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Abstract
We propose a new topological semantics for evidence, evidence-based justifications,
belief, and knowledge. Resting on the assumption that an agent’s rational belief is
based on the available evidence, we try to unveil the concrete relationship between
an agent’s evidence, belief, and knowledge via a rich formal framework afforded by
topologically interpreted modal logics. We prove soundness, completeness, decid-
ability, and the finite model property for the associated logics, and apply this setting
to analyze key epistemological issues such as “no false lemma” Gettier examples,
misleading defeaters, undefeated justification versus undefeated belief, as well as the
defeasibility theories of knowledge.

Keywords Evidence · Justified belief · Knowledge · Epistemic logic · Topological
spaces · Completeness · Decidability

1 Introduction

Pioneered by Hintikka (1962), the mainstream approach to epistemic logic is based
on the formal ground of relational possible worlds semantics, which provides a rel-
atively simple and flexible way of modeling knowledge and belief. However, this
approach is lacking any ingredients to talk about the evidential nature of knowledge
or justified belief. One way to correct this is to generalize the standard relational set-
ting to a topological one. Indeed, topological spaces emerge naturally as information

Prior work: A shorter version of this paper was published in 2016 in the Proceedings of the 23rd
International Workshop on Logic, Language, Information, and Computation (WoLLIC 2016), under the
title “Justified Belief and the Topology of Evidence” (Baltag et al., 2016). The current version differs
primarily in that it includes the full proofs that were previously omitted (found in Sect. 6), an extended
comparison to van Benthem and Pacuit (2011) (Sect. 4), and an extensive discussion on the defeasibility
theories of knowledge (Sect. 5). Moreover, both the introduction and conclusion have been substantially
revised and extended. (Özgün, 2017, Chapter 5) was developed based on an earlier version of this paper.
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structures that can provide a deeper insight into the evidence-based justification of
knowledge and belief. For instance, topological notions such as open, closed, dense,
and nowhere dense sets qualitatively and naturally encode notions such as measure-
ment/observation, closeness, smallness, largeness, and consistency, all of which will
recur with an epistemic interpretation in this work.Moreover, topological spaces come
equipped with well-studied basic operators such as the interior and closure operators
which—alone or in combination with each other—succinctly interpret different epis-
temic modalities, providing a better understanding of their axiomatic properties.

In this paper, we propose a topological semantics for various notions of evi-
dence, evidence-based justification, belief, and knowledge, and explore the relationship
between these epistemic notions. This work builds on the models for evidence, belief,
and evidence-management proposed by van Benthem and Pacuit (2011), and van Ben-
them et al. (2012, 2014), by adopting a topological perspective on these notions. The
focus is on notions of belief and knowledge for a rational agent who is in possession
of some (possibly false, possibly mutually contradictory) pieces of ‘evidence’.

A central underlying assumption that we share with van Benthem and Pacuit (2011)
is that an agent’s rational beliefs and knowledge are not to be taken as primitive,
unjustified concepts, but they are based on, and derived from, a more fundamental
notion of ‘evidence’.However,we should stress that this later notion is to be understood
here in a wide, inclusive sense: it is not limited to factive evidence, but it may include
false ormisleading information that nevertheless “looks” to the agent like good enough
evidence; also, in addition to acquired evidence (obtained via, e.g., direct observation,
measurements, testimony fromothers, aswell as logical inference), this notion includes
prior defaults or biases, as well as any type of a priori knowledge. As such, we
will use the term basic evidence to cover all the primitive pieces of (soft, fallible)
information available to the subject. On top of these, we will also consider derived
evidential constructs, that can be built or inferred from the basic ones, and forwhichwe
introduce a fine-grained scale of technical terms (combined evidence, arguments and
justifications), that will be explained in more detail below. Each of them can be fallible
or factive (true in the actual world), and even when true it can still be misleading (in
a technical sense, to be formally defined later).

As already mentioned, the notions justified belief and knowledge we propose are
higher-level concepts, definable in terms of the above evidential notions. Before going
into details, it may be useful to briefly summarize the relationships between our topo-
logical conception and the main positions in Epistemology. First, our setting is not
necessarily committed to an evidentialist epistemology: while all beliefs and knowl-
edge are justified in terms of the above evidential constructs, we already noted that
our ‘evidence’ is mainly a technical term, that may subsume defaults, biases and a
priori knowledge. Second, although beliefs and knowledge are derived notions that are
justified in terms of evidence, which may suggest some foundationalist overtones, our
setting differs in some important respects from the standard foundationalist position.
Our distinction between basic and non-basic ‘evidence’ does not lead to a distinction
between basic and non-basic beliefs: our “basic” evidence pieces are not necessarily
believed, indeed it may well happen that none of them is believed. Moreover, it may
even happen that no (combined) evidence is believed either. Some of our evidential
“arguments” (namely, the ones we call “justifications”) will actually be believed, and
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other beliefs can be inferred from them. But these evidential justifications are typically
not ‘basic’ or primitive in any reasonable sense. Third, we will see that the fundamen-
tal feature of our doxastic justifications is their overall consistency with every other
available evidence. Our view on justified belief may therefore be said to be essen-
tially coherentist in spirit, in that belief is justified if it is entailed by an argument that
coheres with the agent’s overall evidential system. On the other hand, unlike in typical
coherentism, our theory does not reject the existence of primary, non-inferential forms
of evidence such as perceptual evidence or the fact that they can play an important role
in our justification system.1 At the same time, we do not accept such evidence as ‘self-
justified’ (or non-inferentially justified) via e.g. perceptual experience: in our setting,
only coherence with all other evidence provides doxastic justification. Basic evidence
(even perceptual evidence) is not inherently justified, and is not necessarily believed
in our framework, unless it coheres with the whole justification system. Fourth, our
notion of justified belief fits well with Stalnaker’s view on belief as subjective cer-
tainty (Stalnaker, 2006): indeed, our notion satisfies Stalnakers axiom Bϕ → BKϕ,
that equates belief with the “feeling of knowledge”. Fifth, our proposed concept of
knowledge combines the above-mentioned coherentist view with a strong reliabilist
flavor: in our setting, knowledge is “correctly justified belief”, where a justification
is correct when it doesn’t involve any false evidence or arguments (in addition to not
contradicting any other evidence). Such correct justifications provide a reliable pro-
cess to tracking the truth. This theory of knowledge may at first sound very close to
Clark’s “no false lemma” conception (Clark, 1963), but it is subtly different, because
our notion of justification is different (requiring coherence with the evidential system).
In this sense, our proposal combines features of reliabilism and coherentism. Finally,
our topological theory of knowledge can be seen as a sophisticated ‘weakened’ version
of defeasibility theory (Klein, 1971, 1981; Lehrer, 1990; Lehrer & Paxson, 1969), one
that is able to successfully address some of the objections and counterexamples to the
defeasibility conception of knowledge, by requiring that the underlying justification
remain undefeated by any new non-misleading evidence (though it can be defeated by
true but misleading evidence).

It is also important to point out the epistemological issues and conceptions that
our proposal does not address. Since in this paper we focus on modelling the eviden-
tial basis of knowledge and belief, we chose to keep things simple by sticking with
the idealized setting of possible-worlds semantics (while only replacing the relational
setting with a topological one to deal with evidence). As a consequence, our seman-
tics automatically enforces closure of belief and knowledge under logical entailment.
In its current form, our topological theory of knowledge is thus incompatible with
the epistemological conceptions that deny the closure of knowledge under known
entailment2, e.g. the sensitivity account (Nozick, 1981), the safety account (Sosa,
1999), the causal accounts (Dretske, 2014, 2016; Goldman, 1967), etc. Another con-
sequence is that our setting runs into the well-known problem of logical omniscience,
thus being able to represent only highly idealized reasoners who know/believe all log-
ical and known/believed consequences of what they know/believe. These problems

1 We thank an anonymous reviewer for bringing this point to our attention.
2 We thank an anonymous referee for pointing to us this limitation.

123



512 Page 4 of 51 Synthese (2022) 200 :512

can be fixed. The proposed framework can be easily modified to avoid closure e.g.,
by requiring belief and knowledge to be exactly one of the evidence pieces (in the
spirit of non-monotonic neighbourhood logics, see, e.g., (Chellas, 1980, Chapter 7))
or by employing tools from awareness (Fagin & Halpern, 1987) and topic-sensitive
epistemic logics (Berto & Hawke, 2018; Hawke et al., 2020; Özgün & Berto, 2021).
See, e.g., Siemers (2021) for a topic-sensitive, hyperintensional version of our proposal
where only restricted closure principles for evidence, knowledge, and belief hold. Such
amodified variant of our setting can successfully dealwith logical non-omniscience, as
well as with the genuine cases of non-closure.3 However, all known solutions dilute the
simplicity and the extensional-semantical nature of our current topological approach
by adding in-build hyperintensional features that come with their own complications.
Since in many contexts closure under known entailment does not pose any problems,
we choose to present here only the purely semantic core of our proposal, in order to
avoid unnecessary complications and to better convey the essence of our topological
theory of knowledge in a transparent and simple manner.

1.1 Our proposal in more detail

We will now provide a more detailed overview of the epistemic notions studied in this
paper, introduce the modalities we consider, and explain where our work stands in the
relevant literature.

As already mentioned, we adopt a possible-worlds semantics, but replace the stan-
dard relational setting with a topological one. The basic pieces of evidence possessed
by an agent are represented simply as nonempty sets of possible worlds. Our topologi-
cal evidence models will thus come with a designated family of such sets. A combined
evidence (or just evidence, for short) is any nonempty intersection of finitely many
pieces of evidence. Note that this notion of evidence is not necessarily factive4, since

3 It seems to us that all such genuine cases of non-closure (in which one is really not warranted to
believe/know some consequence of a current belief) involve some subtle shift in topic or context from
the premise to the conclusion. E.g. Nozick’s example of non-closure involves the shift between a day-to-
day context or topic in “I have hands” to a wider, more inquisitive or ‘philosophical’, topic in “I am not
a brain in a vat”. By making this topic-sensitivity explicit, the hyperintensional version in Siemers (2021)
can maintain the closure of belief-knowledge as long as the same topic is maintained.
In other, less genuine cases of non-closure (such as the famous Red Barn example), it seems to us that the
culprit is a “purist” assumption of a single source of justification for knowledge (be it perceptual evidence,
sensitivity, safety, etc). The problem disappears if one admits that logical inference is itself an independent
source of knowledge, on a par with the others, and that a full justification of our beliefs may involve a
mixture of such sources. E.g., I know that there is a red barn in front of me, because I see a red barn (and my
perceptual experience is sensitive to the truth of its claim, since in my country all red barns are genuine);
this evidential warrant is not transmitted to the statement “there is a barn in front of me” (since there exist
fake barns, so my belief in barns does not track the truth); however, I do know that there is a barn, by a mixed
justification that involves both sensitivity and deduction (e.g. seeing a red barn and inferring the existence
of a barn). So in these cases, it is intuitive to maintain closure, while giving up the “purist” request for a
single source of justification. And indeed, our approach combines evidence and logical inference as sources
of knowledge and belief.
4 Factive evidence is true in the actual world. In epistemology it is common to reserve the term “evidence”
for factive evidence. But we follow here the more liberal usage of this term in (van Benthem & Pacuit,
2011), which agrees with the common understanding in day to day life, e.g. when talking about “uncertain
evidence”, “fake evidence”, “misleading evidence” etc.
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Table 1 Evidence modalities
and their intended readings E0ϕ The agent has a basic (piece of) evidence for ϕ

Eϕ The agent has a (combined) evidence for ϕ

�0ϕ The agent has a factive basic (piece of) evidence for ϕ

�ϕ The agent has factive (combined) evidence for ϕ

the pieces of evidence are possibly false and, moreover, possibly inconsistent with
each other. The family of (combined) evidence sets forms a topological basis that gen-
erates what we call the evidential topology. This is the smallest topology in which all
the basic pieces of evidence are open, and it will play an important role in our setting.

For some of these evidential notions, we consider the associated modal operators,
e.g. “having (a piece of) basic evidence for a proposition P” [operator already proposed
by van Benthem and Pacuit (2011)], “having (combined) evidence for P”, “having
a (piece of) factive evidence for P” and “having (combined) factive evidence for
P”. Table 1 lists the corresponding evidence modalities together with their intended
readings.5

In fact, the modality �ϕ, capturing the concept of “having factive evidence for
ϕ”, coincides with the topological interior operator in the evidential topology. We
therefore use the interior semantics ofMcKinsey andTarski (1944) to interpret a notion
of factive evidence. We also show that the two factive variants of evidence-possession
operators (�0 and�) are more expressive than the non-factive ones (E0 and E): when
interacting with the global modality, the two factive evidence modalities �0ϕ and �ϕ

can define the non-factive variants E0ϕ and Eϕ, respectively, as well as many other
doxastic/epistemic operators (as shown in Proposition 6).

Our semantics for justification and justified belief is obtained by extending, gen-
eralizing, and, to an extent, streamlining the evidence-model framework for belief
introduced by van Benthem and Pacuit (2011). The main idea of that setting was that
the rational agent tries to form consistent beliefs, by looking at all strongest finitely-
consistent collections of evidence, and she believes whatever is entailed by all of
them.6 The consistency of that notion of belief crucially depends on the existence of
some such “strongest” evidence, which is of course granted in the finite case (when-
ever the agent has finitely many pieces of basic evidence) as well as in some infinite
cases, but it can fail in other cases. As a result, as already noted in (van Benthem et
al., 2014), this can lead to inconsistent beliefs in the general infinite case, contrary to
the spirit of the original proposal.7

5 The Greek letter ϕ should be taken as a metavariable for a well-defined sentence in the associated modal
language. For the purposes of this introductory section, we need only the intended readings of the listed
modal epistemic operators. The recursive definitions of the modal languages employed are given in Sect. 6.
6 Tobe sure, this is still vague sincewehave not yet specifiedwhat a “strongest finitely-consistent collections
of evidence”means (we return to formalize these notions in Sect. 3.1.1), however, thismuch precision should
be sufficient to explain the rough idea behind the definition of belief in (van Benthem & Pacuit, 2011) and
the notion of justified belief we propose in this paper.
7 Another, purely technical drawback of the setting in (van Benthem& Pacuit, 2011) is that the correspond-
ing doxastic logic does not have the finite model property (see van Benthem et al., 2012, Corollary 2.7 or
van Benthem et al., 2014, Corollary 1).
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Table 2 Belief modalities and
their intended readings Bϕ The agent has justified belief in ϕ

Bϕψ The agent believes that ψ conditionally on ϕ

One way to obtain our semantics for evidence-based belief is by, in a sense, weak-
ening the definition from (van Benthem & Pacuit, 2011). According to this revised
definition, a proposition P is believed if P is entailed by all sufficiently strong finitely-
consistent collections of evidence. This notion of belief is equivalent to the one of
van Benthem and Pacuit (2011) when the collection of basic pieces of evidence is
finite, but the two diverge in the infinite case. Indeed, our semantics always ensures
consistency of belief, evenwhen the available pieces of evidence aremutually inconsis-
tent, thus fulfilling the project of rationally grounding consistent beliefs on (possibly)
inconsistent collections of evidence.

Moreover, our revised definition throws a new light on this notion of belief (even in
the case when it is equivalent to the older notion), by connecting it to topology and to
a notion of justification. First, this concept of belief is very natural from a topological
perspective: the revised definition is equivalent to saying that P is believed iff it is
true in “almost all” epistemically possible states, where “almost all” is interpreted
topologically as “all except for a nowhere-dense set”. Second, in order to analyze
justified belief, we need some additional evidential notions. An argument consists of
one or more (combined) evidence sets supporting the same proposition P: in essence,
it is a way to provide one or more evidential paths towards a (common) conclusion. A
justification is an argument that is not contradicted by any other available (combined)
evidence; equivalently, a justification is an argument that is not defeated by any other
argument (based on the same body of evidence). This is the promised ‘coherentist’
notion of doxastic justification, requiring consistency with all the pieces of evidence
possessed by the agent. Our revised definition turns out to be equivalent to requiring
that P is believed iff there is some evidence-based justification for P . In this sense,
our belief is an evidentially-justified belief.

This topological definition of belief can be easily generalized to conditional beliefs.
Table 2 lists the belief modalities we study in this paper.

Moving on to knowledge, there are a number of different notions one may con-
sider. First, there is the ‘infallible’ knowledge, absolutely certain and absolutely
indefeasible, akin to van Benthem’s concept of hard information (van Benthem, 2007).
This is the standard concept of knowledge used in Computer Science and Game The-
ory applications, and formalized within the modal epistemic logic S5, based on Kripke
models endowedwith equivalence relations [(or equivalently, on Aumann’s partitional
models (Aumann, 1999)]. In our single-agent setting, this can be simply defined as the
global modality (quantifying universally over all epistemically possible states). For
good reasons, most epistemologists do not take this to be a good formalization of our
intuitive sense of knowledge. There are very few propositions that can be ‘known’
in this infallible way (apart from logical tautologies, or maybe also things known by
introspection).Most facts in science or real life are unknown in this sense. It is therefore
more interesting to look at notions of knowledge that are less-than-absolutely-certain,
so-called defeasible knowledge. As shown by the famous Gettier counterexamples
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Table 3 Knowledge modalities
and their intended readings [∀]ϕ The agent infallibly knows that ϕ

Kϕ The agent fallibly (or defeasibly) knows that ϕ

(Gettier, 1963), simply adding factivity to justified belief cannot yield knowledge.
True justified belief may be extremely fragile (i.e., it can be too easily lost), and it
is consistent with having ‘wrong’ (unreliable) justifications for an accidentally true
conclusion.

The notion of defeasible knowledge we propose in this paper is formally defined by
saying that “P is (fallibly) known iff there is a factive justification for P”. Knowledge
in this conception is correctly justified belief, butwith the proviso that the ‘justification’
is taken in the above-mentioned holistic sense (requiring it to be, not only evidence-
based, but coherent with every other available evidence). As shown in Sect. 5, this
concept of knowledge finds its place in the post-Gettier literature as being stronger
than the one characterized by the “no false lemma” of Clark (1963) and weaker than
the one described by the defeasibility theory of knowledge championed by Klein
(1971, 1981), Lehrer (1990), and Lehrer and Paxson (1969). In our framework, we
consider modal operators for both infallible knowledge and defeasible knowledge,
but our main focus will be on the latter notion. See Table 3 for the corresponding
knowledge modalities and their readings.

Yet another path leading to our proposal in this paper goes via our earlier work
(Baltag et al., 2013, 2019b; Özgün, 2013) on a topological semantics for the doxastic-
epistemic axioms of Stalnaker (2006). These axioms are meant to capture a notion
of fallible knowledge, in close interaction with a notion of strong belief defined as
subjective certainty. The main principle specific to this system was that “believing
implies believing that youknow”, captured by the axiom Bϕ → BKϕ. The topological
semantics that was proposed for these concepts in (Baltag et al., 2013, 2019b; Özgün,
2013) was overly restrictive, being limited to the rather unfamiliar class of extremally
disconnected and hereditarily extremally disconnected topologies. In the current work,
we show that these notions can be interpreted on arbitrary topological spaces without
changing their logic. To that end, our definitions of belief and knowledge can be seen
as the natural generalizations of the notions in (Baltag et al., 2013, 2019b; Özgün,
2013) to arbitrary topologies.

1.2 Overview of this paper

Section 2 introduces the required topological preliminaries. In Sect. 3, we introduce
the evidence models of van Benthem and Pacuit (2011) as well as our topological
evidencemodels, and provide semantics for the notions of basic, combined, and factive
evidence. We moreover present topological definitions for argument and justification.

In Sect. 4, we introduce our topological semantics for (justified) belief, while com-
paring our setting to that of van Benthem and Pacuit (2011). We then generalize our
semantics of (plain) belief to conditional beliefs.
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In Sect. 5,we propose our topological formalization of fallible knowledge, and use it
to analyze various issues in the post-Gettier epistemology literature, such as “no false
lemma” Gettier examples, stability/defeasibility theories of knowledge, objections
based on misleading vs. genuine defeaters, undefeated justification versus undefeated
belief, the epistemic role of belief dynamics, etc.

Finally, Sect. 6 presents all our technical results. We completely axiomatize the
various resulting logics of evidence, knowledge, and belief, and prove decidability
and finite model property results. Our technically most challenging result is the com-
pleteness of the richest logic containing the two factive evidence modalities �0ϕ and
�ϕ, as well as the global modality [∀]ϕ. This logic can define all the modal operators
mentioned above. While the other proofs are more or less routine, the proof of this
result involves a nontrivial combination of known methods (Sect. 6.5).

The paper is organized in such a way that the reader who is interested only in the
conceptual contributions can read up to Sect. 6.

2 Topological preliminaries

In this section, we introduce the topological concepts that will be used throughout the
paper. We refer to (Dugundji, 1965; Engelking, 1989) for a thorough introduction to
topology. The reader who has introductory level knowledge of topology should feel
free to skip this section.

Definition 1 (Topological space) A topological space is a pair (X , τ ), where X is a
nonempty set and τ is a family of subsets of X such that X ,∅ ∈ τ, and τ is closed
under finite intersections and arbitrary unions.

The set X is a space; the family τ is called a topology on X . The elements of τ are
called open sets (or opens) in the space. If for some x ∈ X and an open U ⊆ X we
have x ∈ U , we say that U is an open neighborhood of x . A set C ⊆ X is called a
closed set if it is the complement of an open set, i.e., it is of the form X \U for some
U ∈ τ . We let τ̄ = {X \U | U ∈ τ } denote the family of all closed sets of (X , τ ).

A point x is called an interior point of a set A ⊆ X if there is an open neighbourhood
U of x such that U ⊆ A. The set of all interior points of A is called the interior of A
and is denoted by I nt(A). Then, for any A ⊆ X , I nt(A) is an open set and is indeed
the largest open subset of A, that is

I nt(A) =
⋃
{U ∈ τ | U ⊆ A}.

Dually, for any x ∈ X , x belongs to the closure of A, denoted by Cl(A), if and only
if U ∩ A �= ∅ for each open neighborhood U of x . It is not hard to see that Cl(A) is
the smallest closed set containing A, that is

Cl(A) =
⋂
{C ∈ τ̄ | A ⊆ C},

and that Cl(A) = X \ I nt(X \ A) for all A ⊆ X . It is well known that the interior
I nt and the closure Cl operators of a topological space (X , τ ) satisfy the following
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properties (the so-called Kuratowski axioms) for any A, B ⊆ X (see, e.g., Engelking,
1989, pp. 14-15):

(I1) I nt(X) = X (C1) Cl(∅) = ∅
(I2) I nt(A) ⊆ A (C2) A ⊆ Cl(A)

(I3) I nt(A ∩ B) = I nt(A) ∩ I nt(B) (C3) Cl(A ∪ B) = Cl(A) ∪ Cl(B)

(I4) I nt(I nt(A)) = I nt(A) (C4) Cl(Cl(A)) = Cl(A)

A set A ⊆ X is called dense in X if Cl(A) = X and it is called nowhere dense
if I nt(Cl(A)) = ∅. More generally, for any A, B ⊆ X , A is called dense in B if
B ⊆ Cl(A ∩ B).

Definition 2 (Topological basis) A family B ⊆ τ is called a basis for a topological
space (X , τ ) if every non-empty open subset of X can bewritten as a union of elements
of B.

We call the elements of B basic opens. We can give an equivalent definition of an
interior point by referring only to a basis B for a topological space (X , τ ): for any
A ⊆ X , x ∈ I nt(A) if and only if there is an open set U ∈ B such that x ∈ U and
U ⊆ A.

Given any family � = {Aα | α ∈ I } of subsets of X , there exists a unique, smallest
topology τ(�) with � ⊆ τ(�) (Dugundji, 1965, Theorem3.1, p. 65). The family
τ(�) consists of ∅, X , all finite intersections of the Aα , and all arbitrary unions of
these finite intersections. � is called a subbasis for τ(�), and τ(�) is said to be
generated by �. The set of finite intersections of members of � forms a basis for
τ(�).

Lemma 1 For any two topological space (X , τ ) and (X , τ ′) and A ⊆ X, if τ ⊆ τ ′
then Intτ (A) ⊆ I ntτ ′(A), where Intτ and Intτ ′ are the interior operators of τ and
τ ′, respectively.

3 Evidence, argument, and justification

In this section, we present the (uniform) evidence models of van Benthem and Pacuit
(2011) as well as our topological version, and provide the formal semantics of the
evidence modalities given in Table 1. In this topological framework, we introduce and
study the technical notions of combined evidence, strongest evidence, strong enough
evidence, (evidence-based) argument and justification.

3.1 Evidence à la van Benthem and Pacuit

Definition 3 (Evidence models) An evidence model is a tupleM = (X , E0, V ), where

• X is a nonempty set of possible worlds (or states),
• E0 ⊆ P(X) is a family of sets called basic evidence sets (or pieces of evidence),
satisfying X ∈ E0 and ∅ /∈ E0, and
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• V : Prop→ P(X) is a valuation function.8

The evidencemodels presented in (vanBenthem&Pacuit, 2011; vanBenthemet al.,
2014) aremore general, covering cases in which evidence depends on the actual world,
i.e., in which each state may be assigned a different set of neighbourhoods. In this
paper, however, we stick with the special case of uniform models (given in Definition
3), which corresponds to working with agents who are evidence-introspective (more
on this below). Since we never consider the more general case and focus only on
the topological extension of their uniform evidence models, we simply use the term
evidence model exclusively for the uniform evidence models.

Note that evidencemodels are not necessarily based on topological spaces, i.e., E0 is
not defined to be a topology (it may not even constitute a topological basis). However,
every topology τ constitutes a basic evidence set.9 In fact, the family E0 is almost
an arbitrary nonempty collection of subsets of a given domain, carefully designed to
capture certain aspects of the type of evidence that is intended to be formalized. First of
all, the subset E0 represents the set of evidence the agent has acquired about the actual
situation10 directly via, e.g., testimony, measurement, approximation, computation, or
experiment. It is the collection of evidence the agent has gathered so far, and it is all
our rational, idealized agent has to form her beliefs and knowledge. The collection of
evidence the agent possesses is uniform across the states, i.e., the set of evidence the
agent has does not depend on the actual state. This corresponds to working with an
evidence-introspective agent, that is, the agent is absolutely sure about what evidence
she has and what it does and does not entail.

The two properties of E0, namely, X ∈ E0 and ∅ /∈ E0 impose the following
constraints, respectively:

• Tautologies are always evidence, and
• Contradictions never constitute direct evidence.

Unlike the common practice in epistemology, where the term “evidence” is gen-
erally reserved for factive evidence, we follow here the more liberal use of the term
adopted by van Benthem and Pacuit, that includes fallible information coming from a
possibly unreliable source: a piece of evidence in E0 does not have to contain the actual
state. This more realistic view on evidence agrees with the common usage in day to
day life, e.g. when talking about “uncertain evidence”, “fake evidence”, “misleading
evidence”. Moreover, in this setting the pieces of ‘evidence’ may be mutually incon-
sistent: the intersection of evidence pieces may be empty. Indeed, the agent might be
collecting evidence from different sources that may or may not be reliable. However,
no quantitative measure of reliability or qualitative reliability order is assumed to be
given on the elements of E0. Under these assumptions, a rational agent will have to
take into account (though not necessarily believe) every piece of available evidence,

8 Prop is a countable set of propositional variables from which we will recursively define the epistemic
languages of interest.
9 As an even more special case, we can think of Grove/Lewis Sphere spaces (Grove, 1988; Lewis,
1973). These are topological spaces in which the open sets are nested, i.e. for every U ,U ′ ∈ τ , we
have either U ⊆ U ′ or U ′ ⊆ U (see, e.g., Example 1).
10 Standardly, as in the relational semantics, the actual situation is represented by a state x of X called the
actual state or the real world.

123



Synthese (2022) 200 :512 Page 11 of 51 512

and somehow put these pieces together in a finite and consistent manner. This leads
us to the notions of combined evidence and body of evidence, concepts that will play
a crucial role in the formation of consistent beliefs based on fallible evidence.

3.1.1 Bodies of evidence, evidential support, and evidential strength

Wecall a collection of evidence pieces F ⊆ E0 consistent if
⋂

F �= ∅, and inconsistent
otherwise. To state our definitions, we use the notation A ⊆ f in B to say that A is a
finite subset of B.

Definition 4 ((Finite) body of evidence) Given an evidence model M = (X , E0, V ),
a body of evidence is a nonempty family F ⊆ E0 of evidence pieces such that every
nonempty finite subfamily is consistent. More formally, a nonempty family F ⊆ E0
is a body of evidence if

(∀F ′ ⊆ f in F)(F ′ �= ∅ implies
⋂

F ′ �= ∅).

A finite body of evidence F ⊆ f in E0 is therefore simply a finite set of mutually
consistent pieces of evidence, that is, F ⊆ f in E0 such that

⋂
F �= ∅.

Therefore, a body of evidence is simply a collection of evidence pieces that has the
finite intersection property, and that represents the agent’s ability of putting evidence
pieces together in a finitely consistent way.

Given an evidence model M = (X , E0, V ), we denote by

F :={F ⊆ E0 | (∀F ′ ⊆ f in F)(F ′ �= ∅ implies
⋂

F ′ �= ∅)}

the family of all bodies of evidence over M, and by

F f in :={F ⊆ f in E0 |
⋂

F �= ∅}

the family of all finite bodies of evidence. Both the interpretation of evidence-based
belief of van Benthem and Pacuit (2011) and our proposal for justified belief, as well
as the notion of defeasible knowledge we study in a later section crucially rely on the
notion of body of evidence. But, in order to be able to talk about these evidence-based
informational attitudes, we first need to specify what it means for a proposition to be
supported by a body of evidence.

Remark 1 Throughout Sects. 3–5, we use the following conventions to ease the pre-
sentation. Given an evidence model M = (X , E0, V ) (or, a topo-e-model M =
(X , E0, τ, V ) defined later), we call any subset P ⊆ X a proposition. We say a
proposition P ⊆ X is true at x if x ∈ P . The Boolean connectives, ¬, ∧, ∨, →,
on propositions are defined standardly as set operations: for any P, Q ⊆ X , we define
¬P:=X\P , P ∧ Q:=P ∩ Q, P ∨ Q:=P ∪ Q and P → Q:=(X\P) ∪ Q. More-
over, the Boolean constants  and ⊥ are given as :=X and ⊥:=∅. Following this
convention, we define the semantics of the modal operators for evidence, belief, and
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knowledge introduced in Tables 1, 2, and 3 as set operators from P(X) to P(X) (and
for the binary modality of conditional belief, from P(X)×P(X) to P(X)). These set
operators give rise to the interpretations of the corresponding modalities of the full
language L (given in Sect. 6) in a standard way.

Definition 5 (Evidential support) Given an evidence model M=(X , E0, V ) and a
proposition P ⊆ X , a body of evidence F supports P if P is true in every state
satisfying all the evidence in F , i.e., if

⋂
F ⊆ P .

It is easy to see that a body of evidence F is inconsistent iff it supports every
proposition (since ∅ ⊆ P , for all P). The strength order between bodies of evidence is
given by inclusion: F ⊆ F ′ means that F ′ is at least as strong as F . Note that stronger
bodies of evidence support more propositions: if F ⊆ F ′ then every proposition
supported by F is also supported by F ′. A body of evidence ismaximal (or, strongest)
if it is a maximal element of the poset (F ,⊆), i.e., if it is not a proper subset of any
other such body. We denote by

Max⊆F :={F ∈ F | (∀F ′ ∈ F)(F ⊆ F ′ ⇒ F = F ′)}

the family of all maximal bodies of evidence of a given evidence model. By Zorn’s
Lemma, every body of evidence can be strengthened to a maximal body of evidence,
i.e.,

∀F ∈ F ∃F ′ ∈ Max⊆F(F ⊆ F ′).

Therefore, in particular, every evidence model has at least one maximal body of evi-
dence, that is, Max⊆F �= ∅.

In fact, for finite bodies of evidence, the notions of evidential support and strength
can be represented in a more concise way via the notion of combined evidence, which,
to anticipate further, is represented by basic open sets of the evidential topology gen-
erated from E0 (see Sect. 3.2).

3.1.2 Combined evidence and evidential basis

Definition 6 (Combined evidence) Given an evidence modelM = (X , E0, V ), a com-
bined evidence (or just evidence, for short) is any nonempty intersection of finitely
many basic evidence pieces. In other words, a nonempty subset e ⊆ X is a combined
evidence if e =⋂

F , for some F ∈ F f in .

A combined evidence therefore is just a repackaging of a finite body of evidence
in terms of its intersection. We denote by

E :={
⋂

F | F ∈ F f in}

the family of all (combined) evidence, which in fact constitutes a topological basis
over X . We will return to the topological versions of evidence models in Sect. 3.2.

123



Synthese (2022) 200 :512 Page 13 of 51 512

The definitions evidential support and strength are adapted for the elements of E in
an obviousway. A (combined) evidence e ∈ E supports a proposition P ⊆ X if e ⊆ P .
In this case, we also say that e is evidence for P . The natural strength order between
combined evidence sets therefore is given by the reverse inclusion: e ⊇ e′ means that
e′ is at least as strong as e. This is both to fit with the strength order on bodies of
evidence (since F ⊆ F ′ implies

⋂
F ⊇ ⋂

F ′), and to ensure that stronger evidence
supports more propositions (since, if e ⊇ e′, then every proposition supported by e is
supported by e′).

Recall that E0 represents the collection of evidence pieces that are directly observed
by the agent. The elements of the derived set E therefore serve as indirect evidence
which is obtained by combining finitely many pieces of direct evidence together in a
consistent way. This does not mean that all of this evidence is necessarily true. We
say that some (basic or combined) evidence e ∈ E is factive evidence at state x ∈ X
whenever it is true at x , i.e., if x ∈ e. Similarly, a body of evidence F is factive if all
the pieces of evidence in F are factive, i.e., if x ∈⋂

F .
Having presented the primary semantic concepts used in the representation of (basic

and combined) evidence, we proceed with our topological setting.

3.2 Evidence in topological evidencemodels

For any nonempty set X and any family� of subsets of X , we can construct a topology
on this domain by simply closing � under finite intersections and arbitrary unions
(recall the definition of subbasis given in Sect. 2). Therefore, every evidence model
M = (X , E0, V ) can be associated with an evidential topology that is generated
by the set of basic evidence pieces E0, or equivalently, by the family of all combined
evidence E . In this section, we introduce our topological evidencemodels, and provide
topological formalizations of our notions of argument and justification. We moreover
give the semantics for the modalities E0ϕ and Eϕ denoting possession of basic and
combined evidence, respectively, as well as for their factive versions �0ϕ and �ϕ.

Definition 7 (Topological evidence model) A topological evidence model (or, in short,
a topo-e-model) is a tupleM = (X , E0, τ, V ), where (X , E0, V ) is an evidence model
and τ = τE is the topology generated by the family of combined evidence E (or
equivalently, by the family of basic evidence sets E0), which is called the evidential
topology.

The families E0 and E obviously generate the same topology: E is the closure of
E0 under nonempty finite intersections. We denote the evidential topology by τE only
because the family E of combined evidence forms a basis of this topology (andwe omit
the subscript E when it is contextually clear). Since any family E0 ⊆ P(X) generates
a topology over X , topo-e-models are just another way to present the evidence models
described in Definition 3. We use this special terminology to stress our focus on the
induced topological structures, and to avoid ambiguities, since our definition of belief
in topo-e-models will be different from the notion of belief in evidence models defined
in (van Benthem & Pacuit, 2011).
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Fig. 1 From E0 to τE ; from direct evidence to argument

Arguments Given a topo-e-model M = (X , E0, τ, V ) and a proposition P ⊆ X , an
argument for P is a unionU =⋃ E ′ of some nonempty family of (combined) evidence
E ′ ⊆ E , each separately supporting P (i.e., e ⊆ P for all e ∈ E ′, or equivalently,
U ⊆ P). Epistemologically, an argument for P provides multiple evidential paths
e ∈ E ′ to support the common conclusion P . Topologically, an argument for P is the
same as a nonempty open subset of P: a set of statesU is an argument for P iffU ∈ τ

and U ⊆ P . Therefore, the open I nt(P) forms the weakest (most general) argument
for P , since it is the largest open subset of P . (See Fig. 1 for the construction of τE
from E0 and the notions corresponding to their elements.)

Justifications A justification for P is an argument U for P that is consistent with
every (combined) evidence (i.e., U ∩ e �= ∅ for all e ∈ E , that is, U ∩U ′ �= ∅ for all
U ′ ∈ τ \ {∅}). Justifications are thus defined to be arguments that are undefeated (i.e.,
whose negations are not supported) by any available evidence or any other argument
based on the evidence. Topologically, a justification for P is just a dense open subset
of P: a set of states U is a justification for P iff U ∈ τ such that U ⊆ P and
Cl(U ) = X . As for evidence, an argument or a justification U for P is said to be
factive (or “correct”) if it is true in the actual world x , i.e., if x ∈ U .

The fact that arguments are open in the generated topology encodes the principle that
any argument should be evidence-based: whenever an argument is correct, then it is
supported by some factive evidence. To anticipate further: in our setting, justifications
will form the basis of belief, while correct justifications will form the basis of fallible
(defeasible) knowledge. But before moving to justified belief and fallible knowledge,
we introduce a stronger, irrevocable form of knowledge that is captured by the global
modality.

Infallible knowledge: possessing hard information We use [∀] for the so-called
globalmodality, which associates to every proposition P ⊆ X , some other proposition
[∀]P , given by putting:

[∀]P =
{
X if P = X
∅ otherwise.

In other words, [∀]P is true (at any state) iff P is true at all states. In this setting,
[∀]P is interpreted as “absolutely certain, infallible knowledge”, defined as truth in
all the worlds that are consistent with the agent’s information.11 This is a limit notion

11 In a multi-agent model, some worlds might be consistent with one agent’s information, while being
ruled out by another agent’s information. Therefore, in a multi-agent setting, [∀i ] will only quantify over
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capturing a very strong form of knowledge encompassing all epistemic possibilities.
It is irrevocable, i.e., it cannot be lost or weakened by any information gathered later.
In this respect, [∀]P could be best described as possession of hard information. Its
dual [∃]P:=¬[∀]¬P expresses the fact that P is consistent with (all) the agent’s hard
information.12

The notion of infallible knowledge [∀]ϕ is not verywidely applicable, and the thesis
that all knowledge is infallible has been harshly criticized by many epistemologists
(see, e.g., Hintikka, 1962). However, having the global modality as an operator in our
framework is useful for both conceptual and technical reasons: while it formalizes
the intuitive notion of hard evidence, and it distinguishes it from “softer” types of
information such as fallible knowledge, the global modality adds to the expressive
power ofmodal languages. In particular, when combinedwith the evidentialmodalities
�0ϕ and �ϕ introduced below, it will allow us to define as abbreviations all the other
epistemic and doxastic operators considered in this paper (see Proposition 6).

Having basic evidence for a proposition For every proposition P ⊆ X , we can define
another proposition E0P by putting:13

E0P =
{
X if ∃e ∈ E0 (e ⊆ P)

∅ otherwise.

The modal sentence E0P therefore captures possession of basic (direct) evidence for
the proposition P , thus reads as “the agent has basic evidence for P”. In other words,
E0P states that P is supported by some basic piece of evidence. Additionally, we
introduce a factive version of this proposition, �0P , that is read as “the agent has
factive basic evidence for P”, and is given by

�0P = {x ∈ X | ∃e ∈ E0 (x ∈ e and e ⊆ P)}.

Having (combined) evidence for a proposition The above notions of evidence pos-
session based on having basic evidence for a propositions can be generalized to having
(combined) evidence for a proposition. This way, we obtain two other evidence opera-
tors: EP , meaning that “the agent has (combined) evidence for P”, and�P , meaning
that “the agent has factive (combined) evidence for P”. More precisely, EP and �P
are given as follows:

EP =
{
X if ∃e ∈ E (e ⊆ P)

∅ otherwise

all the states in agent i’s current information cell (according to a partition �i of the state space reflecting
agent i’s hard information).
12 We ask the reader not to confuse ∀ and [∀]: while we use the former to abbreviate “for all” in the
metalanguage, the latter is the global modality operating on propositions. Similarly for ∃ and [∃]: the
former abbreviates “there exists” in the metalanguage and the latter is the existential modality defined as
¬[∀]¬.
13 Van Benthem and Pacuit (2011) denote this by �P and it is denoted by [E]P in (van Benthem et al.,
2014). We use E0P for this notion, since we reserve the notation EP for having combined evidence for P ,
and �P for having combined factive evidence for P .
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�P = {x ∈ X | ∃e ∈ E (x ∈ e and e ⊆ P)}.

Since E is a basis of the evidential topology τE , we have that the agent has evidence for
a proposition P iff she has an argument for P . So EP can also be interpreted as “having
an argument for P”. Similarly, �P can be interpreted as “having a correct argument
for P”. Moreover, � operator for having combined factive evidence coincides with
the topological interior operator:

I nt(P) = �P,

where I nt is the interior operator of the evidential topology τE .

4 Justified belief

In this section, we propose a topological semantics for a notion of evidence-based
justified belief. One way to do this is by modifying the belief definition proposed by
van Benthem and Pacuit (2011) based on evidence models, so we start by recapitulate
their proposal. While the two definitions are equivalent on evidence models carrying
a finite collection of evidence pieces E0, our notion is better behaved in general, since
it is always consistent, and in fact it satisfies the axioms of the standard doxastic logic
KD45 on all topo-e-models. We then provide several equivalent characterizations of
the proposed notion of belief, in particular one in terms of evidential justification
and others in purely topological terms. We also generalize this setting to conditional
beliefs.

4.1 Belief à la van Benthem and Pacuit

Given an evidence model, van Benthem and Pacuit (2011) define belief by putting,
for any proposition P:

P is believed i f f every maximal (i .e., strongest) body of evidence supports P.

We denote this notion by Bel14. More formally, given an evidence modelM = (X , E0, V )

and a proposition P ⊆ X ,

Bel P holds (at any state) iff (∀F ∈ Max⊆F)(
⋂

F ⊆ P).

14 In the finite case and many other (but not all) cases, this definition is equivalent to treating plausibility
models as a special case of evidence models where the plausibility relation is given by the evidential
plausibility order �E defined as

x �E y iff (∀e ∈ E0)(x ∈ e implies y ∈ e) (equivalently, (∀e ∈ E)(x ∈ e implies y ∈ e)),

and applying the standard semantics of belief on plausibility models as “truth in all the most plausible
states”. The relation between evidence models and plausibility models, as well as the connection between
the notions of belief defined on these structures are subtle. We refer to (van Benthem and Pacuit, 2011, Sect.
5) and (van Benthem et al., 2014, Sect. 3) for details.
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Fig. 2 M = (N,E0, V )

However, as can be seen directly from the above definition, Bel is inconsistent on evidence
models whose every maximal body of evidence is inconsistent.

Example 1 Consider the evidence modelM = (N, E0, V ), where the state space is the set
N of natural numbers, V (p) = ∅, and the basic evidence family is E0 = {[n,∞) | n ∈ N}
(see Fig. 2). The only maximal body of evidence in E0 is E0 itself. However,

⋂ E0 = ∅. So
Bel⊥ holds in M.

This phenomenon happens only in (some cases of) infinitemodels, so it is not due to the
inherent mutual inconsistency of the available evidence. At a high level, the source of the
problem seems to be the tension between the way the agent combines her evidence pieces
and the way she forms her beliefs based her evidence: while she puts her evidence pieces
together in a finitely consistent way, having consistent beliefs requires possibly infinite
collections to have nonempty intersections.More precisely, even though it is guaranteed by
definition that every finite subfamily of amaximal body of evidence is consistent, thewhole
maximal body of evidence may actually be inconsistent. Therefore, in order to avoid this
problem, we could instead focus onmaximal finite bodies of evidence as blocks of evidence
forming beliefs: these are, by definition, guaranteed to be always consistent. However, this
solution inevitably restricts the class of evidencemodels we canwork with, simply because
an infinite evidencemodelmight not have anymaximal finite body of evidence. To illustrate
this, we can think of the evidence model presented in Example 1: the set of basic evidence
E0 is the only maximal body of evidence in (N, E0, V ), and it is infinite. Therefore, in
order to eventually be able to provide a belief logic of all evidence models that formalizes
a notion of consistent belief, further adjustments in the definition of Bel are warranted. To
this end, we propose to “weaken” the above definition, by focusing on the finite bodies of
evidence that are “strong enough” (instead of the “strongest” such bodies).

4.2 Justified belief: our proposal

It seems to us that the intended goal (only partially fulfilled) of the above-mentioned def-
inition of belief was to ensure that the agents are able to form consistent beliefs based
on the (possibly false and possibly mutually contradictory) available evidence. We think
this to be a natural requirement for idealized rational agents, and so we consider doxastic
inconsistency to be a bug, not a feature, of the above framework. Hence, we now propose
a notion that produces in a natural way—with no need for further restrictions—only con-
sistent beliefs, and that also agrees with the one in (van Benthem & Pacuit, 2011) in the
finite case (and other cases specified below).

The intuition behind our proposal is that a proposition P is believed iff it is supported
by all “sufficiently strong” evidence. We therefore say that P is believed, and write BP ,
iff every finite body of evidence can be strengthened to some finite body of evidence which
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Fig. 3 M = (N ∪ {♠},E0, V )

supports P . More formally, given an evidence model M = (X , E0, V ) and a proposition
P ⊆ X ,

BP holds (at any state) iff ∀F ∈ F f in∃F ′ ∈ F f in(F ⊆ F ′ and
⋂

F ′ ⊆ P).

The notion of belief B (like Bel) is a “global” notion, which depends only on the agent’s
evidence, not on the actual world, so it is either true in all possible worlds, or false in all
possible worlds. We therefore have

BP:=
{
X if ∀F ∈ F f in∃F ′ ∈ F f in(F ⊆ F ′ and

⋂
F ′ ⊆ P)

∅ otherwise.

This reflects the assumption that beliefs are internal (and fully transparent) to the agent
(Baltag et al., 2008).

It is easy to see that, unlike Bel, our notion of belief B is always consistent (i.e.,
B⊥ = B∅ = ∅), since no finite body of evidence has an empty intersection. Moreover,
it satisfies the axioms of the standard doxastic logic KD45 (see Sect. 6.3). As shown in
Example 2, our notion of belief B and Bel are in general incompatible (even in cases when
Bel is consistent). On the other hand, these two notions coincide on a restricted class of
evidence models (see Proposition 1).

Example 2 The models below show that B and Bel are in general not comparable. More
precisely, the first model illustrates that BP does not imply Bel P and the second model
shows that Bel P does not imply BP even when Bel is consistent.

Consider the evidence model M = (N ∪ {♠}, E0, V ), where N is the set of natural
numbers, V (p) = ∅, and the set of basic evidence is E0 = {ei | i ∈ N} ∪ {{n} | n ∈ N}
where ei = [i,∞) ∪ {♠} (see Fig. 3).
We then have that

Max⊆(F) = {{ei | i ∈ N}} ∪ {{ei | i ≤ n} ∪ {{m}} | n,m ∈ N with m ≥ n}.

Therefore, for any F∈Max⊆(F), we have

⋂
F =

{ {♠} if F = {ei | i ∈ N},
{m} if F = {ei | i ≤ n} ∪ {{m}} with m ≥ n.

We thus obtain that
⋃

F∈Max⊆(F)

⋂
F = N∪{♠}. This means that Bel(N∪{♠}) = Bel

holds in M, and moreover, N ∪ {♠} is the only proposition that is believed according to
the belief definition of van Benthem and Pacuit (2011). Thus, in particular, Bel(N) = ∅,
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Fig. 4 M′ = (N ∪ {♠},E ′0, V )

hence, Bel(N) does not hold in M (i.e., no state in N ∪ {♠} makes Bel(N) true). On the
other hand, we have F ∈ F f in iff F = {ei | i ∈ I }, or F = {ei | i ∈ I } ∪ {{m}} for some
I ⊆ f in N and m ≥ max(I ), where max(I ) is the greatest natural number in I . Therefore,
for every F ∈ F f in , we have

⋂
F =

{ [max(I ),∞) ∪ {♠} if F = {ei | i ∈ I },
{m} if F = {ei | i ∈ I } ∪ {{m}} for m ≥ max(I ).

This implies that, any finite body F of the form {ei | i ∈ I } ∪ {{m}} already supports
N. Moreover, if F = {ei | i ∈ I }, there exists a stronger finite body F ′ of the form
F ′ = {ei | i ∈ I } ∪ {{m}} for some m ≥ max(I ) that supports N. We therefore have that
B(N) holds in M. Hence, in general, BP does not imply Bel P .

Now consider the evidence modelM′ = (N∪{♠}, E ′0, V ) based on the same domain as
M, and where V (p) = ∅ and the basic evidence family E ′0 = {[n,∞)∪ {♠} | n ∈ N} (see
Fig. 4). The only maximal body of evidence in E ′0 is E ′0 itself, and

⋂ E ′0 = {♠}. Therefore,
we have ¬Bel⊥ true inM′, i.e., Bel is consistent inM′. Moreover, in particular, Bel{♠}
is true in M. On the other hand, for all finite bodies F ∈ F f in , we have {♠} �

⋂
F ,

implying that ¬B{♠} is true in M′. Therefore, even when Bel is consistent, Bel P does
not imply BP .

There are special cases where Bel and B do coincide. First of all, B coincides with
Bel on the evidence models with finite basic evidence sets E0. More generally, Bel and
B coincide on all maximally compact evidence models: the ones in which every body of
evidence is equivalent to a finite body of evidence. More formally, an evidence model
M = (X , E0, V ) is called maximally compact if it satisfies the property

∀F ∈ F∃F ′ ∈ F f in(
⋂

F =
⋂

F ′) (MC)

Proposition 1 For all maximally compact evidence models M=(X , E0, V ) and P ⊆ X,
we have Bel P = BP.

Proof LetM = (X , E0, V ) be a maximally compact evidence model and P ⊆ X .
(⊆) Suppose Bel P holds inM, i.e., suppose that for all F ∈ Max⊆F , we have

⋂
F ⊆

P . Now let F ′ ∈ F f in . By Zorn’s Lemma, F ′ can be extended to a maximal body of
evidence F ′′ ∈ F . Note that, since F ′′ extends F ′, i.e., F ′ ⊆ F ′′, we have

⋂
F ′′ ⊆⋂

F ′. Since M is maximally compact, there is F0 ∈ F f in such that
⋂

F ′′ = ⋂
F0. Now

consider the family of evidence F0 ∪ F ′. Since
⋂

F0 = ⋂
F ′′ ⊆ ⋂

F ′, we have
⋂

(F0 ∪
F ′) = ⋂

F0 ∩⋂
F ′ = ⋂

F0 �= ∅. Therefore, the family of evidence F0 ∪ F ′ is a finite
body of evidence, i.e., F0 ∪ F ′ ∈ F f in . Obviously, F0 ∪ F ′ extends F ′, i.e., F ′ ⊆ F0 ∪ F ′.
Moreover, since Bel P holds inM, we have that

⋂
F ′′ ⊆ P . We then obtain

⋂
(F0∪F ′) =⋂

F0 = ⋂
F ′′ ⊆ P . We have therefore proven that the finite body of evidence F0 ∪ F ′
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extends F ′ and it entails P . As F ′ has been chosen arbitrarily from F f in , we conclude
that BP holds in M.

(⊇) Suppose BP holds inM, i.e., suppose that for all F ∈ F f in , there exists F ′ ∈ F f in

such that F ⊆ F ′ and
⋂

F ′ ⊆ P . Let F ′′ ∈ Max⊆F . Then, sinceM ismaximally compact,
there exists F0 ∈ F f in such that

⋂
F ′′ = ⋂

F0. Moreover, since BP holds in M, there
exists F1 ∈ F f in such that F0 ⊆ F1 and

⋂
F1 ⊆ P . Besides, since

⋂
F1 ⊆⋂

F0 = ⋂
F ′′

and F ′′ is maximal, we in fact have F1 ⊆ F ′′ (otherwise, there exists e ∈ E0 such that
e ∈ F1 but e /∈ F ′′. Therefore, as

⋂
F1 ⊆ ⋂

F ′′, we would have
⋂

F1 ⊆ ⋂
(F ′′ ∪ {e}),

and thus
⋂

(F ′′ ∪ {e}) �= ∅, contradicting maximality of F ′′.) Therefore,
⋂

F ′′ ⊆ ⋂
F1,

and thus,
⋂

F1 = ⋂
F ′′. Then, together with

⋂
F1 ⊆ P , we obtain

⋂
F ′′ ⊆ P . As F ′′

has been chosen arbitrarily from Max⊆F , we conclude that Bel P holds in M. ��
Another important feature of our belief definition is that B is a purely topological notion,

as stated in the following proposition, which, in turn, constitutes a justification for our use
of topo-e-models rather than working with only evidence models.

Proposition 2 In every topo-e-model M = (X , E0, τ, V ), the following are equivalent, for
any proposition P ⊆ X:

1. BP holds (at any state)
(i.e., ∀F ∈ F f in∃F ′ ∈ F f in(F ⊆ F ′ and

⋂
F ′ ⊆ P));

2. every evidence can be strengthened to some evidence supporting P
(i.e., ∀e ∈ E ∃e′ ∈ E(e′ ⊆ e ∩ P));

3. every argument (for anything) can be strengthened to an argument for P (i.e., ∀U ∈
τ \ {∅} ∃U ′ ∈ τ \ {∅}(U ′ ⊆ U ∩ P));

4. there is a justification for P, i.e., there is some argument for P which is consistent with
any available evidence
(i.e., ∃U ∈ τ(U ⊆ P and ∀e ∈ E(U ∩ e �= ∅)));

5. P includes some dense open set
(i.e., ∃U ∈ τ(U ⊆ P and Cl(U ) = X));

6. I nt(P) is dense in τ (i.e., Cl(I nt(P)) = X ), or equivalently, X \ P is nowhere dense
(i.e., I nt(Cl(X\P)) = ∅);

7. [∀]♦�P holds (at any state) (i.e., [∀]♦�P = X ), or equivalently, [∀]♦�P �= ∅.
Proof The equivalence of (1), (2) and (3) is easy, and follows directly from the definitions
of combined evidence and argument. The equivalence of (5) and (6) is also straightforward
(recall that I nt(P) is the largest open contained in P). The equivalence of (4) and (5)
simply follows from the definitions of arguments and dense sets. For the equivalence of
(6) and (7), recall that [∀] is the global modality, � is interior, and ♦ is closure. For the
equivalence of (3) and (4):

(3)⇒(4): Suppose that (3) holds and consider the open set I nt(P). We will show that
I nt(P) is a justification for P , i.e., I nt(P) ∩ e �= ∅ for all e ∈ E . Let e ∈ E . By (3),
since e ∈ E ⊆ τ\{∅}, there exists U0 ∈ τ\{∅} such that U0 ⊆ e ∩ P . We then have
I nt(U0) ⊆ I nt(e ∩ P) = I nt(e) ∩ I nt(P). Therefore, since U0 and e are open sets, we
obtain U0 ⊆ e ∩ I nt(P). As U0 �= ∅, we conclude that e ∩ I nt(P) �= ∅.

(4)⇒(3): Suppose that (4) holds, i.e., suppose that there exists U0 ∈ τ such that (a)
U0 ⊆ P and (b) U0 ∩ e �= ∅ for all e ∈ E . Let U ∈ τ with U �= ∅. Now consider the open
setU ∩U0. Since E is a basis of τ , there exists e ∈ E such that e ⊆ U . Therefore, by (b), the
intersectionU ∩U0 �= ∅, thus,U ∩U0 ∈ τ\{∅}. By (a), we also haveU ∩U0 ⊆ U ∩ P . ��
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Proposition 2 deserves a closer look. First, it describes the topological properties of
our notion of belief. Second, it states that our belief is the same as “justified” belief,
but more specifically one whose justification is an evidence-based argument that is con-
sistent with every available evidence. The equivalence of (1.), (2.), and (3.) shows that
we can define BP in equivalent ways by using only basic evidence pieces (i.e., the
elements of E0), or by using only combined evidence (i.e., the elements of E), or by
using only the open sets of the generated evidential topology τ . Proposition 2.4. proves
that our definition of belief indeed gives us a conception of evidentially justified belief.
The requirement that any justification of a believed proposition must be open in the
evidential topology means that the justification is ultimately based on the available evi-
dence; while the requirement that the justification is dense (in the same topology) means
that all the agent’s beliefs must be consistent with every piece of evidence. Therefore,
believed propositions, according to our definition, are those for which there is some evi-
dential justification that is consistent with every available (basic or combined) evidence.
Moreover, whenever a proposition P is believed, there exists a weakest (most general)
justification for P , namely the open set I nt(P). Items (5.) and (6.) provide topolog-
ical reformulations of the above items. In particular, Proposition 2.6. shows that our
proposal is very natural from a topological perspective: it is equivalent to saying that
P is believed iff the complement of P is nowhere dense. Since nowhere dense sets are
one of the topological concepts of “small” or “negligible” sets, this amounts to believ-
ing propositions iff they are true in almost all epistemically-possible worlds, where
“almost all” spelled out topologically as “everywhere but a nowhere dense part of the
model”. Finally, Proposition 2.7. tells us that belief is definable in terms of the operators
[∀] and �.

4.3 Conditional belief on Topo-e-models

The belief semantics given in Sect. 4.2 can be generalized to conditional beliefs BQ P by
relativizing the plain belief definition BP to the given condition Q. The current setting
requires a careful treatment of the aforementioned relativization (as recognized already
in van Benthem and Pacuit 2011) since some of the agent’s evidence might be inconsis-
tent with the condition Q. While evaluating beliefs under the assumption that the given
condition Q is true, one should focus only on the evidence that is consistent with Q
by neglecting the evidence pieces that are disjoint with Q. Therefore, in order to define
conditional beliefs, we need a relativized version of the notion of consistent (bodies of)
evidence.

Given an evidence model M = (X , E0, V ), for any subsets Q, A ⊆ X , we say that A
is Q-consistent iff Q ∩ A �= ∅. Moreover, a body of evidence F is called Q-consistent
iff

⋂
F ∩ Q �= ∅. We can then define conditional beliefs based on these notions of

conditional consistency. We say that P is believed given Q, and write BQ P , iff every finite
Q-consistent body of evidence can be strengthened to some finite Q-consistent body of
evidence supporting the proposition Q → P .

An analogue of Proposition 2 providing different characterizations can also be proven
for conditional belief:

Proposition 3 In every topo-e-model M = (X , E0, τ, V ), the following are equivalent, for
any two propositions P, Q ⊆ X with Q �= ∅:
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1. BQ P holds (at any state)
(i.e., ∀F ∈ F f in(

⋂
F ∩ Q �= ∅ ⇒ ∃F ′ ∈ F f in(

⋂
F ′ ∩ Q �= ∅ and ⋂

F ′ ⊆⋂
F ∩ (Q → P))));

2. every Q-consistent evidence can be strengthened to some Q-consistent evidence sup-
porting Q → P
(i.e., ∀e ∈ E(e ∩ Q �= ∅ ⇒ ∃e′ ∈ E(e′ ∩ Q �= ∅ and e′ ⊆ e ∩ (Q → P))));

3. every Q-consistent argument can be strengthened to a Q-consistent argument for
Q → P
(i.e., ∀U ∈ τ(U ∩ Q �= ∅ ⇒ ∃U ′ ∈ τ(U ′ ∩ Q �= ∅ and U ′ ⊆ U ∩ (Q → P))));

4. there is some Q-consistent argument for Q → P whose intersection with any Q-
consistent evidence is Q-consistent
(i.e., ∃U ∈ τ(U ∩Q �= ∅ and U ⊆ Q → P and ∀e ∈ E(e∩Q �= ∅ ⇒ (U ∩ e)∩Q �=
∅)));

5. Q → P includes some Q-consistent open set which is dense in Q
(i.e., ∃U ∈ τ(U ∩ Q �= ∅ and U ⊆ Q → P and Q ⊆ Cl(U ∩ Q)));

6. I nt(Q → P) is dense in Q
(i.e., Q ⊆ Cl(Q ∩ I nt(Q → P)));

7. [∀](Q → ♦(Q ∧ �(Q → P))) holds (at any state ) (i.e., [∀](Q → ♦(Q ∧ �(Q →
P))) = X ), or equivalently, [∀](Q → ♦(Q ∧�(Q → P))) �= ∅.

Proof The equivalence of (1), (2), (3) is easy and directly follows from the semantics
of BQ P , and the definitions of Q-consistent evidence and Q-consistent argument. For
the equivalence between (5) and (6), consider the weakest argument I nt(Q → P) for
Q → P as the relevant open set. And, for the equivalence of (6) and (7), recall that [∀] is
the universal quantifier, � is interior, and ♦ is closure. We here show only the equivalence
of (3) and (4), and between (4) and (5) in details.

(3)⇒(4): Suppose that (3) holds and consider the weakest argument I nt(Q → P)

for Q → P . Since X ∈ E and X is Q-consistent, by (3), there exists a stronger U ∈ τ

such that U ∩ Q �= ∅ and U ⊆ Q → P . Since I nt(Q → P) is the largest open with
I nt(Q → P) ⊆ Q → P , we obtain U ⊆ I nt(Q → P) ⊆ Q → P for any such U ,
therefore, I nt(Q → P) is also Q-consistent. Let e ∈ E be such that e∩Q �= ∅. Therefore,
since E ⊆ τ , by (3), there existsU ′ ∈ τ such thatU ′ ∩Q �= ∅ andU ′ ⊆ e∩ (Q → P). By
the previous argument, we know thatU ′ ⊆ I nt(Q → P), thus,U ′ ⊆ e∩ I nt(Q → P) �=
∅. And, since U ′ is Q-consistent, the result follows.

(4)⇒(3): Suppose that (4) holds, i.e., suppose that there isU0 ∈ τ such that (a)U0∩Q �=
∅, (b)U0 ⊆ Q → P and (c) for all e ∈ E with e∩ Q �= ∅, we have (U0 ∩ e)∩ Q �= ∅. Let
U ∈ τ be such that U ∩ Q �= ∅ and consider the open set U ∩U0. Since U ∩ Q �= ∅ and
E is a basis for τ , there exists e0 ∈ E such that e0 ⊆ U and e0 ∩ Q �= ∅. Therefore, by (c),
we have that (U0 ∩ e0) ∩ Q �= ∅, thus, the open set U0 ∩ e0 is Q-consistent. Moreover,
since U0 ⊆ Q → P and e0 ⊆ U , we obtain U0 ∩ e0 ⊆ U ∩ (Q → P).

(4)⇔(5): For the left-to-right direction, suppose (4) holds as in the above case, and
toward showing Q ⊆ Cl(U0 ∩ Q), let x ∈ Q and e ∈ E such that x ∈ e. Therefore, e is
Q-consistent, i.e., e ∩ Q �= ∅. Then, by (4), we obtain (U0 ∩ e) ∩ Q �= ∅, implying that
x ∈ Cl(U0 ∩ Q). For the right-to-left direction, suppose (5) holds withU0 the witness and
let e ∈ E be such that e ∩ Q �= ∅. This means that there is y ∈ e ∩ Q, thus, y ∈ Q. Then,
by (5), y ∈ Cl(U0 ∩ Q). Therefore, as y ∈ e ∈ E , we conclude (U0 ∩ Q) ∩ e �= ∅. ��
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5 Knowledge

As already mentioned, the notion of infallible knowledge—represented by the global
modality [∀] introduced in Sect. 3.2—has a very limited scope: there are very few things
we could know in this strong sense, maybe, say, only logical-mathematical tautologies. We
now proceed to define a weaker and thus more widely applicable notion of knowledge,
which better approximates the common usage of the word.

More concretely, the concept of (fallible) knowledge we propose is based on factive
justifications. Formally, given a topo-e-modelM = (X , E0, τ, V ), we set

K P = {x ∈ X | ∃U ∈ τ (x ∈ U ⊆ P and Cl(U ) = X)}.

In other words: K P holds at a world x iff P includes a dense open neighborhood of
x . Similarly to the cases for belief and conditional beliefs (recall Propositions 2 and 3), we
can provide several equivalent definitions of K P on topo-e-models as follow.

Proposition 4 Let M = (X , E0, τ, V ) be a topo-e-model and x ∈ X be the actual world.
The following are equivalent for all P ⊆ X:

1. K P holds at x inM
(i.e., ∃U ∈ τ (x ∈ U ⊆ P and Cl(U ) = X));

2. there is some factive justification for P at x, i.e., there is some factive argument for P
at x which is consistent with any available evidence
(i.e., ∃U ∈ τ(x ∈ U ⊆ P and ∀e ∈ E(U ∩ e �= ∅)));

3. I nt(P) contains the actual state and is dense in τ

(i.e., x ∈ I nt(P) and Cl(I nt(P)) = X );
4. �P ∧ BP holds at x.

Proof The proof is similar to the proof of Proposition 2. For the equivalence of (1.) and (2.),
recall that E constitutes a basis for τ . The equivalence of (2.) and (3.) is also straightforward
(recall that I nt(P) is the largest open set contained in P). For the equivalence of (3.) and
(4.), see Proposition 2.6. and recall that � is interpreted as the interior operator. ��

Therefore, as the equivalence of items 1. and 2. of Proposition 4 shows, our
proposal equates “knowledge” with correctly justified belief: belief based on true jus-
tifications. We will see that our ‘coherentist’ notion of justification makes this notion
subtly different from the influential “no false lemma” account of knowledge. But
first, we should note that our proposal does not simply boil down to “justified true
belief”. This would clearly be vulnerable to Gettier-type counterexamples (Gettier, 1963).
To better explain the distinction, we illustrate in the example below the proposed seman-
tics for justified belief and knowledge, as well as the connection between the two
notions.

Example 3 Consider the topo-e-model M = ([0, 1], E0, τ, V ), where E0 = {(a, b) ∩
[0, 1] | a, b ∈ R, a < b} and V (p) = ∅. The generated topology τ is the standard topology
of open intervals restricted to [0, 1]. Let P = [0, 1] \ { 1n | n ∈ N} be the proposition stating
that “the actual state is not of the form 1

n , for any n ∈ N” (see Fig. 5). Since the complement
¬P = [0, 1]\P = { 1n | n ∈ N} is nowhere dense (i.e., I nt(Cl(¬P)) = I nt(¬P) = ∅),
the agent believes P , and e.g. U = ⋃

n≥1( 1
n+1 ,

1
n ) is a justification for P , that is, U is a
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Fig. 5 ([0, 1], τ )

dense open subset of P . This belief is true at world 0 ∈ P . But this true belief is not known
at 0: no justification for P is true at 0, since P does not include any open neighborhood of
0, so 0 /∈ I nt(P) and hence 0 /∈ K P . This shows that K P �= P ∧ BP . Moreover, P is
known in all the other states x ∈ P \ {0}, since

∀x ∈ P\{0} ∃ε > 0(x ∈ (x − ε, x + ε) ⊆ P),

therefore x ∈ I nt(P).

A brief note on Stalnaker’s epistemic-doxastic system (Stalnaker, 2006): it is easy
to see that K together with justified belief B satisfies Stalnaker’s Full Belief princi-
ple BP = BK P (see Table 5 for the complete list of his axioms). These operators
in fact satisfy all the axioms and rules of the system Stalnaker’s logic of knowl-
edge and belief on all topo-e-models, thus, on all topological spaces, not only
on the restricted class of extremally disconnected spaces. We prove the soundness
and completeness of Stalnaker’s system with respect to all topo-e-models in Sect.
6.4.

One interesting property of this weaker type of knowledge is it being defeasible in
the light of new information, even when the new information is true. In contrast, the
usual assumption in epistemic logic is that knowledge acquisition is monotonic. As a
result, logicians typically assume that knowledge is irrevocable: once acquired, it cannot
be defeated by any further evidence gathered later. In our setting, the only irrevocable
knowledge is the absolutely certain one (true in all epistemically-possibleworlds), captured
by the operator [∀]. Clearly, K is not irrevocable.

5.1 Knowledge is defeasible

Gettier (1963)—with his famous counterexamples against the account of knowledge as
justified true belief—triggered an extensive discussion in epistemology that is concerned
with understanding what knowledge is, and in particular, with identifying the exact prop-
erties and conditions that render a piece of justified true belief knowledge. Epistemologists
have made various proposals such as, among others, the no false lemma (Clark, 1963),
the defeasibility analysis of knowledge (Klein, 1971, 1981; Lehrer, 1990; Lehrer & Pax-
son, 1969), the sensitivity account (Nozick, 1981), the safety account (Sosa, 1999), and
the contextualist account (DeRose, 2009).15 While there is still very little agreement as
to which proposal gives a satisfactory solution to the Gettier challenge, the extent of the
post-Gettier literature at the very least shows that the relation between justified belief and
knowledge is very delicate, and it is not an easy task, if possible, to identify a unique
notion of knowledge that can deal with all kinds of intuitive counterexamples. However,
as Rott states, one can accept that all these proposals “capture important intuitions that can

15 For an overview of responses to the Gettier challenge and a detailed discussion, we refer the reader to
(Ichikawa & Steup, 2013; Rott, 2004).
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in some way or other be regarded as relevant to the question whether or not a given belief
constitutes a piece of knowledge” (Rott, 2004, p. 469).

In this section, we argue that the conception of knowledge captured by our modality K
is stronger than Clark’s “no false lemma” (Clark, 1963), and very close to (though subtly
different from) the so-called defeasibility theory of knowledge held byKlein (1971, 1981),
Lehrer (1990), and Lehrer and Paxson (1969). But providing an extensive philosophical
comparison with all the aforementioned theories of knowledge is way beyond the scope
of this paper, so we leave this task for future work.

Clark’s influential “no false lemma” proposal requires a correct “justification”—one
that doesn’t use any falsehood—for a piece of belief to constitute knowledge (Clark,
1963). While this may sound very similar to our definition of knowledge K , our proposal
imposes a stronger implicit requirement than Clark’s, since our concept of justification
requires consistency with all the available (combined) evidence. In our terminology, Clark
only requires a factive argument for P . So Clark’s approach is local, assessing a knowledge
claim based only on the truth of the evidence pieces (and the correctness of the inferences)
that are used to justify it. In contrast, our proposednotionof knowledge inherits the ‘holistic’
character of our proposed concept of belief: to count as justifications, evidential arguments
first need to be checked against all (the other arguments that can be constructed from the
agent’s) current evidence. So a knowledge claim is assessed by checking both the truth of
the underlying argument and its consistency with all of the agent’s acceptance system.

On the other hand, the defeasibility theory of knowledge, roughly speaking, defines
knowledge as undefeated justified belief: justified belief that cannot be defeated by any
factive evidence that might be gathered later (though it may be defeated by false evidence).
In its simplest version, called by Rott (2004) stable belief theory or stability theory of
knowledge, it says that the agent knows P if only if

1. P is true
2. she believes that P , and
3. her belief in P cannot be defeated by new factive information.

In other words, given a true proposition P , the agent knows P iff the belief in P is stable
for true information. The stable belief theory has been challenged for being too weak to
characterize knowledge: the agent may keep her (true) belief stable, while continuously
adopting newer justifications. Each of these justifications is wrong and can be defeated,
but the belief itself remains undefeated. A more developed version of defeasibility theory,
as held by Lehrer and others, insists that, in order to know P , not only the belief in P has
to stay stable, but also its justification (i.e. what we call here “an argument for P”) should
be undefeated. More precisely, according to this strong version of defeasibility theory, the
agent knows P if and only if

1. P is true
2. she believes that P ,
3. her belief in P cannot be defeated by new factive information, and
4. her ‘justification’ (=argument, in our sense) is undefeated by new factive information.

In this sense, for the agent to know P there must exist an argument for P that is believed
conditional on every true evidence. Clearly, this implies that the belief in P is stable, but
the converse fails. As already observed, the problem is that, when confronted with various
new pieces of evidence, the agent might keep switching between different justifications
(for believing P), thus, she may keep believing in P conditional on any such new true
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evidence without actually having any good, robust justification (i.e., one that remains itself
undefeated by all true evidence) (see Example 5). To have knowledge, we thus need a
stable justification.16

However, the above interpretations of both the stability and the defeasibility theory were
also attacked as being too strong: if we allow as potential defeaters all factive propositions
(i.e. all sets of worlds P containing the actual world), then there are intuitive examples
showing that knowledge K P can be defeated (Klein, 1980, 1981). Here is such an example
discussed by Klein (1981), a leading proponent of the defeasibility theory. Loretta filled
in her federal taxes, following very carefully all the required procedures on the forms,
doing all the calculations and double checking everything. Based on this evidence, she
correctly believes that she owes $500, and she seems perfectly justified to believe this.
So it seems obvious that she knows this. But suppose now that, being aware of her own
fallibility, she asks her accountant to check her return. The accountant finds no errors
(when there are in fact some errors in her calculation, yet not affecting the correct result
that she owes $500), and so he sends her his reply reading “Your return contains no
errors”; but he inadvertently leaves out the word “no”. If Loretta would learn the true
fact that the accountant’s letter actually reads “Your return contains errors”, she would
lose her true belief that she owed $500. So it seems that there exist defeaters that are
true but “misleading”. We formalize this counterexample in Example 4 and show that our
knowledge K is neither stable nor indefeasible. In order to make the formalization more
succinct, we first introduce an operation of evidence addition and some notation.

Definition 8 (Evidence added topo-e-model) Given a topo-e-model M = (X , E0, τ, V )

and a nonempty P ⊆ X , we can define a P-added topo-e-model M+P as M+P =
(X , E+P

0 , τ+P , V ), where E+P
0 = E0 ∪ {P} and τ+P is the topology generated by E+P

0 .

It is easy to see thatM+P is a topo-e-model, since ∅ /∈ E+P
0 and X ∈ E+P

0 , and τ+P is
the evidential topology generated by E+P

0 . Moreover, the set of combined evidence E+P

ofM+P can be described as

E+P = E ∪ {e ∩ P | e ∈ E with e ∩ P �= ∅},

which clearly constitutes a basis for τ+P .

Example 4 Consider the model M = (X , E0, τ, V ), where X = {x1, x2, x3}, V (p) = ∅,
E0 = {X , O1, O2}, O1 = {x1, x2}, O2 = {x2, x3} (see Fig. 6). The resulting set of
combined evidence is E = {X , O1, O2, {x2}}. Assume that the actual world is x1. Then O1

is known, since x1 ∈ I nt(O1) = O1 and Cl(O1) = X . Now consider the modelM+O3 =
(X , E+O3

0 , τ+O3 , V ) obtained by adding the new evidence O3 = {x1, x3} (as in Definition
8).We have E+O3

0 = {X , O1, O2, O3}, so E+O3 = {X , O1, O2, O3, {x1}, {x2}, {x3}}. Note
that the new evidence is true (x1 ∈ O3). However, O1 is not even believed in M+O3

anymore, since O1 ∩ {x3} = ∅, so O1 is no longer dense in τ+O3 . Therefore, O1 is no
longer known after the true evidence O3 was added.

16 Lehrer uses themetaphor of anUltra-JustificationGame (Lehrer, 1990), according towhich ‘knowledge’
is based on arguments that survive a game between the Believer and an omniscient truth-telling Critic, who
tries to defeat the argument by using both the Believer’s current “justification system” and any new true
evidence (see, Fiutek, 2013, Sect. 5.2 for a formalization of Lehrer’s ultra-justification game).

123



Synthese (2022) 200 :512 Page 27 of 51 512

Fig. 6 From M toM+O3

Klein’s story corresponds to taking O1 to represent Loretta’s direct evidence (based on
careful calculations) that she owes $500, O2 to represent her prior evidence (either based
on past experience, or just being one of Loretta’s default assumptions) that the accountant
doesn’t make mistakes in his replies to her, and O3 the potential new evidence provided
by the letter. In conclusion, our notion of knowledge is incompatible with the above-
mentioned strong interpretations of both stability and defeasibility theory, thus confirming
the objections raised against them.

Klein’s solution is that one should exclude such misleading defeaters, which may
“unfairly” defeat a good justification. But how can we distinguish them from genuine
defeaters? Klein’s diagnosis, in Foley’s more succinct formulation, is that “a defeater is
misleading if it justifies a falsehood in the process of defeating the justification for the
target belief” (Foley, 2012, p. 96). In the example, the falsehood is that the accountant had
discovered errors in Loretta’s tax return. It seems that the new evidence O3 (the existence
of the letter as actually written) supports this falsehood, but how? According to us, it is
the combination O2 ∩ O3 of the new (true) evidence O3 with the old (false) evidence O2

that supports the new falsehood: the true fact (about the letter saying what it says) entails
a falsehood only if it is taken in conjunction with Loretta’s prior evidence (or blind trust)
that the accountant cannot make mistakes. So intuitively,misleading defeaters are the ones
which may lead to new false conclusions when combined with some of the old evidence.

5.2 Misleading evidence and weakly indefeasible knowledge

We proceed now to formalize the distinction between misleading and genuine (i.e., non-
misleading) defeaters. Given a topo-e-model M = (X , E0, τ, V ), a state x ∈ X and a
proposition Q ⊆ X ,

• Q ismisleading at x ∈ X with respect to E if evidence-addition with Q produces some
false new evidence;

equivalently, and more formally, if there is some e ∈ E+Q \ E such that x /∈ e, i.e., if there
is some e ∈ E such that x /∈ (e ∩ Q) and (e ∩ Q) /∈ E ∪ {∅}. A proposition Q ⊆ X is
called nonmisleading if Q is not misleading. It is easy to see that old evidence e ∈ E is by
definition nonmisleading with respect to E (i.e., each e ∈ E is nonmisleading with respect
to E), and new nonmisleading evidence must be true (i.e., if Q ⊆ X is nonmisleading at x
and Q /∈ E , then x ∈ Q).
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Fig. 7 M = (X ,E0, V ): the
continuous ellipses represent the
currently available pieces of
evidence, while the dashed ones
represent the other
nonmisleading propositions

We are now in the position to formulate precisely theweakened versions of both stability
and defeasibility theories that we are looking for. The weak stability theory will stipulate
that the agent knows P if and only if

1. P is true
2. she believes that P ,
3. her belief in P cannot be defeated by any nonmisleading evidence.

On the other hand, the weak defeasibility theory requires that there exists some justification
(argument) for P that is undefeated by every nonmisleading proposition. More precisely,
the weak defeasibility theory strengthens the above described weak stability theory by the
following “stable justification” clause:

4. her belief in its justification is undefeated by any nonmisleading evidence.

Finally, we also provide a third formulation, which one might call epistemic coherence
theory, saying that P is known iff there exists some justification (argument) for P which is
consistent with every nonmisleading proposition. While our proposed notion of knowledge
is stronger than the one described by the weak stability theory, as illustrated by Example
5, it coincides with the ones defined by the weak defeasibility and epistemic coherence
theories (see Proposition 5). In particular, the following counterexample shows that weak
stability is (only a necessary, but) not a sufficient condition for knowledge K :

Example 5 Consider the model M = (X , E0, τ, V ), where X = {x0, x1, x2}, V (p) = ∅,
E0 = {X , O1, O2} with O1 = {x1}, O2 = {x1, x2} (see Fig. 7). The resulting set of com-
bined evidence is E = E0. Assume that the actual world is x0 and let P = {x0, x1}. Then,
P is believed in M (since its interior I nt(P) = {x1} is dense in τ ) but it is not known
(since x0 /∈ I nt(P) = {x1}). However, we can show that P is believed in M+Q for any
nonmisleading Q at x0. For this, note that the family of nonmisleading propositions (at
x0) is E ∪ {P, {x0}} = {X , O1, O2, P, {x0}}. It is easy to see that for each set Q in this
family, BP holds in M+Q .

One should stress that our counterexample agrees with the position taken by most
proponents of the defeasibility theory: stability of (justified) belief is not enough for knowl-
edge. Intuitively, what happens in the above example is that, although the agent continues to
believe P given any nonmisleading evidence, her justification keeps changing. For exam-
ple, while the only justification for believing P in M is O1, the evidence O1 is no longer
dense in model M+{x0}, therefore, cannot constitute a justification for P in M+{x0}. On
the other hand, another argument inM+{x0}, namely {x0, x1} forms a justification for P in
M+{x0}, thus P is still believed inM+{x0}, but, based on a different justification. Therefore,
there is no uniform justification for P that works for every nonmisleading evidence Q.

The next result shows that our notion of knowledge exactly matches the weakened
version of defeasibility theory, as well as the epistemic coherence formulation:
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Proposition 5 Let M = (X , E0, τ, V ) be a topo-e-model and x ∈ X be the actual
world. The following are equivalent for all P ⊆ X:

1. K P holds at x inM.
2. There is an argument (justification) for P that cannot be defeated by any nonmisleading

proposition; i.e. ∃U ∈ τ \ {∅} such that U ⊆ P and BU holds in M+Q for all
nonmisleading Q ⊆ X (at x with respect to E).

3. There is an argument (justification) for P that is consistent with every nonmisleading
proposition; i.e. ∃U ∈ τ \ {∅} such that U ⊆ P and U ∩ Q �= ∅ for all nonmisleading
Q ⊆ X (at x with respect to E).

Proof (1) ⇒ (2): Suppose x ∈ K P . This means, by Proposition 4.3., that x ∈ I nt(P)

and Cl(I nt(P)) = X . Now consider the argument I nt(P). Obviously I nt(P) ∈ τ\{∅}
and I nt(P) ⊆ P . Let Q be a nonmisleading proposition at x with respect to E , and Cl+Q

and I nt+Q denote the closure and the interior operators of τ+Q , respectively. We only
need to show that I nt+Q(I nt(P)) is dense in (X , τ+Q), i.e., that for all e ∈ E+Q , we
have e∩ I nt+Q(I nt(P)) �= ∅. Let e ∈ E+Q . Then, by the definition of E+Q , we have two
cases: (1) e ∈ E , or (2) e /∈ E but e = e′ ∩ Q for some e′ ∈ E . Since Q is nonmisleading,
the latter case entails that x ∈ e. If e ∈ E , we have e ∩ I nt+Q(I nt(P)) �= ∅ since
I nt(P) ⊆ I nt+Q(I nt(P)) (by Lemma 1) and I nt(P) is dense in (X , τ ). If e /∈ E and
e = e′ ∩ Q for some e′ ∈ E with x ∈ e, we obtain x ∈ e ∩ I nt+Q(I nt(P)) since x ∈
I nt(P) ⊆ I nt+Q(I nt(P)), thus, e ∩ I nt+Q(I nt(P)) �= ∅. Therefore, I nt+Q(I nt(P)) is
dense in (X , τ+Q), i.e., B(I nt(P)) holds in M+Q .

(2) ⇒ (3): Suppose that (2) holds, i.e., there is a U ∈ τ \ {∅} such that U ⊆ P and
Cl+Q(I nt+Q(U )) = X for all nonmisleading Q ⊆ X (at x with respect to E). Let Q
be nonmisleading at x with respect to E . Since Cl+Q(I nt+Q(U )) = X , we have that
e ∩ I nt+Q(U ) �= ∅ for all e ∈ E+Q . As Q is nonmisleading at x , we in particular have
∅ �= Q = Q ∩ X ∈ E+Q (by the definition of E+Q and the fact that X ∈ E). Hence, it
follows from (2) that Q ∩ I nt+Q(U ) �= ∅. Since I nt+Q(U ) ⊆ U , we obtain U ∩ Q �= ∅.

(3) ⇒ (1): Assume that U ∈ τ\{∅} is such that U ⊆ P and U ∩ Q �= ∅ holds for all
nonmisleading Q (at x with respect to E). Clearly, this implies that U is consistent with
all e ∈ E , i.e., that e ∩ U �= ∅ (since available evidence is by definition nonmisleading),
so U is a justification for P (i.e., X = Cl(U ) = Cl(I nt(P))). So, to show that K P holds
at x , it is enough to show that x ∈ I nt(P). For this, take the proposition Q = {x}, which
obviously is nonmisleading at x , hence by (3) we must have U ∩ {x} �= ∅, i.e. x ∈ U .
Then, x ∈ U ∈ τ and U ⊆ P give us x ∈ I nt(P), as desired. ��

6 Logics for evidence, justified belief and knowledge

This section constitutes the technical heart of the paper and is devoted to our results
concerning soundness, completeness, decidability, and the finitemodel property for several
logics of evidence, belief, and knowledge (Sects. 6.3–6.5). In order to keep this section
self-contained and fix some notation, we first recapitulate, in a concise way, the formal
syntax and semantics for the notions presented in the previous sections.
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6.1 Logics for evidence, justified belief, and knowledge

Syntax The full language L of evidence, belief, and knowledge we consider is defined
recursively by the grammar

ϕ::=p | ¬ϕ | (ϕ ∧ ϕ) | E0ϕ | Eϕ | �0ϕ | �ϕ | Bϕ | Bϕϕ | Kϕ | [∀]ϕ

where p ∈ Prop. We employ the usual abbreviations for propositional connectives ,
⊥, ∨, →, ↔, and for the dual modalities B̂, K̂ , Ê etc. except that some of them have
special abbreviations: [∃]ϕ:=¬[∀]¬ϕ and ♦ϕ:=¬�¬ϕ. We will follow the usual rules for
the elimination of the parentheses. Several fragments of the language L is of particular
interest: LB the fragment having the belief modality B as the only modality; LK having
only the knowledge modality K ; and some bimodal fragments such as LK B having only
operators K and B; L[∀]K having only operators [∀] and K ; and the trimodal fragment
L[∀]�0� having only the modalities [∀], �0, and �.

Semantics We interpret the language L on topo-e-models in an obvious way, following
the definitions of the corresponding operators provided in previous sections.

Definition 9 (Topo-e-Semantics for L) Given a topo-e-model M = (X , E0, τ, V ), we
extend the valuation map V to an interpretation map �.�M : L → P(X) recursively as
follows:17

�p�M = V (p)
�¬ϕ�M = X \ �ϕ�M

�ϕ ∧ ψ�M = �ϕ�M ∩ �ψ�M

�E0ϕ�M = {x ∈ X | ∃e ∈ E0(e ⊆ �ϕ�M)}
�Eϕ�M = {x ∈ X | ∃e ∈ E (e ⊆ �ϕ�M)}
��0ϕ�M = {x ∈ X | ∃e ∈ E0 (x ∈ e and e ⊆ �ϕ�M)}
��ϕ�M = {x ∈ X | ∃U ∈ τ (x ∈ U and U ⊆ �ϕ�M)}
�Bϕ�M = {x ∈ X | ∃U ∈ τ (U ⊆ �ϕ�M and Cl(U ) = X)}
�Bθ ϕ�M = {x ∈ X | ∃U ∈ τ (∅ �= U ∩ �θ�M ⊆ �ϕ�M and Cl(U ∩ �θ�)M ⊇ �θ�M)}
�Kϕ�M = {x ∈ X | ∃U ∈ τ (x ∈ U ⊆ �ϕ�M and Cl(U ) = X)}
�[∀]ϕ�M = {x ∈ X | �ϕ�M = X}

We omit the superscript M when the model is contextually clear. Given a 
 ⊆ L and
ϕ ∈ L, we say that ϕ is a logical consequence of 
, denoted by 
 |� ϕ, iff for all topo-e-
models M = (X , E0, τ, V ) and all x ∈ X : if x ∈ �ψ� for all ψ ∈ 
, then x ∈ �ϕ�. As a
special case, validity, |� ϕ, is truth at all worlds of all topo-e-models. ϕ is called invalid,
denoted by �|� ϕ, if it is not a validity, that is, if there is a topo-e-modelM = (X , E0, τ, V )

and a possible world x ∈ X such that x /∈ �ϕ�. We say that a formula ϕ is valid in a topo-e-
model M = (X , E0, τ, V ), denoted by M |� ϕ, if �ϕ� = X . Soundness and completeness
with respect to topo-e-models are defined standardly (see, e.g., Blackburn et al., 2001,
Chapter 4.1).

17 We remind the reader not to confuse ∃ and [∃]: while we use the former to abbreviate “there exists” in
the metalanguage, the latter is the existential modality defined as¬[∀]¬ in the object languageL. Similarly
for ∀ and [∀]: the former abbreviates “for all” in the metalanguage and the latter is the global modality in
the object language L.
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It is not hard to see that the above defined semantics for the modalities ofL corresponds
exactly to the semantic operators given in Sects. 3–5: e.g. �[∀]ϕ� = [∀]�ϕ�, ��ϕ� =
��ϕ� = I nt(�ϕ�), etc. Moreover, while all modalities except for E0 and �0 capture
topological properties of topo-e-models, i.e., they can be interpreted directly in (X , τ, V ),
a topo-model, the expressivity of the full language goes beyond the purely topological
properties: the meaning of E0 and �0 does not only depend on the evidential topology,
but also depends on the basic evidence set E0. From the point of expressivity, the most
important fragment of L is the trimodal language L[∀]�0� since it is equally expressive as
the full language L with respect to the topo-e-models:

Proposition 6 The following equivalences are valid:

1. Bϕ ↔ [∀]♦�ϕ 4. Kϕ ↔ �ϕ ∧ [∀]♦�ϕ

2. Eϕ ↔ [∃]�ϕ 5. Bθϕ ↔ [∀](θ → ♦(θ ∧�(θ → ϕ)))

3. E0ϕ ↔ [∃]�0ϕ

Proof The proof follows easily from the semantics clauses of the modalities given in
Definition 9. ��

Therefore, all the othermodalities ofL canbedefined inL[∀]�0�. For this reason, instead
of focusing on the full language L, we present soundness, completeness, and decidability
results for the factive evidence fragmentL[∀]�0�: its importance comes from its expressive
power. We moreover provide sound and complete axiomatizations for the pure doxatic
fragment LB , the pure epistemic fragments LK and L[∀]K , and finally for the epistemic-
doxastic fragmentLK B . As the semantics of [∀], B, and K can be defined only based on the
evidential topology (without referring to E0), we will state the corresponding soundness
and completeness results simply with respect to topo-models18. Notions of validity in a
topo-model, validity, soundness, and completeness wrt topo-models are defined standardly,
similarly to those for topo-e-models. For L[∀]�0�, we need the complete structure of the
topo-e-models as the semantics of �0 depends on the basic evidence set E0 and cannot be
recovered purely topologically.

Before moving on to the technical results, we briefly recall the following standard
terminology of Hilbert-style axiom systems and set some notation. Given a logic L defined
by a finitary Hilbert-style axiom system, an L-derivation/proof is a finite sequence of
formulas such that each element of the sequence is either an axiom of L, or obtained from
the previous formulas in the sequence by one of the inference rules. A formula ϕ is called
L-provable, or, equivalently, a theorem of L, if it is the last formula of some L-proof. In
this case, we write �L ϕ (or, equivalently, ϕ ∈ L). For any set of formulas 
 and any
formula ϕ, we write 
 �L ϕ if there exist finitely many formulas ϕ1, . . . , ϕn ∈ 
 such
that �L ϕ1 ∧ · · · ∧ ϕn → ϕ. We say that 
 is L-consistent if 
 �L ⊥, and L-inconsistent
otherwise. A formula ϕ is consistent with 
 if 
 ∪ {ϕ} is L-consistent (or, equivalently,
if 
 �L ¬ϕ). Finally, a set of formulas 
 is maximally consistent if it is L-consistent and
any set of formulas properly containing 
 is L-inconsistent, i.e. 
 cannot be extended to
another L-consistent set. We drop mention of the logic L when it is clear from the context.

For the axiomatizations of the well-known normal unimodal logics, we refer to (Black-
burn et al., 2001, Chapter 4). Here we use the standard naming conventions for these logics

18 A topo-model is a tuple (X , τ, V ), where (X , τ ) is a topological space and V : Prop → P(X) is a
standardly defined valuation function. The semantic clauses of the language L minus the components E0
and �0 in topo-models are as given in Definition 9.
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and the relevant axioms, and add the axiomatized operator as a subscript to their names:
e.g., the normal modal logic KD45 for B is denoted by KD45B , S5 for [∀] by S5[∀], and
axiom (.2) for K by (.2K ). We provide the axioms of our multi-modal logics in tables in
the relevant sections. Finally, L+(ϕ) denotes the smallest modal logic containing L and ϕ,
i.e., L+(ϕ) is the smallest set of formulas (in the corresponding language) that contains L
and ϕ, and is closed under the inference rules of L.

6.2 The knowledge fragmentsLK andL[∀]K: S4.2K and L[∀]K

In this section, we focus on the two knowledge fragmentsLK andL[∀]K , and provide sound
and complete axiomatizations for the associated logics. While the fragment having only
the modality K leads to the familiar system S4.2K , the full knowledge fragment having
both K and [∀] gives us the axiomatization L[∀]K presented below, in Table 4.

The soundness results, as usual, are shown by proving that all axioms are validities and
that all derivation rules preserve validities. These proofs are elementary for most axioms
and derivation rules, we here show only the relatively trickier cases. For completeness of
both S4.2K and L[∀]K , we rely on their completeness wrt Kripke models and the connection
between their Kripke models and topo-models explained in Sect. 6.2.1.

6.2.1 Soundness and completeness of S4.2K

The relatively harder case in the soundness proof of S4.2K is the normality axiom (KK )
for the knowledge modality K , whose validity follows from the following lemma and the
fact that the interior operator commutes with finite intersections (see Sect. 2).

Lemma 2 Given a topological space (X , τ ) and any two subsets U1,U2 ⊆ X, if U1 is
open dense and U2 is dense, then U1 ∩U2 is dense.

Proof Let (X , τ ) be a topological space and U1,U2 ⊆ X . Suppose U1 is an open dense
and U2 is a dense set in (X , τ ). Since U1 is open and dense we have that W ∩U1 is open
and non-empty for any non-empty open set W . Thus, since U2 is dense, we also have that
(W ∩U1)∩U2 �= ∅. Therefore,W ∩(U1∩U2) �= ∅ for any nonemptyW ∈ τ , i.e.,U1∩U2

is dense as well. ��
For completeness, we rely on the completeness of S4.2K wrt its Kripke models and their

connection to topological models.

Connection between S4.2-frames and topological spaces Let (X , R) be a transitive
Kripke frame. A nonempty subset C ⊆ X is called cluster if (1) for each x, y ∈ C we have
x Ry, and (2) there is no D ⊆ X such that C � D and D satisfies (1). A point x ∈ X is
called a maximal point if there is no y ∈ X such that x Ry and ¬(yRx). We call a cluster
a final cluster if all its points are maximal. It is not hard to see that for any final cluster C
of (X , R) and any x ∈ C, we have R(x) = C. A transitive Kripke frame (X , R) is called
cofinal if it has a unique final cluster C such that for each x ∈ X and y ∈ C we have x Ry.

Lemma 3 S4.2K is sound and complete with respect to the class of reflexive and transitive
cofinal frames.

Proof See, e.g., (Chagrov and Zakharyaschev, 1997, Chapter 5). ��
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As well-known, given a reflexive and transitive Kripke frame (X , R), we can construct
an Alexandroff space19 (X , τR) by defining τR to be the set of all upsets20 of (X , R) (see,
e.g., van Benthem and Bezhanishvili, 2007, Sect. 2).

Lemma 4 For every reflexive transitive cofinal frame (X , R) and nonempty U ∈ τR, we
have Cl(U ) = X in (X , τR).

Proof Let (X , R) be a reflexive and transitive cofinal frame and let C ⊆ X denote its
final cluster. By construction, C ∈ τR and moreover C ⊆ U , for all nonempty U ∈ τR .
Therefore, for every nonempty U , V ∈ τR , we have V ∩U ⊇ C �= ∅. Hence, Cl(U ) = X
for any nonempty U ∈ τR .

Given a reflexive and transitive KripkemodelM = (X , R, V ), let B(M) = (X , τR, V )

denote the corresponding topo-model (where τR is the set of all upsets of (X , R)). For any
formula ϕ in the relevant object language, ‖ϕ‖M denotes the set of worlds in M =
(X , R, V ) that make ϕ true with respect to the standard Kripke semantics (where [∀] is
interpreted as the global modality).

Proposition 7 For every reflexive and transitive cofinal Kripke modelM = (X , R, V ) and
all ϕ ∈ L[∀]K ,

‖ϕ‖M = �ϕ�B(M),

where B(M) = (X , τR, V ).

Proof The proof follows by subformula induction on ϕ; cases for the propositional vari-
ables, the Boolean connectives and the modality [∀] are elementary. So assume inductively
that the result holds forψ ; wemust show that it holds also forϕ:=Kψ . LetM = (X , R, V )

be a reflexive and transitive cofinal Kripke model and x ∈ X .
(⊆) Suppose x ∈ ‖Kψ‖M. This implies that x ∈ R(x) ⊆ ‖ψ‖M. By induction hypoth-

esis, we obtain R(x) ⊆ �ψ�B(M). Since x ∈ R(x) ∈ τR , we have x ∈ I nt(�ψ�B(M)).
Then, by Lemma 4, Cl(I nt(�ψ�B(M))) = X . Therefore, x ∈ �Kψ�B(M).

(⊇) Suppose x ∈ �Kψ�B(M). This means, by the topological semantics of K , that
x ∈ I nt(�ψ�B(M)) and that Cl(I nt(�ψ�B(M))) = X . Then, by induction hypothesis,
x ∈ I nt(‖ψ‖M) and Cl(I nt(‖ψ‖M)) = X . The former implies that there is an open
set U ∈ τR such that x ∈ U ⊆ ‖ψ‖M. In particular, since R(x) is the smallest open
neighbourhood of x , we obtain R(x) ⊆ ‖ψ‖M. Therefore, x ∈ ‖Kψ‖M. ��
Theorem 1 S4.2K is sound and complete with respect to the class of all topo-models.

Proof For completeness, let ϕ ∈ LK such that ϕ /∈ S4.2K . Then, by Lemma 3, there
exists a Kripke model M = (X , R, V ) based on the reflexive and transitive cofinal frame
(X , R) such that ‖ϕ‖M �= X . Thus, by Propositition 7, we have �ϕ�B(M) �= X , where
B(M) = (X , τR, V ) is the corresponding topo-model. ��
6.2.2 Soundness and completeness of L[∀]K

The full knowledge fragment L[∀]K having both K and [∀] yields the axiomatic system
L[∀]K given in Table 4.

19 A topological space (X , τ ) is an Alexandroff space if τ is closed under arbitrary intersections, i.e.,⋂A ∈ τ for all A ⊆ τ .
20 A ⊆ X is called an upset of (X , R) if for each x, y ∈ X , x Ry and x ∈ A imply y ∈ A.
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Table 4 The axiomatization of
L[∀]K (CPL) All classical propositional tautologies and (MP)

(S5[∀]) All S5 axioms and rules for the modality [∀]
(S4K ) All S4 axioms and rules for the modality K

(Ax1) [∀]ϕ → Kϕ

(Ax2) [∃]Kϕ → [∀]K̂ϕ

Theorem 2 L[∀]K is sound and complete with respect to the class of all topo-models.

Proof Soundness is easy to see, we here only prove that the axiom ([∃]Kϕ → [∀]K̂ϕ)

is valid in all topo-models. Let M = (X , τ, V ) be a topo-model, ϕ ∈ L[∀]K , and x ∈ X
such that x ∈ �[∃]Kϕ�. This means that there exist y ∈ X such that y ∈ I nt(�ϕ�) and
Cl(I nt(�ϕ�)) = X . Note that for any z ∈ X ,

z ∈ �K̂ϕ� iff z /∈ I nt(�¬ϕ�) or Cl(I nt(�¬ϕ�)) �= X ,

(see Proposition 4-.3.). Therefore, in order to show �K̂ϕ� = X , it suffices to show that
Cl(I nt(�¬ϕ�)) �= X . Since y ∈ I nt(�ϕ�), we know that I nt(Cl(�ϕ�)) �= ∅ (as I nt(�ϕ�) ⊆
I nt(Cl(�ϕ�))). Hence, Cl(I nt(�¬ϕ�)) �= X . We therefore obtain that �K̂ϕ� = X , hence,
[∀]K̂ϕ holds everywhere inM.

For completeness, we use a well-known Kripke completeness result for the logic
obtained by extending S4.2K with the universal modality [∀]. More precisely, it has been
shown in (Goranko&Passy, 1992) that themodal system L0[∀]K :=S5[∀]+S4.2K +([∀]ϕ →
Kϕ), simply obtained by replacing (Ax2) in Table 4 by the axiom (.2K ):=K̂ Kϕ → K K̂ϕ,
is complete with respect to the class of reflexive and transitive cofinal Kriple frames when
K is interpreted as the standard Kripke modality and [∀] as the global modality. It is not
hard to see that the axiom (.2K ) is derivable in L[∀]K (by using Ax1 and Ax2 in Table
4), hence, L[∀]K is stronger than L0[∀]K , i.e., that L0[∀]K ⊆ L[∀]K . Let ϕ ∈ L[∀]K such that

ϕ /∈ L[∀]K . Thus, ϕ /∈ L0[∀]K . Then, by the relational completeness of L0[∀]K , there exists a
reflexive and transitive cofinal KripkemodelM = (X , R, V ) such that ‖ϕ‖M �= X . Then,
by Proposition 7, we obtain [[ϕ]]B(M) �= X , where B(M) = (X , τR, V ). ��

6.3 The belief fragmentLB: KD45B

In this section, we prove that the logic of belief on all topo-models is the standard belief
system KD45B , and it moreover has the finite model property with respect to the class of
topo-models.

6.3.1 Soundness of KD45B

Proposition 8 KD45B is sound with respect to the class of all topo-models.

Proof The soundness, as usual, is shown by proving that all axioms are validities and that
all derivation rules preserve validities. The cases for the axioms (4B ) and (5B) and the
inference rules are elementary, whereas the validity of (KB ) in the class of all topological
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Fig. 8 An example of a brush
and of a pin, where the top
ellipses illustrate the final
clusters and an arrow relates the
state it started from to every
element in the cluster

(a) (b)

spaces follows from Lemma 2 as follows. Let M = (X , E0, τ, V ) and ϕ,ψ ∈ LB . We
need to show that �B(ϕ ∧ ψ) ↔ Bϕ ∧ Bψ� = X , i.e., that �B(ϕ ∧ ψ)� = �Bϕ ∧
Bψ�. Let x ∈ B(ϕ ∧ ψ). This implies, by the semantics of B that �B(ϕ ∧ ψ)� = X , i.e.,
Cl(I nt(�ϕ∧ψ�)) = X . We therefore obtain that X = Cl(I nt(�ϕ∧ψ�)) = Cl(I nt(�ϕ�)∩
I nt(�ψ�)) ⊆ Cl(I nt(�ϕ�)) ∩ Cl(I nt(�ψ�)) = �Bϕ ∧ Bψ�. For the other direction,
suppose x ∈ �Bϕ ∧ Bψ�. We therefore have x ∈ �Bϕ� and x ∈ �Bψ�. Then, by the
semantics of B, we obtain that Cl(I nt(�ϕ�)) = X and Cl(I nt(�ψ�)) = X . This means
that both I nt(�ϕ�) and I nt(�ψ�) are dense in (X , τ ). Hence, by Lemma 2, we obtain
Cl(I nt(�ϕ�) ∩ I nt(�ψ�)) = X . Similarly to the argument above, we then have X =
Cl(I nt(�ϕ�) ∩ I nt(�ψ�)) = Cl(I nt(�ϕ ∧ ψ�)) = �B(ϕ ∧ ψ)�. ��

6.3.2 Completeness of KD45B

For completeness, we use the following connection between the KD45-Kripke frames and
topological spaces.

Connection between KD45-frames and topological spaces. Recall that KD45-frames are
serial, transitive and Euclidean Kripke frames. Since truth of modal formulas with respect
to the standard relational semantics is preserved under taking generated submodels (see,
e.g., Blackburn et al., 2001, Proposition 2.6), we can use the following simplified relational
structures as Kripke frames of KD45B .

Definition 10 (Brush/pin)

• A relational frame (X , R) is called a brush if there exists a nonempty subset C ⊆ X
such that R = X × C;

• A brush is called a pin if |X \ C| = 1.

Clearly, if such a C exists, it is unique and it is the final cluster of the brush. It is easy
to see that every brush is serial, transitive, and Euclidean (see Fig. 8). For the proof of the
following lemma see, e.g., (Chagrov and Zakharyaschev, 1997, Chapter 5) and (Blackburn
et al., 2001, Chapters 2, 4).

Lemma 5 KD45B is a sound and complete with respect to the class of brushes, and with
respect to the class of pins. In fact, KD45B is sound and complete with respect to the class
of finite pins.

We can build a topological space from a given pin. For any frame (X , R), let R+ denote
the reflexive closure of R, defined as

R+ = R ∪ {(x, x) | x ∈ X}.
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(a) (b) (c)

Fig. 9 From pins to topological spaces

Given a pin (X , R), the set τR+ = {R+(x) | x ∈ X} constitutes a topology on X . In fact,
in this special case of pins, we have τR+ = {X , C,∅} where C is the final unique cluster of
(X , R). Therefore, it is easy to see that (X , τR+) is a topological space.21 In fact, (X , τR+)

is a generalized Sierpiński space where C does not have to be a singleton (see Fig. 9).
This construction leads to a natural correspondence between pins and topological spaces

for the language LB . In particular, for any Kripke modelM = (W , R, V ) based on a pin,
we set I (M) = (X , τR+ , V ). Moreover, any two such models M and I (M) make the
same formulas of LB true at the same states, as shown in Proposition 9.

Proposition 9 For all ϕ ∈ LB and any Kripke model M = (W , R, V ) based on a pin,

‖ϕ‖M = �ϕ�I (M).

Proof Theproof followsby subformula induction onϕ; cases for the propositional variables
and the Boolean connectives are elementary. So assume inductively that the result holds
for ψ ; we must show that it holds also for ϕ:=Bψ . Observe that, given a Kripke model
M = (W , R, V ) based on a pin (X , R), we have

‖Bψ‖M =
{
X if ‖ψ‖M ⊇ C
∅ otherwise

and, �Bψ�I (M) =
{
X if �ψ�I (M) ⊇ C
∅ otherwise

whereC is the final cluster of (X , R). By induction hypothesis,we have �ψ�I (M) = ‖ψ‖M,
therefore, �Bψ�I (M) = ‖Bψ‖M. ��

Theorem 3 KD45B is sound and complete with respect to the class of all topo-models.
Moreover, KD45B has the finite model property.

Proof Soundness is given in Proposition 8. For completeness, let ϕ ∈ LB such that ϕ /∈
KD45B . Then, by Lemma 5, there exists a finite pin M = (X , R, V ) with ‖ϕ‖M �=
X . Thus, by Propositition 9, we have that �ϕ�I (M) �= X , where I (M) = (X , τR+ , V ) is
the corresponding topo-model. Since I (M) = (X , τR+ , V ) is finite, we have also shown
that KD45B has the finite model property. ��

21 τR+ is in fact an Alexandroff hereditarily extremaly disconnected space. However, these extra properties
are not of interest in this paper.

123



Synthese (2022) 200 :512 Page 37 of 51 512

Table 5 Stalnaker’s knowledge and belief logic Stal

(CPL) All class. prop. taut. and (MP)

(S4K ) All S4 axioms and rules for K

(DB ) Bϕ → ¬B¬ϕ Consistency of belief

(sPI) Bϕ → K Bϕ Strong positive introspection

(sNI) ¬Bϕ → K¬Bϕ Strong negative introspection

(KB) Kϕ → Bϕ Knowledge implies belief

(FB) Bϕ → BKϕ Full belief

6.4 The knowledge-belief fragmentLKB: Stal revisited

In this section, we show that Stalnaker’s system Stal of knowledge and belief, given in
Table 5, is sound and complete with respect to the class of all topo-models under our
proposed semantics for knowledge and belief.22 As noted in the introduction, in previous
work Baltag et al. (2013, 2019b), we provided a topological completeness result for this
system for the restricted class of extremally disconnected spaces. Therefore, we here show
that the topological semantics presented in this paper generalizes the one proposed in
Baltag et al. (2013, 2019b) for Stalnaker’s combined system Stal.

Theorem 4 Stal is sound and complete with respect to the class of all topo-models.

Proof For soundness, we here only show the validity of the axiom (FB): the validity
proofs of the other axioms are either trivial or follow from the previous results. Let M =
(X , τ, V ) be a topo-model, ϕ ∈ LK B and x ∈ X . Suppose x ∈ �Bϕ�. Hence, �Bϕ� �=
∅. This implies, by the semantics of B, that �Bϕ� = Cl(I nt(�ϕ�)) = X . Recall that
x ∈ �Kϕ� iff x ∈ I nt(�ϕ�) and Cl(I nt(�ϕ�)) = X . By the assumption, we already
know that Cl(I nt(�ϕ�)) = X . Thus, in this particular case, �Kϕ� = I nt(�ϕ�). Therefore,
X = Cl(I nt(�ϕ�)) = Cl(I nt(I nt(�ϕ�))) = Cl(I nt(�Kϕ�)) implying that BKϕ holds
everywhere in M.

For completeness,we followa similarmethod as in the proof ofTheorem2.Letϕ ∈ LK B

such that ϕ /∈ Stal. Then, since �Stal Bϕ ↔ K̂ Kϕ, there exists a ψ ∈ LK such that
�Stal ϕ ↔ ψ (this is obtained by replacing every occurrence of B in ϕ by K̂ K ). Therefore,
ψ /∈ Stal. Moreover, since S4.2K ⊆ Stal, we obtainψ /∈ S4.2K . Then, by Theorem 1, there
exists a topo-model M = (X , τ, V ) such that �ψ� �= X . Since Stal is sound with respect
to all topo-models and �Stal ϕ ↔ ψ , we conclude �ϕ� �= X . ��

6.5 The factive evidence fragmentL[∀]�0�: Log∀��0

The logic Log∀��0
of factive evidence is given by the axiom schemas and inference rules

in Table 6 over the language L[∀]�0�.
This section presents the proof of Theorem 5. Strong completeness and strong finite

model property are defined standardly (see, e.g., Blackburn et al., 2001, Definition 4.10-
Proposition 4.12 and Definition 6.6, respectively).

22 What justifies the properties of knowledge and belief stated in Stal may be debatable, though not in
the scope of this paper. We refer to (Bjorndahl & Özgün, 2019) for a topological-based reformulation of
Stalnaker’s system.
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Table 6 The axiomatization of Log∀��0

(CPL) All classical propositional tautologies and (MP)

(S5[∀]) All S5 axioms and rules for the modality [∀]
(S4�) All S4 axioms and rules for the modality �
(4�0

) �0ϕ → �0�0ϕ

Universality (U) [∀]ϕ → �0ϕ

Factive Evidence (FE) �0ϕ → �ϕ

Pullouta (�0ϕ ∧ [∀]ψ) → �0(ϕ ∧ [∀]ψ)

Monotonicity rule for �0 from ϕ → ψ , infer �0ϕ → �0ψ

a This axiom originates in (van Benthem et al., 2012, 2014), where it is stated as an equivalence rather than
an implication. But the converse is provable in our system from the Monotonicity rule for �0, (FE), and
S4�

Theorem 5 The logic Log∀��0
of factive evidence is sound and strongly complete with

respect to the class of all topo-models. Moreover, it has the strong finite model property,
therefore, it is decidable.

The proof of Theorem 5 is technically the most challenging result of this paper. The key
difficulty consists in guaranteeing that the natural topology for which � acts as interior
operator is exactly the topology generated by the neighborhood family associated to �0.
Though the main steps of the proof may look familiar, involving knownmethods (a canoni-
cal quasi-model construction, a filtration argument, and then making multiple copies of the
worlds to yield a finite model with the right properties), addressing the above-mentioned
difficulty requires a non-standard application of these methods, as well as a number of
additional notions and results, and a careful treatment of each of the steps. The plan of
the proof is as follows. Since the soundness proof is straightforward, we here focus on
completeness and the finite model property (then decidability follows immediately). We
first prove strong completeness of Log∀��0

with respect to a canonical quasi-model. We
then continue with proving the strong finite quasi-model property for Log∀��0

via a fil-
tration argument. In the last step, we prove that every finite quasi-model is equivalent
to a finite Alexandroff quasi-model by making multiple copies of the worlds in order to
put the model in the right shape. As Alexandroff quasi-models are modally equivalent to
Alexandroff topo-e-models (Proposition 11), the result follows.

6.5.1 Quasi-model construction

A quasi-model is a tupleM = (X , E0,≤, V ), where (X , E0, V ) is an evidence model and
≤ is a preorder such that every e ∈ E0 is an upset of (X ,≤) (see footnote 20 to recall the
definition of an upset). Given a preordered set (X ,≤), the set Up≤(X) denotes the set of
all upsets of (X ,≤). We denote by ↑x = {y ∈ X | x ≤ y} the upset generated by x . We
use the same notations as for topo-e-models, for example, E for the closure of E0 under
nonempty finite intersections, and τE for the topology generated by E .

The semantics for the language L[∀]�0� on quasi-models is defined the same way as
on topo-e-models (see Definition 9), except that for � we (do not use the topology, but
instead we) use the standard Kripke semantics based on the relation≤. More precisely, the
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semantics for the modalities [∀], �0, and � are given by the following clauses:

‖[∀]ϕ‖M = {x ∈ X | ‖ϕ‖M = X}
‖�0ϕ‖M = {x ∈ X | ∃e ∈ E0 (x ∈ e and e ⊆ ‖ϕ‖M)}
‖�ϕ‖M = {x ∈ X | ∀y ∈ X(x ≤ y implies y ∈ ‖ϕ‖M)}

We again omit the superscripts for the model when it is clear from the context.
A quasi-modelM = (X , E0,≤, V ) is called Alexandroff if the topology τE is Alexan-

droff and ≤ is the specialization preorder �E on X , where

x �E y iff x ∈ Cl({y}) (i.e., ∀U ∈ τE (x ∈ U implies y ∈ U )).

Proposition 10 For every quasi-model M = (X , E0,≤, V ) the following are equivalent:

1. M is Alexandroff;
2. τE = Up≤(X);
3. for every x ∈ X, ↑x is in τE .

Proof (1)⇒(3): Suppose M is Alexandroff, i.e., τE is Alexandroff and ≤ = �E . Let
x ∈ X . Then we have: ↑x = {y ∈ X | x ≤ y} = {y ∈ X | x �E y} = {y ∈ X | ∀U ∈
τE (x ∈ U ⇒ y ∈ U )} = ⋂{U ∈ τE | x ∈ U }. Since τE is an Alexandroff space, we have⋂{U ∈ τE | x ∈ U } ∈ τE , and hence ↑x =⋂{U ∈ τE | x ∈ U } ∈ τE .

(3)⇒(2): It is easy to see that τE ⊆ Up≤(X) (since τE is generated by E0 and every
element of E0 is an upset of (X ,≤)). Now let A ∈ Up≤(X). Since A is an upset of (X ,≤),
we have A = ⋃{↑x | x ∈ A}. Then, by (3) (and τE being closed under arbitrary unions),
we obtain A ∈ τE .

(2)⇒(1): Suppose τE = Up≤(X) and let A ⊆ τE . By (2), every U ∈ A is an upset wrt
of (X ,≤), hence,

⋂A is an upset as well. Therefore, by (2),
⋂A ∈ τE . This proves that

τE is Alexandroff. (2) also implies that ↑x is the least open neighbourhood of x in τE , i.e.,
↑x ⊆ U , for all U such that x ∈ U ∈ τE . Therefore, ≤ is included in �E . For the other
direction, suppose x �E y. This implies, in particular, that y ∈ ↑x (since x ∈ ↑x ∈ τE ),
i.e., x ≤ y. ��

There is a natural one-to-one correspondence between Alexandroff quasi-models and
Alexandroff topo-e-models, given by putting, for any Alexandroff quasi-model M =
(X , E0,≤, V ), B(M) = (X , E0, τE , V ). Moreover, M and B(M) satisfy the same for-
mulas of L[∀]�0� at the same points, as shown in Proposition 11 below.

Proposition 11 For all ϕ ∈ L[∀]�0� and every Alexandroff quasi-model M = (X , E0,≤
, V ), we have

‖ϕ‖M = �ϕ�B(M).

Proof The proof follows by subformula induction on ϕ; cases for the propositional vari-
ables, the Boolean connectives, and the modalities [∀] and �0 are trivial as the semantics
for these cases are defined exactly the same way in both structures. For the modality �,
recall that it is interpreted as the interior operator of the topology τE and use Proposition
10. ��
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Therefore, as stated by Proposition 11, Alexandroff quasi-models provide just another
presentation of Alexandroff topo-e-models with respect to the language L[∀]�0�.

Having introduced the auxiliary notions and facts, we are ready to prove Theorem 5.
This proof goes through three steps:

1. strong completeness for quasi-models;
2. strong finite quasi-model property; and
3. every finite quasi-model is modally equivalent to a finite Alexandroff quasi-model

(hence, to a topo-e-model).

Step 1: strong completeness for quasi-models The proof follows via a canonical quasi-
model construction.

Lemma 6 (Lindenbaum’s Lemma) Every Log∀��0
-consistent set can be extended to a

maximally consistent one.

Let us now fix a consistent set of sentence �0 ⊆ L[∀]�0�. Our goal is to construct a
quasi-model for �0. By Lemma 6, there exists a maximally consistent set T0 such that
�0 ⊆ T0. For any two maximally consistent sets T and S of Log∀��0

, we put:

T ∼ S iff for all ϕ ∈ L[∀]�0� : ([∀]ϕ ∈ T implies ϕ ∈ S) ,

T ≤ S iff for all ϕ ∈ L[∀]�0� : (�ϕ ∈ T implies ϕ ∈ S) .

Since [∀] is an S5 modality, ∼ is an equivalence relation. Similarly, as � is an S4
modality, ≤ is a preorder. Moreover, since � [∀]ϕ → �ϕ (by axioms (U) and (FE) in
Table 6), we obtain that ≤ is included in ∼, i.e., ≤⊆∼.
Definition 11 (Canonical quasi-model for T0) The canonical quasi model for T0 is defined
as M = (X , E0,≤, V ), where

• X = {T ⊆ L[∀]�0� | T is a maximally consistent set with T ∼ T0};
• E0 = {�̂0ϕ | ϕ ∈ L[∀]�0� with [∃]�0ϕ ∈ T0}, where θ̂ :={T ∈ X | θ ∈ T } for any

θ ∈ L[∀]�0�;
• ≤ is the restriction of the above preorder ≤ to X ; and
• V (p) = p̂.

In the following, variables T , S, . . . range over X .

Lemma 7 M = (X , E0,≤, V ) is a quasi-model.

Proof In order to show that M is a quasi model, we need to show that (1) X ∈ E0 and
∅ /∈ E0, (2) ≤ is a preorder, and (3) E0 ⊆ Up≤(X). Note that (2) follows from the fact that
� is an S4 modality.

(1): Since� �0 (by Nec[∀] and axiom (U) in Table 6), we have �̂0 = X . Moreoever,

by axiom (T[∀]), we obtain [∃]�0 ∈ T0, hence, �̂0 = X ∈ E0. And, obviously, ∅ /∈ E0.
(3): Let e ∈ E0. By the definition of E0, we have e = �̂0ϕ for some ϕ ∈ L[∀]�0� such

that [∃]�0ϕ ∈ T0. Now suppose T , S ∈ X with T ∈ �̂0ϕ (i.e., �0ϕ ∈ T ) and T ≤ S.
Note that � �0ϕ → ��0ϕ (by axioms (4�0 ) and (FE)). Therefore, ��0ϕ ∈ T . Since

T ≤ S, we then obtain �0ϕ ∈ S, i.e., S ∈ �̂0ϕ. Thus, as S has been chosen arbitrarily, we
conclude that e ∈ Up≤(X). ��

123



Synthese (2022) 200 :512 Page 41 of 51 512

Lemma 8 (Existence Lemma for [∀]) For every ϕ ∈ L[∀]�0�, [̂∃]ϕ �= ∅ iff ϕ̂ �= ∅.

Proof (⇒) Suppose [̂∃]ϕ �= ∅, i.e., there is T ∈ X such that T ∈ [̂∃]ϕ. This means
[∃]ϕ ∈ T . This implies that the set 
:={[∀]ψ ∈ L[∀]�0� | [∀]ψ ∈ T } ∪ {ϕ} is consistent.
Otherwise, there exist finitely many sentences [∀]ψ1, . . . , [∀]ψn ∈ T such that� ([∀]ψ1∧
. . . ∧ [∀]ψn) → ¬ϕ. But then, since [∀] is an S5-modality, we obtain that � ([∀]ψ1 ∧
. . . ∧ [∀]ψn) → [∀]¬ϕ. Hence, as [∀]ψ1 ∧ . . . ∧ [∀]ψn ∈ T , we get [∀]¬ϕ ∈ T , which
combined with [∃]ϕ ∈ T , implies that T is inconsistent, contradicting T being consistent.
Therefore, given that 
 is consistent, by Lindenbaum’s Lemma (Lemma 6), there exists
some maximally consistent set S such that 
 ⊆ S. It is easy to see that this implies ϕ ∈ S
and S ∼ T ∼ T0 (i.e., S ∈ X ). Therefore, S ∈ ϕ̂ implying that ϕ̂ �= ∅.

(⇐) Suppose ϕ̂ �= ∅, i.e., there is T ∈ X such that T ∈ ϕ̂. Then, since ϕ → [∃]ϕ ∈ T
(by axiom (T[∀])), we obtain [∃]ϕ ∈ T , implying that [̂∃]ϕ �= ∅. ��

Lemma 9 (Existence Lemma for �) For every ϕ ∈ L[∀]�0� and T ∈ X, T ∈ ♦̂ϕ iff there
is S ∈ ϕ̂ such that T ≤ S.

Proof (⇒) Assume T ∈ ♦̂ϕ, that is, ♦ϕ ∈ T . This implies that the set 
:={�ψ ∈
L[∀]�0� | �ψ ∈ T } ∪ {ϕ} is consistent. Otherwise there exist finitely many sentences
�ψ1, . . . ,�ψn ∈ T such that � (�ψ1 ∧ . . . ∧�ψn) → ¬ϕ. But then, since � is an S4-
modality,weobtain that� (�ψ1∧. . .∧�ψn)→ �¬ϕ.Hence, as�ψ1∧. . .∧�ψn ∈ T ,we
get �¬ϕ ∈ T , which combined with ♦ϕ ∈ T , implies that T is inconsistent, contradicting
T being consistent. Therefore, given that
 is consistent, byLindenbaum’sLemma (Lemma
6), there exists some maximally consistent set S such that 
 ⊆ S. It is easy to see that this
implies ϕ ∈ S and T ≤ S. Since ≤ is included in ∼, we also obtain S ∼ T ∼ T0, i.e.,
S ∈ X . Therefore, S ∈ ϕ̂.

(⇐) Suppose there is S ∈ ϕ̂ such that T ≤ S. Then, by definition of ≤, ♦ϕ ∈ T , i.e.,
T ∈ ♦̂ϕ. ��

Lemma 10 (Existence Lemma for �0) For every ϕ ∈ L[∀]�0� and T ∈ X, T ∈ �̂0ϕ iff
there exist e ∈ E0 such that T ∈ e and e ⊆ ϕ̂.

Proof (⇒) Suppose T ∈ �̂0ϕ, i.e. �0ϕ ∈ T . Since T ∼ T0, we get [∃]�0ϕ ∈ T0. This
means �̂0ϕ ∈ E0. Taking e:=�̂0ϕ, we get e ∈ E0 and T ∈ e. Moreover, since� �0ϕ → ϕ,
we obtain e = �̂0ϕ ⊆ ϕ̂.

(⇐) Suppose there is e ∈ E0 such that T ∈ e and e ⊆ ϕ̂. Then, by the definition of E0,
we obtain that e = �̂0θ for some θ such that [∃]�0θ ∈ T0. Therefore, T ∈ e = �̂0θ ⊆ ϕ̂.
This implies that the set 
:={�0θ} ∪ {[∀]ψ ∈ L[∀]�0� : [∀]ψ ∈ T } ∪ {¬ϕ} is incon-
sistent. Otherwise, by Lindenbaum’s Lemma (Lemma 6), there exists a S ∈ X such that
�0θ ∈ S and ¬ϕ ∈ S. The former means that S ∈ �̂0θ and the latter means (since S is
maximal) that S /∈ ϕ̂. Thus, S ∈ �̂0θ\ϕ̂, contradicting the assumption �̂0θ ⊆ ϕ̂. There-
fore, given that 
 is inconsistent, there exists a finite set {[∀]ψ1, . . . , [∀]ψn} ⊆ 
 such
that � ∧

i≤n[∀]ψi → (�0θ → ϕ). Since [∀] is a normal modality and T is maximal,
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∧
i≤n[∀]ψi = [∀]γ for some [∀]γ ∈ T . We then have

1. � [∀]γ → (�0θ CPL
2. � ([∀]γ ∧�0θ)→ ϕ CPL
3. � �0([∀]γ ∧�0θ)→ �0ϕ Monotonici t yof �0

4. � �0�0([∀]γ ∧ θ) → �0ϕ Pulloutaxiom, right − to− le f t
5. � �0([∀]γ ∧ θ)→ �0ϕ since � �0ϕ ↔ �0�0ϕ

6. � ([∀]γ ∧�0θ)→ �0ϕ Pulloutaxiom

Therefore, since [∀]γ,�0θ ∈ T , and T is maximal, we obtain�0ϕ ∈ T , i.e., T ∈ �̂0ϕ.
��

Lemma 11 (Truth Lemma) For every formula ϕ ∈ L[∀]�0�, we have

‖ϕ‖M = ϕ̂.

Proof The proof follows standardly by subformula induction on ϕ, where the inductive
step for each modality uses the corresponding Existence Lemma, as usual. ��
Proposition 12 Log∀��0

is sound and strongly complete for quasi-models.

Proof Let �0 be a Log∀��0
-consistent set of formulas. Then, by Lindenbaum’s Lemma

(Lemma 6), �0 can be extended to a maximally consistent set T0. We can then construct a
canonical quasi-model M = (X , E0,≤, V ) for T0 as in Definition 11, and by Lemma 11,
obtain that T0 ∈ ‖ϕ‖M for all ϕ ∈ �0. ��
Step 2: strong finite quasi-model property In this section, we prove that the logic
Log∀��0

has the strong finite quasi-model property. We do so via a filtration argument
using the canonical model described in Definition 11.

Let ϕ0 be a Log∀��0
-consistent formula. By Lemma 6, there exist a maximally con-

sistent set T0 such that ϕ0 ∈ T0. Consider the canonical quasi-model M = (X , E0,≤, V )

for T0 (as given in Definition 11). We will use two facts about this model:

1. ‖ϕ‖M = ϕ̂, for all ϕ ∈ L[∀]�0�; and

2. E0 = {�̂0ϕ | [∃]�0ϕ ∈ T0} = {‖�0ϕ‖M | [∃]�0ϕ ∈ T0}.
Closure conditions for�: Let� be a finite set such that: (1) ϕ0 ∈ �; (2)� is closed under
subformulas; (3) if �0ϕ ∈ � then ��0ϕ ∈ �; (4) � is closed under single negations; (5)
�0 ∈ �. For T , S ∈ X , put

T ≡� S iff for all ψ ∈ � (T ∈ ‖ψ‖M iff S ∈ ‖ψ‖M),

and denote by |T |:={S ∈ X | T ≡� S} the equivalence class of T modulo ≡� . Also, put
X f = {|T | | T ∈ X}, and more generally put e f = {|T | | T ∈ e} for every e ∈ E0. We
now define a filtration M f = (X f , E f

0 ,≤ f , V f ) of M through �, where

• X f = {|T | | T ∈ X};
• |T | ≤ f |S| iff for all �ψ ∈ �

(
T ∈ ‖�ψ‖M implies S ∈ ‖�ψ‖M)

;

• E f
0 = {e f | e = �̂0ψ = ‖�0ψ‖M ∈ E0 for some ψ such that �0ψ ∈ �};
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• V f (p) = {|T | : T ∈ V (p)} for all p ∈ �, and V f (p) = ∅ otherwise.
Lemma 12 M f is a finite quasi-model (of size bounded by a computable function of ϕ0).

Proof Since � is finite, there are only finitely many equivalence classes modulo ≡� .
Therefore, X f is finite. In fact, X f has at most 2|�| states. It is obvious that ≤ f is a
preorder. Moreover, since X = ‖�0‖M and �0 ∈ �, we have X f ∈ E f

0 . Also, since

e �= ∅ for all e ∈ E0, we have each e f ∈ E f
0 nonempty. So we only have to prove that

the evidence sets e f are upsets of (X f ,≤ f ). For this, let e f ∈ E f
0 , |T |, |S| ∈ X f such

that |T | ∈ e f and |T | ≤ f |S|. We need to show that |S| ∈ e f . By the definition of E f
0 ,

we know that e = �̂0ψ = ‖�0ψ‖M for some �0ψ ∈ �. From |T | ∈ e f , it follows that
there is some T ′ ≡� T such that T ′ ∈ e = ‖�0ψ‖M, and since �0ψ ∈ �, we have
T ∈ ‖�0ψ‖M. Therefore, since � �0ψ → ��0ψ (this is easy to see from axioms (4�0 )
and (FE) stated in Table 6), we have T ∈ ‖��0ψ‖M. But ��0ψ ∈ � (by the closure
assumptions on �), so |T | ≤ f |S| gives us S ∈ ‖��0ψ |‖M. By the axiom (T�), we
obtain S ∈ ‖�0ψ‖M = �̂0ψ = e, hence |S| ∈ e f . ��
Lemma 13 (Filtration Lemma) For every formula ϕ ∈ �, we have ‖ϕ‖M f = {|T | | T ∈
‖ϕ‖M}.
Proof The proof follows by subformula induction on ϕ ∈ �; cases for the propositional
variables, the Boolean connectives, and the modalities [∀]ψ and �ψ are treated as usual
(in the last case using the filtration property of ≤ f that: if T ≤ S than |T | ≤ f |S|). We
only prove here the inductive case for ϕ:=�0ψ :

(⇒) Let |T | ∈ ‖�0ψ‖M f
. This means that there exists some e f ∈ E f

0 s.t. |T | ∈ e f ⊆
‖ψ‖M f

. By the definition of E f
0 , there exists some χ ∈ L[∀]�0� such that �0χ ∈ � and

e = �̂0χ = ‖�0χ‖M ∈ E0. From |T | ∈ e f , it follows that there is some T ′ ≡� T such
that T ′ ∈ e = ‖�0χ‖M, and since �0χ ∈ �, we have T ∈ ‖�0χ‖M = e. Now let S ∈ e
be any element of e. Then, by the definition of e f and the assumption that e f ⊆ ‖ψ‖M f

,
we obtain |S| ∈ e f ⊆ ‖ψ‖M f

. So, |S| ∈ ‖ψ‖M f
. Therefore, by the induction hypothesis,

S ∈ ‖ψ‖M, hence, e ⊆ ‖ψ‖M. Thus, we have found an evidence set e ∈ E0 such that
T ∈ e ⊆ ‖ψ‖M, i.e., shown that T ∈ ‖�0ψ‖M.

(⇐) Let T ∈ ‖�0ψ‖M. It is easy to see that [∃]�0ψ ∈ T (since � �0ψ → [∃]�0ψ),
and so also [∃]�0ψ ∈ T0 (since T ∈ X , thus, T ∼ T0). This means that the set e:=�̂0ψ =
‖�0ψ‖M ∈ E0 is an evidence set in the canonical model (see Definition 11), and since
�0ψ ∈ �, we conclude that e f ∈ E f

0 . We obviously have T ∈ e, and so |T | ∈ e f .
Since � �0ψ → ψ , we have e = ‖�0ψ‖M ⊆ ‖ψ‖M, and hence e f ⊆ {|S| | S ∈
‖ψ‖M} = ‖ψ‖M f

(by the induction hypothesis). Thus, we have found e f ∈ E f
0 such that

|T | ∈ e f ⊆ ‖ψ‖M f
, i.e., shown that |T | ∈ ‖�0ψ‖M f

. ��
Theorem 6 Log∀��0

has strong finite quasi-model property.

Proof Let ϕ0 be a Log∀��0
-consistent formula. Then, by Lindenbaum’s Lemma (Lemma

6), ϕ0 can be extended to a maximally consistent set T0 such that ϕ0 ∈ T0. We can then
construct a canonical quasi-model M = (X , E0,≤, V ) for T0 as in Definition 11, and by
Lemma 11 obtain that T0 ∈ ‖ϕ0‖M. Then, by Lemma 13, we have |T0| ∈ ‖ϕ0‖M f

, where
M f is the filtration ofM through the finite set� that is obtained by closing {ϕ0} under the
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closure conditions (1)-(5). By Lemma 12, we know that M f is a finite model whose size
is bounded by 2|�|, therefore we conclude that Log∀��0

has the strong finite quasi-model
property. ��
Step 3: equivalence of finite quasi-models and finite alexandroff quasi-models In this
section, we prove that every finite quasi-model is modally equivalent to a finite Alexandroff
quasi-model, and therefore, to a topo-e-model with respect to the language L[∀]�0�.

Let M = (X , E0,≤, V ) be a finite quasi-model. We form a new structure M̃ =
(X̃ , Ẽ0, ≤̃, Ṽ ), by putting:

• X̃ = X × {0, 1};
• Ṽ (p) = V (p)× {0, 1};
• (x, i)≤̃(y, j) iff x ≤ y and i = j ;
• Ẽ0 = {ei | e ∈ E0, i ∈ {0, 1}} ∪ {eyi | y ∈ e ∈ E0, i ∈ {0, 1}} ∪ {X̃}, where we used

notations

– ei = e × {i} = {(x, i) | x ∈ e}, and
– eyi = ↑y × {i} ∪ e × {1− i} = {(x, i) | y ≤ x} ∪ e1−i .

Lemma 14 M̃ is a finite quasi-model.

Proof It is easy to see thatM̃ is finite, in fact, it is of size 2·|X |. It is guaranteed by definition
that X̃ ∈ Ẽ0 and ∅ /∈ Ẽ0. To show that every element of Ẽ0 is an upset of (X̃ , ≤̃), let ẽ ∈ Ẽ0
and (x, i), (y, j) ∈ X̃ such that (x, i) ∈ ẽ and (x, i)≤̃(y, j). Then, by the definition of ≤̃,
we know that x ≤ y and i = j . We have two cases: if ẽ = e × {i} for some e ∈ E0, then
y ∈ e (since e ∈ Up≤(X), x ∈ e, and x ≤ y), therefore, (y, i) ∈ e×{i} = ẽ. If ẽ = ezk for
some z ∈ X and k ∈ {0, 1}, we again have two cases. If k = 1− i , then the result follows
as in the first case. If k = i , then ↑z × i ⊆ ẽ. Since (x, i) ∈ ẽ, we obtain that z ≤ x , and
thus, z ≤ y (since ≤ is transitive). We therefore conclude that (y, i) ∈ ↑z × i ⊆ ẽ. ��
Notation: For any set Ỹ ⊆ X̃ , put ỸX :={y ∈ X | (y, i) ∈ Ỹ for some i ∈ {0, 1}} for
the set consisting of first components of all members of Ỹ . It is easy to see that we have
(Ỹ ∪ Z̃)X = ỸX ∪ Z̃ X , and X̃ X = X .

Lemma 15 If y ∈ e ∈ E0, i ∈ {0, 1}, and ẽ ∈ {ei , eyi }, then we have:

1. ẽX = e;
2. eyi ∩ ei = ↑(y, i), where ↑(y, i) = {x̃ ∈ X̃ | (y, i)≤̃x̃} = {(x, i) | y ≤ x}.
Proof (1): If ẽ = ei , then ẽX = (e × {i})X = e. If ẽ = eyi , then ẽX = (↑y × {i})X ∪ (e ×
{1− i})X = ↑y ∪ e = e (since e ∈ Up≤(X) and y ∈ e, so ↑y ⊆ e).

(2): eyi ∩ei = (↑y × {i} ∪ e × {1− i})∩(e × {i}) = (↑y∩e)×{i} = ↑y×{i} = ↑(y, i)
(since ↑y ⊆ e). ��
Lemma 16 M̃ is an Alexandroff quasi-model (and thus also a topo-e-model).

Proof By Proposition 10, it is enough to show that, for every (y, i) ∈ X̃ , the upset ↑(y, i)
is open in the topology τẼ generated by Ẽ0: this follows directly from Lemma 15.2.. ��

Lemma 17 (Modal Equivalence Lemma) For all ϕ ∈ L[∀]�0�, ‖ϕ‖M̃ = ‖ϕ‖M × {0, 1}.
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Proof The proof follows by subformula induction on ϕ; cases for the propositional vari-
ables, the Boolean connectives, and the modalities [∀]ψ and �ψ are straightforward. We
only prove here the inductive case for ϕ:=�0ψ .

(⇒) Suppose that (x, i) ∈ ‖�0ψ‖M̃. Then there exists some ẽ ∈ Ẽ0 such that (x, i) ∈
ẽ ⊆ ‖ψ‖M̃ = ‖ψ‖M × {0, 1} (we use the induction hypothesis for ψ in the last step).
From this, we obtain that x ∈ ẽX ⊆ (‖ψ‖M×{0, 1})X = ‖ψ‖M. But by the construction
of Ẽ0, ẽ ∈ Ẽ0 means that either ẽ = X̃ or there exist e ∈ E0, y ∈ e and j ∈ {0, 1} such that
ẽ ∈ {e j , eyj }. If the former is the case, we have x ∈ ẽX = X ⊆ ‖ψ‖M. Since X ∈ E0, by
the semantics of �0, we obtain x ∈ ‖�0ψ‖M. If the latter is the case, by Lemma 15.1.,
we have ẽX = e, so we conclude that x ∈ ẽX = e ⊆ ‖ψ‖M. Therefore, again by the
semantics of �0, we have x ∈ ‖�0ψ‖M.

(⇐) Suppose that x ∈ ‖�0ψ‖M. Then, there exists some e ∈ E0 such that x ∈ e ⊆
‖ψ‖M. Take now the set ei = e×{i} ∈ Ẽ0. Clearly, we have (x, i) ∈ ei ⊆ ‖ψ‖M×{i} ⊆
‖ψ‖M× {0, 1} = ‖ψ‖M̃ (we use the induction hypothesis for ψ in the last step), i.e., we
have (x, i) ∈ ‖�0ψ‖M̃. ��
Theorem 7 Every finite quasi-model is modally equivalent to a finite Alexandroff quasi-
model, therefore, to a topo-e-model with respect to the language L[∀]�0�.

Proof The proof immediately follows from Lemma 17 and Proposition 11: the same for-
mulas are satisfied at x in M as at (x, i) in M̃. ��
Proof of Theorem 5 Theorem5 (completeness and finitemodel property for topo-e-models)
is thus obtained as an immediate corollary of Proposition 12, Theorems 6 and 7. ��

7 Conclusions and further directions

We have studied a topological semantics for various notions of evidence, evidence-based
justification, argument, (conditional) belief, and knowledge. We have done so by using
topological structures based on the (uniform) evidence models of van Benthem and Pacuit
(2011). Several soundness, completeness, finite model property, and decidability results
concerning the logics of belief, knowledge, and evidence on all topological (evidence)
models have been provided.

This project has been of both technical and conceptual interest. Philosophically speak-
ing, we have shown that the topological perspective on epistemic logic enables refined
representations of the aforementioned notions, and, in turn, can account for subtle distinc-
tions pertaining to, e.g., (possibly true, but) misleading and non-misleading evidence. The
rich formal framework afforded by topologically interpreted modal logics allows one to
clarify and address some key issues regarding debates on the relationship between knowl-
edge and belief, defeasibility theories of knowledge, and Stalnaker’s view on belief as
subjective certainty. Mathematically, our framework takes a significant step toward devel-
oping formal systems in which we can talk about evidential grounds of knowledge and
belief, both at the syntactic and semantic level (via evidence modalities and topological
structures, respectively). This, in turn, offers novel modal languages that can potentially
express some properties of a subbasis of a topological space, enriching modal logics of
space that are designed to talk about only topologies or topological bases (more on this
below).
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Table 7 Matching epistemic and topological notions

Epistemology Topology

Basic evidence Subbasis of a topology (E0)
(Combined) evidence Basis of a topology (E)
Arguments Open sets (τE )
Justifications Dense open sets

Belief Dense interior (nowhere dense complement)

Knowledge (of P at x) x ∈ I nt(P) and I nt(P) is dense

Moreover, our topological approach contributes to the evidence setting of van Benthem
and Pacuit (2011); van Benthem et al. (2012, 2014) in many ways. First of all, this topo-
logical approach gives mathematically more natural meanings to the epistemic/doxastic
modalities we considered by providing a precise match between epistemic and topological
notions. The list of the epistemic notions studied together with their topological counter-
parts is given in Table 7 below. Besides, our proposal yields a notion of belief that coincides
with the one of van Benthem and Pacuit (2011) in “good” cases, and that behaves better
in general. More precisely, our justified belief is always consistent, in fact, it satisfies the
axioms and rules of the standard belief system KD45B on all topological spaces (Sect.
6.3). It moreover admits a natural topological reading in terms of dense-open sets (or
equivalently, in terms of nowhere dense sets) as “truth in most states of the model”, where
“most” refers to “everywhere but a nowhere dense part”. We have also shown that the logic
of evidence models under our proposed semantics has the finite model property, whereas
this was not the case in (van Benthem & Pacuit, 2011; van Benthem et al., 2012, 2014).

The formalism developed in this paper improves also on our own work (Baltag et al.,
2013, 2019b) where another topological semantics for Stalnaker’s epistemic-doxastic sys-
tem was proposed. While in Baltag et al. (2013, 2019b) we could talk about evidential
grounds of knowledge and belief only on a semantic level, the current setting provides
syntactic representations of evidence, therefore, makes the notion of evidence part of the
logic. Moreover, we showed that knowledge and belief can be interpreted on arbitrary
topological spaces (rather than on extremally disconnected or hereditarily extremally dis-
connected spaces), without changing their logic. To this end, the semantics of knowledge
and belief proposed in this paper generalizes the setting of Baltag et al. (2013, 2019b).

In the rest of this section, we name a few directions for future research.

Connection to topological formal learning theory Various ideas motivating the use of
topological spaces to model epistemic notions and information change guide the research
program in topological formal learning theory, as initiated by Kevin Kelly and others
(Baltag et al., 2011, 2015; Gierasimczuk et al., 2014; Kelly, 1996, 2014; Kelly et al.,
1995; Schulte & Juhl, 1996). The topologically interpreted logics developed in this paper
provide a framework naturally suited to the representation of reasoning about inductive
learning from successful observations and therefore constitute a bridge between modal
epistemic/doxastic logics and formal learning theory. Investigations focusing on this con-
nection, aiming at bringing learning and logic into closer proximity, have already been
initiated by some of the co-authors of this paper and their colleagues (Baltag et al., 2019c,
2020; Vargas Sandoval, 2020).
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Another line of inquiry towards this direction involves adding to the semantic structure
a larger set E♦

0 ⊇ E0 of potential evidence, meant to encompass all the evidence that might
be learnt in the future. A formal setting that involves both actual evidence E0 and potential
evidence E♦

0 ⊇ E0 would combine coherentist justification with predictive learning. A
logical syntax appropriate for this setting could be obtained by extending our language
with operators borrowed from topo-logic (Moss & Parikh, 1992), such as an operator �ϕ,
expressing the fact that ϕ can become true after more evidence is learnt. Inductive learn-
ability of ϕ is then captured by the formula �Kϕ, where K is our defeasible knowledge
(rather than the absolutely certain knowledge operator of topo-logic).

Multi-agent extensions Another line of research involves extending our framework to a
multi-agent setting. It is straightforward to generalize our semantics to multiple agents,
though obtaining a completeness result might not be that easy. However, the real interesting
challenge comes when we look at notions of group knowledge, for some group G of
agents. For common knowledge, there are at least two different natural options: (1) the
standard Lewis-Aumann concept of the infinite conjunctions of “everybody knows that
everybody knows etc.” (Aumann, 1976; Lewis, 1969), and (2) a stronger concept, based
on shared evidence (the intersection

⋂
a∈G Ea

0 of the evidence families Ea
0 of all agents

a ∈ G). The two concepts differ in general. This is related to Barwise’s older observation
on the distinction of concepts of common knowledge in a topological framework (Barwise,
1988), in contrast to Kripke models, where all the different versions collapse to the same
notion (see also van Benthem and Sarenac, 2004 and Bezhanishvili and van der Hoek,
2014, Sect. 12.4.2.5 for a discussion on the different formalizations of common knowledge
on topological spaces). Similarly, in this evidence-based setting, the standard notion of
distributed knowledge does not seem appropriate to capture a group’s epistemic potential.
Standardly, a group of agents G is said to have distributed (implicit) knowledge of ϕ if
ϕ is implied by the knowledge of all individuals in G pooled together (see, e.g., Fagin et
al., 1995, Chapter 2 for a standard treatment of distributed knowledge based on relation
models). In our setting though, a natural way to think about a group’s epistemic potential is
to let the agents share all their evidence, and compute their knowledge based on the evidence
family obtained by taking the union EG

0 =
⋃

a∈G Ea
0 of all the evidence families Ea

0 of all
agents a inG. This corresponds to moving to the smallest topology that includes all agents’
evidential topologies τ a , which also gives us a natural way to define a consistent notion of
(potential) group belief. However, this setting has some apparent ‘defects’, that is, some
facts known by one individual in the group might be defeated by another member’s false
or misleading evidence, therefore, the individual knowledge of these facts will be lost after
the group members share all their evidence. This is in contrast with the standard notion of
distributed knowledge that is groupmonotonic: the distributed knowledge of a larger group
always includes the distributed knowledge of any of its subgroups, and so, in particular, it
includes everything known by any member of the group. One option is to simply give up
the dogma that groups are always wiser than their members and retain the evidence-based
model of group knowledge as providing a better representation of the epistemic potential of
a group. Learning from others might not always be epistemically beneficial: it all depends
on the quality of the others’ evidence. There are also ways to avoid this conclusion, pursued
by Ramirez (2015), via natural modifications of our models and by defining knowledge
to be undefeated by any potential evidence that the agent may learn. This way Ramirez
(2015) re-establishes groupmonotonicity, but showing completeness for the resulting logic
possesses technical challenges (see Ramirez, 2015, for details).
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Reliability sensitive accounts of evidence We often have different levels of trust in our
information sources based on, for example, personal experience (thus, with respect to a
subjective measure), statistical results reflecting the truthfulness of our sources, or the
given error range of the measure devices used in an experiment (thus, with respect to a
more objectivemeasure). Receiving information from a variety of sources directs us toward
weighing the evidence gathered from these sourceswith respect to their level of reliability in
the process of formingbelief andknowledge based on this evidence. The approachproposed
in this paper takes every evidence piece the agent has on a par, thus, is not sufficiently
fine-grained to account for the degree of reliability and credence of the evidence sources.
A fruitful formal account of evidence-based belief and information dynamics capturing
such a situation can be constructed by extending our qualitative topological models of
evidence with a probabilistic component or a preference ordering representing the degree
of reliability of/trust in evidence sources.

Modal logics of space So far our work on the relationship between topology and modal
logic has beenmotivated by the search for formalmodels that help advance our understand-
ing of the epistemic notions and phenomena in question. The work of relating topology
and modal logic can however be approached from another direction, as has traditionally
been the way: the primary interest lies in spatial structures and building modal logics as
tools to reason about them. Inspired by the celebrated topological completeness results of
McKinsey and Tarski (1944) for the language of basic modal logic, this approach paved
the way for a whole new area of spatial logics, establishing a long standing connection
between modal logic and topology (see, e.g., Aiello et al., 2007; van Benthem & Bezhan-
ishvili, 2007 for a survey on this topic). To illustrate, one can (as is often done) define a
topological space from its subbasis and, in the presence of our basic evidence modalities,
study the logics of the subbasis of a particular topological space (see, e.g., Baltag et al.,
2019a; Fernández González, 2018).
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