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Abstract

This work discusses issues concerning stability, tuning and dynamics of convergence of observer-based kinetics estimators. The
analysis focuses on both continuous and discrete time formulations of the estimation algorithms. Concerning the former, it is shown

that, with proper tuning, stability can be guaranteed, while simultaneously imposing a desired quasi-time invariant second order time
response for the convergence of estimates to true values. Concerning the latter, an algorithm is presented, based on a forward Euler
discretisation, whose error system is shown to be linear time-invariant. Furthermore, stability conditions were derived, which define

the stable domain for the discretisation period as function of the tuning parameters. The theory is illustrated with a case-study of
Baker’s yeast fermentation. Results clearly confirm the theoretical developments. In particular, results concerning the stability
domain for the Euler-based discrete formulation of the estimator are shown to have relevant practical implications.# 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The development of bioprocess monitoring and con-
trol strategies relying on mathematical (phenomen-
ological) description of micro-organism growth kinetics
is a critical issue in bioprocess model-based operation.
Mainly because mechanisms for cell growth and product
formation are rather complex, kinetic models for bio-
process design, monitoring and control assume, tradi-
tionally, simplified unstructured and non-segregated
descriptions of the cell system. Unfortunately, in many
cases, such models are not accurate enough for solving
the problems in study. The other critical issue is related
to the identification of kinetic parameters. Even for those
simplified models, parameter identification requires a
careful and expensive experimental planning [1–3]. For
these two reasons, quite frequently the benefit/cost ratio
associated to such developments hinders their applica-
tion in the biochemical industries. In some cases it may
be possible to employ, at reasonable developing costs,
algorithms for accurate kinetic/parameter estimation
that rely on on-line process measurements and that do
not assume the knowledge of the underlying kinetic

model. This type of solution may be most advantageous
in terms of benefits for process operation.
Over the past 20 years different approaches have been

proposed for estimation of growth kinetics in biopro-
cesses. Most of them are model-based estimators using
the general theoretical framework developed by Bastin
and Dochain [4]. Farza and co-authors [5–8] have pro-
posed observer-based estimators (OBE) whose funda-
mentals are found in the nonlinear systems theory. A
discrete-time version of these OBE was also introduced
using direct Euler discretization [9]. These works estimate
reaction rates from the measurement of state variable
concentrations. Some authors have been using exit-gas
analysis such as oxygen transfer rate and carbon dioxide
transfer rate measurements for the estimation of the
growth rates [10,11]. More recently, Perrier et al. [12]
studied in detail the tuning of OBE for on-line estima-
tion of kinetic parameters.
Though, in general terms, the theory and scope of

applications of OBE are well documented in the litera-
ture, several issues concerning stability and dynamics of
convergence related to the tuning of design parameters
remain to be studied. Such issues are discussed in detail
in the present paper.
The paper is organised in the following way. In Sec-

tion 2 we review the concept of observer-based reaction
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kinetics estimator. In Section 3 we present a detailed
analysis of stability and dynamics of convergence. A tun-
ing strategy is derived, which aims at imposing quasi-
invariant second-order dynamics of convergence and the
proof of global stability is presented. In Section 4 we
develop a state and reaction rates estimation scheme for
a Baker’s yeast fed-batch production process, employ-
ing the algorithms of Sections 2 and 3. In Section 4 we
present the main results obtained with the estimation
scheme of Section 3 with a simulated experiment. Finally,
in Section 5, we present the main conclusions.

2. The observer-based estimator

2.1. The general case

Bastin and Dochain [4] proposed a methodology for
state and parameter estimation based upon a general
dynamical model for stirred-tank reactors (although the
original formulation was applied exclusively to stirred-
tank bioreactors, it can be equally applied to chemical
reactors as shown in [13]):

d�

dt
¼ K’ �ð Þ � D� þ F � Q ð1Þ

where � is the state vector (the set of n component con-
centrations), ’(�) is the m�1 vector of reaction rates, K
the n�m yield coefficients matrix, D the dilution rate (a
scalar), F the n�1 feed rate vector andQ the n�1 gaseous
outflow rate vector.
In Eq. (1) the reaction rates ’(�) are defined as:

’i �ð Þ ¼ hi �ð Þ�i �ð Þ i ¼ 1; . . . ;m ð2Þ

where hi �ð Þ is a known function of the state while �i �ð Þ is
an unknown function of the state. Or, more generally:

’ �ð Þ ¼ � �ð Þ� �ð Þ ð3Þ

with � �ð Þ ¼ diag h1 �ð Þ � � � hm �ð Þ½ 	ð Þ and

� �ð Þ ¼ �1 �ð Þ � � � �m �ð Þ½ 	
T

The strategy is to lump in �(�) all the prior knowl-
edge regarding the kinetics and to consider �(�) as a

Nomenclature

C dissolved oxygen concentration
CTR carbon dioxide transfer rate
D dilution rate
E ethanol concentration
F vector of mass feed rates
Fin influent flow rate
G dissolved carbon dioxide concentration
�(�) (m�m) matrix of known functions of the

state
K yield coefficients matrix
ki yield coefficient
OTR oxygen transfer rate
Q vector of mass outflow in gaseous form
S glucose concentration
Sin glucose concentration in the feed
T sampling period
X biomass concentration

Greek letters
� gain matrix
�i diagonal elements of �
’ vector of reaction rates
� vector of specific growth rates
�̂ vector of estimated specific growth rates
�o

e specific growth rate for the respiratory
growth on ethanol pathway

�r
s specific growth rate for the fermentative

growth on glucose pathway

�o
s specific growth rate for the respiratory

growth on glucose pathway
�̂ vector of �(t) estimates
�(t) vector of completely unknown time-varying

parameters
�i natural period of oscillation
� gain matrix
!i diagonal elements of �
� vector of state variables
�̂ vector of estimated states
�1 vector of measured state variables
�2 vector of non-measured state variables
�̂2 vector of estimated nonmeasured state vari-

ables
 vector of transformed state variables

i damping coefficient

Mathematical notations
sup supremum
min minimum
max maximum
diag{.} diagonal matrix

Abbreviations
BIBO bounded input bounded output
LTV linear time variant
OBE observer-based estimator
SODE second order dynamics estimator
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completely unknown time-varying parameter that can be
estimated on-line through the use of parameter estimators.
Based on this generic dynamic model, the observer-

based estimator (OBE) is derived with the goal of esti-
mating on-line the unknown vector �(�) from the on-
line knowledge of all state variables when the yield
coefficients are known and constant. When only a lim-
ited number of state variables are effectively measured
on-line, then the estimator can run simultaneously with
a state estimator that provides the unmeasured states.
The estimator is stated as:

d�̂

dt
¼ K� �ð Þ�̂ � D� þ F � Q þ� � � �̂

� �
ð4aÞ

d�̂

dt
¼ K� �ð Þ½ 	

T� � � �̂
� �

ð4bÞ

where �̂ is an estimate of �, �̂ is an estimate of �, � and
� are square n�n matrices of design parameters avail-
able to the user to control the stability and the tracking
properties of the algorithm.
The stability conditions were established in [4] and

may be summarised as follows:

C1. state variables � are positive and bounded for all
t.
C2. �(�) is a differentiable function of �.
C3. X is a n�n constant matrix with all its eigenva-
lues having strictly real parts.
C4. C is a n�n constant matrix such that the matrix
X T C + C TX is positive definite.
C5. K�(�) is a persistently exciting matrix.

Conditions C3 and C4 define some restrictions to the
tuning of the design parameters in matrices � and � To
some extent the user may control the stability and the
tracking properties of the algorithm through the proper
setting of these parameters. By defining:

X ¼ diag !1 . . .!n½ 	
� �

C ¼ diag �1 . . . �n½ 	
� �

ð5Þ

being !i and � i 2�n strictly positive real constants then
conditions C3 and C4 are automatically verified and the
tuning procedure reduces to the calibration by trial and
error of 2�n scalar constants. Notice also that while
condition C1 is acceptable in most chemical and bio-
chemical applications since most often state variables
are concentrations, condition C5 must be properly tes-
ted before application.
With such a strategy stability is guaranteed but the

user has few control on the tracking properties of the
system as it will be shown below in Section 5. The rela-
tionships between stability and tracking properties can
however be better characterised in a more restricted

class of problems: (i) when the reaction term can be
expressed by Eq. (2); and (ii) when a subset of the state
space equations is enough for designing the observer-
based estimator (which is then called reduced order obser-
ver-based estimator). Fortunately this situation occurs
quite often in biochemical applications. We develop fur-
ther this particular case in the following sections.

2.2. The reduced-order observer-based estimator

The observer-based estimator (4) is based on the full
dynamical model of the process. In practice this is not
always necessary. In many applications it is sufficient to
design the estimator from a subset of the state equations
provided they involve all the parameters that need to be
estimated. This reduced-order OBE is based on the fol-
lowing assumptions and corresponding developments:

A1. There are m parameters which need to be esti-
mated.
A2. There is a subset of m equations of the full state
space model that involves all the m parameters which
need to be estimated:

d �a
d t

¼ Ka� �ð Þ� �ð Þ � D�a þ Fa � Qa: ð6Þ

A3. In Eq. (6) Ka is a m�m full-rank matrix
By considering the transformation:

 ¼ K�1
a �a ð7Þ

then Eq. (6) can be re-written as:

d 

dt
¼ � �ð Þ� �ð Þ � D þ K�1

a Fa � Qað Þ: ð8Þ

With the reaction rates definitions in Eqs. (1) and (2),
�(�) is a m�m diagonal matrix and Eq. (8) can be
reformulated in a decoupled format,

d i

dt
¼ hi �ð Þ�i �ð Þ � D i þ ui ð9Þ

ui being the ith element of vector U=Ka
�1(Fa�Qa).

Based on the reformulated process model (9), the
reduced-order OBE is written as:

d ̂i

dt
¼ hi �ð Þ�̂i � D i þ ui þ !i  i �  ̂i

� �
ð10aÞ

d�̂i

dt
¼ hi �ð Þ�i  i �  ̂i

� �
: ð10bÞ

Pomerleau and Perrier [14] suggested a pole place-
ment technique for tuning the design parameters !i and
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� i in the discrete time formulation of estimator (10).
Oliveira et al. [15] analysed in a previous paper the
continuous-time formulation of estimator (10) showing
that defining constant values for the design parameters
the dynamics of convergence of estimated parameters to
‘true’ parameters follows second order dynamics with
time-varying characteristic coefficients (time constant
and damping factor).
In order to better control the dynamics of convergence

of the OBE estimator, recently Perrier et al. [12] suggested
a re-definition of the regressor in the updating law of �̂
[Eq. (10b)] as:

d ̂i

dt
¼ hi �ð Þ�̂i � D i þ ui þ !i  i �  ̂i

� �
ð11aÞ

d�̂i

dt
¼

�i

hi �ð Þ
 i �  ̂i

� �
: ð11bÞ

where !i and �i are positive real constants used for
calibrating the estimator. Still, in both continuous and
discrete systems, the relationships between stability,
dynamics of convergence and tuning of design para-
meters are open for analysis as it will be now discussed.

3. A detailed analysis of stability, dynamics of

convergence and tuning of design parameters

3.1. Derivation of stability conditions

The error system of estimator (11) can be shown to be
a second order linear time variant (LTV) system:

d

dt
 ~ i

�~ i

� �
¼

�!i hi �ð Þ

��ih
�1
i �ð Þ 0

� �
 ~ i

�~ i

� �
þ

0
d�i

dt

" #
ð12Þ

with  ~ i ¼  i �  ̂i; �~ i ¼ �i � �̂i; i ¼ 1; . . . ;m

where d�i/dt is considered as an external persistent dis-
turbance.
It is a standard result of the BIBO stability theory

that a LTV system perturbed by an external disturbance
is globally stable if the unperturbed system is uniformly
asymptotically stable and the disturbance vector is
bounded [16].
Stability conditions C1 and C2 (see Section 2.1)

ensure the boundness of d�i/dt [4]. Still, it remains to be
proved that the unforced system is uniformly asympto-
tically stable.
Let us first reformulate the error system (12) and

concentrate our attention on the unforced system:
Considering the transformation y ¼  ~ =h (to simplify

the present analysis the index ‘i’ will be omitted hereafter),
the set of Eqs. (12) results in,

dy

dt
¼ �a tð Þy þ �~ ð13aÞ

d�~

dt
¼ ��y þ

d�

dt
ð13bÞ

where

a tð Þ ¼ ! tð Þ þ
dln hð Þ

dt
ð14Þ

Choosing the following candidate Lyapunov function:

V y; �~ð Þ ¼ �y2 þ �~2 ð15Þ

whose time derivative along the solution of system (13)
is given by:

dV

dt
¼ �2a tð Þy2 ¼ �ETQ tð ÞE ð16Þ

where

ET ¼ y �~
	 


; Q tð Þ ¼
a tð Þ 0
0 0

� �

it follows that if a tð Þ50 8t5t0 then Q(t) is positive semi-
definite. Hence the equilibrium state E=0 is uniformly
stable [16].
Supposing that stability conditions C1 and C2 hold,

the further conditions under which a tð Þ50 8t5t0 are
stated as:

C6. h(�) is a differentiable function of �, which means
that j h

:
j is bounded

C7. h(�) is bounded as follows: 0 < hmin4hi �ð Þ4hmax

8t5t0

C8. ! tð Þ5� dlnh
dt 8t5t0

Still, since Q(t) is positive semi-definite and time-
varying, it cannot be concluded that system (13) is uni-
formly asymptotically stable.
In the lines bellow, the exponential stability of system

(13) is proved. A qualitative outline of the proof can be
given in two steps:

(i) In system (13) y(t) has to assume a large value at
some instance in every interval [t,t+To];
(ii) Since V

:
is as given by Eq. (16), this implies that

V(t) decreases over every interval of length To, which
ensures uniform asymptotic stability.

Proof. (i) Start by assuming that yi tð Þ
�� �� < � Ei tð Þ

�� ��
8t 2 to; to þ To½ 	, where � 2 0; 1½ 	.
Integrating Eq. (13a) over the time interval

t2; t2 þ �0½ 	  t0; t0 þ T0½ 	, it follows that
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y t2 þ �0ð Þ
�� ��þ y t2ð Þ

�� ��5ðt2þ�0

t2

�~ �ð Þ
�� ��d� � amax

ðt2þ�0

t2

y �ð Þ
�� ��d�

ð17Þ

where amax is the maximum value of a tð Þ
�� ��. Therefore

y t2 þ �0ð Þ
�� ��5ðt2þ�0

t2

�~ �ð Þ
�� ��d�

� �0amax þ 1ð Þ sup
�2 t2;t2þ�0½ 	

y �ð Þ
�� �� ð18Þ

since y t2ð Þ
�� �� is always less then sup y �ð Þ

�� �� in
� 2 t2; t2 þ �0½ 	. On the other hand

ðt2þ�0

t2

�~ �ð Þ
�� ��d�5ðt2þ�0

t2

�~ t2ð Þ
�� ��d� � ðt2þ�0

t2

�~ t2ð Þ � �~ �ð Þ
�� ��d�

5�0 �~ t2ð Þ
�� ��� �0 sup

�2 t2;t2þ�0½ 	

�~ t2ð Þ � �~ �ð Þ
�� ��

5�0 �~ t2ð Þ
�� ��� �0

ðt2þ�0

t2

�~
:��� ���d� ð19Þ

since the distance between to points �~ t2ð Þ and �~ �ð Þ is
always less then the arc length

Ð t2þ�0
t2

j �~
:
j d�.

Hence, evaluating �~
:
from Eq. (13b), Eq. (19) becomes

ðt2þ�0

t2

�~ �ð Þ
�� ��d�5�0 �~ t2ð Þ

�� ��� b sup
�2 t2;t2þ�0½ 	

y �ð Þ
�� �� ð20Þ

where b ¼ ��20 þ amax�0 þ 1.
From the initial supposition regarding y tð Þ

�� ��, it fol-
lows that sup y �ð Þ

�� �� in � 2 t2; t2 þ �0½ 	 is always less then
� E t2 þ �0ð Þ
�� ��, and also �~ t2ð Þ

�� �� is always larger thenffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
E t2ð Þ

�� ��.
Since

d E tð Þk k
dt 4 �a tð Þy2

min �;1ð Þ
40 8t5t0, then E t2ð Þ

�� ��5
E t2 þ �0ð Þ

�� ��. Hence Eq. (20) becomes
y t2 þ �0ð Þ
�� ��5 �0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� b�

� �
E t2 þ �0ð Þ

�� ��: ð21Þ

Choosing

�2 ¼
�20

�20 þ 1þ bð Þ
2

ð22Þ

then Eq. (21) becomes

y t2 þ �0ð Þ
�� ��5� E t2 þ �0ð Þ

�� �� ð23Þ

which is a contradiction of the initial assumption
regarding y tð Þ

�� ��. Point (i) is, therefore, proved.
(ii) Analysis of the trajectory V(t)

Let us now integrate Eq. (16) over a time interval
t1; t1 þ T½ 	  t0; t0 þ T0½ 	

V t1ð Þ � V t1 þ Tð Þ52amax

ðt1þT

t1

y �ð Þ
�� ��2d� ð24Þ

and by the Cauchy–Schwarz inequality

V t1ð Þ � V t1 þ Tð Þ5
2amax

T

ðt1þT

t1

y �ð Þ
�� ��d�� �2

ð25Þ

Further, by considering that

ðt1þT

t1

y �ð Þ
�� ��d�5ðt1þT

t1

y t1ð Þ
�� ��d� � ðt2þ�0

t2

y
:�� ��d�

5T y t1ð Þ
�� ��� T2d E t1ð Þ

�� �� ð26Þ

where d ¼ amax þ 1, then choosing t1 ¼ t2 þ �0 we have
that

ðt1þT

t1

y �ð Þ
�� ��d�5T �� Tdð Þ E t1ð Þ

�� ��: ð27Þ

Hence Eq. (25) becomes

V t1ð Þ � V t1 þ Tð Þ52
amax

d
Td �� Tdð Þ

2 E t1ð Þ
�� ��2 ð28Þ

being T less than �/d.
Since E tð Þ

�� ��2 is always larger then V tð Þ=max �; 1ð Þ,
then choosing T ¼ min t0 þ T0 � t1; �=dð Þ we conclude
that

V t0 þ T0ð Þ4V t1 þ Tð Þ4 1� �ð ÞV t1ð Þ4 1� �ð ÞV t0ð Þ

ð29Þ

where

� ¼
2amax

max �; 1ð Þd
Td �� Tdð Þ

2
ð30Þ

Since amax=d is always less then 1 and T=�/(3d) is a
maximum point of the function f Tð Þ ¼ Td �� Tdð Þ

2, we
conclude that

� 2 0;
8�3

27max �; 1ð Þ

� �
 0; 1½ 	 ð31Þ

Hence, the final conclusion can be taken that the
unperturbed estimator (13) is uniformly asymptotically
stable, thus system (13) is globally stable provided con-
ditions C1, C2 and C6-C8 hold true. &
It should be noted that condition C8 is obeyed

depending on the choice of design parameters. This is
discussed next.
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3.2. Dynamics of convergence, stability conditions, and
tuning

The above derived stability conditions impose some
constraints on the choice of the design parameters.
Additionally and if possible the choice of design para-
meters should be easily related to the type of dynamics
of convergence, which one might wish to impose to the
estimator . This issue will be addressed in the present
section (again, to simplify the reading index ‘i’ in set of
Eqs. (11) will be omitted).
Differentiating Eq. (11b) gives

d2�̂

dt2
¼
�

h

d ~

dt
� �

1

h2
dh

dt
 ~ ð32Þ

Combining Eqs. (32) and (11b) and the first equation
in the error system (12), it follows that

�2
d2�̂

dt2
þ 2
�

d�̂

dt
þ �̂ ¼ � ð33Þ

with � and 
 given by

� ¼ ��0:5 ð34aÞ


 ¼
�

2
!þ

dlnh

dt

� �
: ð34bÞ

Eq. (33) shows that kinetic parameters �̂ tð Þ may be led
to converge to their true value � tð Þ with a second order
dynamic response with constant natural period of oscil-
lation � and time-varying damping coefficient 
(t). From
condition C8 it was concluded that ! may be time-
varying but must be always larger then the value of-
d(lnh)/dt. Supposing that the term

� ¼
dlnh �ð Þ

dt
ð35Þ

is known on-line corrupted by an error "(t) (in practice
the on-line knowledge of � requires an approximation
to the time derivative dln(h)/dt, and, therefore, the esti-
mated value �̂ is always corrupted by the approximation
error " tð Þ ¼ �̂ � �) and defining � and !(t) as:

� ¼
1

�2
ð36aÞ

! tð Þ ¼ 2
d=� � �̂ ¼ 2
d=� � �� " tð Þ ð36bÞ

then the damping coefficient 
 tð Þ is time-varying and
related to the desired value 
d and to the approximation
error "(t) in the following way:


 tð Þ ¼ 
d 1�
�" tð Þ

2
d

� �
: ð37Þ

With this strategy, the time dependency of 
 is to some
extent reduced. However care should be taken when the
measured or the estimated state variables are noisy. In this
situation the numerical differentiation of � may have
large errors � attached.
Notice that defining !(t) by Eq. (36b) implies that con-

dition C8 which states that !(t) >- �(�) 8t is verified if

2
d
�
> " tð Þ; 8t ð38Þ

Notice also, and finally, that as given by Eq. (37) this
is equivalent to state that 
(t) must be positive for all t.
Hereafter the estimator constituted by the set of Eqs.

(11), together with the tuning Eqs. (36) and (37), leading
to a second order dynamics of convergence will be
termed as SODE—second order dynamics estimator.

3.3. Numerical implementation, stability condition and
tuning

The numerical implementation of estimator (11)
requires a discrete-time formulation. The switch from the
continuous-time equations to the discrete time versions
leads to specific stability problems, in which the integra-
tion step T plays an important role. The simplest
approach, often employed, is Euler’s discretisation of the
continuous time equations. The implications in the stabi-
lity of using such an Euler discretisation are now analysed:
A forward Euler discretisation of Eqs. (11) with !(t)

and � given by Eqs. (36) and (37) results in the following
discrete-time equations:

 ̂tþ1 ¼  ̂t � TDt t þ Tht�̂t þ TUt

þ T!t  t �  ̂t

� �
ð39aÞ

�̂tþ1 ¼ �̂t þ
T

�2ht
 t �  ̂t

� �
ð39bÞ

with

!t ¼
2


�
�

ln htþ1ð Þ � ln htð Þ

T
: ð40Þ

The discrete error system is as follows

 ~ tþ1 ¼ 1� T!tð Þ ~ t þ Tht�~ t ð41Þ

�~ tþ1 ¼ �
T

�2ht
 ~ t þ �~ t þ �tþ1 � �tð Þ ð42Þ
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which is equivalent to

Etþ1 ¼ AEt þ Bt ð43Þ

with

Et ¼

 ~ t

ht
�~ t

2
4

3
5 A ¼

1�
2


�
T T

�
T

�2
1

2
64

3
75

Bt ¼
0
�tþ1 � �t

� �
:

ð44Þ

The discrete-time error system (43) is linear time-
invariant. The unforced system is exponentially stable
[hence the output error of system (43) is bounded] if the
eigenvalues of matrix A stay inside the unit circle. The
eigenvalues of matrix A and the stability condition in
terms of integration step are shown in Table 1. The ana-
lysis of such eigenvalues leads to the conclusion that the
range allowed for the integration step T is bounded and
conditioned by the choice of � and 
. Notice also that
these restrictions are typical of a second order dynamics
system and would be the same if the analysis had been
carried out from the discrete version of Eq. (33).

4. Results and discussion

The results and conclusions of the preceding sections
are now illustrated with an application to a baker’s yeast
cultivation process. The process data were obtained by
simulation, using the dynamical model for the fed-batch
fermenter described by Feyo de Azevedo et al. [17].
Process model and operating conditions: the mass

balances to biomass, substrate, ethanol, oxygen and
carbon dioxide, in terms of concentration in the fer-
mentation media, take the matrix form:

d

dt

X

S

E

C

G

2
6666664

3
7777775

¼

1 1 1

�k1 �k2 0

0 k3 �k4

�k5 0 �k6

k7 k8 k9

2
6666664

3
7777775

�o
s

�r
s

�o
e

2
64

3
75X � D

X

S

E

C

G

2
6666664

3
7777775

þ

0

DSin

0

OTR

�CTR

2
6666664

3
7777775

ð45Þ

where ki are the yield coefficients, OTR is the oxygen
transfer rate, CTR is the carbon dioxide transfer rate, D
is the dilution rate defined as D=Fin/V, V is the broth
volume and Fin is the influent flow rate. The oxygen

transfer rate is computed as OTR ¼ KLa C� � Cð Þ where
KLa is the global mass transfer coefficient and C* the
equilibrium concentration of dissolved oxygen. The car-
bon dioxide transfer rate is computed asCTR ¼ KVKLaG.
The value for KLa, Kv and C* were assumed 100 h�1, 0.2
and 0.007 g/l respectively. The bottleneck kinetic model of
Sonnleitner and Käppeli [18] was assumed together with
values for the yield coefficients from [14]. The process
was simulated with the following initial conditions:

X 0ð Þ ¼ 1:0 g=l; S 0ð Þ ¼ 0:02 g=l;

E 0ð Þ ¼ 0:15 g=l; C 0ð Þ ¼ 0:0066 g=l;

G 0ð Þ ¼ 0:008 g=l; V 0ð Þ ¼ 3:5 l

The simulation results for an 18 h cultivation are plot-
ted in Figs. 1a–c and 2. Fig. 1a shows the feed rate
profile imposed to the process. The profiles of the gas-
eous outflow rates OTR and CTR, and of the state
variables are plotted in Fig. 1b and c, respectively. In
Fig. 2 the corresponding specific growth rate profiles
given by the kinetic model adopted are plotted.
As shown in Fig. 2 the specific growth rates related to

ethanol production and consumption (�r
s and �o

e

respectively) switch alternatively from zero to positive
values and are not at any instant simultaneously posi-
tive. This illustrates the two metabolic states—respiro—
fermentative and respirative- reported in [18]. The input
feed rate profile (Fig. 1a) was chosen intentionally to pro-
mote this switching a considerable number of times. For
the present conditions the switching between respiro-fer-
mentative and respirative metabolic states occurred seven
times. Fig. 2 is divided in several regions distinguishing the
two different process states: respiro-fermentative (RF)
with ethanol production, and respirative (R) with ethanol
consumption. The curves shown in Fig. 2 are taken as the
‘true’ specific growth rate profiles, which will be the
target parameters. These three specific growth rates are
treated as three unknown process variables that must be
estimated, using the estimators previously described. As

Table 1

Eigenvalues of the discrete-time formulation error system and stability

condition for integration step


 < 1 
=1 
 > 1

l1 1�
T

�

 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p� �
1�

T

�
1�

T

�

 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 1

p� �

l2 1�
T

�

 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p� �
1�

T

�
1�

T

�

 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 1

p� �

T 0 < T < 2
� 0 < T < � 0 < T <
�


 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 1

p
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such, the functions �(�) and r(�) in Eq. (3) are defined
in the following way:

F �ð Þ ¼ diag Xð Þ and �T �ð Þ ¼ �o
s �r

s �o
e

	 

:

4.1. Reduced-order OBE kinetics estimator

Some practical aspects reported in previous works for
OBE design [14] have been adopted here, namely: (i) the
state space equations for oxygen and carbon dioxide are
employed since these variables are easily accessible on-
line; and (ii) the design assumes the existence of two
partial models corresponding to the two metabolic

states (respiro-fermentative and respirative) yielding to
partial algorithms. This latter strategy is used to prevent
problems related to the inversion of matrix Ka in Eqs.
(7) and (8), which arise when the design is based on the
full dynamical model. The switch between partial algo-
rithms is detected by the transition between positive to
negative values of the growth rate estimate related to
ethanol production or consumption. The resulting
equations of the reduced-order OBE are:
For the respiro-fermentative state:

 ¼
�k5 0
k7 k8

� ��1
C
G

� �
ð46aÞ

Fig. 1. Operating data for Baker’s yeast fermentation: (a) input feed rate Fin (0.0–0.5 l/h), glucose concentration on the feed Sin (250 g/l) and volume

V (0.0–10.0 l). (b) Gaseous transfer rates: oxygen transfer rate OTR (0.0–7.0 g l�1 h�1) and carbon dioxide transfer rate CTR (0.0–12.0 g l�1 h�1). (c)

State variables: biomass X (0.0–30.0 g/l), glucose S (0.0–1.25 g/l), ethanol E (0.0–2.0 g/l), oxygen C (0.0–0.007 g/l) and carbon dioxide G (0.0–0.03 g/l).
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d ̂

dt
¼ X

�̂o
s

�̂r
s

� �
� D þ

�k5 0
k7 k8

� ��1
OTR
�CTR

� �

þ
!1 0
0 !2

� �
 �  ̂

� �
ð46bÞ

d

dt

�̂o
s

�̂r
s

� �� �
¼ X

�1 0
0 �2

� �
 �  ̂

� �
; ð46cÞ

and for the respirative state:

 ¼
�k5 �k6
k7 k9

� ��1
C
G

� �
ð47aÞ

d ̂

dt
¼ X

�̂o
s

�̂o
e

� �
� D 

þ
�k5 �k6
k7 k9

� ��1
OTR
�CTR

� �

þ
w1 0
0 w3

� �
 �  ̂

� �
ð47bÞ

d

dt

�̂o
s

�̂o
e

� �� �
¼ X

�1 0
0 �3

� �
 �  ̂

� �
ð47cÞ

In practical terms, variablesC,G,OTR,CTR, and Fin in
Fig. 1a–c are considered as process on-line measurements,
being supplied to the estimation algorithms at a sampling
period of 6 min. Also, it should be noted that Eqs. (46a)
and (47a) correspond to the transformation defined by
Eq. (7), but with two different Ka

�1 definitions, related to
each of the two partial models employed.
Fig. 3 shows the results produced by the reduced-order

OBE for three different tuning trials. The equations were
integrated with a robust variable step integration algo-

rithm (4th/5th order Runge–Kutta type embedded
scheme due to Butcher) employing along the integration
linear estimates of the relevant sampled variables.

Fig. 2. ‘‘True’’ specific growth rate profiles for the case-study, employing the bottleneck kinetic model [18].

Fig. 3. Comparison between specific growth rate estimates given by

the continuous reduced-order OBE (dotted lines) and the ‘‘true’’

values (full line) for different tuning parameters. (a) Respiratory glu-

cose uptake pathway. (b) Fermentative glucose uptake pathway. (c)

Respiratory ethanol uptake pathway.
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The accuracy of the estimates can be assessed by the
ITAE error index (ITAE: integral of time-weighted
absolute errors) given in Table 2. On the third trial with
!1=!2=!3=10 and �1=�2=�3=1000 the results are
quite satisfactory. However, a qualitative analysis of the
plots shows that for all trials the dynamics of con-
vergence is time-varying, i.e. the response becomes
increasingly faster and oscillatory as the run approaches
the end. This is typical of the OBE estimator. Stability is
ensured but there is little control on the dynamics of
convergence from estimated rates to ‘true’ rates.

4.2. Tuning the OBE to yield second order error
dynamics

The same principles discussed in the previous section
were applied for designing the OBE with second order
dynamics tuning [SODE—using estimator Eqs. (11)
with tuning Eqs. (36) and (37)].
The resulting equations for the respiro-fermentative

state are:

 ¼
�k5 0
k7 k8

� ��1
C
G

� �
ð48aÞ

d ̂

dt
¼ X

�̂o
s

�̂r
s

� �
� D þ

�k5 0
k7 k8

� ��1
OTR
�CTR

� �

þ
2
1=�1 � �̂ 0
0 2
2=�2 � �̂

� �
 �  ̂

� �
ð48bÞ

d

dt

�̂o
s

�̂r
s

� �� �
¼

�2
1
X

� ��1
0

0 �22X
� ��1

2
4

3
5  �  ̂
� �

; ð48cÞ

and for the respirative state:

 ¼
�k5 �k6
k7 k9

� ��1
C
G

� �
ð49aÞ

d ̂

dt
¼ X

�̂o
s

�̂o
e

� �
� D þ
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 �  ̂

� �
ð49bÞ

d

dt

�̂o
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�̂o
e

� �� �
¼

�2
1
X

� ��1
0

0 �23X
� ��1

2
4

3
5  �  ̂
� �

ð49cÞ

with

� Xð Þ ¼
ln Xtþ1ð Þ � ln Xtð Þ

T
: ð50Þ

The results obtained with the SODE algorithm are
depicted in Figs. 4a–c and 5a–c. The equations were
integrated with the same variable step integration algo-
rithm employed for the reduced-order OBE. The influ-
ence of 
 can be assessed from the plots in Fig. 4a–c
where � is kept constant for 0.15 h while 
 takes the
values 0.25, 0.5, 1.0 and 1.25 respectively. The ITAE
error indexes for the 4 different tunings are given in
Table 3. It is relevant to note that best results are
obtained when underdamped trajectories are forced.

Table 2

ITAE for 3 different reduced-order OBE tuning sets

ITAE

Tuning case �o
s �r

s �o
e

Case 1 (!i=3.5 � i=300) 1.90 0.11 0.63

Case 2 (!i=5 �i =1000) 1.30 0.05 0.27

Case 3 (!i=10 � i =1000) 0.97 0.06 0.26

Fig. 4. Illustration of the influence of the damping coefficient 
 on the
performance of the continuous SODE algorithm (a) respiratory glu-

cose uptake pathway. (b) fermentative glucose uptake pathway. (c)

Respiratory ethanol uptake pathway (specific growth rates estimates—

dotted lines; ‘‘true values’’—full lines).
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The influence of � can be assessed from the plots in
Fig. 5a–c where 
 is kept constant for 1.0 h while � takes
the values 0.15, 0.1, 0.05 and 0.01 h respectively. The
ITAE error indexes for the 4 different tunings are given
in Table 4.
As given by the plots in Figs. 4a–c and 5a–c the

characteristics of the dynamics of convergence of the
estimated values to the true values appears to be in
agreement with typical second-order dynamical respon-
ses. It is shown that decreasing � faster responses are

produced and estimation errors are decreased (Table 4).
Decreasing 
 produces more oscillatory responses. Fur-
thermore, from the plots in Fig. 4a–c it can be con-
cluded that 
=1 constitutes the frontier between
oscillatory and non-oscillatory behaviour (as expected).
These results illustrate the advantage of employing a
formulation where the tuning parameters have a well
established meaning thus simplifying the search for
optimum tuning parameters.

4.3. Discrete-time SODE implementation

In Section 3.3 the numerical implementation of the
SODE algorithm and its relation with stability con-
straints was studied. It was shown that a forward Euler
discretisation of the continuous equations poses stabi-
lity problems. In particular, three relations were derived
which define stable intervals for the integration step T in
relation to specific tuning sets (Table 1). This is an
interesting and relevant practical issue, illustrated next
in Figs. 6 and 7.
In industrial (or pilot, or laboratory) applications,

sampling periods are generally set based on considera-
tions external to this convergence problem, this meaning
that when tuning the estimator the sampling period para-
meter is already fixed. The consequence is that an effective
constraint exists, and must be obeyed, between the damp-
ing coefficient and the natural period of oscillation.
Figs. 6 and 7 aim thus at illustrating the behaviour of

the SODEwith an Euler discretisation, when the stability

Table 3

ITAE for 4 different SODE tuning sets reflecting the influence of 


ITAE

Tuning case �o
s �r

s �o
e

Case 1 (�i=0.15 
i=0.25) 2.90 0.10 0.73

Case 2 (�i=0.15 
i=0.5) 2.30 0.095 0.78

Case 3 (�i=0.15 
i =1) 3.2 0.11 1.2

Case 4 (�i=0.15 
i=1.25) 3.9 0.12 1.4

Fig. 5. Illustration of the influence of the natural period of oscillation

� on the performance of the continuous SODE algorithm: (a) respira-
tory glucose uptake pathway. (b) Fermentative glucose uptake path-

way. (c) Respiratory ethanol uptake pathway. (specific growth rates

estimates—dotted lines; ‘‘true values’’—full lines).

Table 4

ITAE for 4 different SODE tuning sets reflecting the influence of �

ITAE

Tuning case �o
s �r

s �o
e

Case 1 (�i=0.01 
i=1) 0.43 0.015 0.14

Case 2 (�i=0.05 
i=1) 1.2 0.051 0.42

Case 3 (�i=0.1 
i =1) 2.2 0.086 0.83

Case 4 (�i=0.15 
I=1) 3.2 0.110 1.20

Fig. 6. Illustration of stability constraints in the application of the

discrete-time SODE on the estimation of specific growth rates (esti-

mates—dotted lines; ‘‘true’’ values—full lines) for case-studies with


=0.75 (�=0.07, �=0.075 and �=0.085).
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limits are violated. The integration step and the sam-
pling time were assumed to be 6 min.
The results in Fig. 6 were obtained with 
=0.75 for

three alternative values �=0.07, �=0.075 and �=0.085
hours. As given in Table 1, if T=0.1 h then � must be
larger than 0.07 for stability. This is confirmed by the
diverging trajectory depicted in the figure for �=0.07.
Increasing � to 0.075 divergence is no more observed.
Nevertheless, persistent oscillations are exhibited sug-
gesting that the estimator operates near the stability
limit. For �=0.085 a normal stable output is obtained.
The results in Fig. 7 were obtained with 
=1.0 for

�=0.095, �=0.1 and �=0.105. As given in Table 1, if
T=0.1 h and 
=1.0 then � must be larger than 0.1. The
plotting of results again confirm this limit for stability:
with �=0.095 the algorithm leads to divergence; increas-
ing to 0.1 divergence is no more observed, but the
response exhibits some overshoot which is not character-
istic of a second-order response with 
=1.0, suggesting
that the estimator operates near the stability limit; for
�=0.105 the overshoot is eliminated as expected of an
algorithm operating within stable regions.

5. Conclusions

The application of model-based algorithms for bio-
process operation is often hindered by the complexity of
micro-organism growth kinetics and the related limited
knowledge of critical bioprocess parameters. Several
algorithms are available today that, with some limited
requirements fulfilled, allow both the on-line estimation
of key bioprocess variables and the on-line identification
of relevant kinetic characteristic parameters. The tuning
of such algorithms is in many cases not a trivial proce-
dure, related as it is (or as it should be) to stability and
tracking properties. This is an important issue that may
represent a source of problems limiting the acceptance
of such algorithms for practical use in industry.
In the present work we characterised in detail the

relationships between tuning, stability and dynamics of
convergence in observer-based kinetics estimators for

stirred-tank bioreactors, both for continuous and for
discrete time formulations of the estimation algorithms.
For the former cases it was shown that with proper

tuning the user may guarantee stability and simulta-
neously impose a desired quasi-time invariant second
order time response (underdamped, critically damped or
overdamped) for the convergence of estimates to true
values. In practical terms this tuning is just the setting of
the parameters characteristic of second-order responses,
the damping coefficient and the natural period of oscil-
lation.
For the latter case, an algorithm was developed based

on a forward Euler discretisation whose discrete time
error system is shown to be linear time-invariant. Fur-
thermore, stability conditions were derived, which define
the stable domain for the discretisation (sampling) per-
iod as function of the second order tuning parameters.
The theory presented was illustrated with a case-study

of Baker’s yeast fermentation, employing as source of
data a process model validated by laboratory experiments.
The results for both approaches very clearly confirmed the
theoretical developments. In particular, the results con-
cerning the stability domain for the Euler-based discrete
time formulation of the estimator were shown to have
important practical implications.
With the present work we expect to contribute for the

understanding of the scope of this class of algorithms
and through the simplification of the tuning procedures
to improve their acceptance for practical applications.
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