural (C.16) *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��� �3$ � � " � & ��� ��� �

�
� � ���

�

 �3$ � � " � & � � ���

�
& � � �

� ) � � � � � �	� � � � and � ��� � � �	� � � � by lemma §68 *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��� ��� � �

���3$ � ��" � & � � ���
�

 � ��� �

�	$ � � " � &�& � � �
� ) � � � � � �	� � � � again by lemma §68 *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��� � � � �
� � ��� �

�	$ � � " � & 
 � ��� �
�	$ � � " � & & � � �



202 5. COMPONENTS AS ARROWS

� ) � � natural *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��� � � � �

� � ��� �

 � ��� �

& � � � �	$ � ��" � &
� ) 
 definition *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ ��� � � � � ��� �

 � ��� �

& � � � �	$ � � " � &
� ) hook definition *
� �

� � 	 �	$ � ��" � &
+

80. HOOK LAWS. We shall conclude our digression around separable components
by stating some properties of the interaction between hook and other component com-
binators. Proof arguments rely on the separability of the composites, now into three
‘threads’ (see lemma §73). We stress the intuition about each law, omitting lengthy,
but technically simple, calculational details.

The first two laws relate hook with wrapping and restriction. Note that hook is
well behaved with respect to a ‘structural’ wrapping function, provided its component
in the feed back parameter is an isomorphism. Thus, let �

� � � � � � � � � � � � �
be a separable component and �

� � � � � an isomorphism. Then,
�
� � � � �
����
 � � � � � � 
 � � �

�
� � � � � � � 
 � � � 
 (5.81)� �

� � � �

� 
 � �

� 
 � � � � �
��� � (5.82)

Proof. As an illustration of the kind of arguments involved, we prove (5.81) below.

� �
� � � & � & � ! ��� & �

& � � � 	 �
� ) hook definition *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � �
� � � & � & � ! � � & �

& � � � � ��� � � � & � & � ! � � & �
& � �
 � ���

� � � & � & � ! � � & �
& � � & � � �

� ) ‘threads’ of a wrapped component — see §73 *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ $ �3$ " � � � & � � � � �

�	$ " � � 	 &�& � $ �3$ " � � 	 � & � � ��� �
�	$ " � � � &�&


 �3$ " � � � & � � ���
�
�	$ " � � � & & � � �

� ) 
 definition *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ���3$ �3$ " � � � & � � � � �

�	$ " � � 	 & & ���3$ " � � 	 � & � � ���
�
�	$ " � � � &


 �3$ " � � � & � � ���
�
�	$ " � � � & & � � �



5. SEPARABLE COMPONENTS 203

� )�
 isomorphism *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��� �3$ " � � � & ��� � � � �

� � ���
�
�	$ " � � � &


 �3$ " � � � & � � ���
�
�	$ " � � � & & � � �

� )�� natural (C.16) and functors *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ " � � � & 
 �3$ " � � � & & �	$ � ��� ��� � �

� � ���
�

 � ���

�
&

� $ " � � � 
 " � � � & � � �
� )�� absorption and fusion, � � natural *

�3$ " � � $ � 
 � &�& ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ��� � � � �
� � ���

�

 � ���

�
& � � � �	$ " � � $ � 
 � &�&

� ) hook and wrapping definitions *
���

�
� 	 � � & � ! � & � �

+

The hook combinator can be thought of as a partial sequential composition, in the
sense that joined ‘pins’ vanish from the outermost interface. This gives rise to a num-
ber of bisimilar aggregation schemes, based on either � or

�
, allowing the specifier to

play around with the components involved. For example, the ‘hook version’ of (5.66)
reads

� �
� � � 	 � � �

� 
 � � 
 � � � �
� � �

� � (5.83)

for �
� � � � � � � � � and � ��� �	� � . On the other hand, a number of laws make

it possible to swap a partial composition from the input to the output of the feed back
‘pin’. The two cases mentioned below are prototypical of this class of situations —
respectively, in � and

�
composition contexts. Let �

� � � � � � � � � � � �	� be
separable and 	 � � �	� � . Then,



204 5. COMPONENTS AS ARROWS

�

��	�

��

� � � � �

��� ��� � � ��� ��� � � 	

� � � � �

�

��	�

��

�

� ��� � �

�

�

�

��	�

��

� � � � �

�

� � � � �

�

��	�

��

	 � ��� ��� � � ��� ��� �

� � � � �
�

Formally,
� � ��� � � � � ��� � � � � 	 	 � � � � �

�
� �

� 	 � ��� ��� � � ��� ��� � 	 � � (5.84)

For a similar result, in a
�

context, let �
� � � � �	� � � � , � � � �	� � and	 � � �	� � . Then,

� � � � � 	 	 � � 	 � � � 
 � � 
 � � � � � � �
� � ��� � � � � 	 	 � � 	 	 � � � 
 � � 
 � � (5.85)

The proof idea for (5.84) is that, because � is separable, component 	 is activated in
both expressions only once and always triggered by a � response to an � typed input.
A lengthy, but trivial, expression manipulation establishes � �

�
�
� � �
	 � � � � � � � �

�

�
�	� �

�
� �

� � � � � � 	 as a comorphism from the left to the right hand side of
the equation. A similar argument establishes (5.85).

81. ELECTRONIC VOTING. Our last example illustrates the role of separability. Let
us consider a voting system in which stimuli sent by independent voting pads are
counted in a central unit (‘concentrator’) until a certain level is reached. A common
use of such a system can be found in processing electronic opinion polls, as in some
television shows. In this case the voting pad is used only once. However, the same
system can be used to count inputs from a number of sensors in, e.g., an industrial
plant. Typically, such sensors emit a number of stimuli before terminating. In any
case, the maybe monad seems an adequate choice for the behaviour model. The voting



5. SEPARABLE COMPONENTS 205

system is built around two basic components: the voting pad
���

and the concentrator
� specified as follows:

��� � � � � � � 
 � � � 
 ����� �
where

����� 
 � 
 	 � � �
� �� � � � � 
 � � ��
 	 � 
 � � 	 	

and
� � � � � �	� � � � � 
 � � � 
 � � �

whose dynamics �
�

is based on two actions: �
�
�
���

, to set the minimum vote level
needed to report success, and

� � � � to count an individual vote. Formally,
�
�
�
��� 
 � 
	� � � � � 
 � 
 	 �

� � � � 
 � 
 	 � � � � 
 � � ��
 � � � ���
A � -voting system is assembled by aggregating � voting pads and connecting their
outputs to the concentrator. A � -codiagonal wire is needed to concentrate the voting
pads’ outputs. As � is separable, the hook combinator can be used for interaction.
Thus, we begin with

� � �
�

� � ��� � � � � � 	 � �
which is typed as

� � � �
�
� � � 	 �	� � �

�
� � � 	 . To apply hook, however,

�
has to

be wired to exhibit the hooked type in the correct position. Clearly,
� � � � 
 � � 
 has the

right type:
� � � � � � � �	� � � � � � . The voting system is, then, defined as

� � � � � � � � � ��� � � � � � 	 � � 	 � � � 
 � � 
 � � � � � � � � �	� � � �
which may be depicted as

�

��	�

��

�
� � �

�

�

��	�

��

� � ���

� � �

�

��	�

��

�

�

� � �



206 5. COMPONENTS AS ARROWS

82. CONCURRENT VOTES. In
� � �

each vote is dealt separately. Replacing
�

by �
as the ‘gluing’ combinator of the voting pads, allows for the simultaneously counting
of arbitrary chunks of votes. Eventually this suits reality better, as several voting pads
may be activated at the same time. Two extra modifications are required in the system
to cope with this new specification. First, the

� � � � button of the concentrator has to
be re-designed to accept, instead of a single stimulus, a natural number encoding the
number of incoming votes, ie,

� � � � 
 � 
 � � � � � 
 � � � 
 � � � ���
Together with the previous �

�
�
���

button, this defines a new concentrator
� � � � �� �	� � � � . Secondly, the codiagonal wiring has to be replaced by a function��� � � ��� � � � � � � � which actually counts the number of inputs received. For

� � � , ��� � � � � � � � � � 	 � � � � �	� � would simply be � � � * 
 � � * 
 . The new system
is, then, assembled as in the

� ���
case:

� � � � � � � �
�
� ��� � � ��� � � � � � 	 � � � 	 � � � 
 � � 
 ��� �

�
� � � � � � � � �

Clearly, � � � � exhibits a ‘richer’ behavioural pattern than
� � �

, in a very precise
sense: if input to � � ��� is restricted to a sum of stimuli, the resulting component be-
comes bisimilar to

� � �
. Let us prove this for � � � (for � � � the proof requires

some extra wiring manipulation).

Proof.
� � � 
 " ��� � ��� � �

� ) ��� 	 � definition and law (5.10) *� $ $����
�

��� � � � � ��� �
	 � & � � � & � � & 
 � & � ��� ��� � 
 " � 
 " � �

� ) law (5.81) *� $ $�$
���
�

��� & � � � � ��� ��	 � & � � � & � � & 
 � & � ��� � 
 " � 
 " � 
 " � � ���
� )	�

� natural and law (5.10) *� $ � � � 
 " � � � $ $
���
�

��� & � � � � �	� � � � & � � � & � � & 
 � & � � �
� ) law (5.17) and ��� ��� � definition *� $ $ � � � � � � ���	��� & � $�$
���

�
��� & � � � � ��� � � � & � � � & � � & 
 � & � � �

� ) law (5.15) *� $ $ � � � � � $�$
���
�

��� & � � � � ��� � � � & & � $ � ���	� � � � � & & � � & 
 � & � ���
� ) laws (5.4) and (5.5) *� $ $ � � � � � $����

�
��� & � � � � �	� � � � & � � � & � � & 
 � & � � �



6. ANIMATING ��� � 207

� ) laws (5.53) *� $ $�$
���
�

��� & � � � � � � � � � �	� � � � & � � � & � � & 
 � & � ���
� ) laws (5.5) *� $ $�$
���

�
��� & � $ � � � � � � � � ��� � � � & & � � � & � � & 
 � & � ���

� ) ������� � � ��� � � � � � � � � ��� ��� *� $ $�$
���
�

��� & � $ � � � � � 
 � & & � � � & � � & 
 � & � � �
� ) law (5.85) *� $ $�$
���

�
��� & � � � � & � $�$ � ���	� � � � 
 � & � � � & & � � & 
 � & � � �

� ) ����� � ��� � � � � � ��	 ��
�� *� $ $�$
���
�

��� & � � � � & � � & � � & 
 � & � � �
� ) � 	 � definition *

� � �
+

6. Animating ��� �

83. In chapter 4 we have seen in some detail how CHARITY provides a compu-
tational representation of processes on top of which different process calculi can be
prototyped. In a similar way, CHARITY can be used to ‘bring life’ to the category of
components’ behaviours, ��� � . Again the prototyping process relies on the explicit
support CHARITY provides for coinductive types, as explained in appendix E.

This section discusses a CHARITY implementation of the component algebra in-
troduced in this chapter. The implementation is parametric on the underlying be-
haviour model. Associated to each such model, a specific observation structure is
proposed and a correspondent testing function defined. The reader is referred to ap-
pendix E for a basic introduction to the CHARITY notation.

84. DETERMINISTIC COMPONENTS. We shall consider first the class of deter-
ministic components, i.e., the case in which � � ���

. This is, of course, a particular
case of the generic implementation scheme presented later, but it seems a convenient
starting point to explain the basic prototyping strategies. This type of deterministic
behaviours is declared in CHARITY as

data U -> cp(I,O) = a : U -> I => U * O.



208 5. COMPONENTS AS ARROWS

parametric on the input (I) and output (O) types. As an example consider cell
which, given an integer seed value, generates the behaviour of a component which
reacts to an integer stimulus by doubling the value of the state variable and producing
as output the sum of the current state value with the input received. Notice how the
component semantics is given as the ‘gene’ of an anamorphim:

def cell: int -> cp(int,int)
= u => (| u => a: n => (double u, add_int(u,n)) |) u.

A small variation of cell is conv, in which the output commutes from (to) integers
to (from) naturals (functions n2i and i2n make the obvious conversions):

def conv: int -> cp(int+nat,int+nat)
= u => (| u => a: b0 i => (double u, b1 i2n add_int(u,i))

| b1 n => (double u, b0 add_int(u, n2i n))
|) u.

85. COMBINATORS. Behaviour combinators are implemented in CHARITY as
anamorphisms whose ‘genes’ are direct translations of the corresponding operators
in ��� . Despite of making use of the CHARITY term logic to handle variables and
some expression ‘housekeeping’, the correspondence with the definitions in sections
1 to 3, bearing in mind that � � ���

, should be obvious. Let us see some implementa-
tions. The sequential composition and its unit are given by

def pipe: cp(I, K) * cp(K, O) -> cp(I, O)
= pp => (| (p, q) => a: i => a(i,p)

; (p’,k) => a(k,q)
; (q’,o) => ((p’, q’), o)

|) pp.

and

def copy: 1 -> cp(K,K)
= () => (| () => a: k => ((), k) |) ().

The code for copy, which has been defined as the lifting of � � � , gives the general
pattern for function lifting. Thus,

def lift{f:I -> O}: 1 -> cp(I,O)
= () => (| _ => a: i => ((), f i ) |) ().

Notice lift is parametrized by the function f to be lifted to ��� . A similar parametriza-
tion appears in the following implementation of wrapping:



6. ANIMATING ��� � 209

def wrap{f:I’ -> I, g:O -> O’}: cp(I, O) -> cp(I’,O’)
= pp => (| p => a: i’ => a(f i’, p)

; (p’,o) => (p’, g o)
|) pp.

On their turn, the choice and parallel combinators on behaviours are implemented as

def par: cp(I, O) * cp(J, R) -> cp(I*J, O*R)
= pp => (| (p, q) => a: (i,j) => (a(i,p), a(j,q))

; ((p’,o),(q’,r)) => ((p’, q’), (o,r))
|) pp.

and

def choice: cp(I, O) * cp(J, R) -> cp(I+J, O+R)
= pp =>
(| (p, q) => a: b0 i => a(i,p) ; (p’,o) => ((p’, q), b0 o)

| b1 j => a(j,q) ; (q’,r) => ((p, q’), b1 r)
|) pp.

Derived combinators such as, for example, either, have direct definitions, as in

def either: cp(I, O) * cp(J, O) -> cp(I+J, O)
= (p,q) => pipe(choice(p,q), lift{codiag}()).

Finally, the definitions of feedback and partial feedback go as follows:

def feed: cp(K, K) -> cp(K,K)
= pp => (| p => a: k => a(k,p) ; (p’,k’) => a(k’,p’) |) pp.

def pfeed: cp(I+K, O+K) -> cp(I+K, O+K)
= pp =>
(| p => a: x => a(x,p)

; (p’, y) => {b0 o => (p’,b0 o) | b1 k => a(b1 k,p’)} y
|) pp.

The application of the a observer to a particular stimulus and a behaviour produces,
as expected, an output value and the ‘continuation’ behaviour. Four examples of
these are given below in CHARITY printouts, showing, respectively, the execution
of cell with � as a seed value, the sequential composition of two such components
with different seeds, feedback and partial feedback applied, respectively, to cell and
conv.



210 5. COMPONENTS AS ARROWS

>> a(4, cell 5).
((a: <function>), 9) : cp(int, int) * int

>> a(4, pipe (cell 5, cell 2)).
((a: <function>), 11) : cp(int, int) * int

>> a(4, feed cell 5).
((a: <function>), 19) : cp(int, int) * int

>> a(b0 2, pfeed conv 2).
((a: <function>), b0(8)) : cp((int+nat),(int+nat)) * (int+nat)

Notice, in the last example, that input b0 2 produces a nat result, which is fed
back and, finally, produces the result shown. As a last example, consider the parallel
execution of two cell behaviours but in a way such that the interface is changed to
type nat. Function fp, defined in §88 below, computes the product of two functions.

>> a((two,one), wrap{fp{n2i,n2i}, fp{i2n,i2n}} par (cell 1, cell 0)).
((a: <function>), (succ(succ(succ(zero))), succ(zero)))
: cp((nat * nat), (nat * nat)) * (nat * nat)

86. TESTING. We have just seen the sort of interaction CHARITY provides. As the
elements of the final coalgebra associated to the signature functor for components are
themselves functions, the user is required to supply further input if experimentation
is intended to proceed. Behaviour is revealed step by step along this process. For
example, the reaction of cell 1 to, say, input � , after having reacted to input � , is
computed by

>> a(5, p0 a(8, cell 1)).
((a: <function>), 7) : cp(int, int) * int

If enough time is given, a deterministic component �
� � �	� � produces a stream of

� -values as a reaction to a stream of � stimuli. Actually, streams are the appropriate
observation structure for deterministic behaviours. This may be used to devise a
testing function which populates a result stream by successively experimenting the
prototype with a supplied input stream. The CHARITY mechanism to (lazily) evaluate
coinductive types provides a practical way to implement this.

Recall that streams of � are elements of the carrier of the final coalgebra for
� � � � ��� (§E.3). Thus, the testing function obs arises as the anamorphism depicted



6. ANIMATING ��� � 211

in the following diagram:

stream O
�
O
� � 


// O
�
stream O

stream I
�
cp(I,O)

obs_gen //

obs �
� �
obs_gen � �

OO

O
� �

stream I
�
cp(I,O)

	

� � �
obs

OO

that is,

def obs: stream I * cp(I,O) -> stream O
= (s,p) => (| (s,p) => head: p1 a(head s, p)

| tail: (tail s, p0 a(head s,p))
|) (s, p).

where obs_gen is the ‘gene’ coalgebra specified between (| and |).
Observe that obs_gen returns a pair formed by the component output, produced as
a reaction to the head of the input stream, and another pair formed by the tail of the
input stream and the ‘continuation’ behaviour. As an example, consider the response
of cell to ints, the stream of integers � , � , 
�
�
 (stream generation is discussed in
§E.4):

>> obs(ints, cell 4).
(head: ..., tail: ...)

Right display mode:
(q - quit, return - more) >>
(head: 4, tail: (head: ..., tail: ...))

Right display mode:
(q - quit, return - more) >>
(head: 4, tail: (head: 9, tail: (head: ..., tail: ...)))

Right display mode:
(q - quit, return - more) >>
(head: 4, tail: (head: 9, tail: (head: 18, tail: ...)))

Right display mode:
(q - quit, return - more) >>
(head: 4, tail: (head: 9, tail: (head: 18, tail: (head: 35, ...))))
...

However, testing the feedback combinators is rather unpleasant: the ‘continuation’
behaviour is returned as a function which the user must animate with the output pro-
duced, if interested in the ‘long term’ feed back behaviour. In fact, the reaction



212 5. COMPONENTS AS ARROWS

((a: <function>), 10) : cp(int, int) * int

to, a(4, feed cell 2) is produced in one step feedback loop and the proto-
typing system does not provide an immediate way to proceed with the experiment.
Testing functions fd_obs and pfd_obs below implement continued interaction,
simulating the long term effect of the feedback and partial feedback combinators.
The code for the former is straightforward; for the latter, however, one should be
aware that an input stream is supplied and, whenever a value of type Z is produced,
this is appended to the input stream and fed back.

def fd_obs: K * cp(K,K) -> stream(K)
= (k, p) =>
(| (k, p) => head: k
| tail: (p1 a(k, p), p0 a(k, p))
|) (k, p).

def pfd_obs: stream(I+Z) * cp(I+Z,O+Z) -> stream(O+Z)
= (s, p) =>
(| (s, p) =>

head: p1 a(head s, p)
| tail: { b0 o => (tail s, p0 a(head s, p))

| b1 z => (scons(b1 z, tail s), p0 a(head s, p))
} p1 a(head s, p)

|) (s, p).

where the appending function for streams is given as a record (§E.5):

def scons: X * stream X -> stream X
= (x, s) => (head: x, tail: s).

The following printout shows the testing of conv with the stream

def intnats: int+nat -> stream(int+nat)
= x => (| b0 i => head: b0 i

| tail: b0 add_int(5,i)
| b1 n => head: b1 n
| tail: b1 succ n
|) x.

forcing the feedback of any output of type nat:



6. ANIMATING ��� � 213

>> pfd_obs(intnats b0 1, conv 2).
(head: ..., tail: ...)

Right display mode:
(q - quit, return - more) >>
(head: b1(succ(succ(succ(zero)))), tail: (head: ..., tail: ...))

Right display mode:
(q - quit, return - more) >>
(head: b1(succ(succ(succ(zero)))), tail: (head: b0(7), tail: ...))
...

87. GENERIC COMPONENTS. Let us now generalise � � ���
to an arbitrary strong

monad. In CHARITY, this generic type of � -behaviours is written as

data U -> cp(I,O) = a : U -> I => B (U * O).

where B implements � . The associated functions

�
, � , strengths �

�
and � � , and the dis-

tributive law
�
� , are all explicitly introduced. The price of genericity is, of course, the

explicit use of such morphisms in the implementation of the combinators. But, pro-
ceeding this way, their implementations become almost transliterations of the formal
definitions. Consider, for example, the implementation of sequential composition,
choice and parallel:

def pipe: cp(I, K) * cp(K, O) -> cp(I, O)
= pp =>
(| (p, q) =>

a: i => mu B{B{iassoc}} B{taul} B{fp{fid,a}}
B{fp{fid,swap}} B{assoc} B{xr} taur (a(i,p), q)

|) pp.

def choice: cp(I, O) * cp(J, R) -> cp(I+J, O+R)
= pp =>
(| (p, q) =>

a: b0 i => B{fp{fid, b0}} B{xr} taur (a(i,p), q)
| b1 j => B{fp{fid, b1}} B{iassoc} taul (p, a(j,q))

|) pp.

def par: cp(I, O) * cp(J, R) -> cp(I*J, O*R)
= pp => (| (p, q) =>

a: (i,j) => B{m} deltal (a(i,p), a(j,q))
|) pp.



214 5. COMPONENTS AS ARROWS

Function lifting involves a final application of

�
and, of course, the unit for � arises as

a particular lifting — that of the identity. On the other hand, the wrapping combinator
must apply � to the output wrapping function. Thus,

def lift{f:A -> X}: 1 -> cp(A,X)
= () => (| _ => a: i => eta ((), f i ) |) ().

def copy: 1 -> cp(K,K)
= () => (| () => a: k => eta ((), k) |) ().

def wrap{f:I’ -> I, g:O -> O’}: cp(I, O) -> cp(I’,O’)
= pp => (| p => a: i’ => B{fp{fid,g}} a(f i’, p) |) pp.

Finally, the two feedback combinators:

def feed: cp(K, K) -> cp(K,K)
= pp => (| p => a: k => mu B{a} B{swap} a(k,p) |) pp.

def pfeed: cp(I+K, O+K) -> cp(I+K, O+K)
= pp => (| p =>

a: x => mu B{codiag} B{fs{eta,a}} B{fs{fid,swap}}
B{fs{fp{fid, b0},fp{fid, b1}}}
B{distr} a(x,p)

|) pp.

The only difference between the CHARITY functions above and the formal definitions
is the application of the commutativity morphism — swap — to the result of the
computation of observer a. In fact, the output types of � and a are swapped: formally,
� is the uncurry of a function from

�
to 
�
�
 � and, consequently, is typed as

� � � �	�

�
�
 , for any carrier. However, from the type declaration, the CHARITY system infers
a
� � � cp(I,O) � � 
�
�
 , where cp(I,O) is the carrier

�
� � � of the final coalgebra.

Thus, composition with swap is required to feed the result of a back to a.

88. HOUSEKEEPING MORPHISMS. A parenthesis is in order to introduce the imple-
mentations of the common ‘housekeeping’ morphisms used in combinator definitions.
Associativity, commutativity, distributivity and exchange morphisms are written as



6. ANIMATING ��� � 215

def assoc: (X * Y) * Z -> X * (Y * Z)
= ((x,y),z) => (x,(y,z)).

def iassoc: X * (Y * Z) -> (X * Y) * Z
= (x,(y,z)) => ((x,y),z).

def swap: X * Y -> Y * X
= (x,y) => (y,x).

def distr: X * (Y + Z) -> (X * Y) + (X * Z)
= (x, w) => {b0 y => b0 (x,y)

|b1 z => b1 (x,z)
}w .

def xr: (X * Y) * Z -> (X * Z) * Y
= ((x,y),z) => ((x,z),y).

def m: (X * Y) * (Z * W) -> (X * Z) * (Y * W)
= ((x,y), (z,w)) => ((x,z), (y,w)).

Next consider some common functional combinators in CHARITY: function product
and sum, either and split and identity. Note, in particular, how function arguments are
passed to CHARITY programs (§E.4).

def fp{f:I -> O, g:J -> R}: I * J -> O * R
= (i,j) => (f i, g j).

def fs{f:I -> O, g:J -> R}: I + J -> O + R
= b0 i => b0 f i
| b1 j => b1 g j.

def feither{f:I -> O, g:J -> O}: I + J -> O
= b0 i => f i
| b1 j => g j.

def fsplit{f:I -> O, g:I -> R}: I -> O * R
= i => (f i, g i).

def fid: I -> I
= i => i.

89. PARTIALITY AND NO DETERMINISM. Instantiating B with different monads
gives rise to different classes of components. For example, components whose be-
haviour is deterministic but partial are obtained with � � � ��� � . The CHARITY

implementation of the associated morphisms (unit, multiplication and strengths) is



216 5. COMPONENTS AS ARROWS

found in appendix A (§13). That is all we have to provide the generic combinators
module above to implement this particular class of behaviours.

Nondeterministic behaviours are obtained by instantiating the declaration with
the finite powerset monad:

data B X = set X.

based on a suitable implementation of sets. As CHARITY does not allow a coinductive
type to be parametrized by another coinductive type, the definition of sets by charac-
teristic functions discussed in §E.15 cannot be used. We resort instead to a more
conventional implementation based on sequences. Monad unit and multiplication are
given by

def eta: X -> B X
= a => [a].

def mu: B B X -> B X
= s => reduce{union, emptyset} s.

whereas the generic codification of both strengths and distributive laws used above
remains valid. The next paragraph presents an example to illustrate the use of the
combinators in this more general setting. We shall revisit the testing strategies, in the
general case, in §91.

90. EXAMPLE. Consider the following component

� � � � � � ��� � � � � 
 � � � 
 � �
�
� � � 4 �

whose internal state � is a positive integer. Whenever stimulated with another inte-
ger � it splits into two configurations corresponding to (and delivering) the integers
located at the distance � of � . The value of � is decremented in both cases until it
eventually reaches � . Then the component ‘dies’ in the sense that it reduces itself to
the empty set. Formally,

� �
�
� � � 4 
 � 
 � � �

� �
� � � 	 � � 
 ��
 � � ��
 � � � � 
 
 � � ��
 � � � � � 	

The behaviour of � � � � � � is computed as the correspondent anamorphism, leading to
the following CHARITY implementation:



6. ANIMATING ��� � 217

def circle: int -> cp(int,int)
= u =>
(| u =>

a: n =>
{0 => emptyset
|_ => [(dec u, sub_int(n,u)), (dec u, add_int(n,u))]
} u

|) u.

The printout below shows the outcome of some experiments with circle in CHARI-
TY. Note, in particular the difference between sequential composition — in which the
distances to the intermediate inputs are computed in a new component (and a ‘fresh’
state value) — and feedback, in which case such computation is relative to the updated
state value.

>> a(5, circle 0).
[] : set(cp(int, int) * int)

>> a(5, circle 2).
[((a: <function>), 3), ((a: <function>), 7)]
: set(cp(int, int) * int)

>> a(5, pipe (circle 2, circle 2)).
[((a: <function>), 1), ((a: <function>), 5),
((a: <function>), 5), ((a: <function>), 9)]
: set(cp(int, int) * int)

>> a(5, feed circle 2).
[((a: <function>), 2), ((a: <function>), 4),

((a: <function>), 6), ((a: <function>), 8)]
: set(cp(int, int) * int)

>> a( b1 4, choice (circle 5, circle 7)).
[((a: <function>), b1(-3)), ((a: <function>), b1(11))]
: set(cp((int + int), (int + int)) * (int + int))

The set of outputs produced as a reaction to a particular stimulus can be easily ac-
cessed by (the functorial image of) the relevant projections, and, similarly, for the
‘continuation’ behaviours. For example,

>> B{p1} a((2,4), par (circle 5, circle 7)).
[(-3, -3), (-3, 11), (7, -3), (7, 11)] : set(int * int)

>> B{p0} a((2,4), par (circle 5, circle 7)).
[(a: <function>), (a: <function>), (a: <function>), (a: <function>)]

: set(cp(int * int, int * int))



218 5. COMPONENTS AS ARROWS

91. TESTING STRATEGIES REVISITED. Tracing the behaviour of a nondeterministic
component involves a suitable selection of ‘continuation points’. If in the determin-
istic case a simple projection is enough, here a ‘pick one from a set’ operation is
required. For example, in

>> a((8,-4), pick B{p0} a((2,4), par (circle 5, circle 7))).
[((a: <function>), (4, -10)), ((a: <function>), (4, 2)),
((a: <function>), (12, -10)), ((a: <function>), (12, 2))]
: set(cp((int * int), (int * int)) * (int * int))

pick selects, based on a random number generator, the ‘second’ continuation pro-
duced by the parallel composition of circle 5 and circle 7 on reaction to

 � 
���� . A similar ‘access’ function is required for partial behaviours. In this case,
it has to find out if a continuation has been produced. The following function does the
job:

def pick_if_available: I * SF cp(I,J) -> SF (cp(I,J) * J)
= (i, ff) => ff | (i, ss p) => a(i,p).

In general, ‘access’ functions are specific to the underlying behaviour monad. Also
dependent on the behaviour model are the ‘iteration’ testing functions: in particular,
each sort of behaviour requires an appropriate observation structure. As discussed
above, streams provide such a structure for the deterministic case. For partial be-
haviours, observations can be collected into a finite or infinite sequence, known as
a colist in CHARITY (see §E.15). A coinductive definition of the correspondent
testing function follows:

def obs: stream I * cp(I,O) -> colist O
= (s,p) =>
(| (s,p) => delist: { ff => ff

| ss(q,o) => ss (o, (tail s, q))
} a(head s, p)

|) (s,p).

The observation structure required by the nondeterministic case is a possibly infinite
generalized tree. We define this in CHARITY as

data T -> cotree X = cot: T -> set(X * T).

The testing function arises as an anamorphism in the following commuting diagram:

cotree O
� � � O � � 
 � //

���
O
�
cotree O

	

stream I
�
cp(I,O)

obs_gen //

obs �
� �
obs_gen � �

OO

���
O
� �

stream I
�
cp(I,O)

	 	

� � �
obs

OO



6. ANIMATING ��� � 219

where obs_gen is the ‘gene’ coalgebra:

�
� � ��� �

	
� � � � �

�
�
� � �
	 � �

�
�
�
a
� � � 	 � � � �

�

 head 
 tail � � � � 	

leading to the following CHARITY implementation:

def obs: stream I * cp(I,O) -> cotree O
= (s,p) =>
(| (s,p) => cot: B{fp{fid,swap}} B{assoc}

B{fp{swap,fid}} taur
(a(head s, p), tail s)

|) (s, p).

For example, one may observe the reaction of circle 5 to the stream of even num-
bers computing

>> obs(even, circle 5).
(cot: ...)

Right display mode:
(q - quit, return - more) >>
(cot: [(-3, (cot: ...)), (7, (cot: ...))])

Right display mode:
(q - quit, return - more) >>
(cot: [(-3, (cot: [(0, (cot: ...)), (8, (cot: ...))])),
(7, (cot: [(0, (cot: ...)), (8, (cot: ...))]))])

Right display mode:
(q - quit, return - more) >>
(cot: [(-3, (cot: [(0, (cot: [(5, (cot: ...)), (11, (cot: ...))])),
(8, (cot: [(5, (cot: ...)), (11, (cot: ...))]))])),
(7, (cot: [(0, (cot: [(5, (cot: ...)), (11, (cot: ...))])),
(8, (cot: [(5, (cot: ...)), (11, (cot: ...))]))]))])

...

Notice this is, of course, just the behaviour up to bisimulation, as the implementation
of sets used here was based on sequences.





CHAPTER 6

Components as Objects

Summary
This chapter addresses an alternative model for components, closer to
the object-orientation paradigm, based on a class of functors whose
shape does not entail any input output dependence. The component al-
gebra introduced in the previous chapter is revisited in this new setting.
The emphasis is put, however, in a category with components as objects,
rather than on the bicategorical structure. The chapter includes a discus-
sion of how component internal activity can be dealt within this model.
A mild generalisation of a component morphism using monadic wiring
functions is briefly discussed.

1. An Alternative Model

1. This chapter investigates an alternative model for components in which there is no
immediate dependence between input stimuli and the outputs produced. The relevant
functor is

� � � � �
� � (6.1)

where � and � are interface types and � is a strong monad, as before. A coalgebra
for this functor can be written as the split of two functions


��
�

 �
�
� � �
�
� � � � �

�
�

�
	 �

where �
�
� �
�
�	� � is a state observer (usually called the attribute in the object-

oriented programming paradigm) and �
�
���
�
� � � � �

�

�
is a state update function

(usually referred to as the method or action). Note that often � instantiates to a Carte-
sian product � � � � � � of different, but simultaneously available, observers, whereas
� takes the form of a sum � ��� � � � of (state update, non interfering) operations. If �

221



222 6. COMPONENTS AS OBJECTS

is regarded as a set of action names, � � denotes the type of the argument of operation
� .

The comorphism condition for this functor is derived from the general case (§3.20).
Thus,

� � � � � � is a comorphism from � to � iff�
� �

� � � 	 � � � � � �
� � definition �

�
�
� � � � � � � � � � �

�
� �
�
�
�

� � exponential fusion and absorption �
�
�
� � � � � � � � ���

�
� �
�
�
� � � � � 	

� � exponential universal �
�
�
� � � � � � � � ���

�
� �
�
�
� � � � � 	

Components modeled in this way will be called, in the sequel, object components,
after their similarity with (a simple) notion of an object in object-oriented program-
ming. For instance, [Jac96b] uses this functor, with � � ���

, in a coalgebraic model
for the object paradigm.

Behaviours of object components are animated in CHARITY along the same lines
discussed in the previous chapter. In particular, they are declared as inhabitants of the
following coinductive type

data S -> obj(I,O) = ob : U -> O
| ac : U -> I => B U.

parametric on the input (I) and output (O) types, where B denotes a monad specifica-
tion. The same applies, of course, to the component algebra which will be revisited
in the following sections. However, for space economy, we refrain from presenting
prototyping details.

2. ELEMENTARY EXAMPLES. A queue is a simple example of an object component
with two observers (top and isempty?) and two actions (enq and deq). As deq is
partial, the use of the maybe monad seems adequate to force deadlock whenever an
illegal deq is performed. Let � be a set and take sequences of � as the state space.
Then, define �

�
�

�
� � � � � � �

�
� � � 	 � �

as�
�
�

�
� � 
 
 � � � � 
 
���� � 4 � 4 
 � � � 4 � 4 � � � � � �

� �
� � � 	 � � 	 �

�
� � � � 	�� �

�
�



1. AN ALTERNATIVE MODEL 223

and the operations in the usual way:

��� � 4 � 4 � 
 � � � 
 � � � � � � � ���
where

� � � 	 � � 	 � 
 � � � � 	 
 � � � � � � � 	 	 	
� � � � � � � � 	 � 	 � 
 �

� � � 4 � 4 � � � ��� 
 � � � 
 � ���
where

� ��� � 	 
 
 	 � � � � 	 � 
 
 �
	

� �
�
� 	 
 	 	 � � 	 � 
 � � � � 	 
 � � � � � � � � 	 	 	

where, given a sequence 	 , � � � � � 	 returns 	 without its last element. Notice that
deq has a dummy parameter (of type � ) made explicit in the component interface to
represent a trigger for this action.

Another example of a simple component is the specification of a finite, nondeter-
ministic automaton corresponding to a regular language, for example � �

�
� � �

� � � � . In this case the powerset monad is the appropriate choice for � . The attribute
is taken as boolean-valued to discriminate between final and intermediate states (i.e.,
‘parsing’ stages). Let, thus, ) � �

� 
 ��
 � � � � be a set of terminals and � � � the set of
regular expressions over ) . Then define

�
� ) �	� �

given by
� � 
 � � � � � 
 
���� 
 � � � � � � � � � � � � � � � � 	�� �

where ��� �
�
� � 	 and � � is given by the following clauses,

� �
�
� 
 � 	 � � � � �

� �
�
� 
 � 	 � � � 
 ( �

� �
�
� � 
 � 	 � � � �
� �
�

�
 � 	 � � for all other 
 � � � � and

� � )

3. COMPOSITION. The examples above illustrate object components, parametric on
input type � and output � and defined as seeded coalgebras for functor � � (6.1). The
definition of sequential composition given in §5.2 can be adapted to this new setting,
although, as shown below, one of its properties requires careful consideration. Let
� � � �	� � and � � � � � � be two components. Their composition is formed by
placing them side by side and connecting the output attribute of � to the input of �
action. Formally, � � � � � �	� � is given by

� � ��� 
 
 �
�

 � � � � �

�
� � � 
 
 �

�
�
� 
 �
�
�
� � �



224 6. COMPONENTS AS OBJECTS

�
�
�
� � �

�
� � � ���

//
� � � �

// �

�
�
�
� � �

�
� � � � � � � //

�

�
� � � � � � � � � �

// � �
�
� � � � �

// �
�
�

�
� � � 	

� �
� �
� � � � � � �

// �
�
�

�
� � � � � 	 � � // �

�
�

�
� � � � � � 	 	

� �
� � � � � �

// �
�
�

�
�
� �
� 	 � � �

// � �
�
�

�
� � � 	 � // �

�
�

�
� � � 	

Clearly, sequential composition is associative, i.e., for � , � and � suitably typed

�
� � � � � � �
�
� � � 	 (6.2)

Proof. The bisimulation is witnessed by
� � �

�
� �

�
� � � 

� �

�
� $ �

�
� � � & . To prove

that
�

is a comorphism, consider first the observers part:

�
#

��( � ( ( �
� ) � definition *

� � � � �
� ) routine: � � � � � � � � � � *

� � � � � � � � ���
� ) � definition *

� � ( � � � � ���
� ) � definition *

�

��( # � ( � ( ���
Concerning the action part, the proof is similar to that of the corresponding property for func-
tional components in §5.4. The only difference here is that, instead of using the intermediate
result produced by � , this is obtained by computing �

� over the state space of � . However,
once �

� is computed, the state of � has already been updated by � � . +
To investigate the existence of units for � requires a prior introduction of a mechanism
for representing functions as components (cf., the procedure followed in the previous
chapter). This is done in next paragraph.

4. REPRESENTATION OF FUNCTIONS. A function � � � � � � can be represented
as an object component via the following ‘mirror mechanism’:�

� � � 
 � � � 
 
 � � � 

�
� � ��� ��� � �



1. AN ALTERNATIVE MODEL 225

i.e., by a coalgebra � �	� � � �
� � 	

�
. Note that, in general, the representation of

� is not unique. Even worse, the possible representations are not bisimilar. We shall
come back to this soon. For the moment, consider

��� ��� � � � � � � �

Is this a unit for sequential composition?

5. UNIT. Let �
� � � � � be a component. We want to discuss whether equations

��� ��� � � � � � (6.3)
�
� ��� ��� � � � (6.4)

hold. The obvious choice of comorphisms to witness bisimulations in equations (6.3)
and (6.4) is, respectively, � � � � � �

�
� � �

�
and � � ���

�
� � � � �

�
. That, in both

cases, such comorphisms commute with the action part of the respective components
is proved in [Appendix D, page 396]. For the observers, however, one has:

� �  #"�� � � � � �
�
� ���

but
�
�
� �  #" � � � � �  #"�� � � ���

which, in general, differs from �
�
� ��� . Anyway, should both � � ��� ��� � and � have

been observed after action takes place, the result would be the same, because the
‘expected’ value would be already stored in the state of ��� ��� � . This leads to the
following definition of a next comorphism which, in a sense, retrieves the ‘functional
dependence’ scheme.

6. DEFINITION. A next comorphism from � � � � � � to � � � � � � is a function� ���
�
�	� � �

such that

� �
�
� �
�
� � � � ��� � �

� � � � � 	 (6.5)

and

� � ���
�
� �
�
�
� � � � � 	 (6.6)

Two components � and � are next bisimilar, written as � �� � iff there is a seed
preserving next comorphism

� � � �	� � relating them.

7. LEMMA. The composition of next comorphisms is a next comorphism as well as
identity is its unit. Moreover, every comorphism is also a next comorphism.



226 6. COMPONENTS AS OBJECTS

Proof. The identity case is trivial. For composition let
� � � 

� � and � � � 

� 
 be next

comorphisms. Then,

� � �	$�$ � � � & ��" � &
� ) � functor and 
 is a next comorphism *

� � � � �
�	$ � � " � &

� ) � functor and � is a next comorphism *
�3$ � � � & � � �

and
�

�

�
� �

�

� ) � is a next comorphism *
�

� �
� � �
�	$ � ��" � &

� ) 
 is a next comorphism *
�

� � � � � �	$ � ��" � & �	$ � ��" � &
� ) � functor *

�
� � � � � �	$�$ � � � & ��" � &

Every comorphism is a next comorphism: if
� � � 
 � � is a comorphism it already meets

(6.6). It furthermore satisfies (6.5) because
�

�

�
� �

�

� ) � is a comorphism (attribute condition) and � functor *
�

� �
��� � � �

�

� ) � is a comorphism (action condition) *
�

� �
� � �
�	$ � ��" � &

+

8. REMARK. What we have termed above next bisimilarity and next comorphism are
just the usual notions of bisimilarity and comorphism for functor � � � � � � � � . It
is immediate to check that

� �� � iff �� � ��
where �� � 
 �

�
� �

�

 
 � �
�
� �
�

 �
�
� � and � on the righthandside means � -bisimilarity.

We may now check that equation (6.4) holds if stated in terms of next bisimilarity:



1. AN ALTERNATIVE MODEL 227

9. LEMMA. Let �
� � �	� � be a component. Then

�
� ��� ��� � �� � (6.7)

Proof. The action part for � has already been dealt with in §5. By the second part of lemma
§7, this remains valid for

�

� . Therefore, it remains to check the (critical) observers part:
�

�

��( � 
���� � � � ��( ��
���� �
� ) � definition *

�
�
# � 
���� � � � � & � � ��� � � ���3$ " � � � � 
���� � & ��� � ��� � " � 
 �

�
� � � 
 � � � �	$ �

�
� " � & ��� �

� ) ��� ��� � definition *
� � � � � ��� � � ���3$ " � � � & ���3$ " � � � � & ��� � ��� � " � 
 �

�
� � � 
 � � � �	$ �

�
��" � & ��� �

� ) law (C.20) *
� � � � � ��� ���3$ " � � � � & ��� � ��� � " � 
 �

�
� � � 
 � ��� �	$ �

�
� " � & ��� �

� ) law (C.14) *
� � � ���3$ " � � � � & ��� � ��� � " � 
 �

�
� � � 
 � � � �	$ �

�
��" � & ��� �

� ) routine: � � � � � � � � � � � � � � � *
� � � ��� � " � 
 �

�
� � � 
 � � � �	$ �

�
��" � & ��� �

� ) � cancellation *
�3$

�

�
� � � & � ��� �	$ �

�
� " � & ��� �

� ) law (C.12) *
�

�

�
� � � �	$ �

�
��" � & ��� �

� ) � cancellation *
�

�

�
� �

�
� � � ��� �

� ) routine: � � � � � � � � � � � *
�

�

�
� �

�
�	$ � � ��" � &

+

10. SEEDS AS PREDICATES. Let � � and � � be two liftings of function � � � �	� �
over different seeds

�
� and

�
� in � . Clearly, � � �� � � , witnessed by � � � , but � � � is

not seed preserving — actually there is no next comorphism relating � � and � � and
preserving seeds. This observation motivates a broader definition of a component,



228 6. COMPONENTS AS OBJECTS

replacing the seed value �
�
� �

�
by a predicate over

�

�
intended to characterise all

possible initial states for � . Therefore, we define an object component as
� � 
 �

�
���
�
�	� � 
 
��

�
� �
�
�	� � 
 �

�
� �
�
� � � � �

�
� � (6.8)

where �
�

is named the seed predicate. Both comorphisms and next comorphisms are
then required to satisfy the following seed predicate preserving condition:

�
�
� � � � � (6.9)

and the definitions of sequential composition and function lifting modified to include,
respectively,

�
�
�
� � � �

�
�
�
� � � 	

and

� � ��� � �
� �
�
� *

The fact that
�

�
is not empty is required in this model. In fact, the empty state space

would turn the homsets in the corresponding category of behaviours into singletons:
by initiality there would be a comorphism from the component with empty state space
to every other one. As a result all components with the same interface would be
bisimilar.

11. BEHAVIOUR. Given a component �
� � � � � and a valid element of its state

space, i.e., � � �

�
such that �

�
� , the behaviour of � at � is computed by coinductive

extension, i.e., � � 
 � 
 � � 	 
 � � � 
 �
�

 �
�
� 	 
 �

12. LEMMA. Let � be a strong monad. Then a bicategory ��� � is formed taking sets
as objects, object components, defined by (6.8), as arrows and next comorphisms as
2-cells.

Proof. The proof follows the argument used to verify the corresponding result for functional
components in §5.4. First note that each

� � � $ � 
�� & is a full subcategory of the category of �
coalgebras over � ��� , for �%� � ��� � � � � �

. More precisely, its restriction to coalgebras of
the form

�

� , for � a coalgebra for functor (6.1). Then, for objects
�
,
�

and
�

, both sequential
composition and its unit can be made into a family of functors � � ! � ! � and

� ���	�
� by defining

its action on 2-cells as, respectively, function product (i.e.,
� � � ! � ! � � � � � � ) and identity

on
�

(i.e.,
� ���	�

�
" � � � " �

� ). Checking the functoriality axioms is immediate. However,
the step involved in checking that

� � � is indeed a next comorphism is non trivial. This is
proved in [Appendix D, page 398]. Finally, the existence of natural isomorphisms expressing



2. COMPONENT ALGEBRA REVISITED 229

� associativity, left and right units, has already been established in §3, §5 and §9. Being also
� � � natural isomorphisms, coherence conditions hold trivially. +

2. Component Algebra Revisited

13. STEPPING DOWN. This section revisits the combinators introduced in the
previous chapter in the new setting of object components. For this purpose, one could
resort to the bicategorical structure already defined and introduce such operators as
lax functors, as before. To pave the way to a possible generalisation of component
morphisms, proposed later in this chapter, we shall frame our discussion in a category� �
� having components as objects and seed predicate preserving comorphisms as

arrows. Notice that a category with components as objects can always be obtained
from ��� � by application of the general ‘stepping down’ procedure in bicategories
(§B.11): arrows become objects and 2-cells the arrows of the new category.

Our starting point is an expected result on function lifting, which corresponds to
lemma §5.11.

14. LEMMA. Let �
� � �	� � and � � � �	� � be functions. Then,�

��� � � �
�
�
� �

�
� � (6.10)� � � � � � ��� ��� � (6.11)

Proof. Equation (6.11) is an immediate consequence of the definition and can therefore be
written as an equality. Equation (6.10) will be proved by checking that � � � � � � 

� �

is
a comorphism from

� � � � � � � to
� � � � � . For the observers’ part note that

� � � � ( � � � � � � � " � � � � � � � � �
holds. On the other hand,

� � � � ��� � � ( � � �
� ) � and function lifting definitions *

� � � � � ��� � � ���3$ " � � $ � � ��� � � &�& ��� � ��� � " � 
 � � 
 � � � �	$ $ � � � � � � & � " � & ��� �
� ) law (C.20) *

� � � � � ��� ���3$ " � � $ ��� � � &�& ��� � ��� � " � 
 � � 
 � � � �	$�$ � � � � � � & � " � & ��� �
� ) law (C.14) *

� � � ���3$ " � � $%� � � � & & ��� � ��� � " � 
 � � 
 � ��� �	$�$ � � � � � � & ��" � & ��� �



230 6. COMPONENTS AS OBJECTS

� ) routine: � � � � � � � � � � � � � � � *
� � � ���3$ " � � � & ���3$ � � � " � & ��� � " � 
 � � 
 � ��� �	$�$ � � � � � � & � " � & ��� �

� ) � absorption *
� � � ��� � � � 
 ��� � � 
 � ��� � $�$ � � � � � � & � " � & ��� �

� ) � cancellation *
� � ��� � � � � � �	$ $ � � � � � � & � " � & ��� �

� ) law (C.18) *
� � ��� � � ��� �	$ � ��" � & �	$ � � � " � & ��� �

� )�� natural (C.17) *
� � ��� � � �	$ � � " � & �	$ � � ��" � & ��� �

� ) � cancellation *
� � ��� � � � � �	$ � � � " � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � *
� � ��� � � � � �	$ � � � " � &

� ) function lifting definition *
� � � � � �	$ � � ��" � &

+

15. The next paragraphs introduce wrapping, parallel, choice and concurrent aggre-
gation. Note the similarity with the corresponding definitions in chapter 5, although
some combinators become differently typed on account of the availability of the ob-
servers. Therefore, whatever combinator is used to aggregate two components, the
observers of both arguments are simultaneously available and the output of the aggre-
gated component becomes a product. We shall be rather sketchy about the properties
of those combinators — in most cases they are similar to the ones of the corresponding
functional components’ algebra. Their proofs are also similar but for the observers,
which require separate treatment.

16. WRAPPING. The wrapping combinator encapsulates component’s pre- and post-
composition with function lifting. Formally, for �

� � �	� � an object component
and functions � � � � �	� � , � � � � � � � , define

��� � 
 � 
 � ��� � � 
 � 	 � � ��� � � � 
 � �
	



2. COMPONENT ALGEBRA REVISITED 231

mapping 
 �
�

 
 �
�

 �
�
� � into 
 �

�

 
 �
�
� ��� ��� 
 �
�
� ��� ��� � � , where

�
�
� ��� ��� � �

�

� �
� � � � � � �� � � � � � �

�
�
� ��� ��� � �

�
� � �

� � �
�� � � � � �

�
� � � �

� � � � � � �

17. LEMMA. For any component �
� � � � � and functions � � � � � � � , � � � �	�

� � , � � � � � � � � and � �
� � � � � � ,
� � � 
 � 
 � � � 
 � � 
 �� � � ��� � � 
 � � � � 
 (6.12)

� � � 
 � 
 ��
�
� � � � �

�
�
�

(6.13)

Proof. The proof follows the arguments used in §5.19 and §5.20. Note, however, the need
for introducing next bisimilarity exactly by the same reason why

� ���	�
fails to be a unit for

sequential composition under the usual bisimilarity relation. Concerning equation (6.12) it is
easy to check that � � � 
 " � � � � � � � � holds, but, on the other hand, one only gets � � " � 
 � � �

� � � � � � .+

18. PARALLEL. Synchronous product is the simplest form of component aggrega-
tion: given �

� � � � � and � � � � � � , �
� � executes simultaneously both actions

and offers the product of both attributes. Formally,
� � � � 
 �

�
� � 
 
��
�
� � 
 �
�
� � � �

where

�
�
� � � �

�
� � ��� � � � �

// � � � � // �

�
�
� � � �

�
� � � � � � � �

// � � �
and

�
�
� � � �

�
� � � � � � � � 	 �

// �

�
� � �

�
� � � � 	

��� � � �
// � �
�
�
� �
� � �

// �
�
�

�
� � � 	

Its unit is, as in the case of functional components,

� � � � � � � � � �



232 6. COMPONENTS AS OBJECTS

19. CHOICE AND CONCURRENT COMPOSITION. Let �
� � �	� � and � � � �	� �

be two object components. With respect to the action part, �
� � behaves either as �

or � depending on the input. On the other hand, � � � allows the selection between
an independent action of � or � , and their simultaneous execution. As expected, the
combinator captures the intuition that, putting both components side by side, leads to
an increase of (observable) behaviour: not only the individual observers and actions
of both processes are available, but also there is the possibility of activating them
concurrently. As discussed above, the attribute of the composed system, in both cases,
is simply the product of �

�
and � � . Formally, choice is defined as
� � � � 
 �

�
� � 
 
��
�
� � 
 �
�
� � � �

where

�
�
� � � �

�
� � � � � � � �

// � � � � // �

�
�
� � � �

�
� � � � � � � �

// � � �
and

�
�
� � � �

�
� � � � � � � � 	

�
� //

�

�
� � � � � � �

�
� � � � �

� � � �
// �

�
� � � � � � �

�
� � � � � � 	 � � � � � �

� � � � �
// � �
�
� � � � �

�
�
� �
�

� � �
� �

// �
�
�

�
� � � 	 � �

�
�

�
� � � 	 � // �

�
�

�
� � � 	

whereas, concurrent composition is given by
� � � � 
 �

�
�
� 
 
��
�
�
� 
 �
�
�
� � �

where

�
�
�
� � �

�
� � � � � � � �

// � � � � // �

�
�
�
� � �

�
� � � � � � � �

// � � �
and

�
�
�
� � �

�
� � � � � � � � 	

�
� // �

�
� � � � � � � � 	 � �

�
� � � � � � � � 	

� � ��� � � � ��� � �
// �
�
�

�
� � � 	



2. COMPONENT ALGEBRA REVISITED 233

Note that both
�

and � have the same unit

� � � � �
* � �

20. LAWS. Combinators
�

,
�

and � verify the same laws, formulated as bisimi-
larity equations, as the corresponding versions for functional components. In partic-
ular, they commute with sequential composition and, up to isomorphic wiring, form
Abelian monoids. The commutativity of the underlying behaviour monad is also as-
sumed for some properties of

�
and � .

The proofs are similar to the ones of lemmas §5.24, §5.26, §5.35, §5.37, §5.46
and §5.47 and will be omitted here. In particular, the comorphisms chosen to witness
bisimilarity, in each case, are the same. However, as the outputs of

�
and � are

products, e.g., � � � , instead of sums, e.g., � � � or � �	� , the required wiring is
different in some laws. In particular, the correspondents to equations (5.18), (5.19),
(5.20) and (5.21) for

�
, as well as to (5.49), (5.19), (5.20) and (5.21), for � , become,

respectively,
�
� � � 	 � � �

�
� �

�
� � � 	 	 � � � 
 � � 
 (6.14)

� � � � � � � � �

� 
 � � 
 (6.15)
� � � � � � � � � � 
 � � 
 (6.16)
� � � �

�
� � � 	 � � � 
 � 
 (6.17)�

� � � 	 � � �
�
� �

�
� � � 	 	 � � � 
 � � 
 (6.18)

� � � �
�
� � � 	 � � � 
 � 
 (6.19)

� � � � � � � � � � 
 � � 
 (6.20)
� � � � � � � � � � 
 � � 
 (6.21)

Again, the unit for
�

acts as a zero for
�

. However, as � � � is now typed as � �	� � ,
the law corresponding to equation (5.36) has to be written as

� � � � � � � � � � �
� 
 � � 
 (6.22)

As a final remark on proofs, note that the attribute parts have to be dealt separately
and preservation of the seed predicate by the witnessing comorphism has to be en-
sured. In all cases, both proof obligations are trivial. For attributes, recall �

�
� � �

�
�
� � � �

�
�
� � �
�
� � � . Thus, to establish, for example (6.14), as far as attributes are



234 6. COMPONENTS AS OBJECTS

concerned, just reason as follows:

� � � �
�
� � � � �

� � � definition �
� �
�
�
�
� � � � � � 	

� � � natural ��
�
�
� � � � � � � 	 	

� �
� � � definition �

�
�
� � � � �

� ���

On the other hand, preservation of seed predicates resorts to the fact that 
 � 
 � 
 � � �
� �

also forms an Abelian monoid. Back to the associativity of
�

, we proceed as follows:
� �
�
� � � � �

� � � definition �
� �

� � � � �
	 � � �
�
� � � � � � 	

� � � isomorphism �
� �

� � � � �
	 � � �
�
� � � � � � 	

� � � � �
� � � , � � natural �

� �
� � � � �
	 ��� � � � �

�
� � � � � � � 	 	

� �
� ��� associative �

� �
� � � � � 	 � � �

�
� � � � � � � 	 	

���
� � � definition �

�
�
� � � � �

� ���

3. Interaction

21. The definition of feedback operators intended to capture component interaction
depends essentially on the shape of the input-output interface. For object components
we define again both a (family of) feedback and partial feedback combinators which
leave the interface unchanged. The absence of a direct dependency between input and
output in the components’ model discussed in this chapter, suggests the introduction
of another feedback combinator which, additionally, hides the fed back parameter.



3. INTERACTION 235

Recall that in §5.78 a similar combination of interaction and restriction was proposed
in the context of separable components (§5.67). This has been called hook as, in a
sense, it captures a sort of partial sequential composition.

22. FEEDBACK. Let �
� � � � � be a component. The feedback combinator on type� is defined by

� � � 
 �
�

 
 �
�
� 
 �
�
� � �

where

�
�
� � �
�

and

�
�
� � �

�
� � ���

// � �
�

� �
� �
� � � �

// �
�
�

�
� � 	

� ���
// � � �
�
�

// � �
�

23. LEMMA. Let � � � � � � be a function, �
� � � � � a

�����
isomorphism,

� � � � � � and � � ) �	� ) components. Then,�
� � �

�
�
��� � � (6.23)

� � � � 
 � � 
 � � � � 
 � � 
 � (6.24)�
� � � 	 � � � � � � �

(6.25)�
� � � 	 � � � � � � �

(6.26)�
� � � 	 � � � �

� � �
(6.27)

Proof. [Appendix D, page 400]. +

24. PARTIAL FEEDBACK. The partial feedback combinator applies to components
� typed as � � � �	� � � � . Component �

� � is executed for an arbitrary input.
Then the attribute of � is read and its � component fed back to � . Thus, differently
of what happens in the functional case (§5.51), the state of � is always updated twice.
Formally,

� � � � 
 �
�

 
 �
�
� � 
 �
�
� � � �



236 6. COMPONENTS AS OBJECTS

where

�
�
� � � �

�
and

�
�
� � � �

�
� � � � � 	 ���

// � �
�

� �
� �
� � � � � � �

// �
�
�

�
� � 	

� �
� � � � � �

// �
�
�

�
� � � � � 	 	

� � �
// � � �
�

�
// � �
�

25. HOOK. As mentioned above, the hook combinator applies to cases in which the
required input is a pair whose right projection comes from the (observation of the pre-
vious) state. Note the hiding of the common parameter. The corresponding diagram is

��
� �

��	�

��

� � �
� � �

��

��	�

��

�

�
� � �

Formally,
�
��� � � 
 �

�

 
 � �
�
�
�

 � �
�
�
�
� �

where

� �
�
�
�
� � � � �

�

and

� �
�
�
�
� �

�
� �

� ��� � � ��� � ��� � � � � ��� � �
// �

�
� � � � � 	 � �

// �
�

�

26. As already stressed, the interaction scheme for components is basically a gen-
eralisation of pipelining. In the component’s model discussed in this chapter this can
be made quite explicit by showing how to define sequential composition in terms of
both partial feedback and hook. This is proved in the next paragraphs.



3. INTERACTION 237

27. LEMMA. Let �
� � �	� � and � � � �	� � be two components. Then�

� � � 	 � � � 
 � 
 � � � � ��
 �
� 
 � � � � (6.28)�
� � � 	 � � ��
 � 
 � � � � ��
 �
� 
 � � � � (6.29)

Proof. [Appendix D, page 401]. +

28. In order to formulate a similar result for the hook combinator, we have to
introduce a delay operator

� � which replicates the state space of � so that one copy of
�

�
always maintains the previous state value. This is the value read by the delayed �

attribute. The operator is interesting on its own as it allows for more versatile ‘object’
composition patterns. This justifies the brief incursion on delays which follows. First
the formal definition:

29. DELAY. Given a component �
� �
�	� � ,

� � is a component over the same
interface defined by

� � � 
 � � � 
 
�� � � 
 � � � � �
where

� � � �
�

�
� �

�
� � � � �

// � � � � // �

� � � �
�

�
� �

�
���

//
�

�

� �
// �

and

� � � �
�

�
� �

�
� �

��� �
� �
//
�

�
� �

�
� � �

//
�

�
� �

�
� �

� // �

�
� � �
�
� � 	

� � � ���
//
�

�
�
� �
�

� �

// �
�
�

�
� �

�
	

30. LEMMA. For suitably typed components � , � and functions � and � ,
�
�
� � � 
 � 
 	 �

�
� � 	 � � 
 � 
 (6.30)

�
�
� � � 	 �

� � � � � (6.31)
�
�
� � � 	 �

� � � � � (6.32)
�
�
� � � 	 �

� � �
� � (6.33)



238 6. COMPONENTS AS OBJECTS

Proof. [Appendix D, page 403]. +

31. LEMMA. It is now possible to state the relationship between hook and sequential
composition. For components �

� � �	� � and � � � � � � , one has
� �
� � � 	 � � � 
 � 
 � � � � �
� � (6.34)

Proof. [Appendix D, page 405]. +

32. EXAMPLE. In order to illustrate the use of the connectives just introduced,
consider a distributed querying system in which a question (modeled by a type

�
) is

simultaneously placed to several independent data sources, each of which supplies a
possible answer (of type

�
). A special component acts as an answer collector, merg-

ing all answers produced and computing a final result by means of some pre-defined
algorithm. Let us start with two data sources $ ��� and $ ��� (the � -ary case would be
dealt similarly), and a concentrator $ � ��� � acting as data sink. Note that $ � � and $ � �
may have different definitions and do not need to be deterministic. A typical choice
for � in this example could be the probabilistic bag monad mentioned in §4.65 to
assign a confidence level to each given answer. Thus,

�
�

��	�

���

$ � �
�
�

��	�

���

$ � �
�
�

��	�

��

�
$ � ��� �

We begin by building the synchronous product $ ��� � $ ��� with input
� � �

and
output

� � �
. As the same question is to be placed simultaneously to both data

sources, input has to be reduced by wrapping this product with the diagonal function,
i.e.,

$ � �
�
$ � � � $ � � 	 � � 
 � � 


The next step is to compose $ � with $ � � � � via
�

such that the output of the former is
fed back into the latter, through a double application of partial feedback. This requires
the input of $ � ��� � to be expanded to a coproduct of

�
, an effect which is achieved by



3. INTERACTION 239

wrapping with the appropriate codiagonal

� � � $ � � � � � � 
 � � 

Some additional wiring is required to apply the partial feedback operator. Because
the output interface of $ � � � �

is
� � � � 	 � � it has to be changed to � �

� � � � 	
by wrapping with the � isomorphism. Finally, associativity and exchange are needed
to prepare for the double partial feedback. The result is pictured in the following
diagram, where, in a naíve notation, the double feedback of

�
is represented by an

annotation in the connecting line:

�

��	�

��

$ �

�

� � �

�

��	�

��

� �

� � �

�� 
 �

Altogether, the whole system is given by

� �
�
$ � � � � 	 � � � � 
 � � � � 
 � � � � �

� 
 � � 
 � �
Finally, the intermediate answers are hidden from the environment, yielding the final
querying system as component �

�
� � � � � � 
 �
� 


Note in the specification of

�
�
�

how restriction appears as a particular case of wrap-
ping. It should also be remarked that the model for components discussed in the
present chapter deals with multiplicative output to additive input connections in a
more natural way than the functional model discussed previously (see §5.62). This is
due, of course, to the explicit separation of input and output.



240 6. COMPONENTS AS OBJECTS

4. A Note on Internal Activity

33. MOTIVATION. Often the evolution of a software component is driven not only
in response to an external stimulus, but also by some kind of internal activity, in-
dependent of the component’s environment, which the specifier may want to record
somehow. For instance, one may be interested in modelling ‘noise’ or defective be-
haviour. Or representing a ‘maintenance’ operation which starts ‘silently’ from time
to time. The incorporation of internal, autonomous activity in component models is
thus a point worth to consider. It is not, of course, exclusive to the object compo-
nent model discussed in this chapter: the basic strategy below applies as well to the
‘functional’ components addressed in chapter 5.

Suppose the internal activity of a component �
� � � � � is modeled by an action

	
� �
�
�	� � �

�
A way of expressing the interference of 	 into the dynamics of � is to redefine the
action of � as � �

�

 	�
 � � �

� �
�
� �

�
� �
�
	 � �
�
. This, however, assumes 	 typed as

	
� �
�
� � � � � �

�
, thus requiring a ‘dummy’ parameter of type � , which can

be regarded as a ‘button’ which, once triggered, activates 	 . However, recall that
all internal steps are recorded in the component’s behaviour. So ‘button’ pressing
would be traceable in the final coalgebra and this, of course, would contradict the
very definition of an internal action.

A more appropriate solution consists in modifying the action of � so that 	 is
called at each activation of an external action and before it actually takes place. In this
way the component interface remains unchanged. Moreover, this conveys the intuitive
idea that, when interacting with � the current configuration of its state space may
be different from the one left by the former interaction, as a result of some internal
activity. We proceed by defining internal action as another operation on components:

34. DEFINITION. Let �
� � �	� � and 	

� �
�
� � � �

�
denote, respectively, a

component and a specified internal action. The extension of � with 	 , written 	�� � ,
is a component over

�

�
which satisfies �

�
and is given by

�����
�
� �
�

� ���
�
� �
�
� �

�
�
�
	
� � � 	

35. REMARK. Notice that the action of 	�� � is still a coalgebra for endofunctor
(6.1). Moreover, although its behaviour differs from the behaviour of � , i.e., in general� � �
�
	 
 � �� � � � ���

�
	 
 � , for a valid initial state � � �

�
, there are no traces of 	 being



4. A NOTE ON INTERNAL ACTIVITY 241

‘triggered’ in the corresponding final coalgebra. The following results characterise
internal extension.

36. LEMMA. Let � and � be two components,
� � � � � � a seed predicate preserv-

ing comorphism and both 	 �
� �
�
� � � �

�
and 	 �

� � � � � � � �
internal actions

over
�

�
and

� �
. Suppose also that 	 � �

� � � � � 	 � , that is,
�

preserves internal ac-
tivity. Then

�
is still a seed’s predicate preserving comorphism from 	 � � � to 	�� � � .

Proof. All we have to show is that the action parts of the extended components commute with�
, i.e.,

� � ��� �
� � � � � � � � � ��� � (6.35)

Note that, by definition, ‘extension’ does not interfere neither with the observers’ part nor
with the seed predicates. Therefore, all that has to be checked is

� � � � �
�	$ � � " � &

� )�� definition and � functor *
� � � ��� �	$ $�� � � � & ��" � &

� ) assumption: � comorphism *
� � � � � �	$ $ � � �	� � & � " � &

� ) 
 � natural (C.5) and � functor *
� � � � $ � � " � & � � � �	$
� � ��" � &

� ) 
 definition *
� ��� � �

��� $ � � " � & � ��� �	$
� � � " � &
� ) � functor *

� ��� $ � �
�	$ � � " � &�& � � � �	$�� � � " � &

� ) assumption: � comorphism *
� ��� $ � � � � �

& � ��� �	$�� � ��" � &
� ) � functor *

� ��� � � ��� � �
� � � �	$�� � � " � &

� ) � natural (C.16) *
� � � � ��� � �

� � � � $�� � ��" � &
� ) 
 definition *

� � � �
� � ���

�	$�� � ��" � &



242 6. COMPONENTS AS OBJECTS

� )�� definition *
� � � � � ��� �

+

37. LEMMA. Internal extension commutes with wrapping and parallel composi-
tion. It is immediate to check, however, that it does not commute with the remaining
combinators. Thus,

	 �
�
� � � 
 � 
 	 � �

	 � � 	 � � 
 � 
 (6.36)

and, for � commutative,�
	 �

� 	
�
�
� � � 	 �

�
	 � � 	 �

� �
� � 	 (6.37)

where, given internal actions 	
� �
�
�	� � �

�
and

� � � � �	� � � �
, 	 �

�
is defined

by

	 �
� � �

�
� � � �

� �
// � �

�
�
� � � � �

// �
�
�

�
� � � 	

Proof. Concerning equation (6.36) the reasoning is as follows:
� � � # � � � ! � � (

� )�� and wrapping definitions *
� ��� � �

���3$ " � � � & � ��� �	$
� � " � &
� ) 
 � natural (C.5) *

� ��� � �
� � � �	$ " � � � & �	$
� � " � &

� ) � functor, � and wrapping definitions *
� # � � � ( � � ! � �

Concerning the other equation,
� # � ��� ( � # � � � (

� )�� definition *
� ��� � � � �

� ��� �	$
�
� ��" � & �	$
� ��� � " � &

� ) � definition *
� ���

�
� ���3$ �

�
� � �
& ��� � � � � �	$

�
� � " � & �	$
� ��� ��" � &

� ) law (C.80) *
� ���

�
� ���3$ �

�
� � �
& � � � �	$ ��� � ��� & � � �	$
� ��� ��" � &



5. MONADIC MORPHISMS 243

� )�� � natural (C.31) *
� ���

�
� �

�
� �	$ � �

�
� � � �

& �	$ ��� � ��� & � � �	$
� ��� ��" � &
� ) law (C.75), which requires � commutativity *�

� �	$ � � � & �	$ � � �
� � � �

& �	$ � � � � � & � � �	$
� ��� ��" � &
� ) � natural *�

� �	$ � � � & �	$ � � �
� � � �

& �	$ ��� � ��� & �	$ $�� ��" � & � $ � � " � &�& � �
� ) � and � definitions *
� # � � � ( �

#
� � � (

+

5. Monadic Morphisms

38. This chapter closes with the discussion of a possible extension of the compo-
nent category

� �
� stemming from a broader definition of component morphism. The

motivation is increased flexibility, as it will be shown that monadic functions can be
used to wire components. As explained below, the additional structure on the wiring
function is ‘absorbed’ by the component’s behaviour model.

39. MORPHISMS. A component morphism
� � � � � � in the new category — which

will be denoted by
�

� � in the sequel — is a coalgebra morphism up to a natural
transformation � ��� � encoding interface conversion, parametric on functions � on the
output and � on the input. Technically, this amounts to a function

�
between the

corresponding state spaces making the following diagram to commute

�

�
�

//

� ��

� �
�
��

� �� � �
�

�

��� 
 �
// � �� � � � �

�

�

� �
� � 
 � � �

// � �� � � � �
� �

where � �� � � denotes endofunctor (6.1) with � and � as interface types. Furthermore,�
has to preserve seed predicates, as before.

We need, however, to be more explicit on � and � in the definition of ����� � . For the
deterministic case (i.e., � � ���

), �	��� � is simply function � � � � � , for � � � �	� � � and
�
� � � � � � . However, the presence of a non trivial (monadic) behaviour model calls

for a broader definition. The basic observation is that each function �
� � � �	� � �



244 6. COMPONENTS AS OBJECTS

induces a function
�
� from

�
� �

	 � to
�
� �

	 � � given by _ � � , where � is the Kleisli
composition for monad � .

�
� verifies a suitable rephrasing of the usual properties of exponentials, as de-

tailed below.

40. LEMMA. Function
�
� , for �

� � � � � � � , is natural on
�

.

Proof. Let
� � � 
 � �

. Then, unfolding the corresponding definitions,

$ � � & � � � � � � $ � � � _ & �	$ _ � � &
� � � �

_ � �
� $ _ � � & �	$ � � � _ &
� � � �	$ � � & �

+

41. Furthermore,
� �

is a contravariant functor from the Kleisli category for � to�����
, assigning

�
� �

	 � to object � and
�
� to Kleisli arrow �

� � � � � � � . Clearly,
� � � � � � � � � � � . On the other hand,

�
� � �

�
� � �

� � � � is a direct corollary of the
following more general law.

42. LEMMA. For � � � �	� �
� and �

� � � � �
�
� �

	 � , define � � �
�
� �

	 � �	��
� � �

	 � � by

� � �
�
� � 	 � � �

�
� �

	
� � � �
� _ � �

Now, let � � ��� � � � �
� � and � �

� � � � �	�
�
� �

	 � � . Then,

� �� � � � � �
�
� � � � 	 � � � � (6.38)

Proof.
� �� � � � � � $ � � � � _ � � � & � � �

� � � � � � � � � �
� � � � �	$ � ��� _ � � & � � �
� $ � � � � � & � _ � $ � � � � &
� $%� � � � & ��� � �

+



5. MONADIC MORPHISMS 245

43. THE
�

� � CATEGORY. Summing up the previous discussion, a morphism
between � -components � and � over

�
and
�

, respectively, can be presented as a pair

 � 
 � ��� � � , with � � � �	� � � , �

� � � �	� � � , where
� � � � � � is seed-preserving

and makes the diagram in §39 to commute. � ��� � is the natural transformation whose
�

component is
�

� ��� �
	
� � � � �

� with
�
� defined wrt the Kleisli composition for

� . Given two such arrows 
 � 
 � ��� � � and 
 � � 
 � � � � � � � , their composition is the pair


 � � � � 
 � � � � ��� � � � � �
Finally, identities are defined by 
 � � � 
 �

� �
� � � � � . Components and component mor-

phisms form, therefore, a category denoted by
�

� � , or simply
�

� .

44. A crucial point is to ensure that the proposed definition for � ��� � subsumes the
standard case in which the monadic effect is not present. Note that, for the maybe
monad, monadic � is just the classifier (or “totalizer”) of a partial map � �

� � � � � . If
� � is itself total then its classifier � satisfies the equation � � � � � � � and

�
� coincides

with
�
� � � 	 � � . This is indeed the case for the other monads considered above. In

fact, a non monadic input morphism always emerges as a special case of a monadic
one. That is to say, a total map for the maybe monad, an entire and simple relation for
the powerset, and so on. The following lemma proves this fact for the general case.

45. LEMMA Let � �
� � � � � � and define � �

�

� � � � . Then
�
� �

�
� �

	 � � .
Proof. Let

� � � 
 � � �
. Then

� � �
� ) definition *

� � �
� )�� is non-monadic *

� � $ � � � � � &
� ) 
 definition *

� ��������� � � � �
� ) � natural (C.16) *

� ��� � " ��� � � �
� ) law (C.14) *

� � � �
� ) definition *



246 6. COMPONENTS AS OBJECTS

$ � �'& � � �

+

46. WRAPPING REVISITED. We end this section by generalising the wrapping
combinator introduced in §16 in order to allow for pre-composition of components
with monadic arrows. First, however, we need to define a twin category of interface
spaces for components.

47. INTERFACES. For each behaviour monad � , the interface category
� � � � � (abbv.� � � � ), has pairs of sets 
 � 
 � � as objects and pairs of functions as arrows. In particular,

a morphism � � 
 � 
 � � �	� 
 � � 
 � � � is defined as a pair 
 � 
 �'� , with � � � � � � � and
�
� � � � � � � . Composition and identities are pointwise: inherited from

� ���
in the

first component and from the Kleisli category for � in the second.

48. The definition of wrapping builds on the fundamental observation that
�

� is
cofibred over

� � � � , as proved in §49 below. A cofibration is a functor
� � �

� �	�� � � � providing co-cartesian liftings of every
� � � � morphism � � 
 � 
 � � � � 
 � � 
 � � �

originated in the
�

image of each
�

� -object. In our context, this means that, given a
component � , each interface morphism � � � � �	� 
 � � 
 � � � can be lifted (or extended)
to a component morphism � � � � � � � , such that

� � � 
 � � 
 � � � in a canonical way.
Given an interface morphism � � 
 � 
 � � �	� 
 � � 
 � � � and a component �

� � �	�
� , we denote � wrapped by � by � � � . In this setting, the basic result is as follows:

49. LEMMA. The functor
� � �

� � � � � � � defined by

�
�
� � � � � � 	 � 
 � 
 � �

� 
 � 
 � ��� � � � 
 � 
 �!�

is a cofibration.

Proof. Consider � a component defined over
�

and � � 
 � 
 ��� � 

� � � � 
 � � 
 a morphism in� � � � (see diagram below). We claim that its cocartesian lifting is � " � " 
 � � ! � 
 � � 
 � � � 
 � 
 � � .



5. MONADIC MORPHISMS 247

�

� �
�

��

�  
� �

 ! ��� � � $

//

 
� ! � � � � � � $

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm � � 
 � 
 � �

 
� ! � � � � � � � � $

@@

� � � � � � 
 � 
  � ! � $ //

 � � ! � � $
((PPPPPPPPPPPPPPPPPPPPPPPPPPP

� � � 
 � � 

 � � � ! � � � $

��<<<<<<<<<<<<<<<

� � � � 
 � � � 

Let � � � � � 
 � � � � be another component over

�
and � � 
 � � � ! � � 
 � � 

� � an � � -morphism.

Suppose that � � � 
 � � 
 � � � 
 � 
 

� � � � � 
 � � � 
 factorizes over � � 
 � 
 in
� � � � through � � � � 
 � � � 
 .

Therefore composition in
� � � � yields

� � � � � � � � and ��� � � � � � � . We may, then, close the
upper diagram, in a unique way, with � � 
 � � � � ! � � � 
 . In fact,

� � 
 � � � � ! � � � 
 � � " ��" 
 � � ! � 

� ) definition *

� � 
 � � � � � � � � 
 � � " �%" 
 � � � � 

� ) lemma §42 *

� � 
 $%� � � � � & � � ����� � � 

� ) factorization in � � � � *

� � 
 � � � � � � 

� ) definition *

� � 
 � � � ! � � 
 +





CHAPTER 7

Conclusions and Future Work

Summary
This chapter is devoted to a brief discussion and evaluation of the work
reported in the thesis and the enumeration of some topics which, in our
opinion, deserve further investigation. In particular, some preliminary
work on one of these topics — component refinement — is reported.

1. Discussion of Contributions

1. CONTEXT. It is well known that initial algebras and final coalgebras provide
abstract descriptions of a variety of phenomena in programming, in particular of data
and behavioural structures, respectively. Both initiality and finality, as universal prop-
erties, entail definitional and proof principles, i.e., a basis for the development of pro-
gram calculi directly based on (actually driven by) type specifications. Moreover,
such properties can be turned into programming combinators and used, not only to
calculate programs, but also to program with. In functional programming the role of
such universals — combined with the ‘calculational’ style entailed by category theory
— has been fundamental to a whole discipline of algorithm derivation and transfor-
mation. On the coalgebraic side, coalgebraic modelling of dynamical systems has
recently emerged as active area of research.

2. SUMMARY OF CONTRIBUTIONS. Framed in this context, the main contribution
of this thesis is

� the proposal of a semantic model for software components, regarded as con-
crete coalgebras for some

�����
endofunctors, with specified initial conditions,

and

249



250 7. CONCLUSIONS AND FUTURE WORK

� the development of associated component calculi to reason about (and trans-
form) component-based designs.

The notion of a component as addressed in the thesis stems from the context of model
oriented specification methods. It is characterised by the presence of an internal state
space, which persists in time, and by an interaction model which reflects the asym-
metric nature of input and output. Two basic classes of models have been considered,
with, respectively, a ‘functional’ and an ‘object-oriented’ shape.

The proposed framework distinguishes components, as state-based dynamical
systems, from their behaviours, defined for each component as its anamorphic im-
age (i.e., as elements of the corresponding final coalgebra computed by coinductive
extension). Behaviours are, thus, processes, as considered in the literature on process
algebra. This leads to a second theme addressed in the thesis:

� the ‘reconstruction’ of classical (i.e., CCS-like) process calculi on top of a
coinductive representation of processes and adopting an essentially equa-
tional, pointfree calculational style.

In both cases, what distinguishes the work reported in the thesis from similar
research documented in the literature is

� the seek for genericity, in the sense that the proposed models and calculi for
both components and processes are parametric on the behaviour model and
the interaction discipline, respectively.

This has been achieved by introducing parametrization on top of strong monads, in
the first case, and positive monoids of actions, in the other.

Some minor contributions may also be singled out:
� the formulation and proof of a number of context laws relating expression

‘housekeeping’ morphisms with monad multiplication, unit, strength and
strength distribution

which we believe has some interest on its own as an ‘add-in’ to the ‘pointfree calcu-
lator toolbox’, and

� a concern with model prototyping, by animation in CHARITY, therefore bor-
rowing to the ‘co-side’ of computational systems a widely successful design
principle.

The following paragraphs discuss these contribuitions in comparison with related
approaches, thus placing our evaluation in a broader context.

3. PROCESSES AS CODATA. Looking at processes as elements of a coinductive
data type is not new. The original motivation of P. Aczel landmark work [Acz88,
Acz93] was precisely the construction of a final semantics for CCS-like languages.



1. DISCUSSION OF CONTRIBUTIONS 251

The same line of thought is pursued in, e.g., [RT94, Len98, Wol99, Bal00], among
others. References [Len98] and [Bal00], in particular, study models for the � -calculus
[MPW92] fully abstract with respect to different notions of observational equivalence.

What may distinguish the approach proposed in chapter 4 of this thesis from the
references above, is that our emphasis is placed on the design, ‘engineering’, side.
We intended to develop process calculi just as, in the ‘inductive half of the world’,
functional programmers define, say, operations on finite trees and prove their prop-
erties. Therefore, we were concerned with genericity, animation and the use of a
calculational proof style. Genericity is achieved through the introduction of an in-
teraction structure, an elaboration of G. Winskel notion of a synchronisation algebra
[WN95], which makes it possible to separate structural and interaction issues in pro-
cess modelling. Interaction structures are characterised as Abelian positive monoids
with a zero element. The monoid structure provides a uniform characterisation of in-
teraction disciplines. In particular, the proposed definition of parallel composition, in
terms of synchronous product and interleaving, avoids the need for � , a constant used
in [WN95] to denote asynchronous occurrence. How different structural decisions,
reflected in the shape of the underlying functor, affect the resulting calculi, was also
discussed in this chapter.

4. PROOF STYLE. Throughout chapters 4 to 6 we have adopted a pointfree, essen-
tially equational calculational proof style, which replaces the more traditional use of
coinduction (in terms of explicit construction of bisimulations) favoured in coalgebra
circles. In chapter 4 a ‘conditional fusion’ theorem has been proved to handle the
derivation of conditional laws.

In a sense, such a proof style is a price to be paid for genericity, as properties are
to be verified without fixing the working functor completely. Perhaps one might have
arrived at suitable notions of ‘generic’ bisimulation in which coinductive proofs could
have been based. Recognising that we have not followed such a direction, and being
unaware of any work in the area, we suspect that the formal complexity involved
would be comparable to the one specific to the approach adopted here.

Generic proofs performed in this style are often long, even if easy to follow. In
most cases their length results from the systematic recording of almost all elementary
steps. On the other hand, this style has become familiar to the functional program-
ming community, where it has been popularised under the ‘Bird-Meertens formalism’
heading (see e.g., [Bac88, Fok92a, BM97] or [BJJM98]).

5. BICATEGORIES OF COMPONENTS. The reason why components are fundamen-
tally different from processes has already been stressed: they cannot be reduced to
purely behavioural structures, as the state space cannot be abstracted away. Each



252 7. CONCLUSIONS AND FUTURE WORK

component specification introduces internal dynamics (captured by a concrete coal-
gebra) defined in terms of external interaction, internal ‘memory’ (or state) and a
general behaviour model.

The bicategorical setting adopted in chapter 5 (and, to a lesser extent, in chapter
6), seemed appropriate to capture a ‘two-level structure’ in the component models.
This is clearly in debt to previous work by R. Walters and his collaborators on models
for deterministic input-driven systems [KSW97a, Kat96, KSW00], briefly mentioned
in §1.7. Let us mention what distinguishes the approach proposed in this thesis:

� Genericity. R. Walters’ work deals essentially with deterministic systems
(on the grounds that nondeterminism can be captured eventually on suitable
categories of behaviours). Our parametrization of components over a strong
monad, specifying a behaviour model, is, to the best of our knowledge, orig-
inal. Such a monadic parametrization allows one to focus on the relevant
structure of components, factoring out details about the specific behavioural
effects that may be produced. It also enforces a (still very elementary) clas-
sification of behaviour models by the set of laws they satisfy (recall the
discussion in chapter 5 of a number of laws requiring, for example, monad
commutativity or the absence of termination).

� Interconnection patterns. A beautiful topic in Walters’ work is the way pro-
cess’ bicategories arise from a monoidal category 
 � 
 � � , by a standard,
so-called loops-suspension construction. Processes 
 � 
 � � � � �	� � are
defined in terms of

�
-morphisms� � � � � �	� �

� �
where

�
is the internal state space and � , � correspond to the interface types.

In [KSW97a],
�

is successively taken as 
 ����� 
 � � and 
 ����� 
�� � . The result,
in the first case, is a category of so-called ‘circuits’ (or, in our terminology,
‘deterministic functional components’). In the other case, input � is iden-
tified with a set of initial states (rather than with action stimuli) and output
� with final, or ‘equilibrium’, states. This emphasises state decomposition,
through sums, leading to a model of (deterministic) ‘while programs’.

For arbitrary
�

, the resulting algebra is ‘driven’ by the original ten-
sor � in

�
, reducing itself to two aggregation operations, corresponding

to ‘series’ and ‘parallel’ composition (i.e., our � and
�

, for � � ���
), and

a feedback operator to be discussed below. Such an algebra seems enough
to characterise binary circuits (as extensively done in [KSWW01]) and, one
may argue, its somehow restricted expressive power is a corollary of the very
general construction adopted. In this thesis, however, we have found it nec-
essary to use the full (distributive) structure of

�����
. This has led to a richer



1. DISCUSSION OF CONTRIBUTIONS 253

ontology of interconnection patterns for components. In particular, we have
considered a choice combinator, wrapping and concurrent composition. We
have also investigated the existence of universals, notably, initial and final
objects as well as either and split constructions, often characterised in weak
or conditional forms for different classes of possible behaviour monads.

� Feedback. Feedbacks as considered in R. Walters’ approach are reminiscent
of the corresponding notion in circuit design formalisms (notably in [JS90]).
They are essentially trace operators in the sense of [JSV96]1. The feedback
combinator in [KSW97a] is defined under the following assumption: given

 � 
 � � � � � � �	� � � � , � can be fed back into the system, providing
there exists a (essentially unique) ‘structure map’ �

� � � � � � � . This
conveys intuition on feedback as an operator whose applicability depends
on the ability to produce � elements from

�
and � . The definition, while

satisfying the axioms for a trace, seems a bit contrived when taking
� ���

as
the underlying category. The ‘natural’ way to define � seems to be through a
second application of

�
, assuming a ‘seed’ value of type � . This is basically

what is done in [KSW97a].
We have followed a similar idea, but opted for introducing feedback

combinators directly, dispensing with explicit ‘structure maps’. A basic
concern has been, in particular, to distinguish total from partial input feed-
back as both situations seemed useful in practice. Moreover — and this is a
main departure from [KSW97a] — the feedback parameters are not hidden
from the component interface. In fact, together with sequential composi-
tion, feedback (applied to

�
,
�

or � composites) is our basic mechanism
for component interaction. Again we have found that sticking to the well-
established process algebra principle of separating hiding (or restriction) and
communication as different operators, provided crucial increased flexibility.
Therefore, our feedback operators have a broader scope of application but,
as one could expect, the absence of hiding and the need to deal with both
additive and multiplicative interfaces, entail, in the general case, less expres-
sive theories. In particular, they fail to verify the trace axioms.

In general, trace combinators seem not to possess a simple, ‘natural’,
definition in

�����
. This is in contrast with what happens in the category � ���

1Broadly speaking, a trace is a combinator mapping arrows � ��� ��� � ��� ��� into Tr � �
� �	� � and satisfying a number of axioms. Trace combinators are closely related to the existence of
fixed points in the underlying categories, having been studied in several contexts, notably in categorical
models for linear logic (see, eg, [AJ94]) and process models (not only in Walters’ work but also in, e.g.,
[Sel99]). Reference [BCS98] is a comprehensive account of (local) trace theory, the qualification ‘local’
referring to traces being defined only for some objects of a category.



254 7. CONCLUSIONS AND FUTURE WORK

of sets and relations (and, in general, in any compact closed category). The
canonical notion is, in such a setting, crisp and clear2: given a relation � �
� � � �	� � � � Tr � � � �	� � is defined as 
 ��
 � � � Tr � iff there is a
	 � � such that 
 
 ��
 	�� 
 
 	 
 � � � � � . A similar, elegant, notion of feedback
arises in the bicategory induced by 
 � ��� 
 � � used in [KSWW01] to model
asynchronous circuits. Modelling feedback by a trace combinator seems,
however, to be somehow restrictive, in a number of situations. In [BCS98],
for example, it is remarked, for example, that the usual notion of feedback
in ‘stream processing’ fails to satisfy the main non-structural trace axiom
— that of ‘yanking’ — which states that feedback on the � commutativity
isomorphism is the identity. Computationally, this is better identified with a
‘delay’: the output is delayed until it is used as input in the ‘next time step’.
To fix this mismatch, [KSW00] proposes a more general feedback operator
which simply makes the fed back parameter part of the internal state space.
Formally, given a system 
 � 
 � � � � � � �	� � � � , the fed back system is
given by


 � � ��
 � � � � � � 	 � � � � � �	� �
The notion is appealing, not only because traces can be recovered as spe-
cial cases (in which feedback is ‘instantaneous’), but also because it seems
closer to the intuitive notion of a ‘feedback’, rather than our own ‘two-step-
in-one’ characterisation. Besides a possible difficulty in making sense of
‘action internalising’ in the presence of additive interfaces, and our decision
of keeping interaction and hiding separate, adoption of a similar construc-
tion in the component’s calculi would also require the specification of new,
extra seed values.

� Behaviour. Central to R. Walters’ approach is the definition of functors
to specified semantic categories, corresponding to different (‘application-
suited’) notions of behaviour. � ��� is a possible choice, for very elemen-
tary circuits. Another possibility (used, namely, in [KSWW01]) is the cat-
egory whose objects are infinite streams of input-state-output values. We
have, however, sticked to a canonical notion of behaviour: that computed
by coinductive extension. This has the advantage of being uniformly de-
fined, providing a simple view of behaviours as ‘codata’ which is easier to
reason about and to animate in a functional programming framework. In

2Our claim about the difficulty of defining traces on � 	 

� 	 � � is easily illustrated by specialising
the construction which follows to relations arising as function graphs. Please notice that tensor � in � 
 �
is the Cartesian product on objects and defined, on relations � and � , by ��� � � 	 � ��� 	 ��� � 	 � ������� � � � iff� � � 	 � � ��� � and � � � 	 � � ��� � .



1. DISCUSSION OF CONTRIBUTIONS 255

practice, however, we may have the need to work with notions of observa-
tion equivalence which, being less discriminant than bisimilarity, are also
of a ‘less structural’ nature. A possibility that has been studied elsewhere
(namely in the context of interaction categories [AGN94] and, in particular,
in D. Spooner thesis [Spo97]) is to single out particular classes of 2-cells in
which such equivalences could be based.

Finally, two other influences to the approach to component modelling proposed in
the thesis should be mentioned. The first is the recent area of coalgebraic specification
of object-oriented systems (see e.g., [Rei95, Jac96b]), which has been developed with
a similar motivation, although in a property-oriented, or axiomatic, framework. The
other is the ‘dataflow paradigm’ [Oli84] to which some of the aggregation patterns
and the general idea of structured wiring can eventually be traced back.

6. PROTOTYPING. We have already insisted on the relevance of having simple
ways to animate processes and, more generally, components’ behaviours. The direct
correspondence between the programs developed and the formal definitions, as well as
the straightforward way in which a process interpreter, parametric on the interaction
discipline, has been implemented is certainly a merit of CHARITY [CF92]. In fact, its
choice as a prototyping language seems to have been the right one. The main reason
for this is the fact that CHARITY supports, with the ‘right’ semantics, both inductive
and coinductive data types, without collapsing them, and enforces a strict discipline
for their use. Attempting the same kind of task in a partial functional language, such
as HASKELL, even resorting to laziness, would require somewhat more contrived
encodings.

The idea of using CHARITY to encode transition systems as higher-order types
was suggested in [Sch97]. Our own case study on component animation in CHA-
RITY is discussed in [Bar99]. The thesis contribution in this area is limited to the
full development of the component algebras, reported in chapters 5 and 6, and of an
interpreter for a CCS-like process language, parametrized by the interaction structure.
The latter is developed (in chapter 4) as an apomorphism [VU97], following a (final)
semantics-driven approach and resorting to strength to represent an environment of
(mutually dependent) process definitions.

7. APPLICATIONS TO SOFTWARE ENGINEERING. This thesis found its earlier mo-
tivation in a notion of component arising in the context of model-oriented specifica-
tion methods (as in [Jon86, Spi92] or, more specifically, in [ABNO97]). Eventually, it
evolved towards a more general approach which we believe may be useful in starting a
coalgebraic study of software components in the broader sense discussed in [WW99].
This includes a relatively rich component interconnection calculus, parametric on the



256 7. CONCLUSIONS AND FUTURE WORK

envisaged notion of behaviour, which may have some potential to support the defini-
tion of suitable formalisms to specify software architectures, a related and more and
more relevant research topic. In particular, in dealing with heterogeneous components
(e.g., based on different behaviour models) one would simply resort to natural trans-
formations induced by monad morphisms, as briefly explained in the last section of
chapter 4.

To a large extent, however, this is future work. In particular, we suspect that the
suitability of our approach to specify software architectures or real, ‘hard’ coordina-
tion problems, depends on the development of a notion of component customising
which, having not been addressed in the thesis, is currently among our research inter-
ests (see §13).

2. Future Work

8. We finally discuss some topics for future research. One of them — refinement —
will be discussed in a more detailed way in a separate section.

9. PROCESS CALCULI. Is it possible to extend the framework developed in chapter
4 to deal with more elaborated process calculi? For example, will mobility fit in it?
These questions deserve further investigation. In a sense, a positive answer requires
the development of coalgebraic models fully abstract with respect to the equivalence
notions one might be interested in. Final semantics to mobile calculi, dealing with
variable binding and dynamically generated names and localities, seems however
hard to obtain. The proposal of [Len98], for example, does not provide composi-
tional interpretations for process combinators of the � -calculus. The same difficulty
is experienced in the context of interaction categories [Abr94]. Interpretations for
combinators, however, are given in the model proposed in [Bal00] which resorts to
two different stages: a ‘ground model’ fully abstract with respect to a form of ground
bisimilarity, and a full model built on top of the latter and fully abstract with respect
to the congruence derived from ground bisimilarity. How simple calculation is within
such models and whether they can be parametrized by different ‘mobile’ interaction
disciplines, and suitably prototyped, remains a topic for future work. Unpublished
work by J. Valença on dependent streams [Val00] may be worth considering to cap-
ture the intuition that process interaction capacities may change upon receiving a
stimulus.

10. EXPLORING THE CO-SIDE. The categorical approach to data types entails
generic recursion (and co-recursion) schemes encoded as combinators which are poly-
morphic on the functor capturing the signature of the type. The most fundamental of



2. FUTURE WORK 257

such schemes are well known. On the inductive side, iteration (also known as struc-
tural recursion) is captured by catamorphisms, while paramorphisms express the full
power of primitive recursion. Dually, on the coinductive side, coiteration corresponds
to anamorphisms and the more general notion of primitive corecursion is captured by
apomorphisms.

Combinators on the coinductive side, heavily used in chapter 4, have been largely
overlooked in the literature. This is perhaps because (generic) programming with
codata is still in its infancy. One feels challenged, however, to further explore this
area, seeking for the duals of several derived combinators which have proved useful
in the inductive half of the programming landscape. The simplest example we can
think of is the strong version of a catamorphism discussed in §3.61 (see [Par00] for a
recent investigation of this functional). Given functor � , this is a morphism

��� � � � � � � � � % �	� �

uniquely induced by a structure
� � � � � % � � �

. Intuitively, it captures circu-
lar definitions of functions depending on an inductive argument and a ‘context’ % .
Reversing the arrows, we would expect to get a parametric unfold, typed as

� � � � � � � � � � � �	� � � � %
uniquely induced by a structure

� � � �	� � � � % . Clearly, such a morphism
cannot be unique in

�����
. However, � � ����� � � � �

seems to capture an interesting op-
eration scheme: ‘if normal computation fails, yield the context value as the whole
response’, with possible applications in modelling, e.g., ‘roll back’ operations. Seek-
ing for categories in which such schemes can be meaningfully expressed and studying
their applicability is part of a very recent research collaboration with V. Vene.

11. COMPONENT CLASSES. As we have mentioned before, component calculi
developed in chapters 5 and 6 are concerned with component interconnection and
interaction, which are ‘blind’ with respect to their internal functional specification.
From an engineering point of view, a challenging direction for future work is the
study of specific classes of components. Such classes can be identified in any of
the two general models proposed by singling out a number of properties. The only
example addressed in the thesis was that of separable components. Note, by the way,
that feedback for this class of components satisfies a richer set of laws than it does in
the general case. On may ask to what extent further restrictions would recover (in a
meaningful context) the feedback combinator of [KSW00] or even a trace operator.

Another class that seems interesting to explore concerns components whose in-
terface can be split into sets of actions affecting disjoint regions of the state space.



258 7. CONCLUSIONS AND FUTURE WORK

Actions from different regions can be executed in parallel as non interference is guar-
anteed [Oli97]. In such a class of components, additive (

�
) interfaces can be replaced

by concurrent ( � ) ones.
Reasoning about components involves both laws of the underlying calculus and

the properties of their internal specification. Component classes encapsulate the latter.
The ‘voting system’ decomposition, presented in chapter 5, is an example of a calcu-
lation relying on an additional assumption about the internal specification — that of
separability. Unfortunately, we did not have enough time to go further in that direc-
tion, which requires thorough experimental research driven by suitable case studies.

12. PROTOTYPING. Future work, in this area, includes the full development of pro-
totyping kernels for both process and component calculi, eventually with a graphical
interface. On the pragmatic side, the real challenge here is the design of a (com-
plete) diagrammatic notation to express components’ interconnection, as mentioned
in §5.64. Whether such a prototyping kernel can be plugged into a verification system
— like, e.g., a symbolic model checker — remains an open challenge.

13. CUSTOMISING. This thesis regards components as state-based entities inter-
acting through well defined interfaces of observers and actions. It is often the case,
however, that a particular component is used in a restricted way, namely as part of a
broader system. This entails the need for a specification of the intended behaviour,
which is not intrinsic to the component itself, but to its role (use) in a particular situa-
tion. For example, one may want to prescribe that action � is the initial action or that
an action

�
is to follow each occurrence of � .

We would like to extend our model to deal with such situations, a procedure which
may be referred to as component customising and bears relevance to the scaling up of
our framework to the software architecture level. Such a distinction is totally absent
from model-oriented specification methods, often leading to undesirable over spec-
ification. In process calculi, on the other hand, it may be traced back to Milner’s
distinction between static and dynamic process connectives, the later being under-
stood as the source of temporal extension. In CCS, ‘prefixing’ is the typical example
of a dynamic connective. Our component algebra lacks such an operator, as we are
dealing with concrete coalgebras instead of pure behaviours. Notice, on the other
hand, that ‘choice’, which is also a dynamic operator in process calculi, is treated, at
component level, as an aggregation combinator.

The way we envisage to address this topic is as follows. Suppose one wants to
customise the use of a component � . First, a decision on what using a specification
means has to be made. A simple possibility is just a precedence relation between



3. REFINEMENT 259

actions. We believe that such an elementary definition will cover several cases actu-
ally arising in practice. Once this has been defined, � suffers a ‘state extension’-like
(§5.69) operation to incorporate ‘historical’ information. This may be just a record of
the last operation executed, or a complete log file for � . Finally, the use specification is
provided as context information to the extended � component. In each step such infor-
mation is confronted to the ‘historical’ record to validate a possible interaction. The
resulting behaviour is computed by a strong anamorphism. As illustrated in chapter
4, when developing the process interpreter, context is directly supported in CHARITY

via strength, which makes the overall idea easy to implement. Conceptually, note that
component customising re-introduces in the calculus (a form of) temporal extension.

14. REFINEMENT. Last but not least, the definition of appropriate notions of com-
ponent refinement is perhaps the main topic to be addressed in future work. A refine-
ment theory studies changes in the representation of a system, entailing a notion of
substitution, but not necessarily equivalence. This means that the usage of a system
according to its specification is still valid if it is actually built according to the (valid)
implementation. What is commonly understood by being a valid usage is that the
corresponding observable consequences are still the same, or, in a less strict sense, a
subset thereof. In the literature on concurrent systems there is, however, no general
consensus on what a good notion of refinement is.

Some work has already been carried out in this direction. However, its very pre-
liminary character prevents a full presentation in the thesis. Due to the relevance of
the topic, we have decided to include part of this (sketchy) material in the next (and
last!) section, as a basis for future work.

3. Refinement

15. As mentioned in §14, refinement can be defined, in broad terms, as a transforma-
tion of an ‘abstract’ into a more ‘concrete’ design, entailing a notion of substitution.
There is, however, a diversity of ways of understanding both what substitution means,
and what such a transformation should seek for. Let us briefly mention a number of
them:

� In VDM [Jon80] data refinement is the process of transforming abstract data
structures into more concrete ones, a transformation which presumably en-
tails efficiency (e.g., the conversion of an inductive data type into a ‘pointer’-
based representation). The refinement of a model (ie, a state space and a set
of operations upon it)

�
into another model � has to fulfil a number of

requirements. First of all, the existence of enough redundancy in the state
space of � to represent all the elements of

�
is required. This is called



260 7. CONCLUSIONS AND FUTURE WORK

in [Jon80] the adequacy requirement and is captured by the definition of
a surjection from � to

�
, called the retrieve function. Next, substitution

is regarded as ‘complete’ in the sense that the (concrete) operations over
� accept all the input values accepted by the corresponding abstract ones,
and, for the same inputs, the results produced are also the same, up to the
retrieve map. If models are specified, as they usually are in VDM, by pre
and post-conditions, this amounts to say that, under refinement, neither pre-
conditions are strengthened, nor post-conditions are weakened. Note this
approach to data refinement, which can be traced back to Hoare’s landmark
paper [Hoa72], is consensual among model-oriented design methods, even
though several variants and alternatives have been proposed in the literature
(see [RE98] for a recent account).

� The SETS calculus [Oli90, Oli92b], which is a calculus of data represen-
tations, is grounded on identical principles: a refinement is witnessed by
a (split) epi, which may induce a representation invariant on the concrete
side. Each concrete operation is then calculated (rather than ‘conjectured
and verified’ as in VDM) by solving the corresponding refinement diagram.

� Most calculation within process algebras is carried in terms of equivalence
relations — see, for example, the long ‘implementation’ case studies in
[Mil89] or [Fen96]. However, several ‘observation’ preorders have also
been proposed in the literature which entail different notions of refinement
(see, for example, [AV95] or [FE00]). A typical transformation, captured by
most of such preorders, is reduction of nondeterminism.

� A totally different point of view is that of action refinement [Ace92], in
which what was considered an atomic action at the abstract level is ‘re-
placed’ by a process over an alphabet of more fine-grain actions. The idea,
which seems to have some connections with transition decomposition in the
area of data bases, is difficult to integrate with the interleaving semantics
adopted in the most popular process calculi, as it interferes with composi-
tionality.

� Another meaning for the word ‘refinement’, which also appears in the pro-
cess algebra literature and, mainly, in the context of object-orientation, is
extension of the functionality. This means that the concrete model may have
new actions added, a procedure we would prefer to call design sophistica-
tion rather than refinement. In general, a preorder capturing functionality
extension fails to be a pre-congruence (with respect to typical process com-
binators). Such is the case of, e.g., the attempt of [WD96] to apply to process
refinement the notion of Z forward simulation.



3. REFINEMENT 261

16. WHAT IS COMPONENT REFINEMENT? Component refinement can be addressed
at three different levels (at least):

� The interface level, which is concerned with what one may call plugging
compatibility. The question is whether a component can be transformed,
by suitable wiring, to replace another component with a different interface.
Note that, once in our models the structure of the interface types encodes the
available operations, this may capture situations of extension of component’s
functionality.

� The behaviour level, where the notion of refinement is based on a simulation
preorder for the behaviour model specified by monad � . As discussed below,
a number of situations may be captured, depending on � , on the simulation
preorder adopted and on the refinement relation induced. Nondeterminism
reduction is just one possibility among many others. Note that behaviour
refinement preserves the component interface, i.e., it takes place inside ��� �
hom categories.

� The data level, which amounts to the static refinement of the data structure
which specifies the component state space. This also preserves component
interfaces and, as far as behavioural issues are concerned, entails bisimilar-
ity. Therefore, it will not be considered in the sequel.

The following paragraphs discuss some preliminary ideas on refinement, to foster
future study. We shall restrict ourselves to the component model discussed in chapter
5.

17. INTERFACE REFINEMENT. Consider law (5.21) in chapter 5:
� � � �

�
� � � 	 � � � 
 � � 
 (7.1)

which states that �
� � and � � � are bisimilar up to isomorphic wiring. This means

that the observational effect of component �
� � can be achieved by � � � , providing

the interface of the latter is converted to the interface of the former. Such a conver-
sion is achieved by composition with the appropriate wires, leading to a notion of
replaceability.

18. DEFINITION. Let � and � be components. We say that �
� � �	� � is replaceable

by � � � � �	��� � , or � is a replacement of � , and write ��� � if there exist functions�
�
� � � � � � and

�
�
� � �	� � � , to be referred to as the replacement witnesses,

such that
� � � � � � 
 � � 
 (7.2)

Should
�
� and

�
� be isomorphisms, components � and � are called interchangeable,

a fact recorded as ��� � .



262 7. CONCLUSIONS AND FUTURE WORK

19. Clearly, �
� � � � � � , using isomorphism � � as a wire in both cases. In general,

components � and � are interchangeable if each of them is a replacement of the other.
Formally,

��� � iff � � � � � � � (7.3)

Proof. From left to right note that if fact � � � is witnessed by isomorphisms
� � and

� � , one
also has � � � �� 
 � �� � � � , i.e., � � � . In the other direction, let � � � and � � � hold, i.e., there
exist

� � and
� � such that � � � � � � 
 � � � and � � � � � � 
 ��� � . This implies � � � � 
 � � � � � � 
 ��� � � �

which, by law (5.9) equivales � � � � � � � 
 ��� � � � � � � . From this one draws
� � � � � � " � � and

� � � � � � " � � � . By a similar argument, using � � � � 
 � � � � � � 
 � � � � � , one gets
� � � � � � " � � �

and
� � � � � � " � � . Therefore,

� � 
 � � 
 � � and
� �

are isomorphisms and ��� � . +

20. LEMMA. Replaceability ( � ) is a partial order up to interchangeablity ( � ), which
is an equivalence on components.

Proof. Anti-symmetry up to � of � has just been proved (§19). Clearly, � is reflexive because
� � � is witnessed by ��� � � " � 
 " � � . On the other hand, if � � � and � � 
 hold, there exist
� � 
 � � 
 � � and

���
such that � � � � � � 
 � � � and � � 
 � � � 
 ��� � . Thus, law (5.9) and transitivity

of � entails � � 
 � � � � � � 
 ��� � � � � , i.e., � � 
 . Reflexivity and transitivity of � are proved
similarly and ��� � is witnessed by the converse of isomorphism witnessing ��� � . +

21. EXAMPLES. Using � and � , the component laws in chapter 5 can be presented
in a ‘wiring free’ form. For example, the set of laws in §5.26 becomes�

� � � 	 � � � � �
�
� � � 	� � � � � � � � � � � � �

� � � � � � �

On the other hand, law (5.53)�
� � � �

�
� � � 	 �

�
� � � 	 �

�
� � �

gives rise to two replacement inequations:�
� � � �

�
� � � 	 � � � ��

� � � 	 �
�
� � � � � � �



3. REFINEMENT 263

Also law (5.13) can be neatly interpreted as the statement that every component � can
replace an inert component, i.e.,

� � � �
� � � �

Finally, note that definition §18 does not require every replacement situation to be
witnessed by functions whose lifting to ��� � are wires — arbitrary functions, with the
right types, can also be used. In general, law (5.10) justifies the following fact:�

� � � �
�
�
�
� � � (7.4)

22. Relation � , however, fails to be a pre-congruence with respect to the component
operators introduced in chapter 5. It is immediate to check that

�
,
�

and � , as well
as wrapping are preserved, i.e., if � � � � then, for any � , � and � , � � � 
 � 
 � � � � � 
 � 
 ,
� � � � � �

� � and, similarly, for the other two tensors. But things are different
with respect to sequential composition and feedback. In these cases, the replaced
expression may even become wrongly typed: suppose, for example, that � � � � , where
� � � � � � and � �

� � ��� �	� � � � . Clearly, expression � �
�

cannot be formed.
What � � � � means is that component � can be replaced in any context by � � � � � 
 � � 
 ,

for any functions
�
� 
 � � witnessing the fact. The explicit reference to them is actually

required, something which is not completely satisfactory in a refinement situation, al-
though expected, as mentioned in §15.

23. BEHAVIOUR REFINEMENT. As mentioned in §15, a component � behaviouraly
refines component � if the behaviour patterns observed for � are a structural restric-
tion, with respect to monad � , of those of � . Let us attempt to make this ‘definition’
precise, noting that even the word ‘restriction’ may be object of different interpreta-
tions.

In data refinement, there is a ‘recipe’ to identify a refinement situation: look for
a retrieve function to witness it. I.e., a morphism in the relevant category, from the
‘concrete’ to the ‘abstract’ model such that the latter can be recovered from the former
up to a suitable notion of equivalence, though, typically, not in a unique way. In SETS

[Oli90] such a retrieve function is an epi and the ‘suitable notion of equivalence’ is,
of course,

�����
isomorphism.

In our components’ framework, however, things do not work this way. The rea-
son is obvious: component morphisms (i.e., 2-cells in ��� � ) are (seed preserving)
comorphisms which, therefore, entail bisimilarity (recall §3.24). We have to look for
some weaker notion of a morphism between coalgebras. To proceed in that direction
with full genericity would require to replace

�����
by an order-enriched category as the

underlying category. This is done in [TR98] leading to a characterisation of ordered



264 7. CONCLUSIONS AND FUTURE WORK

bisimulation and a corresponding full abstraction result (which states that the inequal-
ity relation on the final coalgebra lifts to a coalgebraic bisimulation). The approach
presented in the following paragraphs attempts a naíve characterisation of behaviour
refinement in the restricted setting of the components model discussed in chapter 5.

24. TRANSITIONS. Let � be an extended polynomial
�����

endofunctor (§3.10). Recall
from §4.3 that any coalgebra 
 � 
 � � � � � � � � specifies a ( � -shaped) transition
structure over its carrier

�
, defined in terms of the structural membership relation

� � � � � � �
:

� � �
�
� � iff � � � � � �

Structural membership is defined in §4.3. Notice that, given � � �
, � � � � and

a function
� � � � � � , if � � � � then

�
� � � � � � . This fact can be estab-

lished by induction on the polynomial structure, resorting to the definition of � � and
functoriality.

Similarly, the dynamics of a component �
� � � � � , based on � � � �

� ��� � � 	 � ,
can be expressed in terms of the following transition relation:

�
�
�
� � �
� �
�
� � iff 
 � � 
 � � ��� � � � 	 �

Now consider two components � and � . Recall that a component morphism from � to
� is a seed preserving function

� � �
�
� � � �

such that

� � � � �
�
� �
�
�
�

(7.5)

which we usually rewrite as

�
� � � � � 	 � �

�
� �
�
�
� � �

�
� 	

(7.6)

In terms of transitions, equation (7.6) is translated into the following two requirements
(by a straightforward generalisation of an argument in [Rut96]):

�
�
�
� � �
�	�
�
� � �

� � �
�
� � �
�	� � � � � (7.7)

and

� � �
�
� � �
� � � � � � � � � � � � �

�
�
� � �
�	�
�
� � � � � � � �

� (7.8)

which capture the fact that, not only � dynamics, as represented by the induced tran-
sition relation, is preserved by

�
(7.7), but also � dynamics is reflected back over the

same
�

(7.8).

25. A possible way of regarding a component � as being a behavioural refinement
of another component � is to consider that � transitions are simply preserved in � .
For nondeterministic components, this could be understood simply as set inclusion.



3. REFINEMENT 265

But one may also want to force additional restrictions. For example, to stipulate that
if � has no transitions from a given state, � should also have no transitions from the
corresponding state(s). Or one may adopt an alternative point of view and become
interested not in transition preservation, but in their reflection instead. In an attempt
to formalise these ideas, we begin by defining the notion of a simulation. This will
then be taken as a parameter in the definition of both forward and backward compo-
nent morphisms. Forward (respectively, backward) morphisms are shown to preserve
(respectively, reflect) their source component dynamics. How ‘restrictive’ they are is
fixed by the simulation chosen.

We start with a broad characterisation of a simulation in terms of two require-
ments needed to make forward and backward morphisms work as expected. We shall
forget, for a while, about the specific case of � � -components, and establish the gen-
eral setting in terms of arbitrary seeded coalgebras for an extended polynomial

�����

endofunctor. Afterwards, this will be adapted to � � -components and some refine-
ment examples discussed.

26. SIMULATION. Let � be an extended polynomial
�����

endofunctor. A simulation
is a preorder � � � � � � � � , natural in � , such that

� For any � � � and � � 
 � � � � � ,

� � � � � � ��� � � �
��� � � � �
� (7.9)

� For any function
� � � � ��� , � � preserves � , i.e.

� � � � �	���
�
� � 	 � � � �

�
� � 	 �	� (7.10)

27. FORWARD AND BACKWARD MORPHISMS. Let � be an extended polynomial
functor on

�����
and consider two seeded � -coalgebras

� � � � � � � and � � � �	�
� � . A forward morphism

� � � � � � with respect to a simulation preorder � , is a
function from

�
to
�

such that

� � �
�
� � � �

where � is the pointwise extension of the (equally named) simulation preorder. Du-
ally,

�
is called a backwards morphism if

� � � �
� � �
�

Let us now show that such morphisms compose and, afterwards, that they can be
taken as witnesses of refinement situations.



266 7. CONCLUSIONS AND FUTURE WORK

28. LEMMA. For � an extended polynomial functor in
�����

, � -coalgebras and for-
ward (respectively, backward) morphisms define a category.

Proof. In both cases, identities are the identities on the carrier and composition is inher-
ited from � � � . What remains to be shown is that the composition of forward (respectively,
backward) morphisms yields again a forward (respectively, backward) morphism. So, let� � ��

� � and � � � 

���

be two forward morphisms. Then

� $ � � � & ���
� )�� functor *

� � �	$ � � ��� &
� ) � forward and � simulation (7.10) *

� � �	$ � � � &
� ) � associative *$ � � � � & � �
� ) 
 forward *$�� � � & � �
� ) � associative *

� �	$ � � � &

The proof is similar for the backward case:

� �	$ � � � &
� ) � associative *$�� � � & � �
� ) 
 backward *$ � � � � & � �
� ) � associative *

� � �	$ � � � &
� ) � backward and � simulation (7.10) *

� � � � � ���
� ) � functor *

� $ �
� � & ���

+



3. REFINEMENT 267

29. LEMMA. Let � be an extended polynomial functor in
�����

, and
�

and � two
� -coalgebras as above. Let � � � and � � � denote the corresponding transition rela-
tions. A forward (respectively, backward) morphism

� � � � � � preserves (respec-
tively, reflects) such transition relations.

Proof. Preservation follows from

� 

� � � �( ) � � definition *
� � � � � �

� ) � � property (§24) *
� � � � � $ � � ��� & �

( ) � forward and simulation definition (7.9) *
� � � � � $ � � � & �

( ) � associative and � � definition *
� � 

� " � � �

To establish reflection suppose that
� � 
 � " � � , i.e.,

� � � � $ � � � & � . As
�

is a backward
morphism we have � � � � � � � �

, which, together with requirement (7.9) on the definition
of a simulation entails,

� � � � $ � � ��� & � . This implies the existence of a state � � � �
such

that
� � � � � � and � � � � � � , i.e., � 
 � � � � . +

30. A TOO GENEROUS SIMULATION. Let us come back to � � -components. Con-
sider components � and � . For each simulation � , a forward morphism

� � �
�
� � � �

satisfies

�
� � � � � 	 � �

�
� �
�
�
� � �

�
� 	

(7.11)

Consider, now, the following definition of a simulation � � :

� � � � iff � � � ��� � 
 � � �
which captures a sort of � -structural inclusion and can be easily proved to be a sim-
ulation by induction of the structure of � . If one instantiates � in 7.11 by � � � �

� �
� � ,�

will not provide the expected results. Clearly, � transitions from a state � will be a
subset of � transitions from

� � , but this will happen regardless of the corresponding
outputs! The point is that the transition relation being preserved by such an

�
is not�

�
� � �
�	�
�
, but simply � �

�
which does not corresponds to the dynamics of � � coalgebras.



268 7. CONCLUSIONS AND FUTURE WORK

31. COMPONENT SIMULATIONS. The discussion above suggests an additional
requirement on simulations for � � components: their definition on a constant functor
� should be the equality on set � , i.e.,

� � � � iff � � � � (7.12)

Therefore, transitions with different � -labels cannot be related. We can now define
refinement in this setting and discuss a few examples.

32. DEFINITION. A � � -component � is a forward (respectively, backward) refine-
ment of another component � , wrt a simulation preorder � ,

� � � � (respectively, ��� � � )

if there exists a forward (respectively, backward) morphism
�

from � to � .

33. EXAMPLES. A first example of a simulation relation is the following:

� � �

�
� iff � � �

� � � � iff � � � �
� � � � � � � � iff � � � � � � � � � � � � � � � � � � �
� � � � �

� � � iff

�
� � � � � � � � � � � � � � � �'� � � � �
� � � � � � � � � � � � � � � �'� � � � �

� � � � � iff � � ��� � � � � � � �
� � � �

� iff � � � � � � � � � � 
 � � 
 �

A forward refinement of nondeterministic components based on � � captures the clas-
sical notion of nondeterminism reduction. However, this preorder can be tuned to
more specific cases. For example, the following ‘failure forcing’ variant — � �� ,
where � stands for ‘emptyset’ —- guarantees that the concrete component fails no
more than the abstract one. It is defined as � � by replacing the clause for the power-
set functor by

� � �� � � iff
�
� � � � � � � 	 � � � � � � � � � � � 
 � � 
 �

Relation � � is inadequate for partial components: both forward or backward
refinement collapse into bisimilarity. It may be, however, tuned to capture partiality:
relation ���� ( � standing for ‘failure’) replaces the sum clause in � � by

� � �� � �
� � � iff

�
� � � � � � � � � � � � � � � � � � � �
� � � � 	 �

�
� �
�



3. REFINEMENT 269

Forward refinement of �
�

�
�
�
-components, with respect to � �� , entails definition: the

‘implementation’ is less defined than the ‘specification’, but they agree on the com-
mon transitions. Backward refinement swaps this relation, but only for strictly partial
components, i.e., components which inevitably fail or deadlock at some point of their
evolution. It does the same in the general case but only up to bisimilarity, a fact that
can probably entail a broader definition of refinement. To see this consider the follow-
ing diagrams representing the dynamics of four partial components with trivial input
and output (i.e., � � � � � ),

�
� //

�
� � � // � � // � � � 

 � � // � �

��

�
� 	

�
� �
	 �

� �
	 �

�
�
	

While there exist backward refinements from either � � or � � to � , it is not possible to
define a backward morphism from � � to � (the only possible choice maps state � into�
� ). Components � � and �

� are, however, bisimilar (the correspondence � � 
 � � �� �

is a comorphism).
Note that, in general, � � � does not entail � � � , even for the same simulation

order. On the other hand, it may be easily checked that the anti-symmetric closure of
any of the simulation preorders considered in this paragraph entails bisimilarity.

34. APPLICATIONS. The component calculus developed in chapter 5 can be ex-
tended with some inequations, capturing refinement situations. Recall, for example,
the discussion in §5.15 on the existence of final object in ��� � . For non trivial monads,
equation �

* �
�
� � �

�
* � �

fails because the right hand side may fail (whenever � does). Function * � �
�
� � � � �

is, however, a forward morphism, with respect to � �� for partial components, or to
both � � and � ��

for nondeterministic ones. For this last case, note that � � � � � � * �
�
� � � � � 	 � , whereas �

�
* � � � 	 � � �

�
� � � � � 
 � 
 	 � equals

�
� � � �

� � 	 � iff �
�

�
� 	
�
�
	 �� �

� iff �
�

�
� 	
�
�
	 � �

Therefore, �
* �
� � � �

�
* � � (7.13)

Similarly, cancellation for
�

(see §5.39), is, in general, a refinement result:
� � 
 � 
 � � � � �
� � (7.14)



270 7. CONCLUSIONS AND FUTURE WORK

Yet another example is given by the (pseudo) naturality of
�
� �

(see §5.40), which
could be written as �

� � �
�
� � � 	 � � �

�
� �

(7.15)

35. DISCUSSION. The simulation preorders introduced above are defined in terms
of the structure of extended polynomial functors. Thus, they apply to � � -components
where � is either the finite powerset or the maybe monad. They can be easily extended
to the sequence monad and, of course, deterministic components simply cannot be
(further) refined. One may ask, however, how to deal with the monoidal stamping
monad or, in general, in cases behaviour is captured by monads which are not entirely
determined by the structure of the underlying functor. For � � ��� ���

, simulations
could be defined if

�
carries additionally a preorder structure, such that ‘costs’ of

two transitions could be compared. But such simulations need further study.
For the simulation preorders introduced in §33, both

�
and � can be proved to

be pre-congruences with respect to the component combinators. The difficulty of
proving such a result in a more generic formulation, is certainly a point in favour of
moving to an order-enriched setting from the outset.



4. EPILOGUE 271

4. Epilogue

Respostas todo o mundo tem, o que demora é o tempo das perguntas.
José Saramago.

Research on mathematical models for programming concepts has been a major
theme in Computer Science for the last 30 years, in a fruitful blend of theory and prac-
tice. Such models not only permit to focus on the fundamental structures involved,
abstracting away from the underlying implementation details, but also provide theo-
ries to reason rigorously about complex systems. Therefore, as it happens in other
fields of engineering, they provide the basic tools and calculi to build reliable designs
and have them correctly developed.

Faced with the recent paradigm shift in computing from stand-alone to distributed,
open and dynamically changeable environments, computer scientists are under pres-
sure to develop new conceptual models. On-going research on coalgebras suggests
that, at the specification level, the duality between algebraic and coalgebraic struc-
tures may provide a bridge between models of static and dynamical systems. At the
programming level such a duality, in a canonical initial-final specialisation, captures
the intuitive symmetry between data and behaviour, providing the basis for more
uniform and generic approaches to systems’ construction.

We would like to regard this thesis as a small contribution in that direction. Of
course, further research is needed to assess the practical relevance of this work. For
example, is the ‘glue’ provided by the component calculi the appropriate one? How
can coordination platforms, which usually rely on a generative interaction scheme, be
described in our framework? Which classes of components deserve a separate study?
How can them be classified? What calculi will emerge?

A lot of work remains to be done.





APPENDIX A

Monads

1. WHY MONADS? The use of monads to structure the denotational semantics of
programming languages was proposed in the 80’s, by E. Moggi [Mog89, Mog91].
Later the concept was introduced by Wadler [Wad92, Wad95] in programming prac-
tice, entailing a rigorous style of combining purely functional programs that mimic
impure (side-)effects. The introduction of monads in program calculation — lead-
ing to the study of, e.g., monadic catamorphisms and anamorphisms, — is pursued
in [Fok94, MJ95] and [Par98], among others. The key idea is that monads permit to
encode in abstract terms several kinds of computational effects, such as exceptions,
state updating, nondeterminism or continuations. Such effects are represented by a
type constructor (i.e., an endofunctor in a suitable category) � so that computations
producing values of type � are regarded as terms of type � � . In this way, values and
computations are explicitly distinguished and programs can be thought of as arrows
� � � � representing the computation of values of type � from values of type � ,
while producing some effect described by � . Or, putting it in a different way, output
values arise encapsulated (or embedded) in the effect specified by � . Such arrows will
be referred to in the sequel as � -computations or monadic arrows. Furthermore, �
obeys some equational laws on the interaction of values and computations. Formally
the notion of a monad is a category theoretical one, defined as follows:

2. DEFINITION. A monad in a category � consists of an endofunctor �
� � � � �

and a pair of natural transformations � � � � � � � and

� � ����� � � � understood as
an associative ‘multiplication’ and its ‘unit’, such that the diagrams below commute:

� �

� �
��

� �
// � �
�

��

��� �
�

� �
//

DDDDDDDDD

DDDDDDDDD � �
�

��

�
��� �� �

oo

zzzzzzzzz

zzzzzzzzz

� � � // � �

that is,

� �
�
� � � � �

�
� � � (A.1)

273



274 A. MONADS

� � � � � � � � � (A.2)

In fact, a monad can be thought of as a monoid in �
�

, the category of � -endofunctors
(recall §2.19). Notice that � � � � � , and, thus, functor composition, rather than
functor product, is used in this definition. Thinking of � as the encapsulation of a
computational structure, its unit

�
represents the minimal such structure when a value� � � is embedded in � � . Multiplication, on the other hand, flattens computations,

providing a way to view a � -effect of a � -effect still as a � -effect.

3. PARTIALITY AND NONDETERMINISM. Two common computational effects are
partiality and nondeterminism. The former models computations that either succeed,
returning a value of the given type, or fail raising a simple exception of type � . This is
captured by the simplest version of the usual exception monad � � ��� � � , instantiat-
ing � with � . In functional programming it is known as the maybe monad. Nondeter-
minism, on the other hand, is introduced by the (finite) powerset monad � �

�
. Unit

and multiplication are defined, in the first case, by

� �
�
�
� � � and �

�
�
�
� � � � 
�� � 
 .

For the powerset monad, one gets

� � �
� � � � � � � � � � � � and �

� �
� �

. A variant
to the powerset monad is the sequence monad based on � � ��� �

, having as unit the
singleton list constructor and, as multiplication, the distributed concatenation of se-
quences. This entails an ‘ordered’ view of nondeterminism. A possible interpretation
is ‘all outputs are possible, but their probability decreases (or increases) along the
sequence’.

4. EXPONENTIAL. The exponential monad is based on the functor � � ��� �
, with

unit and multiplication given by
� � � �

0 " //
�
� � � 	 �

� ���
// �

�

� � � �
� � 0 " //

�
�
� � � � 	 �

� 465 � ��� � � //
�
�
� � � 	 � 465 � // �

�

Going pointwise, the definitions above read:� �
� � � 	 � � (i.e., � � * � )

and

� � � � � 	 �
�
� 	 	 	

In the context of functional programming this is also known as the state reader
monad used to encode computations with reading access to a state variable (of type
� ). When this kind of monadic functions are composed (see §7), the same state is
passed as argument to all of them. In fact, a popular use of monads in functional



A. MONADS 275

programming is to encapsulate context information, or ‘state’. A more elaborated
monad coping with state information is the state transformer, based on the functor
� �

� ����� � 	 � . In this case � � ��� �
and

�
is simply ��� .

5. MONOIDS. In a cartesian category (§2.36), any monoid 
 � 
 � 
 
 � determines a
monad based on the functor � � � � ���

. Unit and multiplication arise as

�
� 
 
 � * 
 � � �

and � �
�
� � � � 	 � ��� .

6. ADJUNCTIONS. We have seen some common examples of monads in the previous
paragraphs. The notion of a monad is, however, extremely general. A basic observa-
tion to justify this claim is that any adjunction � � �

(§2.30) gives rise to a monad
based on the composite functor

� � . Its unit is simply the unit of the adjunction, and
the multiplication is given by

� ( � .
For example, the adjunction between product and exponential reviewed in §2.33,

originates the state transformer monad mentioned above, which is described in detail
in [Wad92]. The typical case of adjunctions between free and forgetful functors in
categories of algebraic structures, gives rise to the identity monad. And so on. It is
also the case that every monad determines an adjunction.

A related topic is the notion of an algebra for a monad. Basically this is defined as
an algebra for the monad functor which, additionally, verifies some extra conditions
which resemble the definition of action for a monoid. We will not pursue this here,
but notice that the two categories of algebras that may be associated to a monad �
— known as its Kleisli and Eilenberg-Moore categories — represent, respectively,
initial and final solutions to the problem of finding adjunctions that generate � . It
should also be referred, to stress the generality of the concept, that any algebra, in the
usual sense of the word in Universal Algebra — i.e., every set of operations obeying
equational laws — can be regarded as an (algebra for a) monad.

The reader is referred to [Mac71] or [BW85] for standard results on monads and
their relevance in algebra. Our concern, in this appendix, is more simply to present the
technicalities needed for using monads in the thesis. We will ‘visit’ Kleisli categories,
however, as, operationally, they can be regarded as ‘spaces of computations’.

7. KLEISLI COMPOSITION. Monadic arrows, described above, can be composed to
build more complex computations from simpler ones. In fact, given � � � �	� � �

and �
��� �	� � � , their composition � � � � � �	� � � is defined by

� � � � �
�

// � �
� �

// � � �
�

// � �



276 A. MONADS

This composition law is associative, with

�
acting as the identity. Therefore, for each

monad � , a new category is defined over the objects of � but with � -computations as
arrows. This is known as the Kleisli category for � on � .

8. KLEISLI TRIPLES. The composite � � � � is sometimes written as �
� � � � �	�

� � and called the extension of � . This gives rise to an alternative definition of
a monad, known as a Kleisli triple. Formally, a Kleisli triple consists of an object
mapping � � ����� � � 	 �	� ����� � � 	 , a ��� � � � 	 -indexed mapping

�

�
� � � � � � natural

in � , and an operator _
�

which maps every � � � � � � � into � � � � � � � ��� ,
satisfying the following axioms:

�

�
� � � � � � (A.3)

� � �
�

� � � (A.4)

�
�
� � � �

�
� � � � 	 � (A.5)

It is straightforward to show the equivalence between monads and Kleisli triples.

Proof. Given a monad � � 
 � 
 � 
 a Kleisli triple is obtained by restricting
�

to objects and
defining

� � � � � � � . For the other direction, suppose given a triple � � 
 � 
 _
� 


. To obtain a
monad, first extend

�
to an endofunctor by defining its action on morphisms as

� $%� � � 

�� & � $ � � � � &
�
. Then, define � � as

" � �� � . The reader can easily verify that, in both cases, the
axioms just stated and the ones in §2 are respected.

+

9. STRONG MONADS. In order to handle the presence of ‘context’ and distribute
it along computations, monads used in the thesis to capture behavioural models are
required to be strong (§3.50). A strong monad is simply a monad 
 � 


�

 � � where �

is a strong functor (§3.52) and both

�
and � strong natural transformations [Koc72].

Therefore, the characterisation law for strong natural transformations (3.20), entails
the following additional axioms:

�
��
�
� � � � �
	 �

�
(A.6)

�
��
�
�
� � � �
	 � � � � �

��
� �
��

(A.7)



A. MONADS 277

which express the commutativity of the following diagrams

_
�

_
�

$$JJJJJJJJJJ

� �
� �
��

�
�

_
� ��

// �
�
_
�

_
	

�
�

_ � ��
// �
�
_
�

_
	

� �
�

_

�
� � � OO

� �
�
�

//

� �� %%KKKKKKKKKK
� �
�
_
�

_
	

�
OO

�
�
�
�

_
	 � � ��

88qqqqqqqqqq

Both laws result from a direct application of (3.20) followed by an unfolding of the
strength definition. In particular, recall from §3.52, that �

�

�
�

is the identity and �
� �� �

� �
��
� �
��

.

10. DISTRIBUTING OVER PRODUCTS. Applying �
�

and then � � , or the other way
round, on a product � � � � � yields a result of type � �

�
� � � 	

, which can, then, be
flattened, with � , to �

�
� � � 	

. In most cases, however, the order of application is
relevant for the outcome.

Formally, we may say that the Kleisli composition of the right with the left
strength, gives rise to a natural transformation

� � � � �
� � � �

� ��� � ���
	
whose

component on objects � and
�

is given by
� � � � � � �

�
� 
 � � � � � � 
 � (A.8)

Dually, one may define
� � � � � � � � � 
 � � �

�
� 
 � � . Such transformations specify how

the monad distributes over the cartesian product and, therefore, represent a sort of
sequential composition of � -computations. They relate to strength by

� � � � � �
� � � � � �

�
�
	 � �

�
� 
 � (A.9)

� � � � � �
� �

�
� � � � � 	 � � � � 
 � (A.10)

Whenever
� �

and
�
� coincide, the monad is said to be commutative — which is

indeed the case of the partiality, powerset and exponential monads (§§3 and 4), but
not of the sequence one. It is also the case that a monad generated by a monoid (§5) is
commutative if the base monoid is Abelian. In general, however,

� �
and

�
� are related

by the following law
� �
� � � � � �

�
� (A.11)



278 A. MONADS

Proof. �
� �
	

� )�� � definition *
� ��� ��� � ��� �
	

� ) 
 � , 
 � interaction (§3.52) *
� ��� $ � 	 � � � �
	 & � � �
	

� ) � functor *
� ��� � 	 ��� � � ��� 	 � � � �
	

� ) 
 � , 
 � interaction (§3.52) *
� ��� � 	 ��� � � � � �

� ) � natural *
� 	 � � ��� � � � � �

� )�� � definition *
� 	 � � �

+

11. COMPOSING MONADS. In what conditions can two monads be composed to
yield a new monad? The answer to this question is not trivial because the simple
composition of the corresponding functors does not lead, in general, to new monads.
The problem is, of course, in the way � is applied. This entails the need to assert
the existence of some sort of distributive law to alter the order of functor application.
A general result on this topic can be found in [BW85]. Basically it is proved that
given two monads � � and � � a new monad based on functor � � �
� can be defined,
provided there exists a natural transformation � � � � � � � � � � �
� satisfying a
number of conditions. If this is the case, unit and multiplication of the composed
monad are given, respectively, by

�
� � � � �

�
� � �

�
� �

(A.12)

� � � � � � � � � � � � � � � � � � � (A.13)

Instead of detailing the general conditions on � , we shall record here three particular
cases which are relevant in the context of this thesis. It should also be mentioned
the existence of several other results on monad composition, developed mainly in the
context of functional programming (see, for example, [KW92]).



A. MONADS 279

� The exception monad (and, of course, the partiality monad which is a spe-
cialisation of the latter) can be composed with any other monad � , origina-
ting �

� ��� � � 	 . The distributive law � is, in this case, defined by

� � � � �
� � � � � � � � � � �

// �
� ��� � � 	

� The same applies to a monad generated by a monoid
�

, if � strong. The
resulting monad is then �

�
� � ��� 	

, with

� � �
� � � ��

// �
�
� �����
	

� Assuming again � strong, it can be composed with the exponential monad,
originating �

�
, with

� � �
� ��� � 	 0 " //

�
�
� ��� � 	 � � 	 �

� � �� � �
//
�
�
� ��� � � � 	 	 �

� � 465 � � // � �

Finally, notice that, if � is a commutative monad, so are �
�
� � ��� 	

, �
�

and �
� ��� �

� 	 . Of course the same is not true for the general exception monad which is itself non
commutative.

12. MONAD MORPHISMS. A morphism between two (strong) monads 
 � 

�

 � � and


 � � 

�
� 
 � � � , is a strong natural transformation 	 � � � � � � such that

	 �
�
�

�
� (A.14)

	 � � � � � � 	 � � 	 (A.15)

These laws, whose diagrams are shown below, are just the ‘homomorphism’ condi-
tions to guarantee that the monad structure is preserved along the morphism. Notice,
in the � diagram, how a horizontal composition of 	 with itself is decomposed (cf.
§2.20).

��� � � �
// �

�

��

�
�

��

� �
� �

//
� �

oo

� � �

��

� � �

�
}}{{{{{{{{

��� �
� � � // � � � � � � �� � �

oo

By §3.55, being strong also implies that

	 � �
� � �

� ��
�
�
	 � � �
	 (A.16)

An example of a monad morphism from the sequence monad to itself is the usual list
reverse function. As a final remark, note that monad morphisms compose (cf., verti-
cal composition of natural transformations) and there exists, for each monad, a trivial



280 A. MONADS

identity morphism. Therefore, monads and their morphisms form a category. More-
over it is immediate to show that the identity monad

���
is initial in such a category,

with ��� � ��� �	� � defined as

�
� , for any other monad � . Similarly, the category has

as final object the monad over constant functor � .

13. A CHARITABLE ANIMATION. Animating a formal concept in a programming
environment may help to build up some intuition about the concept itself. Below
we ‘play a little’ with monads as CHARITY objects. As an example, consider the
declaration of the sequence monad as a ‘data type’

data B X = list X.

and two functions, encoding its unit and multiplication:

def eta: X -> B X
= x => [x].

def mu: B B X -> B X
= s => reduce{append, nil} s.

where reduce implements monoidal reduction as discussed in §E.8. The maybe
monad, on the other hand, can be defined using the CHARITY primitive type SF X,
which implements coproduct � � � , together with embeddings ff and ss from,
respectively, � and � . Thus,

data B X = SF X.

def eta: X -> B X
= x => ss x.

def mu: B B X -> B X
= ff => ff | ss x => x.

Right and left strengths for these two monads can be uniformly defined as

def taur: B X * C -> B(X * C)
= (s,c) => B{x => (x,c)} s.

def taul: C * B X -> B(C * X)
= (c,s) => B{x => (c,x)} s.

but the definitions above do not apply, for example, to a monoidal monad. On the
other hand, the distributive morphisms,

� �
and

�
� , are uniformly defined for every

strong monad:



A. MONADS 281

def deltal: B X * B Y -> B(X * Y)
= (s,t) => mu B{taul} (taur (s,t)).

def deltar: B X * B Y -> B(X * Y)
= (s,t) => mu B{taur} (taul (s,t)).

Equally generic is the definition of Kleisli composition:

def kleisli{f:X -> B W, g:W -> B Y}: X -> B Y
= x => mu B{g} f x.

On top of these constructions, we may ‘ bring life to’ some of the laws introduced in
the previous paragraphs. For example, to animate law (A.1) compute both

>> mu eta [[1,2],[3],[4,5]].
[[1, 2], [3], [4, 5]] : list(list(int))

and
>> mu B{eta} [[1,2],[3],[4,5]].
[[1, 2], [3], [4, 5]] : list(list(int))

Similarly, a test with laws (A.6) and (A.7), which establish

�
and � as strong natural

transformations, yields,

>> taur (eta 3, 8).
[(3, 8)] : list(int * int)

>> eta (3,8).
[(3, 8)] : list(int * int)

and
>> taur (mu [[2,3,4], [1,7], [9]], 5).
[(2, 5), (3, 5), (4, 5), (1, 5), (7, 5), (9, 5)] : list(int * int)

>> mu B{taur} taur ([[2,3,4], [1,7], [9]], 5).
[(2, 5), (3, 5), (4, 5), (1, 5), (7, 5), (9, 5)] : list(int * int)

Finally, an animation of law (A.9), relating
� �

to �
�
,

>> deltar ([1,2,3], eta 5).
[(1, 5), (2, 5), (3, 5)] : list(int * int)

>> taur ([1,2,3], 5).
[(1, 5), (2, 5), (3, 5)] : list(int * int)

Observing the application of �
�
, � � or � also provides some feedback on these opera-

tions. For example,



282 A. MONADS

>> taur ([4,6,5],9).
[(4, 9), (6, 9), (5, 9)] : list(int * int)

>> taul (9, [4,6,5]).
[(9, 4), (9, 6), (9, 5)] : list(int * int)

>> kleisli{i => [add_int(i,1), i, sub_int(i,1)], i => [tonat i]} 2.
[succ(succ(succ(zero))), succ(succ(zero)), succ(zero)] : list(nat)

and, for the maybe monad,

>> taur (ss 4, 7).
ss(4, 7) : SF(int * int)

>> taul (7, ss 4).
ss(7, 4) : SF(int * int)

>> taul (7, ff).
ff : SF(int * A)

>> kleisli{i => ss tonat i, n => ss succ n} 3.
ss(succ(succ(succ(succ(zero))))) : SF(nat)

>> kleisli{i => ss tonat i, n => ff} 3.
ff : SF(A)

We may also observe
�
� and

� �
coinciding for a commutative monad

>> deltal (ss 8, ss 2).
ss(8, 2) : SF(int * int)

>> deltar (ss 8, ss 2).
ss(8, 2) : SF(int * int)

>> deltar (ff, ss 4).
ff : SF(A * int)

but otherwise failing:

>> deltal([1,2,3],[4,5]).
[(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)] : list(int * int)

>> deltar([1,2,3],[4,5]).
[(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)] : list(int * int)



A. MONADS 283

In any case, however, law (A.11) characterises the relationship between the two ver-
sions of the distributive law:

>> B{swap} deltal ([1,2], [6,1,8]).
[(6, 1), (1, 1), (8, 1), (6, 2), (1, 2), (8, 2)] : list(int * int)

>> deltar swap ([1,2], [6,1,8]).
[(6, 1), (1, 1), (8, 1), (6, 2), (1, 2), (8, 2)] : list(int * int)

where swap is the commutativity morphism:

def swap: X * Y -> Y * X
= (x,y) => (y,x).





APPENDIX B

Bicategories

1. Definition

1. MOTIVATION. Elements of a set are either equal or different. In a category, how-
ever, two objects can be different but still essentially the same, in a very precise way.
Technically, they are said to be isomorphic and the construction witnessing this fact
can be made explicit and used in calculations. For example, in

�����
,
� � � and � � �

are made isomorphic by the (explicitly introduced) bijection � � 
 � � 
 ��� � . Moreover,
objects can be essentially the same in more than one way, as such ‘sameness’ may be
witnessed by different isomorphisms.

In order to extend this view to the level of morphisms, the category has to be
equipped with further structure. In particular, this requires arrows between arrows
and a corresponding notion of composition. To avoid name clashing, such arrows are
usually called 2-cells (objects and object morphisms being similarly named 0-cells
and 1-cells, respectively).

In this context, the space of morphisms between any given pair of objects, usually
referred to as a (hom-)set, acquires itself the structure of a category. Therefore the
basic (1-cell) composition and unit laws become functorial, since they transform both
objects (1-cells) and arrows (2-cells) of each (hom-)category in an uniform way. In
consequence, 2-cells are composable by two different, but intrinsically related (see §4
below) ways.

Such a structure has the ability to refine the notion of ‘sameness’ by distinguish-
ing isomorphisms further than the equality level. A further step, in the same spirit,
consists of weakening the degree of strictness up to which the usual associative and
unit laws for 1-cell composition are supposed to hold. If, in particular, equality is
relaxed to isomorphism one ends up with a bicategory. Of course, the witnessing
isomorphisms have to be explicitly included in the definition as particular, invertible
2-cells. However, there is a price to be paid for this increased expressiveness: such
isomorphisms should themselves obey some (coherence) laws to be used in calcula-
tions as if they were proper equalities.

The following paragraphs introduce some basic definitions and a few examples of
bicategories. This should be enough to understand their use in the thesis, but should

285



286 B. BICATEGORIES

not be regarded as a thorough introduction to the topic. The basic reference on bicat-
egories is Bénabou’s original paper [Ben67]. Comprehensive accounts can be found
in, e.g., [Bor94b] and [Str96].

2. DEFINITION. The underlying structure of a bicategory � consists of
� a class of objects

�
, � , % , ...

� for each pair 
 � 
 � � of objects, a small (hom-)category �
� � 
 � 	 with arrows

� , � , � , ... from
�

to � as objects and arrows
� 
 � 
 � 
 � � � between them denoted

as in, e.g.,
� � � � � � , and referred to as 2-cells. Composition in �

� � 
 � 	
is denoted by � and the identity on � , for each �

� � � � � , by �
�
� � � � .

� for each triple 
 � 
 � 
 % � of objects, a composition law given by a (bi)functor

� � � � � �
� �
� � 
 � 	 � �

�
� 
 % 	 � � �

� � 
 % 	
� for each object

�
, an identity functor

� � ��� �	� �
� � 
 � 	

where
�

stands for the final object in the category ��� � of small categories.

3. REMARK. From the definition above, 2-cells in � come equipped with two forms
of composition, called, respectively, vertical and horizontal after the respective di-
agrammatic presentation. Vertical composition is given by the composition law in
each hom category. On the other hand, horizontal composition corresponds to the
action of functor � on 2-cells. The action of � � on the unique object of

�
is the 1-cell

� � � � �	� �
, the identity on object

�
(wrt � on 1-cells), whereas its action on the

unique arrow of
�

is the 2-cell � � 	
� � � � � � , the identity on the 1-cell � � � � � � �

(wrt � on 2-cells, i.e., horizontal 2-cell composition). This is sketched as follows:

� � 	 ))

� 	
55

�� ��
��
� � 	 �

4. INTERCHANGE LAW. The two forms of composition mentioned above are related
by the equality � � � � � 	 �

� � � � � 	 �
� �
�
� 	 � � � � � � � 	

which gives an unambiguous meaning to the diagram



1. DEFINITION 287

�
�

##
�� ��
��
�

;;�
�� ��
��
�� // �

�
�

##
�� ��
��
� �

;;
�
�

�� ��
��
� ��

� // %

The equation arises simply because � � � � � � , for each triple 
 � 
 � 
 % � , is a bifunctor.
This is widely used in calculations involving natural transformations (§2.17).

5. ASSOCIATIVITY AND UNIT LAWS. The motivation in §1 has hopefully shed
some light on why associativity and unit axioms for � are supposed to hold only up
to isomorphism. Therefore, such axioms are introduced explicitly in the definition of
a bicategory as natural isomorphisms. Moreover, they are subject to some suitable
coherence laws integrating the definition as well.

6. DEFINITION. A bicategory � is defined by the structure introduced in §2 plus the
following natural isomorphisms, for each

�
, � , % and � 1:

� � � � � � � ,
� � � � � � , �

� ��� � � � � � � ,
	 � � � � � � � , �

�
� � � � � �

����� 	
� � � � � � � � � � � �

�
� � ����� 	 � � ���

� � � � � � � � � � � �
� ��� � � � 	 � � ���

diagrammatically,

�
� � 
 � 	 � �

�
� 
 % 	 � �

�
% 
 � 	 � 	 
 � 
 �

�
�

�
//

�

� � � � 
 � 
 2
��

�
� � 
 % 	 � �

�
% 
 � 	

� 	 
 � 
 2
��

�
� � 
 � 	 � �

�
� 
 � 	 � 	 
 � 
 2 //

� 	 
 � 
 � 
 2gggggggg
gggggggg

/7gggggggg
gggggggg

�
� � 
 � 	

and

� � �
� � 
 � 	

� 	
�

�

�
��

�
� � 
 � 	�

�oo
�
� // �

� � 
 � 	 � �

�

� �
� �

��
�
� � 
 � 	 � �

� � 
 � 	 � 	 
 	 
 � //

� 	 
 �jjjjjj
jjjjjj

08jjjjjjj
jjjjjjj

�
� � 
 � 	 �

� � 
 � 	 � �
�
� 
 � 	� 	 
 � 
 �oo

� 	 
 � TTTTTT
TTTTTT

fn TTTTTTT
TTTTTTT

1Recall from §2.15, that, in the context of this thesis, � (often abbreviated by juxtaposition) denotes
functor composition and � � is the identity functor on any category.



288 B. BICATEGORIES

The components of these isomorphisms, for �
� � �	� � , � � � �	� % , � � % �	� �

and
� � � � � � , are, as expected, the invertible 2-cells

�
�
�
�
�

� � � �
�
� � � 	 �

�� �
�
�
� � 	 � �

�

�
� � � � �

�
�� � �

�
�
� � � � �

�
�� � �

subject to the coherence laws expressed by the commutativity of the following dia-
grams:

� �
�
� �

�
� � � 	 	

�
��

� � � �
// � �

� �
� � � 	 � � 	

�
���

�
� � 	 �
�
� � � 	

�
((QQQQQQQQQQQQ

�
� �

�
� � � 	 	 � �

� � � �vvmmmmmmmmmmmm

� �
��� � 	 � � 	 � �

and
�
�

�
� � � � 	

� � � �
%%KKKKKKKKKK

� //
�
� � � � 	 � �

� � � �
yyssssssssss

� � �

7. 2-CATEGORIES. The structure arising by taking the families of natural isomor-
phisms � ,

�
and � as mere identities, is called a 2-category. In this stricter setting the

coherence axioms hold automatically.

2. Examples

8. EXAMPLES. A typical example of a 2-category is � � � , with small categories,
functors and natural transformations as 0, 1 and 2-cells respectively.

Another trivial example of a bicategory arises by duality. The dual �  #" of a
bicategory � is still a bicategory, formed by reversing the 1-cells. The 2-cells of � ,
however, remain unchanged (just think on ��� �  #" ).

Finally, any category � can be seen as a special case of a 2-category, and hence
of a bicategory, by regarding each homset �

� � 
 � 	 as a discrete category.



2. EXAMPLES 289

9. SPANS. A more interesting example of a bicategorical structure is given by the
spans of a category � with pullbacks. The construction is as follows: take the objects
of � as 0-cells and define 1-cell

�
� 
 � 	 from

�
to � as a span 
 ��
 � 
 �!� , i.e., a pair of

� -arrows, � � � �	� �
and �

� � �	� � , with a common domain. Spans compose
by pullbacking, i.e.,

�
� 
 � 	 � � � � 
 � � 	 � �

� � � 
 � � � � 	 , where
�
� 
 � 	 is an arbitrarily

specified pullback of
�
� 
 � � 	 as in the following diagram:

�

�
  AAAAAAAA

�
~~~~~~~~~~

�
�

  @@@@@@@@�

��~~~~~~~~
� �

� �

  AAAAAAAA� �

~~}}}}}}}}

� � %

The identity on object
�

is, of course,
� � � � 
 � � � 	 , where � � � is the identity on

�
in � .

Now define a 2-cell as a morphism between spans on the same objects, i.e., a � -arrow� � � � ��� making the following diagram to commute.

�
�

  AAAAAAA�

~~~~~~~~~

�

��

� �

� � �

>>}}}}}}}� �

``@@@@@@@

Vertical composition of such morphisms is simply inherited from � . On the other
hand, horizontal composition is less obvious. Given

� � � � 
 � 	 � �
��� 
 � � 	 and � ��

� 
 � 	 � �
� � 
 � � 	 , as below, their composite

� � � is the 2-cell
� � � � � � 
 � � � 	 ��

� � � � � 
 � � � � � 	 defined as the unique factorisation through the pullback 
 � � 
 � � 
 � � � of



290 B. BICATEGORIES

�
� � and � � � , as illustrated in the following diagram.

�

�
!!BBBBBBBB

�
}}||||||||

�
�

!!BBBBBBBB�

~~}}}}}}}}

�

��

� �
  AAAAAAAA�

}}||||||||

�

��

� �

�
��

%

� �
� �

==||||||||� �

``AAAAAAAA � �

� �
>>}}}}}}}

� �
``BBBBBBBB

�
�

� �
>>}}}}}}}}� �

``BBBBBBBB

Note that

� � �
�
� �

� � 
 is a 2-cell �
� � �

� � � is a pullback �
� � �

� ��� is a 2-cell �
� � ��� � �

and
�

is actually a 2-cell:

� � � � � � �
� � � factorizes 
 � � �
� � � � � �

� � 
 is a 2-cell �
��� �

and similarly one can prove � � � � � �
� � � � � . Spans are a useful device to generalise

relations to an arbitrary category — recall, e.g., the general formulation of bisimu-
lation in §3.23. As pullbacks are defined up to isomorphism and in the definition
of � they are arbitrarily chosen, the corresponding associativity also holds only up



3. FURTHER STRUCTURE 291

to isomorphism. Having chosen the
�

-identity span as the identity on
�

, the isomor-
phisms corresponding to the left or right unit laws, become simply the identity natural
transformations.

10. PARTIAL MAPS. Another typical use of spans arises in the definition of sets
and partial maps. In fact a partial map from a set

�
to a set � may be regarded as

an isomorphism class of spans on
�

and � , where the first component ( � ��� ) is a
monomorphism, i.e.,

�

�

  @@@@@@@O
o

�����

�~~~~~~~

� �
Let � 
 � 
 � ��� 
 � � 
 �

� stand for the isomorphism class of 
 � 
 � ��� 
 � � . A morphism
between two partial maps � 
 � 
 � ��� 
 � � 
 �

� and � 
 � 
 � ��� � 
 � � � 
 �
� from

�
to � is just a

2-cell between the corresponding spans, i.e.,
�

�

  @@@@@@@O
o

�����

�~~~~~~~

�

��

� �

� � �

>>~~~~~~~
O/

����� �

_@@@@@@@

Wherever it exists, this arrow is unique, which makes
�
� � , the category of partial

maps, a locally-ordered bicategory (see [Car87] for details).

3. Further Structure

11. STEPPING DOWN. Cell-reindexing is a simple way to step down from a bi-
category to a category. One forms the new category by taking the original 1-cells
as objects and the 2-cells as arrows. This new category still carries the ‘genetic in-
heritance’ of the original one, in the form of some additional structure. Here is a
particularly simple, but illustrative example.

Think, first, in an ordinary ( � -)category with an unique object
�

. One may form
a new category taking as objects the (auto)morphisms on

�
and as arrows the mor-

phisms between them. As we have begun with an ordinary ( � -)category the latter
simply do not exist and, therefore, the result is just the set (i.e., the discrete or � -
category) of automorphisms. Their composition appears now as a binary associative



292 B. BICATEGORIES

operation, with identity, on the set, which, thanks to this “inheritance”, becomes a
monoid.

If the same procedure is applied to a bicategory also with just one object, the
original 2-cells become the arrows of an ordinary category, and composition amounts
to the original vertical composition. Notice that, again, the obtained category inherits
some additional structure: since its objects are arrows of the original bicategory, it
gets for free a ‘multiplication’ at the object level. The result is, of course, a monoidal
category.

12. HOMOMORPHISMS OF BICATEGORIES. Just as bicategories generalise cate-
gories, a bicategory homomorphism arises as a generalisation of the notion of a func-
tor. The cornerstone of such an extension is compatibility with the 2-cell structure.

Again the functoriality axioms can be required to hold at different levels of strict-
ness. Therefore, they are built into the definition as particular natural transformations
obeying some coherence laws.

In the definition below nothing but naturality is assumed about such transforma-
tions. The kind of homomorphism defined is called a lax functor and is the stan-
dard notion of bicategory homomorphism, consistent with the weak approach to � -
categories (see §17 further on).

Requiring � � � � � � and � � below to be isomorphisms amounts to the definition
of a pseudo-functor, i.e., a functor being functorial up to isomorphism. Hence, � � � �
� � �� �

�
� � � 	 and � � �� � � � . Pseudo-functors of the form

� � %  #" �	� ��� � are
well-known in applications of category theory to computer science to model indexing
situations. In such a context they are named indexed categories and shown to be
equivalent to fibrations [Gro70] a more convenient tool to achieve the same (see the
recent book by B. Jacobs [Jac99a] for systematic applications to logic and type theory
or [Str99] for a tutorial).

Finally, a stricter approach will enforce � � � � � � and � � as effective identities,
making all the axioms to hold on the nose. This defines a 2-functor, which is the
usual notion of a homomorphism of 2-categories.

13. DEFINITION. Let � and � � be two bicategories. A homomorphism � from � to
� � , is called a lax functor and consists of

� a function � mapping objects of � into objects of � � ,
� for each pair 
 � 
 � � of objects, a functor � � � � � �

� � 
 � 	 � � � �
�
� � 
 � � 	

� for each triple 
 � 
 � 
 % � of objects, a natural transformation �
� � � �

�
� � � � �

� � � �
	 � � � � � � � � whose components are 2-cells �

�
�
� � � � � � � � �	�



3. FURTHER STRUCTURE 293

�
�
� � � 	 , for each �

� � � � � and � � � �	� % . In a diagram:

�
� � 
 � 	 � �

�
� 
 % 	 � 	 
 � 
 �

//
�
	 
 �
� � � 
 �

��

�
� � 
 % 	

�
	 
 �

��
� �
�
� � 
 � � 	 � � �

�
� � 
 � % 	 � �� 	 
 � � 
 � �

//

� 	 
 � 
 �ffffffff
ffffffff

/7fffffffffff
fffffffffff

� �
�
� � 
 � % 	

� for each object
�

, a natural transformation �
� � �� � � � � � � � � � � as in

diagram

� � 	 // �
� � 
 � 	

�
	 
 	

��
�

� �� 	
//

�nnnnnnnnn

nnnnnnnnn

2:nnnnn
nnnnn

� �
�
� � 
 � � 	

subject to the coherence laws expressed by the commutativity of the following dia-
grams:

� � � �
�
� � � � � � 	

�

�
� � �

//

� �
��

� �
� � �
�
� � � 	 �

// �
�
� �

�
� � � 	 	
� �
���

� � � � � � 	 � � � �
� � � �

�
// �
�
�
� � 	 � � ��� �

// �
� �
� � � 	 � � 	

and

� �� � � � � � � � //

� � � �

�
��

� � � � � � � �� �
� �

oo

�

�
� � �

��
� � � � � � �

�

��

� �
� � � � �
�

��
�
�
� � � � 	 � � // � � �

�
�
� � � 	�

�
oo

14. AN CHEAP EXAMPLE. Take the singleton set � as a discrete (bi)category and
let � be any bicategory. Then any lax-functor

� � � � � � is nothing more than a
monad in � . The good old friend of functional programmers is around the corner, just
by instantiating � with � � � .



294 B. BICATEGORIES

15. FURTHER STRUCTURE. A similar construction yields corresponding notions
of natural transformation in a bicategorical setting. Components of a natural transfor-
mation � between, say, (lax-)functors � and � are, of course, 1-cells indexed by the
objects. However, the naturality requirement is, again, introduced as the following
family of natural transformations � � � �

�
� � 
 � 	

�
	 
 �

//


 	 
 �
��

� �
�
� � 
 � � 	

� � �
� � � � � �

��
� �
�
� � 
 � � 	 � � � � 	 � 
 � � //

�
	 
 �jjjjjj

jjjjjj

19jjjjj
jjjjj

� �
�
� � 
 � � 	

where �
�
��
 � 	 � � � ��
 � 	 �	� �

�
��
 � 	 is the functor induced by the 1-cell �

� � �	�
� , for a given � , and, contravariantly, �

�
� 
 � 	 � � � � 
 � 	 �	� �

� � 
 � 	 .
One can go further and define a morphism between this kind of transformations

�
�

))

� �
55

�� ��
��
� �

whose components are 2-cells connecting, for each object
�

, � � to � �� . Such mor-
phisms are known as modifications and, in particular, allow for the definition of the
analogue of a functor category between two bicategories. Given � and �	� , a functor
bicategory arises taking (lax-)functors, transformations and modifications as 0, 1 and
2-cells, respectively.

Having built all this structure, one can define what adjunctions are and, conse-
quently, what limits mean, in it. There is also a notion of representable and an ana-
logue of Yoneda lemma, which is used in the proof of the coherence theorem [Str96]
asserting the possibility of reducing any bicategory to a (bi)equivalent 2-category. Al-
though this will not be pursued here, we should remark that suitable generalisations of
familiar categorical constructions emerge as expected, respecting the 2-cell structure
and eventually relaxing the conditions up to which axioms are verified. Coherence
requirements, however, may become rather heavy to state and prove.

Finally, notice that the fact that � � � is a (particular case of a) bicategory allows
one to borrow common categorical constructions and have them interpreted in an
arbitrary bicategory. For example, a pair of 1-cells �

� � �	� � and � � � �	� �

equipped with a 2-cell isomorphism �
� � � � � � � in the hom-category �

� � 
 � 	 ,
and another one

� � � � � � � � in the hom-category �
�
� 
 � 	 , define an equivalence

between objects
�

and � . In fact an equivalence of categories is just an instantiation
of this notion in ��� � .



3. FURTHER STRUCTURE 295

16. COHERENCE. A final remark on coherence is in order. Coherence laws arise
in the definition of a bicategory as well as in other related structures. A particularly
familiar example in computer science is the case of monoidal categories, which, as
mentioned above, can be thought of as born out of bicategories.

In a sense, coherence axioms are a price to be paid for the increased expressive
power originated by weakening the defining structural properties. Think, for example,
of the coherence diagram for associativity in definition §6. It identifies the basic ways
in which the composition of 4 arrows can be parenthesised and relates them through
� . To ensure that all such ways are unique is precisely the reason to enforce the
commutativity of the diagram. By such a coherence axiom one knows that, in a
bicategory, any two natural isomorphisms built out of � , � and

�
, by the composition

and unit operations, actually coincide. That is to say, weakening has caused no special
(calculational) damage.

The difficult question is: why is this so? Of course there are standard results as-
serting the fact (e.g., Mac Lane’s coherence theorem for monoidal categories [Mac71]
or Bénabou’s result for bicategories [Ben67]) but it would help to have a deeper un-
derstanding of the origins of coherence axioms.

Something that may help to build up intuition, is the observation, due to J. Dolan
and J. Baez, among others, that an operation automatically satisfies all the (relevant)
coherence laws if defined by an universal property. For example,

�����
has all finite

products which are defined by an universal property (§2.22). Moreover they are
unique up to isomorphism. If one takes the product

� � � for every pair of sets,
making cartesian product an operation, three natural isomorphisms, expressing as-
sociativity, left and right units, get defined canonnically. Such isomorphisms verify
the coherence axioms for a tensor product turning, therefore, 
 � ��� 
 � � into a monoidal
category. One may therefore conclude that the usual definition of a monoidal category,
with the explicit coherence axioms, amounts to the fact that any monoidal structure
defined by universal properties automatically satisfies such axioms.

17. � -CATEGORIES. The whole subject of bicategories is much wider than we have
been able to glimpse in this appendix. In fact, both generalisations embodied in the
notion of a bicategory (i.e., the introduction of arrows between arrows and the weak-
ening of the degree of strictness up to which axioms hold) can be pursued further.
Recall that the justification for the introduction of 2-cells is the possibility of having
arrows around that are isomorphic rather than merely equal. Once all arrows become
objects, the sentence will still make sense, as a justification for the introduction of
categories themselves in the first place. One can easily imagine this process going on:
considering 3-cells as 2-cell morphisms and so on. On the other hand, the relevant



296 B. BICATEGORIES

equations may be taken to hold up to isomorphism in the immediately lower level or,
even more generally, up to an arbitrary arrow.

This is the broader context of n-categories [Bae97], whose basic claim is that
equations should hold on the nose (i.e., up to equality) only at the top level, i.e.,
between � -cells. Therefore laws concerning

�
-cells, for

� 
 � , should always be
expressed as

� � � �
	
-equivalences. In this context an equivalence between

�
� � �

	
-

cells is an invertible � -cell whereas an equivalence between
�

-cells, for
� 
 � , is just

a
� � � �

	
-cell invertible up to equivalence.

The framework is very expressive — in practice often things are only true up
to (a suitable notion of) isomorphism, and sometimes only up to other things. But
some care is needed to avoid getting puzzled by coherence conditions. The expressive
power of n-categories is well illustrated by noting that a

�
� � �

	
-category with only

one object can always be regarded as a special kind of a � -category. This was exactly
what we have seen, for � � � and � � � , in §11.



APPENDIX C

Context Laws

1. Preliminaries

1. MOTIVATION. The approach to components modelling presented in this thesis,
namely in chapters 5 and 6, is parametric on a behaviour functor � which is required
to form a, usually commutative, strong monad. It is therefore not surprising that the
proofs of most properties of component’s combinators involve common ‘housekeep-
ing’ morphisms such as associativity ( � ), commutativity ( � ) and exchange ( � � , �

�
and

� ), interplaying with monad unit, multiplication and strength.
This appendix collects and proves a number of generic laws we have found to

be useful in trying to establish the envisaged component’s calculi. Since we have
proceeded on a ‘demand driven’ basis we cannot claim that such a repertoire of laws
is complete or exhaustive. Despite this fact, we believe these laws may be of use
in other situations of context manipulation in expressions involving strength and the
monad definitional morphisms.

2. STARTING POINT. Our starting point consists of the strength and monad axioms
reviewed, respectively, in §3.52 and appendix A. Let us recall them briefly here for
easier reference. Let � be a strong functor. Then the following laws hold:

� �
�

and � � unit and associativity (equations (3.14), (3.15) and (3.16), (3.17),
respectively):

�
�
� �

� � �
(C.1)

� � � � � � � (C.2)

� � � � �
� � �

�
�
�

�
� � � �
	 � � � (C.3)

� � � � � � � � �
� � � � � �

	
��� (C.4)

� �
�

and � � are natural:

�
�
�
�
� � � �

	 � �
�
� � �

	
� �

�
(C.5)

� � �
�
� � � �

	 � �
�
� � �

	
� � � (C.6)

297



298 C. CONTEXT LAWS

� �
�

and � � commute with each other:

� � � �
� � � � � � (C.7)

As usual, different, but equivalent, formulations of these laws arise by pre- and post-
composition of both sides with suitable isomorphisms. For example, post-composition
of both sides of (C.3) with � � and simultaneous pre-composition with � leads to

�
�
� � � � � � �

�
�
�

�
� � � � 	 (C.8)

Similarly, from (C.4), one gets

� � � � � � � � � � � � �
� � � � � �

	
(C.9)

Since � is its own inverse, the definitions of �
�

in terms of � � (and vice-versa) are a
direct consequence of (C.7):

�
� � � � � � � � � (C.10)

� � � � � � �
�
� � (C.11)

Other useful results are derived from the above. For example, the unit law entails

� �
� � �
� � ��� (C.12)

� ��� � � � � �
� (C.13)

Proof.
� � � � � � � �3$ � �	$ " � � � & & � � � { � � definition }

� � � ���3$ " � � � & � � � {
�

functor }

� � � � � � �	$ " � � � & { � � natural (C.5),
�

functor }

� � �	$ " � � � &
{ � � unit (C.1) }

� � � { � � definition again }

and similarly for the � � case. +
Furthermore, should � also form a monad, then the following laws hold:

� monad axioms (recall laws (A.1) and (A.2)),

� �
�
� � � � �

�
� � � (C.14)

� � � � � � � � � (C.15)



2. � -LAWS 299

and the natural laws for � and

�
:

� � � � � � � �
� � (C.16)�
� � � � �
�

�
(C.17)

�
�

and � as strong natural transformations (recall e.g., laws (A.6) and (A.7)):

�
�
�
� � � � �
	 �

�
(C.18)

�
�
�
�
� � � �
	 � � � � �

�
� �

�
(C.19)

� � �
� � ���

� 	 �
�

(C.20)

� � �
� � � � � 	 � � � � � � � � � (C.21)

� definition and properties of the distributive morphisms
� �

and
�
� for a strong

monad (recall §A.10):

� � � �
�
� � � (C.22)

�
� � � � � �

�
(C.23)

� �
� � � � � �

�
� (C.24)

� �
�
� � � �

� 	 � �
�

(C.25)
� �
�
� � � � �
	 � � � (C.26)

�
� �
� � � � �
	 � � � (C.27)

�
� �
� � � �

� 	 � �
�

(C.28)
� �
� � � � � �

�
� (C.29)

� �
�
�
� � � � �

	 � �
�
� � �

	
�

� �
(C.30)

�
� �
�
� � � � �

	 � �
�
� � �

	
�

�
� (C.31)

2. � -Laws

3. Further useful results can be derived from the set of laws above. The lemmas
which follow (colloquially referred to as the ‘ � -laws’) state some ‘housekeeping’ laws
describing the effect of common context management isomorphisms in the presence
of tensorial strength. In particular, we concentrate on associativity ( � ), commutativity



300 C. CONTEXT LAWS

( � ), exchange ( �
�
, � � and � ) and distributivity (

���
and

�
� ). For the reader’s conve-

nience, we recall from chapter 2 the definitions of the exchange morphisms:
�
� � � � � � � % 	 � � � � � � � % 	
� � �

�
�
� � � 	 � � � (C.32)

� �
� � � � � % �	� � � % � �
� � � �

� � � � �
	
��� (C.33)

�
� � � � � 	 �

�
% � � 	 � �

� � � % 	 �
�
� � � 	

� � �
�

� �
� � � 	 ��� � (C.34)

4. LEMMA. Let � be a strong functor. Then,

�
�
�
�

� �
� � �
	 ��� � � � � � � � � �

� � � � �
� 	

(C.35)

holds, cf.,
� � �

� � � % 	� � �
� �

��

� � //
� � �

� � 	 � %
� �
� � �

��� �
�
� � � % 	
� �

��

�
� � � � 	 � %

� �

��
�
� � � � � � % 	 	 � � � // �

� � � � � 	 � % 	

Proof.
��� �	$ � � � " � & ��� �

� ) 
 � , 
 � interchange (C.11), � functor *
� � �	$ �'	 � " � & �	$ � � � " � & �	$!	 � " � & ��� �

� )	� iso, 
 � natural (C.5) *
�3$!	 ��" � & � � � �	$ � � � " � & ��� � ��� �	$!	 � " � & ��� �

� ) 
 � associative (C.3) *
�3$!	 ��" � & ��� � � � � � ��� �	$!	 � " � & ��� �

� )�� iso *
�3$!	 ��" � & ��� � � � ��� �	$ " � � 	 & �	$ " � � 	 & ��� �	$ 	 ��" � & ��� �

� ) 
 � natural (C.5) *



2. � -LAWS 301

�3$!	 ��" � & ��� � � ���3$ " � � 	 & � � � �	$ " � � 	 & ��� �	$!	 ��" � & ��� �
� ) � functor, routine: � � � � � � � � � � � � � � � � � � � � � � � � *

� � � ���'	3��� � � � � � �	$ " � � 	 & ��� �	$ 	 � " � & ��� �
� ) 
 � associative (C.3) *

� � � ���'	3� ��� �	$ ��� ��" � & ��� � �	$ " � � 	 & ��� �	$ 	 � " � & ��� �
� ) routine: � � � � � � � � � � � � � � � � � � � � � � � *

� � � ���'	3� ��� �	$ ��� ��" � & �
	
� )�� natural *

� � � ���'	3� � � �
	 �	$ " � � � � &
� ) 
 � , 
 � interchange (C.11) *

� � � � � � �	$ " � � � � &

+

5. ANIMATION. To build up one’s intuitions, CHARITY can be used to ‘animate’
these laws. We have proceeded in this way when trying to identify some useful re-
sults, before carrying out the formal proofs. The following printout is an example of
‘running’ law (C.35) proved above. The sequence monad implementation, given in
§A.13, is used.

>> taur fp{taul,fid} iassoc ([5,3], ([1,2,3], 9)).
[(([5, 3], 1), 9), (([5, 3], 2), 9), (([5, 3], 3), 9)]
: list((list(int) * int) * int)

>> B{iassoc} taul fp{fid,taur} ([5,3], ([1,2,3], 9)).
[(([5, 3], 1), 9), (([5, 3], 2), 9), (([5, 3], 3), 9)]
: list((list(int) * int) * int)

6. LEMMA. Let � be a strong functor. Then,

�
�
�
�

� �
� � � 	 � � � � � � � � �

� � � � � �
	

(C.36)

�
�
�
�

�
� � � � 	 � � � � � � � � �

� � � � �
� 	

(C.37)



302 C. CONTEXT LAWS

Proof.

��� �	$ ��� ��" � & �
	 � ��� �
	 �	$ " � � � � & { � natural }

� �'	 � � � �	$ " � � � � & { 
 � , 
 � interchange (C.7) }

proves (C.36); the proof of (C.37) follows an identical argument. The correspondent diagrams
are:

$ 
 � ��� & ���

��� � � �
��

� � $ 
 � ��� &
� � � ���
��

�
oo $ ��� � 
 & ���

� � � � �
��

� � $ ��� � 
 &
� � � � �
��

�
oo

�3$ 
 � � & ���
� �

��

� � �3$ 
 � � &
� �
��

�3$�� � 
 & ���
� �

��

� � �3$�� � 
 &
� �
���3$�$ 
 � � & ���'& �3$ � � $ 
 � � & &� �

oo �3$ $�� � 
 & ���'& �3$ � � $�� � 
 & &� �
oo

+

7. LEMMA. Let � be a strong functor. Then,

� � � � �
�
�
�

� �
� � �
	 � � � � � � (C.38)

� � � � �
�
�
�

�
� � � �
	 � �

�
�
�

�
� � � � 	 � � � (C.39)

� �
�
� � � �

� � � � �
� 	 � �

�
� �
�

(C.40)

� �
�
� � � �

� � ��� � �
	 � � � �

� � � � � �
	
� �
�

(C.41)

Proof. We prove below
� � equations (C.38) and (C.39). The corresponding laws for

� �
follow

a similar argument. Equation (C.38) expresses the commutativity of the following diagram:

$ 
 � � � & ���
� �

��

� � � � � // �3$ 
 ��� & ��� � � // �3$�$ 
 ��� & ���'&
� � �

��$ 
 ���'& � � � ��� // �3$�$ 
 ���'& ��� &



2. � -LAWS 303

This leads to the following reasoning:
� � � � � � �	$ � � � " � &

� )�� � definition (C.33) *
� � � ���3$ " � � 	 & ��� � � � � �	$ � � ��" � &

� ) law (C.46) *
� � � ���3$ " � � 	 & � � � �	$ " � � � � & ���

� ) 
 � natural (C.5) *
� � � � � � �	$ " � � �'	 & �	$ " � � ��� & ���

� ) 
 � , 
 � interchangeable (C.7) *
� � � � � � �	$ " � � � � & �	$ " � � 	 & ���

� ) law (C.9) *
� � ��� � �	$ " � � 	 & ���

� )�� � definition (C.33) *
� � ��� �

Now consider equation (C.39) expressing the commutativity of

$ � 
 � � & ��� � �
//

� � � � �
��

$ � 
 ���'& ��� � � � � � // �3$ 
 ���'& � �
� �
���3$ 
 � � & ��� � � // �3$�$ 
 ��� & ���'& � � �

// �3$ $ 
 ���'& � � &
Thus,

� � � � ��� �	$ ��� � " � &
� ) � functor, � � definition (C.33) *

� � � ���3$ " � � 	 & ��� � � ��� �	$ ��� ��" � &
� ) 
 � associative (C.8) *

� � � ���3$ " � � 	 & � � � ���
� ) 
 � natural (C.5) *

� � � � � � �	$ " � � 	 & ���
� ) 
 � associative (C.3) *

� � �	$ � � ��" � & ��� � �	$ " � � 	 & ���
� )�� � definition (C.33) *

��� �	$ ��� ��" � & ��� �



304 C. CONTEXT LAWS

+

8. LEMMA. Let � be a strong functor. Then,

� � � �
�
�
�

�
� � � �
	 � �

�
�
�

�
� � � � 	 � � (C.42)

� � � � � �
�

� �
� � �
	 � � � �

�
� �
� � �
	 � � (C.43)

� � � �
�
�
�

� �
� � �
	 � � � �

� � � � �
� 	
� � (C.44)

� � � � � �
� � � � �

� 	 � �
�
�
�

� �
� � �
	 � � (C.45)

Proof. Consider, first, equation (C.42) which express the commutativity of the following
diagram (the proof of (C.43) follows a similar pattern):

$ ��� � 
 & � $�� ��� &

� � � � �
��

�
// $ ��� � � & � $ 
 ��� &

� � � � �
���3$�� � 
 & � $�� ��� &

� �
��

�3$�� � � & � $ 
 ��� &
� �
���3$ $�� � 
 & � $�� ��� &�&

� � // �3$ $�� � � & � $ 
 ��� &�&

Thus,

� � �	$ � � ��" � & � �
� ) � functor, � definition (C.34) *

��� �	$ ��� � $ " � � " � &�& ��� �	$�$ � � �	$ " � � 	 & ��� & ��" � & ��� �
� ) � natural *

��� ��� �	$ $ ��� ��" � & � " � & �	$�$ � � �	$ " � � 	 & ��� & ��" � & ��� �
� ) 
 � associative (C.8) *

� � � � � �	$ � � � " � & �	$ $ � � � " � & � " � & �	$ � � � " � & �	$ $ " � � 	 & ��" � & �	$ � � " � & ��� �
� ) 
 � associative (C.3) *

� � � � � �	$ � � � ��" � & �	$ � � ��" � & ��$ $ " � � 	 & � " � & �	$ � ��" � & ��� �
� ) 
 � natural (C.5) *

� � ���3$ � � � " � & � � � �	$ � � ��" � & ��$ $ " � � 	 & � " � & �	$ � ��" � & ��� �
� ) 
 � natural (C.5) again *

� � ���3$ � � � " � & ���3$ $ " � � 	 & ��" � & � ��� �	$ ��� � " � & �	$ � ��" � & ��� �



2. � -LAWS 305

� ) 
 � associative (C.8) *
� � ���3$ � � � " � & ���3$ $ " � � 	 & ��" � & � ��� �	$ � � ��" � & �	$ ��� ��" � & �	$ $ ��� � " � & ��" � & ��� �

� ) 
 � natural (C.5) *
� � ���3$ � � � " � & ���3$ $ " � � 	 & ��" � & ���3$ � � " � & � ��� �	$ ��� ��" � &
�%$ $ � � � " � & ��" � & ��� �

� ) � � natural *
� � ���3$ � � � " � & ���3$ $ " � � 	 & ��" � & ���3$ � � " � & � � � �	$ � � ��" � & ��� � �	$ � � � $ " � � " � & &

� ) functors, 
 � associative (C.3) *
� � ���3$ � � � " � & ���3$ $ " � � 	 & ��" � & ���3$ � � " � & ��� � � � � � �	$ � � � " � &

� ) � functor, � definition (C.34) *
� � � ��� �	$ ��� � " � &

Next consider equation (C.44) which involves both � � and � � , expressing the commutativity
of the diagram below. Again, the proof of (C.45) follows a similar pattern.

$ 
 � ��� & � $�� ��� &

��� � � �
��

�
// $ 
 � � & � $ ��� ��� &

� � � � �
���3$ 
 � � & � $�� ��� &

� �
��

$ 
 � � & � �3$ � ��� &
���
���3$ $ 
 � � & � $�� ��� &�&

� � // �3$ $ 
 � � & � $ � ��� &�&

Thus,

� � �	$ " � � ��� & � �
� ) � definition (C.34) *

� � �	$ " � � � � & ��� �	$ $ � � �	$ " � � 	 & ��� & ��" � & ��� �
� ) law (C.46), � functor *

� � � � � �	$ � � � " � & �	$ � � � " � & ��$ $ " � � 	 & � " � & �	$ � � " � & ��� �
� ) 
 � associative (C.9) *

� � � � � �	$ � � � ��" � & �	$ � � � " � & �	$ $ " � � � � & � " � & �	$�$ " � � 	 & ��" � & �	$ � � " � & ��� �
� ) 
 � natural (C.5) *

� � ���3$ � � � " � & � ��� �	$ ��� � " � & �	$ $ " � � � � & � " � & �	$�$ " � � 	 & ��" � & �	$ � � " � & ��� �
� ) 
 � , 
 � interchangeable (C.7) *



306 C. CONTEXT LAWS

� � ���3$ � � � " � & � � � �	$ � � � " � & �	$ $ " � � �'	 & � " � & �	$�$ " � � � � & � " � & �	$ � � " � & ��� �
� ) 
 � natural (C.6) *

� � ���3$ � � � " � & � � � �	$ �3$ " � � 	 & � " � & �	$ � � � " � & �	$�$ " � � � � & � " � & �	$ � � " � & ��� �
� ) 
 � natural (C.5) *

� � ���3$ � � � " � & ���3$ $ " � � 	 & � " � & � ��� �	$ � � � " � & �	$�$ " � � ��� & � " � & �	$ � � " � & ��� �
� ) law (C.46) *

� � ���3$ � � � " � & ���3$ $ " � � 	 & � " � & � ��� �	$ � � ��" � & �	$ ��� ��" � & �	$�$ � � ��" � & � " � & ��� �
� ) 
 � natural (C.5) *

� � ���3$ � � � " � & ���3$ $ " � � 	 & � " � & ���3$ � ��" � & � � � �	$ � � ��" � & �	$�$ � � ��" � & � " � & ��� �
� ) � � natural, functors *

� � ���3$ � � � " � & ���3$ $ " � � 	 & � " � & ���3$ � ��" � & � � � �	$ � � ��" � & ��� � �	$ � � � " � &
� ) 
 � associative (C.3) *

� � ���3$ � � � " � & ���3$ $ " � � 	 & � " � & ���3$ � ��" � & ��� � � � � � �	$ � � � " � &
� ) � definition (C.34) *

� � � ��� �	$ ��� ��" � &

+

9. REMARK. Alternative formulations of laws in §§4, 6 and 8 are easily obtained
by pre- or post-composing both sides of the corresponding equations with relevant
isomorphisms. Useful variants of (C.35), (C.36) and (C.37) are, respectively,

� � �
� � ��� �

� 	
��� � � � � �

�
�
�

� �
� � �
	 (C.46)

� � � �
�
�
�

� �
� � � 	 � � � �

� � � � � �
	
� � (C.47)

� � � �
�
�
�

�
� � � � 	 � � � �

� � � � �
� 	
� � (C.48)

Variants of laws involving � � , �
�

and � in the previous paragraphs are also easy to
grasp.

10. DISTRIBUTIVITY. Distributivity plays a key role in defining and reasoning
about some component combinators. As with other ‘housekeeping’ morphisms, we
basically rely on the fact that both

�
� and

� �
are natural isomorphisms and sometimes

use the explicit definition of their inverses. The following equalities, relating distribu-
tivity with the additive units,

�
� and �

� , and the either constructor, have been singled



2. � -LAWS 307

out. Consider first the following commutative diagrams:

� � � � � % 	�
�
��

�
� � � � � � � �

))TTTTTTTTTTTTTTT

� � � � � � 	�
�
��

� � �
�
� // � � �

� � � � � � % � �
� � � � � � � � � // � � � � � � � � � �

� �
��� �

// � � � � �

�
�

OO

i.e.,

� � � � ��
 � � 
 � � � � � ��
 � � � � 
 � � � (C.49)

� � � � � �
�

� �
� � � � � �

	
�
�

� (C.50)

Proof. For equation (C.49) consider
� � � � � 
 � � � � � � � � � 
 � � � � � � � �

( ) � � iso *
� � � � � 
 � � � � � � � � � � � � � 
 � � � � �

( ) � � � definition, � fusion *
� $%� � � � � 
 � � � & �	$ " � � � � & 
 $%� � � � � 
 � � � & �	$ " � � � � & � � � � � � � 
 � � � � �

( )�� cancellation *
� � � � � 
 � � � � � � � � � � � 
 � � � � �

Concerning (C.50):
" � � � & � � & �	$ " � 
 � � & � � �

( ) � � iso *
$ " � � � & & � � � � � � & �	$ " � 
 � � &

( ) � � � and � � definition *$ " � � � " � 
 � � & ��� " � � � � 
 " � � � � � � � " � 
 � � � $ " � 
 � � &
( ) � fusion, cancellation, absorption *

� " � � " � 
 " � � � � � � " � 
 � ��� � �
( ) functors, initiality (cf., � 	 � � ��� � 	 � � � 	 � � � ) *

� " � 
 � ��� � � � � " � 
 � ��� � �
+



308 C. CONTEXT LAWS

Similarly, for left distribution

� � ��
 � � 
 � � � � � � � � 
 � � � � 
 � ��� (C.51)�
�
� � � � �

� �
� � � � �

� 	
�
���

(C.52)

Both equalities (C.50) and (C.52) have ‘twin versions’ for �

� replacing
�

� :

� � � �

� �
�

� �
�

� � � � � 	 � � � (C.53)
�

�
� � � � �

� �
�

�
� � � � 	 � ��� (C.54)

The following equalities are very useful and trivially proved:

� � � � � �
� � ��� � � 	 (C.55)

� � � � � �
� � ��� � � 	 (C.56)

� � � � � �
�
� � � � �
	 (C.57)

� � � � � �
�
� � � � �
	 (C.58)�

� � � � �
� � ��� � �

	
(C.59)�

� � � � �
� � ��� �

�
	

(C.60)� � � � � �
� �

�
� � � 	 (C.61)� � � � � �

�
�

�
� � �
	 (C.62)

Proof. As an example let us prove (C.59):
� ��� � � ��$ " � � � & &

( ) � � � iso *
� � � � � ��� � � � ��� � ��$ " � � � & &

( ) � � iso, law (C.55) *
" � � $ " � � � � & �	$ " � � � & &

( ) routine: � �	� � � �	� � , � functor *
" � � " �

+
Finally, observe that successive applications of

�
� � (or

���
� ) are often used to simplify

expressions. For example, � � � � � � � � � � 	 
 � � � � � � � � � 	 
 can be used to transform a
sum

�
� � � � � � 	 	 �

�
� � � � � � 	 	 into

� � � � � � � � � 	 	 . A simple calculation,
resorting to � fusion and cancellation, establishes

� � ��� � � ��� � � 	 
 � � � � � � � � � 	 
 � � � � � � � �
	
�
�

� � (C.63)



2. � -LAWS 309

The next two lemmas relate the distributivity morphisms to monad unit

�
and strength.

11. LEMMA. Let � be a monad. Then,
�
�
�

� � � � � � � � � � � 	 
 � � � � � � � 	 
 � �
�
�

� 	
(C.64)�

�
���
� � � � � � � � � �
	 
 � � � � � � �
	 
 � �

�
�

� 	
(C.65)

Proof.

� � � � �
� ) � � � definition *

� ��� $ " � � � � & 
 $ " � � � � & �
� )�� fusion *

� � �	$ " � � � � & 
 � �	$ " � � � � & �
� )�� natural (C.17) *

� �3$ " � � � � & ��� 
 �3$ " � � � � & �����
� )�� absorption *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � &

The proof of (C.65) is analogous.
+

12. LEMMA. Let � be a strong functor. Then,

�
�
�
� � � � � ��� � � 	 
 � � � ��� � � 	 
 � � �
	 �
� � � � � � � � � 	 � � � 	 
 � � � � � � � � 	 � � �
	 
 � � �

� � �
� 	
�
� �

(C.66)

� � �
� � ��� � � � � ��� � � 	 
 � � � ��� � � 	 
 	 �
� � � � � � � � � � � � 	 	 
 � � � � � � � ��� � � 	 	 
 � � � � � � �

	
�
�

� (C.67)

Proof. For the proof of (C.66) consider the post-composition of both sides of the equation
with

��� �
. Thus,



310 C. CONTEXT LAWS

� � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � ��" � & � ��� �
� ) � � � definition *

� � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � ��" � & ����� � ��" � 
�� � � " � �

� )�� fusion and cancellation *
��� ��� �3$ " � � � � & � " � 
 �3$ " � � � � & � " � �

� )�� fusion again *
� � � ���3$ " � � � � & � " � 
 � � ���3$ " � � � � & ��" � �

� ) 
 � natural (C.5) *
� �3$ $ " � � � � & � " � & � � � 
 �3$�$ " � � � � & ��" � & � � � �

� )�� absorption *
� �3$ $ " � � � � & � " � & 
 �3$�$ " � � � � & � " � & � �	$ � � 
 � � &

The proof of (C.67) is analogous. +

3.
�
-Laws

13. LEMMA. Let � be a strong monad. Then,
�
�
� � � � 	 �

�
(C.68)

where
�

is either
� �

or
�
� .

Proof. Let us consider the equality for

�
�
�
� . The case

�
�
�
� is proved in a similar way.�

� �	$ � � � &
� )�� � definition (C.23) *

� ��� � � � � � �	$ � � � &
� ) � functor *

� ��� � � � � � �	$ � � " � & �	$ " � � � &
� )�� strong (C.18) *

� ��� � � ��� �	$ " � � � &
� )�� natural (C.17) *

� ��� � � � �	$ " � � � &
� )�� unit (C.14) *



3. � -LAWS 311

� � �	$ " � � � &
� )�� strong (C.20) *

�

+

14. LEMMA. Let � be a strong monad. Then,

� �
� �

� � �
�
�

�
� i.e., � � � � �

� �
� � � � � �

�
�

�
� (C.69)

�
� � � � � � � �

� �
i.e., � � � �

� � � � � � � � � � �
� �

(C.70)

Proof. We prove (C.69) below; law (C.70) is verified by a similar argument.

� ���
�
� � � �

� )�� � definition (C.22) *
� ��� � ��� � � � ��� � � � � �

� ) � associative (C.15) *
� � � ��� � � � ��� � � � � �

� ) � natural (C.16) *
� ��� � � � � ��� � � � � �

� )�� � definition (C.23) *
� ��� � � �

�
�

+

15. LEMMA. Let � be a strong monad. Then,

�
�
�

� � � � � � �
�
�

� � � � �
�
�
� � � �
	 (C.71)

� � �
�
� � � � � � � �

�
� � �

� �
� � ��� � 	 (C.72)

� �
� � � � � � � � �

� � � � � �
�
� � ��� � 	 (C.73)

�
� � �

� � � � � �
� � �

� � �
� �
�
� � � �
	 (C.74)



312 C. CONTEXT LAWS

Proof. We prove (C.71) and (C.73). The proofs of (C.72) and (C.74) follow, respectively,
similar arguments. Thus,

� ��� � � �
�
�

� )�� � definition (C.22) *
� ��� � � ��� � ��� � � � � �

� ) � natural (C.16) *
� � � ��� � � � ��� � � � � �

� ) � associative (C.15) *
� ��� � ��� � ��� ��� ��� � � �

� ) � strong (C.19) *
� ��� ��� ���3$ � ��" � & � � �

� ) 
 � natural (C.6) *
� ��� ��� � ��� �	$ � ��" � &

� )�� � definition (C.22) *�
� �	$ � � " � &

Now (C.73) is established as follows:

� ���
�
� � � �

� )�� � definition (C.22) *
� ��� � ��� � � � ��� � � � � �

� )�� natural (C.16) *
� ��� � � � � ��� � � � � �

� )�� strong (C.21) *
� ��� � � � � � �	$ " � � � &

� )�� � definition (C.22) *
� �

�
� �	$ " � � � &

+



3. � -LAWS 313

16. REMARK. Laws (C.71) and (C.74) in the previous lemma state the commutativ-
ity of the following diagrams:

� � 
 � � � � �
//

# � � � ��(
��

�3$ � 
 ���'& � � � // � �3$ 
 ���'&
�
��

� 
 � � �
� �

// �3$ 
 ���'&

and
� � 
 � � � � � //
# � � � � (

��

�3$ � 
 � � �'& � �
� // � �3$ 
 ���'&

�
��

� 
 � � �
�
�

// �3$ 
 ���'&

Similar diagrams can be drawn for the other two equalities. Curiously, however, the
‘more symmetric’ diagram below does not commute no matter how each occurrence
of

�
is replaced by either

� �
or

�
� .

� � 
 � � � � �

//
# � � � (

��

�3$ � 
 � � �'& � �

// � �3$ 
 ���'&
�
��

� 
 � � �
�

// �3$ 
 ���'&

In fact, the diagram only commutes under the additional hypothesis that � is a com-
mutative monad (§A.10). In this case

� � � �
� and the result follows as detailed in the

next paragraph.

17. LEMMA. Let � be a commutative strong monad. Then,
�
�

� � � � � �
�

� � �
�
�
� � � 	 (C.75)

where
� � � � � �

� .

Proof.

� ���
� � �

� ) instantiating � *
� ���

�
� �

�
�

� )�� � definition (C.23) *
� ���

�
� � � ��� � � � ���

� )�� natural (C.16) *
� � � ��� �

�
� ��� � � � ���



314 C. CONTEXT LAWS

� )�� associative (C.15) *
� ��� � ��� �

�
� ��� � � � ���

� ) law (C.73) *
� ���

�
� ���3$ " � � � & � ���

� ) 
 � natural (C.5) *
� ���

�
� � � � �	$ " � � � &

� ) law (C.69) *
� ��� � � �

�
� �	$ " � � � &

� ) assumption: � ��� � � *
� ��� � � �

�
� �	$ " � � � &

� )�� � definition (C.22) *
� ��� ��� � � ��� ��� � � � �	$ " � � � &

� )�� natural (C.16) *
� � � ��� � ��� ��� ��� � ��� �	$ " � � � &

� )�� associative (C.15) *
� ��� � ��� � � � ��� � � � � � �	$ " � � � &

� )�� strong (C.19) *
� ��� � � ���3$ � � " � & � � � �	$ " � � � &

� ) 
 � natural (C.6) *
� ��� � � � � � �	$ � � " � & �	$ " � � � &

� )�� � definition (C.22), recovering � as � � *� �	$ � � � &

+

18. ANIMATION. A CHARITY animation of the results above provides some intuition
about why and when commutativity is required. Resorting to the implementations of
both the sequence and maybe monads discussed in §A.13, consider first law (C.72).
The examples in the following printout suggest the law is valid for both monads,
irrespective of the former (but not the latter) being non commutative. Thus, for the
sequence monad one gets, for instance



3. � -LAWS 315

>> mu B{taul} deltal ([1,2],[[4,7],[9]]).
[(1, 4), (1, 7), (1, 9), (2, 4), (2, 7), (2, 9)] : list(int * int)

>> deltal fp{fid,mu} ([1,2],[[4,7],[9]]).
[(1, 4), (1, 7), (1, 9), (2, 4), (2, 7), (2, 9)] : list(int * int)

and, for the maybe monad,

>> mu B{taul} deltal (ss 6, ss ss 8).
ss(6, 8) : SF(int * int)

>> deltal fp{fid,mu} (ss 6, ss ss 8).
ss(6, 8) : SF(int * int)

>> mu B{taul} deltal (ss 6, ss ff).
ff : SF(int * A)

>> deltal fp{fid,mu} (ss 6, ss ff).
ff : SF(int * A)

The situation is completely different when dealing with law (C.75). In the animation
below we have taken

�
as

�
� . The application of both sides of the equation to concrete

examples leads to identical results in case the monad is commutative. Such is not the
case if commutativity fails, as in the sequence monad case:

>> mu B{deltal} deltal ([[1,2],[4]],[[5,6],[8,7]]).
[(1, 5), (1, 6), (2, 5), (2, 6), (1, 8), (1, 7), (2, 8), (2, 7),
(4, 5), (4, 6), (4, 8), (4, 7)] : list(int * int)

>> deltal fp{mu,mu} ([[1,2],[4]],[[5,6],[8,7]]).
[(1, 5), (1, 6), (1, 8), (1, 7), (2, 5), (2, 6), (2, 8), (2, 7),
(4, 5), (4, 6), (4, 8), (4, 7)] : list(int * int)

19. LEMMA. Let � be a strong monad. Then,

� � �
� � � �

� � � (C.76)

� � �
�
� �
�

� �
� � � 	 � � � �

� � � � �
�
	
� � (C.77)

� �
�
� � � � �

� 	
� � � � � � �

�
�
�

� � � � �
	 (C.78)



316 C. CONTEXT LAWS

Proof. Equation (C.76) establishes

�
� ,

�
� interchangeablity, which stems from a similar law

for � � and � � :
�'	3� � �

( )�� � definition (C.22) *
�'	3� � ��� � � � � �

( )�� natural (C.16) *
� ��� �'	3��� ��� � � �

( ) 
 � , 
 � interchangeablity (C.7) *
� ��� � � ���'	3� � �

( ) 
 � , 
 � interchangeablity (C.7) again *
� ��� � � � ��� �
	

( )�� � definition (C.23) *�
� �
	

Let us now check (C.77), the proof of (C.78) being similar. Of course, both equalities can also
be formulated in terms of

� �
, for example:�

� �	$ " � � ��� & ��� � � � � ��� �	$
�
� � " � &

( ) composition with isomorphisms *
� � � � � � �	$ " � � ��� & ��� ��� � � � � � ��� � � ��� �	$

�
� � " � & ��� �

( )	� � � � �	� � *
� � � � � � �	$ " � � � � & � � � �	$

�
� � " � & ��� �

Thus
� � � � � �	$ ��� ��" � &

� )�� � definition (C.23) *
� � � � ��� � � � � � �	$ � � � " � &

� )�� natural (C.16) *
� ��� � � ��� � � � � � �	$ � � ��" � &

� ) 
 � associativity (C.4) *
� ��� � � ���3$ " � � � � & ��� � � � � �	$ � � � " � &

� ) law (C.46) *
� ��� � � ���3$ " � � ��� & � � � �	$ " � � ��� & ���

� ) 
 � natural (C.6) *



3. � -LAWS 317

� ��� � � � � � �	$ " � � � � � & �	$ " � � � � & ���
� )�� strong (C.21) *

� � �	$ " � � � & �	$ " � � � � � & �	$ " � � � � & ���
� )�� � definition (C.23) *

� � �	$ " � �
�
� & ���

+

20. LEMMA. Let � be a strong monad. Then,

� � �
�
�
�

� � � �
	 � �
�
� � ��� � 	

��� (C.79)

where
� � � �

or
� � �

� .

Proof. The law establishes the commutativity of the following diagram, where

�
stands either

for

�
� or

�
� . $ � 
 � � �'& � ���

� � � �
��

�
// � 
 � $ � � � ��� &

� � � �

���3$ 
 ���'& � ���
�

��

� 
 � �3$ � � � &
�

���3$�$ 
 ���'& � � &
� � // �3$ 
 � $ � � � & &

Let us prove the

�
� version of this law (the

�
� case is similar).

� � � � � �	$
�
� ��" � &

� )�� � definition (C.23) *
� � � � ��� ��� � ��� �	$

�
� � " � &

� )�� natural (C.16) *
� ��� � � ��� � � � � � �	$

�
� ��" � &

� ) 
 � associative (C.4) *
� ��� � � ���3$ " � � � � & ��� � � � � �	$

�
� � " � &

� )�� � definition (C.23) *
� ��� � � ���3$ " � � � � & ��� � � � � �	$ � ��" � & �	$ � � � ��" � & �	$ � � ��" � &

� )�� strong (C.19) *
� ��� � � ���3$ " � � � � & ��� � � � ��� ��� � ��� �	$ � � � � " � & �	$ ��� � " � &

� )�� natural (C.16), 
 � natural (C.5) *



318 C. CONTEXT LAWS

� ��� � � ���3$ " � � � � & � � ��� � � ��� � � ���3$ � � � " � & � � � �	$ � � � " � &
� ) law (C.46) *

� ��� � � ���3$ " � � � � & � � ��� � � � �3$ " � � � � & ��� � � � � �	$ � � � " � &
� ) 
 � associative (C.8) *

� ��� � � ���3$ " � � � � & � � ��� ��� � �3$ " � � ��� & � ��� ���
� )�� natural (C.16) *

� � � ��� � ��� ��� �3$ " � � � � & ��� � � ���3$ " � � ��� & � ��� ���
� ) 
 � natural (C.6) *

� � � ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � � � & � � � ���
� )�� associative (C.15) *

� ��� � ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � � � & � � � ���
� )�� strong (C.21) *

� ��� � � ���3$ " � � � & ���3$ " � � � � � & ���3$ " � � � � & � � � � �
� ) 
 � natural (C.5) *

� ��� � � � ��� �	$ " � � � & �	$ " � � � � � & �	$ " � � ��� & ���
� )�� � definition (C.23) *�

� �	$ " � �
�
� & ���

+

21. LEMMA. Let � be a strong monad. Then,
�
�
�

�
� �

�
� 	
� � � � � � �

�
�
�

� � � �
	 (C.80)
�
�
�

� �
�

� �
	
� � � � � � � � �

� � � � � 	
(C.81)

where
�

is either
� �

or
�
� .

Proof. The laws express the commutativity of the following diagrams:
�3$ 
 � � & � �3$ � � � & � $�� ��� &

� � � �
��

�
// $ �3$ 
 ��� & � � & � $ �3$ � � � & � � &

� � � � �
���3$ $ 
 ��� & � $ � � � & & � $�� ��� &

� �
��

�3$ 
 ��� � � & � �3$ � � � � � &
�

���3$ $ 
 ��� & � $ � � � & � $ � � � & & � �
// �3$�$ 
 ����� � & � $ � � � � � & &



3. � -LAWS 319

and $ 
 ��� & � $ �3$ � � � & � �3$�� ��� &�&
� � � �

��

�
// $ 
 � �3$ � � � &�& � $ ��� �3$ � � � & &

� � � � �
��$ 
 � � & � $ �3$ � � � & � $ � � � & &

���
��

�3$ 
 � $ � � � &�& � �3$ ��� $ � � � & &
�

���3$ $ 
 ��� & � $ $ � � � & � $ � � � & & � �
// �3$ $ 
 � $ � � � & & � $ � � $�� � � & &�&

Consider equality (C.80) for

�
�
�
� . The remaining cases are similar.

� � � ��� �	$
�
� ��" � &

� )�� � definition (C.23) *
� � � � � �	$ � � " � & �	$ � � � � " � & �	$ � � � " � &

� )�� strong (C.19) *
� � � � ��� � � � � � �	$ � � � ��" � & �	$ � � ��" � &

� ) 
 � natural (C.5) *
� � � � ��� � � ���3$ � � � " � & � � � �	$ � � ��" � &

� )�� natural (C.16) *
� ��� � � ��� ��� ���3$ � � � " � & � ��� �	$ ��� ��" � &

� ) law (C.44), � functor *
� ��� ��� ���3$ " � � ��� & ��� � � ��� �	$ ��� ��" � &

� ) law (C.42) *
� ��� � � ���3$ " � � � � & � � � �	$ � � ��" � & � �

� ) 
 � natural (C.5) *
� ��� � � � � � �	$ " � � � � & �	$ � � ��" � & � �

� )�� � definition, � functor *�
� �	$ � � � � � & � �

+





APPENDIX D

Proofs

1. Proofs for Chapter 4

LEMMA §4.13

Proof. (4.1)

� � 
 �	$ 
 ��" � &
( ) � definition *

� ��$ � � � & �	$ 
 � " � &
( ) � functor *

� ��$ � � 
 � � &
( ) � definition *

� ��$ � �	$ � � � & & � �

( ) � functor *
� ��$ � � " � & �	$ $ � � � & � � &

( ) � isomorphism *
� ��$ � � " � & �	$ $ � � � & � � & ��� � ���

( ) � � natural *
� ��$ � � " � & ��� � �	$ � � $ � � � &�& ���

( ) � associative *
� ��$ " � � � & �	$ � � $ � � � & & ���

( ) � functor *
� ��$ � � $ � �	$ � � � & & ���

( ) � definition *
321



322 D. PROOFS

� ��$ � � � � 
 & ���
( ) � functor *

� ��$ � � � & �	$ " � � 
 & ���
( ) � definition *

� � 
 �	$ " � � 
 & ���

(4.2)
� � 
 �	$ " � � � " � & � � �

( )�� definition *
� �	$ � � � & �	$ " � � � " � & � � �

( ) � functor *
� �	$ � � " � � � � � " � & � � �

( ) � � � definition *
� �	$ � � � & � � �

( ) � � definition *
� �	$ � � � & � � " � 
 � 


( ) � absorption *
� � � � � " � 
 � �
� 


( )�� identity *
�

(4.3)
� � 
 ���

( )�� definition *
� �	$ � � � & � �

( )
	 natural *
� ���1� �

( )�� idempotent *
�

+



1. PROOFS FOR CHAPTER 4 323

LEMMA §4.16

Proof. Associativity and unit laws remain to be proved. The last case is detailed below; the
proof of associativity follows a similar argument. We want to verify that � " � is a unit for � ,
i.e.,

� � � " � � �
, or, going pointfree, � �	$ " � � � " � & � � � � " �

. Therefore,

� �	$ " � � � " � & � � � � " �
( ) ana reflection (3.8) *

� �	$ " � � � " � & � � � � � $ � & �
� ) ana universal (3.6) *

� � � �	$ " � � � " � & � � � � � $ " � � � �	$ " � � � " � & � � � & � �

which holds because

� � � �	$ " � � � " � & � � �
� ) comorphism *

� $ " � � � & ��� � �	$ " � � � " � & � � �
� )�� � definition *

� $ " � � � & � � �	$ � � � � � & �	$�$ � ��" � & � $ " � � � & & ��� � $ " � � � " � & � � �
� )
	 natural *

� $ " � � � & � � �	$ ��� � � � & �	$�$ � � � " � & � $ " � � � � � " � &�& ���1� � �
� ) � functor and � � � definition *

� $ " � � � & � � �	$ ��� �	$ � � � " � & � � � �	$ " � � � & & ��� � � �
� ) 
 � definition *

� $ " � � � & � � �	$ � � �	$ � � � " � & � � & ��� � � �
� )�� unit *

� $ " � � � & � � � �	$ � � � " � & � � �
� ) � functor *

� $ " � � � & � � � �	$ " � � � " � & �	$ � � " � & � � �
� ) 
 � natural (C.5) *

� $ " � � � & � � $ " � � $ " � � � " � & & � � � �	$ � ��" � & � � �
� ) � below *

� $ " � � � & � � $ " � � $ " � � � " � & & � � $ " � � � � & � � � � � � �



324 D. PROOFS

� ) functors, � isomorphism *
� $ " � � � �	$ " � � � " � & � � � & � �

Step � is justified as folows
� � ��$ � � " � & � � $ " � � � � & � � � �

( ) � iso *
� $ " � � � & � � � �	$ � ��" � & � � $ " � � � & � � $ " � � � � & � � � �

( ) � natural iso *
� $ " � � � & � � � � � � � � � � � � $ " � � � & � � $ " � � � � & � � � �

( ) law (C.1) *
� � � � � � � � � � $ " � � � � � � & � � � �

( ) � iso, functors *
" � � � � � � " � � � � �

+



1. PROOFS FOR CHAPTER 4 325

LEMMA §4.18

Proof. Consider, first, equation (4.5):
� ���

�
� 


� ) comorphism *
� $ " � � �

�
& �����	� � 


� ) ��
 � definition *
� $ " � � �

�
& �
� � � � � �

� � � 

� ) definition *

� $ " � � �
�
& �
� � � � � �

� � �	$ � � � &
� ) � � � 
 � � commutes with � , � functor *

� $ " � � �
�
& � � �	$�� � � � � �

� � � � � � � � �
� � &

� ) � 
 � definition *
� $ " � � �

�
& � � �	$ ��� � � �
� � &

� ) � natural *
� �	$ � $ " � � �

�
& � � $ " � � �

�
&�& $ �
� � � �
�	� &

� ) comorphism, � functor *
� �	$ � ���

�
� � ���

�
&

� ) � functor *
� �	$ � � � & �	$��

�
� �

�
&

� ) � definition *
� � 
 �	$��

�
� �

�
&

To establish equation (4.6), we shall prove that � � �
�
� � and � � � � $�� �

� �
�
&

unfold,
respectively, to

� $ " � � �
�
� � & ��� and

� $ " � � � �	$�� �
� �

�
& ���

, for� � � �	$ � � � � � & �	$ $ ��� � ��" � & � $ " � � ��� � & & ���
Unfolding the first expression yields

� ���
�
� �

� ) comorphism *
� $ " � � �

�
& ���
� � � �

� ) ��
 � definition *
� $ " � � �

�
& �
� � � � � �

� � � �



326 D. PROOFS

� ) comorphism *
� $ " � � �

�
& �
� � � � � �

� � $ " � � � & �����
� ) � � � 
�� � natural *

� $ " � � �
�
& � � $ " � � � & �
� � � � � �

�����
� ) � � definition *

� $ " � � $��
�
� � & & �
� � � � � �

� � �	$ ��� � � � & �	$�$ � ��" � & � $ " � � � & & ���
� ) � � � 
�� � commutes with � *

� $ " � � $��
�
� � & & � � �	$�� � � � � �

� � � � � � �
& �	$ ��� � � � & �	$ $ � � " � & � $ " � � � &�& ���

� ) 
 � , 
 � natural (C.5) and (C.6) *
� $ " � � $��

�
� � & & � � �	$ � � � � � & �	$ $�� � � � � �

� " � & � $ " � � � � � � � �
&�&

� $ $ � � " � & � $ " � � � & & ���
� ) � functor *

� $ " � � $��
�
� � & & � � �	$ � � � � � & �	$ $�� � � � � �

� � ��" � & � $ " � � � � � � � �
� � & & � �

� ) � � definition *
� $ " � � $��

�
� � & & � � �	$ ��� � � � & �	$ $ ���	� � " � & � $ " � � ���	� & & ���

The second expression, on its turn, unfolds as follows:
� � � �	$�� �

� �
�
&

� ) comorphism *
� $ " � � � & ��� � �	$�� �

� �
�
&

� )�� � definition *
� $ " � � � & � � �	$ ��� � � � & �	$�$ � ��" � & � $ " � � � & & ��� � $��

�
� �

�
&

� )
	 natural, � functor *
� $ " � � � & � � �	$ ��� � � � & �	$�$ � ��� �

� �
�
& � $��

�
� � ���

�
&�& � �

� ) comorphism *
� $ " � � � & � � �	$ � � � � � &�%$ $ � $ " � � �

�
& ���
� � � �

�
& � $��

�
� � $ " � � �

�
& ����� � & & ���

� ) � functor *
� $ " � � � & � � �	$ ��� � � � & �	$�$ � $ " � � �

�
& � �

�
& � $��

�
� � $ " � � �

�
&�& &

�%$ $ ���	� ��" � & � $ " � � ���	� & & ���



1. PROOFS FOR CHAPTER 4 327

� ) 
 � , 
 � natural (C.5) and (C.6) *
� $ " � � � & � � �	$ � $ " � � $�� �

� �
�
& & � � $ " � � $��

�
� �

�
&�&�& �	$ ��� � � � &

�%$ $ ���	� ��" � & � $ " � � ���	� & & ���
� ) union *

� $ " � � � �	$�� �
� �

�
& & � � �	$ � � � � � & �	$�$ �
� � � " � & � $ " � � �
� � &�& ���

Finally, equation (4.7):
� ���

�
� � 


� ) comorphism *
� $ " � � �

�
& ���
�	� � � 


� )�� 
 � definition *
� $ " � � �

�
& �
� � � � � �

� � � � 

� ) prefix definition *

� $ " � � �
�
& �
� � � � � �

�
	 " ��� � � ��� � � �
� ) � � � 
�� � properties *

� $ " � � �
�
& �	$ � � � � � 
�	 " ��� � � ��� � � � &

� ) conditional (2.41) *$ � � � � � $ " � � �
�
& � � 
 � $ " � � �

�
& �
	 " ��� � � ��� � � � &

� )�� � ��� � � ��� 
 � � natural, powerset *$ � � � � � 
�	 " ��� � � ��� � � � ��� �
&

� )
prefix definition *$ � � � � � � � " � 
 � � � 
 ��� �

&
� ) conditional (2.41) *

� �	$ � � � � � " � 
 � 
 ��� �
&

+



328 D. PROOFS

LEMMA §4.19

Proof. Equation (4.8) is established by
�
�
���
� �

�
�( )���
 � definition *

� $ �
�	� & � ���
� �

� $ �
�	� & �
� ) ana fusion (3.9) *�
� � ���

� �
� $ " � � �

�
& ����� �

where the last step is justified by the following calculation���	� ���
�( )�� 
 � definition *

� � � � � �
� � ���

�( ) comorphism *
� � � � � �

� � $ " � � �
�
& ����� �

( ) � � � 
�� � natural *
� $ " � � �

�
& �
� � � � � �

�����	�
( )�� 
 � definition *

� $ " � � �
�
& �
� � � � � �

�
� � � � � �
� �

( ) � � � 
�� � idempotency *
� $ " � � �

�
& �
� � � � � �

� �
( )���
 � definition *

� $ " � � �
�
& ���
�	�

+



1. PROOFS FOR CHAPTER 4 329

LEMMA §4.23

Proof. For equation (4.9), compute
� ��� " � �

� ) comorphism *
� $ " � � � " � � & ��� � � �%�

� )���� � 
�� definition *
� $ " � � � " � � & � � $ " � ��" � & � �

� ) � functor *
� $ " � � � " � � & � �

By ana fusion (3.9), this implies
� $ � & ����� " � � � � $ � & � , which equivales, by ana reflection (3.8), to� " � � � " �

. To prove (4.10) note first that
� ��� � � ��� � � �

� ) comorphism *
� $ " � � � � � & ��� � � � ��� � � �

� )�� � � � definition *
� $ " � � � � � & � � $%� ��" � & � � ��� � � �

� ) comorphism and ��� � � definition again *
� $ " � � � � � & � � $%� ��" � & � � $ " � � � � � � & � � $%� � ��" � & � �

� ) � functor *
� $ " � � � � � ��� � � � & � � $ ��� � � � " � & � �

On the other hand
� ��� � � � � �

� ) comorphism *
� $ " � � � ��� � � � & ��� � � � � � �

� )�� � � � definition *
� $ " � � � � � ��� � � � & � � $%� � � � � " � & � �

and the result follows. +



330 D. PROOFS

LEMMA §4.24

Proof.

(4.11)

� ��� � � � � 

� ) comorphism *

� $ " � � � � � & ��� � � � � � 

� )�� � � � definition *

� $ " � � � � � & � � $ � � " � & � � � � 

� ) prefix definition *

� $ " � � � � � & � � $ � � " � & � 	 " ��� � � ��� � � �
� )�� � ��� natural *

� $ " � � � � � & �
	 " ��� �	$%� ��" � & � � ��� � � �
� ) � ��� 
 � � definition *

� $ " � � � � � & �
	 " ��� � � ��� � � � �
� )�� � ��� natural *

	 " ��� �	$ " � � � � � & � � ��� � � � �
� ) � ��� 
 � � natural *

	 " ��� � � ��� � � � � ��� � �
� ) prefix definition *

� � � � 
 ��� � �

(4.12)

� ��� � � � 

� ) comorphism *

� $ " � � � � � & ��� � � � � 

� )�� � � � definition *

� $ " � � � � � & � � $ � ��" � & � � � 

� )�� definition *

� $ " � � � � � & � � $ � ��" � & � � �	$ � � � &
� )�� natural and � functor *



1. PROOFS FOR CHAPTER 4 331

� $ " � � � � � & � � �	$ � $ � � " � & � � � � $%� ��" � & � � &
� )�� natural *

� �	$ � $ " � � � � � & � � $ " � � � � � &�& �	$ � $ � � " � & � � � � $%� ��" � & � � &
� ) � functor *

� �	$ � $ " � � � � � & � � $ � � " � & � � � � $ " � � � � � & � � $ � � " � & � � &
� )�� � � � definition *

� �	$ � $ " � � � � � & ��� � � � � � $ " � � � � � & ��� � � � &
� ) comorphism *

� �	$ � ��� � � � � ��� � � &
� ) � functor *

� �	$ � � � & �	$�� � � � � � � &
� )�� definition *

� � 
 �	$�� � � � � � � &
(4.13) We first show that

� ��� � � � � �
� ) comorphism *

� $ " � � � � � & ��� � � � � �
� )�� � � � definition *

� $ " � � � � � & � � $ � � " � & � � � �
� ) comorphism *

� $ " � � � � � & � � $ � � " � & � � $ " � � � & ��� �
� ) � functor and � � definition *

� $ " � � $�� � � � � & & � � $%� ��" � & � � �	$ � � � � � & �	$ $ � � " � & � $ " � � � &�& ���
� )�� natural *

� $ " � � $�� � � � � & & � � �	$ � $%� ��" � & � � $%� ��" � & & �	$ � � � � � &
�%$�$ � ��" � & � $ " � � � & & ���

� ) 
 � , 
 � natural (C.5) and (C.6) *
� $ " � � $�� � � � � & & � � �	$ ��� � � � & �	$�$ � $%� � " � & � " � & � $ " � � � $%� ��" � & &�&
�%$�$ � ��" � & � $ " � � � & & ���

� ) � functor *



332 D. PROOFS

� $ " � � $�� � � � � & & � � �	$ � � � � � &�%$�$ � $ � � " � & � � & ��" � & � $ " � � $ � $ � � " � & � � &�& & � �
� )�� � � � definition *

� $ " � � $�� � � � � & & � � �	$ ��� � � � & �	$�$ � � � � ��" � & � $ " � � $ � � � � & & ���
Similarly,

� � � �	$�� � � � � � � &
� ) comorphism *

� $ " � � � & ����� �	$�� � � � � � � &
� )�� � definition *

� $ " � � � & � � �	$ � � � � � & �	$ $ � � " � & � $ " � � � & & � �1�%$�� � � � � � � &
� ) � functor and 	 natural *

� $ " � � � & � � �	$ ��� � � � & �	$ $ � ��� � � � � � � & � $�� � � � � ��� � � &�& ���
� )�� � � � definition *

� $ " � � � & � � �	$ ��� � � � & �	$ $ � $ " � � � � � & ��� � � � � � � � & � $�� � � � � $ " � � � � � & ��� � � � &�& ���
� ) � functor *

� $ " � � � & � � �	$ � $ " � � $�� � � � � � � & & � � $ " � � $�� � � � � � � &�& & �	$ � � � � � &
� $ $ � � � � � " � & � $ " � � $ � � � � &�& ���

� )�� natural *
� $ " � � � & � � $ " � � $�� � � � � � � &�& � � �	$ ��� � � � & �	$ $ � � � � � " � & � $ " � � $ � � � � &�& ���

� ) � functor *
� $ " � � � �	$�� � � � � � � & & � � �	$ � � � � � & �	$ $ � � � � � " � & � $ " � � $ � � � � & & ��� +



1. PROOFS FOR CHAPTER 4 333

LEMMA §4.30

Proof.

(4.15)
� �
	 � �

( ) � definition *
� $ � � & � �
	 � � $ � � & �

� ) ana fusion (3.9) *� � �
	 � � $ " � � 	 & ��� �
( )���� definition *

	 � � �
�
� �	$ � � � & �
	 � � $ " � � 	 & ���
�

( )�� natural *
	 � � �

�
� �
	3�	$ � � � & � � $ " � � 	 & ���
�

( )�� � , � � interaction (C.24) *
	 � � � � $ " � � 	 & � � � �	$ � � � & � � $ " � � 	 & ��� �

( )�� 
	� definition *
� $ " � � 	 & �
	 � � �

�
� �	$ � � � & � � $ " � � 	 & ��� �

( ) monad comutativity *
� $ " � � 	 & �
	 � � �

�
� $ � � � & � � $ " � � 	 & ���
�

( )���� definition *
� $ " � � 	 & ���
� � � $ " � � 	 & ���
�

(4.16) Once again we proceed by unfolding � � � � $�� � " � &
and � � � � $ " � � � & � � to identify

a ‘common’ coalgebra. Thus,

� ��� �	$�� � " � &
� ) comorphism *

� $ " � � � & ���
� �	$�� ��" � &
� )�� � definition *

� $ " � � � & � 	 � � �
�
� �	$ � � � & �	$�� � " � &

� ) � functor, comorphism *



334 D. PROOFS

� $ " � � � & � 	 � � �
�
� �	$ � $ " � � � & ��" � & �	$ ��� � � &

� )�� � natural (C.30) *
� $ " � � � & � � $ " � � $�� ��" � & & �
	 � � �

�
� �	$ ��� � � &

� ) � ������� � � � � functor *
� $ " � � � �	$�� ��" � & & �
	 � � �

�
� �	$ � � � � &

and
� ��� �	$ " � � � & ���

� ) comorphism *
� $ " � � � & ����� �	$ " � � � & ���

� ) ��� definition *
� $ " � � � & �
	 � � �

�
� �	$ � � � & �	$ " � � � & ���

� ) � functor *
� $ " � � � & �
	 � � �

�
� �	$ � � � ��� & ���

� ) � functor, comorphism *
� $ " � � � & �
	 � � �

�
� �	$ � $ " � � � & � " � & �	$ � � � � & ���

� ) � 
	� definition, � � natural (C.30) *
� $ " � � � & � � $ " � � $ " � � � & & �
	 � � �

�
� �	$ � � � � & ���

� ) � ������� � � � � functor, � � definition *
� $ " � � � �	$ " � � � &�& �
	 � � �

�
� �	$ � � 	 � � �

�
� �	$ � � � & & ���

� ) � functor *
� $ " � � � �	$ " � � � &�& �
	 � � �

�
� �	$ " � � 	 � � �

�
� & �	$ � � $ � � � & & ���

� ) � natural *
� $ " � � � �	$ " � � � &�& �
	 � � �

�
� �	$ " � � 	 � � �

�
� & ��� �	$ $ � � � & � � &

� ) � 
	� definition, � � natural (C.30) *
� $ " � � � �	$ " � � � &�& � � $ " � � � & �
	 � � �

�
� �	$ 	 � � �

�
� � " � & �	$ $ � � � & � � &

� ) ��� definition, � ����� � � � � � functor *
� $ " � � � �	$ " � � � & ��� & �
	 � � �

�
� �	$ ��� � � &



1. PROOFS FOR CHAPTER 4 335

(4.17)
� ��� �	$ " � � � " � & � � �

� ) comorphism *
� $ " � � � & ��� � �	$ " � � � " � & � � �

� )�� � definition *
� $ " � � � & �
	 � � �

�
� �	$ � � � & �	$ " � � � " � & � � �

� ) � � � � � � � , � � definition for monad � ������� � � � � *
� $ " � � � & �
	 � � � � �
� � � �

� ) � and � 
	� definition *
� � ��� � �

� ) finality *
� � �

� ) � � � definition *
� � � " � � �

+



336 D. PROOFS

LEMMA §4.31

Proof. The proof of (4.18) proceeds by showing that

� ��� �	$ " � � 
 & � � � 
 �	$�� � � & ��� � �
Thus,

� � 
 �	$�� � � & ��� � �
� )�� definition *

� �	$ � � � & �	$�� � � & ��� � �
� ) � functor *

� �	$ � ��� � � ��� & ��� � �
� ) comorphism *

� �	$ � $ " � � � & ��� � � � $ " � � � & ��� � & ��� � �
� )���� definition, � functor *

� �	$ � $ " � � � & � � $ " � � � &�& �	$ 	 � � � 	 � � & �	$
�
� �

�
� & �	$ $ � � � & � $ � � � &�& ��� � �

� )�� natural *
� $ " � � � & �
	 � � � � $

�
� �

�
� & �	$�$ � � � & � $ � � � & & ��� � �

� )�� � definition *
� $ " � � � & �
	 � � � � �	$ � � � $ " � � � � & � � � � � � � $ " � � � � & � � � &� $�$ � � � & � $ � � � & & ��� � �

� )�� natural *
� $ " � � � & �
	 � � � � � � $ " � � ��� & � � �	$ � � � ��� & �	$ $ � � � & � $ � � � &�& ��� � �

� ) � � � definition, � absortion *
� $ " � � � & �
	 � � � � � � $ " � � � � & � � �	$ � � � � � &� � $ � � � & �	$ " � � � � & 
 $ � � � & �	$ " � � � � & 


� ) � functor *
� $ " � � � & �
	 � � � � � � $ " � � � � & � � �	$ � � � � � & � � � � � � � � 
 � � � � � � 


� ) � cancellation *
� $ " � � � & �
	 � � � � � � $ " � � � � & � � �	$ � � � � � & � � � � � � �	$ � � � & 
 � � � � �	$ � � � & 


� ) � � � definition *
� $ " � � � & �
	 � � � � � � $ " � � ��� & � � �	$ � � � ��� & ��� � � �	$ � � $ � � � &�&

� )�� � � 
 � � 
 �
� � � � � � 
 � � � � � � � � *



1. PROOFS FOR CHAPTER 4 337

� $ " � � � & �
	 � � � � � � $ " � � � � & � � � �	$ " � � � & �	$ � � $ � � � &�&
� )�� � definition *

� $ " � � � & �
	 � � �
�
� �	$ " � � � & �	$ � � $ � � � &�&

� )�� definition, � functor *
� $ " � � � & �
	 � � �

�
� �	$ � � � & �	$ " � � 
 &

� )�� � definition *
� $ " � � � & ��� � �	$ " � � 
 &

� ) comorphism *
� ��� �	$ " � � 
 &

Concerning (4.20), we proceed by unfolding the two sides of the equation to identify a com-
mon coalgebra and, then, deriving the relevant side condition. Thus,

� ��� �	$�� � � � � � � &
� ) comorphism *

� $ " � � � & ��� � � � �	$�� � � � � � � &
� )���� � � definition *

� $ " � � � & �
	 � � �
�
� �	$ � � � & �	$�� � � � � � � &

� ) � functor *
� $ " � � � & �
	 � � �

�
� �	$ � ��� � � � � ��� � � &

� ) comorphism *
� $ " � � � & �
	 � � �

�
� �	$ � $ " � � � � � & ��� � � � & � $ � $ " � � � � � & ��� � � � &

� ) � functor *
� $ " � � � & �
	 � � �

�
� �	$ � $ " � � � � � & � � $ " � � � � � & & �	$ � � � � ��� � � � &

� )�� � natural (C.30) *
� $ " � � � & �
	 � � � � $ " � � $�� � � � � � � & & � � � �	$ � � � � ��� � � � &

� )�� 
 � definition *
� $ " � � � & � � $ " � � $�� � � � � � � &�& �
	 � � �

�
� �	$ � � � � ��� � � � &

� ) � ��� � � � � � � functor *
� $ " � � � �	$�� � � � � � � & �
	 � � �

�
� �	$ � � � � ��� � � � &

On the other hand,

� ��� � � ���



338 D. PROOFS

� ) comorphism *
� $ " � � � � � & ��� � � � ���

� )�� � � � definition *
� $ " � � � � � & � � $%� � " � & � � ���

� ) comorphism *
� $ " � � � � � & � � $%� � " � & � � $ " � � � & �����

� )�� � definition *
� $ " � � � � � & � � $%� � " � & � � $ " � � � & �
	 � � �

�
� �	$ � � � &

� ) � ��� � � � � � � functor *
� $ " � � $�� � � ��� & & � � $%� ��" � & �
	 � � �

�
� �	$ � � � &

�� ) � *
� $ " � � $�� � � ��� & & �
	 � � �

�
� �	$ � $%� ��" � & � � $%� ��" � &�& �	$ � � � &

� ) � functor *
� $ " � � $�� � � ��� & & �
	 � � �

�
� �	$ � $%� ��" � & � � � � $ � � " � & � � &

� )�� � � � definition *
� $ " � � $�� � � ��� & & �
	 � � �

�
� �	$ � � � � � � � � � &

It remains to be investigated under what conditions step � is valid, which amounts to establish
the equality � $%� � " � & �
	 � � �

�
� � 	 � � �

�
� �	$ � $%� � " � & � � $%� � " � & &

Going pointwise to unfold both sides of the equation, we get
� $%� ��" � & �
	 � � �

�
� � � � 
 � � 


� ) � � $ � � � � & 
 � � � 
 � � 
�
 � � � 
 � � 
 � � � � � � � 
 � � 
 � � � � � � � � �� �	*	 � � �
�
� �	$ � $%� � " � & � � $%� � " � & & � � � 
 � � 


� ) � � � � ��� � 
 � � � 
 � � 
 
 � � � 
 � � 
 � � � � � � � 
 � � 
 � � � � � � � ��� � � ����	*

Therefore, both sets become equal iff
� � � � � � � � ! � � �

�
� � � � 
 � � � ������ ( � � � ��� ������

which, expressed as a predicate on � � � , reads
� � � 
 � 
 � ��� � # � � � � � ( � !

� � � #
�
� � � � ( � 
 � � � ������ ( � � � ��� ������

We may then conclude by §4.26, lifting
�

to the predicate

� � � _ � � ��� ��� 	 � _ � � � � � " ��� � !
�
�



1. PROOFS FOR CHAPTER 4 339

where
�

is the ‘common’ coalgebra
� � 	 � � �

�
� �	$ � � � � ��� � � � & . +



340 D. PROOFS

2. Proofs for Chapter 5

LEMMA §5.4

Proof. To complete the proof we have to show that, for arbitrary components � � � 

� �
,

� � � 
 � �
and 
 � � 
 � �

,
�3$ � � " � & � � �

� ( ��
���� � � � �
� �

(D.1)

and

�3$ � ��" � & � � � #
� ( � ( ( � � � ��( # � ( � ( ��� (D.2)

hold. Equation (D.1) is checked as follows:
�3$ � � " � & � �

��( ��
���� �
� ) � definition *

�3$ � � " � & � � ��� � � � ��� � � ���3$ " � � � & ���3$ � ��� � & � � � �	$ � �
� " � & ��� �

� )�� strong (C.20) *
�3$ � � " � & � � ��� � � � ��� � ���3$ � ��� � & � ��� �	$ � �

� " � & ��� �
� )�� and � natural (C.16) (C.17) *

� ��� ���3$ � ��" � & ��� � � ���3$ � ��� � & � � � �	$ � �
� " � & ��� �

� )�� associativity (C.15) and � isomorphism *
�3$ � � " � & ��� � � � � � ��$ � �

��" � & ��� �
� ) routine: � � � � � � � � � � �	*

� � � ��� �	$ �
�
��" � & ��� �

� ) 
 � unit (C.1) *
� �	$ �

�
� " � & ��� �

� ) � natural *
�

�
� � ��� �

� ) routine: � � � � � � � � � *
�

�
�	$ � � " � &

To prove (D.2) consider the following partition of the comorphism condition diagram (with� #
��( � ( ( � � � � � � � � � � and � ��( # � ( � ( ��� � � � � � � � ). Notice that each of the inner rectangles

corresponds to action execution in each component � , � and 
 .



2. PROOFS FOR CHAPTER 5 341

$ $ �
�
� �

�
& � � � & � �

��� #
�
&��
� �

))

� � � � //
� #

��

$ �
�
� $ �

�
� � � & � �

� #
�
� &
� �
�

uu

� #
���3$ �

�
� $ �

�
� � & & � � � � � � � � //

� &
��

�3$ �
�
� $ $ �

�
� � � & � � & &
� &
���3$ $ �

�
� �

�
& � $ � � � � &�&

�
�
��

�3$ �
�
� �3$ �

�
� $ � � � � & & &
� �
��

� � � �
�
� � ���oo

�3$ $ $ �
�
� �

�
& � � � & � � & � # � � � ��( // �3$�$ �

�
� $ �

�
� � � & & � � &

where
�

� � $ �3$ � ��� � & � " � & �	$ � � � " � & �	$�$ �
�
� " � & ��" � & �	$ � � ��" � & ��� �

� � � �3$ " � � � � & ���3$ � ��� � & � � � �	$ � �
� " � & ��� ��

� � �3$ � ��� � & � ��� �	$ � � " � & �	$ � � � � ��" � & �	$ � � � � " � & �	$ �3$ " � � � �
& � " � &

� � � �3$ " � � �3$ � ��� � & & ���3$ " � � ��� & ���3$ " � � $ � �
� " � &�&

� � � � ��� � � � � � � � ���3$ " � � � � &
� � � � ��� � � � � � � � ���3$ " � � � & ���3$ " � � � � � � & ���3$ " � � � � � & ���3$ " � � �3$ " � � � � &�&

Let us establish the commutativity of each of the three rectangles which jointly entail the
commutativity of the overall diagram. For the upper most rectangle consider,

� � � � � ���
�

� ) � � definition *
� � � ��� �	$ �3$ � ��� � & � " � & �	$ ��� � " � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� ) 
 � natural (C.5) *
� � ���3$ $ � ��� � & ��" � & � � � �	$ � � � " � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � � � � � *
�3$ $ " � � � � & ��� ��� � ��� & � � � �	$ � � ��" � & �	$ $ �

�
� " � & � " � & �	$ � � � " � & ��� �

� ) 
 � associative (C.8) *
�3$ $ " � � � � & ���3$ � ��� � & � ��� ��� �	$�$ � �

� " � & ��" � & �	$ � � ��" � & ��� �
� )	� natural *

�3$ $ " � � � � & ���3$ � ��� � & � � � �	$ � �
� " � & ��� �	$ � � � " � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � *



342 D. PROOFS

�3$ " � � � � & ���3$ � ��� � & � � � �	$ � �
��" � & ��� � �	$ � ��" � &

� )�� � definition *
� �
�	$ � � " � &

Next compute,
� � � � � ��� � � � � �

��� � � � �
� )�� � definition *

� � � � � ��� � � ���3$ " � � �3$ � ��� � & & ���3$ " � � � � & ���3$ " � � $ � �
� " � &�& ��� � � � �

� )	� natural, 
 � natural (C.5) *
� � � � � ��� � � ���3$ " � � �3$ � ��� � & & ���3$ " � � ��� & ��� � � ��� ��$ �3$ " � � � �

& ��" � &
� ) 
 � natural (C.6) *

� � � � � ��� �3$ " � � $ � ��� � & & ��� � � ���3$ " � � � � & ��� � � � � ��$ �3$ " � � � �
& ��" � &

� ) law (C.46) *
� � � � � ��� �3$ " � � $ � ��� � & & ��� � � ��� ��� ���3$ � � � " � & � ��� �	$ �3$ " � � � �

& ��" � &
� ) 
 � natural (C.5) *

� � � � � ��� �3$ " � � $ � ��� � & & ��� � � ��� � � � � � �	$ � � � � " � & �	$ �3$ " � � � �
& ��" � &

� )�� natural (C.16) *
� � � ���3$ " � � $ � ��� � & & ��� � � � ��� � � � � � �	$ � � � � " � & �	$ �3$ " � � � �

& ��" � &
� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � *

�3$ � ��� � & ���3$ � � � " � & � � ��� ��� � ��� �	$ � ��� ��" � & �	$ �3$ " � � � �
& � " � &

� )�� strong (C.19) *
�3$ � ��� � & ���3$ � � � " � & � � � �	$ � � " � & �	$ � � � � " � & �	$ �3$ " � � � �

& � " � &
� ) 
 � natural (C.5) *

�3$ � ��� � & � � � �	$ � � � ��" � & �	$ � � " � & �	$ � � � � " � & �	$ �3$ " � � � �
& � " � &

� )�� natural (C.16) *
�3$ � ��� � & � ��� �	$ � � " � & ��$ � � � � � " � & �	$ � � � � " � & �	$ �3$ " � � � �

& � " � &
� ) � � definition *

�
�

And, finally,
�3$ � ��" � & ��� � ��� � � � � ��� � �

� ) � � definition *



2. PROOFS FOR CHAPTER 5 343

�3$ � ��" � & � � ��� � � � ��� � � ���3$ " � � � � & ��� � � � � ��� � �
� )	� � , 
 � , � natural *

� ��� �3$ � ��" � & ��� � � � ��� � � ��� � � � � ��� � � ���3$ " � � �3$ " � � � � &�&
� ) routine: � � � � � � � � � � � � � � � � � � � � � � *

� ��� � � � ��� �3$ " � � � � & � � � � � � � � ��� � � � � ��� � � ���3$ " � � �3$ " � � � � & &
� ) 
 � associative (C.4) *

� ��� � � � ��� �3$ " � � � � & � � � � ���3$ " � � ��� & ��� � ��� � � � � ��� � � ���3$ " � � �3$ " � � � � & &
� ) 
 � natural, � isomorphism *

� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � � � & � � ��� � � ���3$ " � � �3$ " � � � � & &
� )�� natural (C.16) *

� ��� � � � � � ��� � � � ��� �3$ " � � � � � & ��� �3$ " � � � � & ��� � � ���3$ " � � �3$ " � � � � & &
� ) 
 � natural (C.6) *

� ��� � � � � � ��� � � � ��� � � ���3$ " � � � � � � & ���3$ " � � � � � & ���3$ " � � �3$ " � � � � & &
� )�� strong (C.21) *

� ��� � � � ��� � � ���3$ " � � � & ���3$ " � � � � � � & ���3$ " � � � � � & ���3$ " � � �3$ " � � � � &�&
� )�� � definition *
� �

+



344 D. PROOFS

LEMMA §5.20

Proof. We shall successively verify that

� � � 
 " � � � � � � � � (D.3)

� � " � 
 � � � � � � � � (D.4)

to conclude, by law (5.9) in §5.19, that

� � � 
 � � � $ � � � 
 " � � & � " � 
 � � � $ � � � � � & � " � 
 � � � � � � � � � � � �

Therefore, we first prove that � is a
� �

arrow from
� � � � � to � � � 
 " � � . As seeds are trivially

preserved, this establishes (D.3). A similar argument, in terms of
�
, proves (D.4). Thus,

�3$ � � " � & � � � � � ( �

� ) � and function lifting definitions *
�3$ � � " � & � � ��� � � � ��� � � ���3$ " � � � �

& ���3$ � ��� � & � � � �	$ � � " � & �	$�$ " � � � & � " � & ��� �
� )�� strong (C.18) *

�3$ � � " � & � � ��� � � � ��� � � ���3$ " � � � �
& ���3$ � ��� � & ��� �	$�$ " � � � & � " � & ��� �

� )�� natural (C.17) *
�3$ � � " � & � � ��� ��� � � � � � �	$ " � � � �

& ��� ��� � �	$ $ " � � � & ��" � & ��� �
� ) monad unit (C.14) *

�3$ � � " � & ��� � � � � � �	$ " � � �
�
& � � ��� � �	$ $ " � � � & ��" � & ��� �

� ) routine: � � � � � � � � � � �	*
� � � � � �	$ " � � � �

& ��� ��� � �	$ $ " � � � & ��" � & ��� �
� ) 
 � unit (C.2) *

� �	$ " � � � �
& ��� ��� � �	$ $ " � � � & � " � & ��� �

� )�� � , � natural and � � � � � � *
� �	$ " � � � �

& �	$ " � � $ " � � � &�& ���
� ) � natural *
�

�
�	$ " � � � & � � ���

� ) routine: � � � � � � � � � � *
�

�
�	$ " � � � & �	$ � ��" � &

� ) wrapping definition *
�

� � � ! � �%� �	$ � � " � &



2. PROOFS FOR CHAPTER 5 345

Finally, to establish (D.4),
�3$ � ��" � & � �

� ( � � �
� ) � and function lifting definitions *

�3$ � ��" � & � � ��� � � � ��� � � ���3$ " � � � & ���3$ " � � $ " � � � & & ���3$ � ��� � & � � � �	$ � �
� " � & ��� �

� ) � strong and natural (C.20) and (C.17) *
�3$ � ��" � & � � ��� � ��� � � ���3$ " � � $ " � � � & & ���3$ � ��� � & � ��� �	$ � �

� " � & ��� �
� ) monad unit (C.14) *

�3$ � ��" � & ��� � � ���3$ " � � $ " � � � &�& ���3$ � ��� � & � � � �	$ � �
��" � & ��� �

� ) � natural isomorphism *
�3$ � ��" � & ���3$ " � � � & ��� � � � ��� �	$ � �

� " � & ��� �
� ) functors *

�3$ " � � � & ���3$ � ��" � & ��� � � � � � �	$ � �
� " � & ��� �

� ) routine: � � � � � � � � � � ��*
�3$ " � � � & ��� � � � � �	$ � �

� " � & ��� �
� ) 
 � unit (C.1) *

�3$ " � � � & � � �	$ � �
��" � & ��� �

� ) � natural *
�3$ " � � � & � � �

� � ��� �
� ) routine: � � � � � � � � � *

�3$ " � � � & � � �
�	$ � ��" � &

� ) wrapping definition *
�

� � � � ! � � �	$ � � " � &
+



346 D. PROOFS

LEMMA §5.24

Proof. To complete the proof of Lemma §5.24, we first show that
� � � is a comorphism from

(coalgebra underlying) � � � to � � � � � :
�

� � � � � �	$�$ � � � & � " � &
� )�� definition *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � � � � " � 
 " � � � � � &� $ � � 
 � & � � � �	$�$ � � � & � " � &
� ) � � , � � and � natural *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 ��� & �	$ � � � � " � 
 " � � � � � &� $ � � " � & � � 
 � � $ � ��" � & �	$ � � 
 � & � � �
� ) assumption: � � � �	� � � and 
 � � � � � � *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & ���3$ � ��" � & � � 
 � � �3$ � � " � &
� $ �

�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� ) 
 � , 
 � natural (C.5) and (C.6) *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & ���3$ $ � � " � & � � & 
 �3$ � � $ � ��" � & &
� $ ��� 
 � � & �	$ �

�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� )�� � , � � natural *

� �3$ " � � � � & 
 �3$ " � � � � & � ���3$ $ � � � & � " � & 
 �3$ $ � � � & � " � & �	$ � � � 
 � � � &� $ ��� 
 � � & �	$ �
�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� )�� absorption *

� �3$ $ � � � & � � � & 
 �3$ $ � � � & � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � �
� " � 
 " � � � �

&
� $ � � 
 � & � � �

� ) functors, + fusion *
�3$�$ � � � & � " � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � &� $ �

�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� )�� definition *

�3$�$ � � � & � " � & � �
��� �

The next proof obligation aims to establish � �� as a comorphism from (the underlying coalgebra
of)
� ���	�

� � � � to
� ���	�

� � � ���	� � � :� � 
���� � �

� � �	$ � � � " � &



2. PROOFS FOR CHAPTER 5 347

� )�� definition *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 � � & �	$ � � 
���� � � " � 
 " � � � � 
���� � � &� $ � � 
 � & � � � �	$ � � � " � &

� ) � � ��� definition *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � � " � 
 " � � � & �	$ � � 
 � &� � � �	$ � � ��" � &

� )�� strong (C.18) and (C.20) *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � 
 � & ��$ � � 
 � & � � � �	$ � � � " � &

� )�� (C.17), � � natural *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � � 
 � � & �	$ �3$ � � � " � & 
 �3$ � � ��" � & &
� $ � 
 � & � � �

� )�� � , � isomorphisms *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � � � " � & 
 �3$ � � � " � &�& $ � 
 � & � � �

� )�� absorption *
� �3$ � � � � � & 
 �3$ � � � � � & � �	$ � 
 � & � � �

� )�� fusion *
�3$ � � � " � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & � � �

� ) law (C.64) *
�3$ � � � " � & ��� � � � � � � �

� ) � � isomorphism *
�3$ � � � " � & ���

� ) � � ��� definition *
�3$ � � � " � & � � � 
���� � �

� �

Finally, we show that � � � 
 � �
, where

� � $ �
�
� �

�
& � $ �

� � � �
� � & and

� �$ �
�
� �

� � & � $ �
�
� �

� � & , is a comorphism relating the coalgebras underlying
$ � � � & � $ � � � � � &

and
$ � � � � & � $ � � � � & . Let us abbreviate � # ��( � ( �

#
� � ( � � ( and � # � � � � ( ( # � � � � ( by � ( � ( and � ��( � ,

respectively.
First notice that � ( ��( � � �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � 
 � � & � � �
where� � � � � � � ��� �	$ � � " � & ��$ � � � � � " � & �	$ � � � � " � & �	$ �3$ " � � �

� � & � " � & �	$ �3$ � ��� � & � " � &



348 D. PROOFS

�	$ � � ��" � & �	$ $ �
�
� " � & � " � & �	$ � � � " � & ��� �� � � � � � � � � �	$ " � � � & ��$ " � � � � � � & �	$ " � � � � � & �	$ " � � �3$ " � � � � � &�& �	$ " � � �3$ � � � � & &�	$ " � � � � & �	$ " � � $ � �
��" � & & �	$ " � � � � & ���

On the other hand,
�
� ( � ��� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � ���3$ " � � $ � � � 
 � � � &�&���3$ " � � $ ��� 
 � � & & � �3$ " � � $ �

� � ��" � 
 " � � � � � &�& ���3$ " � � $ � � 
 � & & � �3$ " � � � � &���3$ � ��� � & � ��� �	$�� �3$ " � � � � & 
 �3$ " � � � � & � ��" � & �	$ $ � � � 
 � � � & ��" � &
�	$�$ ��� 
 � � & ��" � & �	$ $ �

�
� " � 
 " � � � �

& ��" � & �	$ $ � � 
 � & ��" � & �	$ � � ��" � & ��� �
which we rewrite as a sum of two functions

� � and
� �

, such that the commutativity of the
diagram below, corresponding to the comorphism condition, can be established by a number
of smaller steps:

� � $ � 
 � � &

�
� � �

''

� � � � //

� �
��

� � $ � 
 � � &

�
� � �

��

� �

ttjjjjjjjjjjjjjjjj

� � � 
 � � � �
� � � � & � � � � //

� � & � �
��

� � � 
 � � � �
���

&
���

���3$ � � � & 
 �3$ � � � � &
� � # � � � � � ( ! �

#
� � � � � ( �

��

� # � � � ��( & � # � � � � (//
�3$ � � � & 
 �3$ � � � � &

� � # � � � � � ( ! �
#
� � � � � ( � **TTTTTTTTTTTTTTT

�3$ � � $ � 
 � � & & � # � � � ��( // �3$ � � $ � 
 � � & &

where� � ��� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � ��� & ���3$ " � � $ � � � ��" � & & ���3$ " � � � � &���3$ � ��� � & � � � �	$ � � � � " � & �	$ � � ��" � & �	$ $ �
�
��" � & � " � & �	$ � � � " � & ��� �� � ��� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � � � & ���3$ " � � $ " � � � � � &�& ���3$ " � � � &���3$ � ��� � & � � � �	$ � � � ��" � & �	$ � � � " � & �	$ $ " � � � �
& ��" � & �	$ � � " � & ��� �

The left sub-diagram commutes by definition whereas verification of the commutativity of
the upper and bottom ones is a routine task. Therefore, it remains to be proved the equations
corresponding to the central and rightmost sub-diagrams, i.e.,

�
� ( � � � �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � 
 � �#& � � � (D.5)

�3$ � ��" � & � � � � � � �	$ � ��" � &
(D.6)

�3$ � ��" � & � � � � � � �	$ � ��" � &
(D.7)

Consider, first, equation (D.5).



2. PROOFS FOR CHAPTER 5 349

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � 
 � ��& � � �
� ) � � , ��� definition *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & �	$ � � � � 
 � � � � & �	$ � � � 
 � � � &� $ �3$ " � � � � � & 
 �3$ " � � � � � & & �	$ �3$ " � � � � & 
 �3$ " � � � � &�&� $ �3$ " � � $ �
� � ��" � & & 
 �3$ " � � $ " � � � � � &�& &� $ �3$ " � � � � & 
 �3$ " � � � & & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � � 
 � � &� $ $ � � � ��" � & 
 $ � � � ��" � & & ��$�$ ��� ��" � & 
 $ � � � " � & &

� $ $ $ �
�
��" � & � " � & 
 $�$ " � � � �

& � " � &�& �	$ $ � � � " � & 
 $ � � " � &�& �	$ � � 
 � � & � � �
� ) routine: � � � � � � � � � � � � � � � � � � � � � � � �	*

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & �	$ � � � � 
 � � � � & �	$ � � � 
 � � � &� $ �3$ " � � � � � & 
 �3$ " � � � � � & & �	$ �3$ " � � � � & 
 �3$ " � � � � &�&� $ �3$ " � � $ �
� � ��" � & & 
 �3$ " � � $ " � � � � � &�& &� $ �3$ " � � � � & 
 �3$ " � � � & & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ ��� 
 ��� &� $ $ � � � ��" � & 
 $ � � � ��" � & & ��$�$ ��� ��" � & 
 $ � � � " � & &

� $ $ $ �
�
��" � & � " � & 
 $�$ " � � � �

& � " � &�& �	$ $ � � � " � & 
 $ � � " � &�& � ��� �	$ � � ��" � & ��� �
� ) � � natural *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & �	$ � � � � 
 � � � � & �	$ � � � 
 � � � &� $ �3$ " � � � � � & 
 �3$ " � � � � � & & �	$ �3$ " � � � � & 
 �3$ " � � � � &�&� $ �3$ " � � $ �
� � ��" � & & 
 �3$ " � � $ " � � � � � &�& &� $ �3$ " � � � � & 
 �3$ " � � � & & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ ��� 
 ��� &� ��� �	$ $ � � � 
 � � � & � " � & �	$ $ ��� 
 � � & ��" � & �	$�$ �

�
� " � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )�� absorption *
� �3$ " � � � � & � � ��� � � � ��� � � 
 �3$ " � � � � & � � ��� � � � ��� � � �� $ �3$ " � � � � � & 
 �3$ " � � � � � & & �	$ �3$ " � � � � & 
 �3$ " � � � � &�&� $ �3$ " � � $ �

� � ��" � & & 
 �3$ " � � $ " � � � � � &�& &� $ �3$ " � � � � & 
 �3$ " � � � & & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � � 
 � � &� ��� �	$ $ � � � 
 � � � & � " � & �	$ $ � � 
 � � & ��" � & �	$�$ �
�
� " � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )�� natural (C.16), � � natural *
� � ��� � � � ��� �3$ " � � $ " � � � � & & ��� � � 
 � ��� � � � ��� �3$ " � � $ " � � � � & & ��� � � �



350 D. PROOFS

� $ �3$ " � � � � � & 
 �3$ " � � � � � & & �	$ �3$ " � � � � & 
 �3$ " � � � � &�&� $ �3$ " � � $ �
� � ��" � & & 
 �3$ " � � $ " � � � � � &�& &� $ �3$ " � � � � & 
 �3$ " � � � & & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � � 
 � � &� ��� �	$ $ � � � 
 � � � & � " � & �	$ $ � � 
 � � & ��" � & �	$�$ �

�
� " � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )�� fusion *
� ��� � � � ��� � �3$ " � � $ " � � � � & & ��� � � 
 � �3$ " � � $ " � � � � & & ��� � � �
� $ �3$ " � � � � � & 
 �3$ " � � � � � & & �	$ �3$ " � � ��� & 
 �3$ " � � � � &�&� $ �3$ " � � $ �

� � ��" � & & 
 �3$ " � � $ " � � � � � &�& &� $ �3$ " � � � � & 
 �3$ " � � � & & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � � 
 � � &� ��� �	$ $ � � � 
 � � � & � " � & �	$ $ � � 
 � � & ��" � & �	$�$ �
�
� " � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� ) 
 � natural (C.6) *
� ��� � � � ��� � � � ���3$ " � � �3$ " � � � � &�& 
 � � � ���3$ " � � �3$ " � � � � & & �
� $ �3$ " � � � � � & 
 �3$ " � � � � � & & �	$ �3$ " � � ��� & 
 �3$ " � � � � &�&� $ �3$ " � � $ �

� � ��" � & & 
 �3$ " � � $ " � � � � � &�& &� $ �3$ " � � � � & 
 �3$ " � � � & & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ ��� 
 ��� &� ��� �	$ $ � � � 
 � � � & � " � & �	$ $ ��� 
 � � & ��" � & �	$�$ �
�
� " � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )�� fusion *
� ��� � � � ��� � � ��� �3$ " � � �3$ " � � � � &�& 
 �3$ " � � �3$ " � � � � & & �
� $ �3$ " � � � � � & 
 �3$ " � � � � � & & �	$ �3$ " � � � � & 
 �3$ " � � � � &�&� $ �3$ " � � $ �

� � ��" � & & 
 �3$ " � � $ " � � � � � &�& &� $ �3$ " � � � � & 
 �3$ " � � � & & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � � 
 � � &� ��� �	$ $ � � � 
 � � � & � " � & �	$ $ ��� 
 � � & ��" � & �	$�$ �
�
� " � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )�� absorption, functors *
� ��� � � � ��� � ���� �3$ " � � $ �3$ " � � � � & ��� � � � � � �	$ � � � ��" � & ��� � &�& 
 �3$ " � � $ �3$ " � � � � & ��� � � � � � �	$ " � � � � � & ��� & & �� $ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � � 
 � � & � ��� �	$�$ � � � 
 � � � & � " � & �	$�$ � � 
 � � & ��" � &
� $ $ �

�
��" � 
 " � � � �

& � " � & �	$�$ � � 
 � & � " � & �	$ � � � " � & ��� �
� )�� fusion, � cancellation, � absorption *

� ��� � � � ��� � � ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&



2. PROOFS FOR CHAPTER 5 351

� �3$ " � � $ � � 
 � � & & ���3$ " � � $ �
� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � 
 � � & � ��� �	$ $ � � � 
 � � � & � " � &

� $ $ � � 
 � � & � " � & �	$�$ �
�
� " � 
 " � � � �

& ��" � & �	$ $ � � 
 � & � " � & �	$ � � � " � & ��� �
� ) � � isomorphism *

� ��� � � � ��� � � ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ � � 
 � � & & ���3$ " � � $ �
� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ���3$ " � � � � � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � ��� � & 
 �3$ � ��� � &�&� $ � � 
 � � & � ��� �	$ $ � � � 
 � � � & ��" � & �	$ $ � � 
 � � & � " � & �	$ $ �

�
��" � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� ) � � � definition *
� ��� � � � ��� ��� ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ ��� 
 ��� & & ���3$ " � � $ �

� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ���3$ " � � � " � � � � 
 " � � � � � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � ��� � & 
 �3$ � ��� � &�&� $ ��� 
 ��� & � ��� �	$ $ � � � 
 � � � & ��" � & �	$ $ ��� 
 � � & � " � & �	$ $ �
�
��" � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )�� fusion, � cancellation *
� ��� � � � ��� � � ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ � � 
 � � & & ���3$ " � � $ �

� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ��� �3$ " � � $ " � � � � &�& 
 �3$ " � � $ " � � � � &�& � �	$ �3$ � ��� � & 
 �3$ � ��� � &�&� $ � � 
 � � & � ��� �	$ $ � � � 
 � � � & ��" � & �	$ $ � � 
 � � & � " � & �	$ $ �
�
��" � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )�� absorption *
� ��� � � � ��� ��� ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ ��� 
 ��� & & ���3$ " � � $ �

� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ��� �3$ " � � $ " � � � � &�& ���3$ � ��� � & 
 �3$ " � � $ " � � � � &�& ���3$ � ��� � & �� $ � � 
 � � & � ��� �	$ $ � � � 
 � � � & ��" � & �	$ $ � � 
 � � & � " � & �	$ $ �
�
��" � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )	� natural, � � natural *
� ��� � � � ��� � � ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ � � 
 � � & & ���3$ " � � $ �

� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ��� �3$ � ��� � & ���3$ $ " � � � � & � " � & 
 �3$ � ��� � & ���3$�$ " � � � � & ��" � & �
� $ ��� 
 ��� & � ��� �	$ $ � � � 
 � � � & ��" � & �	$ $ ��� 
 � � & � " � & �	$ $ �

�
��" � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �



352 D. PROOFS

� )�� fusion *
� ��� � � � ��� ��� ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ ��� 
 ��� & & ���3$ " � � $ �

� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ���3$ � ��� � & ��� �3$ $ " � � � � & � " � & 
 �3$�$ " � � � � & ��" � & �
� $ � � 
 � � & � ��� �	$ $ � � � 
 � � � & ��" � & �	$ $ � � 
 � � & � " � & �	$ $ �

�
��" � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )�� absorption *
� ��� � � � ��� � � ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ � � 
 � � & & ���3$ " � � $ �

� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ���3$ � ��� � & ��� �3$ $ " � � � � & � " � & � � � 
 �3$ $ " � � � � & � " � & � � � �
� ��� �	$ $ � � � 
 � � � & � " � & �	$ $ ��� 
 � � & ��" � & �	$�$ �

�
� " � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� ) 
 � natural (C.5) *
� ��� � � � ��� ��� ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ � � 
 � � & & ���3$ " � � $ �

� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ���3$ � ��� � & ��� � � �	$ �3$ " � � � � & ��" � & 
 � � �	$ �3$ " � � � � & � " � & �
� ��� �	$ $ � � � 
 � � � & � " � & �	$ $ � � 
 � � & ��" � & �	$�$ �

�
� " � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )�� fusion *
� ��� � � � ��� � � ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ ��� 
 ��� & & ���3$ " � � $ �

� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ���3$ � ��� � & � ��� ��� �3$ " � � � � & � " � 
 �3$ " � � � � & ��" � �
� ��� �	$ $ � � � 
 � � � & � " � & �	$ $ ��� 
 � � & ��" � & �	$�$ �

�
� " � 
 " � � � �

& � " � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� )�� fusion, � cancellation *
� ��� � � � ��� � � ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ � � 
 � � & & ���3$ " � � $ �

� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ���3$ � ��� � & � � � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � ��" � &
��� � � " � 
�� � � " � � � ��� �	$�$ � � � 
 � � � & ��" � & �	$ $ � � 
 � � & � " � &
� $ $ �

�
��" � 
 " � � � �

& � " � & �	$�$ � � 
 � & � " � & �	$ � � � " � & ��� �
� ) � � � definition *

� ��� � � � ��� � � ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&



2. PROOFS FOR CHAPTER 5 353

� �3$ " � � $ � � 
 � � & & ���3$ " � � $ �
� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ���3$ � ��� � & � � � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � ��" � &

��� � � ��� �	$�$ � � � 
 � � � & � " � & �	$�$ � � 
 � � & ��" � & �	$ $ �
�
� " � 
 " � � � �

& ��" � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� ) � � isomorphism *
� ��� � � � ��� ��� ���3$ " � � � $ " � � � � & 
 $ " � � � � & � & ���3$ " � � $ � � � 
 � � � &�&� �3$ " � � $ ��� 
 ��� & & ���3$ " � � $ �

� � ��" � 
 " � � � � � & & ���3$ " � � $ � � 
 � & &� �3$ " � � � � & ���3$ � ��� � & � ��� �	$�� �3$ " � � � � & ��" � 
 �3$ " � � � � & � " � � � " � &
� $ $ � � � 
 � � � & � " � & �	$ $ � � 
 � � & ��" � & �	$�$ �

�
� " � 
 " � � � �

& ��" � &
� $ $ � � 
 � & � " � & �	$ � � � " � & ��� �

� ) � ��� � definition *
�
� ( �

And, finally, equation (D.6) (the proof of (D.7) follows a similar argument):

�3$ � � " � & � � �
� ) � � definition *

�3$ � � " � & ��� � � � ��� �	$ � � " � & �	$ � � � � � " � & �	$ � � � � " � & �	$ �3$ " � � �
� � & ��" � &

�%$ �3$ � ��� � & � " � & �	$ ��� ��" � & �	$ $ �
�
��" � & � " � & �	$ � � � " � & ��� �

� )�� strong (C.19) *
�3$ � � " � & ��� � � � � ��� � � � � � �	$ � � � � � " � & �	$ � � � � " � & �	$ �3$ " � � �

� � & � " � &
�%$ �3$ � ��� � & � " � & �	$ ��� ��" � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� ) 
 � natural (C.5) *
�3$ � � " � & ��� � � � � ��� �3$ � � � " � & ��� � � ���3$ � � ��" � & � � � �	$ �3$ " � � �

� � & � " � &
�%$ �3$ � ��� � & � " � & �	$ � � ��" � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� )	� isomorphism *
�3$ � � " � & ��� � � � � ��� �3$ � � � " � & ��� ��� ���3$ ��� ��" � & ��� � � ��� � � ���
�%$ �3$ " � � �

� � & � " � & �	$ �3$ � ��� � & ��" � & �	$ � � ��" � & �	$ $ �
�
� " � & � " � & �	$ � � � " � & ��� �

� ) law (C.35) *
�3$ � � " � & ��� � � � � ��� �3$ � � � " � & ��� � � � ��� � � ���3$ " � � ��� & ��� � � ���
�%$ �3$ " � � �

� � & � " � & �	$ �3$ � ��� � & ��" � & �	$ ��� ��" � & �	$ $ �
�
� " � & � " � & �	$ � � � " � & ��� �



354 D. PROOFS

� )�� natural (C.16) *
� ���3$ � � " � & ��� � � � ��� �3$ � � � " � & ��� � � � ��� � � ���3$ " � � ��� & ��� � � ���
�%$ �3$ " � � �

� � & � " � & �	$ �3$ � ��� � & ��" � & �	$ ��� ��" � & �	$ $ �
�
� " � & � " � & �	$ � � � " � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � *
� ���3$ � � " � & ��� �3$ � � � " � & ��� � � � ��� �3$ " � � � � & ��� � � ���3$ " � � � � & ��� � � � ��%$ �3$ " � � �

� � & � " � & �	$ �3$ � ��� � & ��" � & �	$ � � ��" � & �	$ $ �
�
� " � & � " � & �	$ � � � " � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � *
� ��� � � � ��� �3$ " � � � � & ��� � � ��� � � � ��� � � ���3$ " � � � � & ��� � � � � �	$ �3$ " � � � � � & � " � &
�%$ �3$ � ��� � & � " � & �	$ � � ��" � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� ) law (C.35) *
� ��� � � � ��� �3$ " � � � � & ��� � � ��� ��� ���3$ � � � " � & ��� � � ��� � � ��� �	$ �3$ " � � �

� � & ��" � &
�%$ �3$ � ��� � & � " � & �	$ ��� ��" � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� )	� isomorphism *
� ��� � � � ��� �3$ " � � � � & ��� � � ��� � � ���3$ � � � " � & � � � �	$ �3$ " � � �

� � & ��" � &
�%$ �3$ � ��� � & � " � & �	$ ��� ��" � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� ) law (C.44) *
� ��� � � � ��� �3$ " � � � � & ��� � � ���3$ " � � � � & ��� � � � � �	$ �3$ " � � � � � & � " � &
�%$ �3$ � ��� � & � " � & �	$ � � ��" � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� ) 
 � natural (C.6) *
� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � ��� & ��� � � ��� �	$ �3$ " � � � � � & � " � &
�%$ �3$ � ��� � & � " � & �	$ � � ��" � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� ) 
 � natural (C.5) *
� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � ��� & ��� � ���3$�$ " � � � � � & � " � & � ���
�%$ �3$ � ��� � & � " � & �	$ ��� ��" � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� ) � natural *
� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � � � & ���3$ " � � $ � � � ��" � & & ��� � � � ��%$ �3$ � ��� � & � " � & �	$ � � ��" � & �	$ $ �

�
��" � & � " � & �	$ � � � " � & ��� �

� ) 
 � natural (C.5) *
� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � � � & ���3$ " � � $ � � � ��" � & & ��� �� �3$�$ � ��� � & � " � & � � � �	$ � � ��" � & �	$�$ �

�
� " � & � " � & �	$ � � � " � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � *



2. PROOFS FOR CHAPTER 5 355

� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � � � & ���3$ " � � $ � � � ��" � & & ���3$ " � � � � & ���3$ � ��� � &� �3$ � � ��" � & ��� � � � � �	$ � � � " � & �	$�$ �
�
��" � & ��" � & �	$ � � ��" � & ��� �

� ) law (C.42) *
� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � � � & ���3$ " � � $ � � � ��" � & & ���3$ " � � � � & ���3$ � ��� � &� �3$ � � ��" � & � � � �	$ � � � " � & � � �	$�$ � �

� " � & ��" � & �	$ � � ��" � & ��� �
� ) 
 � natural (C.5) *

� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � ��� & ���3$ " � � $ � � � ��" � & & ���3$ " � � � � & ���3$ � ��� � &� ��� �	$ � � � � " � & �	$ ��� � " � & � � �	$�$ � �
� " � & ��" � & �	$ � � ��" � & ��� �

� ) � natural *
� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � � � & ���3$ " � � $ � � � ��" � & & ���3$ " � � � � & ���3$ � ��� � &� � � �	$ � � � � " � & �	$ � � � " � & �	$ $ �

�
��" � & ��" � & � � �	$ � � ��" � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � *
� ��� � � � ��� � � ���3$ " � � � � � & ���3$ " � � � � & ���3$ " � � $ � � � ��" � & & ���3$ " � � � � & ���3$ � ��� � &� � � �	$ � � � � " � & �	$ � � � " � & �	$ $ �

�
��" � & ��" � & �	$ � � ��" � & ��� � �	$ � ��" � &

� ) � � definition *� � �	$ � ��" � &
+



356 D. PROOFS

LEMMA §5.25

Proof. We prove that � � � � � 
 � � is a comorphism from
� � � � � � � to

� � 
 � � .
�3$ � � " � & � � � � � � � � �

� )�� and lifting definitions *
�3$ � � " � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 � � & �	$ � ��" � 
 " � � � &
� $ $ " � � � & � " � 
 " � � $ " � � � & & �	$ � � 
 � & � � �

� )�� strong (C.18) and (C.20) *
� � � " � ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � 
 � &
� $ $ " � � � & � " � 
 " � � $ " � � � & & �	$ � � 
 � & � � �

� )�� natural (C.17) *
� � � " � ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � 
 � &
� $ $ " � � � & � " � 
 " � � $ " � � � & & �	$ � � 
 � & � � �

� )�� � , � natural *
� � � " � ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & �	$ � � 
 � � &$ � � 
 � & �	$ " � � � 
 " � � � & � � �

� )�� � , � isomorphisms *
� � � " � ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & �	$ " � � � 
 " � � � & � � �

� ) law (C.64) *
� � � " � ��� � � � � �	$ $ " � � � & 
 $ " � � � &�& � � �

� )�� , � � natural *
� �	$ � ��" � & � � � � � � � �	$ " � � $ � 
 � & &

� ) � � isomorphism, functors *
� �	$ " � � $%� 
 � &�& �	$ � ��" � &

� )
lifting definition *

� � � & � � �	$ � � " � &
+



2. PROOFS FOR CHAPTER 5 357

LEMMA §5.26

Proof.
Associativity: We prove the comorphism condition by establishing the commutativity of the
diagram below which corresponds to the following equivalent formulation of associativity:$ $ � � � & � 
 & � " � 
 � & � � $ � �

$ � � 
 & & � � & 
 " � �

$�$ �
�
� �

�
& � � � & � $�$ � 
 � & 
 � &
� � #

�

& �
� �

��

� � ��� // $ �
�
� $ �

�
� � � & & � $ � 
 $ � 
 � & &

� #
�

� &
� �

�

���3$�$ $ �
�
� �

�
& � � � & � $ $ � 
�� & 
 � & & � # � � ��� ( // �3$ $ �

�
� $ �

�
� � � &�& � $ � 
 $ � 
 � & &�&

First notice that, by functoriality, � # ��� � ( � � and � ���
#

� � � ( can be written as
� #

��� � ( � � � � �3$ " � � � � & 
 $ �3$ " � � � � & � �	$�� � 
 � � � � � � �	$ " � � � � &�& �	$ $ � � 
 � & ��" � 
 " � &
�	$ � � ��" � 
 " � & �	$ � � 
 � & � � �

�
� �

#
� � � ( � � �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � � � � �	$ � �

� " � & 
 � � & �	$ " � 
 " � � $ � � 
 � &�&�	$ " � 
 " � � � � & �	$ � � 
 � & � � �
where

� � � � � � � ��� �	$�� �3$ " � � � � & 
 �3$ " � � � � & � � " � & �	$ � � � 
 � � � & ��" � �	$ ��� 
 � � & � " �
�	$ �

�
� " � 
 " � � � �

& ��" �
� � � � � � � � � �	$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & � " � � $ � � � 
 � � � & � " � � $ ��� 
 � � &� " � � $ � �

��" � 
 " � � � � &
The proof becomes easier if equivalent formulations of � # ��� � ( � � and � # ���

#
� � � ( are found

such that the � � , � � and � � appear in the expression as independent parcels, replacing, for
example,

�����
$ �

�
� " � 
 " � � � �

& � " � 
 $ " � � � � & �����
by

�����
$ �

�
��" � 
 " � � � �

& 
 $ " � � � � & �����
This can be achieved by an extra application of distributivity. Therefore, we define mor-
phisms

�
and � by replacing

� � and
� � in the original equations for � # � � � ( � � and � ���

#
� � � ( ,

respectively, by � � and � � given by

� � � � �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � � � " � & 
 �3$ � � ��" � & & �	$ � � � 
 � � � & �	$ � � 
 � � &�	$ �
�
��" � 
 " � � � �

& �	$ � 
 � � & � ���
� � � � �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � ��� � ��" � & 
 �3$ � ��" � & & �	$ � � � 
 � � � & �	$ � � 
 � � &

�	$ " � � � �

 " � � � � & �	$ � � ��� � 
 � � & � � �



358 D. PROOFS

We prove now that
� � � � � . A similar calculation establishes

� � � � � . Thus,

� �
� )	� , � � natural *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � � ��" � & 
 �3$ � � ��" � & & �	$ � � � 
 � � � & �	$ � � 
 � � &� $ � 
 � � & �	$ $ � �
��" � & � " � 
 $ " � � � �

& � " � & � ���
� ) � � natural *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � � ��" � & 
 �3$ � � ��" � & & �	$ � � � 
 � � � & �	$ � � 
 � � &� $ � 
 � � & � ��� �	$ � �
��" � 
 " � � � �

& � " �

� ) laws (C.8) and (C.38) *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � � ��" � & 
 �3$ � � ��" � & & �	$ � � � 
 � � � &� $ � � � ��� �	$ ��� ��" � & 
 � � � � ��� �	$ ��� ��" � & & � ��� �	$ �

�
� " � 
 " � � � �

& ��" �

� ) � � natural *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � � ��" � & 
 �3$ � � ��" � & & �	$ � � � 
 � � � &� $ � � � ��� 
 � � � � ��� & � ��� �	$ ��� 
 � � & ��" � �	$ �

�
� " � 
 " � � � �

& ��" �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � � and � � � � � � � � � � � � � � � � � � � � � � � � *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ �3$ � � � " � & 
 �3$ � � ��" � & & �	$ � � 
 � � &
� ��� � $ � � 
 � � & � " � �	$ �

�
��" � 
 " � � � �

& � " �

� ) 
 � natural (C.5) *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 ��� & �	$ � � � ��" � 
 � � � � " � &
� ��� � $ � � 
 � � & � " � �	$ �

�
��" � 
 " � � � �

& � " �

� ) � � natural *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 ��� & � ��� �	$ � � � 
 � � � & � " �
� $ ��� 
 � � & � " � �	$ �

�
��" � 
 " � � � �

& � " �

� )�� absorption *
� �3$ " � � � � & ��� � � 
 �3$ " � � � � & ��� � � � �	$ � � 
 � � & � ��� �	$ � � � 
 � � � & ��" �
� $ � � 
 � � & � " � �	$ �

�
��" � 
 " � � � �

& � " �

� )�� � natural and � fusion *
� � � ��� �3$ " � � � � & ��" � 
 �3$ " � � � � & ��" � � �	$ � � 
 � � & � ��� �	$ � � � 
 � � � & � " �
� $ � � 
 � � & � " � �	$ �

�
��" � 
 " � � � �

& � " �

� ) law (C.66) *
� � � � ��� ��� �3$ " � � � � & 
 �3$ " � � � � & � � " � �	$ � � � 
 � � � & � " �



2. PROOFS FOR CHAPTER 5 359

� $ � � 
 � � & � " � �	$ �
�
��" � 
 " � � � �

& � " �

� ) � � definition *
� �

We can now establish the commutativity of the diagram above by showing that

� �	$ � � � & & � �3$ � � � & & ���
The reasoning is as follows:

� �	$ � � � & &
� ) � definition *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ " � 
 � �3$ " � � � � & 
 �3$ " � � � � & � &
� $ " � 
 $ �3$ � ��� � ��" � & 
 �3$ � ��" � & &�& �	$ � � � 
 $ � � � 
 � � � & & �	$ ��� 
 $ � � 
 � � & &� $ �

�
� " � 
 $ " � � � �


 " � � � � &�& ��$ " � 
 $ � � � � � 
 � � &�& �	$ " � 
 � � & �	$ " � 
 " � � $ � � 
 � &�&� $ " � 
 " � � � � & �	$ � � 
 � & � � � �	$ � � � & &
� ) routine verification *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ " � 
 � �3$ " � � � � & 
 �3$ " � � � � & � &
� $ " � 
 $ �3$ � ��� � ��" � & 
 �3$ � ��" � & &�& �	$ � � � 
 $ � � � 
 � � � & & �	$ � � 
 $ � � 
 � � & &� $ �

�
� " � 
 $ " � � � �


 " � � � � &�& ��$ " � 
 $ � � � � � 
 � � &�& ��� & �	$ $ � 
 � & 
 � & �	$ ��� 
 " � &
� $ $ � � 
 � & � " � 
 " � & �	$ � � � " � 
 " � & �	$ � � 
 � & � � �

� )	�
� natural *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ " � 
 � �3$ " � � � � & 
 �3$ " � � � � & � & ��� &
� $ $ " � 
 �3$ � ��� � ��" � & & 
 �3$ � � " � &�& �	$ $ � � � 
 � � � & 
 � � � & �	$�$ � � 
 � � & 
 � � &� $ $ �

�
��" � 
 " � � � �

& 
 " � � � � & ��$ $ " � 
 � � � � � & 
 � � & �	$ $ � 
 � & 
 � & �	$ ��� 
 " � & �
$�$ � � 
 � & � " � 
 " � & �	$ � � � " � 
 " � & �	$ � � 
 � & � � �

� )	� isomorphism *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ " � 
 � �3$ " � � � � & 
 �3$ " � � � � & � & ��� &
� $ $ �3$ � � " � & ���3$ � � ��" � & 
 �3$ � ��� � � " � &�& 
 �3$ � ��" � & & �	$�$ � � � 
 � � � & 
 � � � &� $ $ � � 
 � � & 
 � � & �	$ $ �

�
� " � 
 " � � � �

& 
 " � � � � & �	$�$ � 
 � � & 
 " � & �	$ ��� 
 " � &
� $ $ � � 
 � & � " � 
 " � & �	$ � � � " � 
 " � & �	$ � � 
 � & � � �

� ) functors *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ " � 
 � �3$ " � � � � & 
 �3$ " � � � � & � & ��� &
� $ $ �3$ � � " � & 
 �3$ � ��" � & & 
 �3$ � � " � &�& ��$ �3$ � � � " � & 
 �3$ � � � " � &�& 
 " � &
� $ $ � � � 
 � � � & 
 � � � & �	$ $ ��� 
 � � & 
 � � & �	$�$ � �

� " � 
 " � � � �
& 
 " � � � � &

� $ $ � 
 � � & 
 " � & �	$ ��� 
 " � & �	$ $ � � 
 � & ��" � 
 " � & �	$ � � � " � 
 " � & �	$ � � 
 � & � � �



360 D. PROOFS

� ) � *
�3$ " � � � & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � 
 " � &
� $ $ �3$ � � " � & 
 �3$ � ��" � & & 
 �3$ � � " � &�& ��$ �3$ � � � " � & 
 �3$ � � � " � &�& 
 " � &
� $ $ � � � 
 � � � & 
 � � � & �	$ $ ��� 
 � � & 
 � � & �	$�$ � �

� " � 
 " � � � �
& 
 " � � � � &

� $ $ � 
 � � & 
 " � & �	$ ��� 
 " � & �	$ $ � � 
 � & ��" � 
 " � & �	$ � � � " � 
 " � & �	$ � � 
 � & � � �
� )�� absorption and fusion *

�3$ � � � & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � 
 " � &
� $ �3$ � � ��" � & 
 �3$ � � ��" � & & 
 " � & �	$ $ � � � 
 � � � & 
 � � � & �	$ $ � � 
 � � & 
 � � &� $ $ �

�
��" � 
 " � � � �

& 
 " � � � � & ��$ $ � 
 � � & 
 " � & �	$ ��� 
 " � & �	$ $ � � 
 � & � " � 
 " � &
� $ � � � " � 
 " � & �	$ � � 
 � & � � �

� )�� definition *
�3$ � � � & & ���

The step marked with a � is justified by the following calculation:
�3$ " � � � & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � 
 " � &

� )�� absorption *
�3$ " � � � & & ��� �3$ " � � � � & ��� �3$ " � � � � & 
 �3$ " � � � � & ��
 �3$ " � � � � & �

� )�� fusion *
�3$ " � � � & & ��� � �3$ " � � � � ��� � & 
 �3$ " � � � � ��� � & � 
 �3$ " � � � � & �

� )	�
� definition *

�3$ " � � � " � 
 � � 
�� � ��� � � & ��� � �3$ " � � � � ��� � & 
 �3$ " � � � � � � � & � 
 �3$ " � � � � & �
� )�� fusion, � cancellation *

�%� �3$ " � � � � & 
 �3$ " � � � � ��� � & � 
 �3$ " � � � � ��� � & �
� )�� absorption, � cancellation *

�%� �3$ " � � � � & 
 � �3$ " � � � � ��� � & 
 �3$ " � � � � ��� � & �%� �	$ " � 
 � � & 

� �3$ " � � � � & 
�� �3$ " � � � � ��� � & 
 �3$ " � � � � ��� � & � � ��� � ��� � �

� )�� fusion *
� �3$ " � � � � & 
�� �3$ " � � � � ��� � & 
 �3$ " � � � � ��� � & � �
�!� " � 
 � � 
�� � ��� � �

� )�� absorption *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ " � 
 � �3$ " � � � � & 
 �3$ " � � � � & � & ��� " � 
 � � 
�� � ��� � �

� )	�
� definition *



2. PROOFS FOR CHAPTER 5 361

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ " � 
 � �3$ " � � � � & 
 �3$ " � � � � & � & ��� &

Rigth Unit: We prove that � � � � �
�


� �

� is a comorphism establishing the commutativity
of the following diagram:

�
�
� $ � 
 � &

� � � � �
��$ � � �

�
& � $ � 
 � &

��� � � �

#
��

� � � � 55jjjjjjjjjjjjjjj �
�
� �
� #
���3$�$ � � �

�
& � $ � 
 � & &

� # � � � ��( ))TTTTTTTTTTTTTTT

�3$ �
�
� � &
� # � � � � � � (
���3$ �

�
� $ � 
 � & &

�3$ � ��" � & � ���
� � � �

� ) � definition *
�3$ � ��" � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 � � & �	$ � � " � 
 " � � �

�
&

� $ � � 
 � & � � �
� ) law (C.60) *

�3$ � ��" � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � � " � 
 " � � �
�
&

� $ � � 
 � & ��� � �	$ " � � � & &
� ) � absorption *

�3$ � ��" � & ���3$ " � � � � & ��� � � � � � �	$ " � � �
�
& ��� �	$ " � � � & &

� ) � isomorphism *
�3$ � ��" � & ���3$ " � � � � & ��� � � � � � �	$ " � � �

�
& ��� �	$ � � � " � & �	$ � � � & &

� ) routine: � � � � � � � � � � � � *
�3$ � ��" � & ���3$ " � � � � & ��� � � � � � �	$ " � � �

�
& � � � �	$ � � � & &

� ) � � natural *
�3$ � ��" � & ���3$ " � � � � & ��� � � � � � � � � � � �

�	$ � � � & &
� ) routine: � � � � � � � � � � � � � � � � � � *

�3$ " � � � � & ��� � � � � � � � � � �
�	$ � � � & &



362 D. PROOFS

� ) 
 � unit (C.2) *
�3$ " � � � � & � � ��� � � � � �

�	$ � � � & &
� ) � isomorphism and � � � � � � *

�3$ " � � � & � & � �
�
�	$ � � � & &

� ) wrapping definition *
�

� � � � ! � � � � �	$ � � " � &

Left Unit:
We prove that

� � �
�
� � 

� �

� is a comorphism:
�3$ � ��" � & � �

� �
�
� �

� ) � definition *
�3$ � ��" � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � �

� " � 
 " � � � &
� $ � � 
 � & � � �

� ) law (C.59) *
�3$ � ��" � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 � � & �	$ � �

� " � 
 " � � � &
� $ � � 
 � & ��� � �	$ " � � � & &

� ) � absorption and cancellation *
�3$ � ��" � & ���3$ " � � � � & ��� � � � � � �	$ � �

� " � & ��� � �	$ " � � � & &
� ) � isomorphism *

�3$ � ��" � & ���3$ " � � � � & ��� � � � ��� �	$ � �
� " � & ��� � �	$ � � � " � & � $ � � � & &

� ) routine: � � � � � � � � � � � � � *
�3$ � ��" � & ���3$ " � � � � & ��� � � � � � �	$ � �

� " � & � � � � $ � � � & &
� ) � � natural *

�3$ � ��" � & ���3$ " � � � � & ��� � � � ��� � � � � � �
�	$ � � � & &

� ) 
 � unit in variant of law (C.1) *
�3$ � ��" � & ���3$ " � � � � & ��� � � ��� � � � � �

�	$ � � � & &
� ) routine: � � � � � � � � � � � � � and � � isomorphism *

�3$ � ��" � & ���3$ " � � � � & ���3$ � � ��" � & � �
�
�	$ � � � & &

� ) � isomorphism and � � � � � *
�3$ " � � � � & � �

�
�	$ " � � � & & �	$ � � " � &



2. PROOFS FOR CHAPTER 5 363

� ) wrapping definition *
�

� � � � ! � � �
�	$ � � " � &

Commutativity:

�3$ " � � 	 & & � � � � �
�	$ " � � 	 & & �	$ 	 ��" � &

� )�� definition *
�3$ " � � 	 & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � �

� " � 
 " � � �
�
&

� $ � � 
 � & � � � �	$!	 � 	 & &
� ) routine: � � � � � � �

�
� � � � � � � � � � � � � � � � � � � *

�3$ " � � 	 & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 ��� & �	$ � �
� " � 
 " � � �

�
&

� $ � � 
 � & �	$ 	 ��" � 
 	 � " � & �
	 & � � �
� ) routine: � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � � � � � � *

�3$ " � � 	 & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � �
� " � 
 " � � �

�
&

� $ 	 
 	 & �
	 & �	$ � � 
 � & � � �
� )�� , � � natural *

�3$ " � � 	 & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ 	 
 	 & �
	 &
� $ �

�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� ) 
 � , 
 � interchangeable (C.7) *

�3$ " � � 	 & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ �'	 � � � 
 �'	3� � � & �
	 &� $ �
�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� )��

� natural *
�3$ " � � 	 & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ �'	 
 �'	 & �
	 & �	$ ��� 
 � � &� $ �

�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� ) routine: � � � � � � � � � � � � � � and � � � � � � � � � � � � � �	*

�3$ " � � 	 & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$!	 ��" � & 
 �3$ 	 � " � &�& �	$ � � � 
 � � � & �
	 & �	$ ��� 
 � � &� $ �
�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� )��

� natural *
�3$ " � � 	 & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$!	 ��" � & 
 �3$ 	 � " � &�& �
	 & �	$ � � � 
 � � � & �	$ � � 
 � � &� $ �

�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� )�� absorption *



364 D. PROOFS

�3$ " � � 	 & & ��� �3$ 	 � � � & 
 �3$!	 � � � & � �
	 & �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � �
� " � 
 " � � � �

&
� $ � � 
 � & � � �

� )�� fusion, functors *
�3$!	 ��" � & ���3$ " � � 	 & & ��� �3$ " � � � � & 
 �3$ " � � � � & � ��� 	 & �	$ � � � 
 � � � & �	$ ��� 
 � � &� $ �

�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� ) routine: � � � � � � � � 	 � � � � � � �� � � � � � � � � �

�
� � � � � � � � � � 	 � � � � � � �� *

�3$!	 ��" � & ���3$ " � � 	 & & ���3$ " � � 	 & & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � &� $ �
�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� )��

� � �
� � *

�3$!	 ��" � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � �
� " � 
 " � � � �

&
� $ � � 
 � & � � �

� )�� definition *
�3$!	 ��" � & � �

��� �

+



2. PROOFS FOR CHAPTER 5 365

LEMMA §5.29

Proof. Replacing composition with lifted functions by wrapping, equations (5.22) and (5.23)
can be rewritten as

� � � ��� � 
 � � � �
and

� � � ��� � 
 � � � �
Then, we show that both the first and the second projection are comorphisms from the left to
the right hand side. Thus,

�3$ � � � � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 � � & ��$ � �
��" � 
 " � � � �

&
� $ � � 
 � & � � � �	$ " � � � � &

� ) law (C.55) *
�3$ � � � � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & ��$ � �

��" � 
 " � � � �
&

� $ � � 
 � & ��� �
� )�� absorption and cancellation *

�3$ � � � � & ���3$ " � � � � & ��� � � � � � � � �
� " � ��� �

� ) routine: � � � � �	� � *
�3$ � � ��" � & ��� � � � ��� � � �

��" � ��� �
� ) routine: � � � � � � � � � � � � � *

� � � � � � � �
�
��" � ��� �

� ) law (C.12) *
� � � � �

�
� " � ��� �

� ) � definition and cancellation *
�

�
� � � ��� �

� ) routine: � � � � � � � � � � � � � and � � � � � � *
�

�
�	$ � � ��" � &

which establishes (5.22). A similar calculation proves (5.23). Notice that in both cases seeds
are trivially preserved. Thus,

�3$ � � � � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & ��$ � �
��" � 
 " � � � �

&
� $ � � 
 � & � � � �	$ " � � � � &

� ) law (C.56) *
�3$ � � � � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 � � & ��$ � �

��" � 
 " � � � �
&



366 D. PROOFS

� $ � � 
 � & ��� �
� )�� absorption and cancellation *

�3$ � � � � & ���3$ " � � � � & ��� � � � � � � " � � � �
���

� ) routine: � � � � �	� � and � � � � � � � � � � � � � *
� � � � � � � " � � � �

���
� ) law (C.13) *

� � � �
�
� " � ���

� ) � definition and cancellation *
�

�
� � � ���

� ) routine: � � � � � � � � � � � � *
�

�
�	$ � � ��" � &

+



2. PROOFS FOR CHAPTER 5 367

LEMMA §5.35

Proof. To complete the proof, the comorphism conditions mentioned in the main text have to
be shown to hold. Notice that, in each case, seed preservation is obvious. Therefore, we first
show that

� � � is a comorphism from ��� � to � � � � � :
�

� � � � � �	$ $ � � � & ��" � &
� ) � definition *

� � �
�
� �	$ �

� � � � � � & � � �	$ $ � � � & � " � &
� ) � natural *

� � �
�
� �	$ �

� � � � � � & �	$�$ � ��" � & � $ � ��" � & & � �
� ) assumption: � � � �	� � � and 
 � � �	� � � *

� � �
�
� �	$ �3$ � � " � & � �

�
� �3$ � � " � & � � �

& � �
� )�� � natural (C.31) *

� � ���3$ $ � ��" � & � $ � � " � &�& � � � �	$ �
�
� � �
& � �

� ) � natural *
�3$ $ � � � & ��" � & ��� � �

�
� �	$ �

�
� � �
& � �

� ) � definition *
�3$ $ � � � & ��" � & � �

� � �

The next step establishes � as a comorphism from
$ � � � & � $ � � � � � & to

$ � � � � & � $ � � � � & :
� #

��( � � ( � #
� ( � � ( �	$ � � " � &

� ) � and � definitions *
� � �

�
� �	$ � � � & �	$ � � � � � � � � � & �	$ � � � � � � � & �	$ �3$ " � � � � � & � �3$ " � � � � � & &� $ �3$ � ��� � & � �3$ � ��� � &�& �	$ ��� � ��� & �	$ $ � �

� " � & � $ � �
� " � &�& �	$ � � � � � & � � �	$ � � " � &

� ) routine: � � � � � � � ��� � � � � � � � � � � � � � � � � �	*
� � �

�
� �	$ � � � & �	$ � � � � � � � � � & �	$ � � � � � � � & �	$ �3$ " � � � � � & � �3$ " � � � � � & &� $ �3$ � ��� � & � �3$ � ��� � &�& �	$ � � � � � & �	$ $ � �

� " � & � $ � �
� " � &�& � � �	$ � � " � & ��� �

� ) � natural *
� � �

�
� �	$ � � � & �	$ � � � � � � � � � & �	$ � � � � � � � & �	$ �3$ " � � � � � & � �3$ " � � � � � & &� $ �3$ � ��� � & � �3$ � ��� � &�& �	$ � � � � � & � � �	$ $ � �

� � �
& ��" � & �	$ � � " � & ��� �

� ) law (C.75) *
� � � � ���

�
� �
�
� �	$ � � � � � � � � � & �	$ � ��� � � � � & ��$ �3$ " � � �

� � & � �3$ " � � � � � &�&� $ �3$ � ��� � & � �3$ � ��� � &�& �	$ ��� � ��� & � � �	$ $ � �
� � �
& ��" � & �	$ � � " � & ��� �



368 D. PROOFS

� )�� � natural (C.30) *
� � � � ���

�
� ���3$ � � � � � � � & ���3$ � � � � � & ���3$�$ " � � �

� � & � $ " � � � � � & &� �3$ $ � ��� � & � $ � ��� � &�& �
�
� �	$ ��� � ��� & � � �	$�$ � �

� � �
& � " � & �	$ � ��" � & ��� �

� ) law (C.80) *
� � � � ���

�
� ���3$ � � � � � � � & ���3$ � � � � � & ���3$�$ " � � �

� � & � $ " � � � � � & &� �3$ $ � ��� � & � $ � ��� � &�& ��� � � � � �	$
�
� � " � & �	$�$ �

�
� � �
& � " � & �	$ � ��" � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � *

� � � � ���
�
� ���3$ � � � � � � � & ���3$ � � � � � & ���3$�$ " � � �

� � & � $ " � � � � � & & ��� � ���3$ " � � � &� �3$ � ��� � & ���3$ � ��" � & � � � �	$
�
� � " � & �	$ $ �

�
� � �
& ��" � & �	$ � � " � & ��� �

� ) 
 � natural (C.5) *
� � � � ���

�
� ���3$ � � � � � � � & ���3$ � � � � � & ���3$�$ " � � �

� � & � $ " � � � � � & & ��� � ���3$ " � � � &� �3$ � ��� � & � ��� �	$ � � � " � & �	$ � � � " � & �	$ $ �
�
� � �
& ��" � & �	$ � � " � & ��� �

� ) � natural *
� � � � ���

�
� ���3$ � � � � � � � & ���3$ � � � � � & ��� � ���3$ " � � $ � � � � � � � & & ���3$ " � � � &� �3$ � ��� � & � ��� �	$ � � � " � & �	$ � � � " � & �	$ $ �

�
� � �
& ��" � & �	$ � � " � & ��� �

� )�� � natural (C.31) *
� � � � ��� �3$ � � � � � & ���

�
� ���3$ � � � � � & ��� � ���3$ " � � $ � � � � � � � & & ���3$ " � � � &� �3$ � ��� � & � � � �	$ � � � " � & �	$ � � � " � & �	$ $ �

�
� � �
& ��" � & �	$ � � " � & ��� �

� ) law (C.81) *
� � � � ��� �3$ � � � � � & ��� � � ��� � � � �3$ " � �

�
� & ���3$ " � � $ �

� � � � � � & & ���3$ " � � � &� �3$ � ��� � & � � � �	$ � � � " � & �	$ � � � " � & �	$ $ �
�
� � �
& ��" � & �	$ � � " � & ��� �

� )�� natural (C.16) *
� ��� �3$ � �	$ � � � � � & � � & ��� � � ���3$ " � �

�
� & ���3$ " � � $ �

� � � � � � & & ���3$ " � � � & ���3$ � ��� � &� ��� �	$ � � � " � & �	$ � � � " � & �	$ $ �
�
� � �
& ��" � & �	$ � ��" � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � � � �
� *

� ��� �3$ � � " � & ��� � � � ��� �3$ " � � � & ��� � � ���3$ " � �
�
� & ���3$ " � � $ �

� � � � � � & & � �3$ " � � � &� �3$ � ��� � & � � � �	$ � � � " � & �	$ � � � " � & �	$ $ �
�
� � �
& ��" � & �	$ � � " � & ��� �

� )�� and 
 � natural (C.16) and (C.5) *
�3$ � ��" � & � � ��� � � � ��� � � ���3$ " � � � � & ���3$ " � �

�
� & ���3$ " � � $ �

� � � � � � & & ���3$ " � � � &� �3$ � ��� � & � � � �	$ � � � " � & �	$ � � � " � & �	$ $ �
�
� � �
& ��" � & �	$ � � " � & ��� �

� ) � commutative *



2. PROOFS FOR CHAPTER 5 369

�3$ � ��" � & � � ��� � � � ��� � � ���3$ " � � � � & ���3$ " � �
�
� & ���3$ " � � $ �

� � � � � � & & ���3$ " � � � &� �3$ � ��� � & � � � �	$ � � � " � & �	$ � � � " � & �	$�$ �
�
� � �
& � " � & �	$ � � " � & ��� �

� ) � and � definitions *
�3$ � ��" � & � � #

��( � � ( � #
� ( � � (

Finally, we check that � � is a comorphism from
� ���	�

� � � � to
� ���	�

� �
� ���	�

� � :� � 
���� � � � 
���� � � �	$ � � � " � &
� ) � and � � ��� � definitions *

� � �
�
� �	$ � � � & � � �	$ � � ��" � &

� ) law (C.68) *
� � ��� � � �	$ � � ��" � &

� )�� natural (C.17) *
� � � � � �	$ � � ��" � &

� ) � � � �3*
� �	$ � � ��" � &

� ) � � ��� � definition *
� � 
���� ��� � � +



370 D. PROOFS

LEMMA §5.36

Proof. We prove that � � � � � 
 � � is a comorphism from
� � �

�
� � � to

� � � � � .
�3$ � � " � & � � � � � � � � �

� ) � definition and function lifting *
�3$ � � " � & ��� � �

�
� �	$ � � � & ��$ $ " � � � & � $ " � � � &�& � �

� ) law (C.68) *
�3$ � � " � & ��� � ��� �	$ $ " � � � & � $ " � � � &�& � �

� )�� natural (C.17) *
� �	$ � ��" � & � � �	$ $ " � � � & � $ " � � � & & � �

� ) � natural *
� �	$ � ��" � & � � � � �	$ $ " � ��" � & � $%� � � & &

� ) � � � � *
� �	$ � ��" � & �	$ $ " � � " � & � $%� � � &�&

� ) function lifting *
��� � ��� � �	$ � � " � &

+



2. PROOFS FOR CHAPTER 5 371

LEMMA §5.37

Proof.
Associativity: We prove

� � $ �
�
� �

�
& � � � 
 � �

�
� $ �

�
� � � & is a comorphism from$�$ � � � & � 
 & � " � 
 ��� to

$ � � $ � � 
 & & � ��
 " � � .
� #

� �
#

� � � ( ( � � ! � ���
�	$ � � " � &

� ) � and wrapping definitions *
� � �

�
� �	$ �

�
� $ � � �

�
� �	$ � �

� � � & � � & & � � �	$ � � � &
� ) routine: � � � � �

� � � � � � � � � � � � � � � � � � � � *
� � �

�
� �	$ " � � � � & �	$ " � �

�
� & �	$ �

�
� $ � �

� � � &�& ��� �	$ � � " � & � �
� ) � and � � natural (C.31) *

� � ���3$ " � � � & �
�
� �	$ " � �

�
� & ��� �	$ $ �

�
� � �
& � � � & �	$ � � " � & � �

� ) law (C.79) *
� � ���3$ " � � � & ��� � �

�
� �	$

�
� ��" � & �	$ $ �

�
� � �
& � � � & �	$ � � " � & � �

� ) routine: � � � � � � �
� � � � � � � � � � � � � � � � � � *

�3$ � � � & ��� � ���3$ � ��" � & � � � �	$
�
� ��" � & �	$ $ �

�
� � �
& � � � & �	$ � � " � & � �

� )�� � natural (C.31) *
�3$ � � � & ��� � �

�
� �	$ � � ��" � & �	$ � � ��" � & �	$ $ �

�
� � �
& � � � & �	$ � � " � & � �

� ) functors *
�3$ � � � & ��� � �

�
� �	$�$ � � �

�
� �	$ �

�
� � �
& � � & � � � & � �

� ) � and wrapping definitions *
�3$ � ��" � & � � # #

� � � ( � � ( � � � ! � �

Unit: We prove � � � � �
�

 � �

� is comorphism from
" ��� � � � to � � � 
 � � � . As seeds are

trivially preserved, this establishes equation (5.35).

�
� � � ! � � �

�	$ � � " � &
� ) wrapping definition *

�3$ " � � � � & � � �
�	$ " � � � & �	$ � � " � &

� ) routine: � ��� � � � � � *
�3$ " � � � � & � � �

� � � � �
� ) � cancellation *



372 D. PROOFS

�3$ " � � � � & � � � �	$ " � � � �
& � �

� ) law (C.13) *
�3$ " � � � � & ��� � � � ��� �	$ " � � � �

& � �
� ) law (C.27) *

�3$ " � � � � & ��� � � �
�
� �	$ � � �

�
& � �

� ) routine: � � � ��� � � � � � � � � � � � � � � *
�3$ � ��" � & � � � �

�
� �	$ � � �

�
& � �

� ) � and � � � 
 definition *
�3$ � ��" � & � �

� � � � � �

Zero: By choosing � � � � � �
�


� �

, which clearly preserves seeds, the verification of the
comorphism condition is also trivial. In fact, the task consists of proving equal two functions
—
�3$ � � � " � & � ���

� � � � and � � � � ��$ � � � " � &
from

$ � � �
�
& � $ � � � & to �3$�$ � � �

�
& � $ � � � & & —

whose domain is isomorphic to � (through
� � � $ " � � � � & � $ � � �

�
& � $ � � � & 
 � � ). Therefore,

by initiality, there is only one such function, which, moreover coincides with
� � � � � $ " � � � � & .

Commutativity: We prove that
	 � �

�
� �

�

 � �

�
� �

� is comorphism from � � � to
� � � � 	 
�	�� . As seeds are trivially preserved, this establishes equation (5.34).

� � � � � � ! � �
�	$!	 � " � &

� ) � and wrapping definitions *
�3$ " � � 	 & ��� � �

�
� �	$ � �

� �
�
& � � �	$ " � � 	 & �	$ 	 � " � &

� ) � natural and � � � � � � � � � � � *
�3$ " � � 	 & ��� � �

�
� �
	 �	$ �

�
� � �
& � �

� )�� � , � � interchangeable (C.76) *
�3$ " � � 	 & ��� � ���'	3�

�
� �	$ �

�
� � �
& � �

� ) routine: � � � � � � � � � � � *
�3$ " � � 	 & ���3$!	 � 	 & ��� � �

�
� �	$ �

�
� � �
& � �

� ) � commutative *
�3$ " � � 	 & ���3$!	 � 	 & ��� � �

�
� �	$ �

�
� � �
& � �

� ) � � � � ,
�

and wrapping definitions *
�3$!	 � " � & � �

� � �

+



2. PROOFS FOR CHAPTER 5 373

LEMMA §5.46

Proof. To complete the proof, consider the full calculation which establishes equation (5.47):

� #
�
�

� � ( ( # �
�

� � (
� ) � definition *

� ��� � � � ��� ��� ���3$ " � � � �
�

� � & ��� � ��� � � � ��� �	$ � �
�

� � � " � & ��� �
� )�� definition *

� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & & ���3$ " � � � � &� � � ��� � � � ��� �	$�� �3$ " � � � � & 
 �3$ " � � � � & � � " � & �	$�$ �
��� � � 
 � � � � � & � " � & �	$ � � ��" � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � ��� � � � � ��*
� ��� � � � ��� ��� ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & & ���3$ " � � � � &� � � ��� � � � ��� �	$�� �3$ " � � � � & 
 �3$ " � � � � & � � " � & �	$�$ �

��� � � 
 � � � � � & � " � & � ��� � �	$ � � 
 � � & � � �
� )�� absorption *

� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & & ���3$ " � � � � &� � � ��� � � � � � �	$�� �3$ " � � � � & � �
� � � � 
 �3$ " � � � � & � �

� � � � � ��" � & � ��� � �	$ � � 
 � � & � � �
� ) � � � definition ( � �� � � � � � � � 	 � � � � �  ) *

� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & & ���3$ " � � � � &� � � ��� � � � � � �	$�� �3$ " � � � � & � �
� � � � 
 �3$ " � � � � & � �

� � � � � ��" � & ����� � ��" � 
�� � � " � �
� $ � � 
 � � & � � �

� )�� fusion, � cancellation *
� ��� � � � ��� ��� ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & & ���3$ " � � � � &� � � ��� � � � ��� ��� $ �3$ " � � � � & � �

� � � � & � " � 
 $ �3$ " � � � � & � �
� � � � & � " � � �	$ � � 
 � � & � � �

� )�� fusion *
� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & & ���3$ " � � � � &� � � ��� � � ��� � � �	$ $ �3$ " � � � � & � �

��� � � & ��" � & 
 � � �	$ $ �3$ " � � � � & � �
� � � � & � " � & � �	$ � � 
 � � & � � �

� ) 
 � natural (C.5) *
� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & & ���3$ " � � � � &� � � ��� � � ��� �3$�$ " � � � � & ��" � & � � � �	$ �

��� � � � " � & 
 �3$�$ " � � � � & ��" � & � � � �	$ �
� � � � ��" � & �

� $ � � 
 � � & � � �
� )�� absorption *

� ��� � � � ��� ��� ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & & ���3$ " � � � � &� � � ��� � � ��� �3$�$ " � � � � & ��" � & 
 �3$�$ " � � � � & ��" � & � �	$ �
��� � � � " � 
 " � � �

� � � � & �	$ ��� 
 ��� &



374 D. PROOFS

� $ � � 
 � � & � � �
� )�� fusion, � � � � natural and � absorption *

� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & & ���3$ " � � � � &��� �3$ " � � $ " � � � � &�& 
 �3$ " � $ " � � � � &�& � �	$ �3$ � ��� � & 
 �3$ � ��� � & & ��$ � ��� � � � " � 
 " � � �
� � � � &� $ ��� 
 ��� & �	$ � � 
 � � & � � �

� )�� fusion and laws (C.55), (C.56) *
� ��� � � � ��� ��� ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � � � � � 
 � � � � � & &��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � � � � ��" � 
 " � � �

� � � � & �	$ � � 
 � � &� $ � � 
 � � & � � �
� )�� fusion, � cancellation *

� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ��� �3$ " � � � � � � � � � � & 
 �3$ " � � � � � � � � � � & �� $ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � ��� � � � " � 
 " � � �
� � � � & �	$ � � 
 � � & �	$ � � 
 � � & � � �

� )�� absorption *
� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ��� �3$ " � � � � & 
 �3$ " � � � � & �
� $ �3$ " � � � � � � � & 
 �3$ " � � � � � � � &�& �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � � � � ��" � 
 " � � �

� � � � &� $ ��� 
 ��� & �	$ � � 
 � � & � � �
� )�� fusion, � cancellation *

� ��� � � � ��� ��� ��� �3$ " � � �3$ " � � � � &�& 
 �3$ " � � �3$ " � � � � & & � �	$ �3$ " � � � � � � � & 
 �3$ " � � � � � � � & &� $ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � ��� � � � " � 
 " � � �
� � � � & �	$ � � 
 � � & �	$ � � 
 � � & � � �

� )�� fusion *
� ��� � � � ��� � � � ���3$ " � � �3$ " � � � � &�& 
 � � � ���3$ " � � �3$ " � � � � & & �
� $ �3$ " � � � � � � � & 
 �3$ " � � � � � � � &�& �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � � � � ��" � 
 " � � �

� � � � &� $ � � 
 � � & �	$ � � 
 � � & � � �
� ) 
 � natural (C.6) and � absorption *

� ��� � � � ��� � �3$ " � � $ " � � � � & & 
 � �3$ " � � $ " � � � � &�& � �	$ � � � 
 � � � &
� $ �3$ " � � � � � � � & 
 �3$ " � � � � � � � &�& �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � � � � ��" � 
 " � � �

� � � � &� $ ��� 
 ��� & �	$ � � 
 � � & � � �
� )�� fusion *

� ��� � � � � ��� �3$ " � � $ " � � � � & & 
 � � � � ��� �3$ " � � $ " � � � � & & � �	$ � � � 
 � � � &
� $ �3$ " � � � � � � � & 
 �3$ " � � � � � � � &�& �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � � � � ��" � 
 " � � �

� � � � &� $ � � 
 � � & �	$ � � 
 � � & � � �



2. PROOFS FOR CHAPTER 5 375

� )	� � natural and � absorption *
� ��� � �3$ " � � � � & 
 � �3$ " � � � � & � ��$ � � � � 
 � � � � & �	$ � ��� 
 � � � &
� $ �3$ " � � � � � � � & 
 �3$ " � � � � � � � &�& �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � � � � ��" � 
 " � � �

� � � � &� $ ��� 
 ��� & �	$ � � 
 � � & � � �
� )�� fusion, � natural and � absorption *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & �	$ � � � 
 � � � & �	$ �3$ " � � � � � � � & 
 �3$ " � � � � � � � &�&� $ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � ��� � � � " � 
 " � � �
� � � � & �	$ � � 
 � � & �	$ � � 
 � � & � � �

� ) � definition *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � #

��� � � ( ( # � � � � ( 
 � # � � � � ( ( # � � � � ( & � � �
+



376 D. PROOFS

LEMMA §5.47

Proof. We first prove the left unit law using the direct method discussed in the main text. First
note that the wiring isomorphism

� �
can be defined as

� & �	$ � & 
 � � & . Unfolding the definition
of � , we arrive at

�
�
� �
� � � � �3$ " � � � � & 
 �3$ " � � � � & � �	$ �

���
�
� � 
 � � � � � �

& � � �
Next, using laws (5.20) in §26 and (5.38) in §38, � ���

�
� � and � � � � � � are replaced, up to a bisim-

ulation, by � � � � � ! � � � � and � � � � � � � ! � � � � , respectively. Then, the resulting expression is transformed
until the right hand side of the equation is reached. Thus,

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �
� � � � ! � � � � 
 ��� � � � � � ! � � � � & � � �

� ) wrapping and � � � definitions *
� �3$ " � � � � & 
 �3$ " � � � � & �
� $ �3$ " � � � & � & � �

�
�	$ " � � � & & 
 �3$ " � � � � � & ��� �	$ " � � � & �	$ " � � � � &�& � � �

� )�� absorption *
� �3$ " � � � � � � & � & � �

�
�	$ " � � � & & 
 �3$ " � � � � ��� � � & ��� �	$ " � � � & �	$ " � � � � & � � � �

� )�� absorption and � fusion *
�3$ " � � $ � & ��
 � � � & ��� �3$ " � � � � & � �

�
�	$ " � � � & & 
 �3$ " � � � � & ��� �	$ " � � � & �	$ " � � � � & � � � �

� ) corollary of initiality: � � � � ��� � � �	*
�3$ " � � $ � & � 
 � � � & ��� �3$ " � � � � & � �

�
�	$ " � � � & & 
 �3$ " � � � � & ��� � � ��� � �	$ " � � � � & � � � �

� ) initiality: � � ����� *
�3$ " � � $ � & � 
 � � � & ��� �3$ " � � � � & � �

�
�	$ " � � � & & 
 �3$ " � � � � & � �

�
� � ��� � �	$ " � � � � & � � � �

� )�� fusion *
�3$ " � � $ � & ��
 � � � & ���3$ " � � � � & � �

�
��� " � � � & 
 � ��� � �	$ " � � � � & � � � �

� ) � � � � � � and � � � ����� ��� �	*
�3$ " � � $ $ � & � 
 � � � & � � & � & & � �

�
��� " � � � & 
 " � � � ��� � � � � �

� ) law (C.49) *
�3$ " � � $ $ � & � 
 � � � & � � & � & & � �

�
�	$ " � � � � & 
 � ��� � � &

� ) routine: � � � 	 � �	� �  � � � � � � � � � � � *
�3$ " � � $ $ � & � 
 � � � & � � & � & & � �

�
�	$ " � � � & �	$ � & 
 � � & &

� )
wrapping definition *

�
� � � � ! � �

� �



2. PROOFS FOR CHAPTER 5 377

A proof ‘from first principles’ proceeds by the identification of a
� �

morphism from � �
� �
� � to�

� � � � ! � �
� � . Clearly

� � �
�
� � 

� �

� would do the job. We have to check it preserves seeds,
which is trivial, and satisfies the comorphism condition expressed by the commutativity of the
following diagram:

$ �
�
� � & � $�$ � 
 � & 
 ��� � & � � � � //

� # � � � �
��

�
�
� $ $ � 
 � & 
 ��� � &� #

� �
�

� �
�
���

���3$ $ �
�
� � & � $�$ � 
 � & 
 � � � &�& � # � � � ��( // � $ �

�
� $�$ � 
 � & 
 � � � & &

The verification of this diagram follows the same lines of the direct proof above, but for the
explicit presence of comorphisms which witness the � and � laws re-used. Notice that, in
this case, they are also

�
for both tensors: all the reader has to do is to check the beginning

of the proofs of laws (5.20) in §26 and (5.38) in §38, respectively. We ‘repeat’ the proof to
check the details:

�3$ � � " � & � �
�
� �
� �

� )�� definition *
�3$ � � " � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �

���
�
� � 
 � � � � � �

& � � �
� ) laws (5.20) in §26 and (5.38) in §38, both witnessed by ��*

�3$ � � " � & ��� �3$ " � � � � & 
 �3$ " � � � � & �
� $ �3$ � � ��" � & � �

� � � � ! � � � � �	$ � � " � & 
 �3$ � � � " � & � ���
� � � � � ! � � � � �	$ � � " � & & � � �

� ) wrapping and � � � definitions *
�3$ � � " � & ��� �3$ " � � � � & 
 �3$ " � � � � & �
� $ �3$ � � � � & � & � �

�
�	$ � � � & & 
 �3$ � � � � � � & ��� �	$ " � � � & �	$ � � � � &�& � � �

� )�� absorption *
�3$ � � " � & ��� �3$ � � � � � � � & � & � �

�
�	$ � � � & & 
 �3$ � � � � � ��� � � & ��� �	$ " � � � & �	$ � � � � & � � � �

� )�� absorption and � fusion *
�3$ � � " � & ���3$ � � � $ � & � 
 � � � &�!� �3$ " � � � � & � �

�
�	$ � � � & & 
 �3$ " � � � � & ��� �	$ " � � � & �	$ � � � � & � � � �

� ) � isomorphism and, as a corollary of initiality, � � � � ��� � � �	*
�3$ " � � $ � & � 
 � � � & ��� �3$ " � � � � & � �

�
�	$ � � � & & 
 �3$ " � � � � & ��� � � ��� � �	$ � � � � & � � � �

� ) initiality: � � � ��� *
�3$ " � � $ � & � 
 � � � & ��� �3$ " � � � � & � �

�
�	$ � � � & & 
 �3$ " � � � � & � �

�
� � ��� � �	$ � � � � & � � � �

� )�� fusion *



378 D. PROOFS

�3$ " � � $ � & � 
 � � � & ���3$ " � � � � & � �
�
��� � � � & 
 � ��� � �	$ � � � � & � � � �

� ) � � � � � � and � � � � ��� �	� � *
�3$ " � � $ $ � & � 
 � � � & � � & � & & � �

�
��� � � � & 
 � � � ��� � � � � �

� ) law (C.49) *
�3$ " � � $ $ � & � 
 � � � & � � & � & & � �

�
�	$ � � � � & 
 � ��� � � &

� ) routine: � � � 	 � ��� �  � � � � � � � � � � � *
�3$ " � � $ $ � & � 
 � � � & � � & � & & � �

�
�	$ " � � � & �	$ � & 
 � � &�& �	$ � � " � &

� ) wrapping definition *
�

� � � � ! � �
� � �	$ � � " � &

As remarked earlier on, proofs of the remaining laws follow a similar pattern: the ‘hard’ work
has already been done when dealing with � and � . Therefore, we verify here, again using
the ‘direct’ procedure, the commutativity law (5.50) which requires

�
to be a commutative

monad. First note the wiring isomorphism is
	 � � 	 & 
 	

Then, by definition of � ,
� # �
�

� ( � � � ! � � � � $�� �3$ " � � � � & 
 �3$ " � � � � & � $ � # � � � (

 � # � � � (

& � � � & � 	 � 
�	 � �
Now, using laws (5.21) in §26 and (5.34) in §38, � � � � and � � � � are replaced, up to bisimilar-
ity, by � # ��� � ( � � � ! � � � and � # � � � ( � � ! � � , respectively. Then, the resulting expression is transformed
until the right hand side of the equation is reached. Thus,$�� �3$ " � � � � & 
 �3$ " � � � � & �6$ � #

��� � ( � � � ! � � �

 � #

� � � ( � � ! � �
& � � � & � 	 � 
�	 � �

� ) wrapping definition and functors *
�3$ " � � $ 	 & 
 	 &�& ��� �3$ " � � � � & 
 �3$ " � � � � & �
� $ �3$ " � � 	 & & � � #

��� � ( �	$ " � � 	 & & 
 �3$ " � � 	 & � � #
� � � ( �	$ " � � 	 & & � � � �	$ " � � $ 	 & 
 	 &�&

� ) � � natural *
�3$ " � � $ 	 & 
 	 &�& ��� �3$ " � � � � & 
 �3$ " � � � � & �
� $ �3$ " � � 	 & & � � #

��� � ( �	$ " � � 	 & & 
 �3$ " � � 	 & � � #
� � � ( �	$ " � � 	 & & ��$ " � � 	 & 
 " � � 	 &

� � �
� )��

� , � isomorphisms *
�3$ " � � $ 	 & 
 	 &�& ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ " � � 	 & & � � #

� � � ( 
 �3$ " � � 	 & � � #
� � � ( &� � �

� )�� fusion and � absorption *
� �3$ " � � � � �
	 & & 
 �3$ " � � � � �
	 & � �	$ �3$ " � � 	 & & � � #

��� � ( 
 �3$ " � � 	 & � � #
� � � ( & � � �



2. PROOFS FOR CHAPTER 5 379

� )�� absorption *
� �3$ " � � � � & 
 �3$ " � � � � & �
� $ �3$ " � � 	 & & ���3$ " � � 	 & & � � #

��� � ( 
 �3$ " � � 	 & ���3$ " � � 	 & � � #
� � � ( & � � �

� )��
� , � isomorphisms *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � #
��� � ( 
 � # � � � ( & � � �

� )�� definition *
� #

�
�

� (
+



380 D. PROOFS

LEMMA §5.52

Proof. Let
� � � 
 � � be an arrow in

� � $ � 
 � &
. Then,

� ���
��$ � � " � &

� ) � �
definition *

� ��� � �
� � �
�	$ � � " � &

� ) assumption: � � � � � � *
� ��� � �

���3$ � � " � & � �
�

� ) assumption: � � � � � � *
� ���3$ �3$ � ��" � & � �

�
& � �

�

� ) � natural (C.16) *
�3$ � ��" � & � � ��� � �

� �
�

� ) � �
definition *

�3$ � ��" � & � �
� �

Similarly, for an arrow
� � � 

� � in

� � $ � 
 � 
�� 
 � &
,

� ���
	 �	$ � � " � &

� ) � � � definition *
� ��� � ���3$ � 
 � �

& ���3$ " � � � � 
 " � � � � & ��� � � � � �
�	$ � � " � &

� ) assumption: � � � � � � *
� ��� � ���3$ � 
 � �

& ���3$ " � � � � 
 " � � � � & ��� � � ���3$ � � " � & � �
�

� ) � � natural *
� ��� � ���3$ � 
 � �

& ���3$ " � � � � 
 " � � � � & ���3$ � � " � 
 � ��" � & ��� � � � � �

� ) functors *
� ��� � ���3$ � �	$ � ��" � & 
 � �

�	$ � � " � &�& ���3$ " � � � � 
 " � � � � & ��� � � � � �

� ) assumption: � � � � � � and � natural (C.17) *
� ��� � ���3$ �3$ � � " � & ��� 
 �3$ � ��" � & � �

�
& ���3$ " � � � � 
 " � � � � & ��� � � � � �

� ) � natural *
� ��� �3$ � � " � & ��� � ���3$ � 
 � �

& ���3$ " � � � � 
 " � � � � & ��� � � � � �

� )�� natural (C.16) *
�3$ � � " � & � � ��� � ���3$ � 
 � �

& ���3$ " � � � � 
 " � � � � & ��� � � � � �



2. PROOFS FOR CHAPTER 5 381

� ) � � � definition *
�3$ � � " � & � �

� �
	

+



382 D. PROOFS

LEMMA §5.53

Proof. Both equations (5.55) and (5.56) are strict equalities. In fact,
��� � � �

� ) feedback and function lifting definitions *
� ���3$ � �	$ " � � � &�& ��� � $ " � � � &

� ) monad axiom (C.14) *
�3$ " � � � & ��� �	$ " � � � &

� ) � natural (C.17) *
� �	$ " � � $ � � � &�&

� ) function lifting definition *
��� � � � �

And, similarly,
��� � � � 	

� ) partial feedback and function lifting definitions *
� ��� � ���3$ � 
 � & ���3$ " � 
 " � � � & ���3$ " � � � � 
 " � � � � & ��� � � ��� �	$ " � � � &

� ) � and � � natural *
� ��� � ��� � ��� � � ���3$ " � � $ " � 
 � & & ���3$ " � � $�� � 
 � � &�& ��� �	$ " � � � &

� ) monad axiom (C.14) *
�
�
��� � � ���3$ " � � $ " � 
 � & & ���3$ " � � $�� � 
 � � & & ��� �	$ " � � � &

� ) routine: � � � � �	� � � � *
�3$ " � � � & ���3$ " � � $ " � 
 � &�& ���3$ " � � $�� � 
 � � &�& ��� �	$ " � � � &

� )�� natural (C.17) *
� �	$ " � � � & �	$ " � � $ " � 
 � & & �	$ " � � $ � � 
 � � & & �	$ " � � � &

� ) functors and � definition *
� �	$ " � � � " � 
 " � � �	$ � � 
 � ��� � & � � &

� )�� absorption *
� �	$ " � � � � � 
 � ��� � � � � &

� ) function lifting *
� � � � � ! � � � � � � � � +



2. PROOFS FOR CHAPTER 5 383

LEMMA §5.54

Proof. Both equations are strict equalities. To establish (5.57) consider

�
� � � � ! � � � � � 	 � � � � ! � � �

� )
wrapping definition *

�3$ " � � � & & � � � � � � ! � � � � � 	 �	$ " � � � & � &
� ) partial feedback definition *

�3$ " � � � & & � � ��� � ���3$ � 
 � � � � � ! � � � � & ���3$ " � � � � 
 " � � � � & ��� � � � � � � � � ! � � � �� $ " � � � & � &
� ) wrapping definition *

�3$ " � � � & & � � ��� � ���3$ � 
 �3$ " � � � & � & � �
�
�	$ " � � � & & & ���3$ " � � � � 
 " � � � � & ��� � �� �3$ " � � � & � & � �

�
�	$ 	 � � � & & �	$ " � � � & � &

� ) � � isomorphism and � � � � � � � � � ��� � � *
�3$ " � � � & & � � ��� � ���3$ � 
 �3$ " � � � & � & � �

�
& ���3$ " � � � � 
 " � & ��� � � ���3$ " � � � & � & � �

�

� ) functors *
�3$ " � � � & & � � ��� � ���3$ � 
 " � & ���3$ " � 
 �3$ " � � � & � &�& ���3$ " � 
 �

�
& ���3$ " � � � � 
 " � &

� � � � ���3$ " � � � & � & � �
�

� ) initiality: � � �	� � � � � � � � � � � � � ��� � ��� � � � � � � � � � � � � � *
�3$ " � � � & & � � ��� � ���3$ � 
 " � & ���3$
� � 
 " � & � �3$ " � 
 �3$ " � � � & � & & ���3$ " � 
 �

�
& ��� � �� �3$ " � � � & � & � �

�

� ) � definition and � absorption *
�3$ " � � � & & � � ��� � � 
 �3$ " � � � & � & � ���3$ � � 
 " � & ���3$ " � 
 �

�
& ��� � � ���3$ " � � � & � & � �

�

� )�� natural (C.16) *
� ��� �3$ " � � � & & ��� � � 
 �3$ " � � � & � & � ���3$ � � 
 " � & ���3$ " � 
 �

�
& ��� � � ���3$ " � � � & � & � �

�

� )�� fusion *
� ��� � �3$ " � � � & & � � 
 �3$ " � � � & & ���3$ " � � � & � & � ���3$
� � 
 " � & ���3$ " � 
 �

�
& ��� � �� �3$ " � � � & � & � �

�

� ) � � isomorphism and initiality *
� ��� � � 
 " � � ���3$ � � 
 " � & ���3$ " � 
 �

�
& ��� � � ���3$ " � � � & � & � �

�

� ) ��� � � � � 	 � � �  � � � � � � � *
� ��� � & ���3$
� � 
 " � & ���3$ " � 
 �

�
& ��� � � ���3$ " � � � & � & � �

�



384 D. PROOFS

� ) ��� natural *
� ��� � �

��� � & ���3$ � � 
 " � & ��� � � ���3$ " � � � & � & � �
�

� ) routine: � � � � � � � � � � � � � � � � � � � � � �3*
� ��� � �

��� � & ��� � & � � �
�

� ) � � isomorphism *
� ��� � �

� �
�

� ) � �
definition *

�
� �

Law (5.58) is proved as follows,

� � � � �

� )�� and feedback definitions *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ " � 
 " � � � & �	$ " � 
 $ " � � � � �

&�&
� $ � �
��" � 
 " � � �

�
& �	$ � � 
 � & � � �

� ) functors and � strong (C.21) *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � � � � 
 � � � � � ��� � � � � � �	$ " � � � � �

& &
� $ � �
��" � 
 " � � �

�
& �	$ � � 
 � & � � �

� )�� and 
 � natural (C.16) and (C.6) *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � � ��� 
 � ��� � � � ��� � � ���3$ " � � � �

& � � � &
� � �
� " � 
 " � � �

�
& �	$ � � 
 � & � � �

� ) functors and � isomorphism *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ " � 
 � ��� � � � ��� � � ���3$ " � � � �

& ��� � & �	$ � � � 
 � � � &� $ ��� 
 � � & �	$ � �
��" � 
 " � � �

�
& �	$ � � 
 � & � � �

� ) � *
� ��� � ���3$ " � 
 �3$ " � � � � & & ���3$ " � 
 � � � & ���3$ " � 
 � � & ���3$ " � 
 " � � �

�
& ���3$ " � 
 � &

� �3$ � 
 " � & ���3$ " � � � � 
 " � & ��� � � ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � &� $ � �
��" � 
 " � � �

�
& �	$ � � 
 � & � � �

� ) functors *
� ��� � ���3$ " � 
 $ �3$ " � � � � & ��� � � � � � �	$ " � � �

�
& ��� & & ���3$ � 
 " � & ���3$ " � � � � 
 " � & ��� � ���� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � �

� " � 
 " � � �
�
& �	$ � � 
 � & � � �

� )�� cancellation *
� ��� �



2. PROOFS FOR CHAPTER 5 385

� �3$ " � 
 � �3$ " � � � � & ��� � � � � � �	$ � �
� " � & ��� � 
 �3$ " � � � � & ��� � � � � � �	$ " � � �

�
& ����� � � � &

� �3$ � 
 " � & ���3$ " � � � � 
 " � & ��� � � ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � &� $ � �
��" � 
 " � � �

�
& �	$ � � 
 � & � � �

� )�� absorption and law (C.56) *
� ��� �� �3$ " � 
 � �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � � � � �	$ � �

��" � & ��� � 
 � � � � � � �	$ " � � � �
& ��� &�&

� �3$ " � 
 � � �	$ " � � � � & & ���3$ � 
 " � & ���3$ " � � � � 
 " � & ��� � � ��� �3$ " � � � � & 
 �3$ " � � � � & �
� $ � � � 
 � � � & �	$ � � 
 � � & �	$ � �

� " � 
 " � � �
�
& �	$ � � 
 � & � � �

� ) functors *
� ��� � �
�3$ " � 
 � �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ ��� 
 � � & ��$ � �

��" � 
 " � � �
�
& �	$ � � 
 � & � � � &� �3$ � 
 " � & ���3$ " � � � � 
 " � � � � & ��� � � ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � &� $ � � 
 � � & �	$ � �

��" � 
 " � � �
�
& �	$ � � 
 � & � � �

� )�� definition *
� ��� � ���3$ � 
 � � � �

& ���3$ " � � � � 
 " � � � � & ��� � � � � � � �

� ) partial feedback definition *
� � � � �

	

The step marked with a � above is justified by the following calculation:
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ " � 
 � ��� � � � ��� � � ���3$ " � � � �

& ��� � &
� ) monad unit (C.14) *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & �	$ � � 
 " � & �	$ " � 
 � � � � ��� � � ���3$ " � � �
�
& ��� � &

� )�� absorption *
� �3$ " � � � � & � � 
 �3$ " � � � � & � � � �	$ � � 
 " � & �	$ " � 
 � � � � ��� � � ���3$ " � � �

�
& ��� � &

� )�� natural (C.16) *
� � ��� �3$ " � � � � & 
 � ��� �3$ " � � � � & � �	$ � � 
 " � & �	$ " � 
 � � � � ��� ��� ���3$ " � � �

�
& ��� � &

� )�� fusion *
� ��� � �3$ " � � � � & 
 � �3$ " � � � � & � �	$ � � 
 " � & �	$ " � 
 � � � � ��� � � ���3$ " � � �

�
& ��� � &

� )�� absorption *
� ��� � �3$ " � � � � & ��� � 
 � �3$ " � � � � & ��� � � � ��� � � ���3$ " � � �

�
& ��� ���

� ) functors and � natural (C.17) *
� ��� �3$ � �	$ " � � � � &�& 
 �3$ �3$ " � � � � & ��� � � � � � �	$ " � � �

�
& ��� & �



386 D. PROOFS

� )�� cancellation *
� ��� � � � ��$ " � � � � & 
 �3$ " � � � � & ��� � � � ��� �	$ " � � �

�
& ����� ��� � � 
 � � ����� 
 ����� � ��� � � �

� )�� fusion *
� ��� � � �	$ " � � � � & 
 �3$ " � � � � & ��� � � � � � �	$ " � � �

�
& ����� ��� � � � 
 � � � �

� ) laws (C.55) and (C.56) *
� ��� � � �	$ " � � � � & 
 �3$ " � � � � & ��� � � � � � �	$ " � � �

�
& �����

�!� � � � ���3$ " � � � � & 
 � � � ���3$ " � � � � & �
� ) � definition and � absorption, � fusion *

� ��� � ���3$ " � 
 �3$ " � � � � & & ���3$ " � 
 � � � & ���3$ " � 
 � � & ���3$ " � 
 " � � �
�
& ���3$ " � 
 � &

� �3$ � 
 " � & ���3$ " � � � � 
 " � & ��� � � ��� �3$ " � � � � & 
 �3$ " � � � � & �
+



2. PROOFS FOR CHAPTER 5 387

LEMMA §5.57

Proof. Equality (5.61) is established as follows:
� � � � ! � � � �

� )
feedback and wrapping definitions *

� ��� �3$ " � � 	 � & ��� � �
���3$ " � � 	 & ���3$ " � � 	 � & � �

�
�	$ " � � 	 &

� ) 
 isomorphism *
� ��� �3$ " � � 	 � & ��� � �

� �
�
�	$ " � � 	 &

� ) � natural (C.16) *
�3$ " � � 	 � & � � ��� � �

� �
�
�	$ " � � 	 &

� ) feedback and wrapping definitions *
� � � � � ! � � �

Next consider equality (5.62):
� #

��� � ( �
� )

feedback and � definitions *
� ��� � �3$ " � � � � & 
 �3$ " � � � � & � ���3$ � � � 
 � � � & ���3$ � � 
 � � & ���3$ � �

��" � 
 " � � � �
&

� �3$ � � 
 � & ��� � � ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � �
��" � 
 " � � � �

&
� $ � � 
 � & � � �

� )�� absorption, � fusion *
� ��� � �3$ " � � � � & ��� � � � � � ��$ � �

��" � & ��� � 
 �3$ " � � � � & ��� � � � � � �	$ " � � � �
& �����

��� � � � ���3$ " � � � � & 
 � � � ���3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � �
� " � 
 " � � � �

&
� $ � � 
 � & � � �

� ) laws (C.55) and (C.56) *
� ��� � �3$ " � � � � & ��� � � � ��� ��$ � �

��" � & ��� � 
 �3$ " � � � � & ��� � � � � � �	$ " � � � �
& �����

��� � � � 
 � � � � �	$ � � � 
 � � � & �	$ ��� 
 � � & �	$ � �
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� )�� fusion, � cancellation *

� ��� � �3$ " � � � � & ��� � � � ��� ��� ���3$ � �
� " � & ��� � � 
 � �3$ " � � � � & ��� � � � ��� � � ���3$ " � � � �

& ��� ���
� $ � � � 
 � � � & �	$ ��� 
 � � & �	$ � �

� " � 
 " � � � �
& �	$ � � 
 � & � � �

� )�� fusion and � natural (C.16) *
� �3$ " � � � � & ��� � � � � ��� � � � �3$ � �

��" � & ��� � � 
 �3$ " � � � � & � � � � � � ��� � � ���3$ " � � � �
& ��� ���

� $ � � � 
 � � � & �	$ � � 
 � � & �	$ � �
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� )�� absorption *



388 D. PROOFS

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � 
 � & �	$ � � � 
 � � � &� $ �3$ �
�
��" � & 
 �3$ " � � � �

& & �	$ � � � 
 � � & �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � �
� " � 
 " � � � �

&
� $ � � 
 � & � � �

� )�� � � � � � and � isomorphism *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � 
 � & �	$ � ��� 
 � ��� &� $ �3$ �

�
��" � & 
 �3$ " � � � �

& & �	$ ��� 
 � � & �	$ �
�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� ) 
 � , 
 � natural (C.5) and (C.6) *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � 
 � & �	$ � � � 
 � � � &� $ � � 
 � � & �	$ � �
�
� " � 
 " � � � � �

& �	$ �
�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� )�� strong (C.19) and (C.21) *

� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � � 
 � � � & �	$ � � 
 � � & �	$ � � " � 
 " � � � &� $ � �
�
� " � 
 " � � � � �

& �	$ �
�
� " � 
 " � � � �

& �	$ � � 
 � & � � �
� ) feedback and � definitions *
�

� � � ���

The somewhat simpler reasoning below establishes equality (5.63). The proof of (5.64) is a
combination of the proof arguments for the two previous cases, as usual.

� #
� � � ( �

� )
feedback and

�
definitions *

� ��� � � ���
�
� ���3$ �

�
� � �
& ��� � ��� � �

�
� �	$ �

�
� � �
& � �

� ) � � � � *
� ��� � � ���

�
� ���3$ �

�
� � �
& � � � �	$ �

�
� � �
& � �

� )�� � natural (C.31) *
� ��� � � ���

�
� �
�
� �	$ � �

�
� � � �

& �	$ �
�
� � �
& � �

� ) � natural (C.16) *
� � � � ���

�
� �
�
� �	$ � �

�
� � � �

& �	$ �
�
� � �
& � �

� ) law (C.75), which requires � to be commutative *
� � �

�
� �	$ � � � & �	$ � � �

� � � �
& �	$ �

�
� � �
& � �

� ) feedback and
�

definitions *
�

� � � � �

+



2. PROOFS FOR CHAPTER 5 389

LEMMA §5.58

Proof. The lemma relates partial feedback with wrapping and � . The proof arguments are
similar to the ones followed in the corresponding proofs for the total feedback. This is illus-
trated below in the detailed proof of (5.65).

�
� �
� � � & � ! � & ��� �

� ) feedback and wrapping definitions *
�3$ " � � $ � 
 	 � &�& � � ��� � ���3$ � 
 � �

& ���3$ " � � � � 
 " � � � � & ��� � � � � �
�	$ " � � $%� 
 	 & &

� )�� and � natural *
� ��� � ���3$ �3$ " � � $ � 
 	 � &�& 
 �3$ " � � $ � 
 	 � &�& & ���3$ � 
 � �

& ���3$ " � � � � 
 " � � � � &
� � � � � � �

�	$ " � � $ � 
 	 & &
� )�� natural (C.17) and 
 isomorphism *

� ��� �� �3$ � �	$ " � � $ � 
 	 � & & �	$ " � � � � & 
 �3$ " � � $ � 
 	 � & & � � �
�	$ " � � � � & �	$ " � � 	 & �	$ " � � 	 � & &

� � � � � � �
�	$ " � � $ � 
 	 & &

� )�� cancellation *
� ��� �� �3$ � �	$ " � � $�� � � � & & 
 �3$ " � � $ � 
 	 � &�& � � �

�	$ " � � $ � 
 	 & & �	$ " � � � � & �	$ " � � 	 � & &
� � � � � � �

�	$ " � � $ � 
 	 & &
� ) functors *

� ��� � ���3$ � �	$ " � � � � & 
 �3$ " � � $ � 
 	 � &�& � � �
�	$ " � � $ � 
 	 & & �	$ " � � � � & &

� �3$ " � � � 
 " � � 	 � & � � � � � � �
�	$ " � � $%� 
 	 &�&

� ) � � natural *
� ��� � ���3$ � �	$ " � � � � & 
 �3$ " � � $ � 
 	 � &�& � � �

�	$ " � � $ � 
 	 & & �	$ " � � � � & & ��� � �� �3$ " � � $ � 
 	 � & & � � �
�	$ " � � $%� 
 	 & &

� ) functors *
� ��� � ���3$ � 
 �3$ " � � $ � 
 	 � &�& � � �

��$ " � � $ � 
 	 & &�& ���3$ " � � � � 
 " � � � � & ��� � �� �3$ " � � $ � 
 	 � & & � � �
�	$ " � � $%� 
 	 & &

� )
feedback and wrapping definitions *

�
� � � & � ! � & � � � ���

+



390 D. PROOFS

LEMMA §5.73

Proof. Let us detail the proof concerning sequential composition:

�
��( �

� ) � definition and � , � separable *
� ��� � � � ��� ��� ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � ��� �


 � ��� �
&�& ���3$ " � � � � &� �3$ � ��� � & � ��� �	$�� �3$ " � � � � & 
 �3$ " � � � � & � ��" � & �	$�$ � ���

�

 � ���

�
& ��" � & �	$ � � � " � & ��� �

� ) routine: � � � � � � � � � � � � � � � � � � ��� � � � � ��*
� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � ��� �


 � ��� �
&�& ���3$ " � � � � &� �3$ � ��� � & � � � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � ��" � & �	$�$ � ���

�

 � ���

�
& ��" � & � ��� � �	$ � � 
 � � & � � �

� ) � � � natural *
� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � ��� �


 � ��� �
&�& ���3$ " � � � � &� �3$ � ��� � & � � � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � ��" � & � ��� � �	$ � ���

�
� " � 
 � ���

�
� " � &

� $ � � 
 � � & � � �
� ) law (C.66) *

� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � ��� �

 � ��� �

&�& ���3$ " � � � � &� �3$ � ��� � & ��� �3$ $ " � � � � & � " � & 
 �3$�$ " � � � � & ��" � & � �	$ ��� 
 ��� & � ��� � ��� �
� $ � ���

�
��" � 
 � ���

�
��" � & �	$ � � 
 � � & � � �

� )�� fusion and � � isomorphism *
� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � ��� �


 � ��� �
&�&

��� �3$ " � � � � & ���3$ � ��� � & ���3$ $ " � � � � & � " � & 
 �3$ " � � � � & ���3$ � ��� � & ���3$�$ " � � � � & ��" � & �
� $ � � 
 � � & �	$ � ���

�
��" � 
 � ���

�
� " � & �	$ � � 
 � � & � � �

� )�� � , � natural and � absorption *
� ��� � � � ��� � � ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � ��� �


 � ��� �
&�&

��� �3$ " � � � � �	$ " � � � � &�& 
 �3$ " � � � � �	$ " � � � � & & � �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � 
 � � &� $ � ���
�
��" � 
 � ���

�
��" � & �	$ � � 
 � � & � � �

� ) laws (C.55) and (C.56) *
� ��� � � � ��� ��� ���3$ " � � � �3$ " � � � � & 
 �3$ " � � � � & � & ���3$ " � � $ � ��� �


 � ��� �
&�&

��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � 
 � � &� $ � ���
�
��" � 
 � ���

�
��" � & �	$ � � 
 � � & � � �

� ) law (C.67) *
� ��� � � � ��� � �3$ " � � $ " � � � � & & 
 �3$ " � � $ " � � � � &�& � ���3$ � � 
 � � & ��� � � ���3$ " � � $ � ��� �


 � ��� �
& &



2. PROOFS FOR CHAPTER 5 391

��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � 
 � � &� $ � ���
�
��" � 
 � ���

�
��" � & �	$ � � 
 � � & � � �

� )�� fusion and � � natural *
� ��� � �3$ " � � � � & ��� � � 
 �3$ " � � � � & ��� � � � ���3$ � � 
 � � & ��� � � ���3$ " � � $ � ��� �


 � ��� �
& &

��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ �3$ � ��� � & 
 �3$ � ��� � & & �	$ � � 
 � � &� $ � ���
�
��" � 
 � ���

�
��" � & �	$ � � 
 � � & � � �

� )�� absorption *
� ��� � �3$ " � � � � & 
 �3$ " � � � � & � ���3$ � � � 
 � � � & ���3$ ��� 
 � � & ��� � � ��� �3$ " � � � � & 
 �3$ " � � � � & �
� �3$ " � � � ��� �

& 
 �3$ " � � � ��� �
& �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ ��� 
 ��� &� $ � ���

�
��" � 
 � ���

�
��" � & �	$ � � 
 � � & � � �

� )�� fusion *
� ��� � �3$ " � � � � & 
 �3$ " � � � � & �
��� �3$ � � � � � � 
 � � � � � � & ��� � � ���3$ " � � � � & 
 �3$ � � � � � � 
 � � � � � � & ��� � � ���3$ " � � � � & �
� $ �3$ " � � � ��� �

& 
 �3$ " � � � ��� �
& & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ ��� 
 ��� & �	$ � ��� �

� " � 
 � ���
�
� " � &

� $ � � 
 � � & � � �
� ) laws (C.55) and (C.56) *

� ��� � �3$ " � � � � & 
 �3$ " � � � � & � ��� �3$ � � � � � � 
 � � � � � � & ��� � � 
 �3$ � � � � � � 
 � � � � � � & ��� � � �
� $ �3$ " � � � ��� �

& 
 �3$ " � � � ��� �
& & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � � 
 � � & �	$ � ��� �

� " � 
 � ���
�
� " � &

� $ � � 
 � � & � � �
� )�� cancellation and absorption *

� ��� � �3$ " � � � � & 
 �3$ " � � � � & � ��� � � � 
 � � � � �	$ � � � � 
 � � � � & �	$ � � � 
 � � � &
� $ �3$ " � � � ��� �

& 
 �3$ " � � � ��� �
& & �	$ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � � 
 � � &� $ � ���

�
��" � 
 � ���

�
��" � & �	$ � � 
 � � & � � �

� )�� fusion and cancellation *
� ��� � �3$ " � � � � & 
 � �3$ " � � � � & � ��$ � � � � 
 � � � � & �	$ � � � 
 � � � & �	$ �3$ " � � � ��� �

& 
 �3$ " � � � ��� �
&�&

� $ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � � 
 � � & �	$ � ��� �
� " � 
 � ���

�
� " � & �	$ � � 
 � � & � � �

� )�� fusion and � natural *
� �3$ " � � � � & � � 
 �3$ " � � � � & � � � �	$ � � � � 
 � � � � & �	$ � � � 
 � � � & �	$ �3$ " � � � ��� �

& 
 �3$ " � � � ��� �
& &

� $ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ � � 
 � � & �	$ � ��� �
� " � 
 � ���

�
� " � & �	$ � � 
 � � & � � �

� )�� absorption *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � 
 � & �	$ � � � � 
 � � � � & �	$ � � � 
 � ��� & ���3$ " � � � ��� �

& 
 �3$ " � � � ��� �
&

� $ �3$ � ��� � & 
 �3$ � ��� � &�& �	$ ��� 
 ��� & �	$ � ��� �
� " � 
 � ���

�
� " � & �	$ � � 
 � � & � � �



392 D. PROOFS

� ) � definition *
� �3$ " � � � � & � � ���

��( ��� �

 �3$ " � � � � & � � ���

� ( ��� �
� � � �

The other facts in the first group are trivial. Just notice that, in the wrapping case, separability
propagates only when the wrapping functions are sums. In the second group of compositions,
we prove the parallel case below. The others follow similar arguments. Thus,

� #
� � � ( � � � � ! � � �

� ) � separable,
�

and wrapping definitions *
�3$ " � � ��� & ��� � �

�
� �	$�� �3$ " � � � � & 
 �3$ " � � � � & � � " � & �	$ $ � ���

�

 � ���

�
& � � � & �	$ � � ��" � &

� � �	$ " � � ��� � &
� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � ��*
�3$ " � � ��� & ��� � �

�
� �	$�� �3$ " � � � � & 
 �3$ " � � � � & � � " � & �	$ $ � ���

�

 � ���

�
& � � � & � ��� �

� $ � 
 � & � � �
� ) � � � natural *

�3$ " � � ��� & ��� � �
�
� �	$�� �3$ " � � � � & 
 �3$ " � � � � & � � " � & � ��� � �	$ � ���

�
� � � 
 � ���

�
� � � &

� $ � 
 � & � � �
� )�� � definition *

�3$ " � � ��� & ��� � � � ��� � � � � � �	$�� �3$ " � � � � & 
 �3$ " � � � � & � � " � & � ��� � �	$ � ���
�
� � � 
 � ���

�
� � � &

� $ � 
 � & � � �
� ) law (C.66) *

�3$ " � � ��� & ��� � � � ��� � � ��� �3$ $ " � � � � & � " � & 
 �3$ $ " � � � � & � " � & � �	$ � � 
 � � & � ��� � ��� �
� $ � ���

�
� � � 
 � ���

�
� � � & �	$ � 
 � & � � �

� ) � � � isomorphism, � fusion *
�3$ " � � ��� & ��� � � � ��� � � � ���3$ $ " � � � � & � " � & 
 � � � ���3$ $ " � � � � & � " � & �
� $ ��� 
 ��� & �	$ � ���

�
� � � 
 � ���

�
� � � & �	$ � 
 � & � � �

� ) 
 � natural (C.6), � absorption *
�3$ " � � ��� & ��� � � � ��� � �3$ $ " � � � � & � " � & 
 � �3$ $ " � � � � & � " � & � �	$ � � � 
 � ��� & �	$ ��� 
 ��� &
� $ � ���

�
� � � 
 � ���

�
� � � & �	$ � 
 � & � � �

� )�� natural (C.16), � fusion *
�3$ " � � ��� & ��� � � ���3$ $ " � � � � & � " � & � � 
 � � ���3$ $ " � � � � & � " � & � � � ��$ � � � 
 � � � &� $ � � 
 � � & �	$ � ���

�
� � � 
 � ���

�
� � � & �	$ � 
 � & � � �

� )�� absorption *



2. PROOFS FOR CHAPTER 5 393

�3$ " � � ��� & ��� � � ���3$ $ " � � � � & � " � & 
 � � ���3$�$ " � � � � & � " � & � �	$ � 
 � & �	$ � � � 
 � � � &� $ � � 
 � � & �	$ � ���
�
� � � 
 � ���

�
� � � & �	$ � 
 � & � � �

� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � *
�3$ " � � ��� & ��� �3$ " � � ��� � & ���3$ " � � � � & ��� � 
 �3$ " � � ��� � & ���3$ " � � � � & ��� � �
� $ � 
 � & �	$ � � � 
 � � � & �	$ ��� 
 ��� & �	$ � ��� �

� � � 
 � ���
�
� � � & � ��� � �	$ � 
 � & � � �

� )�� absorption and fusion *
�3$ " � � ��� & ���3$ " � � ��� � & ��� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � � 
 � � & �	$ � 
 � & �	$ � ��� 
 � � � &� $ � � 
 � � & �	$ � ���

�
� � � 
 � ���

�
� � � & � ��� � �	$ � 
 � & � � �

� ) � � isomorphism and
�

definition *
� �3$ " � � � � & 
 �3$ " � � � � & � �	$ � ���

� � �

 � ���

� � �
& � � �

+



394 D. PROOFS

LEMMA §5.77

Proof. Note that both components have type
� 
 � � 
��

. Then, by law (5.10),
� � � � � $ � � " � 
�	 & � & � � � $ $ � � " � 
�	 & � & � � & ��� � 
 " � �

Thus,
� # #

� � � � ! � � � ( �
	 ( � � � ! � �%�

� )
partial feedback definition, � separable *

� ��� � ���3$ � 
 �3$ " � � 	 & & � �
�
& ���3$ " � � � � 
 " � � � � & ��� � � ���3$ " � � 	 & &

��� �3$ " � � � � & � � ���
�

 �3$ " � � � � & � � ���

�
� � � � �	$ " � � � � &

� ) law (C.55) *
� ��� � ���3$ � 
 �3$ " � � 	 & & � �

�
& ���3$ " � � � � 
 " � � � � & ��� � � ���3$ " � � 	 & &

��� �3$ " � � � � & � � ���
�

 �3$ " � � � � & � � ���

�
� ��� �

� )�� cancellation *
� ��� � ���3$ � 
 �3$ " � � 	 & & � �

�
& ���3$ " � � � � 
 " � � � � & ��� � � ���3$ " � � 	 & & ���3$ " � � � � & � � ���

�

� ) � � natural *
� ��� � ���3$ � 
 �3$ " � � 	 & & � �

�
& ���3$ " � � � � 
 " � � � � & ���'	 & ��� � � ���3$ " � � � � & � � ���

�

� ) law (C.55) *
� ��� � ���3$ � 
 �3$ " � � 	 & & � �

�
& ���3$ " � � � � 
 " � � � � & ���'	 & ��� � � � � ���

�

� ) � definition and � absorption *
� ��� � � �	$ " � � � � & 
 �3$ " � � 	 & & � �

�
�	$ " � � � � & � ���'	 & ��� � � � � ���

�

� )�� fusion application: � � 	 �  � � � � � � 	 �  *
� ��� � �3$ " � � 	 & & � �

�
�	$ " � � � � & 
 � �	$ " � � � � & � ��� � � � � ���

�

� )�� cancellation *
� ���3$ �3$ " � � 	 & & � �

�
�	$ " � � � � &�& � � ���

�

� ) � separable *
� ���3$ �3$ " � � 	 & & ��� �3$ " � � � � & � � ���

�

 �3$ " � � � � & � � ���

�
� � � � �	$ " � � � � &�& � � ���

�

� ) law (C.54) *
� ���3$ �3$ " � � 	 & & ��� �3$ " � � � � & � � ���

�

 �3$ " � � � � & � � ���

�
� ��� � & � � ���

�

� )�� cancellation *
� ���3$ �3$ " � � 	 & & ���3$ " � � � � & � � ���

�
& � � ���

�

� ) routine: �
� ��� � � � � *



2. PROOFS FOR CHAPTER 5 395

� ���3$ �3$ " � � � � & � � ���
�
& � � ���

�

� )�� natural (C.16) *
�3$ " � � � � & � � ��� � ��� �

� � ���
�

� ) 
 definition *
�3$ " � � � � & �	$ � ���

� � � ��� �
&

� )
hook definition *

� # �
�
� 	 ( � � � ! � � �

which, again by law (5.10), is bisimilar to
�
� � � � � � � � . +



396 D. PROOFS

3. Proofs for Chapter 6

LEMMA §6.5

Proof. Let us check the action part of equations (6.3) and (6.4). For the first one, consider:

� � � � � � 
���� � ( �

� ) � and ��� ��� � definitions *
� � � � � ��� � � ���3$ " � � � �

& � � � ��� � " � 
 � � 
 � ��� �	$ $ � � � � & � " � & ��� �
� )�� natural (C.16) *

� ��� � � � � � � � ���3$ " � � � �
& ��� � � � � " � 
 � � 
 � � � �	$ $ � � � � & � " � & ��� �

� ) law (C.13) *
� ��� � � ���3$ " � � � �

& ��� � ��� � " � 
 � � 
 � ��� �	$ $ � � � � & � " � & ��� �
� ) � cancellation *

� ��� � �
��� � � ��� � ��� � " � 
 � � 
 � � � �	$ $ � � � � & � " � & ��� �

� ) routine: � � � � � � � � � � *
� ��� � �

���3$ � � ��" � & ��� � " � 
 � � 
 � � � �	$ $ � � � � & � " � & ��� �
� ) � absorption *

� ��� � �
��� � � � 
 � � 
 � ��� �	$ $ � � � � & � " � & ��� �

� )�� strong (C.18) *
� ��� � �

��� � � � 
 � � 
 ��� �	$ � � � " � & ��� �
� )�� natural (C.17) *

� ��� � � �
� � � � 
 � � 
 �	$ � � � " � & ��� �

� ) law (C.14) *
�

�
� � � � 
 � � 
 �	$ � � ��" � & ��� �

� ) routine: � � � 	 � � � � � � � � � � � � � � � � � � � � � �	*
�

�
�	$ � � � " � & ��� � ��� �

� )�� � � � � � *
�

�
�	$ � � � " � &



3. PROOFS FOR CHAPTER 6 397

Now, for equation (6.4),

� � � � �
� ( ��
���� �

� ) � and ��� � � � definitions *
� � � � � ��� � � ���3$ " � � $ � � � � & & ��� � ��� � " � 
 �

�
� � � 
 � � � �	$ �

�
� " � & ��� �

� ) law (C.20) *
� � � � � ��� � ���3$ " � � � � & ��� � ��� � " � 
 �

�
� � � 
 � ��� �	$ �

�
� " � & ��� �

� ) law (C.14) *
� � � ���3$ " � � � � & ��� � ��� � " � 
 �

�
� � � 
 � � � �	$ �

�
��" � & ��� �

� ) routine: � ��� � � � � � � � � � � � �	� � � *
� � � ��� � � ��� � " � 
 �

�
� � � 
 � � � �	$ �

�
� " � & ��� �

� ) � cancellation *
� � � � ��� �	$ �

�
��" � & ��� �

� ) law (C.12) *
� � �	$ �

�
� " � & ��� �

� ) � cancellation *
�

�
� � � ��� �

� ) routine: � ��� � � � � � � � � *
�

�
�	$ � � � " � &

+



398 D. PROOFS

LEMMA §6.12

Proof. Let
� � � 
 � � � and � � � 

� � � . It remains to be shown that

�3$ � � � & � � � ( � � � � � ( � � ��$ $ � � � & � " � &
(D.8)

and

�
�

� ( �
� �

� ( � � �
�

� � ( � � � � � � ( � � �	$�$ � � � & � " � &
(D.9)

Equation (D.8) is checked through the following calculation:

�
� � ( � � �	$�$ � � � & � " � &

� ) � definition *
� ��� � � ���3$ " � � � � � & ��� � ��� � " � 
 �

� � � � � 
 � ��� �	$ � � � � " � & ��� � �	$ $ � � � & ��" � &
� )�� � natural *

� ��� � � ���3$ " � � � � � & ��� � ��� � " � 
 �

� � � � � 
 � � � �	$ � � � � " � & �	$�$ � � " � & � � & ��� �
� ) assumption: � � � � � � � � � � ��� � � � � *

� ��� � � ���3$ " � � � � � & ��� � ��� � " � 
 �

� � � � � 
 � � � �	$ � � � � & �	$ � �
� " � & ��� �

� ) 
 � natural (C.5) *
� ��� � � ���3$ " � � � � � & ��� � ��� � " � 
 �

� � � � � 
 ���3$ � � � & � ��� �	$ � �
� " � & ��� �

� ) � fusion *
� ��� � � ���3$ " � � � � � & ��� � ��� � � � � 


�

� � � � � �	$ � � � & 
 � � � �	$ � �
��" � & ��� �

� ) � cancellation *
� ��� � � ���3$ " � � � � � & ��� � ��� � � � � 


�

� � � � � � � 
 � ��� �	$ � �
� " � & ��� �

� ) by assumption � is a next comorphism which implies � � � � � � � � (lemma §6.7) *
� ��� � � ���3$ " � � � � � & ��� � ��� � � � � 


�

�
� � � 
 � � � �	$ �

�
� " � & ��� �

� ) � absorption *
� ��� � � ���3$ " � � � � � & ��� � ���3$�$ � � � & � " � & ��� � " � 
 �

�
� � � 
 � � � �	$ �

�
� " � & ��� �

� )	� natural *
� ��� � � ���3$ " � � � � � & ���3$ � � $ � � " � &�& ��� � ��� � " � 
 �

�
� � � 
 � ��� �	$ �

�
� " � & ��� �

� ) assumption: � 
 � � � � � � � � ��
 � � � � *
� ��� � � ���3$ � � � � & ���3$ " � � � �

& ���3$ � � $ � � " � & & ��� � ��� � " � 
 �

�
� � � 
 � � �

� $ �
�
� " � & ��� �

� ) 
 � natural (C.6) *



3. PROOFS FOR CHAPTER 6 399

� ��� �3$ � � � & ��� � � ���3$ " � � � �
& ���3$ � � $ � � " � & & ��� � ��� � " � 
 �

�
� � � 
 � � �

� $ �
�
� " � & ��� �

� )�� natural (C.16) *
�3$ � � � & � � ��� � � ���3$ " � � � �

& ���3$ � � $ � � " � & & ��� � ��� � " � 
 �

�
� � � 
 � � �

� $ �
�
� " � & ��� �

� ) � definition *
�3$ � � � & � � ��( �

For equation (D.9) consider:
�

�

� � ( � � � � � � ( � � �	$�$ � � � & � " � &
� ) just proved *

�
�

� � ( � � ���3$ � � � & � � ��( �

� ) � definition *
�

� � � ��� � � ���3$ � � � & � � ��( �

� ) � cancellation *
�

� � � ��� � ��� � � � � ��( �

� ) by assumption 
 is a next comorphism, which implies � � � � � � � � (lemma §6.7) *
�

� �
��� � � � �

��( �

� ) � definition *
�

�

��( �
� �

� ( �

+



400 D. PROOFS

LEMMA §6.23

Proof. All these laws are, in fact, strict equalities. For equation (6.23) observe first that
� � � � � � � � � � and this, in turn, equals ��� � � � � . For the action part, reason as follows

��� � � � �
� ) feedback definition *

� ��� � � � � ��� � " � 
 � � � � 
 � � � � �
� ) function lifting definition *

� ��� � ��� � ��� � � ��� � " � 
 " � 
 ��� � � � � �
� ) law (C.14) *

� � ��� � � ��� � " � 
 " � 
 ��� � � � � �
� ) � cancellation *

� � ��� � � � � �
� )�� natural (C.17) *

� � ��� � � � �
� ) function lifting definition *
� � � � � �

Consider, now, equation (6.24). By definition of wrapping one gets � � � � � ! � � � � 	 � � � � � , which
equals

	 � � � � . On the other hand, � � � � ! � � � � � � � � � ! � � � � 	 � � � � . For the action part, consider
� � � � ! � � � �

� ) feedback and wrapping definitions *
� ��� � � ���3$ " � � 	 & ��� � " � 
�	 � � � � 
 � � � �	$ " � � 	 &

� ) � absorption *
� ��� � � ��� � " � 
�	 ��	 � � � � 
 � � � �	$ " � � 	 &

� )�
 isomorphism *
� ��� � � ��� � " � 
 � � 
 � � � �	$ " � � 	 &

� ) feedback and wrapping definitions *
� � � � � ! � � �

For the remaining laws, observe that the attribute parts of both sides of each equation coincide
trivially. The action parts are proved as in §5.57. +



3. PROOFS FOR CHAPTER 6 401

LEMMA §6.27

Proof. We shall consider in detail equation (6.28), which is a strict equality. Note that (6.29)
is simply a corollary of this, because

$ � � � & ��� � 
 " � � � � � � . Thus, for the attribute part reason:

�
#

��� � ( � � � ! � � �
	 � � � ! � � �

� ) wrapping, partial feedback and � definitions *
� � � ���'	3�	$ �

�
�

� �
&

� )�� natural *
� � � �	$ � �

�
�

�
& ���'	

� ) � cancellation *
� � � � � �

� � � ���'	
� )�� definition and � cancellation *

� � � � � �
� � �

� ) � definition *
�

� ( �

For the action part, consider

� #
��� � ( � � � ! � � �

	 � � � ! � � �
� ) wrapping definition *
� #

��� � ( � � � ! � � �
	��	$ " � � � � &

� ) partial feedback and wrapping definitions *
� ��� � ��� �

��� � " � 
 � � �
	 � �

��� �

 � �3$ " � � � � & � �

� � �
�	$ " � � � � &

� )�� definition and � cancellation *
� ��� � ��� �

���3$ " � � � � & ��� � " � 
 � � � �

��� �

 � �

��� �
�	$ " � � � � &

� )�� definition *
� ���3$ � �	$ � � 
 � � & �	$ � �

��" � 
 " � � � �
& �	$ � � 
 � & � � � & ���3$ " � � � � & ��� � " � 
 � � � �

��� �



�
�
�	$ � � 
 � � & �	$ �

�
��" � 
 " � � � �

& �	$ � � 
 � & � � � �	$ " � � � � &
� ) � cancellation *

� ���3$ � �	$ � � 
 � � & �	$ � �
��" � 
 " � � � �

& �	$ � � 
 � & � � � & ���3$ " � � � � & ��� � " � 
 �

�
� � � 


�
�
�	$ � � 
 � � & �	$ �

�
��" � 
 " � � � �

& �	$ � � 
 � & � � � �	$ " � � � � &
� ) laws (C.55) and (C.56) *

� ���3$ � �	$ ��� 
 � � & �	$ � �
��" � 
 " � � � �

& �	$ � � 
 � &�& ��� � � ��� � " � 
 �

�
� � � 
 � �



402 D. PROOFS

� $ � � 
 � � & �	$ �
�
� " � 
 " � � � �

& �	$ � � 
 � & ��� �
� ) � definition and � absorption *

� ��� � ��� �	$ � �
��" � & ��� � 
 � � �	$ " � � � �

& ����� ��� � � ��� � " � 
 �

�
� � � 


��� � � �	$ �
�
� " � & ��� � 
 � � �	$ " � � � �

& ����� ��� �
� )�� cancellation *

� ��� � � �	$ " � � � �
& ��� ��� � " � 
 �

�
� � � 
 � ��� � $ �

�
��" � & ��� �

� ) � definition *
�

��( �

Finally, note that
� #

��� � ( � � � ! � � �
	 � � � ! � � � � � � $��

�
� �

�
& � �

� ( � . by definition of both wrapping
and partial feedback, +



3. PROOFS FOR CHAPTER 6 403

LEMMA §6.30

Proof. Consider equation (6.30) first, which is a strict equality. Thus,

� �
#

� � � ! � ��(
� )

delay definition *
�

� � � ! � � � � �
� ) wrapping definition *
� � �

�
� � �

� ) delay definition *
� � � �

�

� ) wrapping definition *
�
#

�
� ( � � ! � �

For the action part compute

� �
#

� � � ! � � (
� )

delay definition *
� � �	$ " � � �

� � � ! � � & � � �	$ � � " � & �	$ � � � " � &
� ) wrapping definition *

� � �	$ " � � �
�
& �	$ " � � $ " � � � & & ��� �	$ � � " � & �	$ � � � " � &

� )	� natural *
� � �	$ " � � �

�
& ��� �	$ " � � � & �	$ � � " � & �	$ � � � " � &

� ) functors *
� � �	$ " � � �

�
& ��� �	$ � � " � & �	$ � � ��" � & �	$ " � � � &

� ) wrapping and delay definitions *
� # �

� ( � � ! � �
Bisimilarity in the remaining three equations is witnessed by the exchange natural isomor-
phism � � �

�
� �

�
� $ �

�
� �

�
& 

� �

�
� �

�
� $ �

�
� �

�
&

as a comorphism from left to the
righthand side. We shall detail the proof of equation (6.31); the remaining two are similar re-
sorting to the combinators definitions and properties of � collected in appendix C. Notice, in
particular, the observers part for all equations are established by the same calculation. Thus,

� �
� � � �
� �

� ) � and delay definitions *$
�

�
� � � � � �

� � � & � �



404 D. PROOFS

� ) � functor *$
�

�
�

� �
& �	$ � � � � � & � �

� ) routine: � � � � � � � � � � � � *
$

�

�
�

� �
& � � �

� ) delay definition *
� �

#
� � � (

For the action part compute
� � � � �

#
� � � (

� ) delay definition *
� � � � � �	$ " � � � ��� �

& ��� �	$ � � " � & �	$ � � ��" � &
� ) � definition *

� � � � � �	$ " � �
�
� & �	$ " � � $ �

�
� � �
& & �	$ " � � � & ��� �	$ � � " � & �	$ � � � " � &

� ) law (C.81) *�
� �	$ � � � � � & � � �	$ " � � $ � �

� � �
& & �	$ " � � � & ��� � $ � � " � & �	$ � � � " � &

� ) � natural *�
� �	$ � � � � � & �	$�$ " � � �

�
& � $ " � � � �

&�& � � �	$ " � � � & ��� �	$ � � " � & �	$ � � � " � &
� ) routine: � � � � � � �

� � � � � � � � � � � � � � � � ��� *�
� �	$ � � � � � & �	$�$ " � � �

�
& � $ " � � � �

&�& �	$ � � � & � � �	$ � � " � & �	$ � � " � & ��$ � � � " � &
� ) routine: � � � � � � � � � � 	 � � � � � � � 	 � � � � � � 	 � � � � � � � *�

� �	$ � � � � � & �	$�$ " � � �
�
& � $ " � � � �

&�& �	$ � � � & �	$ $ � � " � & � $ � � " � &�& � ��%$ � � ��" � &
� ) routine: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � *�

� �	$ � � � � � & �	$�$ " � � �
�
& � $ " � � � �

&�& �	$ � � � & �	$ $ � � " � & � $ � � " � &�&
�%$ $ � � � " � & � $ � � � " � &�& � � �	$ � � " � &

� ) � functor and
�

definition *
� �

� � � �
�	$ � ��" � &

Finally, notice the seed predicate is trivially verified in all cases. +



3. PROOFS FOR CHAPTER 6 405

LEMMA §6.31

Proof. In order to prove equation (6.34) we check that � � ��" � � �
�
� �

�
� �

�

 � �

�
� �

�

is a comorphism from

�
� � � to

� $ ��� � & � " � 
�	 � � � . The attribute’s part is rather simple:
� � #

� � � ( � � � ! � � �
	
�	$ � � � " � &

� ) hook, delay and
�

definitions *
� � �
	 �	$ �

�
�

� �
& �	$ � � � " � &

� )�� definition and � cancellation *
� �
� � � �	$ � � � " � &

� ) � cancellation *
� �
� � �

� ) � definition *
� �

��( �

For the action part we have to show that
�
�
� � � � � �

��( � � � � #
� � � ( � � � ! � � � 	

�	$ $ � � � " � & ��" � &

The proof is structured according to the following diagram in which the comorphism condition
is decomposed in a number of small steps:

�
�
� �

�
� �

�
� �

�
�

#
�
&

**

� � � � � � � � //

� �
��

�
�
� �

�
� �

� �
��

� � $ �
�
� $ �

�
� � & & � �

�
� � � � � � � �//

� �
��

� � $ �
�
� � & � �

�
� � � � � //

� �
��

$ �
�
� � & � $ �

�
� � &

�
�

���3$ �
�
� �

�
� �

�
& � # � � � � � ( // �3$ �

�
� �

�
& �3$ �

�
� �

�
&

where

� � � $ � � " � & �	$
�

�
� " � � " � ��" � & �	$ � � " � � " � & �	$ � ��" � & �	$ � � " � � " � & �	$ � � ��" � � " � & ��� �

� � � � � � � � 
 � � � 
 � � � � �
� � � � � � 
 


� � � � ��� � � ���3$ " � � � �
& ���3$ � �
	 ��� & � � � �	$ � � � " � & �	$ " � � � � � " � & �	$ " � � $ " � � �

�
& � " � &

� � � � ��� � � ���3$ " � � � �
& ���3$ � �
	 ��� & � � � �	$ � � � " � & �	$ " � � �

�
� " � &

� � �
�
� �	$ �

�
� � �
&

Let us denote the topmost diagram by
$ � & and the left (respectively, right) lower diagram by$ � &

(respectively,
$ � &

). The intuition is that diagram
$ � & caters for, in the pipeline expression,



406 D. PROOFS

the
�

parameter being computed earlier. Diagram
$ � &

deals with the effect of � � whereas
diagram

$ � &
relates an expression in which � and � actions are computed sequentially with

another in which this computation is simultaneous. Clearly, such is the case in a � expression.
First notice that

��� #
� � � ( � � � ! � � � 	

� ) hook definition *
� #

� � � ( � � � ! � �
� � � � 
 � � � 
 � � � �

#
� � � ( � � � ! � �

� � � 
 

� ) � and wrapping definitions *�

� �	$ �
�
� � �
& � � � � � � 
 � � � 
 � � � � �

� � � � � � 
 

� )�� � and � � definitions above *

� � � � �
and that the commutativity of the uppermost rectangle is a routine calculation. Now, diagram$ � & commutes because:

� � � � �
� ) � � and � � definitions *

� ��� � � ���3$ " � � � �
& � �3$ � �
	3��� & � � � �	$ � � ��" � & �	$ " � � � � � " � & �	$ " � � $ " � � �

�
& � " � &

� $ � ��" � & �	$
�

�
��" � ��" � ��" � & �	$ � � " � � " � & �	$ � � " � & �	$ � ��" � � " � & �	$ � � � " � � " � & ��� �

� )	� natural *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & � ��� �	$ � � ��" � & �	$ " � � ��� � " � & �	$ � � " � & �	$ " � � �
�
��" � &

� $
�

�
� " � ��" � � " � & �	$ � � " � � " � & �	$ � � " � & �	$ � � " � � " � & �	$ � � � " � ��" � & ��� �

� ) law (C.9) *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & � ��� �	$ � � ��" � & �	$ � � � " � & �	$ " � � �
�
� " � &

� $
�

�
� " � ��" � � " � & �	$ � � " � � " � & �	$ � � " � & �	$ � � " � � " � & �	$ � � � " � ��" � & ��� �

� ) 
 � natural (C.5) and functors *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & ���3$ � � " � & � � � �	$ � � � " � & �	$
�

�
��" � � " � � " � &

� $ � ��" � � " � & �	$ " � � �
�
��" � & �	$ � � " � & �	$ � ��" � � " � & �	$ � � ��" � ��" � & ��� �

� ) 
 � natural (C.6) and functors *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & ���3$ � � " � & � � � �	$ �3$ �

�
� " � � " � & � " � & �	$ � � � " � &

� $ � ��" � � " � & �	$ " � � �
�
��" � & �	$ � � " � & �	$ � ��" � � " � & �	$ � � ��" � ��" � & ��� �

� ) 
 � natural (C.5) *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & ���3$ � � " � & ���3$ $
�

�
� " � ��" � & � " � & � ��� �	$ � � � " � &



3. PROOFS FOR CHAPTER 6 407

� $ � ��" � � " � & �	$ " � � �
�
��" � & �	$ � � " � & �	$ � ��" � � " � & �	$ � � ��" � ��" � & ��� �

� ) 
 � natural (C.6) *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & ���3$ � � " � & ���3$ $
�

�
� " � ��" � & � " � & � ��� �	$ �3$ � � " � & ��" � &

� $ � � � " � & �	$ " � � �
�
��" � & �	$ � � " � & �	$ � ��" � � " � & �	$ � � � " � � " � & ��� �

� ) 
 � natural (C.5) *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & ���3$ � � " � & ���3$ $
�

�
� " � ��" � & � " � & ���3$ � ��" � � " � &

� ��� �	$ � � � " � & �	$ " � � �
�
� " � & �	$ � ��" � & �	$ � ��" � � " � & �	$ � � � " � � " � & ��� �

� ) delay and � definitions *
� �

��( �

Concerning the commutativity of diagram
$ � &

reason as follows:
�3$ � � � " � & ��� �

� ) � � definition *
�3$ � � � " � & � � ��� � � ���3$ " � � � �

& ���3$ � �
	 ��� & � � � �	$ � � � " � & �	$ " � � � � � " � &
� $ " � � $ " � � �

�
& ��" � &

� )�� natural (C.16) *
� ��� �3$ � � � " � & ��� � � ���3$ " � � � �

& ���3$ � �
	 ��� & � � � �	$ � � � " � & �	$ " � � � � � " � &
� $ " � � $ " � � �

�
& ��" � &

� ) 
 � natural (C.6) and functors *
� ��� � � ���3$ " � � � �

& � �3$ � � ��" � & ���3$ � �
	 ��� & � ��� �	$ � � � " � & �	$ " � � � � � " � &
� $ " � � $ " � � �

�
& ��" � &

� )	� and � natural *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & ���3$ " � � � � � " � & � ��� �	$ � � � " � & �	$ " � � � � ��" � &
� $ " � � $ " � � �

�
& ��" � &

� ) 
 � natural (C.5) *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & � � � �	$ �3$ " � � � � & � " � & �	$ � � � " � & �	$ " � � � � ��" � &
� $ " � � $ " � � �

�
& ��" � &

� ) 
 � natural (C.6) *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & � � � �	$ � � ��" � & �	$ " � � � � � � " � & �	$ " � � � � ��" � &
� $ " � � $ " � � �

�
& ��" � &

� ) law (C.13) *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & � ��� �	$ � � ��" � & �	$ " � � � � � " � & �	$ " � � $ " � � �
�
& ��" � &



408 D. PROOFS

� ) � cancellation *
� ��� � � ���3$ " � � � �

& � �3$ � �
	3��� & � ��� �	$ � � ��" � & �	$ " � � $ �
�
� � � & � " � &

� ) functors and � � definition *
� � �	$ " � � � � � " � &

And finally, to check diagram
$ � &

compute:� � ��� �
	 ���
� ) � � definition *�

� �	$ �
�
� � �
& ��� �
	 ���

� )�� � definition *
� ��� � � � � � �	$ � �

� � �
& ��� �
	 ���

� ) � functor and 
 � natural (C.5) *
� ��� � � ���3$ " � � � �

& � ��� �	$ �
�
� " � & ��� �
	3���

� )	� and � natural *
� ��� � � ���3$ " � � � �

& � � � ��� �
	 ��� �	$ " � � �
�
��" � &

� ) law (C.8) *
� ��� � � ���3$ " � � � �

& ��� � � � � �	$ � � � " � & �
	 ��� �	$ " � � �
�
��" � &

� )�� natural *
� ��� � � ���3$ " � � � �

& ��� � � ��� �
	 �	$ " � � ��� & ��� �	$ " � � �
�
��" � &

� ) law (C.7) *
� ��� � � ���3$ " � � � �

& ��� � ���'	3� � � �	$ " � � � � & ��� �	$ " � � �
�
� " � &

� ) law (C.46) *
� ��� � � ���3$ " � � � �

& ��� � �
	 ��� � ��� �	$ � � ��" � & �	$ " � � �
�
� " � &

� ) functors and � � definition *
� �

+



APPENDIX E

A Brief Introduction to CHARITY

1. Introduction

1. CATEGORICAL PROGRAMMING. CHARITY [CF92] is an experimental imple-
mentation of a programming language entirely based on categorical data types (see
section 4 in chapter 3). This means that programs are built by composition of combi-
nators (like anamorphisms or catamorphisms) arising as universal arrows associated
to such datatypes.

CHARITY makes few assumptions on the underlying category: distributivity is as-
sumed and the Cartesian closedness requirement, implicit in the original approaches
to categorical data types, namely in the [Wra88] refinement of Hagino’s work [Hag87b],
replaced by the assumption that all datatypes are strong (§3.50). CHARITY primitive
types are, then, the nullary (denoted by 1) and binary product types (denoted by the
infix operator *, with projections p0 and p1). The absence of exponentials at the
core level of the language endows CHARITY with a rather different flavour when
compared to more traditional functional languages. In particular, functions are not
values. Moreover, function composition, instead of function application, is taken as
the fundamental primitive in the language. This does not mean, however, that CHA-
RITY lacks support for higher-order types: simply they have to be explicitly declared
(see §12 in the sequel).

In this context, CHARITY may be classified as a polymorphic, strongly-typed lan-
guage, which is functional in style. In particular, any program has a guarantee of ‘ter-
mination’, in the sense that the term representing it always reduces to a head normal
form and, therefore, a ‘response’ is produced. Such a ‘response’ is computed either
lazily or eagerly depending on the types involved being coinductive or inductive, re-
spectively. In any case, the type system avoids the possibility of writing functions that
may never terminate. As argued in [CF92], the semantics of CHARITY is compati-
ble with this mathematical intuition [that functions are total]. In a broader sense, the
language may be seen as a concept-proof for the ‘slogan’ in [CF92],

[think of] category theory as a medium of computation rather than as a computational model.

409



410 E. A BRIEF INTRODUCTION TO CHARITY

Although both data and programs can be expressed in a pointfree way in terms of
such categorical combinators, programming at such a level becomes rather awkward
(namely, by the number of projections often needed to distribute variables along an ex-
pression). CHARITY programs are written in a term logic for Cartesian categories en-
riched with a definitional mechanism for inductive and coinductive strong data types.
This allows the use of variables in combinator expressions and pattern matching. The
term logic is formally defined and proved equivalent to the corresponding combinator
theory in [CS95].

2. APPENDIX OVERVIEW. The following paragraphs provide a brief introduction
to programming in CHARITY, emphasising the close correspondence with categorical
data types as presented in chapter 3. This explains why the presentation is somewhat
different from standard CHARITY presentations such as [CF92, Sch97]. On the other
hand, the presentation is intended to support the use of CHARITY for prototyping
some of the constructions proposed in the thesis. Actually, what makes CHARITY an
interesting alternative for prototyping purposes, when compared with other declara-
tive languages, is the very general way it provides for defining datatypes as algebras
or coalgebras for functors and enforcing a discipline for their use.

2. Coinductive Types

3. DEFINITION. Let
�

be an arbitrary type. Infinite sequences of
�

, usually written
as

� � , were introduced in §3.43 as a well known example of a coinductive type.
This means that

� � represents the carrier of the final coalgebra (§3.33) for functor
� � � � � � � , whose dynamics consists of two observers, accessing, respectively,
the

�

 �
�

and
�
� ��� of the sequence. In CHARITY the declaration

data S -> stream A =
head: S -> A | tail: S -> S.

introduces stream A as the final coalgebra


 � � 
 
 head 
 tail � � � � �	�
� � � � �
The declaration makes the names and arities of the observers explicit, thus revealing
the shape of functor � � . Moreover, stream can also be thought of as the associated
(strong) cotype functor

� �
	 (§3.63). In general, the declaration of a coinductive type



2. COINDUCTIVE TYPES 411

in CHARITY has the following format:

data � -> ) ( � ) =
� � : � -> � �

� � 
 � 	
| � � �
| � � : � -> � �

� � 
 � 	 .
This introduces coinductive type ) ( � ), parametric on

�
. The declaration format

conveys the idea that morphisms from any type � to ) ( � ) are solely determined by
morphisms from � to each �

� � � 
 � 	 , the output type of observer �
�
. Formally, this

defines ) ( � ) as the final coalgebra for a functor � � determined by a signature of
observers,


 � � 	 
 
 � ��
 � � � � � � � � � 	 � �
�
��
� �
�
� � � 
 � � 	 	 �

Note that each �
�

identifies one such observer whose type is obtained by setting � �
) ( � ) in the declaration. Therefore, ) ( � ) is

� �
� and ) itself denotes the cotype

functor.

4. THE UNFOLD COMBINATOR. The basic combinator associated to a strong coin-
ductive type is unfold, i.e., the ‘strong version’ of anamorphism, denoted by � � � � � �
in §3.56. This is specified in CHARITY by supplying, for each observer �

�
, the corre-

sponding component �

�
of the source coalgebra. As expected, as we are working on a

strong setting, each �

�
is typed as �

�
� � � % � � �

� � � 
 � 	 , assuming � as the carrier
of the source coalgebra and % the context type. The concrete syntax for the unfold
expression is as follows:

( 	 , � ) =>
(| 	 => � � :� � ( 	 , � )
|

...

| � � :� � ( 	 , � ) |) 	
where 	 and

�
denote variables of type � and % , respectively. Let us consider some

examples. In the first one, the stream of even natural numbers is generated by anamor-
phism � � 
 � � nat 
�� � � 	 
 starting with � as seed value. Therefore, even turns out to be a
constant of stream nat.

def even: 1 -> stream nat
= () => (| n => head: n

| tail: add(n,two)
|) zero.



412 E. A BRIEF INTRODUCTION TO CHARITY

Our second example is a function gen, which generates any stream of type X start-
ing at a given value, in which the generator of the ‘next’ value is itself supplied as
an additional parameter. This illustrates another feature of the language. Although
‘functions’ and ‘values’ are sharply distinguished in CHARITY, there is a mechanism
for passing functions as arguments of other functions. Such function arguments are
always placed between curly brackets, before the value arguments.

def gen{next: X -> X}: nat -> stream X
= m => (| n => head: n

| tail: next n
|) m.

Therefore, we may redefine even as

def even: 1 -> stream nat
= () => gen{addtwo} zero.

where addtwo: nat -> nat = n => add(n,two). Similarly, the follow-
ing examples define the stream of all naturals and a generator of any ascending stream
of naturals starting at a given number.

def fromzero: 1 -> stream nat
= () => gen{succ} zero.

def from: nat -> stream nat
= n => gen{succ} n.

Finally consider an example of an unfold with non trivial context. The function un-
til generates an ascending stream of naturals which, from some point on, remains
stable, infinitely repeating the last number. This point is, in fact, supplied as context
information (lt is the ‘less than’ order on � ):

def until: nat * nat -> stream nat
= (m,n) => (| x => head: {true => x

|false => n} (lt(x,n))
| tail: {true => succ x

|false => n} (lt(x,n))
|) m.

The last example is a somewhat unusual specification of � * . By unfolding, the func-
tion generates a stream of factorials in which the sought value can be looked up.



2. COINDUCTIVE TYPES 413

def genfac: nat * nat -> stream nat
= (n,m) => (| (x,y) => head: x

| tail: (mul(x,y), succ y)
|) (n,m).

def factorial: 1 -> stream nat
= () => genfac (one,one).

The corresponding diagram is

stream nat
�
head � tail � // nat

�
stream nat

nat
�
nat � � � ��� � � mul � succ � � � � � //

genfac �
� � � � �

OO

nat
� �

nat
�
nat

	

� � � � � � � �OO

1

�
one � one �

OO

5. THE RECORD COMBINATOR. An element 
 of the final coalgebra, i.e., a point
(§2.7) 


� � � � � �
� can be specified by its behaviour at each observer, i.e., by

prescribing values for all possible observations. For example, a stream of naturals
starting with zero and followed by all the even numbers can be defined as the unique
arrow zeven making the following diagram to commute:

stream nat
�
head � tail �// nat � stream nat

�
�
one � even �

33ggggggggggggggggggggggg

zeven

OO

Therefore,


 head 
 tail � � zeven � 
 one 
 even �
� � � fusion �


 head � zeven 
 tail � zeven � � 
 one 
 even �
� � equality �

head � zeven � one � tail � zeven � even

CHARITY provides a special syntax for describing this construction and denotes by
record the corresponding combinator. The zeven sequence is defined in this concrete
syntax as



414 E. A BRIEF INTRODUCTION TO CHARITY

def zeven: 1 -> stream nat
= () => (head: one, tail: even).

which reads exactly as ‘the head of zeven is one and its tail is even’. In presence
of context, � , in the diagram above, is replaced by � � % �� % , for % a context type,
and the values for the observers may depend on % . What is specified, in this case, is a
generalized element (§2.7) of stream nat. As an example, consider the following
function which generates an infinite sequence of naturals starting at a given number
� , with � repeated in the first two positions:

def nfrom: nat -> stream nat
= n => (head: n, tail: from n).

The same construction can be applied to any coinductive type. Thus, a way of pop-
ulating such types is provided by specifying particular values for the observers. The
general pattern for the record combinator is thus

�
=>

( � � : � � ( � )
|

...

| � � : � � ( � ) )

where each �
�

is a function from the context type to the codomain of the observer�
�
. This is the same device which the CHARITY runtime system uses to print out

coinductive datatypes, providing a rather verbose, but clear and uniform, presentation.
We may recall, at this point, that coinductive types are evaluated lazily. Therefore, the
interpreter only displays that part of the structure which has already been demanded.
User interaction is required to simulate demand.

6. THE MAP COMBINATOR. For each coinductive type, the map combinator denotes
the action on morphisms, with strength, of the corresponding cotype functor, as ex-
plained in §3.62. As an example, consider the following two functions on streams.
The first one increments a stream of natural numbers, illustrating a map with context.
The second transforms a stream of

�
into a stream of

�
-pairs by replicating each

element.

def incr: stream nat * nat -> stream nat
= (s,n) => stream{ x => add(x,n)} s.

def diagst: stream A -> stream(A * A)
= s => stream{ x => (x,x)} s.



2. COINDUCTIVE TYPES 415

Note the map combinator is specified by the name of the cotype functor, stream in
these examples, and the function to be applied enclosed between curly brackets as it
is always the case with ‘function’ arguments in CHARITY (recall §4).

Streams are just parametrized by one type
�

. Therefore, the argument to the map
expression over streams is just a function from

�
to another type � or, in the presence

of a context type % , from
� � % to � . However, coinductive (as well as inductive)

types can be specified in CHARITY with several different parameters. For example,
consider the following type, parametric on

�
and � .

data S -> bistream(A,B) = dt: S -> A | ct: S -> B
| lf: S -> S | rg: S -> S.

Note bistream(A,B) has two pure observers, observing on
�

and � , and two
transformers providing a binary branching structure. The associated coinductive type
can easily be recognised as the class of infinite binary trees carrying two kinds of
information on their nodes. For illustration purposes, one may think of data and
control information. Consider, for example, a function flow generating an infinite
tree from which we may observe a natural number (thought of as the ‘data’ part) and
a Boolean (representing, say, control information):

def flow: (nat * bool) * nat -> bistream(nat, bool)
= ((init, control), critical) =>

(| (n,b) => dt: n
| ct: and(b, lt(n, critical))
| lf: (add (n, one), b)
| rg: (add (n, two), not b)
|) (init, control).

Pursuing observation always on the left (resp. right), we retrieve the odd (resp. even)
natural numbers and in alternative branches the flag used to compute the control in-
formation appears complemented. Finally, notice how the ‘control’ value is computed
using some ‘extra’ information (e.g., a ‘critical’ reference level) provided as context
to unfold.

To map over a bistream, requires the specification of a transformation for each
parameter, i.e.,

� � � � � � �
� or

� � � � � % � � �
�� � � � �	� � � or

� � � � � % � � � �

For example, a bistream generated by flow can be uniformly modified by incre-
menting the data values and trivialising the control information. The two effects can
be achieved simultaneously by the following function:



416 E. A BRIEF INTRODUCTION TO CHARITY

def modify_flow: bistream(nat, bool) -> bistream(nat, 1)
= t => bistream{n => succ n, b => ()} t.

Technically, bistream is simply the cotype functor associated to � � � � � � � �
� � � � . The general format of the map combinator over a type ) ( � � , � � � , � � )
with � parameters, is

(
�
,
�
) =>

) { � � => �
� ( � � ,

�
)

|
...

...

| � � =>
� � ( � � , � ) }

�

where
�
�
� �

�
� % � � �

�

�
, yielding a result of type ) ( � � � , � � � ,

�
�� ).

3. Inductive Types

7. DEFINITION. Inductive types are declared in CHARITY as

data ) ( � )-> � =
�
� : � �

� � 
 � 	 -> �
| � � �
|

� �
: � �

� � 
 � 	 -> � .

which introduces type ) ( � ), parametric on
�

, as the initial algebra (§3.14)


 � � 	 
 � � � 
 � � � 
 � � 
 �
�� �
� �
�
� � � 
 � � 	 	 �	� � � 	 �

Moreover, ) acts as the associated type functor
� �

	 (§3.63). Mapping a function
over an inductive type corresponds exactly to the application of the action on mor-
phisms of its type functor. As expected, in the CHARITY term logic the syntax of the
map expression (§6) for both inductive or coinductive types coincide.

The natural numbers, Boolean values and sequences of
�

are typical examples of
inductive types included in the CHARITY standard prelude. Another equally relevant
case is the datatype of ‘partial elements’ of

�
also called the ‘maybe’ or ‘success-

failure’ datatype, which defined as the coproduct of
�

with the final type � . Declara-
tions of these types in CHARITY follow:



3. INDUCTIVE TYPES 417

data nat -> S = zero: 1 -> S | succ: S -> S.

data bool -> S = true: 1 -> S | false: 1 -> S.

data list A -> S = nil : 1 -> S | cons: A * S -> S.

data SF A -> S = ss: A -> S | ff: 1 -> S.

The language provides some notation (and a handful of primitive functions) for deal-
ing with these datatypes. For example, square brackets can be used for list enumer-
ation, as it is usual in functional languages. Finally note that the binary coproduct� � � is introduced in the language as the (non recursive) inductive type

data coprod(A, B) -> S = b0: A -> S | b1: B -> S.

In retrospect, the coproduct type is a prototypical example of an inductive type. Al-
though non recursive, it is completely determined by two constructors — the injec-
tions � � and � � (b0 and b1, respectively). Dually, the product type is determined by
two observers — the projections � � and � � (written p0 and p1) — being, therefore,
a prime example of a coinductive type.

8. THE FOLD COMBINATOR. The fold combinator, or ‘strong catamorphism’ (see
§3.61 where it is denoted by ��� � � ), is specified by introducing, for each constructor�
�
, the corresponding constructor,

�
�
, of the target algebra. Each of them is typed as�

�
� �

� � � 
 � 	 � % �	� � , where % is the type of the context and � the carrier of
the target algebra. The target algebra is, of course, just the either of all such

�
�
. The

concrete syntax for the fold expression is:

( 	 , � ) =>
{|

�
� : 	 � => � � ( 	 � , � )

|
...

...

|
� �
: 	 � => � � ( 	 � , � ) |} 	

where 	 and
�

denote variables of types � and % , respectively.
As an example, consider the following diagram which specifies the reduction of

a list by a monoid 
 � ��� 
 � � as a list catamorphism.

1 � � �
list

�
�
nil � cons�

//� �
1 �

� �
�
� � �

r � �
��

list
�

reduce �
� �
r � �

��
1 � � � �

r �
� � � � �

// �



418 E. A BRIEF INTRODUCTION TO CHARITY

The reduce operation is defined in CHARITY as follows:

def reduce{u: 1 -> M, theta: M * M -> M}: list(M) -> M
= l => {| nil: () => u

| cons: (m,n) => theta(m,n)
|} l.

Note, in particular, how the definition is parametrized by a reduction monoid.

9. THE CASE COMBINATOR. Recall from §5 that the record combinator provides
a canonical way of specifying (generalized) elements of a coinductive type. Dually,
(generalized) elements of any type � , having an inductive type as domain of variation,
can arise in a simple (non recursive) way by defining its value on each constructor of
the domain. For example, the ‘second successor’ function on the naturals is the unique
arrow making the following diagram to commute:

1 � nat
�
zero � succ�

//

�
two � succ � succ �

��

nat

ssucc
ttiiiiiiiiiiiiiiiiiiii

nat

This is written in CHARITY as

def ssucc: nat -> nat
= n => { zero => two

| succ x => succ succ succ x
} n.

or, simply, as

def ssucc: nat -> nat
= zero => two
succ n => succ succ succ n.

This construction is known in CHARITY as the case combinator whose syntax, in the
general case, is

( 	 , � ) =>
{

�
� 	 � => � � ( 	 � , � )

|
...

...

|
� � 	 � => � � ( 	 � , � ) } 	



4. FURTHER RECURSION PATTERNS 419

where each
�
�

is a function from �
� � � 
 � � 	 	 � % , to the target type. Notice that

�
� � � 
 � � 	 	 is the domain of constructor

�
�

and % types context information. There-
fore, the domain of the case combinator is � � � % . Using strength, context is pushed
inside the � � outermost (coproduct) structure and, therefore, even in this general
case, the combinator is still determined by an either � � ��
 � � ��
 � � 
 .

As a last example consider function insegwhich returns a sequence correspond-
ing to the initial segment of a natural number. The function is basically a combination
of a fold over lists and a case on the naturals.

def inseg: nat -> list nat
= n => {| zero: () => []

| succ: l => { ff => l
| ss n => cons(add(one,n), l)
} hd l

|} n.

4. Further Recursion Patterns

10. PARAMORPHISMS. Paramorphisms [Mee92] generalise catamorphisms in order
to deal with cases in which the result of a recursive function depends not only on com-
putations in substructures of its argument, but also on the substructures themselves.
The recursion pattern it entails, in particular when defined over the natural numbers,
is known as primitive recursion.

In the general case, a paramorphism is defined as the unique arrow making the
diagram below to commute. The domain of the ‘target algebra’ is now the � image
of its carrier ‘packed’ with the inductive type itself.

� �
�
� � � � 	�

oo

� �
" ��� � �

OO

� � �
� � " � � � ���

� �
�

OO

� �oo

The diagram entails the following universal property

� � � � � � � � � �
�
� � � ��� � 
 � 
 � � �



420 E. A BRIEF INTRODUCTION TO CHARITY

The usual factorial function arises by a suitable instantiation of the diagram, taking
� � � � ���

and 
	� 
 � � 
 ������� 
 � as its initial algebra.

� � �
�
� � � 	�

oo

�
" ��� � �

OO

� � �

� �
�
� " � � � ���

� �
�

OO

� � � ���	�
� �oo

for � � � � 
 � � � �
� � � � � ������� 	 
 .

Paramorphisms, which have no direct implementation in CHARITY, can be de-
fined in terms of catamorphisms. Actually, a paramorphism can be defined as a com-
position of a projection with a cata:

� � � � � � ��� �
� � 
 � 
 � � � � ��� � 
 	 �

Thus, the ‘paramorphic’ version of the factorial function will be written as

def factorial : nat -> nat
= n => p0 f_cata n.

def f_cata : nat -> nat * nat
= n => {| zero: () => (one, zero)

| succ: (x,y) => (mul(x, succ y), succ y)
|} n.

The language, however, provides an easier way of dealing with functions defined as
paramorphisms, by using #. Inside a fold, # stands for the value being currently
analysed, before the recursive application. Our ‘paramorphic’ factorial will become,
then,

def factorial : nat -> nat
= n => {| zero: () => one

| succ: x => mul (x ,succ #)
|} n.

11. APOMORPHISMS. An apomorphism [VU97] is the formal dual to the paramor-
phism combinator discussed in the previous paragraph. It allows for the final result
to be either generated in successive steps or ‘all at once’ without recursion. There-
fore, the codomain of the source ‘coalgebra’ becomes the sum of its carrier with the



5. HIGHER-ORDER TYPES 421

coinductive type itself. The diagram is

� � � �
// � � �

�
�

//

� "  � �
OO

�
�
� � � � 	

� � � "  � � �
� �
�

OO

entailing the following universal property

� � � ��� � � � � � � � � � � � � 
 � � 
 � �
As expected, by dualising paramorphisms, this can be reduced to an anamorphism
composed with an injection, i.e.,

� ��� � � � � � � � 
 � � � � � � 
 	 
 � � � �
Again, there is a way of programming with apomorphisms in CHARITY, even though
the combinator is not directly available. The annotation @ is used, inside an unfold,
to write the value being generated, thus stopping recursion. As an example, consider
the following function which, given a stream 	 of natural numbers, generates a new
stream by doubling each element. However, the function sticks to this behaviour
only until (and if) the value ten appears in the input. When this happens, zero is
displayed and the output stream becomes just 	 .

def double_reset_at_ten : stream nat -> stream nat
= l =>

(| (h,t) =>
head: { false => double h

| true => zero } eq(ten, h)
tail: { false => (head t, tail t)

| true => @(head: h, tail: t)} eq(ten, h)
|) (head l, tail l).

5. Higher-Order Types

12. DEFINITION. Although CHARITY requires only the working category to be
distributive (§1), higher-order types may be introduced via a generalisation, on the



422 E. A BRIEF INTRODUCTION TO CHARITY

coinductive side, of the declaration mechanism [Sch97]. This becomes

data � -> ) ( � ) =
� � : � -> � �

� � 	
=> � �

� � 
 � 	
| � � �
| � � : � -> � �

� � 	
=> � �

� � 
 � 	 .
allowing each observer �

�
to be typed as a function from �

� � � 	 � � to �
� � � 
 � 	 .

Therefore, the type which is implemented by this declaration is


 � � � 
 
�� ��
 � � � � � � � � � 	 � � � � �
� � � 
 � � 	 	 � � � � � �

Note that recursion parameters always appear in covariant positions. The associated
combinators remain unaltered, but for the case of map, whose ‘function’ argument
has to be applied both co- and contra-variantly.

A typical example of a higher-order type introduced in this way is the exponential
type itself:

data S -> exp(A,B) = fn: S -> A => B.

The type is parametric on
�

and � and corresponds to �
�

. Note that observer fn
is just the �

�
function (§2.33). Therefore, CHARITY will compute six:nat when

evaluating

fn (three, (fn: n => factorial n)).

Also notice that

(fn: n => factorial n)

is a record (§5) expression, which, in this case, encapsulates a function � � A � � B
as a value of type exp(A,B). Finally, function composition is defined as

def compose: exp(A, B) * exp(B, C) -> exp(A, C)
= ((fn: f), (fn: g)) => (fn: a => g f a).

13. A DETAILED EXAMPLE. Being non recursive, unfold degenerates into the
record combinator for the exponential type. This is, of course, not the case of more
elaborated higher-order types, such as the ones used in this thesis for prototyping
components. As those are covered in the main text, this introduction to CHARITY

ends discussing a possible coinductive encoding of sets and partial functions as non
recursive coinductive types (see [Bar99] for details).



5. HIGHER-ORDER TYPES 423

14. SETS AND MAPPINGS. Inductive, tree-like structures, are widely used in func-
tional programming. In the ‘formal methods’ community, however, the data mod-
elling primitive selected as ‘first choice’, when facing a design problem, is most likely
to be some kind of mapping, in order to express functional dependences which per-
vade most information system models. This entails a subtle, but expressive, shift of
perspective. Notice a set can also be thought of as a special (degenerate) case of a
mapping, or partial function, via the isomorphism

� ������
��� .

‘Unordered’ structures, such as maps or sets are easier to observe than to construct
(in an effective computational sense). Of course, they have a more or less obvious
implementation in functional languages as certain kinds of sequences. But we will
look here for more direct representations.

15. REPRESENTING SETS. To begin with, consider the following representation of
sets by their characteristic functions:

data S -> set A = in: S -> A => bool.

From this perspective, a set is regarded as a structure accessed, or observed, by a
predicate (the observer in) encoding set membership: all one is able to know about
a set is whether a particular value belongs to it. Sets, even if not finite, can be easily
defined in this way. For example,

def natset: 1 -> set nat
= () => (in: x => true).

def evens: 1 -> set nat
= () => (in: x => and(member(x,natset), even x) ).

Simple operations on sets are defined as operations on predicates, as in, for example,
the following representation of the empty set, union, intersection, difference and ZF
comprehension.

def empty : 1 -> set A
= () => (in: x => false).

def union: set A * set A -> set A
= (s1,s2) => (in: x => or(in(x,s1),in(x,s2))).

def diff: set A * set A -> set A
= (s1,s2) => (in: x => and(in(x,s1), not in(x,s2))).

def zf{pred: A -> bool}: set A -> set A
= s => (in: x => and (in(x,s), pred x) ).



424 E. A BRIEF INTRODUCTION TO CHARITY

As datatype set A is parametric in A, some operations require a specific definition
of equality on A, as is the case of singleton set formation:

def sing{equal: A * A -> bool}: A -> set A
= a => (in: x => equal(a,x)).

Finally, for any function f from A to B, set{f} will denotes ��� .
There are, however, some familiar operations over sets that can not be programmed

in this way, as they rely on (the axiom of) choice. Computationally, this means that
they presume the existence of an ordered representation of an universe with respect to
which the sets of interest are defined. This is typically the case of set equality, subset
inclusion and monoidal reductions: all of them require the ability to pick an element
from a set. We shall thus isolate the choice dependent operations and provide a sepa-
rate specification of a universe — U(A) —- and a choice function over it. Sequences
offer a simple implementation of U(A), but in CHARITY one is not limited to finite
structures. Therefore, a possible encoding of choice is made over possible infinite lists� � � ��� � � � . Such partial streams are called colists of

�
in [CF92], where the

prefix co identifies the possibly infinite version of an inductive type obtained simply
by arrow reversing. Colists are declared as

data S -> colist(A) = delist: S -> SF(A * S).

Taking U(A) as colist(A), it is useful to have some generation functions for pos-
sible ‘universes’. Two possibilities are:

def col_gen{f: A -> A}: A -> colist(A)
= x => (| a => delist: ss (a, f a) |) x.

def col_genwhile{f: A -> A, cond: A -> bool}: A -> colist(A)
= x => (| a => delist: { true => ss (a, f a)

| false => ff
} cond a

|) x.

Finally, a choice function, accepting an additional filter predicate, is provided,

def choice{pred}: set A * U A -> SF A
= (s, u) => col_first_st{x => and(in(x,s), pred(x))} u.

where function col_first_st returns the first element of a colist satisfying a given
predicate.

A paradigmatic example of a function depending on choice is the exists pred-
icate



5. HIGHER-ORDER TYPES 425

def exists{pred: A -> bool}: set A * U A -> bool
= (s,u) => { ff => false

| ss a => true
} choice{pred}(s,u).

which is used in the definition of, e.g., subset inclusion and test for disjointness:

def subseteq: set A * set A * U A -> bool
= ((s1,s2),u) =>

not exists{ x => not member(x,s2) } (s1,u).

def eqsets: (set A * set A) * U A -> bool
= ((s1,s2),u) =>

and(subseteq((s1,s2),u), subseteq((s2,s1),u)).

def disjoint: (set A * set A) * U A -> bool
= ((s1,s2),u) => eqsets ((inter(s1,s2), empty), u).

Note the code for all those functions on set A which require choice, is actually
parametric wrt to the ‘universe’ specification. This lower level is just supposed to
deliver the function � ����� ��� .

16. REPRESENTING MAPPINGS. A direct implementation of mappings, or partial
functions, also as a coinductive datatype, follows the same strategy. The space of
mappings from

�
to � , written as

�
�	� , is defined by

data S -> maps(A, B) = ap: S -> A => SF B.

stating that elements of
�
�
� are observed through evaluation (the observer ap, for

“apply”), which may return an undefined value. The identity mapping is defined by a
case expression and composition amounts to the Kleisli composition for the ‘maybe’
monad (§A.7).

def mid: set A -> maps(A, A)
= s => (ap: a => { true => ss a | false => ff } in(a,s)).

def mcomp: maps(A, B) * maps(B, C) -> maps(A, C)
= ((ap: t), (ap: r)) => (ap: a => kleisli{t,r} a).

where the definiton of kleisli is given in §A.13.
Typical operations over maps, such as the ones in the meta-language of VDM, are

easily supported. For example, consider the following definitions of overwrite and
domain restriction.



426 E. A BRIEF INTRODUCTION TO CHARITY

def over: maps(A,B) * maps(A,B) -> maps(A,B)
= (m1,m2) => (ap: x => { ff => ap(x,m1)

| _ => ap(x,m2)
} ap(x,m2) ).

def dr: maps(A,B) * set A -> maps(A,B)
= (m,s) => (ap: x => { true => ap(x,m)

| false => ff
} in(x,s) ).

Also note that, being parametric in two arguments, its action on morphisms is divided
in three cases: acting on the domain through f, maps{f,x => x}, on the range
through g, maps{x => x,g}, or both, maps{f,g}.

In traditional formal specification methods one is used to restrict oneself to finite
maps. Such restriction, however, is not essential for this CHARITY implementation.
The following is an example of an infinite map which maps every even natural number
to its successor.

def evsucc: 1 -> maps(nat,nat)
= () => (ap: n =>

{true => ss succ n | false => ff} even n ).



Bibliography

[ABNO97] J. J. Almeida, L. S. Barbosa, F. L. Neves, and J. N. Oliveira. CAMILA: Prototyping and
refinement of constructive specifications. In M. Johnson, editor, 6th Int. Conf. Algebraic
Methods and Software Technology (AMAST), pages 554–559, Sydney, December 1997.
Springer Lect. Notes Comp. Sci. (1349).

[Abr94] S. Abramsky. Interaction categories and communicating sequential processes. In A. W.
Roscoe, editor, A Classical Mind: Essays in Honour of C. A. R. Hoare, pages 1–15.
Prentice-Hall International, 1994.

[Abr96] J. R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
[Ace92] L. Aceto. Action Refinement in Process Algebras. Distinguished Dissertations in Computer

Science. Cambridge University Press, 1992. (PhD thesis, University of Sussex (1990)).
[Acz88] P. Aczel. Non-Well-Founded Sets. CSLI Lecture Notes (14), Stanford, 1988.
[Acz93] P. Aczel. Final universes of processes. In Brooks et al, editor, Proc. Math. Foundations of

Programming Semantics. Springer Lect. Notes Comp. Sci. (802), 1993.
[Acz97] P. Aczel. Lectures on semantics : The initial algebra and final coalgebra perspectives. In

H. Schwichtenberg, editor, Logic of Computation. Springer-Verlag, 1997. Lectures for the
1995 Marktoberdorf School on Logic of Computation.

[Ada00] J. Adamek. Final colagebras as ideal completions of initial algebras. Talk at the MFIT sum-
mer school on algebraic and coalgebraic methods in mathematics of program construction,
Lincoln College, Oxford University, April 2000.

[AG97] R. Allen and D. Garlan. A formal basis for architectural connection. ACM TOSEM,
6(3):213–249, 1997.

[AGN94] S. Abramsky, S. Gay, and R. Nagarajan. Interaction categories and the foundation of typed
concurrent programming. In M. Broy, editor, Deductive Program Design: Proc. of the
1994 Marktoberdorf Summer School. NATO ASI Series F, Springer Verlag, 1994.

[AJ94] S. Abramsky and S. Jagadeeson. New foundations for the geometry of interaction. Infor-
mation & Computation, 111:53–119, 1994.

[AM88] P. Aczel and N. Mendler. A final coalgebra theorem. In D. Pitt, D. Rydeheard, P. Dybjer,
A. Pitts, and A. Poigne, editors, Proc. Category Theory and Computer Science, pages
357–365. Springer Lect. Notes Comp. Sci. (389), 1988.

[Aug93] A. Augusteijn. Functional programming, program transformations and compiler construc-
tion. PhD thesis, Department of Computing Science, Eindhoven University of Technology,
The Netherlands, 1993.

[AV95] S. Abramsky and S. Vickers. Quantales, observation logic and process semantics. Math.
Struct. in Comp. Sci., 3:161–227, 1995.

427



428 BIBLIOGRAPHY

[Bac78] J. Backus. Can programming be liberated from the Von Neumann style? a functional style
and its algebra of programs. Communications of the ACM, 21:613–641, 1978.

[Bac88] R. Backhouse. An exploration of the Bird-Meertens formalism. CS 8810, Groningen Uni-
versity, 1988.

[Bae97] J. C. Baez. An introduction to � -categories. In E. Moggi and G. Rosolini, editors, Proc. 7th
Conf. Category Theory and Computer Science. Springer Lect. Notes Comp. Sci. (1290),
1997.

[Bal00] M. Baldamus. Compositional constructor interpretation over coalgebraic models for the
� -calculus. In H. Reichel, editor, CMCS’00 - Workshop on Coalgebraic Methods in Com-
puter Science. ENTCS, volume 33, Elsevier, 2000.

[Bar70] M. Barr. Coequalizers and cofree cotriples. Mathematische Zeitschrift, 166:307–322, 1970.
[Bar92] L. S. Barbosa. Sobre a especificação matemática de sistemas concorrentes. PAPCC Thesis

DI-LSB-92:9:1, DI (U. Minho), September 1992. (in portuguese).
[Bar93] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comp. Sci., 114(2):299–

315, 1993.
[Bar99] L. S. Barbosa. Prototyping processes. In M. C. Meo and M. Vilares Ferro, editors, Proc. of

AGP’99 - Joint Conference on Declarative Programming, pages 513–527, L’Aquila, Italy,
6-9 September 1999.

[Bar00] L. S. Barbosa. Components as processes: An exercise in coalgebraic modeling. In S. F.
Smith and C. L. Talcott, editors, FMOODS’2000 - Formal Methods for Open Object-
Oriented Distributed Systems, pages 397–417. Kluwer Academic Publishers, September
2000.

[Bar01a] L. S. Barbosa. Process calculi à la Bird-Meertens. In CMCS’01 - Workshop on Coalgebraic
Methods in Computer Science, pages 47–66, Genova, April 2001. ENTCS, volume 44.4,
Elsevier.

[Bar01b] F. Bartels. Generalised coinduction. In CMCS’01 - Workshop on Coalgebraic Methods in
Computer Science, pages 67–87, Genova, April 2001. ENTCS, volume 44.4, Elsevier.

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language Lotos. Com-
puter Networks and ISDN Systems, 14, 1987.

[BBB � 85] F. L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R. Gnatz,
E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T. Matzner, B. Möller, F. Nickl,
H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and H. Wössner. The Munich Project
CIP. Volume I: The Wide Spectrum Language CIP-L. Springer Lect. Notes Comp. Sci.
(183), 1985.

[BCS98] R. Blute, J. Cockett, and R. Seely. Feedback for linearly distributive categories: Traces
and fixpoints. Presented on the celebration of W. Lawvere 60th birthday (submitted for
publication, available from triples.math.mcgill.ca/˜rags/linear/), 1998.

[BD99] H. Bowman and J. Derrick. A junction between state based and behavioural specification.
In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors, Formal Methods for Open Object-
based Distributed Systems, pages 213–239. Kluwer Academic Publishers, February 1999.

[Ben67] J. Benabou. Introduction to bicategories. Springer Lect. Notes Maths. (47), pages 1–77,
1967.

[BG92] S. Brookes and S. Geva. Computational comonads and intensional semantics. In M. Four-
man, P. Johnstone, and A. Pitts, editors, Applications of Categories in Computer Science,
volume 177 of London Mathematical Society Lecture Notes Series. Cambridge University
Press, 1992.



BIBLIOGRAPHY 429

[BH93] R. C. Backhouse and P. F. Hoogendijk. Elements of a relational theory of datatypes. In
B. Möller, H. Partsch, and S. Schuman, editors, Formal Program Development, pages 7–
42. Springer Lect. Notes Comp. Sci. (755), 1993.

[Bir35] G. Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge Philo-
sophical Society, 31:433–454, 1935.

[Bir87] R. S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Programming
and Calculi of Discrete Design, volume 36 of NATO ASI Series F, pages 3–42. Springer-
Verlag, 1987.

[Bir98] R. Bird. Functional Programming Using Haskell. Series in Computer Science. Prentice-
Hall International, 1998.

[BJJM98] R. C. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An intro-
duction. In S. D. Swierstra, P. R. Henriques, and J. N. Oliveira, editors, Third International
Summer School on Advanced Functional Programming, Braga, pages 28–115. Springer
Lect. Notes Comp. Sci. (1608), September 1998.

[BM87] R. S. Bird and L. Meertens. Two exercises found in a book on algorithmics. In L. Meertens,
editor, Program Specification and Transformation, pages 451–458. North-Holland, 1987.

[BM94] R. S. Bird and O. de Moor. Relational program derivation and context-free language recog-
nition. In A. W. Roscoe, editor, A Classical Mind: Essays dedicated to C.A.R. Hoare, pages
17–35. Prentice Hall International, 1994.

[BM96] J. Bairwise and P. Moss. Vicious Circles. CSLI Lecture Notes (59), Stanford, 1996.
[BM97] R. Bird and O. Moor. The Algebra of Programming. Series in Computer Science. Prentice-

Hall International, 1997.
[Bor94a] F. Borceux. Handbook of Categorial Algebra (3 volumes). Cambridge University Press,

1994.
[Bor94b] F. Borceux. Handbook of Categorial Algebra (vol. 2). Cambridge University Press, 1994.
[BW85] M. Barr and C. Wells. Toposes, Triples and Theories. Springer-Verlag, 1985.
[BW90a] M. Barr and C. Wells. Category Theory for Computer Scientists. Series in Computer Sci-

ence. Prentice-Hall International, 1990.
[BW90b] J. Beaten and W. Weijland. Process Algebra. Cambridge University Press, 1990.
[Car87] A. Carboni. Bicategories of partial maps. Cahiers Top. - Géom. Diff. - Cat., 28(2):111–126,

1987.
[CF92] R. Cockett and T. Fukushima. About Charity. Yellow Series Report No. 92/480/18, Dep.

Computer Science, University of Calgary, June 1992.
[Cir98] C. Cirstea. Coalgebra semantics for hidden algebra. In F. Parisi-Presicce, editor, Recent

Trends in Algebraic Development Techniques, pages 174–189. Springer Lect. Notes Comp.
Sci. (1376), 1998.

[CLW93] A. Carboni, S. Lack, and R. F. C. Walters. Introduction to extensive and distributive cate-
gories. Journal of Pure and Applied Algebra, 84:145–158, 1993.

[Coc93] R. Cockett. Introduction to distributive categories. Mathematical Structures in Computer
Science, 3(3):277–307, 1993.

[CoF95] CoFI. The CoFI algebraic specification language, tentative design: Language summary.
BRICS ns-96-15, BRICS, Aarhus University, 1995.

[CPW98] G. L. Cattani, A. J. Power, and G. Winskel. A categorical axiomatics for bisimulation. In
Proc. CONCUR’ 98, pages 581–596. Springer Lect. Notes Comp. Sci. (1466), 1998.

[CR97] G. Costa and G. Reggio. Specification of abstract dynamic data types: A temporal logic
approach. Theor. Comp. Sci., 173(2), 1997.



430 BIBLIOGRAPHY

[CS92] R. Cockett and D. Spencer. Strong categorical datatypes I. In R. A. G. Seely, editor, Pro-
ceedings of Int. Summer Category Theory Meeting, Montréal, Québec, 23–30 June 1991,
pages 141–169. AMS, CMS Conf. Proceedings 13, 1992.

[CS95] R. Cockett and D. Spencer. Strong categorical datatypes II: A term logic for categorical
programming. Theor. Comp. Sci., 139:69–113, 1995.

[DF98] R. Diaconescu and K. Futatsugi. CAFEOBJ Report: The Language, Proof Techniques and
Methodologies for Object-Oriented Algebraic Specification, volume 6 of AMAST Series in
Computing. World Scientific, 1998.

[DM94] O. De Moor. Categories, relations and dynamic programming. Mathematical Structures in
Computing Science, 4:33–69, 1994.

[DMN68] O.-J. Dahl, B Myhrhang, and K. Nygaard. The SIMULA 67 Common Base Language.
Tech. Report, Norvegian Computing Center, 1968.

[DRS95] R. Duke, G. Rose, and G. Smith. OBJECT-Z: A specification language advocated for the
description of standards. Computer Standards and Interfaces, 17:511–533, 1995.

[EFH83] H. Ehrig, W. Fey, and H. Hansen. ACT ONE: An algebraic specification language with two
levels of semantics. Technical report, TR 83-01, Tech. Univ. Berlin, 1983.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial
Semantics. Springer-Verlag, 1985.

[ESS90] H.-D. Ehrich, A. Sernadas, and C. Sernadas. From data types to object types. Jour. of
Information Processing and Cybernetics, 1/2(26):33—48, 1990.

[FE00] M. Fokkinga and R. Eshuis. Comparing rfinements for failure and bisimulation semantics.
Technical report, Faculty of Computing Science, Enschede, 2000.

[Fen96] C. Fencott. Formal Methods for Concurrency. International Thomson Computer Press,
1996.

[Fic97] C. Ficher. CSP-OZ: A combination of OBJECT-Z and CSP. In H. Bowman and J. Derrick,
editors, FMOODS’97 - Formal Methods for Open Object-Oriented Distributed Systems
(volume 2). Chapman and Hall, 1997.

[FL97] J. Fiadeiro and A. Lopes. Semantics of architectural connectors. In Proc. of TAPSOFT’97,
pages 505–519. Springer Lect. Notes Comp. Sci. (1214), 1997.

[Fok92a] M. M. Fokkinga. Calculate categorically! Formal Aspects of Computing, 4(4):673–692,
1992.

[Fok92b] M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of Twente, Dept
INF, Enschede, The Netherlands, 1992.

[Fok94] M.M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memoranda Informatica
94-28, University of Twente, Junho 1994.

[Fok96] M. M. Fokkinga. Datatype laws without signatures. Math. Struct. in Comp. Sci., 6:1–32,
1996.

[Fre91] P. J. Freyd. Algebraically complete categories. In A. et al Carboni, editor, Proc. of the 1990
Como Category Theory Conference, pages 95–104. Springer Lect. Notes Maths. (1488),
1991.

[Gay95] S. Gay. Linear Types for Communicating Processes. Ph.D. thesis, University of London,
1995.

[GD94] J. Goguen and R. Diaconescu. Towards an algebraic semantics for the object paradigm. In
H. Ehrig and F. Orejas, editors, Proc. Tenth Workshop on Abstract Data Types, pages 1–29.
Springer Lect. Notes Comp. Sci. (785), 1994.



BIBLIOGRAPHY 431

[GGM76] A. Giarratana, F. Gimona, and U. Montanari. Observability concepts in abstract data spec-
ifications. In Proc. Mathematical Foundations of Computer Science. Springer Lect. Notes
Comp. Sci. (45), 1976.

[GH93] J. Guttag and J Horning. LARCH: Languages and Tools for Formal Specification. Springer-
Verlag, 1993.

[Gib93] J. Gibbons. Upwards and downwards accumulations on trees. In R. S. Bird, C. C. Morgan,
and J. C. P. Woodcock, editors, Mathematics of Program Construction, pages 122–138.
Springer Lect. Notes Comp. Sci. (669), 1993.

[Gib97] J. Gibbons. Conditionals in distributive categories. CMS-TR-97-01, School of Computing
and Mathematical Sciences, Oxford Brookes University, 1997.

[GK96] S. Goldsack and S. Kent (eds). Formal Methods and Object Technology. FACT. Springer-
Verlag FACT, 1996.

[GM87] J. Goguen and J. Meseguer. Unifying functional, object-oriented and relational program-
ming with logic semantics. In B. Shriver and P. Wegner, editors, Research Directions in
Object-Oriented Programming, pages 417–477. MIT Press, 1987.

[GM00] J. Goguen and G. R. Malcolm. A hidden agenda. Theor. Comp. Sci., 245(1):55–101, 2000.
[Gog91] J. Goguen. Types as theories. In G. Reed, A. Roscoe, A. William, and R. Wachter, editors,

Topology and Categories in Computer Science, pages 357–390. Oxford University Press,
1991.

[Gog96] J. Goguen. Parametrised programming and software architectures. In Symposium on Soft-
ware Reusability. IEEE, 1996.

[GP95] J. Groote and A. Ponse. The syntax and semantics of � CRL. In Algebra of Communicating
Processes, pages 26–62. Springer-Verlag, 1995.

[GR83] A. Goldberg and D. Robson. Smalltalk’80: the Language and Its Implementation.
Addison-Wesley, 1983.

[Gro70] A. Grothendieck. Catégories fibrées et descente (exposé vi). In A. Grothendieck, editor,
Revêtement Etales et Groupe Fondamental (SGA 1), pages 145–194. Springer Lect. Notes
Maths. (224), 1970.

[GS93] D. Garlan and M. Shaw. An introduction to software architecture. In V. Ambriola and
G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering (vol-
ume I). World Scientific Publishing Co., 1993.

[GS98] H. P. Gumm and T. Schroeder. Covarieties and complete covarieties. In CMCS’98 - Work-
shop on Coalgebraic Methods in Computer Science, Lisbon. ENTCS, volume 11, Elsevier,
March 1998.

[GTW78] J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the specification,
correctness and implementation of abstract data types. In R. Yeh, editor, Current Trends in
Programming Methodology, pages 80–149. Prentice-Hall International, 1978.

[GTWW77] J. Goguen, J. Thatcher, E. Wagner, and J. Wright. Initial algebra semantics and continuous
algebras. Jour. of the ACM, 24(1):68–95, January 1977.

[Gur93] Y. Gurevich. Evloving algebras, an attempt to discovery semantics. In G. Rozenberg and
A. Salomaa, editors, Current Trends in Theoretical Computer Science. World Scientific,
1993.

[GWM � 96] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing OJB. In
J. Goguen and G. Malcolm, editors, Software Engineering with OJB: Algebraic Specifica-
tion in Practice. Cambridge University Press, 1996.



432 BIBLIOGRAPHY

[Hag87a] T. Hagino. Category Theoretic Approach to Data Types. Ph.D. thesis, tech. rep. ECS-
LFCS-87-38, Laboratory for Foundations of Computer Science, University of Edinburgh,
UK, 1987.

[Hag87b] T. Hagino. A typed lambda calculus with categorical type constructors. In D. H. Pitt,
A. Poigné, and D. E. Rydeheard, editors, Category Theory and Computer Science, pages
140–157. Springer Lect. Notes Comp. Sci. (283), 1987.

[Hen84] P. Henderson. me too: A language for software specification and model building. Prelim-
inary Report, University of Stirling, 1984.

[Hen88] M. C. Hennessy. Algebraic Theory of Processes. Series in the Foundations of Computing.
MIT Press, 1988.

[HHJT98] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about Java classes in object-
oriented languages. In C. Hankin, editor, European Symposium on Programming, pages
105–121. Springer Lect. Notes Comp. Sci. (1381), 1998.

[HJ98] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting.
Information & Computation, 145:105–121, 1998.

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271–281,
1972.

[Hoa85] C. A. R Hoare. Communicating Sequential Processes. Series in Computer Science.
Prentice-Hall International, 1985.

[Hoo96] P. F. Hoogendijk. A generic theory of datatypes. Ph.D. thesis, Department of Computing
Science, Eindhoven University of Technology, 1996.

[HP95] M. Hofmann and B. Pierce. A unifying type-theoretic framework for objects. Jour. Func-
tional Programming, 5(4):593–635, 1995.

[HPW92] P. Hudak, S. L. Peyton Jones, and P. Wadler. Report on the programming language Haskell,
a non-strict purely-functional programming language, version 1.2. SIGPLAN Notices,
27(5), May 1992.

[HR95] U. Hensel and H. Reichel. Defining equations in terminal coalgebras. In E. Astesiano,
G. Reggio, and A. Tarlecki, editors, Recent Trends in Data Type Specification, pages 307–
318. Springer Lect. Notes Comp. Sci. (906), 1995.

[ISO88] ISO. Information processing systems - open systems interconnection - LOTOS - a for-
mal description technique based on the temporal ordering of observation behaviour.
ISO/TC97/SC21/N DI8807, 1988.

[Jac95] B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat, editors, Al-
gebraic Methodology and Software Technology (AMAST), pages 245–260. Springer Lect.
Notes Comp. Sci. (936), 1995.

[Jac96a] B. Jacobs. Object-oriented hybrid systems of coalgebras plus monoid actions. In M. Wirs-
ing and M. Nivat, editors, Algebraic Methodology and Software Technology (AMAST),
pages 520–535. Springer Lect. Notes Comp. Sci. (1101), 1996.

[Jac96b] B. Jacobs. Objects and classes, co-algebraically. In C. Lengauer B. Freitag, C.B. Jones and
H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence, pages 83–103.
Kluwer Academic Publishers, 1996.

[Jac97] B. Jacobs. Behaviour-refinement of coalgebraic specifications with coinductive correctness
proofs. In TAPSOFT’97: Theory and Practice of Software Development, pages 787–802.
Springer Lect. Notes Comp. Sci. (1214), 1997.

[Jac99a] B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the
Foundations of Mathematics. Elsevier Science Publishers B. V. (North-Holland), 1999.



BIBLIOGRAPHY 433

[Jac99b] B. Jacobs. The temporal logic of coalgebras via Galois algebras. Techn. rep. CSI-R9906,
Comp. Sci. Inst., University of Nijmegen, 1999.

[Jac02] B. Jacobs. Exercises in coalgebraic specification. In R. Crole, R. Backhouse, and J. Gib-
bons, editors, Algebraic and Coalgebraic Methods in the Mathematics of Program Con-
stuction, pages 236–280. Springer Lect. Notes Comp. Sci. (2297), 2002.

[JC94] B. Jay and J. Cockett. Shaply types and shape polymorphism. In D. Sannella, editor, Pro-
gramming Languages and Systems — ESOP’94, pages 302–316. Springer Lect. Notes
Comp. Sci. (788), 1994.

[Jeu93] J. Jeuring. Theories for Algorithm Calculation. Ph.D. thesis, Utrecht University, 1993.
[JJ97] P. Jansson and J. Jeuring. POLYP - a polytypic programming language extension. In

POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 470–482. ACM Press, 1997.

[Jon80] Cliff B. Jones. Software Development — a Rigorous Approach. Series in Computer Sci-
ence. Prentice-Hall International, 1980.

[Jon83] Cliff B. Jones. Specification and design of (parallel) programs. In R. E. A. Mason (IFIP),
editor, Information Processing 83, pages 321–332. Elsevier Science Publishers B. V.
(North-Holland), 1983.

[Jon86] Cliff B. Jones. Systematic Software Development Using VDM. Series in Computer Science.
Prentice-Hall International, 1986.

[Jon96] Cliff B. Jones. Accommodating interference in the formal design of concurrent object-
based programs. Formal Methods in System Design, 8(2):105–122, 1996.

[JR97] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
62:222–159, 1997.

[JS90] G. Jones and M. Sheeran. Circuit design in RUBY. In Formal Methods for VLSI Design.
North-Holland, 1990.

[JSV96] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math. Proc. Camb. Phil.
Soc., 119:447–468, 1996.

[Kar98] B. von Karger. Temporal algebra. Math. Struct. in Comp. Sci., 8:277–320, 1998.
[Kat96] P. Katis. Categories and Bicategories of Processes. PhD thesis, University of Sydney,

1996.
[Kel82] G. M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of London Mathe-

matical Society Lecture Notes Series. Cambridge University Press, 1982.
[Kie98a] R. B. Kieburtz. Codata and comonads in HASKELL. Unpublished manuscript, 1998.
[Kie98b] R. B. Kieburtz. Reactive functional programming. In David Gries and Willem-Paul de

Roever, editors, Programming Concepts and Methods (PROCOMET’98), pages 263–284.
Chapman and Hall, Junho 1998.

[KL95] R. B. Kieburtz and J. Lewis. Programming with algebras. In Advanced Functional Pro-
gramming, pages 267–307. Springer Lect. Notes Comp. Sci. (925), 1995.

[Knu65] D. E.. Knuth. On the translation of languages from left to right. Information and Control,
pages 607–39, 1965.

[Koc72] A. Kock. Strong functors and monoidal monads. Archiv für Mathematik, 23:113–120,
1972.

[KSW97a] P. Katis, N. Sabadini, and R. F. C. Walters. Bicategories of processes. Journal of Pure and
Applied Algebra, 115(2):141–178, 1997.



434 BIBLIOGRAPHY

[KSW97b] P. Katis, N. Sabadini, and R. F. C. Walters. Span(Graph): A categorical algebra of transition
systems. In M. Johnson, editor, 6th Int. Conf. Algebraic Methods and Software Technol-
ogy (AMAST), pages 332–336, Sydney, December 1997. Springer Lect. Notes Comp. Sci.
(1349).

[KSW00] P. Katis, N. Sabadini, and R. F. C. Walters. On the algebra of systems with feedback and
boundary. Rendiconti del Circolo Matematico di Palermo, II(63):123–156, 2000.

[KSWW01] P. Katis, N. Sabadini, R. F. C. Walters, and H. Weld. Categories of circuits. submitted for
publication (Available from www.unico.it/˜walters/), 2001.

[Kur98] A. Kurz. Specifying coalgebras with modal logic. In CMCS’98 - Workshop on Coalgebraic
Methods in Computer Science, Lisbon. volume 11 of ENTCS, March 1998.

[Kur01] A. Kurz. Logics for Coalgebras and Applications to Computer Science. Ph.D. Thesis,
Fakultat fur Mathematik, Ludwig-Maximilians Univ., Muenchen, 2001.

[KW92] D. King and P. Wadler. Combining monads. In Proc. 5th Annual Glasgow Workshop on
Functional Programming, 1992.

[Len98] M. Lenisa. Themes in Final Semantics. PhD thesis, Universita de Pisa-Udine, 1998.
[LMH98] D. Leijen, E. Meijer, and J. Hook. HASKELL as an automated controller. In S. D. Swier-

stra, P. R. Henriques, and J. N. Oliveira, editors, Third International Summer School on
Advanced Functional Programming, Braga, pages 268–289. Springer Lect. Notes Comp.
Sci. (1608), September 1998.

[LS97] F. W. Lawvere and S. H. Schanuel. Conceptual Mathematics. Cambridge University Press,
1997.

[MA86] E. Manes and A. Arbib. Algebraic Approaches to Program Semantics. Texts and Mono-
graphs in Computer Science. Springer Verlag, 1986.

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer Verlag, 1971.
[Mal90a] G. R. Malcolm. Algebraic data types and program transformation. Ph.D. thesis, Depart-

ment of Computing Science, Groningen University, The Netherlands, 1990.
[Mal90b] G. R. Malcolm. Data structures and program transformation. Science of Computer Pro-

gramming, 14(2–3):255–279, 1990.
[Mal96] G. Malcolm. Behavioural equivalence, bisimulation and minimal realization. In O. Owe

and O.-J. Dahl, editors, Proc. Recent Trends in Data Type Specification, pages 359–378.
Springer Lect. Notes Comp. Sci. (1130), 1996.

[Man98] E. Manes. Implementing collection classes with monads. Math. Struct. in Comp. Sci.,
8:231–276, 1998.

[McC60] J. McCarthy. Recursive functions of symbolic expressions and their computation by ma-
chine. Comm. ACM, 3(4):184–195, 1960.

[McC63] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and D. Hirsh-
berg, editors, Computer Programming and Formal Systems, pages 33–70. North-Holland,
1963.

[McL92] C. McLarty. Elementary Categories, Elementary Toposes, volume 21 of Oxford Logic
Guides. Clarendon Press, 1992.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architec-
tures. In 5th European Software Engineering Conference, 1995.

[Mea55] G. H. Mealy. A method for synthesizing sequential circuits. Bell Systems Techn. Jour.,
34(5):1045–1079, 1955.

[Mee92] L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–425, 1992.



BIBLIOGRAPHY 435

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor. Comp.
Sci., 96(1):73–155, 1992.

[Mes00] J. Meseguer. Rewriting logic and Maude: A wide-spectrum semantic framework for object-
based distributed systems (invited lecture). In S. F. Smith and C. L. Talcott, editors,
FMOODS’2000 - Formal Methods for Open Object-Oriented Distributed Systems, pages
89–117. Kluwer Academic Publishers, September 2000.

[Mey88] B. Meyer. Object-Oriented Software Construction. Series in Computer Science. Prentice-
Hall International, 1988.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,
envelopes and barbed wire. In J. Hughes, editor, Proceedings of the 1991 ACM Confer-
ence on Functional Programming Languages and Computer Architecture, pages 124–144.
Springer Lect. Notes Comp. Sci. (523), 1991.

[Mic92] Microsoft. The COM Reference. Microsoft Press, 1992.
[Mil80] R. Milner. A Calculus of Communicating Systems. Springer Lect. Notes Comp. Sci. (92),

1980.
[Mil89] R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-Hall

International, 1989.
[Mil99] R. Milner. Communicating and Mobile Processes: the � -Calculus. Cambridge University

Press, 1999.
[MJ95] E. Meijer and J. Jeuring. Merging monads and folds for functional programming. In J. Jeur-

ing and E. Meijer, editors, International Summer School on Advanced Functional Pro-
gramming, pages 228–266. Springer Lect. Notes Comp. Sci. (925), 1995.

[MM99] B. Meyer and C. Mingins. Component-based development: From buzz to spark. IEEE
Computer, 32(7):35–37, 1999.

[Mog89] E Moggi. Computational lambda-calculus and monads. In Proceedings of the Logic in
Computer Science Conference, 1989.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–
92, 1991.

[Mon00] L. Monteiro. Observation systems. In H. Reichel, editor, CMCS’00 - Workshop on Coal-
gebraic Methods in Computer Science. ENTCS, volume 33, Elsevier, 2000.

[Moo66] E. F. Moore. Gedanken experiments on sequential machines. In Automata Studies, pages
129–153. Princeton University Press, 1966.

[Mos99] L. Moss. Coalgebraic logic. Ann. Pure & Appl. Logic, 1999.
[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer Verlag, 1992.
[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and II). Infor-

mation and Computation, 100(1):1–77, 1992.
[MQ94] M. Moriconi and X. Qian. Correctness and composition of softare architectures. In Second

Symposium on Foundations of Software Engineering, pages 164–174. ACM Press, 1994.
[ND95] O. Nierstrasz and L. Dami. Component-oriented software technology. In O. Nierstrasz and

D. Tsichritzis, editors, Object-Oriented Software Composition, pages 3–28. Prentice-Hall
International, 1995.

[Nie93] O. Nierstrasz. Regular types for active objects. In OOPSLA’93, pages 1–15. volume 28 of
ACM Sigplan Notices, 1993.

[Oli84] J. N. Oliveira. The Formal Semantics of Deterministic Dataflow Programs. PhD thesis,
Department of Computer Science, University of Manchester, February 1984.



436 BIBLIOGRAPHY

[Oli90] J. N. Oliveira. A reification calculus for model-oriented software specification. Formal
Aspects of Computing, 2(1):1–23, 1990.

[Oli91] J. N. Oliveira. Especificação Formal de Programas. University of Minho, � ��� edition,
1991. Lecture Notes for M.Sc. Course in Computing (in Portuguese, last edition 1994).

[Oli92a] J. N. Oliveira. Formal Software Development. Lecture Notes for the MSc in Computer
Science, Minho University, 1992.

[Oli92b] J. N. Oliveira. Software reification using the SETS calculus. In Proc. of the BCS FACS
5th Refinement Workshop, Theory and Practice of Formal Software Development, London,
UK, pages 140–171. Springer-Verlag, 8–10 January 1992. (Invited paper).

[Oli93] J. N. Oliveira. The CAMILA strategy for software reusability. ERCIM News, 14:13–14,
July 1993.

[Oli97] J. N. Oliveira. Can distribution be (statically) calculated? Technical report, UNU/IIST,
Macau, May 1997.

[Oli98] J. N. Oliveira. A data structuring calculus and its application to program development,
1998. Lecture Notes of M.Sc. Course (150 p.). Maestria em Ingeneria del Software, De-
partamento de Informatica, Facultad de Ciencias Fisico-Matematicas y Naturales, Univer-
sidad de San Luis, Argentina.

[Par72] D. Parnas. Information distribution aspects of design methodology. In Information Pro-
cessing ’72, pages 339–344. North-Holland, 1972.

[Par81] D. Park. Concurrency and automata on infinite sequences. pages 561–572. Springer Lect.
Notes Comp. Sci. (104), 1981.

[Par96] A. Pardo. A calculational approach to strong datatypes. In Selected Papers from 8th Nordic
Workshop on Programming Theory. Research Report 240, Oslo, 1996.

[Par98] A. Pardo. Monadic corecursion: Definition, fusion laws and applications. In CMCS’98 -
Workshop on Coalgebraic Methods in Computer Science, Lisbon. volume 11 of ENTCS,
March 1998.

[Par00] A. Pardo. Towards merging recursion and comonads. In WGP’2000 Workshop in Generic
Programming, Ponte de Lima. Utrecht University Tech. Rep. UU-CS-2000-19, July 2000.

[Pet62] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Technische Hochschule Darm-
stadt, 1962.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th Annual Symp. on Foundations of
Computer Science, pages 46–57. IEEE Computer Society Press, 1977.

[Pra95] V.R. Pratt. Chu spaces and their interpretation as concurrent objects. In J. van Leeuwen, ed-
itor, Computer Science Today: Recent Trends and Developments, pages 392–405. Springer
Lect. Notes Comp. Sci. (1000), 1995.

[PW98] J. Power and H. Watanabe. An axiomatics for categories of coalgebras. In CMCS’98 -
Workshop on Coalgebraic Methods in Computer Science, Lisbon. ENTCS, volume 11,
Elsevier, March 1998.

[RE98] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods
and their Comparison, volume 47 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1998.

[Rei81] H. Reichel. Behavioural equivalence — a unifying concept for initial and final specifi-
cations. In Third Hungarian Computer Science Conference. Akademiai Kiado, Budapest,
1981.

[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985.



BIBLIOGRAPHY 437

[Rei88] W. Reisig. Temporal logic and causality in concurrent systems. In F. H. Vogt, editor, Proc.
CONCUR’ 88. Springer Lect. Notes Comp. Sci. (335), 1988.

[Rei91] W. Reisig. Petri nets and algebraic specifications. Theor. Comp. Sci., 80(1):1–34, 1991.
[Rei95] H. Reichel. An approach to object semantics based on terminal co-algebras. Math. Struct.

in Comp. Sci., 5:129–152, 1995.
[RJT01] J. Rothe, B. Jacobs, and H. Tews. The coalgebraic class specification language CCSL. Jour.

of Universal Computer Science, 7(2), 2001.
[Ros00] G. Rosu. Hidden Logic. Ph.D. thesis, University of California, San Diego, 2000.
[RS92] L. Rapanotti and A. Socorro. Introducing FOOPS. Techn. Report PRG-TR-28-92, Comput-

ing Laboratory, Oxford, UK, 1992.
[RT94] J. Rutten and D. Turi. Initial algebra and final co-algebra semantics for concurrency. In

Proc. REX School: A Decade of Concurrency, pages 530–582. Springer Lect. Notes Comp.
Sci. (803), 1994.

[Rut95] J. Rutten. A calculus of transition systems (towards universal co-algebra). In A. Ponse,
M. de Rijke, and Y. Venema, editors, Modal Logic and Process Algebra, A Bisimulation
Perspective, CSLI Lecture Notes (53), pages 231–256. CSLI Publications, Stanford, 1995.

[Rut96] J. Rutten. Universal coalgebra: A theory of systems. Technical report, CWI, Amsterdam,
1996.

[Rut98] J. Rutten. Automata and coinduction (an exercise in coalgebra). In Proc. CONCUR’ 98,
pages 194–218. Springer Lect. Notes Comp. Sci. (1466), 1998.

[Rut00] J. Rutten. Universal coalgebra: A theory of systems. Theor. Comp. Sci., 249(1):3–80, 2000.
(Revised version of CWI Techn. Rep. CS-R9652, 1996).

[Rut01] J. Rutten. Elements of stream calculus (an extensive exercise in coinduction). Technical
report, CWI, Amsterdam, 2001.

[Sch97] M. A. Schroeder. Higher-order Charity. Master’s thesis, The University of Calgary, 1997.
[Sch98] D. Schamschurko. Modeling process calculi with PVS. In CMCS’98 - Workshop on Coal-

gebraic Methods in Computer Science, Lisbon. ENTCS, volume 11, Elsevier, March 1998.
[See89] R. Seely. Linear logic, � -autonomous categories and cofree coalgebras. In J. Gray and

A. Scedrov, editors, Categories in Computer Science and Logic, Contemporary Mathe-
matics, volume 92, pages 371–382. American Mathematical Society, 1989.

[Sel99] P. Selinger. Categorical structure of asynchrony. In MFPS’98 (invited talk), New Orleans.
ENTCS, volume 20, Elsevier, March 1999.

[SFSE89] A. Sernadas, J. Fiadeiro, C. Sernadas, and H.-D. Ehrich. Abstract object types: A temporal
perspective. In A. Pnueli, H. Barringer, and B. Banieqbal, editors, Proc. Colloquium on
Temporal Logic and Specification. LNCS (398), 1989.

[She93] T. Sheard. Type parametric programming. Technical report, Oregon Graduate Institute of
Science and Technology, Portland, USA, 1993.

[SN99] J.-G. Schneider and O. Nierstrasz. Components, scripts, glue. In L. Barroca, J. Hall,
and P. Hall, editors, Software Architectures - Advances and Applications, pages 13–25.
Springer-Verlag, 1999.

[SP82] M. Smyth and G. Plotkin. The category theoretic solution of recursive domain equations.
SIAM Journ. Comput., 4(11):761–783, 1982.

[Spe93] D. L. Spencer. Categorical Programming with Functorial Strength. PhD thesis, The Ore-
gon Graduate Institute of Science and Technology, Janeiro 1993.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual (2nd ed). Series in Computer Science.
Prentice-Hall International, 1992.



438 BIBLIOGRAPHY

[Spo97] D. Spooner. Building Process Categories. Ph.D. thesis, University of Calgary, Alberta,
1997.

[ST85] D. Sannella and A. Tarlecki. On observational equivalence and algebraic specification. In
CAAP 85, pages 413–427. Springer Lect. Notes Comp. Sci. (185), 1985.

[Sti92] C. Stirling. Modal and temporal logics. In Maibaum Abramsky, Gabbay, editor, Handbook
of Logic in Computer Science (vol. 2), pages 478–551. Oxford Science Publications, 1992.

[Sti95] C. Stirling. Modal and temporal logics for processes. Springer Lect. Notes Comp. Sci.
(715), pages 149–237, 1995.

[Str96] R. Street. Categorical structures. In M. Hazewinkel, editor, Handbook of Algebra (vol. 1),
pages 529–577. Elsevier North-Holland, 1996.

[Str99] Th. Streicher. Fibred categories. Lecture notes, Spring School on Categorical Methods in
Logic and Computer Science, LMU, Muenchen, April 1999.

[Szy98] C. Szyperski. Component Software, Beyond Object-Oriented Programming. Addison-
Wesley, 1998.

[Tar55] A. Tarski. A lattice–theoretic fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285–309, 1955.

[TP97] D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In Proc. 12
���

LICS Conf., pages 280–291. IEEE, Computer Society Press, 1997.
[TR98] D. Turi and J. Rutten. On the foundations of final coalgebra semantics: non-well-founded

sets, partial orders, metric spaces. Math. Struct. in Comp. Sci., 8(5):481–540, 1998.
[Tur95] D. Turner. Elementary strong functional programming. In Proc. Inter. Sym. on Functional

Programming Languages in Education, pages 1–13. Springer Lect. Notes Comp. Sci.
(1022), 1995.

[Tur96] D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis, Free
University of Amsterdam, June 1996.

[UV99] T. Uustalu and V. Vene. Primitive (co)recursion and course-of-values (co)iteration, cate-
gorically. INFORMATICA (IMI, Lithuania), 10(1):5–26, 1999.

[UVP01] T. Uustalu, V. Vene, and A. Pardo. Recursion schemes from comonads. Nordic Journal of
Computing (to appear), 2001.

[Val00] J. Valença. Reactive systems and dependent types. LOGCOMP Final Workshop, 2000.
[Veg97] S. Veglioni. Integrating Static and Dynamic Aspects in the Specification of Open Object-

based Distributed Systems. PhD thesis, Oxford University Computing Laboratory, 1997.
[vG90] R. van Glabbeek. The linear time - branching time spectrum. In J. Baeten and J. Klop,

editors, Proc. CONCUR ’90. Springer Lect. Notes Comp. Sci. (458), 1990.
[VU97] V. Vene and T. Uustalu. Functional programming with apomorphisms (corecursion). In

Proc. 9th Nordic Workshop on Programming Theory, 1997.
[Wad89] P. Wadler. Theorems for free! In 4th International Symposium on Functional Programming

Languages and Computer Architecture, pages 347–359, September 1989.
[Wad92] P. Wadler. Comprehending monads. Math. Struct. in Comp. Sci., 2:461–493, 1992. (Special

issue of selected papers from 6’th Conference on Lisp and Functional Programming.).
[Wad95] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer, editors, Ad-

vanced Functional Programming. Springer Lect. Notes Comp. Sci. (925), 1995.
[Wal89] R. F. C. Walters. Datatypes in distributive categories. Bull. of the Australian Mathematical

Society, 40:79–82, 1989.
[Wal91] R. F. C. Walters. Categories and Computer Science, volume 28 of Cambridge Computer

Science Texts. Cambridge University Press, 1991.



BIBLIOGRAPHY 439

[Wan79] M. Wand. Final algebraic semantics and data type extensions. Jour. Comput. Systems Sci.,
19:27–44, 1979.

[WD96] J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice-Hall
International, 1996.

[Wel98] H. Weld. On Categories of Asynchronous Circuits. PhD thesis, University of Sydney, 1998.
[WF98] M. Wermelinger and J. Fiadeiro. Connectors for mobile programs. IEEE Trans. on Soft-

ware Eng., 24(5):331–341, 1998.
[Wir90] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science (volume B), pages 673–788. Elsevier - MIT Press, 1990.
[WLF01] M. Wermelinger, A. Lopes, and J. Fiadeiro. A graph based architectural (re)configuration

language. In Proc. of ESEC/FSE’01. ACM Press (in print), 2001.
[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. M. Gabbay, and

T. S. E. Gabbay, editors, Handbook of Logic in Computer Science (vol. 4), pages 1–148.
Oxford Science Publications, 1995.

[Wol99] U. Wolter. A coalgebraic introduction to CSP. In CMCS’99 - Workshop on Coalgebraic
Methods in Computer Science. ENTCS, volume 19, Elsevier, 1999.

[Wol00] U. Wolter. On corelations, cokernels and coequations. In H. Reichel, editor, CMCS’00 -
Workshop on Coalgebraic Methods in Computer Science, pages 347–366. ENTCS, volume
33, Elsevier, 2000.

[Wor98] J. Worrell. A topos of hidden algebras. In CMCS’98 - Workshop on Coalgebraic Methods
in Computer Science, Lisbon. ENTCS, volume 11, Elsevier, March 1998.

[Wra88] G. C. Wraith. A note on categorical data types. In D. et all Pitt, editor, Proc. Category
Theory and Computer Science, pages 118–127. Springer Lect. Notes Comp. Sci. (389),
1988.

[WW99] P. Wadler and K. Weihe. Component-based programming under different paradigms. Tech-
nical report, Report on the Dagstuhl Seminar 99081, February 1999.


