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ABSTRACT

We study evolution of single subhaloes with their masses of ~10° Mg, in a Milky Way-sized host halo for self-interacting
dark matter (SIDM) models. We perform dark-matter-only N-body simulations of dynamical evolution of individual subhaloes
orbiting its host by varying self-scattering cross-sections (including a velocity-dependent scenario), subhalo orbits, and internal
properties of the subhalo. We calibrate a gravothermal fluid model to predict time evolution in spherical mass density profiles
of isolated SIDM haloes with the simulations. We find that tidal effects of SIDM subhaloes can be described with a framework
developed for the case of collision-less cold dark matter (CDM), but a shorter typical time-scale for the mass loss due to
tidal stripping is required to explain our SIDM simulation results. As long as the cross-section is less than ~10cm? g~! and
initial states of subhaloes are set within a 2o -level scatter at redshifts of ~2 predicted by the standard ACDM cosmology, our
simulations do not exhibit a prominent feature of gravothermal collapse in the subhalo central density for 10 Gyr. We develop a
semi-analytic model of SIDM subhaloes in a time-evolving density core of the host with tidal stripping and self-scattering ram
pressure effects. Our semi-analytic approach provides a simple, efficient, and physically intuitive prediction of SIDM subhaloes,
but further improvements are needed to account for baryonic effects in the host and the gravothermal instability accelerated by

tidal stripping effects.

Key words: galaxies: structure —dark matter.

1 INTRODUCTION

An array of astronomical observations has established a concordance
cosmological model, referred to as A cold dark matter (ACDM)
model. The ACDM model requires the presence of invisible mass
components in the Universe to explain the current observational
data. The nature of such ‘dark’ matter is still uncertain. Because dark
matter plays an essential role in the formation and evolution of cosmic
large-scale structures, the observations of large-scale structures have
constrained the cosmic abundance of dark matter in the Universe (e.g.
Planck Collaboration VI 2020; Alam et al. 2021), free-streaming
effects induced by thermal motion of dark matter particles (e.g. Baur
et al. 2016; Palanque-Delabrouille et al. 2020), non-gravitational
scattering of baryons and dark matter (e.g. Dvorkin, Blum &
Kamionkowski 2014; Xu, Dvorkin & Chael 2018), electrically
charged dark matter (e.g. Kamada et al. 2017a), and annihilation
and decay processes of dark matter particles (e.g. Ando & Ishiwata
2015; Shirasaki et al. 2016; Slatyer & Wu 2017; Kawasaki et al.
2021). So far, all constraints by the large-scale structures indicate that
gravitational interactions are dominant in the growth of dark matter
density, dark matter does not interact with ordinary matter and/or
electromagnetic radiation, and its thermal motion is negligible.

* E-mail: masato.shirasaki @nao.ac.jp

Although the ACDM model has provided an excellent fit to the
observational data on length scales longer than ~ 10 Mpc, it remains
unclear if the model can be compatible with observations at smaller
scales (e.g. Bullock & Boylan-Kolchin 2017, for a review). Self-
interacting dark matter (SIDM) has been proposed as a solution
for the small-scale challenges to the ACDM model (e.g. Spergel
& Steinhardt 2000). Elastic self-interactions among dark matter
particles can lead to formation of a cored density profile, which
is preferred by observations of galaxies and galaxy clusters. After
its proposal, numerical simulations have played a central role to
improve our understanding of the structure formation in the presence
of dark matter self-interactions, whereas particle physics models have
been proposed to realize the SIDM preferred by some astronomical
observations (e.g. Tulin & Yu 2018, for a review).

Recently, Oman et al. (2015) found that rotation curves of observed
spiral galaxies exhibit a diversity at their inner regions. This diversity
problem appears to conflict with the ACDM prediction, but it can be
explained within a SIDM framework (e.g. Kamada et al. 2017b; Ren
et al. 2019; Kaplinghat, Ren & Yu 2020). Nevertheless, it would be
worth noting that the SIDM solution to the diversity problem depends
on the sampling of halo concentration as well as co-evolution of dark
matter with baryons (e.g. Creasey et al. 2017; Santos-Santos et al.
2020; Sameie et al. 2021).

Satellite galaxies in the Milky Way (denoted as MW satellites)
are promising targets for robustly constraining the SIDM scenarios.
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The MW satellites are expected to be dominated by dark matter,
and their dark matter contents would be less affected by possible
baryonic effects inside the satellites. Valli & Yu (2018) examined
the cross-section of dark matter self-interactions with kinematic
observations of MW dwarf spheroidals, but their modelling of SIDM
density profiles does not include tidal effects from the host. A similar
investigation has been done for less massive satellites known as
ultra-faint dwarf galaxies in Hayashi et al. (2021). Kaplinghat, Valli
& Yu (2019) pointed out an anti-correlation between the central
dark-matter densities of the bright MW satellites and their orbital
pericentre distances inferred from Gaia data. The anti-correlation
can be explained by a SIDM model (e.g. Correa 2021), while a
more careful modelling of the kinematic observations leads that the
ACDM predictions can explain the anti-correlation (e.g. Hayashi,
Chiba & Ishiyama 2020)

High-resolution numerical simulations provide a powerful means
of predicting the MW satellites in the presence of dark matter self-
interactions (e.g. Zavala et al. 2019; Ebisu, Ishiyama & Hayashi
2022; Silverman et al. 2022) and the interplay with baryonic effects
(e.g. Robles et al. 2019; Lovell et al. 2020; Orkney et al. 2021). How-
ever, numerical simulations can suffer from resolution effects and are
commonly expensive to scan a wider range of parameters of interest.
In practice, we need to account for various modelling uncertainties
(e.g. possible baryonic effects and galaxy-halo connections) as well
as several observational systematic effects to place a meaningful
constraint of the nature of dark matter with the observations of the
MW satellites (e.g. Nadler et al. (e.g. Kim & Peter 2021; Nadler
et al. 2021). Looking towards future measurements in wide-field
spectroscopic surveys (e.g. Takada et al. 2014), an efficient semi-
analytic modelling of the MW satellites in the presence of dark
matter self-interactions is highly demanded.

In this paper, we aim at developing a semi-analytic model of
the SIDM satellite haloes (denoted as subhaloes) in a MW-sized
host halo. For this purpose, we perform a set of (dark matter-only)
N-body simulations of halo-subhalo mergers by varying the self-
interacting cross-sections, subhalo orbits, and internal properties of
the subhaloes at their initial state. For comparisons, we formulate
a simple semi-analytic model of the SIDM subhaloes accreting on
to the host halo based on previous findings for the collision-less
dark matter (e.g. Green & van den Bosch 2019; Jiang et al. 2021b).
We then calibrate our semi-analytic model with the idealized N-
body simulations and assess its limitation. Our analysis would make
an important first step towards a more precise modelling of the
SIDM subhaloes, as well as improve our physical understanding
of evolution of the SIDM subhaloes.

The rest of this paper is organized as follows. We describe our
N-body simulations in Section 2. Next, we summarize our semi-
analytic model of the SIDM subhaloes in Section 3. Section 4
presents the key results, whereas we discuss the limitations of our
analysis in Section 5. Finally, concluding remarks are provided in
Section 6. In the following, In represents the natural logarithm.
Throughout this paper, we adopt ACDM cosmological parameters
below; the average cosmic mass density 2, = 0.315, the cosmo-
logical constant 2, = 1 — Q,,, = 0.685, the average baryon density
Qp = 0.0497, the present-day Hubble parameter Hy = 100k =
67.3kms~! Mpc~!, the spectral index of the power spectrum of
primordial curvature perturbations n; = 0.96, and the linear mass
variance within 8 Mpc/s~! being oy = 0.80. Those parameters
are consistent with statistical analyses of cosmic microwave back-
grounds in Planck Collaboration VI (2020). If necessary, we compute
the critical density of the universe as per, = 2.775 x 10" [Qn(1 +
2)> + Qa1h?* Moy Mpc 3, where z is a redshift.
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2 SIMULATIONS

In this paper, we perform N-body simulations of idealized minor
mergers to study evolution of single subhaloes in an external potential
by a host halo for the SIDM models. This section summarizes
how to set initial conditions of our N-body simulations, our N-
body simulation code, and physical parameter sets adopted in our
simulations.

2.1 Initial conditions

We assume that either host halo or subhalo at its initial state follows
a spherical Navarro-Frenk-White (NFW; Navarro, Frenk & White
1997) density profile. At a given halo-centric radius r, the NFW
profile is given by

05
(r/rol +r/r)?’
where p, and r, represent the scaled density and radius, respectively.
The scaled density and radius can be related to a spherical over-
density mass as

4 3 " 2
My = 3 A Peritz Fa :/0 4mr=dr pnpw(r), 2)
where M 4 is the spherical over-density mass and r is the correspond-
ing halo radius. Throughout this paper, we adopt a conventional mass
definition with A = 200. The halo concentration is defined as ¢ =
r200/7s and a set of ¢ and My can fully determine the NFW profile. In
the following, we use subscripts "h’ and ’sub’ to indicate properties
of the host- and subhaloes, respectively.

For an initial condition of our N-body simulation, we fix the host
halo mass, the halo radius, and the scaled radius to Mago, = 10'2 Mg,
ra00.n = 211kpe, and r,, = 21.1kpe, respectively. Note that the
scaled density and radius of the host halo are set with the critical
density at z = 0. For our fiducial case, we adopt Magy sup = 10° Mg
and ¢y, = 6 in the initial subhalo density, but we vary Moo, sub
and cgyp as necessary. The initial subhalo concentration is set to be
consistent with a model prediction in Diemer & Kravtsov (2015) at
z = 2. It would be worth noting that the redshift of z = 2 provides
a typical formation epoch of the ~10'> M halo at z = 0 in the
excursion set approach (Bond et al. 1991; Lacey & Cole 1993). To
keep a consistency with our choice of ¢y, = 6, we determine p;, sup
and r,, o With the critical density at z = 2. Using different redshifts
to define the initial density profiles of the host and subhalo is a
bit ambiguous, but our simulations do not contain accreting mass
around the host and there are no unique ways to realize a realistic
situation as in cosmological simulations. Because the outskirt region
of the host halo is less important for orbital evolution of the subhalo,
our simulations would be still useful to develop a better physical
understanding of orbiting SIDM subhaloes.

To generate isolated NFW host halo and subhalo, we use a
public code of MAGT (Miki & Umemura 2018), assuming that the
NFW (sub)halo has an isotropic velocity distribution. The code
employs a distribution-function-based method so that the phase-
space distribution of member particles in haloes can be determined
by energy alone. To realize the system of particles in dynamical
equilibrium with a sharp cut-off at » > ryp9, we multiply the target
NFW density profile with a function of erfc([r — r0l/[27cu])/2,
where we adopt 7y = 0.05 ry0. The number of particles is set to
107 for the host halo, corresponding to the particle mass being
Mpary = 10° M. The convergence tests of our N-body simulations
are summarized in Appendix A. We confirmed that our choice of
the particle mass can provide converged results of subhalo mass loss

(1

PNEw(r) =

MNRAS 516, 4594-4611 (2022)
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with a level of 1 per cent, and subhalo density profiles at r/rg g 2
0.2 within 10 per cent over 10 Gyr.

To specify the subhalo orbit, we introduce two dimensionless
quantities, x, and 7. In this paper, we express the angular momentum
L and the total energy E of the orbiting subhalo as

L =nr.V, 3)
VZ
E = 75 + PneEw.n(re), “4)

where 7. = x.7200, 1, Ve = (GMago, 1/1:)"? is a velocity at the circular

orbit when we treat host- and subhaloes as isolated point particles,
and Pnpw,n presents the gravitational potential by the host NFW
profile (Lokas & Mamon 2001). The orbital period 7, is then defined
by

E dr
= /r QLE — ®npwn(r)] — L2 /r2)/2’ ®)

»
where two radii, r, and r,, are given as a solution of the equation be-
low:

L2
2t 2[@npw,n(r) — E] = 0. (6)

The parameter x. controls the orbital period, whereas n determines
the eccentricity in the subhalo orbit. We choose x, = 0.5 and n =
0.6 as our baseline parameters, while we examine different values
to test our semi-analytic model described in Section 3. The baseline
parameters provide r, = 41.9kpc, r, = 243kpc, and T, = 3.0 Gyr
for our host halo. For a given set of x. and 1, we compute the
initial (Cartesian) vectors of the subhalo position and velocity with
respect to the host halo as xq, = (14, 0, 0) and vg, = (0, L/r,, 0),
respectively. Note that the subhalo orbit is confined to the x — y plane
in our simulations.

2.2 N-body simulations

For a given initial condition of halo mergers, we evolve the system by
solving gravitational and self-interactions among N-body particles.
To do so, we use a (non-cosmological) self-gravity mode of a
flexible, massively parallel, multimethod multiphysics code GI ZMO
(Hopkins 2015) for the gravitational interaction. Throughout this
paper, we assume isotropic and elastic self-interaction processes in
our simulations.

Our SIDM implementation follows the method in Robertson,
Massey & Eke (2017). In short, the rate with which a dark matter
particle,' i, is scattered by other dark matter particles within the
distance & is given as:

4 - o(vi;)
Rl:(?/ﬁ) mp Y — vy, ™)
J

where m;, is the mass of a dark matter particle as a numerical element,
v;j = |v; — v;| is the relative speed between particles i and j, and the
sum is over all particles within the distance 4 from the particle i.
As in Robertson et al. (2017), we apply a fixed value of /4 to all
particles. The implementation with a constant 4 has two advantages
over one with a variable % in accord with the local density. As we
discuss later, the symmetry between a pair of particles is important
for the accurate scattering rate estimation. We also do not need

'A “particle’ here means a numerical element and should be distinguished
from an SIDM particle of mass m.

MNRAS 516, 4594-4611 (2022)

expensive iterative loops when using a constant /2, whereas the loops
can become expensive for the adaptive /& to make the (effective)
number of neighbouring particles within & constant. We set h =
2.8¢, where € is the Plummer equivalent force softening length and
the gravitational force becomes Newtonian at 2.8¢.

From equation (7), the probability of the particle, i, is scattered by
one of its neighbours, j, within a distance 4 during a time-step At; is

1/4 - ij
Pi‘:§(§h3> mPU(:,J)”ijA’i~ (®)

We introduce the factor 1/2 since a scatter event always involves a pair
of particles. The pre-factor of 1/2 is justified only when the identical
intersection radius of % is adopted to every neighbour particle. For an
adaptive s, we may need to introduce symmetrization as is usually
done in the smoothed particle hydrodynamics (e.g. Springel 2010).
For a scattering event between particles i and j, we update their
velocities as follows:
u; Vem + (vij/z)é

Vem — (vij/z)év

uj

where u; and u; are the post-scatter velocities of the particle i and
J» respectively, vem = (v; + v;)/2 is the centre-of-mass velocity, and
¢ is the randomly oriented unit vector. We have tested our SIDM
implementation by counting the number of collisions of N-body
particles in a spherical halo and observing post-scattering kinematics
in a uniform background as in Robertson et al. (2017), and confirmed
it agrees with the analytic expectation.

In principle, a particle can scatter more than once in a single time-
step, even if we employ a very short time-step. Multiple scatters in a
single time-step may introduce undesired numerical errors because
the momentum kick from one scattering event affects the velocities
of particles for any further scattering events. To minimize possible
numerical artefacts, we update the particle velocities immediately
after setting relevant particles to scattering processes.

Running simulations on multiple processors with domain decom-
position can cause a further complication because a particle can
undergo scattering events among different computational domains.
To avoid any confusions, we first perform the SIDM calculation on
the local domain where we can easily apply the immediate velocity
update. When a particle is exported to other computational domains,
the SIDM calculations are performed in the export destinations in the
same manner as in the local domain. If an exported particle undergoes
scattering events in two or more destinations or an exported particle
scatters in one of the destinations and the same particle is scattered by
an imported particle in the local domain, these scattering processes
violate the energy conservation. To reduce such bad scatters, we
restrict the time-step At; to be smaller than 0.02/R; as often done
in the literature (e.g. Vogelsberger, Zavala & Loeb 2012). We have
confirmed that the above procedure does not introduce detectable
numerical errors on the conservation of total energy and momentum
in an isolated system.

To test our SIDM implementation, we evolved a cluster-sized
isolated halo following a Hernquist profile at its initial state with the
same simulation setup as in Robertson (2017). We then compared
our simulation results with one in Robertson (2017). We found that
the halo core evolution in our simulation provides a good fit to
the results in Robertson (2017), demonstrating that the scattering
of N-body particles is correctly implemented. The test results are
summarized in Appendix B.

The box size on a side is set to 1100 kpc so that the boundary of our
simulation box cannot affect the simulation results. We also adopt
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the gravitational softening length, in terms of an equivalent-Plummer
value, €, as proposed in van den Bosch & Ogiya (2018);

Nan\ ™
€ = 0.057 gup ( 105 ) , )

where Ny, represents the number of N-body member particles in
initial subhaloes and is set to Ny, = 10* for our baseline run.
All simulations output particle snapshots with a fixed time-step
of 0.1 Gyr and stop at + = 10 Gyr. At each snapshot, we define
gravitational-bound particles in the subhalo with the iterative method
in van den Bosch & Ogiya (2018).

2.3 Parameters

Table 1 summarizes a set of parameters adopted in our N-body sim-
ulations. Most simulations assume that the SIDM cross-section per
unit mass o/m is independent of relative velocities between dark
matter particles, but we also explore the impact of a velocity-
dependent o/m by adopting effective-range theories in Chu, Garcia-
Cely & Murayama (2020). To be specific, we adopt a velocity-
dependent scenario as in Chu et al. (2020);

272 )
o o) lr, (v 1 /v
—=— l——— | — + = — , (10)
m m [ 8 a (vo) :| 4 (vo)
where we set op/m = 6.3cm’>g"!, a = 37.4fm, r, = —748.9 fm,
and vy = 100kms~!, and those parameters provide a reasonable
fit to the observational constraints of (ov)/m at the average rela-
tive velocity of (v) = 10 — 100kms~! in Kaplinghat, Tulin & Yu
(2016). This velocity-dependent model predicts that an effective
cross-section (o v)/m/{v) is found to be 1 —6cm? g~! at the mass
scale of ~10° M, while the cross-section becomes smaller than
~0.1cm? g~! for a MW-sized halo.

Apart from our fiducial orbital parameters (x, = 0.5 and n =
0.6), we also examine 16 different orbits in a range of 0.6 < x,
< 1.5 and 0.05 < n < 0.95. Note that the range of x. and 7 is
consistent with the cosmological N-body simulation in Jiang et al.
(2015). For the initial density profile of an infalling subhalo, we vary
the halo concentration by a factor of 2 or 1/2 but fix subhalo mass
to Moo sub = 10° M. The change of ¢y, by a factor of 2 or 1/2
roughly covers a 2.5¢0-level difference in the halo concentration at
the mass of 10° M, in cosmological simulations (e.g. Ishiyama et al.
2013). As another test, we consider a more massive infalling subhalo
with Maoo.sub = 10" Mg and cgyp, = 5. As in Section 2.1, the density
profile for the 10'° M, subhalo is set with the critical density at 7 = 2.

3 MODEL

This section describes our semi-analytic model of orbital and
dynamical evolution of an infalling subhalo in the presence of
self-interactions of dark matter particles. The model consists of
three ingredients; (i) a time-evolving SIDM density profile in
isolation (Section 3.1), (ii) the equation of motion of the subhalo
including dynamical friction and ram-pressure-induced deceleration
(Section 3.2), and (iii) mass loss of the subhalo across its orbit
(Section 3.3). In the Sections 3.1-3.3, we first assume a velocity-
independent cross-section o/m for simplicity. We then describe
how to include the velocity-dependence of o/m in our model in
Section 3.4.

Modelling SIDM substructures I 4597

3.1 Gravothermal fluid model

In our model, we follow a gravothermal fluid model (e.g. Balberg,
Shapiro & Inagaki 2002) to predict spherical density profiles of
isolated haloes. The gravothermal fluid model assumes that SIDM
consists of a thermally conducting fluid in quasistatic equilibrium
and the system of interest is isotropic and spherically symmetric. At
a given time of ¢ and halo-centric radius of r, dark matter particles
have a mass density profile p(r, f). Their 1D velocity dispersion o, (r,
1) is set by the hydrostatic equilibrium of ideal gas at each moment;

ap(r,t)  GM(r,1) p(r,1)
ar r?

where p = p avz is an effective pressure, M(r, 1) is the enclosed mass

within the radius of r at #, and we impose the mass conservation of

oM(r,t)
or

The thermal evolution of the fluid is governed by Fourier’s law of
thermal conduction and the first law of thermodynamics,

L.ty T(r.1)

: an

=472 p(r, 1). (12)

4nrz o (13)
AL(r,1) ki o) (r,1)
rra 4rr-p(r,t) (at)M ln( o) ) , (14)

where L(r, ) is the luminosity through a sphere at r, 7(r, ) is a
temperature defined as k3T = mav2 (m is the particle mass and kg is
the Boltzmann constant), « is the thermal conductivity, and the time
derivative in the right-hand side of equation (14) is Lagrangian.

As discussed in Balberg et al. (2002), we adopt a single expression
of equation (13) by considering both the cases where the mean free
path between collisions is significantly shorter or larger than the
system size,

-1
L 3 1 b.o,t, 902
amr = T [(J - <c* H)] o (1
where H, = \/02/(4mGp) is the gravitational scale height of the
system, A = (po/m)~" is the collisional scale for the mean free path,
t, = AM(ao ,) is the relaxation time with a coefficient of order of unity
being a, and we adopt a = /16/7 for hard-sphere scattering of par-
ticles with a Maxwell-Boltzmann velocity distribution (Reif 1965).
In equation (15), we introduce two model parameters of b, and
C.. In the limit of A < H,, the thermal conductivity is given by « ~
(3/2)(kg/m)b,. p2*/(at,) and b, can be regarded as an effective impact
parameter among particle collisions. In the limit of A > H,, one finds
Kk >~ (3/2)(kp /m)C*pH;/t,, reproducing an empirical formula of
gravothermal collapse of globular clusters (Lynden-Bell & Eggleton
1980). As our baseline model, we adopt b, = 0.25 and C, = 0.75,
as proposed in Koda & Shapiro (2011). By assuming the NFW halo
at t = 0, we then numerically solve equations (11, 12, 14, and 15)
with the method described in appendix A of Nishikawa, Boddy &
Kaplinghat (2020; also see Pollack, Spergel & Steinhardt 2015).
We note that Koda & Shapiro (2011) found the parameters of b,
=0.25 and C, = 0.75 to explain their N-body simulations of isolated
haloes following a self-similar solution of the gravothermal fluid
model in Balberg et al. (2002). Hence, we validate the gravothermal
fluid model with b, = 0.25 and C, = 0.75 for NFW haloes at
t = 0 by using our N-body simulations of isolated haloes. The
comparisons with the gravothermal fluid model and our simulation
results are summarized in Appendix C. We find that a correction
of the gravothermal fluid model is needed to explain our simulation
results for initial NFW haloes with their mass of My = 10'> M and

MNRAS 516, 4594-4611 (2022)
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Table 1. Summary of parameters in our N-body simulations of halo mergers. For all simulations in this paper, we fix the host halo mass Mago, = 10'> M,
the scaled radius (in the initial NFW density) r; , = 21.1 kpc, and the concentration ¢, = 10. In every simulation, we evolve the orbit of an infalling subhalo

for 10 Gyr. Note that our simulations allow a time evolution of the host halo density in accord with the thermalization due to the self-scattering process of dark

matter particles. In each cell, Moo, sub is the initial subhalo mass, s, sup is the scaled radius in the initial subhalo density, cgyp is the subhalo concentration at its
initial state, o/m is the self-scattering cross-section per unit mass, and (x., 1) present dimensionless orbital parameters described in Section 2.1.

Name Maoo,su0 (Moo) Ts.sub (kpe) Coub o/m(em*g™") (e, m)

Fiducial (v-independent o'/m)

CDM 10° 1.68 6 0 (0.5,0.6)

SIDM1 10° 1.68 6 1 (0.5, 0.6)

SIDM3 10° 1.68 6 3 (0.5,0.6)

SIDM10 10° 1.68 6 10 (0.5, 0.6)

v-dependent o'/m

vSIDM 10° 1.68 6 equation (10) (0.5, 0.6)

Different orbits

SIDM -diff-orbit 10° 1.68 6 1 (0.6, 0.05), (0.6, 0.35), (0.6, 0.65), (0.6, 0.95)
(0.9, 0.05), (0.9, 0.35), (0.9, 0.65), (0.9, 0.95)
(1.2,0.05), (1.2, 0.35), (1.2, 0.65), (1.2, 0.95)
(1.5, 0.05), (1.5, 0.35), (1.5, 0.65), (1.5, 0.95)

Varied subhalo properties

High ceup 10° 0.842 12 1 (0.5, 0.6)

Low csup 10° 3.36 3 1 (0.5, 0.6)

Large My, 100 438 5 1 (0.5,0.6)

concentration of ¢ = 10 in the range of 0.3 < o/m (cm?> g~') < 30
at t < 10 Gyr. The final model of density profiles of isolated SIDM
haloes is then given by

xP 4 (1/2)F

(x+y/2F"
where pg(r, 1) is the gravothermal-fluid prediction with b, = 0.25
and C, = 0.75 and x = r/(0.1r,) (ry is the scaled radius of the initial

NFW halo). The two parameters 8 and y in equation (16) depend on
time as well as o/m;

psipm(r, 1) = pg(r, 1) (16)

B = 0.275 [log,o(t/to) — 0.492]2 + 1.38, (17
y = 0.493 (1 /1), (18)
where we introduce a characteristic time-scale of
-1
16
fh = (\/ ,Osa\/47erxrs2>
s m
. -3/2
:1.29Gyr( o/m ) ( Ps 4>
lcm?g! 5 x 10% Mokpe™
r -1
> , 19
x <20kpc> {19

and note that /4w G p,r? in the above equation provides a char-
acteristic velocity for the initial NFW haloes. Our model has been
calibrated with N-body simulations of isolated SIDM haloes with the
specific initial NFW profile (M5 = 1012 Mg, ra00 = 211 kpe, 1y =
21.1kpe, and p; = 5.72 x 10° M, kpc™?), but we use equation (16)
for any initial NFW profiles in the following.

3.2 Orbital evolution

Assuming that the subhalo is not significantly deformed by tidal
forces and self-interactions, we treat it as a point particle. Under this
point-mass approximation, we evaluate the orbit of the subhalo by
solving the equation of motion (e.g. Jiang et al. 2021a, b, for the
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same approach),

dzxsub

dr?
where @y, is the gravitational potential of a SIDM host halo with
its density following equation (16), apr represents the acceleration
due to dynamical friction, and agpq is the deceleration causing by
the scattering process among escaping dark matter particles from the
infalling subhalo and particles in the host halo (Kummer, Kahlhoefer
& Schmidt-Hoberg 2018).

On the term of dynamical friction, we adopt the Chadrasekhar
formula (Chandrasekhar 1943) as

(20)

= —V &, + apg + agpq,

Vsub

apr = 471G My oy In A Fy([Vsup) e
sub

2n
where we adopt an expression of the Coulomb logarithm as In A =
& In(My,/ Mgy) with a fudge factor of £ being min(|dln py/dlnr|, 1)
at r = |Xqub| as proposed in Read et al. (2006), and

F,(v) = Erf(y) — 2y exp(—y*)//7

withy = v/ (ﬁav,h) for an isotropic and Maxwellian host halo. The
velocity dispersion of o, j, is given by the solution of equation (11)
with the density profile of py,.

The scattering-induced deceleration term is given by

o Ivsub |
Arpd = —Vsub 1d 7m Ph

where 14 is the deceleration fraction computed as (see Markevitch
et al. 2004; Kummer et al. 2018)

(22)

(23)

1
na = 1—4/ dy y*V/y? = x2(1 = y?), 24
x/4/(14x)2
X = Vesc,sub ) (25)
VI + Uvz,h
Vesc,sub = / 47Tr2dr Psub V —2Dgyp. (26)
sub

€202 YoJe|\ 10 UO Jesn wepJlaiswy UeA JalisieAlun Aq +015699/76S/S/91 G/a01le/seuw/woo dno olwapese//:sdiy Woll papeojumoc]



In the above, ®y,, is the gravitational potential of the subhalo.
Note that we account for the bulk velocity of the subhalo as well
as the random velocity of the particles inside the host halo in
the computation of 74 (see appendix A of Kummer et al. 2018,
for details). Nevertheless, the effect of agpq is found to be almost
negligible for our simulation results in this paper.

We solve equation (20) using a fourth-order Runge—Kutta method.
It would be worth noting that we properly include the time evolution
of the host halo density pj, across the subhalo orbit as in Section 3.1.
To solve equation (20), we require a model of mass loss of the subhalo
as well as the change of the subhalo density profile pg,, due to tidal
effects and ram-pressure evaporation, described in the next section.

3.3 Mass loss

In the SIDM model, the infalling subhalo can lose its mass due to tidal
stripping and ram-pressure evaporation effects. The former effect can
predominantly remove mass from the outskirts of the subhalo, while
the latter can affect the mass density in the entire region of the
subhalo.

For the tidal stripping, we employ a commonly used expression of
the mass-loss rate, given by

(dMsub) _ _AMsub(> }’,;l) (27)
dr )1 qtagn(R)

where A is a free parameter in the model, M, (> r4; f) represents the
subhalo mass in the outskirts with » > 7, at £, T4y, (R) is the dynamical
time at the relative distance between the subhalo and the host centre
being R, and ¢ is a parameter with an order of unity. To be specific,
we define the dynamical time as

2R3
Tayn(R) = m, (28)

and note that M} (R) is the enclosed mass of the host and depends on
time . We account for possible effects of (sub)halo concentrations
at initial states by setting ¢ = (cyup/cn/2)"" (motivated by the results
in Green, van den Bosch & Jiang 2021). The value of A will be
calibrated with our simulations. The radius of r is known as the tidal
radius, and there are a number of different definitions (e.g. see van
den Bosch et al. 2018, for a brief overview). In this paper, we adopt
a phenomenological model of

ry = min(r1, 1), (29)
with
1/3
rno_ Mqun(ri1)/ Mn(R) (30)
2— (d In Mh/d In r)r:R + (Ulan.sub/vcirc.h(R))2
rﬁ _ Msub(rtZ) 13 (31)
R Mn(R) '

where Vin sub = [Xsub X Veub|/|Xsun| is the instantaneous tangential
velocity of the subhalo, and veie.n(R) = v/ GMy(R)/R? represents
the circular velocity of a test particle in the host at the radius of R.
Note that one derives equation (30) by assuming that the subhalo can
be approximated as a point mass on a circular orbit (von Hoerner
1957; King 1962), while the assumption becomes invalid for more
radial orbits. Equation (31) has been proposed in Klypin et al. (1999)
to account for resonances between the gravitational force by the
subhalo and the tidal force by the host (Weinberg 1994a, b, 1997). If
we cannot find a non-trivial solution of r;; # 0 in equation (30), we
setr; =rp.
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For the ram-pressure evaporation, we adopt the mass-loss rate
below (Kummer et al. 2018)

dMy, sul
( - b> = _Msub Ne (alv bl) P (32)
dt ) rpe m

where 7. is the evaporation fraction computed as (see Markevitch
et al. 2004; Kummer et al. 2018)

1 —x?

= —7, 33
T (33)

Te
and x in the above is given by equation (25).

At each moment #, we can compute the mass loss of the subhalo
during a small time interval of Az by using equations (27) and (32).
We then reset the subhalo mass of

dM. dm.
Mg — Mg + At (—") + At (—b> : (34)
dr /s dr )/ gpe

and include effective tidal stripping eftects on the subhalo density
profile as

psub(r7 t+ At) = pSIDM,sub(r7 t+ At) H(r; fboundv Csub)s (35)

where psipm.sub(7, 1) 1s the model of equation (16) for the subhalo,
Joouna 18 the bound mass defined as M, (r + Af)/My(t = 0), and
H(7; foounds Csub) presents the change of the subhalo density profile
due to the tidal stripping (referred to as the transfer function in the
literature). After updating the subhalo mass and its density profile,
we then solve equation (20) to obtain the position and velocity of the
subhalo at the time of # 4+ At. In practice, we set the time-step At to
be 107#7, throughout this paper.

In equation (35), we assume that the ram-pressure effects are less
important for the shape in the subhalo density profile, but the tidal
stripping plays a central role. Tidal evolution of density profiles of
infalling subhaloes has been investigated in Ogiyaetal. (2019), Green
& van den Bosch (2019) with a large set of N-body simulations of
minor mergers for collision-less dark matter (i.e. o/m = 0). Green &
van den Bosch (2019) has studied the tidal evolution of the subhalo
density profile with respect to its initial counterpart and found that the
structural evolution of a tidally truncated subhalo is predominantly
determined by the bound mass fraction fiouna and the initial subhalo
concentration. We here adopt their calibrated model of the transfer
function H in equation (35). The explicit form of H is provided in
Appendix D. It should be noted that Green & van den Bosch (2019)
calibrated the form of H with the tidally stripped profile relative to the
initial profile, but our model uses their transfer function for the time-
evolving SIDM density profile. Although our model can reproduce
the results in Green & van den Bosch (2019) in the limit of o/m
— 0 and psipm, sub —> ONEW, sub, €quation (35) should be validated
with our N-body simulations for SIDM models. We summarize our
validation of equation (35) in Section 4.1.

3.4 For velocity-dependent cross-sections

We here explain how our model can be applied for velocity-dependent
cross-sections o (v)/m. Suppose that we solve the time evolution of
the system with an time interval of Ar. At the n-th time-step ¢ = t,,
our model follows procedures below;

(i) We first determine the time evolution of density profiles for
isolated host- and subhaloes as in Section 3.1. For this purpose, we
set effective cross-sections to

m (v)

MNRAS 516, 4594-4611 (2022)

€202 YoJe|\ 10 UO Jesn wepJlaiswy UeA JalisieAlun Aq +015699/76S/S/91 G/a01le/seuw/woo dno olwapese//:sdiy Woll papeojumoc]



4600 M. Shirasaki, T. Okamoto, and S. Ando

(ov/m) = /oo dvvo()/m f(v;ve), (37
0

(v) = / " dvo fvvo), (38)
0

where f{v; v.) represents the distribution function of relative velocity
of particles in the host or subhalo, and v, determines a typical velocity
scale. We define equation (36) with a velocity-weighted quantity
because the number of particles scattered per unit time (ox(o v/m)) is
expected to be relevant to the evolution of SIDM density profiles. In
this paper, we assume f(v; v.) as a Maxwell-Boltzmann distribution
for relative velocities;
4v? exp(—v?/v?)
N

providing that (v) = v,. For a given halo/subhalo density profile at f =
t, — 1, we determine the 1D velocity dispersion o, () by equation (11)
and set v, = 40,(ry)/+/T Where ry is the scaled radius at the initial
NFW profile. We then take the corresponding SIDM density profile
at o/m = (o/m)er and the moment of ¢ = ¢, from a pre-stored table
of psipm given by equation (16) for v-independent cross-sections.

(i) We then solve the equation of motion of the subhalo as in
Section 3.2. To determine the ram-pressure deceleration term of
equation (23), we substitute o/m for o (|Vsu, n-1])/m, Where Ve, n-1
is the bulk velocity of the subhalo at r = #, _ ;. Using the time-step
of At, we also set the mass loss of the infalling subhalo and update
the shape of the subhalo density profile as in equation (35). For
the velocity-dependent cross-section, we compute the mass loss of
equation (32) by setting o/m = o (|Vsyp, n-11)/m.

(iii) After updating the bound mass, position, velocity, and the
density profile of the subhalo, we go back to the step (i) to determine
the density profiles att = ¢, 1 .

fiv) = (39

4 RESULTS

This section presents main results in our paper. Those include the
structural evolution of subhalo density profiles with dark matter self-
interactions, detailed comparisons with our semi-analytic model and
the simulation outputs, and discussion on differences between our
model and others in the literature.

4.1 Structural evolution of SIDM subhaloes

We first study density profiles of infalling SIDM subhaloes at
different epochs. As the subhalo orbit is evolved, the density profile is
modified by gravitational interactions as well as the self-interaction
of dark matter particles in the host and subhalo.

For ease of comparison, we run N-body simulations of an isolated
halo with its initial mass of 10° Mg and concentration of 6, but
varying o/m=1,3, and 10 cm? g~'. These isolated haloes are evolved
by 10 Gyr with a snapshot interval of 0.1 Gyr. We then characterize
the structural evolution of infalling subhalo density profiles as

psub(r N )
Ioiso(r N ) 7
where pg (7, 7) is the density profile of infalling subhaloes, and pis, (7,
1) represents the counterpart for isolated haloes with the same initial
density profiles as the subhaloes.

Fig. 1 summarizes our measurements of H(r, ). At each column,
upper and lower panels present the results at o/m = 1, 3, and
10cm? g=! from left to right. Solid lines in the upper panel show

H(r,t)= (40)
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the function of H(r, t) in our simulations and the colour difference
indicates the difference in the epoch 7. The coloured dashed lines
in the upper panel are the prediction in Green & van den Bosch
(2019) with the simulated value of the bound mass fraction fyouna. The
fractional difference between the simulation results and the model
prediction is shown in the lower panels.

We find that the structural evolution of SIDM subhaloes can be
approximated as the model in Green & van den Bosch (2019),
even though the model has been calibrated with the collision-less
N-body simulations. As long as the cross-section is set to smaller
than ~10cm? g~!, the ram-pressure evaporation is less important
to set the shape of the subhalo density profile. We here note that a
reasonable match between the simulation results and the model in
Green & van den Bosch (2019) occurs only when we use the value
of foouna 1n the simulations. This highlights that a precise model
of the mass loss is important to determine the density profile of
the subhalo at outskirts across its orbit. Also, the results in Fig. 1
support that our approximation of equation (35) would be valid if
we can predict the density profile of SIDM haloes in isolation. More
detailed comparisons with the simulation results and equation (35)
are presented in the next section.

4.2 Comparison with simulation results and model predictions

We here summarize comparisons with our N-body simulation results
and model predictions as in Section 3.

4.2.1 Varying cross-sections

We first investigate the dynamical evolution of infalling subhaloes
with their initial mass of 10° M, and a fixed subhalo orbital parameter
as a function of the self-interaction cross-section o/m. For this
purpose, we use the fiducial simulation runs of CDM, SIDM1, and
SIDM3, and SIDM10 in Table 1.

Fig. 2 summarizes the simulation outputs of the infalling subhalo
for the SIDM3 run (o/m = 3cm?g~') as well as our model pre-
dictions. In the left-hand panels, grey lines represent the simulation
results, while the dashed lines are our model predictions. For this
figure, we set a parameter for the mass loss (see equation 27) to
A = 0.65. Our model provides an accurate fit to the subhalo orbit in
our simulation over 10 Gyr, and the overall evolution of the subhalo
mass can be captured by the simple model in Section 3.3. In the
right-hand panel, we compare the subhalo density profile at different
epochs. The simulation results are shown by coloured symbols, and
the dashed lines show the model predictions. The figure demonstrates
that the structural evolution of the subhalo density profile can be
explained by our phenomenological model of equation (35). The
time evolution at r < r; can be well determined by the gravothermal
fluid model with a correction (see equation 16), while the density at
outskirts (r 2 ry) is suppressed mostly by tidal stripping processes.

Fig. 3 shows how the dynamical evolution of the subhalo can
depend on the cross-section o /m. The orbital evolution of the subhalo
with different o/m are summarized in the left, while the right shows
the evolution of the subhalo mass over 10 Gyr. In each panel, solid
lines represent our model predictions, providing a reasonable fit to the
simulation results for various cross-sections. We find that the model
works when the parameter A4 is set to 0.55, 0.60, 0.65, and 0.75 for
the simulations with o/m = 0, 1, 3, and 10 cm? g~!, respectively. This
marginal o/m-dependence of the model parameter A can be impor-
tant in practice, especially when one would constrain the SIDM by us-
ing observations of MW satellites. We also note that the subhalo mass
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Figure 1. Structural evolution of density profiles of infalling subhaloes in SIDM models. From left to right, we show the results with the self-interacting
cross-section of o/m = 1, 3, and 10 cm? g~ respectively. For each model, the upper panel shows the transfer function of the subhalo density profile (denoted
as H(r, 1)) measured in our N-body simulations. Different coloured lines represent the results at different epochs (r = 3, 5, 7, and 9 Gyr). The dashed lines in the
upper panels are model predictions in Green & van den Bosch (2019). The lower panels summarize the fractional difference between the simulation results and
the model predictions. Note that numerical resolution effects would be important in the grey region in the figure. Although the model in Green & van den Bosch
(2019) has been calibrated with N-body simulations with o /m = 0cm? g~ it can provide a reasonable fit to the simulation results with 1 < o/m (cm?> g~') < 10
if the mass fraction of subhalo bound mass fhound is set to the values in our N-body simulations. These results highlight that scattering processes between host-

and subhaloes are less important to determine the shape of the subhalo density profile, as long as we consider the cross-section of o/m < 10cm? g~

M = 1079 M, rg = 1.682 kpc

107
— 9504 Simulation SIDM (o/m = 3.0cm?/g)
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Figure 2. Comparisons with N-body simulation results and our semi-analytic model of infalling subhaloes. In this figure, we assume a velocity-independent
cross-section of o/m = 3 cm? g~!. The top-left panel shows the orbital evolution of the subhalo over 10 Gyr, while the bottom left presents the mass evolution.
The right-hand panel summarizes the time evolution of the subhalo density profile. In the right, blue circles, orange squares, and green diamonds represent the
simulation results at t = 2.7, 6.0, and 9.0 Gyr, respectively. In each panel, dashed lines are the model predictions.

is more suppressed as o/m becomes larger in our simulations and this comparison of the simulation results with our semi-analytic model.
looks compatible with recent studies (e.g. Sameie et al. 2020). Note that we set A = 0.65 in Fig. 4. The figure highlights that our
We then examine the velocity-dependent model of o/m as in equa- treatment in Section 3.4 can explain the simulation results with an

tion (10) by using the vSIDM run (see Table 1). Fig. 4 summarizes the appropriate choice of \A.
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Figure 3. The orbital and mass evolution of an infalling subhalo with its initial mass of 10° M, as a function of o/m. In this figure, o/m is assumed to be
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Figure 4. Similar to Fig. 2, but we consider a velocity-dependent cross-section given by equation (10).

4.2.2 Varying subhalo orbits

We next study the impact of subhalo orbits on the subhalo mass
loss in SIDM models. We examine 16 different sets of our orbital
parameters (x., 1) as in Table 1, assuming the velocity-independent
cross-section of o/m = 1 cm? g~!

Fig. 5 summarizes the time evolution of infalling subhalo masses
as a function of (x., n). The blue circles in the figure represent the
simulation results, while the solid lines show our model predictions.
We assume .4 = 0.60 for every model prediction in the figure. We
find that our model can provide a reasonable fit to the simulation
results with n 2 0.35 and a range of 0.6 < x. < 1.5, but a sizeable
difference between the simulation results and our model can be found
at an extreme value of n 2~ 0.05. Note that orbits with n < 0.2 rarely
happen in cosmological simulations of collision-less dark matter (e.g.

MNRAS 516, 4594-4611 (2022)

Jiang et al. 2015). Even for the orbits at n = 0.05, our model can
explain overall trends in the time evolution of the subhalo mass with
a level of 20 — 30 per cent.

4.2.3 Model precision of subhalo density profiles

We then investigate the subhalo density profiles at various initial
conditions as well as examine the dependence on the self-interaction
cross-section o/m. Fig. 6 compares the subhalo density profiles in
our N-body simulations with the model counterparts. In this figure,
the first, third, and fifth rows summarize the subhalo density profiles
in various simulation runs. At those rows, different coloured symbols
represent the subhalo density profiles in the simulation at different
epochs of = 1.5, 3, 5, 7, and 9 Gyr, while the coloured lines are
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Figure 5. The mass evolution of infalling subhaloes at various orbits for the SIDM model with the velocity-independent cross-section of 1cm? g~!. In each
panel, the blue circles show the simulation results, while the line presents our model prediction. The subhalo orbits are characterized by two parameters of x,
and 7. The results with n = 0.05, 0.35, 0.65, and 0.95 are shown from left to right, while we increase x. as x, = 0.6, 0.9, 1.2, and 1.5 from top to bottom. Note
that larger x. corresponds to longer orbital period, and smaller 5 provides more radial orbits (see Section 2.1 for details).

the counterparts by our model prediction. At the second, fourth, and
sixth rows, individual panels show the ratio between the simulation
results and our model predictions for comparison.

In the first and second rows, we show the results as varying o /m for
afixed initial condition of the subhalo. We observe that our model can
reproduce the subhalo density profiles in the simulations with a level
of ~0.1 dex in a range of r/ry = 1 when varied the cross-section o/m.
The model precision becomes worse as we increase o/m, implying
that effects of gravothermal instability may be required to be revised
for a better model.

Three panels at the third and fourth rows summarize the compar-
isons at different orbital parameters (x., n) for the SIDM model with
o/m = 1cm?g~'. As long as the orbital parameter is set to be n >
0.35, our model can provide an accurate fit to the simulation results.
Note that a small value of 7 corresponds to a highly elongated orbit
around the host. When setting an extreme condition of 7 = 0.05,
we observed that our model precision gets worse (but the model has
a 0.5 dex level precision). For tidal effects, our model partly relies
on the assumption of the subhalo on a circular orbit (equation 30).
Hence, the model would tend to be invalid for more radial orbits.

In the panels at the fifth and sixth rows, we can see the ef-
fect of initial conditions of subhaloes for the SIDM model with
o/m = 1cm? g~!. The left-hand panel in the fifth row shows the
comparisons when we assume an initial subhalo density profile with
a higher concentration, while the middle bottom panel presents the
results with the subhalo with a lower concentration at t = 0. We

find that our model can reproduce the simulation results with a
level of ~0.2 dex for a wide range of the subhalo concentration
at their initial density. The model precision gets worse for the lower-
concentration subhalo, indicating that a more detailed calibration of
the gravothermal fluid model (see equation 16) and the tidal stripping
model (see equation 35) are beneficial. The right-hand panel in
the fifth row in the figure summarizes the comparisons when we
increase the subhalo mass at its initial state as My, = 10'° M. We
do not observe any systematic trends in the difference between the
simulation results and our model predictions even if we increase the
initial subhalo mass.

4.3 Comparison with previous studies

In the aforementioned sections, we introduced a semi-analytic model
of infalling subhaloes and made detailed comparisons with ideal N-
body simulation results and the model predictions. We here discuss
differences among our model and others in the literature.

4.3.1 Time evolution of density profiles of single SIDM haloes

Our model assumes a gravothermal fluid model based on the
calibration of the thermal conductivity « in equation (13) in Koda
& Shapiro (2011), whereas we further include a correction based on
our N-body simulations of isolated SIDM haloes as in equation (16).
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Previous studies have reported different models of « for isolated
and cosmological N-body simulations (e.g. Balberg et al. 2002;
Koda & Shapiro 2011; Essig et al. 2019; Nishikawa et al. 2020).
Also, the hydrostatic equilibrium (equation 11) is not always valid
in SIDM haloes at small cross-sections (e.g. Nishikawa et al.
2020). Hence, a correction of the gravothermal fluid model would
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be needed for a precise modelling of time evolution of SIDM
density profiles. Nevertheless, it would be worth noting that we
correct the gravothermal fluid model with a level of 10-50 per cent
over 10 Gyr. From a qualitative point of view, the fluid model in
Koda & Shapiro (2011) provides a fit to our N-body simulation
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For another approach, Robertson et al. (2021) introduced a
mapping method from a given NFW profile to an isothermal density
profile based on Jeans equations, referred to as isothermal Jeans
modelling. In the isothermal Jeans modelling, one assumes that a
SIDM halo follows an isothermal density profile at the radius smaller
than r,, while the NFW profile remains unchanged at outer radii. The
isothermal Jeans modelling is found to be valid when one predicts the
density profile of a SIDM halo at a given epoch, but a proper choice
of r, is required to explain simulation results on a case-by-case basis.
Hence, the isothermal Jeans modelling is less relevant to predicting
the time evolution of the SIDM density profile.

4.3.2 Evolution of infalling subhaloes

Our model assumes that the motion of infalling SIDM subhaloes is
governed by equation (20), as same as in Jiang et al. (2021a). The
model of Jiang et al. (2021a), referred to as J21 model, assumes that
(i) an isolated SIDM halo follows a cored profile with a characteristic
core radius where every particle is expected to have interacted once
within a time, (ii) a parameter of the mass loss in equation (27)
is fixed to A = 0.55 as expected in the collision-less dark matter
(Green et al. 2021), and (iii) the mass loss by tidal stripping effects
(equation 27) truncates the subhalo boundary radius and the mass
loss by self-interactions (equation 32) decreases the amplitude in the
subhalo density. We also refer the readers to a brief description of
the J21 model in Appendix E.

Fig. 7 summarizes the comparison with the J21 model and ours
for the SIDM with the cross-section of o/m =3cm?g~!. We
find that the difference in the subhalo orbit is very small. On the
time evolution of the subhalo mass, an appropriate choice of the
parameter A is needed to provide a better fit to our simulation
results. Note that Jiang et al. (2021a) assumes a static NFW
gravitational potential for the host halo in their analysis. Hence, the
orbital evolution of infalling subhaloes in Jiang et al. (2021a) may
be less affected by choices of the model, whereas the J21 model
would have a 50 per cent-level uncertainty in predicting the time
evolution of the subhalo mass over ~ 10 Gyr.

Recently, Correa (2021) has developed a semi-analytic model of
infalling subhaloes in a static host based on a gravothermal fluid
model and derived an interesting constraint of SIDM models with
observations of MW dwarf spheroidal galaxies. The model in Correa
(2021) incorporated the gravothermal fluid model with the tidal
evolution of subhaloes (van den Bosch et al. 2018; Green & van
den Bosch 2019), accounting for the gravothermal collapse effects
accelerated by the tidal stripping (Nishikawa et al. 2020; Sameie et al.
2020). However, the model computes the mass-loss rate assuming a
circular subhalo orbit and does not include the mass loss by the self-
scattering-induced evaporation. This simplification can affect the
subhalo mass at each moment. Because the gravothermal instability
depends on how the subhalo mass density is tidally stripped, further
developments would be interesting for a precise modelling of the
gravothermal collapse effects in infalling subhaloes. Note that our
model ignores the gravothermal instability induced by tidal stripping
effects, while it can solve the orbital and structural evolution of
subhaloes in a self-consistent way.

5 LIMITATIONS

Before concluding, we summarize the major limitations in our semi-
analytic model of infalling subhaloes in an MW-sized host halo. The
following issues will be addressed in future studies.

Modelling SIDM substructures I 4605

5.1 Baryonic effects

In this paper, we do not consider any baryonic effects. Baryons can
affect our semi-analytic model in various ways.

The presence of stellar and gas components is common in most
of real galaxies. The baryons at the galaxy centre can deepen the
gravitational potential compared to dark-matter-only predictions.
This allows an effective temperature of SIDM particles to have a
flat or negative gradient in the radius, leading to decrease the size of
SIDM core as well as increase the central SIDM density in baryon-
dominated galaxies (Kaplinghat et al. 2014; Kamada et al. 2017b).
These back-reaction effects between baryons and SIDM have been
investigated in isolated N-body simulations (Sameie et al. 2018) and
cosmological zoom-in simulations (Vogelsberger et al. 2014; Fitts
et al. 2019; Robles et al. 2019; Sameie et al. 2021). Interestingly,
the simulations in Sameie et al. (2018) showed that the SIDM core
in an MW-sized halo can expand at early phases and contract later.
This time variation can be important to predict orbits of infalling
subhaloes in a realistic MW-sized galaxy.

In addition, the presence of stellar disc at the host centres can
severely affect the mass loss of infalling subhaloes. D’Onghia et al.
(2010) showed that subhaloes in the inner regions of the halo are
efficiently destroyed in the presence of time-evolving stellar disc
components, while Garrison-Kimmel et al. (2017) found that this
suppression in the subhalo abundance can be explained by adding
an embedded central disc potential to dark-matter-only simulations.
Isolated N-body simulations also play important roles in studying
the depletion of subhaloes in details (e.g Pefiarrubia et al. 2010;
Errani et al. 2017). Recently, Green, van den Bosch & Jiang (2022)
have explored the impact of a galactic disc potential on the subhalo
populations in MW-like haloes with their semi-analytic modelling.
We expect that our semi-analytic model can be useful to investigate
the effects of stellar disc components in the SIDM model by adding
a stellar disc potential in the equation of motion (equation 20).

5.2 Gravothermal collapse

The gravothermal instability induces dynamical collapse of the SIDM
core. This effect can be partly taken into account in our semi-analytic
model with the gravothermal fluid model (see Section 3.1). Note
that the gravothermal fluid model of isolated SIDM haloes predicts
the core collapse over time, but it rarely happens within a Hubble
time (e.g. Balberg et al. 2002). Our model still assumes that the
gravothermal collapse occurs regardless of the tidal stripping effects,
but this is not the case for some specific conditions (Nishikawa et al.
2020; Sameie et al. 2020). Nishikawa et al. (2020) found that the
core collapse in the SIDM density can realize within a Hubble time
for o/m < 10cm? g~! if the initial subhalo density is significantly
truncated, while Sameie et al. (2020) showed that the evolution of
the SIDM core is sensitive to the concentration in the initial subhalo
density. Motivated by those findings, Correa (2021) developed a
gravothermal fluid model of tidally stripped subhaloes with focus
on a large self-interacting cross-section of 20 — 150cm?g~'. A
calibration of the gravothermal fluid model in Correa (2021) with N-
body simulations would be an interesting direction of future studies.

5.3 Comparisons with cosmological simulations

Our semi-analytic model has been calibrated with isolated N-body
simulations. This indicates that our results may be affected by cosmo-
logical environments at the outermost radii. A lumpy and continuous
mass accretion in an expanding universe can heat SIDM haloes,
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Jiang et al. (2021a).

slowing the gravothermal core collapse. Detailed comparisons with
our gravothermal fluid model of equation (16) with cosmological
SIDM N-body simulations (e.g. Rocha et al. 2013; Elbert et al. 2015)
can reveal how important environmental effects are in predicting time
evolution of the SIDM density profiles.

The evolution of infalling subhaloes can be affected by other
floating subhaloes in the host. The subhaloes should gravitationally
interact with each other, and induce perturbations in the host
gravitational potential. These complex effects might affect the orbital
and structural evolution of infalling subhaloes. To examine these, it
would be worth comparing our semi-analytic model with zoom-in
simulation results of MW-sized cosmological haloes (e.g. Ebisu et al.
2022).

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied the evolution of a 10° M, subhalo
infalling on to an MW-sized host halo in the presence of self-
interactions among dark matter particles. We have performed a set of
dark-matter-only N-body simulations of halo-subhalo minor mergers
by varying self-interacting cross-sections o/m, subhalo orbits, and
initial conditions of subhalo density profiles. For comparisons,
we developed a semi-analytic model of infalling subhaloes in a
given host halo by combining a gravothermal fluid model with
subhalo mass losses due to tidal stripping and ram-pressure-induced
effects. We then made detailed comparisons with our simulation
results and the semi-analytic model, allowing to improve physical
understanding of SIDM substructures. Although our study imposes
several assumptions, we gained meaningful insights as follows:

(i) In our N-body simulations for a range of o/m < 30cm?g~!,
the fluid model with the thermal conductivity calibrated in Koda
& Shapiro (2011) can qualitatively explain the time evolution of
the SIDM core in an isolated halo whose initial density follows a
NFW profile, but we also observe systematic differences between
the simulation results and the fluid model over 10 Gyr. We provided
a simple correction of the model as in equation (16). Our corrected
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gravothermal fluid model allows to predict the time evolution of
SIDM density profiles over 10 Gyr with a 10 per cent-level precision.

(ii) The structural evolution of infalling subhaloes can be ex-
plained by the prediction for collision-less dark matter as proposed in
Green & van den Bosch (2019), even if we include the self-interaction
of dark matter particles. The evaporation due to self-interacting ram
pressure can not alter the SIDM density profile in isolation as long
as the cross-section is smaller than o/m < 10cm? g~!. The tidal
stripping effects play a central role in the change in the density profile
of the SIDM subhalo across its orbit (Section 4.1). When the initial
subhalo density is set to be consistent with the ACDM prediction at
z ~ 2, the SIDM subhaloes do not undergo the gravothermal collapse
over 10 Gyr in our simulations.

(iii) The orbit of SIDM subhaloes can be precisely predicted by a
simple framework based on point-mass approximation incorporated
with the dynamical friction (Chandrasekhar 1943) and the ram-
pressure-induced deceleration (Kummer et al. 2018; Section 3.2).

(iv) The time evolution of SIDM subhalo masses can be also
explained by a common method accounting for the mass loss due to
tidal stripping and ram-pressure effects (Section 3.3). Our N-body
simulations need an effective mass-loss rate of the tidal stripping
(equation 27) to depend on the self-interacting cross-section o/m,
which is a new systematic effect in the prediction of SIDM subhaloes.

(v) Our semi-analytic model can provide a reasonable fit to the
simulation results for various cross-sections (including a velocity-
dependent scenario as in equation 10), subhalo orbits, and initial
subhalo density profiles. A typical uncertainty in the model prediction
is 0.1-0.2 dex for the SIDM subhalo density profiles over 10 Gyr in

arange of o/m < 10cm? g~

Our semi-analytic model provides a simple, efficient, and physi-
cally intuitive prediction of SIDM subhaloes, but it has to be revised
in various aspects for applications to real data sets. The model should
include more realistic effects, such as baryonic effects in a MW-sized
host halo, the gravothermal instability induced by tidal stripping
effects, cosmological mass accretion around the host halo, and grav-
itational interaction among subhaloes in the host (see Section 5 for
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details). We expect the model to be improved on a step-by-step basis
with a use of cosmological N-body simulations, as well as isolated
N-body simulations, including baryonic components in the host
gravitational potential. This is along the line of our ongoing study.
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APPENDIX A: CONVERGENCE TESTS FOR
N-BODY SIMULATIONS

We here summarize convergence tests of our N-body simulations
for halo-subhalo mergers. In this appendix, we work on the same
parameter sets as ‘SIDM1’ in Table 1. We run three different N-
body simulations with the particle mass of my, being 10*, 10, and
10% M, respectively. In each simulation, we set the gravitational
softening length as in equation (9). Note that the host halo (subhalo
at t = 0) can be resolved with 108(10°), 107(10%), and 10°(10) when
we set My = 10%, 10%, and 10° M.

Mibinit = 10° Mg, can, = 6.0,0/m = 1.0 cm?/g

1.0 N =10% (mpare = 10° M) |
c— N = 10* (Mpart = 10° Mg)
0.8 —_— N = 10° (e = 10* Mo)
= 0.6 1
g
=
0.4
0.2 1
0.0 . i .
g
1.2
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S
—
=
=08 : : ; :
= 0 P 4 6 8 10
=

time (Gyr)

Figure Al. Convergence tests for evolution of subhalo bound mass. The top
panel shows the fraction of subhalo bound mass (normalized to unity at t =
0) when we vary the particle resolution in our simulations. The bottom panel
represents the fractional difference among the simulation results. The grey
shaded region in the bottom shows a £5 per cent difference. In each panel,
the blue thin, orange thick, green dashed lines stand for the simulation results
with mpare = 10, 10%, and 10* M, respectively. This figure highlights that
our fiducial run with mpa = 10° Mg shows a converged result within a few
percents.
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Figure A2. Convergence tests for subhalo density profiles. Similar legends
are applied as in Fig. Al. The top panel shows the subhalo density profiles
evolved by 9 Gyr when the resolution is varied, while the bottom represents
the fractional difference. The grey region in the bottom panel highlights a
+10 per cent difference.

Figs Al and A2 summarize the convergence tests in our N-
body simulations. We found that our fiducial set up with mp,q =
10° M, can make the subhalo mass evolution converged within a
2 — 3 per cent level, while the subhalo density profile at /r; 22 0.2 in
our simulations looks converged with a 10 per cent-level precision.
We caution that the inner subhalo profile may suffer from some
numerical resolution effects in our simulation sets.

APPENDIX B: A TEST OF SIDM
IMPLEMENTATION

As a test, we consider an isolated halo following a Hernquist profile
at its initial state. The Hernquist profile is expressed as

a

2 oY

p(r) =
where a is the scaled radius. For the initial Hernquist profile, we adopt
the same parameters as in Robertson (2017). To be specific, we set the
mass parameter of 10'* M and the scaled radius of 225 kpc. We ran
the simulation with 1283 N-body particles, the gravitational softening
length of 4.4 kpc, and the cross-section of o/m = 1cm? g~!. Note
that those simulation parameters are also same as in Robertson
(2017). For comparison, we extract the data points of SIDM density
profiles from fig. 4.9 of Robertson (2017) by using this website.”
Fig. Bl summarizes the comparison of the halo core evolution for
the Hernquist halo in our simulation with the results in Robertson
(2017). We confirm that our SIDM implementation provides a good
fit to the results in the literature.
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Figure B1. The halo core formation and size evolution for a Hernquist halo
with M = 10" My, and the scaled radius a = 225kpc. In this figure, we
consider the SIDM model with o/m = 1 cm? g~!. The points show the result
reported in Robertson (2017). The different lines represent our simulation
results, demonstrating that our SIDM implementation provides a consistent
time evolution of SIDM cores. The grey region highlights scales shorter than
the gravitational softening length of 4.4 kpc.

APPENDIX C: CALIBRATION OF
GRAVOTHERMAL FLUID MODEL FOR AN
ISOLATED HALO

In this appendix, we describe our calibration of the gravothermal
fluid model. For the calibration, we perform N-body simulations of
an isolated halo with its initial density profile following an NFW
profile as varying the self-interacting cross-section o/m. In these
isolated simulations, we set the halo mass and the scaled radius at
t =0 to be 10" My and r, = 21.18kpc. We examine five cross-
sections of o/m = 0.3, 1, 3, 10, and 30 cm? g_l and evolve the halo
by 10 Gyr in our simulations. The simulation outputs are stored with
a time interval of 0.1 Gyr, producing 100 snapshots for a given SIDM
model. We refer the readers to Section 2.1 about how to prepare an
isolated NFW halo.

Fig. C1 summarizes the comparison of the SIDM density profile
between the simulation results and the gravothermal fluid model in
Koda & Shapiro (2011). In the figure, we show the density profiles at
a dimensionless epoch #/t, = 10, where £, is given by equation (19).
Once considering evolution with respect to dimensionless epochs #/7,
we find that the gravothermal fluid model almost predicts an identical
density profile at a given #/ty regardless of the exact value of o/m.
The gravothermal fluid prediction is shown by the solid line in the
top panel of Fig. C1, while different coloured symbols represent our
simulation results at #/#o = 10. Although the simulation results exhibit
a 0(10) per cent difference from the gravothermal fluid model at #/r
2~ 0.1, the difference is found to be almost independent on o/m if
comparing the density profiles at the same dimensionless epoch /1.
This finding motivates us to develop a correction function of the
gravothermal fluid model below;

psom(r, 1, 0/m) = pu(r,t,0/m)C(r/rs, /1), (ChH

where C represents the correction function that we would like to
find. After some trials, we find that our simulation results can be
well explained by a two-parameter function below;
. xP+/2)F
ey = W27
(x+y)F

where x = r/(0.1r;) and we assume that 8 and y depend on 7 = ¢ /1.

. (C2)
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Figure C1. SIDM density profiles as a function of the cross-section o/m.
In the upper panel, the solid line shows the gravothermal fluid model with
the heat conductivity calibrated in Koda & Shapiro (2011), while different
coloured symbols represent our N-body simulation results for an isolated halo
with its mass of 10'> M. We show the simulation results at a dimensionless
time #/tp = 10, where #( is a characteristic relaxation time-scale given in
equation (19). Because the time-scale #p depends on o/m, each symbol
represents the density profile at different epoch; The blue circle shows the
density profile at t ~ 3.3 Gyr for the SIDM with o/m = 3 cm? g~ !, while the
orange square and green diamond show the counterparts at # >~ 1.0 Gyr and
t ~ 0.3 Gyr for o/m = 10 and 30 cm? g~ !, respectively. Note that the upper
panel shows the quantity of ~r2p. For ease of comparisons, we also show
the initial NFW profile by the dashed line in the top panel. The bottom panel
shows the fractional difference between the gravothermal fluid model and the
simulation results at #/fo = 3, highlighting that a universal correction can be
applied to the gravothermal fluid prediction for various o/m.

Using the density profile of the simulated halo at a given snapshot
and cross-section of o/m, we find the best-fitting parameters of
and y by minimizing the chi-square value of

X2 = [psmris t,0/m) = psipm(ri, t, o /m)P, (C3)

where pgn, represents the density profile of the simulated halo and 7; is
the i-th bin in the halo-centric radius. For this chi-square analysis, we
perform a logarithmic binning in #/r; with the number of bins being
35inarange of 0.01 < r/ry <30 when computing the spherical density
profile of the simulated halo. After finding the best-fitting parameters
for a given set of snapshot time # and cross-section o/m, we derive the
t/tp-dependence as in equations (17) and (18). Fig. C2 summarizes
our calibration, demonstrating that the model of equation (16) can
provide a good fit to the simulation results for a wide range of o/m
and 7. We confirm that our calibrated model has a 10 per cent-level
precision in the range of #/fy < 100. It would be worth noting that
our model has been calibrated for a specific initial condition. Hence,
our model can not be applied to general cases, but it would provide
a reasonable fit to the SIDM density profile as long as its initial
density follows a NFW profile. A caveat is that our calibration may

MNRAS 516, 4594-4611 (2022)
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Figure C2. Tests of our calibrated gravothermal fluid model (equation 16) against the N-body simulations of an isolated halo. In each panel, the blue circles
show the simulation results, while the grey dashed and orange solid lines represent the model in Koda & Shapiro (2011) and our calibrated model, respectively.
From left to right (top to bottom), we show the comparisons as increasing o /m (epoch 7).

depend on a choice of boundary radius in an isolated SIDM halo as
discussed in Koda & Shapiro (2011). Note that the model in Koda &
Shapiro (2011) has been calibrated with simulation results assuming
the halo boundary radius is set to 100 times as large as the NFW
scaled radius, while we adopted a more realistic situation (i.e. the
halo concentration of 10). We leave it to investigate possible effects
of the halo boundary radii in SIDM simulations for future studies.

MNRAS 516, 4594-4611 (2022)

APPENDIX D: A FITTING FORMULA OF THE
TRANSFER FUNCTION FOR TIDALLY
TRUNCATED DENSITY PROFILES

In this appendix, we provide a fitting formula of the transfer function
developed in Green & van den Bosch (2019). In the context of
tidal evolution of collision-less dark matter subhaloes, the transfer
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function is commonly defined as

Her oty = 0D (1)
p(r,t =0)

where H is the transfer function, r is the radius from the centre

of the subhalo, and p(r, f) is the subhalo density profile at an

epoch of ¢. Using a set of collisionless N-body simulations of minor

mergers, Green & van den Bosch (2019) found that H can be well

approximated as the form below;

fre

. (f [auh,vi,—ae] )5 ’

Fsub, vir'te
where 7 = r /r init, Such that all radii in equation (D2) are normalized
to the initial NFW scale radius of the subhalo r;_ipit.

Equation (D2) contains three model parameters and those depend
on the initial subhalo concentration ¢, and the bound mass fraction
of the subhalo at the epoch ¢ (denoted as fiouna). Throughout this
paper, we adopt

H(r,t)= (D2)

ai(csub, 1002 a3(1= foouna)™
fte — fb] sub, 10 C?Jb Soound ) (D3)
~ = b1(esub, 10”2 b3(1— foouna)?
Tte = Tsub,vir fb Csljb oound
b
X exp [bS(CsubA,IO) o1 — fbound)] s (D4)

(e R c
8 = ¢ fbtl(tsuh,lo) Ccsl(Jl fbound)4’ (D5)

su
where Csub, 10 = csub/lO, a) = 0338, a, = 0000, ay = 0157, ay
= 1.337, by = 0.448, b, = 0.272, b3 = —0.199, by, = 0.011, b5 =
—1.119, bg = 0.093, ¢y = 2.779, ¢; = —0.035, ¢, = —0.337, ;3
= —0.099, and ¢4 = 0.415. Note that the function in equation (D2)
has been calibrated for the collisionless dark matter. Hence, we have
tested if it can be applied to collisional scenarios in Section 4.1.

APPENDIX E: A SEMI-ANALYTIC MODEL IN
JIANG ET AL. (2021A)

For the sake of clarity, we here summarize a semi-analytic model in
Jiang et al. (2021a). The model assumes that an isolated SIDM halo
follows a NFW profile at its initial state and the density profile at a
given age f can be approximated as

1 dMspm 12
4mr? dr

pspm21(r) = s (ED)

Modelling SIDM substructures I 4611
Msipm,121(r) = tanh (;) Myrw(r), (E2)

where Mnpw(7) is the enclosed mass of the initial NFW profile, and
7. represents an effective core radius of the SIDM halo and depends
on the time of 7. To be specific, r. is given by min[0.5r, r,] (ry is the
scaled radius for the initial NFW profile) and r; is set by

(ov/m) psipma1(r)t =1, (E3)

where the above equation means that the SIDM core size can be
related to the radius where every SIDM particle has interacted once
by the time 7. The average in equation (E3) is given by

(ov/m) = /OO dvv a f(vsve), (E4)
0 m

where f(v; v.) is the Maxwell-Boltzmann distribution of equa-
tion (39). The parameter v, is set to 4 o, j21(r)/+/7 with

02 1) = , psom, 121 (1) GMSIDM,JZl(r,). (ES)

In Jiang et €$1D€‘Q@afﬁ),46 authors 0lve the orbifal evolution of
infalling subhaloes as same as in Section 3.2. The mass loss due to the
tidal stripping is also set by equation (27), but they adopt A = 0.55
and g = 1 for any SIDM models. They also take into account the
mass loss by the self-interacting evaporation as in equation (32). For
a given mass loss rate, the model in Jiang et al. (2021a) then updates
the subhalo density profile after a finite time of At by rules below;

/ dMsub
Muv (00, 7o) — Maub(00, Tour) = d At, (E6)
I J1s
/ dMsub
Msub(p(), rout) - Msuh(lo()v roul) = d At, (E7)
I/ Rpe

where Mg (00, Tour) 1S the enclosed mass of the subhalo at its
boundary radius of ro, with the density amplitude being po. We
denote r , and p as the quantities to be updated. Equations (E6 and
E7) are designed so that the tidal stripping can remove the subhalo
mass at its outermost radius, while the ram-pressure effects can affect

the overall subhalo density profile.

This paper has been typeset from a TeX/IATEX file prepared by the author.
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