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Compact Minimal Submanifolds in a Large
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Abstract. Through a new technique, we provide uniqueness, rigidity and
non-existence results for compact minimal submanifolds of arbitrary di-
mension in a large class of Riemannian manifolds, which include between
others, Riemannian double-twisted and warped products. Moreover, we
show that our results can be applied in particular, to space forms and
Cartan–Hadamard manifolds, re-obtaining several classic results in a
different approach. Interesting applications to Geometric Analysis are
also showed.
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1. Introduction

The importance of minimal submanifolds (and, in particular, minimal sur-
faces) is very well known. Among the elliptic quasi-linear PDEs, the equation
of minimal hypersurfaces in Euclidean space

div

(
Du√

1 + |Du|2

)
= 0 (1)

has a long and fruitful history and has deserved the attention of many re-
searchers.

More precisely, given a function u ∈ C∞(Ω), where Ω denotes an open
domain in R

n, the graph Σu = {(u(p), p) : p ∈ Ω} in the Euclidean space R
n+1

defines a minimal hypersurface if and only if u is solution to Eq. (1). From a
geometric point of view, Eq. (1) is the Euler–Lagrange equation of a classical
variational problem. Specifically, for each u ∈ C∞(Ω), where Ω denotes an
open domain in R

n, the volume element of the induced metric from R
n+1

is represented by the n-form
√

1 + |Du|2dV on the graph Σu, where dV is
the canonical volume element of Ω ⊂ R

n. The critical points of the n-volume
functional u �→ ∫ √

1 + |Du|2dV are given by the Eq. (1). In 1914, Bernstein
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[6], amended latter by Hopf in 1950 [18], proved his well-known uniqueness
theorem for n = 2

The only entire solutions to the minimal surface equation in R
3

are the affine functions

u(x, y) = ax + by + c,

where a, b, c ∈ R.
In terms of PDEs, Bernstein proved a general Liouville type result

Any bounded solution u ∈ C∞(R2) of the PDE

Auxx + 2B uxy + C uyy = 0,

where A,B,C ∈ C∞(R2) such that AC−B2 > 0, must be constant.
This previous result is obtained as an application of the so-called Bern-

stein’s geometric theorem
If the Gauss curvature of the graph of u ∈ C∞(R2) in R

3 satisfies
K ≤ 0 everywhere and K < 0 at some point, then u cannot be
bounded.
Then, a lot of work has been made to extend the classical Bernstein

result to higher dimensions (see [23] for a survey until 1984 and [13] for the
case of surfaces). A notable progress was made by Moser [21] in 1961, who
obtained the so-called Moser–Bernstein theorem

The only entire solutions u to the minimal surface equation in R
n+1

such that |Du| ≤ C, for some C ∈ R
+, are the affine functions

u(x1, . . . , xn) = a1x1 + . . . + anxn + c,

where ai, c ∈ R, 1 ≤ i ≤ n and
∑n

i=1 a2
i ≤ C2.

It is remarkable that this result of Moser for n = 2 joined with a previous
result of Bers [7], who proves that solutions of the minimal surface equation
in R

3 defined on the exterior of a closed disc in R
2 have bounded gradient,

provides another proof for the classical Bernstein theorem. In 1968, Simons
[29], together with other results of De Giorgi [14] and Fleming [16], yields
a proof of the Bernstein theorem for n ≤ 7. Furthermore, it was found a
counterexample u ∈ C∞(Rn) for each n ≥ 8.

Then, much research has been made to characterize minimal submani-
folds in different Riemannian ambients. For example, Rosenberg studied min-
imal surfaces in the product of R and a Riemannian surface in [27]. In a more
general setting, minimal surfaces are studied in warped product manifolds in
several papers (see, for instance, [1–4,10,26]).

Focusing in the case of compact submanifolds, it is known that the Eu-
clidean space R

n does not admit any compact minimal submanifold. However,
this fact does not occur in S

n, for example. Hence, it is natural to consider
the problem of obtaining characterization results for minimal submanifolds
in a large class of Riemannian manifolds.

Consider a smooth 1-parametrized family of Riemannian metrics
(Fn+m, g

t
), t ∈ I ⊆ R, on a differential manifold F , i.e., a smooth map

g : I × F → T0,2(F ), where T0,2(F ) denotes the fiber bundle of 2-covariant
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tensors on F , such that g
t

: F → T0,2(F ) is a positive definite metric tensor
for all t ∈ I, and a positive function β ∈ C∞(I × F ). The product manifold
I × F can be endowed with the following metric:

g
(t,x)

= β(t, x)π∗
I
(dt2) + (π∗

F
(gt))x ( β dt2 + gt in short), (2)

where π
I

and π
F

denote the canonical projections onto I and F , respectively.
We will say that a Riemannian manifold is orthogonally splitted if it is

isometric to a Riemannian manifold (M, g = βdt2 + gt). Note that the class
of orthogonal-splitted Riemannian manifold includes the double-twisted Rie-
mannian products where one of its factors is the real line, and, in particular,
the Riemannian warped products (see [25]).

Observe that a suitable open normal neighbourhood of an arbitrary
Riemannian manifold lies in this family (in this case, consider the function
β ≡ 1 and the coordinate t as the geodesic distance to a fixed point of
the normal neighbourhood). In particular, removing a point of a (simply
connected) complete Cartan–Hadamard manifold, we have that the resulting
manifold possesses this structure (see [24]).

We focus our attention on the case in which an orthogonal-splitted Rie-
mannian manifold has an isotropic behaviour associated with the t coordi-
nate. Given any compact subset, we desire that its volume does not increase
or decrease, by the flux along the vector field ∂t. To make clear this idea, we
may introduce the following notion: an orthogonal-splitted Riemannian man-
ifold (M, g = βdt2+gt) is said be non-shrinking (resp. expanding) throughout
the vector filed ∂t if for all x ∈ F and for all v ∈ TxF

∂tβ ≥ 0 and (∂tgt
)(w̃, w̃) ≥ 0 (resp. > 0),

where w̃ is the vector filed along the curve I × {x} given at each point
(t, x) ∈ I × {x} by the lift w̃ of w to (t, x). For the non-shrinking (resp.
expanding) case, this definition is equivalent to the Lie derivative L∂t

g to be
a semi-definite (resp. definite) positive tensor field.

Dually, we will say that an orthogonal-splitted Riemannian manifold is
non-expanding (resp. contracting) throughout ∂t if it is non-shrinking (resp.
expanding) throughout −∂t. Obviously, the geometrical interpretations also
hold with their respective changes.

We may unify these two notions with the following one. We will say that
the manifold (M,β dt2+g

t
) is monotone (resp. strictly monotone) if it is non-

shrinking or non-expanding (resp. expanding or contracting) throughout ∂t.
This paper is organized as follows. Section 2 is devoted to several pre-

liminaries. In Sect. 3, we show several rigidity results for compact minimal
Riemannian submanifolds with and without boundary. The first of them is
Theorem 5,

In a monotone orthogonal-splitted Riemannian manifold, every com-
pact minimal submanifold must be contained in a level hypersur-
face {t0}×F ,for some t0 ∈ I. Moreover, in the case of codimension
higher than one, S must be a minimal submanifold of (F, gt0).

For the case with boundary, we obtain Theorem 7
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Let (M, g) be a non-expanding (resp. non-shrinking) orthogonal-
splitted Riemannian manifold; and let S be a compact submanifold
with boundary. Assume that:

(i) (M, g) is non-expanding (resp. non-shrinking).
(ii) The mean curvature vector �H of S, points in the opposite

(resp. same) direction of ∂t when is different from zero.
(iii) ∂S ⊂ {t0} × F .
(iv) minS(τ) ≥ t0 (resp. maxS(τ) ≤ t0).
Then, S is fully contained in {t0} × F .

We finished this section by extending our results to orthogonal-splitted
Riemannian manifold with change in the monotonic behaviour (see Theo-
rem 12, and showing an existence theorem for compact minimal hypersurfaces
immersed in a orthogonal-splitted Riemannian manifold (see Theorem 15).

In Sect. 4, we apply our previous results to the study of compact minimal
submanifolds in Riemannian spaces with certain infinitesimal symmetries.
Therefore, we obtain Theorem 17,

Let (M, g) be a simply connected Riemannian manifold admitting
a complete, globally defined conformal Killing vector field K. As-
sume that the norm of K along its flow is monotonic (either non-
decreasing or non-increasing), then any minimal compact subman-
ifold has to be contained in a leaf of the foliation K⊥, orthogonal
to the conformal vector field.

In Sect. 5, we deal with several non-existence results getting interesting
applications to space forms, as well as to Cartan–Hadamard manifolds, so we
re-obtain the following result (see Corollary 23),

A Cartan-Hadamard Riemannian manifold admits no compact min-
imal submanifold.

Also in Sect. 5, we obtain a general geometric obstruction for the exis-
tence of minimal submanifolds. In particular, for the case of the Euclidean
space, its application shows (in a new approach) the well-known result about
non-existence of compact isometric immersion.

Finally, Sect. 6 is devoted to show new results in the field of Geometric
Analysis. Specifically, we study the entire solutions to a family of quasi-linear
elliptic PDEs on a compact Riemannian manifold (see, Theorems 34, 35,
Corollaries 36, 37). Moreover, we managed to solve several Dirichlet problems
on a general Riemannian manifold (see, Theorem 38, Corollaries 40, 41.)

2. On Orthogonally Splitted Manifolds

Let us begin by fixing some notation and definitions:

Definition 1. We will say that a Riemannian manifold is orthogonally splitted
if it is isometric to a Riemannian manifold (M

n+m+1
, g) where

M = I × Fn+m, g = βπ∗
I (dt2) + π∗

F (gt)
(≡ βdt2 + gt

)
, (3)
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where I is an open interval on R, πI : M → I, πF : M → F are the corre-
sponding projections, β : M → (0,∞) is a smooth function, and {gt}t∈I is a
smooth 1-parametric family of Riemannian metrics defined over F .

Let x : Sn → M be an n-dimensional connected isometric immersed
submanifold. As it is well known, for all vector fields X,Y ∈ X(S), we have
the classical decomposition

∇XY = ∇XY + II(X,Y ), (4)

where ∇ is the Levi-Civita connection on S induced from the ambient space,
and II(X,Y ) =

(∇XY
)⊥

is the second fundamental form, that is, the corre-
sponding normal component of ∇XY . Then, the mean curvature vector field
�H is defined as the (normalized) C1

1 metric contraction of the second funda-
mental form. Namely, for {Ei}n

i=1, a local orthonormal (reference) frame on
S

�H =
1
n

Σn
i=1II(Ei, Ei). (5)

A submanifold S is called minimal if �H = 0.
Consider now the function τ : S → I given by τ := πI ◦ x. On the one

hand, it is clear that the submanifold S is contained in a slice {t0}×F if and
only if τ ≡ t0. On the other hand, it is not difficult to show that

∇τ =
1
β

∂T
t , (6)

where ∇ denotes the induced gradient on S, and ∂T
t is the orthogonal pro-

jection of ∂t on TS. Now, let us take a local orthonormal frame {E1}n
i=1 of

S on an open set U ⊂ S, and let {Nj}m+1
j=1 be a local orthonormal frame of

the normal vector bundle of S in M . Hence, we can define a local orthonor-
mal frame B = {E1, . . . , En, N1, . . . , Nm+1} on S. Making use of standard
computations, we can see that

Δτ = −g(∇(lnβ),∇τ) +
1
β

div (∂t) −
m+1∑
j=1

1
β

g
(∇Nj

∂t, Nj

)

+
1
β

m+1∑
j=1

n∑
i=1

g (Nj , ∂t) g (Nj , II(Ei, Ei))

= −g(∇(lnβ),∇τ) +
1
β

div (∂t)

−
m+1∑
j=1

1
β

g
(∇Nj

∂t, Nj

)
+

1
β

m+1∑
j=1

g (Nj , ∂t) g
(
Nj , n �H

)

= −g(∇(lnβ),∇τ) +
1
β

div (∂t) −
m+1∑
j=1

1
β

g
(∇Nj

∂t, Nj

)
+

1
β

g
(
n �H, ∂t

)
.

(7)
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To take advantage of the expression of the metric in (3), we will decompose

each vector Nj =
1
β

g(Nj , ∂t)∂t +NF
j , where NF

j is the orthogonal projection

of Nj onto the corresponding slice {t} × F and satisfies that [NF
j , ∂t] = 0.

Then, taking into account Koszul formulae and the fact that ∂t and NF
j are

orthogonal

g(∇Nj
∂t, Nj) =

1
2
g

(
∂t√
β

,Nj

)2

∂t(ln β) +
1
2

(L∂t
gt) (NF

j , NF
j )

+
1
β

g(Nj , ∂t)
(
g(∇NF

j
∂t, ∂t) − g(∇∂t

NF
j , ∂t)

)

=
1
2
g

(
∂t√
β

,Nj

)2

∂t(ln β) +
1
2

(L∂t
gt) (NF

j , NF
j ),

(8)

where here, for convenience, we are denoting with L∂t
gt := ∂tgt. Finally,

let us express div(∂t) in a more suitable manner. For this, let us consider

an orthonormal frame B′ =
{

1√
β

∂t, Ẽ1, . . . , Ẽn+m

}
for the metric g. It is

straightforward to see that

div(∂t) =
1
2

(
∂t(ln β) +

m+n∑
i=1

(L∂t
gt) (Ẽi, Ẽi)

)
. (9)

Joining both (8) and (9) together with (7), we arrive to

Δτ = −g(∇(ln β), ∇τ) +
1

2β

⎛
⎝n+m∑

i=1

(L∂t
gt) (Ẽi, Ẽi) −

m+1∑
j=1

(L∂t
gt) (NF

j , NF
j )

⎞
⎠

+
1

2β
∂t(ln β)

⎛
⎝1 −

m∑
j=1

g

(
Nj ,

∂t√
β

)2
⎞
⎠ +

1

β
g(n �H, ∂t). (10)

Previous expression can be simplified even more by making use of the
following observations: On the one hand, we can make a convenient conformal
change, so the first term is absorbed by the Laplacian. In fact, let us recall
that under a conformal change g̃ = e2ϕg, the Laplace operator transform as
(see [8], for instance)

Δ̃f = e−2ϕ (Δf − (n − 2)g (∇f,∇ϕ)) . (11)

Hence, if we assume that n > 2 and take e2ϕ = β2/n−2

Δ̃τ =
1
2
β− n

n−2

⎧⎨
⎩

n+m∑
i=1

(L∂t
gt) (Ẽi, Ẽi) −

m+1∑
j=1

(L∂t
gt) (NF

j , NF
j )

+∂t(lnβ)

⎛
⎝1 −

m∑
j=1

g

(
Nj ,

∂t√
β

)2
⎞
⎠ + 2g(n �H, ∂t)

⎫⎬
⎭ .

(12)

On the other hand, let us define a (0, 2)-tensor ξ on M given by

ξ(V,W ) = (L∂t
gt) (dπF (V ), dπF (W )), V,W ∈ X (M).
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Recall that, for a given point p ∈ S, we have two different orthogonal frames,
B and B′. Using the latter, it follows that:

tr(ξ) =
n+m∑
i=1

(L∂t
gt) (dπF (Ẽi), dπF (Ẽi)), (13)

while with the former

tr(ξ) =
n∑

i=i

(L∂t
gt) (dπF (Ei), dπF (Ei)) +

m+1∑
j=1

(L∂t
gt) (dπF (Nj), dπF (Nj))

= tr(ξ|TpS) +
m+1∑
j=1

(L∂t
gt) (NF

j , NF
j ).(14)

Finally, due the fact that g(∂t/
√

β, ∂t/
√

β) = 1, we can find θ ∈ [0, π/2], so

sin2(θ) = 1 −
m∑

j=1

g

(
Nj ,

∂t√
β

)2

. (15)

Joining all together with (12), we deduce that

Δ̃τ =
1
2
β−n/(n−2)

(
tr(ξ|TpS) + sin2(θ)∂t(ln(β)) + 2g(n �H, ∂t)

)
. (16)

Remark 2. Some remarks are in order.

(a) As we have mentioned before, for previous conformal change, we have
to assume that n > 2. Nevertheless, we can build a 1-dimensional exten-
sion, so the dimension of the submanifold and the Riemannian manifold
is increased. Indeed, if x : S → I ×F is a minimal 2-dimensional isomet-
ric immersion, we consider the Riemannian manifold

(
(I × F ) × S

1, g +
ds2

)
, being ds2 the standard metric of S

1 and the following natural
3-dimensional isometric immersion, x̂ : S × S

1 → (I × F ) × S
1, with

x̂(p, s) = (x(p), s), for all p ∈ S and s ∈ S
1.

Taking into account the natural identifications T(p,α)(S × S
1) ≡

TpS ⊕ TαS
1, p ∈ S, α ∈ S

1 and T(q,α)(M × S
1) ≡ TqM ⊕ TαS

1, q ∈ M ,
α ∈ S

1, for each tangent vector v ∈ TpS (or normal vector w ∈ TpS
⊥),

there is a canonical tangent vector v̂ = (v, 0) ∈ T(p,α)(S × S
1) (or ŵ =

(w, 0) ∈ T(p,α)(S ×S
1)⊥). Moreover, it is clear that the last term in (16)

is invariant under this extension. In particular, if S is minimal in M ,
then S ×S

1 is minimal in M ×S
1. Finally, note that a similar procedure

can be made when the submanifold is a geodesic.
(b) If we assume that S is an hypersurface, and so, locally we only have one

normal vector N to S, Eq. (15) becomes

sin2(θ) = 1 − g

(
N,

∂t√
β

)2

= 1 − cos2(θ).

Therefore, θ is the acute angle formed between the normal N and the
vector field ∂t.
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3. On Monotone Orthogonally Splitted Riemannian Manifolds

Now, we are in conditions to establish the main result in this paper. For this,
we will need first to introduce the following notion:

Definition 3. Let (M, g) be an Orthogonally Splitted Riemannian manifold
(O-S Riemannian manifold for short). We will say that the Riemannian man-
ifold is non-shrinking (resp. expanding) throughout ∂t if

∂tβ ≥ 0 and (L∂t
gt) (X,X) ≥ 0 (resp. > 0) . (17)

The notions of non-expanding and shrinking are given analogously with the
corresponding change in the direction of the inequalities. We will say that
the O-S Riemannian manifold is monotonic if it is either non-shrinking or
non-expanding.

We will be interested specially in compact submanifolds, both with and
without boundary, but our results are also applicable with little modifications
for (open complete) parabolic submanifolds: Let us recall (see [19]) that a
submanifold S is said parabolic if it is complete and it admits no function
f ∈ C∞(S) bounded from below and superharmonic (i.e., satisfying Δf ≤ 0)
but the constants.

Hence, our result reads as follows:

Theorem 4. Let (M, g) be an Orthogonally Splitted manifold, and let S be a
compact n-dimensional submanifold on M . Assume that

(i) (M, g) is non-expanding (resp. non-shrinking).
(ii) The mean curvature vector �H of S points in the opposite (resp. same)

direction of ∂t when is different from zero.
Then, there exists t0 ∈ I, such that S ⊂ {t0} × F .

Proof. Let us proof the non-expanding case, as the non-shrinking will be
completely analogous. Observe that, from the definition of non-expanding
(17), it follows that:

∂t(ln β) ≤ 0, tr(ξ|TpS) =
n∑

i=1

(L∂t
g) (Ei, Ei) ≤ 0, (18)

being {Ei} an orthonormal base of TpS. Moreover, from (ii), it also follows
that g( �H, ∂t) ≤ 0. Therefore, from (16), we deduce that Δτ ≤ 0. As S is
compact, it follows that τ is constant and the result follows. �

Previous result is quite general, and establishes the behaviour of com-
pact submanifolds in monotonic O-S Riemannian manifolds. The result can
be seen somewhat technical, but it has interesting consequences under more
restricted hypothesis. For instance:

Theorem 5. In a monotone O-S Riemannian manifold, every compact mini-
mal submanifold must be contained in a level hypersurface {t0}×F , for some
t0 ∈ I. Moreover, in the case of codimension higher than one, S must be a
minimal submanifold of (F, gt0).
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Proof. Observe that, as S is a minimal compact manifold, condition (ii) is
satisfied; hence, S ⊂ {t0} × F for some t0 ∈ I. The last assertion is just an
application of the Koszul formula in this context. �

Remark 6. There are some observations worth mentioning:

(a) Both previous results can be adapted for parabolic submanifolds. In
fact, Theorem 4 follows for parabolic manifolds once we include the
additional assumption:

(iii) The function τ : S → I is bounded from below or from above.

(b) As we can see from (16), if τ is constant and �H = 0, then

0 = tr(ξ|TpS) =
n∑

i=1

(L∂t
gt) (Ei, Ei),

for some {Ei}i orthonormal basis of TpS; and all p ∈ S. As we are in a
monotone O-S Riemannian manifold, it follows then that all the terms
in such a sum has to be zero, and so that ξ is a degenerate (0, 2)-tensor
over S.

(c) In particular, we have some criteria to decide whether or not a hyper-
surface can contain a minimal submanifold. A necessary condition for
a hypersurface to contain a minimal submanifold of dimension n is to
contain points p, so the tensor ξ is degenerate in p with the dimension
of its radical at least n.

(d) Finally, let us recall that previous result gives a complete classification
of compact minimal hypersurfaces. In fact, to have S a compact minimal
hypersurface, then necessarily S = {t0} × F for some t0 (and so, F has
to be compact). Moreover, in that case, the hypersurface must be totally
geodesic, as it follows from the following general formula:

g

(
∇X

∂t√
β

, Y

)
=

1
2
√

β
(Ltgt)(X,Y ),

for all X,Y tangent vectors to F .

We move now to the case where S is a compact submanifold with bound-
ary. In this case, adapted arguments allow us also to obtain results in the
case where the boundary ∂S belongs to a slice {t0} × F .

Theorem 7. Let (M, g) be a non-expanding (resp. non-shrinking) O-S Rie-
mannian manifold; and let S be a compact submanifold with boundary. As-
sume that

(i) (M, g) is non-expanding (resp. non-shrinking).
(ii) The mean curvature vector �H of S points in the opposite (resp. same)

direction of ∂t when is different from zero.
(iii) ∂S ⊂ {t0} × F .
(iv) minS(τ) ≥ t0 (resp. maxS(τ) ≤ t0).

Then, S is fully contained in {t0} × F .
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Figure 1. According to Corollary 8, there are no minimal hy-
persurfaces with this shape in a expanding O-S Riemannian
manifold

Proof. We will consider (M, g̃), where g̃ is the conformal metric defined for
(12). Consider the vector field V = (τ − t0)∇̃τ , where ∇̃ denotes the gradient
computed with g̃. Using the divergence theorem on S, and recalling that
τ = t0 in ∂S, it follows that:

0 =
∫

S

div
(
(τ − t0)∇̃τ

)
=

∫
S

(∣∣∣∇̃τ
∣∣∣2 + (τ − t0)Δ̃τ

)
. (19)

Now, observe that (τ − t0) Δ̃τ ≥ 0 thanks to the hypotheses (i),(ii) and (iv).
Therefore, τ should be constant and the result follows. �

Previous result allows us even to obtain information for the shape of
minimal hypersurfaces S under some mild hypothesis. Concretely:

Corollary 8. Assume (M, g) be an non-shrinking (resp. non-expanding) O-S
Riemannian manifold. Let Σ be a minimal hypersurface. Then, the function
τ on Σ does not attain a strict maximum value (resp. strict minimum value).

Proof. We will consider the expanding case, being the shrinking one com-
pletely analogous. Assume by contradiction that there exists Σ not satisfying
our conclusion. Let us say that τ0 is a maximum value of τ at p ∈ Σ. We have
that, for certain δ > 0 small enough, there exists a simply connected compact
oriented subset S of Σ containing p and whose boundary lies in t0 := τ0 − δ.
Inside this subset, τ ≥ t0 (see Fig. 1 for a visual representation). We can now
apply Theorem 7 to get a contradiction. �

Finally, let us recall that we can extend conclusion of Theorem 4 in the
following way: Consider (M, g) a Riemannian manifold with

M = I2 × I1 × F, g = β2(t1, t2, x)dt22 + β1(t1, x)dt21 + g
t1 ,t2

, (20)

where Ij , with j = 1, 2, are two open intervals on R, βj :
(
Πj

i=1Ii

)
× F → R

are smooth functions and gt1,t2 is a smooth 2-parametric family of Riemann-
ian metrics defined over F . Previous metric can be seen as a O-S Riemannian
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manifold if we write it like M = I2 × (I1 × F ) = I2 × F̃ . Hence, under the
assumptions of Theorem 4, any minimal compact submanifold S of M should
be contained in t02 × F̃ for some constant t02. In particular, we can see S as a
submanifold of F̃ = I1 × F .

If S has codimension bigger than 1, and assuming that the O-S Rie-
mannian manifold F̃ = I1 ×F is also in the conditions of Theorem 4, we will
obtain that S should be contained in some

{
t01

}×F for some constant t01. As
a direct consequence, S is contained in

{
t02

} × {
t01

} × F .
Observe that the only required assumption is the non-expanding/non-

shrinking character of previous O-S Riemannian manifolds. In the first case,
we need that both ∂t2β2 and L∂t2

(
dt21 + g

t1 ,t2

)
= L∂t2

g
t1 ,t2

share the same
monoticity (either both are non-negative or non-positive). Analogously, we
require that both ∂t1β1 and

(L∂t1
g

t1 ,t2

)
share the same monoticity.

Summing up, and recalling that previous process can be repeated for a
finite number of times, we obtain the following:

Corollary 9. Let (M, g) be a Riemannian manifold with

M =
(
Πk

j=1Ij

) × F, g =

⎛
⎝ k∑

j=1

βjdt2j

⎞
⎠ × gt1,...,tk

, (21)

where, for j = 1, . . . , k, Ij is an interval of R, βj :
(
Πj

i=1Ii

)
× F → R is a

smooth function and gt1,...,tk
is a smooth k-parametric family of Riemannian

metrics defined over F . Let S be a compact minimal submanifold on M of
codimension bigger or equal than k. If, for all j ∈ {1, . . . , k}, it follows that
∂tj

βj and
(
L∂tj

gt1,...,tk

)
share the same monoticity, then S ⊂ {

t01
} × · · · ×{

t0k
} × F for some constants t0j ∈ Ij.

We can particularize this corollary to the case where even F is an interval
of the real line. Hence, we obtain the following generalization of the classical
non-existence result for compact minimal surface in the Euclidean space.

Corollary 10. Let (M, g) be a Riemannian manifold with M = Πn
j=1Ij and

g =
∑n

j=1 βjdx2
j , where Ij are real intervals and βj :

(
Πj

i=1Ii

)
→ R are

smooth functions. If ∂xj
βj and ∂xj

βn have the same monotony for all j, then
there exists no compact minimal submanifold S ⊂ M .

Proof. Assume by contradiction that there exists a compact minimal subman-
ifold S with codimension m < n. Then, by previous corollary, S is contained
in

{
x0

1

}×· · ·×{
x0

m

}×R
n−m+1(≡ R

n−m+1) for some constants x0
i ∈ Ii. How-

ever, this is a contradiction, as there exists no compact minimal submanifold
in the Euclidean space. �

3.1. O–S Riemannian Manifolds with Change in the Monotonic Behaviour

Previous computations allow us even to obtain results in cases even where
the monotonic behaviour is non-constant. Concretely, we are able to prove
the following result.
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Theorem 11. Let (M, g) be a O-S Riemannian manifold, and let S be a com-
pact n-dimensional submanifold. Assume that the following conditions hold
(compare with Theorem 4):

(i′) There exists t1 ∈ I = (a, b), so ((a, t1) × F, g) is non-expanding and
((t1, b) × F, g) is non-shrinking.

(ii′) The mean curvature vector �H satisfies that for all p ∈ S, (τ(p) −
t0)g( �H, ∂t)|p ≥ 0.

Then, there exists t0, so S ⊂ {t0} × F .

Proof. From the hypothesis (i) and (ii), and Eq. (16), it follows that:

(τ − t1) Δ̃τ ≥ 0. (22)

In particular, and recalling that Δ̃ (τ − t1)
2 = 2

(∣∣∣∇̃τ
∣∣∣2 + (τ − t1) Δ̃τ

)
, it

follows that τ2 is superharmonic. Hence, due the fact that, from hypothesis,
S is compact, τ is constant, and the result follows. �

As in Theorem 4, the previous result has a much more appealing con-
sequence once we restrict to compact minimal submanifolds.

Theorem 12. Assume that (M, g) is a O-S Riemannian manifold satisfying
the condition (i′) in the previous theorem; and assume that S is a minimal
compact submanifold. Then, S ⊂ {t0} × F for some t0. Moreover, if S has
codimension bigger than one, then S is a minimal submanifold of {t0} × F

Remark 13. In analogy with previous cases, we can also obtain results for
compact submanifolds with boundary for O-S Riemannian manifolds with
this appropriate change on its monotonic behaviour. Concretely, we can re-
obtain Theorem 7 in this context by substituting conditions (i) and (ii)
with (i′) and (ii′).

3.2. A Note on Compact Hypersurfaces

It is worth mentioning that any compact hypersurface in a Riemannian man-
ifold (M, g) can be seen as a minimal hypersurface in an appropriate confor-
mal metric. For this, let us recall that if we consider g̃ = e2ϕg, we have the
following relation between the mean curvatures of an hypersurface S:

eϕH̃ = H + g(∇ϕ,N), (23)

where H̃ and H represent the mean curvature of S computed with g̃ and g,
respectively. Our aim is then to find ϕ, so H̃ is zero. For this, we will make
use of the following technical lemma:

Lemma 14. Let (M, g) be a Riemannian manifold and S a compact hyper-
surface. For each function h ∈ C∞(S), there exists a function in the ambient
manifold, α, such that

∇α|⊥S = hN. (24)
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Proof. The compactness of S allows to take an open interval J , such that the
geodesics γp(s) starting at p ∈ S and satisfying γ′

p(0) = N(p) are defined for
all p ∈ S and for all s ∈ J .

Therefore, we can consider φ : J × S → U a bijective map given by
φ(s, p) = γp(s), being U a tubular neighbourhood of S. On U , we define the
function h̄ by h̄ = h ◦ π

S
◦ φ−1, being the projection π

S
: J × S → S. That

is, h̄ is constant along the geodesics γp(s), and on S, it coincides with h.
Consider now the smooth function

(
π

J
◦ φ−1

)
, where π

J
denotes the

canonical projection of the first factor of J × S, and define the function
α : U → R given by α = h·(π

J
◦φ−1). From definition, the normal component

of the gradient ∇ α|
S⊥ = hN , since g(N,∇α) = h.

Now, let ξ be a function on I × F , such that 0 ≤ φ(p) ≤ 1, for all
p ∈ I × F , and which satisfies (see Corollary in Section 1.11 of [30]),

(i) ξ(p) = 1 if p ∈ {γt(p) : t ∈ J ′, p ∈ S}, being J ′ ⊂ J an closed interval
with 0 ∈ J ′.

(ii) supp ξ ⊂ U .

The function ξ can be employed to extend α on the entire M . �

We can then define a function ϕ given by previous Lemma considering
h = −H the mean curvature of S computed with g. Then, from (23), it
follows that S is minimal for the conformal metric g̃ = e2ϕg. In conclusion,
we have proved the following:

Theorem 15. Let S be a compact hypersurface for a Riemannian manifold
(M, g). Then, there exists a function ϕ, so S is a minimal compact hyper-
surface for the Riemannian metric (M, e2ϕg).

4. Uniqueness Results in Riemannian Manifolds with
(Infinitesimal) Symmetries

Let us assume now that (M, g) is a Riemannian manifold admitting a globally
defined conformal Killing vector field K, that is, a non-zero vector field K,
so

LKg = Ω g, (25)

for some function Ω. If Ω ≡ 0, we will just say that K is Killing vector field.
As it is well established by the extensive literature on the topic, if the

vector field fulfills some regular assumptions, then we can get a topological
and geometrical description of the Riemannian manifold. Let us recall the
main arguments here for such a description. We will follow the arguments
leading to [26, Proposition 1], even so our result will be slightly more general.

It is quite straightforward to see that the conformal Killing vector field
K is a Killing vector field for g̃ = g/g(K,K). Now, observe that, if we
assume that the vector field K is irrotational, then the Frobenius theorem
asserts that the orthogonal distribution of the vector field K is integrable.
Hence, for certain Σ open set of an integral leaf of K⊥, M is locally isometric
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to
(
(a, b) × Σ,dt2 + gΣ

)
. Moreover, it can be easily proved that the vector

field K is locally a gradient vector field.
Observe that if M is simply connected, Poincaré’s lemma ensures that

K is globally a gradient vector field. Let l ∈ C∞(M) be a function, so dl = ω,
being ω the one form metrically equivalent to K.

Finally, let us denote by φ(t, p) the global flow of K. From construction,
it follows that d

dt l(φ(t, p)) = 1; thus, the integral curves of K cross each leaf
of K⊥ only one time. Hence, if we assume that the vector field K is complete,
we have that the map

φ : R × P → (M, g̃),

is an isometry. In conclusion, we have arrived to the following:

Proposition 16. Let M be a Riemannian manifold which admits an irrota-
tional nowhere zero conformal Killing vector field K. If M is simply connected
and K is complete, then M is globally isometric to

(R × P, h
(
dt2 + gP

)
), (26)

where h = g(K,K), P is a leaf of the foliation K⊥, and gP is a Riemannian
metric over P .

We can then deduce that, under the assumptions of previous proposi-
tion, (M, g) is an O-S Riemannian manifold with β = h and gt = h gP . In
particular, the variation along t of both β and gt will depend on the evolution
of the norm of K over its flow.

With all previous observations, we are in conditions to prove the follow-
ing result (which is a consequence of Theorem 5):

Theorem 17. Let (M, g) be a simply connected Riemannian manifold admit-
ting a complete, globally defined conformal Killing vector field K. Assume
that the norm of K along its flow is monotonic (either non-decreasing or
non-increasing), then any minimal compact submanifold has to be contained
in a leaf of the foliation K⊥.

Remark 18. Observe that we can also obtain a result under the assumption
that the norm of K changes its monotonic behaviour appropriately along its
flow and using Theorem 11.

In the particular case that K is Killing, the norm of K is invariant over
the flow of K, and so, it is always monotonic. Hence, we have the following:

Corollary 19. In a simply connected Riemannian manifold containing a glob-
ally defined Killing vector field K, any minimal compact submanifold is con-
tained in a leaf of the foliation K⊥ orthogonal to K.

Let us finish this section making a final observation regarding the simply
connectedness of M . Assume, for instance, that M is not simply connected
and consider M̃ its universal covering (denoting by π : M̃ → M the covering
map). If the submanifold S is simply connected, we have that there exists
a unique immersion x̃ : S → M̃ satisfying that S is minimal if, and only if,
S̃ := x̃(S) is. Hence, the simply connectedness assumption can be assumed
in the previous theorem, not in M , but on S.
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Corollary 20. Let M be a complete Riemannian manifold admitting a com-
plete, globally defined conformal Killing vector field K. Assume that the norm
of K along its flow is monotonic. Then, any minimal simply connected sub-
manifold must be contained in a leaf of the foliation K⊥.

5. Non-existence Results for Minimal Compact Submanifolds

The results in Sect. 3 allow us to obtain non-existence results in different
contexts. We will focus on minimal submanifolds in this section, even so
Theorem 4 allows us to obtain restrictions on the geometric behaviour of
submanifolds due the information provided by its mean curvature vector.

First, observe that, as we have mentioned in Remark 6, we require
that (L∂t

gt) to be singular in F to ensure the existence of minimal com-
pact submanifolds. Hence, if we assume that the O-S Riemannian manifold
is strictly monotone (either expanding or shrinking), we know from definition
that (L∂t

gt) is definite positive or negative. Therefore:

Corollary 21. In a strictly monotone O-S Riemannian manifold, there exist
no compact minimal submanifolds.

Moreover, under the assumptions of Theorem 5, we ensure that any
minimal compact submanifold in a O-S Riemannian manifold (M, g) should
be contained in a hypersurface orthogonal to some vector field (represented
in (1) by ∂t). If (M, g) admits a second orthogonal splitting with respect
another vector field (let us denote this vector field by ∂t′) which also satisfies
the assumptions of such a theorem, then any minimal compact submanifold
on M should also be contained in the hypersurface orthogonal to ∂t′ . If both
∂t and ∂t′ are not collinear in an open set U , the intersection of any minimal
compact submanifold with U should be contained in the intersection of two
hypersurfaces in M ; hence, we obtain a restriction over the dimension of such
a manifold.

In particular, and due to the fact that previous arguments can be done
for a finite number of orthogonal decompositions, we arrive to the following
result:

Corollary 22. Let (M, g) be a Riemannian manifold admitting an orthogonal
decomposition as in (1) through q vector fields. Assume that such decompo-
sitions are monotonic and that there exists an open set U where all q vector
fields are non-collinear. Then, there exist no compact minimal submanifolds
of dimension bigger than n + m − (q − 1) intersecting the open set U .

Now, we will move to a different scenario by considering (M, g) a Cartan–
Hadamard manifold. Let us recall that a Cartan–Hadamard manifold (see
for instance [24]) is a simply connected complete Riemannian manifold with
non-positive sectional curvature. As it is well known, in a Cartan–Hadamard
manifold, for a given point p ∈ M , the exponential map expp is a global dif-
feomorphism, and we can define ∂r the radial polar vector field defined over
M \ {p}.
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For any two non-collinear vectors v, w ∈ TpM , let us define

Π(v, w) :=
{
expp(u) : u ∈ Span {v, w} , u �= 0

} ⊂ M \ {p} . (27)

Observe that Π(v, w) has non-positive Gauss curvature when endowed with
the induced metric from g. Let us represent, by an abuse of notation,
(Π(v, w), gΠ(v,w)) as ((0,∞),dr2 + f(r, θ)2dθ2). Let us consider a point q ∈
Π(v, w) obtained as q = expp(u). Now, let us take TqΠ(v, w) = Span(u1, u2),
and recall that the Gauss curvature K of Π(v, w) and the sectional curvature
K̃ of (M, g) for the plane TqΠ(v, w) are related by

K = K̃ − g(II(u1, u2), II(u1, u2)) − g(II(u1, u1), II(u2, u2))
|u1|2 |u2|2 − g(u1, u2)2

. (28)

Now, observe that we can always take u1 so II(u1, u1) = 0, so K ≤ K̃.
Recalling then the expression for gΠ(v,w), we have that

− ∂rrf(r, θ)
f

= K ≤ K̃ ≤ 0, (29)

and so, ∂rrf(r, θ) > 0. Hence, if ∂rf(r0, θ) ≥ 0 for some r0, then ∂rf(r, θ) > 0
for all r > r0. Moreover, as f(r, θ) > 0 and limr→0 f(r, θ) = 0, it cannot exist
ε > 0, so ∂rf(r, θ) < 0 for all r ∈ (0, ε); thus, ∂rf(r, θ) > 0 for all r.

Therefore, (Π(v, w), gΠ(v,w)) is an expanding O-S Riemannian manifold.
As this happens for any v, w ∈ TpM , it follows that the entire (M, g) is
expanding, so by virtue of Corollary 21, we have proved the following.

Corollary 23. A Cartan–Hadamard Riemannian manifold admits no compact
minimal submanifold.

Moreover, reasoning as the paragraph leading to Corollary 20, we can
move the simply connectedness from the ambient space to the submanifold,
obtaining also the following result:

Corollary 24. A Riemannian manifold with non-positive curvature admits no
simply connected compact minimal submanifold.

Remark 25. Observe that the previous results admit local versions. In par-
ticular, reasoning as before, we have that no minimal compact submanifold
can be contained in a neighbourhood of a Riemannian manifold where all the
points have non-positive sectional curvature.

Finally, let us observe that our results are also applicable for Riemannian
manifolds with constant sectional curvature (non-necessarily non-positive).
Let us take a simply connected Riemannian manifold (M, g) with constant
sectional curvature and a point p ∈ M . As it is well known, the Riemannian
manifold obtained by removing p from M is isometric to one of the following
models (for k a positive scalar):

(i) R
n+m+1−{p} ≡ (

(0,∞) × S
n+m,dr2 + r2gSn+m

)
, for zero sectional cur-

vature.
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(ii) H
n+m+1(−k)−{q} =

(
(0,∞) × S

n+m,dr2 + 1√
k

cosh2(
√

kr)gSn+m

)
, for

negative sectional curvature.
(iii) S

n+m+1(k) − {n, s} =
(
(0, 1√

k
) × S

n+m,dr2 + 1√
k

sin2(
√

kr)gSn+m

)
for

positive sectional curvature, where n, s denotes the north and south pole
on the sphere.

As we can see, both (i) and (ii) are expanding O-S Riemannian manifolds.
Hence, they fall under Corollary 21, and so, they contain no compact sub-
manifolds.

Now, take (M, g) a manifold with negative or zero constant sectional
curvature and a compact minimal submanifold S on it. By removing from M
a point p �∈ S, we can isometrically embed S onto either (i) or (ii), which is
a contradiction.

The situation with (iii) is quite different as such a O-S Riemannian
manifold is not monotonic. However, if we restrict ourselves to the half of
such a manifold, then we will be again in the hypothesis of Corollary 21.
Moreover, as this manifold is compact, we will focus in this case only on
compact submanifolds.

In conclusion, we can obtain the following result (compare with [6])

Corollary 26. No simply connected Riemannian manifold with non-positive
constant sectional curvature admits a compact minimal submanifold. In a
round sphere, there exists no compact minimal submanifold contained in an
open ball of radius the half of its diameter.

Proof. The first assertion has been proved in previous paragraphs, so we will
focus on the second one. Let S be a minimal compact submanifold on M ,
and take p ∈ M a point such S ⊂ B(p,diam(M)/2), where diam(M) denotes
the diameter of (M, g).

Observe that we can always consider p, so it is not contained in S. In
fact, if p ∈ S, we can consider a sequence {qi}i → p with all qi �∈ S. As S is
compact, there will be some i0 big enough, so S ⊂ B(qi0 ,diam(M)/2).

Once we have that p �∈ S, reasoning again as in previous paragraphs, we
can isometrically embed S onto a half sphere, where Corollary 21 is applicable
and the result follows. �
Remark 27. Let us make some observations regarding this last result:
(a) For a round 2-sphere, observe that any closed geodesic is a minimal

hypersurface of the sphere. These geodesics, seen as minimal subman-
ifolds of the sphere, are nice counterexamples to see that our kind of
assumptions are needed.

(b) On the other hand, some topological assumption is necessary, as the sim-
ply connectedness. In fact, in the torus T 3, there are compact minimal
submanifolds.

5.1. A Geometric Obstruction for the Existence of Minimal Submanifolds

The results on previous sections depend essentially on the expanding or
shrinking condition for the O-S Riemannian manifold. In particular, we re-
quire that L∂t

gt is either positive or negative definite. We can, however, relax
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this condition to just semi-definite and obtain a geometric restriction in the
acute angle associated with any compact minimal submanifold.

Let us consider (M, g) a O-S Riemannian manifold with function β ≡ 1,
i.e., M = I × F and g = dt2 + gt. Consider also S a compact minimal
submanifold on S; and define as η = div(∂t). Observe that, from Eq. (9), if
L∂t

gt is semi-definite, then η is signed (and both with the same sign).
We are now in conditions to prove the following:

Theorem 28. Let (M, g) be a O-S Riemannian manifold with β ≡ 1. Assume
that (i) L∂t

gt is semi-definite and (ii) η satisfies ∂tη ≥ σ |∇η|gt
, for some

σ ∈ R
+. Then, there exists no compact minimal submanifold with acute angle

function satisfying tan(θ) ≥ σ−1.

Proof. Assume by contradiction that there exists S a compact minimal sub-
manifold with acute angle satisfying that tan(θ) ≥ σ−1, and define η as
before. Let us define a vector field Y = η∂T

t , which satisfies (recall (6)

div(Y ) = ∂T
t η + ηΔτ. (30)

Now, let us observe that the vector field ∂T
t can be orthogonally splitted

between ∂t and a unitary vector u satisfying that g(u, ∂t) = 0. In particular,
and using the acute angle θ as defined in (15)

∂T
t = sin2 θ ∂t + sin θ cos θ u. (31)

Hence, previous expression of the divergence can be expressed as

div(Y ) = sin2 θ

(
∂tη +

1
tan(θ)

u(η)
)

+ ηΔτ.

As tan(θ) ≥ σ−1, the (ii) hypothesis ensures that the first term on the
right is positive. Moreover, when (i) is satisfied both Δτ and η have the same
sign (recall that β ≡ 1 and Eqs. (9) and (10)). In conclusion, div(Y ) ≥ 0.
However, if we apply the divergence theorem, it follows then that ηΔτ = 0.
Observe that, as L∂t

gt is semi-definite, then η �= 0. Hence, Δτ = 0 and τ is
an harmonic function over a compact set. But then, τ is constant and θ = 0,
a contradiction with the assumption for the acute angle of S. �

Remark 29. Observe that in the Euclidean case, η = div(∂t) = 0, so the
hypothesis of previous theorem are satisfied for all σ > 0 and no restriction
on the acute angle is imposed. In particular, the previous theorem is the
extension of the classical well-known result ensuring that there is no compact
minimal submanifold in the Euclidean case.

6. Application to Geometric Analysis

6.1. Setting Up

Let us focus from now on the study of submanifolds S of an O-S Riemannian
manifold (M, g) that can be seen as the graph of certain function u ∈ C∞(U),
being U ⊂ F some suitable subset. That is

S ≡ Su := {(u(p), p) : x ∈ U ⊂ F} . (32)
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The graph of u inherits a metric (of the ambient), represented on F ,
by

g
u
(p) = β(u(p), p)du2 + g

u(p) .

Note that t(u(x), x) = π
I
(u(x), x) = u(x), for all x ∈ U , and so, on the

graph, τ and u can be naturally identified.
First, we will assume that U is an open subset of F . A normal vector

N to Su can be explicitly computed, obtaining

N =
1√

1
β + |∇u|2

(
−∇u +

1
β

∂t

)
≡ NF + g

(
N,

∂t√
β

)
∂t√
β

,

NF = − 1√
1
β + |∇u|2

∇u, (33)

where ∇u denotes here the gradient of u in F with the induced metric. The
mean curvature H = g( �H,N) associated to Su can be computed, obtaining

(nH(u) ≡) nH = div N = div
(
NF

)
+ g

(
∇ ∂t√

β

NF , ∂t√
β

)
+ div

(
g(N, ∂t√

β
) ∂t√

β

)

= div

(
∇u√

1
β
+|∇u|2

)
+ g

(
∇u√

1
β
+|∇u|2 , 1

2∇ log β

)

+g(N, ∂t√
β
) 1√

β
∂t log volslice.

(34)

Previous expression motivates the following definitions.

Definition 30. Let F be a manifold and consider g be a O-S Riemannian
metric associated with the product manifold R × F . Consider an open set
U ⊆ F and let us define the following non-linear elliptic differential operator:

(Θ(u) =)Θ(u, g) := div

⎛
⎝ ∇u√

1
β + |∇u|2

⎞
⎠ + gu(p)

⎛
⎝ ∇u√

1
β + |∇u|2

,
1

2
∇ log β

⎞
⎠

+
1√

1 + β |∇u|2
1√
β

∂t log vol(t), (35)

where vol(t) represents the volume of F computed with the metric gt, and ∇
is the gradient computed in F with the induced metric from g. We will say
that a function u is Θ−harmonic if Θ(u) = 0.

As it is clear from previous computation, the graph of a Θ-harmonic
function will be minimal, and so, the results on previous sections are applica-
ble. Moreover, and as we will see later, we will be able to extend our results
even further by considering an appropriate conformal change.

Let us consider some well-known examples where Θ can be explicitly
obtained:

Example 31. (See, for instance, [26]). Let I×f Fn be a warped product, where
f ∈ C∞(I). The minimal hypersurface equation on F , that is, Θ(u, g) = 0
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where g = dt2 + f(t)gF is

Θ(u) = div

(
∇F u

f(u)
√

f(u)2 + |∇F u|2

)
− f ′(u)√

f(u)2 + |∇F u|2
{

n − |∇F u|2
f(u)2

}
,

where ∇F is the Levi-Civita connection of the Riemannian manifold (F, g
F
).

Example 32. Let (I × F, h2dt2 + g
F
), where h ∈ C∞(I × F ) is a positive

function. Then, the minimal hypersurface equation on F is given by

Θ(u) = div

(
h ∇F u√

1 + h2 |∇F u|2

)
+

1√
1 + h2 |∇F u|2 gF

(∇F u,∇F h
)
.

Example 33. Let (I ×Fn1
1

×Fn2
2

,dt2 +f2
1
gF1 +f2

2
gF2), where fi : I → R

+ are
two smooth functions. Following previous considerations, ∇u =

∑2
i=1

1
f2

i

∇Fiu,

where ∇Fi is the Levi-Civita connection of (Fi, gFi
), for i = 1, 2. Then, we

have that the minimal hypersurface equation, on F1 × F2, is
2∑

i,j=1

divFj

(
φ

1
f2

i

∇Fiu

)
= −φ {n1(log f1)

′(u) + n2(log f2)
′(u)} ,

where

φ−1 =
√

1 + f2
1
|∇F1u|2 + f2

2
|∇F2u|2.

The extension to a finite family of Riemannian manifolds follows easily.

Our aim is to use the relation between the mean curvature of the sub-
manifolds Su and the differential operator Θ(u, g) to obtain results for non-
existence or uniqueness for solutions of the corresponding PDE problem on
the latter. We will focus on two main cases: entire solutions, i.e., functions
u ∈ C∞(F ) where F is assumed to be compact; and functions u ∈ C∞(U)
where U is the topological closure of a open pre-compact set in F .

6.2. First Case: F Compact and Without Boundary

Let us begin by assuming that F is compact, and u is a function defined over
F . Theorem 5 applied to the compact hypersurface Su is translated in this
context as follows.

Theorem 34. Consider F a smooth compact manifold and take g an O-S
Riemannian metric defined over M = R × F . Assume one of the following
conditions:

(i) Either (M, g) is monotonic,
(ii) or there exists t1 ∈ R, so g is non-expanding in (−∞, t1) × F and non-

shrinking in (t1,∞) × F .
Then, there exists no Θ-harmonic non-constant function u ∈ C∞(F ).

Proof. Let us assume that u is a Θ−harmonic function. Consider Su the
hypersurface obtained as the graph of u on M .

From (34) and the hypothesis, it follows that Su satisfies that Θ(u) =
H(u) = 0. Hence, we are in conditions to apply or Theorem 5 if (i) is satisfied,
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or Theorem 11 in the other case. In both cases, it is ensured that Su ⊂ {t0}×F
for some t0, and so that the function u should be constant. �

The study of Θ−harmonic functions is not the only application that we
can obtain from the relation between the geometry of submanifolds on (M, g)
and PDEs. In fact, we can also extend previous result in the following way:

Theorem 35. Let F be a smooth manifold, and consider g a O-S Riemannian
metric defined over M = R × F . Take also α ∈ C∞(F ) a smooth function
defined over F . If (M, g) is monotonic, then the only solutions of the equation

Θ(u) = −gu(NF ,∇α) (36)

are the constant functions.

Proof. Using the relation between Θ and the mean curvature of the subman-
ifold Su (34), it follows that the mean curvature of Su should satisfy that:

H(u) = −gu(NF ,∇α). (37)

Let us consider α an extension of the function α to M = R × F given
by α(t, x) = α(x). Let us now consider the metric g̃ = eαg, conformal to g.

Now, if we denote by H̃(u) the mean curvature of Su computed with g̃,
it follows from (23) that:

eαH̃(u) = H(u) + g(∇α,N) = H(u) + gu(∇α,NF ), (38)

being as usual ∇ the Levi-Civita connection of g and N the unitary normal
to Su. Hence, from (37), it follows that Su is a minimal compact hypersurface
in (M, g̃). Moreover, this O-S Riemannian manifold is also monotonic, from
both the monotonic character of g and how the function α is extended. In
conclusion, from Theorem (5), it follows that Su is contained in a slice {t0}×
F , and so that u is constant. �

Previous theorem allows us to obtain several important generalizations
for the classical Bernstein result [6]. For instance, recalling Examples 31 and
32, we obtain the following two corollaries.

Corollary 36. Let (F, gF ) be a Riemannian manifold and two smooth func-
tions f : I → R

+ and α ∈ C∞(F ). Assume that f is either monotone (non-
decreasing or non-increasing) or there exists t1 ∈ R, so f is non-increasing
in (−∞, t1) and non-decreasing in (t1,∞). If u ∈ C∞(F ) is a solution for
the equation

div

(
∇F u

f(u)
√

f(u)2 + |∇F u|2

)
− f ′(u)√

f(u)2 + |∇F u|2
{

n − |∇F u|2
f(u)2

}

= − 1√
f(u)2 + |∇F u|2f(u)

gF (∇F u,∇F α),

then u ≡ u0 for some u0 ∈ I and f ′(u0) = 0.
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Corollary 37. Let (F, gF ) be a Riemannian manifold and consider two func-
tions h : F → R

+ and α ∈ C∞(F ). Then, the only solutions for the equation

div

(
h ∇F u√

1 + h2 |∇F u|2

)
+

1√
1 + h2 |∇F u|2 gF

(
∇F u, ∇F h

)
= −gF (∇F u, ∇F h)

are the constant functions.

6.3. Second Case: U Compact Neighbourhood with Boundary

We can also obtain results regarding a Dirichlet problem⎧⎨
⎩

F(u, g) = 0, p ∈ U
u(p) ≥ t0, p ∈ U,
u(p) = t0, p ∈ ∂U,

(39)

being U the topological closure of pre-compact open set in F . For instance, if
we take F = Θ, the graph Su of a solution u of (39) is a minimal hypersurface
with boundary contained in {t0}×F (see Fig. 1). Hence, we are in conditions
to apply Theorem 7. Moreover, if we take F(u, g) = Θ(u, g)+gu(NF ,∇α) for
some function α : F → R, we can also apply the conformal change as in the
proof of Theorem 35, and Theorem 7 will also be applicable.

Concretely, we can prove that:

Theorem 38. Let us consider F a manifold and g an O-S Riemannian metric
defined over the product manifold M = R × F . If (M, g) is non-expanding,
then the only possible solutions for (39) with

F(u, g) = Θ(u, g) + gu(NF ,∇u)

are the constants.

Remark 39. An analogous result can be obtained for the non-shrinking case
by substituting u(p) ≥ t0 with u(p) ≤ t0 in (39).

We can particularize then to the cases we have analyzed in corollaries 36
and 37, obtaining:

Corollary 40. Let U be a compact domain with boundary inside a Riemann-
ian manifold (F, gF ), and consider two smooth functions f : I → R

+ and
α ∈ C∞(F ). Assume that f is monotone (either non-decreasing or non-
increasing). If u is a solution for the Dirichlet problem (39) with

F(u, g) = div

(
∇F u

f(u)
√

f(u)2 + |∇F u|2

)
− f ′(u)√

f(u)2 + |∇F u|2
{

n − |∇F u|2
f(u)2

}

+
1

f(u)
√

f(u)2 + |∇F u|2 gF (∇F u,∇F α),

then u ≡ u0 for some constant u0 ∈ R and f ′(u0) = 0.

Corollary 41. Let U be a compact domain with boundary inside a Riemannian
(F, gF ). Consider two smooth functions h : F → R

+ and α ∈ C∞(F ). Then,
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the only solutions for the Dirichlet problem (39) with

F(u, g) = div

(
h ∇F u√

1 + h2 |∇F u|2

)
+

1√
1 + h2 |∇F u|2 gF

(∇F u,∇F h
)

+gF (∇F u,∇F h)

are the constant functions.

Remark 42. Reasoning as in Sect. 5 (recall also Remark 6), if we harden the
hypothesis by assuming that (M, g) is either expanding or shrinking, we can
also obtain results for non-existence.
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