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Abstract: Three industrial aluminosilicate wastes were studied as precursors to produce alkali-
activated concrete: (i) electric arc furnace slag, (ii) municipal solid waste incineration bottom ashes,
and (iii) waste glass rejects. These were characterized via X-ray diffraction and fluorescence, laser
particle size distribution, thermogravimetric, and Fourier-transform infrared analyses. Distinctive
combinations of anhydrous sodium hydroxide and sodium silicate solution were tried by varying the
Na2O/binder ratio (8%, 10%, 12%, 14%) and SiO2/Na2O ratio (0, 0.5, 1.0, 1.5) to find the optimum
solution for maximized mechanical performance. Specimens were produced and subjected to a
three-step curing process: (1) 24 h thermal curing (70 ◦C), (2) followed by 21 days of dry curing
in a climatic chamber (~21 ◦C, 65% RH), and (3) ending with a 7-day carbonation curing stage
(5 ± 0.2% CO2; 65 ± 10% RH). Compressive and flexural strength tests were performed, to ascertain
the mix with the best mechanical performance. The precursors showed reasonable bonding capabili-
ties, thus suggesting some reactivity when alkali-activated due to the presence of amorphous phases.
Mixes with slag and glass showed compressive strengths of almost 40 MPa. Most mixes required a
higher Na2O/binder ratio for maximized performance, even though, contrary to expectations, the
opposite was observed for the SiO2/Na2O ratio.

Keywords: alkali-activated materials; municipal waste incinerated ashes; electric arc furnace slag;
waste glass rejects; optimization; durability; construction materials

1. Introduction

Since the early 19th century, ordinary Portland cement (OPC) has been used as the
main construction binding material that gained a noteworthy reputation through its proven
remarkable performance, which has been adding significant value to the construction
industry since then [1]. This binding material gained relevance due to its outstanding prop-
erties that can be seen today in many designed concrete megastructures such as long-span
suspension bridges, massive dams, and skyscrapers [2]. Consequently, the dependence on
this construction material has never been decreasing, since as more research is made on
it, its properties are evidenced, leading to an increase in the number of applications and
demand [3]. Nevertheless, OPC has its disadvantages, mainly related to the environment.
It has been estimated that 4270 Mt of OPC were produced during 2021, releasing around
2520 Mt of CO2 to the atmosphere, equivalent to the weight of around 6950 Empire State
Buildings combined, wherein 0.59 t of CO2 is emitted per each ton of OPC produced [4,5].
The amount of CO2 released by the cement industry in 2021, accounted for 6–8% of the
total CO2 emissions released globally by all industries in that same year, gaining a spot
in the top 10 CO2-generating industries [6]. Moreover, in the last decade, there have
been several attempts to cut CO2 emissions to lessen the global warming consequences
on the Planet [7]. Since the cement industry is responsible for a major share of these
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emissions, reducing them is considered to influence participation in the global warming
mitigation program.

Reducing the emissions resulting from the production of OPC has been tried in many
techniques deployed in past years. Some of these techniques were technological-based
and focused on improving the cement production phases to be more energy efficient and
release less CO2. One example includes the possibility of reducing the CO2 emissions at a
cement plant through the optimization of the cement calciner’s geometry and operating
conditions [8]. Nevertheless, most studies have focused on reducing the OPC’s environ-
mental impacts by replacing it with supplementary cementitious materials (SCMs) such as
blast-furnace slag (BFS), fly ash (FA), and silica fume (SF), which have been widely used as
OPC partial replacements [9–12].

Partially replacing OPC with SCM has shown considerably reduced environmental
impacts. For this reason, there have been several studies on the use of aluminosilicate-rich
binders to fully replace OPC in the production of alkali-activated materials (AAMs) [13–15].
Unlike the hydration mechanism of OPC, the aforementioned SCMs, hereon presented
as precursors, are activated using an alkaline solution. The use of FA and BFS as sole
and/or blended precursors in alkali-activated concrete mixes has been widely investigated
with interesting results reported in the literature [16–26]. This has led to a revolutionary
eco-friendly concept since both are considered industrial by-products and exist in bulk
quantities enough to cover part of the market demand. However, FA and BFS are now
facing shortages in availability, due to the use of renewable energy sources for energy
production and the use of alternative more eco-efficient processes [27–29]. The source of
FA is the coal industry, and this product is generated at coal-fired power plants. However,
burning coal does not only just produce power but also generates thousands of harmful
chemicals that are consistently being released to the atmosphere. For this reason, this
type of power plant is being shut down. In Portugal, for instance, the last two remaining
coal-fired power plants were shut down in 2021 [30]. Similarly, the production of BFS will
diminish significantly in the near future, as the steel industry is more focused on switching
to steel recycling using electric arc furnaces (a more energy-efficient process), rather than
producing new steel from iron ore.

New aluminosilicate industrial waste materials have been investigated recently con-
sidering their chemistry and binding capabilities. The binding capability of municipal solid
waste incinerator bottom ashes (MIBAs) and electric arc furnace slag (EAFS) as sole precur-
sors in alkali-activated materials was demonstrated in some studies [28,31–35]. Mortar and
concrete containing these binders generally show low mechanical and durability-related
performances [28,32], mainly due to the lower amount of amorphous content in the pre-
cursors and the porous microstructural profile of the hardened materials [32,34]. Research
on this matter evolved with the application of accelerated carbonation as a performance-
enhancing curing method. Some authors [36,37] began investigating the influence of a
CO2-based curing method on the properties of alkali-activated concrete and have observed
notable enhancements in the porosity and microstructure, as well as in the mechanical
performance [36,38–49].

Given the discrepancy in the chemical composition of the precursors used for alkali
activation, specific formulations are needed for optimal performance. The alkaline solu-
tion is prepared by mixing several compounds (e.g., NaOH, KOH, and “water glass”),
the optimal concentration of which will lead to improvements in the hydration pro-
cess in binding performance, thus leading to enhancements in several properties [50].
Kassim et al. [36] optimised the alkaline solution for the EAFS precursor, and the optimal
alkaline solution showed significant enhancements in mechanical performance. This study
as well as others made on MIBA proved the efficiency of this technique in improving the
performance of alkali-activated binders [46]. However, those studies [36,46] investigated
a small range of ratios of the alkaline activators and only for mortar production, thereby
calling for the need for further investigation on the matter, specifically for fit-for-industry
construction materials such as non-structural precast concrete elements (e.g., pavement
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blocks). Only then the true binding performance of these precursors can be ascertained, and
their readiness for the market can be confirmed. Therefore, in this study, FA, MIBA, EAFS,
and waste glass rejects (WGR) were used as precursors to produce alkali-activated small-
scale specimens that are representative of conventional concrete pavement blocks. The
choice of industrial by-products studied was based on various criteria including availability
in Portugal, the region where the study was conducted, sustainability, cost-effectiveness,
and technical feasibility (i.e., activation potential). The motivation behind the present work
came in response to the growing demand for sustainable and environmentally friendly ma-
terials, such as the use of waste materials as binder alternatives such as ordinary Portland
cement and FA, which would otherwise keep consuming natural resources and contributing
to the global emissions and environmental pollution.

The study focused on maximizing the performance of these binders by optimising their
alkaline solutions, where 14 different formulations were prepared per binder. Afterwards,
the specimens were subjected to a three-stage curing process and subsequently tested for
flexural and compressive strengths to ascertain the maximized mechanical performance for
an optimal alkaline solution for any given binder.

2. Materials and Methods
2.1. Binders

In this study, CEM I 42.5 R was used as the reference binder, in accordance with
EN 197-1 [51]. The reference binder for the alkali-activated materials was FA, supplied
by Energias de Portugal (EDP), from the Sines power plant in Alentejo, Portugal. Since
this FA particles met the size requirements (average particle size below 45 µm), no prior
preparations were required. MIBA was obtained from the Valorsul waste-to-energy power
plant in São João da Talha, Portugal. It required previous preparation before it was used
as a precursor, which included the removal of large contaminants (e.g., paper, plastic, and
metals), drying at 105 ◦C, and grinding it to meet the particles’ size distribution typically
required for binders. EAFS, a by-product of the steel recycling industry, was obtained
from Siderurgia Nacional de Portugal and supplied by HARSCO in Portugal. Similar to
MIBA, EAFS required size reduction since it presented an extensive and coarse particle size
distribution. Furthermore, the WGR used in this experimental campaign was supplied by
CascoVidro, in Marinha Grande, Portugal. WGR corresponds to the rejects resulting from
the infrared contaminant separation stage from curbside-separated glass packaging waste.
These contaminants (e.g., aluminum caps, paper labels, ceramic dishware, “Pyrex”, along
with other minor components) are a result of the incorrect separation at households and are
the reason why waste glass cannot be recycled into new consumer glass packaging products
without a separation stage. However, the rejects from this stage are mostly comprised of
highly reactive soda-lime-silica glass and thus compatible with alkali activation. WGR
presents an extensive particle size distribution thereby requiring size reduction via milling.

2.2. Aggregates

In this campaign, two types of aggregates were used: siliceous sand and calcareous
sand gravel. As for the siliceous sands, 0/4 coarse sand and 0/2 fine sand were used in
accordance with standard EN 12620 [52]. With respect to sand gravel, which was calcareous,
it had a particle size between 2 mm and 5.6 mm. Before use, all aggregates were fully dried
at 105 ◦C.

2.3. Alkaline Activator

The alkaline activator used was a liquid solution prepared using sodium hydroxide,
sodium silicate solution, and water. Reactive grade sodium hydroxide pellets in the solid
state with 98% purity, and 2.13 g/mL of density were used. In addition, a reactive grade
sodium metasilicate solution was used containing: a silicon oxide content of (SiO2) of
26.4 ± 1.5%, a sodium oxide (Na2O) content of 8 ± 0.6%, a SiO2/Na2O ratio of 3.3 ± 0.1,
water content of 65.6 ± 2%, and a density of 1.355 g/mL. The sodium hydroxide was
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dissolved in potable tap water, which was provided by Empresa Portuguesa de Águas
Livres (EPAL), Portugal. The water used complied with Directive 98/83/CE [53].

2.4. Water Reducing Admixture

In this study, SikaPlast-717, which is a naphthalene-based superplasticizer, was used as
a water-reducing admixture (WRA). It consists of synthetic organic water-based dispersants
with a density of 1.21 ± 0.03 g/mL and a pH of 10 ± 1.

2.5. Setting Time Retarder

A setting time retarder was required and used in this study. Borax decahydrate (37%)
was dissolved in the alkaline solution for all mixes.

2.6. Mix Design

In this study, 16 mixes were prepared per precursor, each having a unique combination
of Na2O/precursor and SiO2/Na2O ratios. The Na2O/precursor percentages chosen were
8%, 10%, 12%, and 14%, while the SiO2/Na2O ratios were 0, 0.5, 1.0, and 1.5 (Table 1).
To achieve the required consistence (slump flow of 105 ± 5 mm), the cement-based mix
required 1.5% WRA by mass of the binder. In addition, an amount of 2% WRA by binder
mass was required in the WGR mixes. Moreover, no WRA was required for FA, MIBA, and
EAFS, since their mixes’ consistence was achieved without it. From each family mix, three
specimens were produced. A water-to-binder ratio (w/b) of 0.35 was used for all mixes. To
prevent flash setting, 4% of setting retarder by mass of binder was added and dissolved in
the alkaline solution of all alkali-activated mixes as recommended in other studies [13,54].
The OPC and AAMs mixes composition (in kg/m3) are shown in Table 2.

Table 1. Denomination of the alkaline solution of alkali-activated mixes.

SiO2/Na2O

Na2O/Binder (%)
8 10 12 14

0 N8S0 N10S0 N12S0 N14S0

0.5 N8S0.5 N10S0.5 N12S0.5 N14S0.5

1.0 N8S1.0 N10S1.0 N12S1.0 N14S1.0

1.5 N8S1.5 N10S1.5 N12S1.5 N14S1.5
Note: “N” represents the Na2O/binder ratio and “S” the SiO2/Na2O ratio.

Table 2. Mix composition for all binders.

Type of
Binder

Mix
Code Binder WRA Water Fine

Sand
Coarse
Sand

Sand
Gravel NaOH Na2SiO3

Solution Borax

OPC - 350 5.3 136.1 300.3 581.3 1035.3 - - -

AAMs

N8S0 350 5.3 135.2 300.3 581.3 1035.3 36.1 0.0 14
N8S0.5 350 5.3 100.6 300.3 581.3 1035.3 30.4 53.0 14
N8S1.0 350 5.3 66.0 300.3 581.3 1035.3 24.6 106.1 14
N8S1.5 350 5.3 31.4 300.3 581.3 1035.3 18.9 159.1 14
N10S0 350 5.3 135.1 300.3 581.3 1035.3 45.5 0.0 14

N10S0.5 350 5.3 91.9 300.3 581.3 1035.3 38.0 66.3 14
N10S1.0 350 5.3 48.6 300.3 581.3 1035.3 30.8 132.6 14
N10S1.5 350 5.3 5.4 300.3 581.3 1035.3 23.6 198.9 14
N12S0 350 5.3 135.0 300.3 581.3 1035.3 54.5 0.0 14

N12S0.5 350 5.3 83.1 300.3 581.3 1035.3 45.6 79.5 14
N12S1.0 350 5.3 31.2 300.3 581.3 1035.3 37.0 159.1 14
N14S0 350 5.3 135.0 300.3 581.3 1035.3 63.6 0.0 14

N14S0.5 350 5.3 74.4 300.3 581.3 1035.3 53.2 92.8 14
N14S1.0 350 5.3 13.8 300.3 581.3 1035.3 43.1 185.6 14
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2.7. Production Method and Curing Regime

As mentioned, the specimens prepared were representative of conventional concrete
pavement blocks, but with the dimensions of standard mortar specimens. The same
formulation was used, and a comparable compaction method was implemented. The
relatively smaller size of specimens allowed improved compatibility with existing testing
equipment. Therefore, the preparation and production of the mixes were carried out in
compliance with EN 196-1 [55], albeit with some modifications, mainly to the mixing
procedures. Firstly, the alkaline solution was prepared by gradually dissolving NaOH in
a pre-measured additional amount of water, followed by the addition and dissolution of
the sodium silicate solution and the setting time retarder. The solution was stirred until
complete dissolution of all components was ensured. The full amount of sand–gravel
was added first with two-thirds of the prepared solution, then mixed at normal speed for
4 min. Afterwards, the fine and coarse sands were added to the bowl and mixed for 2 more
minutes. Finally, the binder and the remaining one-third of the solution (plus the WRA
amount for OPC and WGR mixes) were added and mixed for 4 additional minutes. The
release agent used for the 40 × 40 × 160 mm3 three-gang steel molds was Petromold-F
given its higher release effectiveness for more alkaline mixes. The mix was then molded,
compacted, and covered with a plastic film before it was transported to a thermal curing
chamber for 24 h except for the reference OPC mix. For this binder, at the early stages of
curing, the specimens were sprayed with water to make the curing process compatible
with that followed by the industry. Following this stage, the specimens were demolded and
moved to a dry curing chamber (~65% RH and ~23 ◦C) for 21 days. Finally, all specimens
were placed in a carbonation curing chamber (~65% RH, ~23 ◦C, and 5% CO2) for 7 days.
The total curing duration for all specimens was 28 days. The curing stages and conditions
are presented in Table 3.

Table 3. Curing stages and conditions.

Binders
Stage 1 Stage 2 Stage 3

24 h 21 Days 7 Days

OPC Spray with water

Dry chamber
(23 ± 2 ◦C and 65% RH).

Sprayed with water twice a day for
the first 2 days

Carbonation chamber
(23 ± 2 ◦C, 65% RH, and 5% CO2)

FA, MIBA, EAFS,
and WGR

Thermal curing
(70 ◦C)

Dry chamber
(23 ± 2 ◦C and 65% RH)

Carbonation chamber
(23 ± 2 ◦C, 65% RH, and 5% CO2)

2.8. Characterisation and Testing Methods

The density of all binders, at atmospheric pressure, was measured with a gas pyc-
nometer (MICROTRAC BELPycno Ver 1.14 L) using helium gas.

The chemical composition of raw materials was determined via the X-ray fluorescence
spectrometry (XRF) method, using a ZSX PRIMUS IV (Rigaku) with a power of 4 kW.

The X-ray diffraction method (XRD) applied was performed using a Bruker D8 Dis-
cover A25 instrument with Cukα (λ = 1.54050 A, 40 kV and 30 mA). The diffraction patterns
were obtained with a goniometric scan from 10◦ to 70◦ (2θ) at the speed of 0.016 2θ·s−1.
The diffractogram peaks of the crystalline phases were compared with those of the JCPDS
library [56].

The particle size distribution (PSD) was obtained with a Mastersizer S. Analyser
(Malvern Instruments) using ethanol as a dispersant, sonicated for 5 min before analysis.

Moreover, the thermogravimetric analysis (TGA) and differential thermal analysis
(DTA) were carried out in a Setaram Setys Evolution 16/18 apparatus, using alumina
crucibles under airflow and argon. The heating rate was 5 ◦C.min−1, and the temperature
range was between 20 ◦C and 1000 ◦C.
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Furthermore, the morphology and composition of WGR were obtained using scanning
electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and backscattered
electron (BSE) imaging with a JEOL JSM 7800 F. The sample was dusted on a carbon tape.
A gold sputtering was used to improve the conductivity of the samples.

The consistency of the fresh mixes was tested in accordance with EN 1015-3 [57]. After
curing, the specimens were tested for flexural and compressive strength in accordance with
EN 1015-11 [58]. The loading rate applied for the flexural and compressive strength tests
had a constant value of 30 N/s and 300 N/s, respectively.

3. Results
3.1. Materials Characterisation
3.1.1. Binder Density

The apparent skeletal density of OPC, FA, MIBA, EAFS, and WGR were 3115 kg/m3,
2431 kg/m3, 2704 kg/m3, 3770 kg/m3 and 2531 kg/m3, respectively.

3.1.2. X-ray Fluorescence

The chemical compositions of the raw materials obtained from XRF are presented
in Table 4. The sum of oxides Al2O3 + Fe2O3 + SiO2 corresponds to 26.4%, 88.7%, 64.3%,
56.4%, and 73.1% of the composition of OPC, FA, MIBA, EAFS, and WGR, respectively.
Concerning EAFS, it contains a high amount of iron that gives it magnetic properties. With
the use of neodymium magnets, the alkali-activated EAFS precursor was proven to be
strongly magnetic [59]. High amounts of Fe(III) can lead to the formation of iron oxide
(Fe2O3) precipitates. These can decrease the overall reactivity of the system, reducing
the amount of available reactive species and limiting the degree of polymerization and
network formation that can occur. This can lead to a decrease in the overall strength
and durability of the AAM. The XRF results of WGR show that it is mainly composed of
silicon dioxide (~71% SiO2), followed by Na2O, CaO, and MgO. The first three are typically
present in conventional soda-lime silicate glass used in containers for human consump-
tion. Other chemical components, such as Fe and Al, were also identified. According to
ASTM C618 [60], WGR can be identified as a standard pozzolan since the sum of oxides
(SiO2 + Al2O3 + Fe2O3) exceeds 70% of its total constituents. Others have also verified its
high pozzolanicity [61–63].

Table 4. Chemical composition of OPC, FA, MIBA, EAFS, and WGR obtained from XRF (%).

Materials OPC (%) FA (%) MIBA (%) EAFS (%) WGR (%)

Al2O3 5.42 25.5 8.82 10.2 1.01

CaO 64.8 2.27 18.3 28.2 8.74

Fe2O3 2.92 6.90 6.68 28.5 0.67

K2O 0.74 2.74 1.59 0.03 0.40

MgO 2.12 1.83 4.01 5.67 3.55

Na2O 0.14 1.29 6.53 0.18 11.8

SiO2 18.1 56.3 48.8 17.7 71.4

SO3 4.81 0.80 1.36 0.33 0.30

Cl- 0.00 0.00 0.00 0.00 0.00

Cr2O3 0.51 0.48 0.06 2.38 0.03

TiO2 0.34 1.14 0.48 0.65 0.05

ZnO - - - - -

P2O5 0.03 0.44 2.51 0.42 -

V2O5 0.02 0.05 - 0.11 -

CuO - - - - 0.02

MnO2 - - 0.12 5.45 -



Materials 2023, 16, 1923 7 of 24

In addition to the previous analysis, an image magnifier device was used to ascer-
tain the main morphological characteristics of a washed sample of WGR before milling
(Figure 1). The WGR contains a considerable amount of glass particles. This suggests that
the infrared separation process, initially designed to remove contaminants from waste
glass, also ends up removing much of the glass particles. Naturally, the presence of other
constituents such as aluminum and ceramics was also observed, which are mostly derived
from bottle caps and dishware.
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Figure 1. Magnified images of a WGR sample showing the presence of (a) aluminum and (b) ceramic
particles in parallel with glass particles.

3.1.3. X-ray Diffraction

Figure 2 presents the XRD results of OPC, FA, MIBA, and EAFS. The XRD spec-
trum of OPC showed crystalline peaks for calcium silicate oxides (Ca2SiO4) and gypsum
(CaSO4·2H2O). The main crystalline phases observed for FA were quartz (SiO2), lime (CaO),
maghemite (Fe3+

2O3), and mullite (3Al2O3·2SiO2). Some studies have reported a similar
observation [64,65]. In addition, a broad reflexion peak can be seen at 15–35 2θ◦, which
can indicate the presence of a considerable amount of amorphous phases. Concerning
MIBA’s XRD spectrum, the crystalline phases observed were quartz (SiO2), calcite (CaCO3),
magnetite (Fe2+Fe3+

2O4), fayalite ((Fe2+)2SiO4), magnesium carbonate (MgCO3), microcline
(KAlSi3O8), along with other minor minerals. The presence of amorphous phases (reflexion
peak ranging between 20◦ and 40◦ 2θ) can be observed, which is mostly related to the
presence of waste glass fraction; however, it exists at a lower degree when compared to FA.
Regarding EAFS, the three main crystalline phases noticed were wustite (FeO), gehlenite
(Ca2Al2SiO7), and dicalcium silicate (Ca2SiO4), along with other minor phases such as
magnesioferrite. WGR shows a diffractogram with an essentially amorphous structure,
also observed in other studies [66,67]. This further confirms that almost all of the particles
present in WGR are from consumer glass containers and that it may show high reactivity
when alkali-activated. Within this amorphous structure, the two main crystalline phases
found were the quartz phase (SiO2) and the calcite phase (CaCO3). Other minor phases
may be present as well, but the amorphous nature of WGR did not allow them to be
clearly defined.
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3.1.4. Particle Size Distribution

Figure 3 shows the PSD for OPC, FA, MIBA, EAFS, and WGR. The samples of OPC,
FA, and EAFS indicated a similar bimodal distribution curve. OPC and EAFS peaked
at 25 µm; however, a narrower peak was seen for OPC compared to EAFS. In additon,
both binders showed a smaller peak at 0.35 µm, representative of a noteworthy presence
of very fine particles. The FA’s distribution followed a similar trend; however, a wider
distribution was noticed around 20 µm (peak). A small peak was seen at 0.35 µm for FA
as well. Furthermore, MIBA showed a narrow peak at 39 µm with a small one at 0.35 µm.
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Concerning WGR, its PSD showed a slightly different profile in comparison with the other
binders, despite having had the same milling procedure.
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In Figure 3, the distribution of particles peaked at 7.58 µm with a narrow top peak at
209 µm. A smaller peak was observed at 0.47 µm. The distribution of WGR is similar to the
one reported by Jiang et al. [68]. Zhang et al. [61] studied the effects of WGR particle size
on its chemical reactivity with the alkaline solution. The authors of that study concluded
that, when the WGR particles’ diameter exceeded 300 µm, the mix showed low chemical
reactivity and hardly had any reaction with the alkaline solution. However, as expected,
the smaller the particle size of WGR, the higher the chemical reactivity, and consequently,
the highest mechanical performance achieved.

Previous studies by the authors have interpreted the particles’ morphology of FA,
MIBA, and EAFS using SEM images and mapping [36,69]. The SEM analysis conducted
by Kassim et al. [36] revealed that EAFS particles are irregular in shape and showed
high angularity. Moreover, the particle morphology of FA and MIBA were studied by
Suescum-Morales et al. [69] indicating spherical particles shape for FA. MIBA, however,
showed angular edges with a porous microstructure. The authors suggested that a larger
amount of water could be needed for a given workability level, in the case of MIBA. The
particles’ morphology and composition of WGR were investigated using SEM and mapping,
respectively. Figure 4 shows that the majority of the particles present high angularity and
irregular shape. This observation complies with the findings of other studies [67,68]. This
high angularity of WGR could lead to a higher water requirement of mixes and loss in
workability [70], yet can also be responsible for an enhanced interlocking of particles,
thereby increasing the mechanical strength. Furthermore, mapping revealed the presence
of the main chemical components already observed in the XRF analysis (Si, Ca, Na, and Mg
in Figure 4). The presence of other components such as Fe and Al was also noticed though
to a lesser extent.
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3.1.5. Thermogravimetric Analysis

Figure 5 shows the TGA/DTA results of OPC, FA, MIBA, EAFS, and WGR. For OPC
(Figure 5a), the profile suggests that the hydrated calcium sulphate (gypsum) that appeared
in the XRD spectrum transformed into hemihydrated calcium sulphate at 110 ◦C. At around
200 ◦C, it is possible that unhydrated calcium sulphate formed. At 420 ◦C, around 0.4% of
portlandite became depleted due to dehydroxylation. This low amount of lost portlandite
reflects its low hydration rate and that it is well stored. Moreover, from 600 ◦C onwards,
the compounds formed by calcium carbonate were decarbonated.

The TGA results of FA indicate two phenomena (Figure 5b). The first is the mass loss
starting from 400 ◦C, which may correspond to the unburnt coal particles present in the
FA (exothermic peak noticed in the DTA profile). From ~600 ◦C onwards, the endothermic
peak suggests that there may have been a slight mass loss of CO2 of some carbonates.

Concerning MIBA, mass losses were observed in four phases (Figure 5c). The initial
mass loss may have been due to the dehydration of the sample (up to around 105 ◦C).
After that, the losses could have been caused by the decomposition of phosphates as
well as organic matter. Moreover, the mass loss at ~650 ◦C may be associated with the
decarbonation of calcite and magnesite.

Unlike other binders, a gain in mass was observed with the EAFS sample (Figure 5d).
The X-ray diffractogram of the sample after the TGA analysis phase (heated up to 1000 ◦C)
indicated this steady increase in mass, mainly at ~400 ◦C and ~620 ◦C, could be explained
by the oxidation of the wustite, first in magnetite and then in hematite.
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For WGR (Figure 5e), despite the relatively small amount of mass loss, several stages
were observed: (i) loss of moisture from room temperature to 105 ◦C [71]; (ii) possible
loss of organic matter (e.g., food residue) between 105 ◦C and 380 ◦C due to the exother-
mic peaks found [72]; (iii) endothermic peak was observed in the DTA graph at around
420 ◦C caused by the dehydroxylation of trace amounts of Ca(OH)2 [71,73]; (iv) loss in
mass due to decarbonation of the calcite phase found in X-ray diffractogram (Figure 2) after
~600 ◦C [29,69].
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3.1.6. Fourier-Transform Infrared Analyses

The Fourier-transform infrared analysis (FTIR) for OPC, FA, MIBA, EAFS, and WGR
is shown in Figure 6. Starting with the OPC spectrum, the band observed at 1622 cm−1 was
associated with the O–H bending of water [74]. Additionally, the band at 1443 cm−1 was
linked to an asymmetric stretch of CO3 in calcite from the carbonation of CaO (lime). The
bands at 1141 cm−1 and 1126 cm−1 were associated with the symmetric and antisymmetric
stretch vibration modes of tetrahedral SiO4 groups in gypsum, respectively. Moreover,
the bands at 992 cm−1 and 846 cm−1 were related to the stretching of Si–O bonds within
the tetrahedral SiO4 groups in C2S. Furthermore, the bands at 887 cm−1 and 922 cm−1

were related to the symmetric and antisymmetric stretching of Si–O bonds, respectively,
within the tetrahedral SiO4 groups in C3S. The band at 712 cm−1 was related to the AlO4-
tethahedral groups in C3A. Additionally, the band at 660 cm−1 was associated with FeO4-
tethahedral groups in C4AF. Furthermore, the bands at 660 cm−1 and 597 cm−1 were linked
to the antisymmetric bending vibrations of SiO4 in gypsum. Moreover, the two bands at
517 cm−1 and 447 cm−1 were due to symmetric and antisymmetric bending of the O–Si–O
bonds in C3S, respectively [75].
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In the FA spectrum, the bands appearing around 1166 cm−1 and 1070 cm−1 cor-
respond to the asymmetric stretching vibrations of Si–O–Si associated with quartz and
mullite [76,77]. In addition, the bands at 794 cm−1 and 775 cm−1 correspond to symmet-
ric stretching vibrations of Si–O–Si bonds associated with the characteristic doublet of
quartz [77]. Moreover, the bands observed at 669 cm−1 and 547 cm−1 were associated with
the O–Al–O vibration [74]. The band presented at 547 cm−1 was linked with the O–Al–O
vibration corresponding to the octahedral aluminum present in mullite. Additionally, the
band appearing at 459 cm−1 was associated with either O–Si–O or O–Al–O bonds bending
vibration [74].
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Regarding the EAFS spectrum, the band at 1634 cm−1 was associated with the O–H
bending of water, while the band at 1425 cm−1 was related to the asymmetric stretching
of CO3

2− [74]. The bands 975 cm−1, 914 cm−1, 889 cm−1, and 850 cm−1 were associated
with the stretching Si–O bonds within the tetrahedral SiO4 groups [75,78]. The band shown
at 712 cm−1 was due to AlO4-tethahedral groups in C3A, while the band 660 cm−1 was
associated with FeO4-tethahedral groups. Moreover, the band at 517 cm−1 was linked to
the symmetric and antisymmetric bending of the O–Si–O bonds [75].

Regarding the MIBA spectrum, the band at 1629 cm−1 was associated with the vibra-
tions of O–H bonds (water). In addition, the absorbance located at 1427 cm−1, 874 cm−1,
and 713 cm−1 was attributed to the vibrations of CO3

2- [79]. Moreover, the bands appear-
ing at 1160 cm−1 and 1060 cm−1 correspond to the asymmetric stretching vibrations of
Si–O–Si that are associated with quartz. Furthermore, the characteristic doublet of quartz at
790 cm−1 and 775 cm−1 corresponds to the symmetric stretching vibrations of Si–O–Si
bonds. In addition, the bands at 551 cm−1 and 463 cm−1 were attributed to the Si–O
vibrations (quartz) [77].

Regarding the WGR spectrum, the bands at 1074 cm−1 and 1154 cm−1 may be asso-
ciated with the Si-O-Si stretching vibration. The band at 1636 cm−1 was associated with
the vibrations of O-H bonds (water). The absorbance located at 1373 cm−1 and 849 cm−1

was attributed to the vibrations of CO3
2-. This is in accordance with the calcite found in

the XRD results (Figure 2). Those located at 473 cm−1, 531 cm−1, 609 cm−1, 690 cm−1, and
718 cm−1 can be associated with the bending vibration of Si-O.

3.2. Fresh-State Performance

The consistency of all fresh mixes was tested in accordance with EN 1015-3 [57]. The
OPC mix was prepared by considering a w/b ratio of 0.35 and 1.5% of superplasticizer. The
AAM mixes were prepared following the same w/b ratio as that of the OPC mix, though
with different WRA content (see Section 2.6). For the OPC mix, the flow table results
indicated an average value of 108.5 mm. This value was slightly higher than most of the
results observed for AAMs with the other binders, except for FA, where considerably high
values were recorded. Moreover, the consistency test for AAM mixes showed comparable
performances with some families. As shown in Table 5, formulations N10S0.5, N12S0.5,
and N14S0.5 consistently resulted in considerably stiff mixes, regardless of the precursor.
Additionally, this phenomenon also occurred for some N8S0.5 mixes.

Table 5. Flow table results of FA, MIBA, EAFS, and WGR.

Combination
FA MIBA EAFS WGR

(mm) (mm) (mm) (mm)

N8S0 125.4 – – 104.7
N8S0.5 101.4 – 103.2 102.5
N8S1.0 131.8 103.7 107.8 103.2
N8S1.5 128.8 103.2 104.7 104.6
N10S0 122.4 104.1 – 105.6

N10S0.5 – – – –
N10S1.0 135.8 106.1 102.6 105.7
N10S1.5 122.5 103.0 102.7 102.1
N12S0 128.5 105.8 104.7 127.4

N12S0.5 – – – –
N12S1.0 124.0 104.2 103.1 102.2
N14S0 131.3 102.3 103.8 150.9

N14S0.5 – – – –
N14S1.0 126.5 103.3 103.4 103.1

Note: “–” means that the value was equal to 100 mm and thus inconclusive.
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Generally, the flow value of AAMs decreases with the increase in Na2O/precursor and
SiO2/Na2O ratio. These lead to an increase in viscosity and, due to the higher content of
SiO2, supersaturation is achieved more rapidly leading to flash setting [80,81]. It is possible
that the aforementioned ratios create the ideal conditions for more rapid polymerization
to occur; additional research on this matter is needed. Others showed that higher flow
values can be witnessed with the increase in SiO2/Na2O ratio in the alkaline solution [82].
The latter study’s conclusion is similar to what is shown in Table 5, where higher Na2SiO3
content increases the workability of the mixes. The influence of the NaOH concentration
on the consistency of the mixes did not follow any trend, unlike what was reported by
Li et al. [83], where the decrease in NaOH concentration led to an increase in workability.
Furthermore, N12S0 and N14S0 with only NaOH as an alkaline activator showed better
performance than the mixes with sodium silicate solution. This was also evidenced by
Laskar and Talukdar [84] by concluding that better workability can be achieved when only
NaOH is used as the alkaline activator, compared to solutions with high SiO2/Na2O ratios.
Moreover, it is difficult to compare the influence of the changing proportions of the alkaline
solution constituents on the working performance of different activated precursors, since
each has its unique chemistry that allows different reactions with the alkaline solution [85].

3.3. Hardened-State Performance
3.3.1. Compressive Strength

For the OPC mix, the average compressive strength value reported was 56.7 MPa
(±3.5 MPa standard deviation). The average compressive strength values for each family
of the four alkali-activated binders are presented in Figure 7. The best performance with
FA was achieved at N10S1.5 and N10S1 mixes, with average compressive strength values
of 52.5 MPa and 51.9 MPa, respectively (Figure 7b). For MIBA, the highest values were
20.0 MPa for the N12S0 mix and 18.1 MPa for both N10S0 and N14S0 mixes (Figure 7b–d).
Similarly, EAFS peak values were seen for N14S0 mix with 37.0 MPa; the N12S0 mix showed
a compressive strength of 32.4 MPa (Figure 7c,d). Moreover, the highest compressive
strength values for WGR were reported for N10S0, N8S0, and N12S0 mixes with values of
39.1 MPa, 35.9 MPa, and 30.3 MPa, respectively (Figure 7a–c).

Although the best performance was generally attained by specimens with higher Na2O
content, the opposite was seen in WGR-containing mixes; the corresponding N14S0 mix
showed a low value of ~9.5 MPa, whereas those with FA, MIBA, and EAFS presented values
of ~32 MPa, ~18 MPa and ~37 MPa, respectively. The concentration of Na+ was much higher
(both from the activator as well as the precursor itself) than needed for the WGR N14S0 mix,
where notable efflorescence was noticed (Figure 8). This phenomenon occurs when the
Na+ ions migrate to the surface of the specimens, resulting in the precipitation of sodium
carbonates [36]. The high concentrations of sodium hydroxide and sodium silicate are
known to affect the development of compressive strength of alkali-activated mixes [36,86].
Vafaei and Allahverdi [87] investigated the tendency of alkali-activated waste glass powder
towards efflorescence formation. The study concluded that the tendency is dependent on
the concentration of free alkali in the cured alkali-activated concrete specimens. The high
free-alkali concentration increases the tendency of alkali to migrate to the surface of the
sample, consequently forming efflorescence caused by the weak binding of Na+ ions [88].

Concerning the lowest-performing mixes, generally, these corresponded to those with
a SiO2/Na2O ratio of 0.5 (N8S0.5, N10S0.5, N12S0.5, and N14S0.5, except for WGR that
showed intermediate values at both N8S0.5 and N10S0.5 mixes—25.1 MPa and 17.8 MPa,
respectively). The mixes previously presented significantly lower workability likely due
to the activator’s fast polymerization, thereby resulting in a flash setting. Naturally, this
prevented optimum compaction of the mixes inside the molds, leading to more porous
specimens. In spite of the lower workability of WGR mixes at the same ratio, this binder
still showed relatively high cohesiveness for N8S0.5 and N10S0.5 mixes in comparison with
FA, MIBA, and EAFS counterparts. One potential explanation for this is the formation of
CaCO3 caused by the accelerated carbonation curing, which densified the microstructure
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by filling the internal pores created by the dry mix [28]. This can be seen in Figure 9, which
presents the N8S0.5 and N10S0.5 mixes of all binders after spraying a phenolphthalein
solution. The pH indicator resulted in a pinkish hue for FA, MIBA, and EAFS, unlike the
WGR mixes for which nothing was shown, indicating that the N8S0.5 and N10S0.5 mixes of
WGR were possibly fully carbonated and showed a greater extent of reactions into N-A-S-H
and C-A-S-H.

All precursors with a formulation of N12S0.5 and N14S0.5 showed significantly low
cohesiveness. After having applied the phenolphthalein solution, the surfaces showed a
pinkish hue. Generally, this indicates a low carbonation depth carbonation. However, this
technique, which is normally used to measure the carbonation depth of OPC concrete, is
not as accurate as when used on alkali-activated materials. Apart from observing a pH
decline with ensuing carbonation, it also decreases with the ongoing chemical reactions
between the precursor and the alkaline solution; the OH- ion in the pore solution, originally
from the NaOH, is progressively embedded in the materials’ microstructure, namely
in the formation of N-(C)-A-S-H phases. Therefore, the phenolphthalein solution pH
indicator is not valid in establishing the front of carbonation in AAMs, but it can be used
to ascertain the extent of OH- taken up by reaction products and thus an indicator of the
material’s performance.
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Figure 7. Compressive strength values for mixes with FA, MIBA, EAFS, and WGR with Na2O/binder
ratios of (a) 8%, (b) 10%, (c) 12%, and (d) 14%, respectively.
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Previous studies have demonstrated the positive impact of an accelerated carbonation
curing stage on the strength development of alkali-activated concretes, by comparing uncar-
bonated specimens with carbonated ones with the same mix design [89]. During this stage,
Ca-bearing phases become decalcified with ongoing exposure to a CO2-rich environment,
leading to the formation of CaCO3 and amorphous Si–O structures [90]. Consequently,
microstructural densification occurs leading to enhancement in mechanical performance in-
cluding compressive strength [28,38–44]. As expected by the authors’ previous experience
on the matter, FA mixes show greater enhancements in performance when compared to
MIBA, EAFS, and WGR, as it contains more reactive amorphous aluminosilicate phases
resulting in the creation and growth of the amount of N–A–S–H [89,91]. In addition, the
FA’s specific morphology allows for a more enhanced compaction of the material, creat-
ing a denser microstructure. Nevertheless, it is worth noting that, despite the significant
enhancement in performance, only a limited amount of CaCO3 formed in the accelerated
carbonation curing stage since type F fly ash was used. It may mostly be related to the
carbonation of Na+ in the pores’ solution, leading to the precipitation of sodium carbonate
and thus densification of otherwise empty spaces.

3.3.2. Flexural Strength

The flexural strength test was carried out in accordance with EN 1015-11 [58]. For the
OPC reference mix, the average flexural strength value reported was 6.7 MPa (±0.14 MPa
of standard deviation). Similar to the compressive strength results, the families without
sodium silicate (i.e., N8S0, N10S0, N12S0, and N14S0) showed the best performances, except
for a few cases that require further investigation. Again, the lowest values were seen for the
alkali-activated binders with SiO2/Na2O ratio of 0.5. For the FA mixes, families N10S1.5,
N10S1, and N12S1 showed top values of 8.6 MPa, 7.9 MPa, and 7.9 MPa, respectively
(Figure 10b,c). For mixes with MIBA, EAFS, and WGR, the presence of sodium silicate
in the alkaline solution reduced the performance. Furthermore, for the MIBA mixes, the
maximum flexural strength values were achieved at N14S0, N10S0, and N12S0 with values
of 3.4 MPa, 3.3 MPa, and 3.3 MPa, respectively (Figure 10b–d). In addition, for EAFS,
the maximum values were achieved at N12S0 and N14S0 with 6.7 MPa and 6.5 MPa,
respectively (Figure 10c,d). Moreover, in correlation with the results obtained from the
compressive strength test performed on WGR mixes, the flexural strength’s maximum
performance was achieved at WGR mixes N10S0, N12S0, and N8S0 with 6.0 MPa, 5.0 MPa,
and 4.8 MPa, respectively.

A correlation between the flexural strength results and the compressive strength ones
was established (Figure 11). Based on the trendline, the positive correlation coefficient close
to 1 (R2 ≈ 0.98) indicated that the two variables (flexural (y-axis) and compressive (x-axis)
strengths) are highly correlated, regardless of the variating ingredients’ concentrations
of the alkaline activator and the different binders studied. This relationship seemed to
be slightly affected by these mentioned varying factors. According to studies from the
literature (Figure 11), a slightly lower correlation coefficient (R2 ≈ 0.92) was seen for
mortars made with OPC. However, AAMs showed lower flexural strength values for given
compressive strengths, compared to mortars with OPC as a binder [92].

Similar to the compressive strength results, FA had the best flexural strength perfor-
mance, followed by WGR, which showed competitive results for mixes with no sodium
silicate content in the alkaline solution. The EAFS’s mechanical performance comes behind
WGR, also without the need for sodium silicate. Finally, the MIBA’s highest-performing
mixes came in the final place, with also no presence of sodium silicate in the alkaline
solution. From an economic point of view, it is worth noting that WGR showed the highest
performance when compared to MIBA and EAFS with no sodium silicate and with relatively
low sodium hydroxide contents (Na2O/binder ratios 8% and 10%, respectivley), while the
MIBA and EAFS peaks were shown at higher sodium hydroxide contents (Na2O/binder
ratios of 12% and 14%, respectively). Since the sodium silicate solution is considered the
most expensive alkaline solution constituent, achieving the highest performance without
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the need for it can be economically feasible. In addition, the cost could be further reduced
by decreasing the sodium hydroxide content in the alkaline solution, similar to the case
of WGR. Moreover, the manufacturing process of sodium silicate solution generates CO2,
thus more environmental benefits will be offered if it is not used.
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Figure 10. Flexural strength values for mixes with FA, MIBA, EAFS, and WGR with Na2O/binder
ratios of (a) 8%, (b) 10%, (c) 12%, and (d) 14%, respectively.
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4. Conclusions

The optimization of the alkaline solution for four different aluminosilicate industrial
wastes was thoroughly investigated in this study, with the aim of improving their me-
chanical performances. The fresh and hardened state performance evaluations have the
following conclusions: (i) From the four binders studied, fly ash, used as a reference pre-
cursor for alkali-activated binders, outperformed all other binders with respect to strength
development. The fly ash specimens showed a denser microstructure that was even further
densified with the exposure to CO2 curing. Unlike the municipal solid waste incineration
bottom ashes, electric arc furnace slag, and waste glass rejects, which showed peak per-
formance in alkaline solutions with common concentrations, fly ash showed its peak at
different families, signifying the presence of distinct chemical reactions taking place; (ii) The
waste glass rejects seconded, showing reasonably acceptable performance, followed by slag
with comparable results, and finally, municipal waste incineration ashes that showed the
lowest performance; (iii) The fly ash top-performing mixes were those with Na2O/binder
ratio of 10 and SiO2/Na2O ratios of 1 and 1.5 (N10S1 and N10S1.5), after presenting high
workability that helped create well-compacted specimens with a dense microstructure;
(iv) The municipal solid waste incineration ashes, slag, and glass rejects mixes with the
best performance were those with Na2O/binder ratios of 8, 10, 12, and 14 and with no
sodium silicate content (N8S0, N10S0, N12S0, and N14S0, respectively); (v) The lowest per-
formances were recorded for mixes with SiO2/Na2O ratio of 0.5 (N8S0.5, N10S0.5, N12S0.5,
and N14S0.5) regardless of the precursor, after presenting flash setting, which resulted in
dry and hard to compact mixes; (vi) Increasing the Na2O/binder ratio improved the overall
performance; however, it decreased the performance of WGR-containing mixes. This could
be related to the high amount of sodium hydroxide required to activate the precursor, given
that a considerable amount of Na+ could be sourced from the binder itself. The WGR mixes
with Na2O/binder ratios of 12 and 14 and no sodium silicate content (N12S0 and N14S0)
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presented efflorescence caused by the precipitation of sodium carbonates on the surface;
(vii) WGR showed the highest flexural and compressive strength results at the lowest
sodium hydroxide content and without the need for sodium silicate, which can reduce the
cost and the dependence on these chemicals. The slag and municipal waste incineration
ashes also showed their best performances without the need for sodium silicate; however,
the sodium hydroxide content was the highest among the studied.

The newly investigated binders studied in this paper present adequate properties when
compared to corresponding fly ash and ordinary Portland cement specimens. Therefore,
given the considerable potential demonstrated here, additional investigation is needed
on the alkali activation of the aforementioned waste aluminosilicate precursors to further
improve their properties as construction materials.
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