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A B S T R A C T 

We study evolution of single subhaloes with their masses of ∼10 

9 M � in a Milky Way-sized host halo for self-interacting 

dark matter (SIDM) models. We perform dark-matter-only N -body simulations of dynamical evolution of individual subhaloes 
orbiting its host by varying self-scattering cross-sections (including a velocity-dependent scenario), subhalo orbits, and internal 
properties of the subhalo. We calibrate a gra v othermal fluid model to predict time evolution in spherical mass density profiles 
of isolated SIDM haloes with the simulations. We find that tidal effects of SIDM subhaloes can be described with a framework 

developed for the case of collision-less cold dark matter (CDM), but a shorter typical time-scale for the mass loss due to 

tidal stripping is required to explain our SIDM simulation results. As long as the cross-section is less than ∼10 cm 

2 g 

−1 and 

initial states of subhaloes are set within a 2 σ -level scatter at redshifts of ∼2 predicted by the standard � CDM cosmology, our 
simulations do not exhibit a prominent feature of gra v othermal collapse in the subhalo central density for 10 Gyr. We develop a 
semi-analytic model of SIDM subhaloes in a time-evolving density core of the host with tidal stripping and self-scattering ram 

pressure effects. Our semi-analytic approach provides a simple, efficient, and physically intuitive prediction of SIDM subhaloes, 
but further impro v ements are needed to account for baryonic effects in the host and the gra v othermal instability accelerated by 

tidal stripping effects. 

Key words: galaxies: structure – dark matter. 
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 I N T RO D U C T I O N  

n array of astronomical observations has established a concordance
osmological model, referred to as � cold dark matter ( � CDM)
odel. The � CDM model requires the presence of invisible mass

omponents in the Universe to explain the current observational
ata. The nature of such ‘dark’ matter is still uncertain. Because dark
atter plays an essential role in the formation and evolution of cosmic

arge-scale structures, the observations of large-scale structures have
onstrained the cosmic abundance of dark matter in the Universe (e.g.
lanck Collaboration VI 2020 ; Alam et al. 2021 ), free-streaming
ffects induced by thermal motion of dark matter particles (e.g. Baur
t al. 2016 ; Palanque-Delabrouille et al. 2020 ), non-gravitational
cattering of baryons and dark matter (e.g. Dvorkin, Blum &
amionkowski 2014 ; Xu, Dvorkin & Chael 2018 ), electrically

harged dark matter (e.g. Kamada et al. 2017a ), and annihilation
nd decay processes of dark matter particles (e.g. Ando & Ishiwata
015 ; Shirasaki et al. 2016 ; Slatyer & Wu 2017 ; Kawasaki et al.
021 ). So far, all constraints by the large-scale structures indicate that
ravitational interactions are dominant in the growth of dark matter
ensity, dark matter does not interact with ordinary matter and/or
lectromagnetic radiation, and its thermal motion is negligible. 
 E-mail: masato.shirasaki@nao.ac.jp 

2
 

a  

Pub
Although the � CDM model has provided an excellent fit to the
bservational data on length scales longer than ∼10 Mpc , it remains
nclear if the model can be compatible with observations at smaller
cales (e.g. Bullock & Boylan-Kolchin 2017 , for a re vie w). Self-
nteracting dark matter (SIDM) has been proposed as a solution
or the small-scale challenges to the � CDM model (e.g. Spergel
 Steinhardt 2000 ). Elastic self-interactions among dark matter

articles can lead to formation of a cored density profile, which
s preferred by observations of galaxies and galaxy clusters. After
ts proposal, numerical simulations have played a central role to
mpro v e our understanding of the structure formation in the presence
f dark matter self-interactions, whereas particle physics models have
een proposed to realize the SIDM preferred by some astronomical
bservations (e.g. Tulin & Yu 2018 , for a review). 
Recently, Oman et al. ( 2015 ) found that rotation curves of observed

piral galaxies exhibit a diversity at their inner regions. This diversity
roblem appears to conflict with the � CDM prediction, but it can be
xplained within a SIDM framework (e.g. Kamada et al. 2017b ; Ren
t al. 2019 ; Kaplinghat, Ren & Yu 2020 ). Nevertheless, it would be
orth noting that the SIDM solution to the diversity problem depends
n the sampling of halo concentration as well as co-evolution of dark
atter with baryons (e.g. Creasey et al. 2017 ; Santos-Santos et al.

020 ; Sameie et al. 2021 ). 
Satellite galaxies in the Milky Way (denoted as MW satellites)

re promising targets for robustly constraining the SIDM scenarios.
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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he MW satellites are expected to be dominated by dark matter, 
nd their dark matter contents would be less affected by possible
aryonic effects inside the satellites. Valli & Yu ( 2018 ) examined
he cross-section of dark matter self-interactions with kinematic 
bservations of MW dwarf spheroidals, but their modelling of SIDM 

ensity profiles does not include tidal effects from the host. A similar
nvestigation has been done for less massive satellites known as 
ltra-f aint dw arf galaxies in Hayashi et al. ( 2021 ). Kaplinghat, Valli
 Yu ( 2019 ) pointed out an anti-correlation between the central

ark-matter densities of the bright MW satellites and their orbital 
ericentre distances inferred from Gaia data. The anti-correlation 
an be explained by a SIDM model (e.g. Correa 2021 ), while a
ore careful modelling of the kinematic observations leads that the 
 CDM predictions can explain the anti-correlation (e.g. Hayashi, 
hiba & Ishiyama 2020 ) 
High-resolution numerical simulations provide a powerful means 

f predicting the MW satellites in the presence of dark matter self-
nteractions (e.g. Zavala et al. 2019 ; Ebisu, Ishiyama & Hayashi 
022 ; Silverman et al. 2022 ) and the interplay with baryonic effects
e.g. Robles et al. 2019 ; Lo v ell et al. 2020 ; Orkne y et al. 2021 ). How-
ver, numerical simulations can suffer from resolution effects and are 
ommonly e xpensiv e to scan a wider range of parameters of interest.
n practice, we need to account for various modelling uncertainties 
e.g. possible baryonic effects and galaxy-halo connections) as well 
s several observational systematic effects to place a meaningful 
onstraint of the nature of dark matter with the observations of the
W satellites (e.g. Nadler et al. (e.g. Kim & Peter 2021 ; Nadler

t al. 2021 ). Looking towards future measurements in wide-field 
pectroscopic surv e ys (e.g. Takada et al. 2014 ), an efficient semi-
nalytic modelling of the MW satellites in the presence of dark 
atter self-interactions is highly demanded. 
In this paper, we aim at developing a semi-analytic model of

he SIDM satellite haloes (denoted as subhaloes) in a MW-sized 
ost halo. For this purpose, we perform a set of (dark matter-only)
 -body simulations of halo-subhalo mergers by varying the self- 

nteracting cross-sections, subhalo orbits, and internal properties of 
he subhaloes at their initial state. For comparisons, we formulate 
 simple semi-analytic model of the SIDM subhaloes accreting on 
o the host halo based on previous findings for the collision-less
ark matter (e.g. Green & van den Bosch 2019 ; Jiang et al. 2021b ).
e then calibrate our semi-analytic model with the idealized N -

ody simulations and assess its limitation. Our analysis would make 
n important first step towards a more precise modelling of the 
IDM subhaloes, as well as impro v e our physical understanding 
f evolution of the SIDM subhaloes. 
The rest of this paper is organized as follows. We describe our
 -body simulations in Section 2 . Next, we summarize our semi-
nalytic model of the SIDM subhaloes in Section 3 . Section 4
resents the key results, whereas we discuss the limitations of our 
nalysis in Section 5 . Finally, concluding remarks are provided in 
ection 6 . In the following, ln represents the natural logarithm. 
hroughout this paper, we adopt � CDM cosmological parameters 
elow; the average cosmic mass density �m 

= 0.315, the cosmo- 
ogical constant �� 

= 1 − �m 

= 0 . 685, the average baryon density
b = 0.0497, the present-day Hubble parameter H 0 = 100 h = 

7 . 3 km s −1 Mpc −1 , the spectral index of the power spectrum of
rimordial curvature perturbations n s = 0.96, and the linear mass 
ariance within 8 Mpc h 

−1 being σ 8 = 0.80. Those parameters 
re consistent with statistical analyses of cosmic microwave back- 
rounds in Planck Collaboration VI ( 2020 ). If necessary, we compute
he critical density of the universe as ρcrit, z = 2 . 775 × 10 11 [ �m 

(1 +
) 3 + �� 

] h 

2 M � Mpc −3 , where z is a redshift. 
 SI MULATI ONS  

n this paper, we perform N -body simulations of idealized minor
ergers to study evolution of single subhaloes in an external potential 

y a host halo for the SIDM models. This section summarizes
ow to set initial conditions of our N -body simulations, our N -
ody simulation code, and physical parameter sets adopted in our 
imulations. 

.1 Initial conditions 

e assume that either host halo or subhalo at its initial state follows
 spherical Navarro-Frenk-White (NFW; Navarro, Frenk & White 
997 ) density profile. At a given halo-centric radius r , the NFW
rofile is given by 

NFW 

( r ) = 

ρs 

( r /r s )(1 + r/r s ) 2 
, (1) 

here ρs and r s represent the scaled density and radius, respectively. 
he scaled density and radius can be related to a spherical o v er-
ensity mass as 

 � 

= 

4 π

3 
� ρcrit ,z r 

3 
� 

= 

∫ r � 

0 
4 πr 2 d r ρNFW 

( r) , (2) 

here M � 

is the spherical o v er-density mass and r � 

is the correspond-
ng halo radius. Throughout this paper, we adopt a conventional mass
efinition with � = 200. The halo concentration is defined as c =
 200 / r s and a set of c and M 200 can fully determine the NFW profile. In
he following, we use subscripts ’h’ and ’sub’ to indicate properties
f the host- and subhaloes, respectively. 
For an initial condition of our N -body simulation, we fix the host

alo mass, the halo radius, and the scaled radius to M 200 , h = 10 12 M �,
 200 , h = 211 kpc , and r s, h = 21 . 1 kpc , respectively. Note that the
caled density and radius of the host halo are set with the critical
ensity at z = 0. For our fiducial case, we adopt M 200 , sub = 10 9 M �
nd c sub = 6 in the initial subhalo density, but we vary M 200, sub 

nd c sub as necessary. The initial subhalo concentration is set to be
onsistent with a model prediction in Diemer & Kravtsov ( 2015 ) at
 = 2. It would be worth noting that the redshift of z = 2 provides
 typical formation epoch of the ∼10 12 M � halo at z = 0 in the
xcursion set approach (Bond et al. 1991 ; Lacey & Cole 1993 ). To
eep a consistency with our choice of c sub = 6, we determine ρs , sub 

nd r s , sub with the critical density at z = 2. Using different redshifts
o define the initial density profiles of the host and subhalo is a
it ambiguous, but our simulations do not contain accreting mass 
round the host and there are no unique ways to realize a realistic
ituation as in cosmological simulations. Because the outskirt region 
f the host halo is less important for orbital evolution of the subhalo,
ur simulations would be still useful to develop a better physical
nderstanding of orbiting SIDM subhaloes. 
To generate isolated NFW host halo and subhalo, we use a

ublic code of MAGI (Miki & Umemura 2018 ), assuming that the
FW (sub)halo has an isotropic velocity distribution. The code 

mploys a distribution-function-based method so that the phase- 
pace distribution of member particles in haloes can be determined 
y energy alone. To realize the system of particles in dynamical
quilibrium with a sharp cut-off at r � r 200 , we multiply the target
FW density profile with a function of erfc([ r − r 200 ]/[2 r cut ])/2,
here we adopt r cut = 0 . 05 r 200 . The number of particles is set to
0 7 for the host halo, corresponding to the particle mass being
 part = 10 5 M �. The convergence tests of our N -body simulations

re summarized in Appendix A . We confirmed that our choice of
he particle mass can provide converged results of subhalo mass loss
MNRAS 516, 4594–4611 (2022) 
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ith a level of 1 per cent , and subhalo density profiles at r / r s, sub �
.2 within 10 per cent o v er 10 Gyr. 
To specify the subhalo orbit, we introduce two dimensionless

uantities, x c and η. In this paper, we express the angular momentum
 and the total energy E of the orbiting subhalo as 

 = ηr c V c (3) 

 = 

V 

2 
c 

2 
+ 
 NFW , h ( r c ) , (4) 

here r c = x c r 200, h , V c = ( GM 200, h / r c ) 1/2 is a velocity at the circular
rbit when we treat host- and subhaloes as isolated point particles,
nd 
 NFW, h presents the gravitational potential by the host NFW
rofile ( Łokas & Mamon 2001 ). The orbital period T r is then defined
y 

 r = 

∫ r a 

r p 

d r 

(2[ E − 
 NFW , h ( r)] − L 

2 /r 2 ) 1 / 2 
, (5) 

here two radii, r p and r a , are given as a solution of the equation be-
ow: 

L 

2 

r 2 
+ 2[ 
 NFW , h ( r) − E] = 0 . (6) 

he parameter x c controls the orbital period, whereas η determines
he eccentricity in the subhalo orbit. We choose x c = 0.5 and η =
.6 as our baseline parameters, while we examine different values
o test our semi-analytic model described in Section 3 . The baseline
arameters provide r p = 41 . 9 kpc , r a = 243 kpc , and T r = 3 . 0 Gyr
or our host halo. For a given set of x c and η, we compute the
nitial (Cartesian) vectors of the subhalo position and velocity with
espect to the host halo as x sub = ( r a , 0, 0) and v sub = (0, L / r a , 0),
espectively. Note that the subhalo orbit is confined to the x − y plane
n our simulations. 

.2 N -body simulations 

or a given initial condition of halo mergers, we evolve the system by
olving gravitational and self-interactions among N -body particles.
o do so, we use a (non-cosmological) self-gravity mode of a
e xible, massiv ely parallel, multimethod multiphysics code GIZMO
Hopkins 2015 ) for the gravitational interaction. Throughout this
aper, we assume isotropic and elastic self-interaction processes in
ur simulations. 
Our SIDM implementation follows the method in Robertson,
assey & Eke ( 2017 ). In short, the rate with which a dark matter

article, 1 i , is scattered by other dark matter particles within the
istance h is given as: 

 i = 

(
4 π

3 
h 

3 

)−1 

m p 

∑ 

j 

σ ( v ij ) 

m 

v ij , (7) 

here m p is the mass of a dark matter particle as a numerical element,
 ij = | v i − v j | is the relative speed between particles i and j , and the
um is o v er all particles within the distance h from the particle i .
s in Robertson et al. ( 2017 ), we apply a fixed value of h to all
articles. The implementation with a constant h has two advantages
 v er one with a variable h in accord with the local density. As we
iscuss later, the symmetry between a pair of particles is important
or the accurate scattering rate estimation. We also do not need
NRAS 516, 4594–4611 (2022) 

 A ‘particle’ here means a numerical element and should be distinguished 
rom an SIDM particle of mass m . 

o  

s
 

s  
 xpensiv e iterativ e loops when using a constant h , whereas the loops
an become e xpensiv e for the adaptiv e h to make the (ef fecti ve)
umber of neighbouring particles within h constant. We set h =
.8 ε, where ε is the Plummer equi v alent force softening length and
he gravitational force becomes Newtonian at 2.8 ε. 

From equation ( 7 ), the probability of the particle, i , is scattered by
ne of its neighbours, j , within a distance h during a time-step � t i is 

 ij = 

1 

2 

(
4 π

3 
h 

3 

)−1 

m p 
σ ( v ij ) 

m 

v ij �t i . (8) 

e introduce the factor 1/2 since a scatter event al w ays involves a pair
f particles. The pre-factor of 1/2 is justified only when the identical
ntersection radius of h is adopted to every neighbour particle. For an
daptive h , we may need to introduce symmetrization as is usually
one in the smoothed particle hydrodynamics (e.g. Springel 2010 ). 
For a scattering event between particles i and j , we update their

elocities as follows: 

u i = v cm 

+ ( v ij / 2) ̂ e 

u j = v cm 

− ( v ij / 2) ̂ e , 

here u i and u j are the post-scatter velocities of the particle i and
 , respectively, v cm 

= ( v i + v j ) / 2 is the centre-of-mass velocity, and
ˆ e is the randomly oriented unit vector. We have tested our SIDM
mplementation by counting the number of collisions of N -body
articles in a spherical halo and observing post-scattering kinematics
n a uniform background as in Robertson et al. ( 2017 ), and confirmed
t agrees with the analytic expectation. 

In principle, a particle can scatter more than once in a single time-
tep, even if we employ a very short time-step. Multiple scatters in a
ingle time-step may introduce undesired numerical errors because
he momentum kick from one scattering event affects the velocities
f particles for any further scattering events. To minimize possible
umerical artefacts, we update the particle velocities immediately
fter setting rele v ant particles to scattering processes. 

Running simulations on multiple processors with domain decom-
osition can cause a further complication because a particle can
ndergo scattering events among different computational domains.
o a v oid any confusions, we first perform the SIDM calculation on

he local domain where we can easily apply the immediate velocity
pdate. When a particle is exported to other computational domains,
he SIDM calculations are performed in the export destinations in the
ame manner as in the local domain. If an exported particle undergoes
cattering events in two or more destinations or an exported particle
catters in one of the destinations and the same particle is scattered by
n imported particle in the local domain, these scattering processes
iolate the energy conservation. To reduce such bad scatters, we
estrict the time-step � t i to be smaller than 0 . 02 / R i as often done
n the literature (e.g. Vogelsberger, Zavala & Loeb 2012 ). We have
onfirmed that the abo v e procedure does not introduce detectable
umerical errors on the conservation of total energy and momentum
n an isolated system. 

To test our SIDM implementation, we evolved a cluster-sized
solated halo following a Hernquist profile at its initial state with the
ame simulation setup as in Robertson ( 2017 ). We then compared
ur simulation results with one in Robertson ( 2017 ). We found that
he halo core evolution in our simulation provides a good fit to
he results in Robertson ( 2017 ), demonstrating that the scattering
f N -body particles is correctly implemented. The test results are
ummarized in Appendix B . 

The box size on a side is set to 1100 kpc so that the boundary of our
imulation box cannot affect the simulation results. We also adopt
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he gravitational softening length, in terms of an equi v alent-Plummer 
alue, ε, as proposed in van den Bosch & Ogiya ( 2018 ); 

= 0 . 05 r s, sub 

(
N sub 

10 5 

)−1 / 3 

, (9) 

here N sub represents the number of N -body member particles in 
nitial subhaloes and is set to N sub = 10 4 for our baseline run.
ll simulations output particle snapshots with a fixed time-step 
f 0 . 1 Gyr and stop at t = 10 Gyr . At each snapshot, we define
ravitational-bound particles in the subhalo with the iterative method 
n van den Bosch & Ogiya ( 2018 ). 

.3 Parameters 

able 1 summarizes a set of parameters adopted in our N -body sim-
lations. Most simulations assume that the SIDM cross-section per 
nit mass σ / m is independent of relative velocities between dark 
atter particles, but we also explore the impact of a velocity- 

ependent σ / m by adopting ef fecti ve-range theories in Chu, Garcia-
ely & Murayama ( 2020 ). To be specific, we adopt a velocity-
ependent scenario as in Chu et al. ( 2020 ); 

σ

m 

= 

σ0 

m 

⎧ ⎨ 

⎩ 

[ 

1 − 1 

8 

r e 

a 

(
v 

v 0 

)2 
] 2 

+ 

1 

4 

(
v 

v 0 

)2 
⎫ ⎬ 

⎭ 

−1 

, (10) 

here we set σ0 /m = 6 . 3 cm 

2 g −1 , a = 37 . 4 fm , r e = −748 . 9 fm ,
nd v 0 = 100 km s −1 , and those parameters provide a reasonable 
t to the observational constraints of 〈 σv〉 / m at the average rela-

iv e v elocity of 〈 v〉 = 10 − 100 km s −1 in Kaplinghat, Tulin & Yu
 2016 ). This velocity-dependent model predicts that an ef fecti ve
ross-section 〈 σv 〉 / m / 〈 v 〉 is found to be 1 − 6 cm 

2 g −1 at the mass
cale of ∼10 9 M �, while the cross-section becomes smaller than 

0 . 1 cm 

2 g −1 for a MW-sized halo. 
Apart from our fiducial orbital parameters ( x c = 0.5 and η =

.6), we also examine 16 different orbits in a range of 0.6 ≤ x c 
1.5 and 0.05 ≤ η ≤ 0.95. Note that the range of x c and η is

onsistent with the cosmological N-body simulation in Jiang et al. 
 2015 ). For the initial density profile of an infalling subhalo, we vary
he halo concentration by a factor of 2 or 1/2 but fix subhalo mass
o M 200 , sub = 10 9 M �. The change of c sub by a factor of 2 or 1/2
oughly co v ers a 2.5 σ -lev el difference in the halo concentration at
he mass of 10 9 M � in cosmological simulations (e.g. Ishiyama et al.
013 ). As another test, we consider a more massive infalling subhalo
ith M 200 , sub = 10 10 M � and c sub = 5. As in Section 2.1 , the density
rofile for the 10 10 M � subhalo is set with the critical density at z = 2.

 M O D E L  

his section describes our semi-analytic model of orbital and 
ynamical evolution of an infalling subhalo in the presence of 
elf-interactions of dark matter particles. The model consists of 
hree ingredients; (i) a time-evolving SIDM density profile in 
solation (Section 3.1 ), (ii) the equation of motion of the subhalo
ncluding dynamical friction and ram-pressure-induced deceleration 
Section 3.2 ), and (iii) mass loss of the subhalo across its orbit
Section 3.3 ). In the Sections 3.1 –3.3 , we first assume a velocity-
ndependent cross-section σ / m for simplicity. We then describe 
ow to include the velocity-dependence of σ / m in our model in
ection 3.4 . 
.1 Gravothermal fluid model 

n our model, we follow a gra v othermal fluid model (e.g. Balberg,
hapiro & Inagaki 2002 ) to predict spherical density profiles of

solated haloes. The gra v othermal fluid model assumes that SIDM
onsists of a thermally conducting fluid in quasistatic equilibrium 

nd the system of interest is isotropic and spherically symmetric. At
 given time of t and halo-centric radius of r , dark matter particles
ave a mass density profile ρ( r , t ). Their 1D velocity dispersion σ v ( r ,
 ) is set by the hydrostatic equilibrium of ideal gas at each moment; 

∂ p( r , t) 

∂r 
= −GM ( r , t) ρ( r, t) 

r 2 
, (11) 

here p = ρ σ 2 
v is an ef fecti ve pressure, M ( r , t ) is the enclosed mass

ithin the radius of r at t , and we impose the mass conservation of 

∂ M ( r , t) 

∂r 
= 4 π r 2 ρ( r, t) . (12) 

he thermal evolution of the fluid is go v erned by Fourier’s law of
hermal conduction and the first law of thermodynamics, 

L ( r, t) 

4 πr 2 
= −κ

∂ T ( r , t) 

∂r 
, (13) 

∂ L ( r , t) 

∂r 
= −4 πr 2 p( r , t) 

(
∂ 

∂ t 

)
M 

ln 

(
σ 3 

v ( r , t) 

ρ( r , t) 

)
, (14) 

here L ( r , t ) is the luminosity through a sphere at r , T ( r , t ) is a
emperature defined as k B T = mσ 2 

v ( m is the particle mass and k B is
he Boltzmann constant), κ is the thermal conductivity, and the time 
eri v ati ve in the right-hand side of equation ( 14 ) is Lagrangian. 
As discussed in Balberg et al. ( 2002 ), we adopt a single expression

f equation ( 13 ) by considering both the cases where the mean free
ath between collisions is significantly shorter or larger than the 
ystem size, 

L 

4 πr 2 
= −3 

2 
b ∗ρσv 

[ (
1 

λ

)
+ 

( 

b ∗σv t r 

C ∗ H 

2 
g 

) ] −1 
∂σ 2 

v 

∂r 
, (15) 

here H g ≡
√ 

σ 2 
v / (4 πGρ) is the gravitational scale height of the 

ystem, λ = ( ρσ / m ) −1 is the collisional scale for the mean free path,
 r ≡ λ/( a σ v ) is the relaxation time with a coefficient of order of unity
eing a , and we adopt a = 

√ 

16 /π for hard-sphere scattering of par-
icles with a Maxwell–Boltzmann velocity distribution (Reif 1965 ). 

In equation ( 15 ), we introduce two model parameters of b ∗ and
 ∗. In the limit of λ � H g , the thermal conductivity is given by κ �

3/2)( k B / m ) b ∗ρλ2 /( at r ) and b ∗ can be regarded as an ef fecti ve impact
arameter among particle collisions. In the limit of λ � H g , one finds
� (3 / 2)( k B /m ) C ∗ρH 

2 
g /t r , reproducing an empirical formula of

ra v othermal collapse of globular clusters (Lynden-Bell & Eggleton 
980 ). As our baseline model, we adopt b ∗ = 0.25 and C ∗ = 0.75,
s proposed in Koda & Shapiro ( 2011 ). By assuming the NFW halo
t t = 0, we then numerically solve equations ( 11 , 12 , 14 , and 15 )
ith the method described in appendix A of Nishikawa, Boddy &
aplinghat ( 2020 ; also see Pollack, Spergel & Steinhardt 2015 ). 
We note that Koda & Shapiro ( 2011 ) found the parameters of b ∗
 0.25 and C ∗ = 0.75 to explain their N -body simulations of isolated

aloes following a self-similar solution of the gra v othermal fluid
odel in Balberg et al. ( 2002 ). Hence, we validate the gra v othermal
uid model with b ∗ = 0.25 and C ∗ = 0.75 for NFW haloes at
 = 0 by using our N -body simulations of isolated haloes. The
omparisons with the gra v othermal fluid model and our simulation
esults are summarized in Appendix C . We find that a correction
f the gra v othermal fluid model is needed to explain our simulation
esults for initial NFW haloes with their mass of M 200 = 10 12 M � and
MNRAS 516, 4594–4611 (2022) 



4598 M. Shirasaki, T. Okamoto, and S. Ando 

M

Table 1. Summary of parameters in our N -body simulations of halo mergers. For all simulations in this paper, we fix the host halo mass M 200 , h = 10 12 M �, 
the scaled radius (in the initial NFW density) r s, h = 21 . 1 kpc , and the concentration c h = 10. In e very simulation, we e volve the orbit of an infalling subhalo 
for 10 Gyr. Note that our simulations allow a time evolution of the host halo density in accord with the thermalization due to the self-scattering process of dark 
matter particles. In each cell, M 200, sub is the initial subhalo mass, r s , sub is the scaled radius in the initial subhalo density, c sub is the subhalo concentration at its 
initial state, σ / m is the self-scattering cross-section per unit mass, and ( x c , η) present dimensionless orbital parameters described in Section 2.1 . 

Name M 200 , sub ( M �) r s, sub ( kpc ) c sub σ/m ( cm 

2 g −1 ) ( x c , η) 

Fiducial ( v-independent σ / m ) 
CDM 10 9 1 .68 6 0 (0.5, 0.6) 
SIDM1 10 9 1 .68 6 1 (0.5, 0.6) 
SIDM3 10 9 1 .68 6 3 (0.5, 0.6) 
SIDM10 10 9 1 .68 6 10 (0.5, 0.6) 

v-dependent σ / m 

vSIDM 10 9 1 .68 6 equation ( 10 ) (0.5, 0.6) 

Different orbits 
SIDM1-diff-orbit 10 9 1 .68 6 1 (0.6, 0.05), (0.6, 0.35), (0.6, 0.65), (0.6, 0.95) 

(0.9, 0.05), (0.9, 0.35), (0.9, 0.65), (0.9, 0.95) 
(1.2, 0.05), (1.2, 0.35), (1.2, 0.65), (1.2, 0.95) 
(1.5, 0.05), (1.5, 0.35), (1.5, 0.65), (1.5, 0.95) 

Varied subhalo properties 
High c sub 10 9 0 .842 12 1 (0.5, 0.6) 
Low c sub 10 9 3 .36 3 1 (0.5, 0.6) 
Large M sub 10 10 4 .38 5 1 (0.5, 0.6) 
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oncentration of c = 10 in the range of 0 . 3 � σ/m ( cm 

2 g −1 ) � 30
t t ≤ 10 Gyr . The final model of density profiles of isolated SIDM
aloes is then given by 

SIDM 

( r, t) = ρgt ( r, t) 
x β + (1 / 2) β

( x + γ / 2 ) β
, (16) 

here ρgt ( r , t ) is the gra v othermal-fluid prediction with b ∗ = 0.25
nd C ∗ = 0.75 and x = r /(0.1 r s ) ( r s is the scaled radius of the initial
FW halo). The two parameters β and γ in equation ( 16 ) depend on

ime as well as σ / m ; 

= 0 . 275 
[
log 10 ( t/t 0 ) − 0 . 492 

]2 + 1 . 38 , (17) 

= 0 . 493 ( t/t 0 ) 
0 . 203 , (18) 

here we introduce a characteristic time-scale of 

 0 ≡
( √ 

16 

π
ρs 

σ

m 

√ 

4 πGρs r 2 s 

) −1 

= 1 . 29 Gyr 

(
σ/m 

1 cm 

2 g −1 

)−1 (
ρs 

5 × 10 6 M �kpc −3 

)−3 / 2 

×
(

r s 

20 kpc 

)−1 

, (19) 

nd note that 
√ 

4 πGρs r 2 s in the abo v e equation pro vides a char-
cteristic velocity for the initial NFW haloes. Our model has been
alibrated with N -body simulations of isolated SIDM haloes with the
pecific initial NFW profile ( M 200 = 10 12 M �, r 200 = 211 kpc , r s =
1 . 1 kpc , and ρs = 5 . 72 × 10 6 M � kpc −3 ), but we use equation ( 16 )
or any initial NFW profiles in the following. 

.2 Orbital evolution 

ssuming that the subhalo is not significantly deformed by tidal
orces and self-interactions, we treat it as a point particle. Under this
oint-mass approximation, we e v aluate the orbit of the subhalo by
olving the equation of motion (e.g. Jiang et al. 2021a , b , for the
NRAS 516, 4594–4611 (2022) 
ame approach), 

d 2 x sub 

d t 2 
= −∇
 h + a DF + a RPd , (20) 

here 
 h is the gravitational potential of a SIDM host halo with
ts density following equation ( 16 ), a DF represents the acceleration
ue to dynamical friction, and a RPd is the deceleration causing by
he scattering process among escaping dark matter particles from the
nfalling subhalo and particles in the host halo (Kummer, Kahlhoefer
 Schmidt-Hoberg 2018 ). 
On the term of dynamical friction, we adopt the Chadrasekhar

ormula (Chandrasekhar 1943 ) as 

 DF = −4 πG 

2 M sub ρh ln � F v ( | v sub | ) v sub 

| v sub | 3 , (21) 

here we adopt an expression of the Coulomb logarithm as ln � =
ln ( M h /M sub ) with a fudge factor of ξ being min( | dln ρh /dln r | , 1)

t r = | x sub | as proposed in Read et al. ( 2006 ), and 

 v ( v) = Erf ( y) − 2 y exp ( −y 2 ) / 
√ 

π (22) 

ith y = v/ ( 
√ 

2 σv, h ) for an isotropic and Maxwellian host halo. The
elocity dispersion of σ v, h is given by the solution of equation ( 11 )
ith the density profile of ρh . 
The scattering-induced deceleration term is given by 

 RPd = −v sub ηd 

(
σ | v sub | 

m 

)
ρh , (23) 

here ηd is the deceleration fraction computed as (see Markevitch
t al. 2004 ; Kummer et al. 2018 ) 

d = 1 − 4 
∫ 1 

x / 
√ 

(1 + x ) 2 
d y y 2 

√ 

y 2 − x 2 (1 − y 2 ) , (24) 

 = 

v̄ esc , sub √ 

| v | 2 sub + σ 2 
v, h 

, (25) 

¯ esc , sub = 

1 

M 

∫ 
4 πr 2 d r ρsub 

√ 

−2 
 sub . (26) 

sub 
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n the abo v e, 
 sub is the gravitational potential of the subhalo.
ote that we account for the bulk velocity of the subhalo as well

s the random velocity of the particles inside the host halo in
he computation of ηd (see appendix A of Kummer et al. 2018 ,
or details). Nevertheless, the effect of a RPd is found to be almost
egligible for our simulation results in this paper. 
We solve equation ( 20 ) using a fourth-order Runge–Kutta method. 

t would be worth noting that we properly include the time evolution
f the host halo density ρh across the subhalo orbit as in Section 3.1 .
o solve equation ( 20 ), we require a model of mass loss of the subhalo
s well as the change of the subhalo density profile ρsub due to tidal
ffects and ram-pressure evaporation, described in the next section. 

.3 Mass loss 

n the SIDM model, the infalling subhalo can lose its mass due to tidal
tripping and ram-pressure e v aporation ef fects. The former ef fect can
redominantly remo v e mass from the outskirts of the subhalo, while
he latter can affect the mass density in the entire region of the
ubhalo. 

For the tidal stripping, we employ a commonly used expression of
he mass-loss rate, given by (

d M sub 

d t 

)
TS 

= −A 

M sub ( > r t ; t) 

qτdyn ( R) 
, (27) 

here A is a free parameter in the model, M sub ( > r t ; t ) represents the
ubhalo mass in the outskirts with r > r t at t , τ dyn ( R ) is the dynamical
ime at the relative distance between the subhalo and the host centre
eing R , and q is a parameter with an order of unity. To be specific,
e define the dynamical time as 

dyn ( R) = 

√ 

π2 R 

3 

4 GM h ( R) 
, (28) 

nd note that M h ( R ) is the enclosed mass of the host and depends on
ime t . We account for possible effects of (sub)halo concentrations 
t initial states by setting q = ( c sub / c h /2) 1/3 (moti v ated by the results
n Green, van den Bosch & Jiang 2021 ). The value of A will be
alibrated with our simulations. The radius of r t is known as the tidal
adius, and there are a number of different definitions (e.g. see van
en Bosch et al. 2018 , for a brief o v erview). In this paper, we adopt
 phenomenological model of 

 t = min ( r t1 , r t2 ) , (29) 

ith 

r t1 

R 

= 

[ 

M sub ( r t1 ) /M h ( R) 

2 − (d ln M h / d ln r) r= R + 

(
v tan , sub /v circ , h ( R) 

)2 

] 1 / 3 

, (30) 

r t2 

R 

= 

(
M sub ( r t2 ) 

M h ( R) 

)1 / 3 

, (31) 

here v tan, sub = | x sub × v sub | / | x sub | is the instantaneous tangential
elocity of the subhalo, and v circ , h ( R) = 

√ 

GM h ( R) /R 

2 represents 
he circular velocity of a test particle in the host at the radius of R .
ote that one derives equation ( 30 ) by assuming that the subhalo can
e approximated as a point mass on a circular orbit (von Hoerner
957 ; King 1962 ), while the assumption becomes invalid for more
adial orbits. Equation ( 31 ) has been proposed in Klypin et al. ( 1999 )
o account for resonances between the gravitational force by the 
ubhalo and the tidal force by the host (Weinberg 1994a , b , 1997 ). If
e cannot find a non-trivial solution of r t 1 �= 0 in equation ( 30 ), we

et r t = r t 2 . 
For the ram-pressure e v aporation, we adopt the mass-loss rate
elow (Kummer et al. 2018 ) (

d M sub 

d t 

)
RPe 

= −M sub ηe 

(
σ | v sub | 

m 

)
ρh , (32) 

here ηe is the e v aporation fraction computed as (see Markevitch
t al. 2004 ; Kummer et al. 2018 ) 

e = 

1 − x 2 

1 + x 2 
, (33) 

nd x in the abo v e is given by equation ( 25 ). 
At each moment t , we can compute the mass loss of the subhalo

uring a small time interval of � t by using equations ( 27 ) and ( 32 ).
e then reset the subhalo mass of 

 sub → M sub + �t 

(
d M sub 

d t 

)
TS 

+ �t 

(
d M sub 

d t 

)
RPe 

, (34) 

nd include ef fecti ve tidal stripping effects on the subhalo density
rofile as 

sub ( r, t + �t) = ρSIDM , sub ( r, t + �t) H ( r; f bound , c sub ) , (35) 

here ρSIDM , sub ( r, t) is the model of equation ( 16 ) for the subhalo,
 bound is the bound mass defined as M sub ( t + � t )/ M sub ( t = 0), and
 ( r ; f bound , c sub ) presents the change of the subhalo density profile
ue to the tidal stripping (referred to as the transfer function in the
iterature). After updating the subhalo mass and its density profile, 
e then solve equation ( 20 ) to obtain the position and velocity of the

ubhalo at the time of t + � t . In practice, we set the time-step � t to
e 10 −4 T r throughout this paper. 
In equation ( 35 ), we assume that the ram-pressure effects are less

mportant for the shape in the subhalo density profile, but the tidal
tripping plays a central role. Tidal evolution of density profiles of
nfalling subhaloes has been investigated in Ogiya et al. ( 2019 ), Green
 van den Bosch ( 2019 ) with a large set of N -body simulations of
inor mergers for collision-less dark matter (i.e. σ / m = 0). Green &

an den Bosch ( 2019 ) has studied the tidal evolution of the subhalo
ensity profile with respect to its initial counterpart and found that the
tructural evolution of a tidally truncated subhalo is predominantly 
etermined by the bound mass fraction f bound and the initial subhalo
oncentration. We here adopt their calibrated model of the transfer 
unction H in equation ( 35 ). The explicit form of H is provided in
ppendix D . It should be noted that Green & van den Bosch ( 2019 )

alibrated the form of H with the tidally stripped profile relative to the
nitial profile, but our model uses their transfer function for the time-
volving SIDM density profile. Although our model can reproduce 
he results in Green & van den Bosch ( 2019 ) in the limit of σ / m

 0 and ρSIDM, sub → ρNFW, sub , equation ( 35 ) should be validated 
ith our N -body simulations for SIDM models. We summarize our
alidation of equation ( 35 ) in Section 4.1 . 

.4 For velocity-dependent cross-sections 

e here explain how our model can be applied for velocity-dependent 
ross-sections σ ( v)/ m . Suppose that we solve the time evolution of
he system with an time interval of � t . At the n -th time-step t = t n ,
ur model follows procedures below; 

(i) We first determine the time evolution of density profiles for 
solated host- and subhaloes as in Section 3.1 . For this purpose, we
et ef fecti ve cross-sections to ( σ

m 

)
eff 

≡ 〈 σv/m 〉 
〈 v〉 , (36) 
MNRAS 516, 4594–4611 (2022) 
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 σv/m 〉 = 

∫ ∞ 

0 
d v v σ ( v ) /m f ( v ; v c ) , (37) 

 v〉 = 

∫ ∞ 

0 
d v v f ( v; v c ) , (38) 

here f ( v ; v c ) represents the distribution function of relativ e v elocity
f particles in the host or subhalo, and v c determines a typical velocity
cale. We define equation ( 36 ) with a velocity-weighted quantity
ecause the number of particles scattered per unit time ( ∝〈 σv/ m 〉 ) is
xpected to be rele v ant to the evolution of SIDM density profiles. In
his paper, we assume f ( v ; v c ) as a Maxwell–Boltzmann distribution
or relative velocities; 

 ( v ; v c ) = 

4 v 2 c exp ( −v 2 /v 2 c ) √ 

πv 3 c 

, (39) 

roviding that 〈 v〉 = v c . For a given halo/subhalo density profile at t =
 n − 1 , we determine the 1D velocity dispersion σ v ( r ) by equation ( 11 )
nd set v c = 4 σv ( r s ) / 

√ 

π where r s is the scaled radius at the initial
FW profile. We then take the corresponding SIDM density profile

t σ / m = ( σ / m ) eff and the moment of t = t n from a pre-stored table
f ρSIDM 

given by equation ( 16 ) for v-independent cross-sections. 
(ii) We then solve the equation of motion of the subhalo as in

ection 3.2 . To determine the ram-pressure deceleration term of
quation ( 23 ), we substitute σ / m for σ ( | v sub, n-1 | )/ m , where v sub, n-1 

s the bulk velocity of the subhalo at t = t n − 1 . Using the time-step
f � t , we also set the mass loss of the infalling subhalo and update
he shape of the subhalo density profile as in equation ( 35 ). For
he velocity-dependent cross-section, we compute the mass loss of
quation ( 32 ) by setting σ / m = σ ( | v sub, n-1 | )/ m . 

(iii) After updating the bound mass, position, velocity, and the
ensity profile of the subhalo, we go back to the step (i) to determine
he density profiles at t = t n + 1 . 

 RESU LTS  

his section presents main results in our paper. Those include the
tructural evolution of subhalo density profiles with dark matter self-
nteractions, detailed comparisons with our semi-analytic model and
he simulation outputs, and discussion on differences between our
odel and others in the literature. 

.1 Structural evolution of SIDM subhaloes 

e first study density profiles of infalling SIDM subhaloes at
ifferent epochs. As the subhalo orbit is evolved, the density profile is
odified by gravitational interactions as well as the self-interaction

f dark matter particles in the host and subhalo. 
For ease of comparison, we run N -body simulations of an isolated

alo with its initial mass of 10 9 M � and concentration of 6, but
arying σ / m = 1, 3, and 10 cm 

2 g −1 . These isolated haloes are evolved
y 10 Gyr with a snapshot interval of 0 . 1 Gyr . We then characterize
he structural evolution of infalling subhalo density profiles as 

 ( r , t) ≡ ρsub ( r , t) 

ρiso ( r , t) 
, (40) 

here ρsub ( r , t ) is the density profile of infalling subhaloes, and ρ iso ( r ,
 ) represents the counterpart for isolated haloes with the same initial
ensity profiles as the subhaloes. 
Fig. 1 summarizes our measurements of H ( r , t ). At each column,

pper and lower panels present the results at σ / m = 1, 3, and
0 cm 

2 g −1 from left to right. Solid lines in the upper panel show
NRAS 516, 4594–4611 (2022) 
he function of H ( r , t ) in our simulations and the colour difference
ndicates the difference in the epoch t . The coloured dashed lines
n the upper panel are the prediction in Green & van den Bosch
 2019 ) with the simulated value of the bound mass fraction f bound . The
ractional difference between the simulation results and the model
rediction is shown in the lower panels. 
We find that the structural evolution of SIDM subhaloes can be

pproximated as the model in Green & van den Bosch ( 2019 ),
ven though the model has been calibrated with the collision-less
 -body simulations. As long as the cross-section is set to smaller

han ∼10 cm 

2 g −1 , the ram-pressure e v aporation is less important
o set the shape of the subhalo density profile. We here note that a
easonable match between the simulation results and the model in
reen & van den Bosch ( 2019 ) occurs only when we use the value
f f bound in the simulations. This highlights that a precise model
f the mass loss is important to determine the density profile of
he subhalo at outskirts across its orbit. Also, the results in Fig. 1
upport that our approximation of equation ( 35 ) would be valid if
e can predict the density profile of SIDM haloes in isolation. More
etailed comparisons with the simulation results and equation ( 35 )
re presented in the next section. 

.2 Comparison with simulation results and model predictions 

e here summarize comparisons with our N -body simulation results
nd model predictions as in Section 3 . 

.2.1 Varying cross-sections 

e first investigate the dynamical evolution of infalling subhaloes
ith their initial mass of 10 9 M � and a fixed subhalo orbital parameter

s a function of the self-interaction cross-section σ / m . For this
urpose, we use the fiducial simulation runs of CDM, SIDM1, and
IDM3, and SIDM10 in Table 1 . 
Fig. 2 summarizes the simulation outputs of the infalling subhalo

or the SIDM3 run ( σ/m = 3 cm 

2 g −1 ) as well as our model pre-
ictions. In the left-hand panels, grey lines represent the simulation
esults, while the dashed lines are our model predictions. For this
gure, we set a parameter for the mass loss (see equation 27 ) to
 = 0 . 65. Our model provides an accurate fit to the subhalo orbit in

ur simulation o v er 10 Gyr, and the o v erall evolution of the subhalo
ass can be captured by the simple model in Section 3.3 . In the

ight-hand panel, we compare the subhalo density profile at different
pochs. The simulation results are shown by coloured symbols, and
he dashed lines show the model predictions. The figure demonstrates
hat the structural evolution of the subhalo density profile can be
xplained by our phenomenological model of equation ( 35 ). The
ime evolution at r � r s can be well determined by the gravothermal
uid model with a correction (see equation 16 ), while the density at
utskirts ( r � r s ) is suppressed mostly by tidal stripping processes. 
Fig. 3 shows how the dynamical evolution of the subhalo can

epend on the cross-section σ / m . The orbital evolution of the subhalo
ith different σ / m are summarized in the left, while the right shows

he evolution of the subhalo mass o v er 10 Gyr. In each panel, solid
ines represent our model predictions, providing a reasonable fit to the
imulation results for various cross-sections. We find that the model
orks when the parameter A is set to 0.55, 0.60, 0.65, and 0.75 for

he simulations with σ / m = 0, 1, 3, and 10 cm 

2 g −1 , respectively. This
arginal σ / m -dependence of the model parameter A can be impor-

ant in practice, especially when one would constrain the SIDM by us-
ng observations of MW satellites. We also note that the subhalo mass
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Figure 1. Structural evolution of density profiles of infalling subhaloes in SIDM models. From left to right, we show the results with the self-interacting 
cross-section of σ / m = 1, 3, and 10 cm 

2 g −1 , respectiv ely. F or each model, the upper panel shows the transfer function of the subhalo density profile (denoted 
as H ( r , t )) measured in our N -body simulations. Different coloured lines represent the results at different epochs ( t = 3, 5, 7, and 9 Gyr ). The dashed lines in the 
upper panels are model predictions in Green & van den Bosch ( 2019 ). The lower panels summarize the fractional difference between the simulation results and 
the model predictions. Note that numerical resolution effects would be important in the grey region in the figure. Although the model in Green & van den Bosch 
( 2019 ) has been calibrated with N -body simulations with σ/m = 0 cm 

2 g −1 , it can provide a reasonable fit to the simulation results with 1 ≤ σ/m ( cm 

2 g −1 ) ≤ 10 
if the mass fraction of subhalo bound mass f bound is set to the values in our N -body simulations. These results highlight that scattering processes between host- 
and subhaloes are less important to determine the shape of the subhalo density profile, as long as we consider the cross-section of σ/m � 10 cm 

2 g −1 . 

Figure 2. Comparisons with N -body simulation results and our semi-analytic model of infalling subhaloes. In this figure, we assume a velocity-independent 
cross-section of σ/m = 3 cm 

2 g −1 . The top-left panel shows the orbital evolution of the subhalo o v er 10 Gyr, while the bottom left presents the mass evolution. 
The right-hand panel summarizes the time evolution of the subhalo density profile. In the right, blue circles, orange squares, and green diamonds represent the 
simulation results at t = 2.7, 6.0, and 9.0 Gyr, respectively. In each panel, dashed lines are the model predictions. 
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s more suppressed as σ / m becomes larger in our simulations and this
ooks compatible with recent studies (e.g. Sameie et al. 2020 ). 

We then examine the velocity-dependent model of σ / m as in equa-
ion ( 10 ) by using the vSIDM run (see Table 1 ). Fig. 4 summarizes the
omparison of the simulation results with our semi-analytic model. 
ote that we set A = 0 . 65 in Fig. 4 . The figure highlights that our

reatment in Section 3.4 can explain the simulation results with an
ppropriate choice of A . 
MNRAS 516, 4594–4611 (2022) 
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Figure 3. The orbital and mass evolution of an infalling subhalo with its initial mass of 10 9 M � as a function of σ / m . In this figure, σ / m is assumed to be 
velocity-independent. In each panel, the blue circles, orange squares, green diamonds, and pink triangles represent the simulation results at σ / m = 0, 1, 3, and 
10 cm 

2 g −1 , respectively. Our model predictions are shown by different lines, providing a reasonable fit to the simulation results. 

Figure 4. Similar to Fig. 2 , but we consider a velocity-dependent cross-section given by equation ( 10 ). 
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.2.2 Varying subhalo orbits 

e next study the impact of subhalo orbits on the subhalo mass
oss in SIDM models. We examine 16 different sets of our orbital
arameters ( x c , η) as in Table 1 , assuming the velocity-independent
ross-section of σ/m = 1 cm 

2 g −1 . 
Fig. 5 summarizes the time evolution of infalling subhalo masses

s a function of ( x c , η). The blue circles in the figure represent the
imulation results, while the solid lines show our model predictions.
e assume A = 0 . 60 for every model prediction in the figure. We

nd that our model can provide a reasonable fit to the simulation
esults with η � 0.35 and a range of 0.6 ≤ x c ≤ 1.5, but a sizeable
ifference between the simulation results and our model can be found
t an extreme value of η � 0.05. Note that orbits with η � 0.2 rarely
appen in cosmological simulations of collision-less dark matter (e.g.
NRAS 516, 4594–4611 (2022) 

e  
iang et al. 2015 ). Even for the orbits at η = 0.05, our model can
 xplain o v erall trends in the time evolution of the subhalo mass with
 level of 20 − 30 per cent . 

.2.3 Model precision of subhalo density profiles 

e then investigate the subhalo density profiles at various initial
onditions as well as examine the dependence on the self-interaction
ross-section σ / m . Fig. 6 compares the subhalo density profiles in
ur N -body simulations with the model counterparts. In this figure,
he first, third, and fifth rows summarize the subhalo density profiles
n various simulation runs. At those ro ws, dif ferent coloured symbols
epresent the subhalo density profiles in the simulation at different
pochs of t = 1.5, 3, 5, 7, and 9 Gyr , while the coloured lines are
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Figure 5. The mass evolution of infalling subhaloes at various orbits for the SIDM model with the velocity-independent cross-section of 1 cm 

2 g −1 . In each 
panel, the blue circles show the simulation results, while the line presents our model prediction. The subhalo orbits are characterized by two parameters of x c 
and η. The results with η = 0.05, 0.35, 0.65, and 0.95 are shown from left to right, while we increase x c as x c = 0.6, 0.9, 1.2, and 1.5 from top to bottom. Note 
that larger x c corresponds to longer orbital period, and smaller η provides more radial orbits (see Section 2.1 for details). 
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he counterparts by our model prediction. At the second, fourth, and 
ixth ro ws, indi vidual panels sho w the ratio between the simulation
esults and our model predictions for comparison. 

In the first and second rows, we show the results as varying σ / m for
 fixed initial condition of the subhalo. We observe that our model can
eproduce the subhalo density profiles in the simulations with a level 
f ∼0.1 dex in a range of r / r s � 1 when varied the cross-section σ / m .
he model precision becomes worse as we increase σ / m , implying

hat effects of gra v othermal instability may be required to be revised
or a better model. 

Three panels at the third and fourth rows summarize the compar- 
sons at different orbital parameters ( x c , η) for the SIDM model with
/m = 1 cm 

2 g −1 . As long as the orbital parameter is set to be η �
.35, our model can provide an accurate fit to the simulation results.
ote that a small value of η corresponds to a highly elongated orbit

round the host. When setting an extreme condition of η = 0.05, 
e observed that our model precision gets worse (but the model has
 0.5 dex level precision). For tidal effects, our model partly relies
n the assumption of the subhalo on a circular orbit (equation 30 ).
ence, the model would tend to be invalid for more radial orbits. 
In the panels at the fifth and sixth rows, we can see the ef-

ect of initial conditions of subhaloes for the SIDM model with 
/m = 1 cm 

2 g −1 . The left-hand panel in the fifth row shows the
omparisons when we assume an initial subhalo density profile with 
 higher concentration, while the middle bottom panel presents the 
esults with the subhalo with a lower concentration at t = 0. We
 o  
nd that our model can reproduce the simulation results with a
evel of ∼0.2 dex for a wide range of the subhalo concentration
t their initial density. The model precision gets worse for the lower-
oncentration subhalo, indicating that a more detailed calibration of 
he gra v othermal fluid model (see equation 16 ) and the tidal stripping
odel (see equation 35 ) are beneficial. The right-hand panel in

he fifth row in the figure summarizes the comparisons when we
ncrease the subhalo mass at its initial state as M sub = 10 10 M �. We
o not observe any systematic trends in the difference between the
imulation results and our model predictions even if we increase the
nitial subhalo mass. 

.3 Comparison with previous studies 

n the aforementioned sections, we introduced a semi-analytic model 
f infalling subhaloes and made detailed comparisons with ideal N -
ody simulation results and the model predictions. We here discuss 
ifferences among our model and others in the literature. 

.3.1 Time evolution of density profiles of single SIDM haloes 

ur model assumes a gra v othermal fluid model based on the
alibration of the thermal conductivity κ in equation ( 13 ) in Koda
 Shapiro ( 2011 ), whereas we further include a correction based on

ur N -body simulations of isolated SIDM haloes as in equation ( 16 ).
MNRAS 516, 4594–4611 (2022) 
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Figure 6. Precision of the subhalo density profile by our semi-analytic model. At the first, third, and fifth rows, coloured symbols show the density profiles in 
our N -body simulations at different epochs of t = 1.5, 3, 5, 7, and 9 Gyr, while the coloured lines are our model predictions. Each panel at the second, fourth, 
and six rows show the ratio between the density profile in our N -body simulations and our model counterparts for the ease of comparison. In the first and second 
ro ws, we sho w the results at a fixed subhalo orbit, but increase the cross-section as σ / m = 1, 3, and 10 cm 

2 g −1 from left to right. In the third and fourth rows, 
we fix the cross-section to σ/m = 1 cm 

2 / g, but change the subhalo orbits. In the fifth and sixth rows, we examine different density profiles of subhaloes at t = 

0 in the SIDM model with σ/m = 1 cm 

2 g −1 . 
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revious studies have reported different models of κ for isolated
nd cosmological N -body simulations (e.g. Balberg et al. 2002 ;
oda & Shapiro 2011 ; Essig et al. 2019 ; Nishikawa et al. 2020 ).
lso, the hydrostatic equilibrium (equation 11 ) is not al w ays valid

n SIDM haloes at small cross-sections (e.g. Nishikawa et al.
020 ). Hence, a correction of the gra v othermal fluid model would
NRAS 516, 4594–4611 (2022) 
e needed for a precise modelling of time evolution of SIDM
ensity profiles. Nevertheless, it would be worth noting that we
orrect the gra v othermal fluid model with a level of 10–50 per cent
 v er 10 Gyr. From a qualitative point of view, the fluid model in
oda & Shapiro ( 2011 ) provides a fit to our N -body simulation

esults. 
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For another approach, Robertson et al. ( 2021 ) introduced a 
apping method from a given NFW profile to an isothermal density 

rofile based on Jeans equations, referred to as isothermal Jeans 
odelling. In the isothermal Jeans modelling, one assumes that a 
IDM halo follows an isothermal density profile at the radius smaller 

han r c , while the NFW profile remains unchanged at outer radii. The
sothermal Jeans modelling is found to be valid when one predicts the
ensity profile of a SIDM halo at a given epoch, but a proper choice
f r c is required to explain simulation results on a case-by-case basis.
ence, the isothermal Jeans modelling is less rele v ant to predicting

he time evolution of the SIDM density profile. 

.3.2 Evolution of infalling subhaloes 

ur model assumes that the motion of infalling SIDM subhaloes is
o v erned by equation ( 20 ), as same as in Jiang et al. ( 2021a ). The
odel of Jiang et al. ( 2021a ), referred to as J21 model, assumes that

i) an isolated SIDM halo follows a cored profile with a characteristic
ore radius where every particle is expected to have interacted once 
ithin a time, (ii) a parameter of the mass loss in equation ( 27 )

s fixed to A = 0 . 55 as expected in the collision-less dark matter
Green et al. 2021 ), and (iii) the mass loss by tidal stripping effects
equation 27 ) truncates the subhalo boundary radius and the mass
oss by self-interactions (equation 32 ) decreases the amplitude in the 
ubhalo density. We also refer the readers to a brief description of
he J21 model in Appendix E . 

Fig. 7 summarizes the comparison with the J21 model and ours
or the SIDM with the cross-section of σ/m = 3 cm 

2 g −1 . We
nd that the difference in the subhalo orbit is very small. On the

ime evolution of the subhalo mass, an appropriate choice of the 
arameter A is needed to provide a better fit to our simulation
esults. Note that Jiang et al. ( 2021a ) assumes a static NFW
ravitational potential for the host halo in their analysis. Hence, the 
rbital evolution of infalling subhaloes in Jiang et al. ( 2021a ) may
e less affected by choices of the model, whereas the J21 model
ould have a 50 per cent -level uncertainty in predicting the time 

volution of the subhalo mass o v er ∼10 Gyr . 
Recently, Correa ( 2021 ) has developed a semi-analytic model of

nfalling subhaloes in a static host based on a gra v othermal fluid
odel and derived an interesting constraint of SIDM models with 

bservations of MW dwarf spheroidal galaxies. The model in Correa 
 2021 ) incorporated the gra v othermal fluid model with the tidal
volution of subhaloes (van den Bosch et al. 2018 ; Green & van
en Bosch 2019 ), accounting for the gra v othermal collapse effects
ccelerated by the tidal stripping (Nishikawa et al. 2020 ; Sameie et al.
020 ). Ho we ver, the model computes the mass-loss rate assuming a
ircular subhalo orbit and does not include the mass loss by the self-
cattering-induced e v aporation. This simplification can af fect the 
ubhalo mass at each moment. Because the gra v othermal instability 
epends on how the subhalo mass density is tidally stripped, further
evelopments would be interesting for a precise modelling of the 
ra v othermal collapse effects in infalling subhaloes. Note that our 
odel ignores the gra v othermal instability induced by tidal stripping

ffects, while it can solve the orbital and structural evolution of
ubhaloes in a self-consistent way. 

 LIMITATIONS  

efore concluding, we summarize the major limitations in our semi- 
nalytic model of infalling subhaloes in an MW-sized host halo. The 
ollowing issues will be addressed in future studies. 
.1 Baryonic effects 

n this paper, we do not consider any baryonic effects. Baryons can
ffect our semi-analytic model in various ways. 

The presence of stellar and gas components is common in most
f real galaxies. The baryons at the galaxy centre can deepen the
ravitational potential compared to dark-matter-only predictions. 
his allows an effective temperature of SIDM particles to have a
at or ne gativ e gradient in the radius, leading to decrease the size of
IDM core as well as increase the central SIDM density in baryon-
ominated galaxies (Kaplinghat et al. 2014 ; Kamada et al. 2017b ).
hese back-reaction effects between baryons and SIDM have been 

nvestigated in isolated N -body simulations (Sameie et al. 2018 ) and
osmological zoom-in simulations (Vogelsberger et al. 2014 ; Fitts 
t al. 2019 ; Robles et al. 2019 ; Sameie et al. 2021 ). Interestingly,
he simulations in Sameie et al. ( 2018 ) showed that the SIDM core
n an MW-sized halo can expand at early phases and contract later.
his time variation can be important to predict orbits of infalling
ubhaloes in a realistic MW-sized galaxy. 

In addition, the presence of stellar disc at the host centres can
e verely af fect the mass loss of infalling subhaloes. D’Onghia et al.
 2010 ) showed that subhaloes in the inner regions of the halo are
fficiently destroyed in the presence of time-evolving stellar disc 
omponents, while Garrison-Kimmel et al. ( 2017 ) found that this
uppression in the subhalo abundance can be explained by adding 
n embedded central disc potential to dark-matter-only simulations. 
solated N -body simulations also play important roles in studying 
he depletion of subhaloes in details (e.g Pe ̃ narrubia et al. 2010 ;
rrani et al. 2017 ). Recently, Green, van den Bosch & Jiang ( 2022 )
av e e xplored the impact of a galactic disc potential on the subhalo
opulations in MW-like haloes with their semi-analytic modelling. 
e expect that our semi-analytic model can be useful to investigate

he effects of stellar disc components in the SIDM model by adding
 stellar disc potential in the equation of motion (equation 20 ). 

.2 Gravothermal collapse 

he gra v othermal instability induces dynamical collapse of the SIDM
ore. This effect can be partly taken into account in our semi-analytic
odel with the gra v othermal fluid model (see Section 3.1 ). Note

hat the gra v othermal fluid model of isolated SIDM haloes predicts
he core collapse o v er time, but it rarely happens within a Hubble
ime (e.g. Balberg et al. 2002 ). Our model still assumes that the
ra v othermal collapse occurs regardless of the tidal stripping effects,
ut this is not the case for some specific conditions (Nishikawa et al.
020 ; Sameie et al. 2020 ). Nishikawa et al. ( 2020 ) found that the
ore collapse in the SIDM density can realize within a Hubble time
or σ/m � 10 cm 

2 g −1 if the initial subhalo density is significantly
runcated, while Sameie et al. ( 2020 ) showed that the evolution of
he SIDM core is sensitive to the concentration in the initial subhalo
ensity. Moti v ated by those findings, Correa ( 2021 ) developed a
ra v othermal fluid model of tidally stripped subhaloes with focus
n a large self-interacting cross-section of 20 − 150 cm 

2 g −1 . A 

alibration of the gra v othermal fluid model in Correa ( 2021 ) with N -
ody simulations would be an interesting direction of future studies. 

.3 Comparisons with cosmological simulations 

ur semi-analytic model has been calibrated with isolated N -body 
imulations. This indicates that our results may be affected by cosmo- 
ogical environments at the outermost radii. A lumpy and continuous 

ass accretion in an e xpanding univ erse can heat SIDM haloes,
MNRAS 516, 4594–4611 (2022) 
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Figure 7. Similar to Fig. 3 , but we include the model prediction in Jiang et al. ( 2021a ). In this figure, we assume a velocity-independent cross-section of 
σ/m = 3 cm 

2 g −1 . The blue circles show our simulation results, the solid lines are our model predictions, and the orange dashed lines represent the model in 
Jiang et al. ( 2021a ). 
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lowing the gra v othermal core collapse. Detailed comparisons with
ur gra v othermal fluid model of equation ( 16 ) with cosmological
IDM N -body simulations (e.g. Rocha et al. 2013 ; Elbert et al. 2015 )
an reveal how important environmental effects are in predicting time
volution of the SIDM density profiles. 

The evolution of infalling subhaloes can be affected by other
oating subhaloes in the host. The subhaloes should gravitationally

nteract with each other, and induce perturbations in the host
ravitational potential. These complex effects might affect the orbital
nd structural evolution of infalling subhaloes. To examine these, it
ould be worth comparing our semi-analytic model with zoom-in

imulation results of MW-sized cosmological haloes (e.g. Ebisu et al.
022 ). 

 C O N C L U S I O N S  A N D  DISCUSSIONS  

n this paper, we have studied the evolution of a 10 9 M � subhalo
nfalling on to an MW-sized host halo in the presence of self-
nteractions among dark matter particles. We have performed a set of
ark-matter-only N -body simulations of halo-subhalo minor mergers
y varying self-interacting cross-sections σ / m , subhalo orbits, and
nitial conditions of subhalo density profiles. For comparisons,
e developed a semi-analytic model of infalling subhaloes in a
iven host halo by combining a gra v othermal fluid model with
ubhalo mass losses due to tidal stripping and ram-pressure-induced
ffects. We then made detailed comparisons with our simulation
esults and the semi-analytic model, allowing to impro v e physical
nderstanding of SIDM substructures. Although our study imposes
everal assumptions, we gained meaningful insights as follows: 

(i) In our N -body simulations for a range of σ/m � 30 cm 

2 g −1 ,
he fluid model with the thermal conductivity calibrated in Koda
 Shapiro ( 2011 ) can qualitativ ely e xplain the time evolution of

he SIDM core in an isolated halo whose initial density follows a
FW profile, but we also observe systematic differences between

he simulation results and the fluid model o v er 10 Gyr. We provided
 simple correction of the model as in equation ( 16 ). Our corrected
NRAS 516, 4594–4611 (2022) 
ra v othermal fluid model allows to predict the time evolution of
IDM density profiles o v er 10 Gyr with a 10 per cent -level precision.
(ii) The structural evolution of infalling subhaloes can be ex-

lained by the prediction for collision-less dark matter as proposed in
reen & van den Bosch ( 2019 ), even if we include the self-interaction
f dark matter particles. The e v aporation due to self-interacting ram
ressure can not alter the SIDM density profile in isolation as long
s the cross-section is smaller than σ/m � 10 cm 

2 g −1 . The tidal
tripping effects play a central role in the change in the density profile
f the SIDM subhalo across its orbit (Section 4.1 ). When the initial
ubhalo density is set to be consistent with the � CDM prediction at
 ∼ 2, the SIDM subhaloes do not undergo the gra v othermal collapse
 v er 10 Gyr in our simulations. 
(iii) The orbit of SIDM subhaloes can be precisely predicted by a

imple framework based on point-mass approximation incorporated
ith the dynamical friction (Chandrasekhar 1943 ) and the ram-
ressure-induced deceleration (Kummer et al. 2018 ; Section 3.2 ). 
(iv) The time evolution of SIDM subhalo masses can be also

xplained by a common method accounting for the mass loss due to
idal stripping and ram-pressure effects (Section 3.3 ). Our N -body
imulations need an ef fecti ve mass-loss rate of the tidal stripping
equation 27 ) to depend on the self-interacting cross-section σ / m ,
hich is a new systematic effect in the prediction of SIDM subhaloes.
(v) Our semi-analytic model can provide a reasonable fit to the

imulation results for various cross-sections (including a velocity-
ependent scenario as in equation 10 ), subhalo orbits, and initial
ubhalo density profiles. A typical uncertainty in the model prediction
s 0.1–0.2 dex for the SIDM subhalo density profiles o v er 10 Gyr in
 range of σ/m � 10 cm 

2 g −1 . 

Our semi-analytic model provides a simple, efficient, and physi-
ally intuitive prediction of SIDM subhaloes, but it has to be revised
n various aspects for applications to real data sets. The model should
nclude more realistic effects, such as baryonic effects in a MW-sized
ost halo, the gra v othermal instability induced by tidal stripping
ffects, cosmological mass accretion around the host halo, and grav-
tational interaction among subhaloes in the host (see Section 5 for
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etails). We expect the model to be improved on a step-by-step basis
ith a use of cosmological N -body simulations, as well as isolated
 -body simulations, including baryonic components in the host 
ravitational potential. This is along the line of our ongoing study. 
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PPENDIX  A :  C O N V E R G E N C E  TESTS  F O R  

- B O DY  SIMULATIONS  

e here summarize convergence tests of our N -body simulations
or halo-subhalo mergers. In this appendix, we work on the same
arameter sets as ‘SIDM1’ in Table 1 . We run three different N -
ody simulations with the particle mass of m part being 10 4 , 10 5 , and
0 6 M �, respectively. In each simulation, we set the gravitational
oftening length as in equation ( 9 ). Note that the host halo (subhalo
t t = 0) can be resolved with 10 8 (10 5 ), 10 7 (10 4 ), and 10 6 (10 3 ) when
e set m part = 10 4 , 10 5 , and 10 6 M �. 
NRAS 516, 4594–4611 (2022) 

igur e A1. Conver gence tests for evolution of subhalo bound mass. The top 
anel shows the fraction of subhalo bound mass (normalized to unity at t = 

) when we vary the particle resolution in our simulations. The bottom panel 
epresents the fractional difference among the simulation results. The grey 
haded region in the bottom shows a ±5 per cent difference. In each panel, 
he blue thin, orange thick, green dashed lines stand for the simulation results 
ith m part = 10 6 , 10 5 , and 10 4 M �, respectively. This figure highlights that 
ur fiducial run with m part = 10 5 M � shows a converged result within a few 

ercents. 

are applied as in Fig. A1 . The top panel shows the subhalo density profiles 
evolved by 9 Gyr when the resolution is varied, while the bottom represents 
the fractional difference. The gre y re gion in the bottom panel highlights a 
±10 per cent difference. 
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Figs A1 and A2 summarize the convergence tests in our N -
ody simulations. We found that our fiducial set up with m part =
0 5 M � can make the subhalo mass evolution converged within a
 − 3 per cent level, while the subhalo density profile at r / r s � 0.2 in
ur simulations looks converged with a 10 per cent -level precision.
e caution that the inner subhalo profile may suffer from some

umerical resolution effects in our simulation sets. 

PPENDI X  B:  A  TEST  O F  SI DM  

MPLEMENTATI ON  

s a test, we consider an isolated halo following a Hernquist profile
t its initial state. The Hernquist profile is expressed as 

( r ) = 

M 

2 π

a 

r ( r + a) 3 
, (B1) 

here a is the scaled radius. For the initial Hernquist profile, we adopt
he same parameters as in Robertson ( 2017 ). To be specific, we set the

ass parameter of 10 14 M � and the scaled radius of 225 kpc . We ran
he simulation with 128 3 N -body particles, the gravitational softening
ength of 4 . 4 kpc , and the cross-section of σ/m = 1 cm 

2 g −1 . Note
hat those simulation parameters are also same as in Robertson
 2017 ). For comparison, we extract the data points of SIDM density
rofiles from fig. 4.9 of Robertson ( 2017 ) by using this website. 2 

ig. B1 summarizes the comparison of the halo core evolution for
he Hernquist halo in our simulation with the results in Robertson
 2017 ). We confirm that our SIDM implementation provides a good

t to the results in the literature. 
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Figure B1. The halo core formation and size evolution for a Hernquist halo 
with M = 10 14 M � and the scaled radius a = 225 kpc . In this figure, we 
consider the SIDM model with σ/m = 1 cm 

2 g −1 . The points show the result 
reported in Robertson ( 2017 ). The different lines represent our simulation 
results, demonstrating that our SIDM implementation provides a consistent 
time evolution of SIDM cores. The gre y re gion highlights scales shorter than 
the gravitational softening length of 4 . 4 kpc . 
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Figure C1. SIDM density profiles as a function of the cross-section σ / m . 
In the upper panel, the solid line shows the gra v othermal fluid model with 
the heat conductivity calibrated in Koda & Shapiro ( 2011 ), while different 
coloured symbols represent our N -body simulation results for an isolated halo 
with its mass of 10 12 M �. We show the simulation results at a dimensionless 
time t / t 0 = 10, where t 0 is a characteristic relaxation time-scale given in 
equation ( 19 ). Because the time-scale t 0 depends on σ / m , each symbol 
represents the density profile at different epoch; The blue circle shows the 
density profile at t � 3 . 3 Gyr for the SIDM with σ/m = 3 cm 

2 g −1 , while the 
orange square and green diamond show the counterparts at t � 1 . 0 Gyr and 
t � 0 . 3 Gyr for σ/m = 10 and 30 cm 

2 g −1 , respectively. Note that the upper 
panel shows the quantity of ∼r 2 ρ. For ease of comparisons, we also show 

the initial NFW profile by the dashed line in the top panel. The bottom panel 
shows the fractional difference between the gra v othermal fluid model and the 
simulation results at t / t 0 = 3, highlighting that a universal correction can be 
applied to the gra v othermal fluid prediction for various σ / m . 
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PPEN D IX  C :  C A L I B R AT I O N  O F  

R AVOTH E R M A L  FLUID  M O D E L  F O R  A N  

SOLATED  H A L O  

n this appendix, we describe our calibration of the gra v othermal
uid model. For the calibration, we perform N -body simulations of
n isolated halo with its initial density profile following an NFW 

rofile as varying the self-interacting cross-section σ / m . In these 
solated simulations, we set the halo mass and the scaled radius at
 = 0 to be 10 12 M � and r s = 21 . 18 kpc . We examine five cross-
ections of σ / m = 0.3, 1, 3, 10, and 30 cm 

2 g −1 and evolve the halo
y 10 Gyr in our simulations. The simulation outputs are stored with
 time interval of 0 . 1 Gyr , producing 100 snapshots for a given SIDM
odel. We refer the readers to Section 2.1 about how to prepare an

solated NFW halo. 
Fig. C1 summarizes the comparison of the SIDM density profile 

etween the simulation results and the gra v othermal fluid model in
oda & Shapiro ( 2011 ). In the figure, we show the density profiles at
 dimensionless epoch t / t 0 = 10, where t 0 is given by equation ( 19 ).
nce considering evolution with respect to dimensionless epochs t / t 0 ,
e find that the gra v othermal fluid model almost predicts an identical
ensity profile at a given t / t 0 regardless of the exact value of σ / m .
he gra v othermal fluid prediction is shown by the solid line in the

op panel of Fig. C1 , while different coloured symbols represent our
imulation results at t / t 0 = 10. Although the simulation results exhibit
 O(10) per cent difference from the gra v othermal fluid model at r / r s 
 0.1, the difference is found to be almost independent on σ / m if

omparing the density profiles at the same dimensionless epoch t / t 0 .
his finding moti v ates us to develop a correction function of the
ra v othermal fluid model below; 

SIDM 

( r, t, σ/m ) = ρgt ( r, t, σ/m ) C( r/r s , t/t 0 ) , (C1) 

here C represents the correction function that we would like to 
nd. After some trials, we find that our simulation results can be
ell explained by a two-parameter function below; 

( x , ̃  t ) = 

x β + (1 / 2) β

( x + γ ) β
, (C2) 

here x = r /(0.1 r s ) and we assume that β and γ depend on ̃  t = t/t 0 .
Using the density profile of the simulated halo at a given snapshot
nd cross-section of σ / m , we find the best-fitting parameters of β
nd γ by minimizing the chi-square value of 

2 = 

∑ 

i 

[ ρsim 

( r i , t, σ/m ) − ρSIDM 

( r i , t, σ/m ) ] 2 , (C3) 

here ρsim 

represents the density profile of the simulated halo and r i is
he i -th bin in the halo-centric radius. For this chi-square analysis, we
erform a logarithmic binning in r / r s with the number of bins being
5 in a range of 0.01 < r / r s < 30 when computing the spherical density
rofile of the simulated halo. After finding the best-fitting parameters 
or a given set of snapshot time t and cross-section σ / m , we derive the
 / t 0 -dependence as in equations ( 17 ) and ( 18 ). Fig. C2 summarizes
ur calibration, demonstrating that the model of equation ( 16 ) can
rovide a good fit to the simulation results for a wide range of σ / m
nd t . We confirm that our calibrated model has a 10 per cent -level
recision in the range of t / t 0 � 100. It would be worth noting that
ur model has been calibrated for a specific initial condition. Hence,
ur model can not be applied to general cases, but it would provide
 reasonable fit to the SIDM density profile as long as its initial
ensity follows a NFW profile. A caveat is that our calibration may
MNRAS 516, 4594–4611 (2022) 
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Figure C2. Tests of our calibrated gra v othermal fluid model (equation 16 ) against the N -body simulations of an isolated halo. In each panel, the blue circles 
show the simulation results, while the grey dashed and orange solid lines represent the model in Koda & Shapiro ( 2011 ) and our calibrated model, respectively. 
From left to right (top to bottom), we show the comparisons as increasing σ / m (epoch t ). 
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epend on a choice of boundary radius in an isolated SIDM halo as
iscussed in Koda & Shapiro ( 2011 ). Note that the model in Koda &
hapiro ( 2011 ) has been calibrated with simulation results assuming

he halo boundary radius is set to 100 times as large as the NFW
caled radius, while we adopted a more realistic situation (i.e. the
alo concentration of 10). We leave it to investigate possible effects
f the halo boundary radii in SIDM simulations for future studies. 
NRAS 516, 4594–4611 (2022) 
PPENDI X  D :  A  FITTING  F O R M U L A  O F  T H E  

RANSFER  F U N C T I O N  F O R  TIDALLY  

RU N C AT E D  DENSITY  PROFILES  

n this appendix, we provide a fitting formula of the transfer function
eveloped in Green & van den Bosch ( 2019 ). In the context of
idal evolution of collision-less dark matter subhaloes, the transfer
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unction is commonly defined as 

 ( r , t) = 

ρ( r , t) 

ρ( r , t = 0) 
, (D1) 

here H is the transfer function, r is the radius from the centre
f the subhalo, and ρ( r , t ) is the subhalo density profile at an
poch of t . Using a set of collisionless N -body simulations of minor
ergers, Green & van den Bosch ( 2019 ) found that H can be well

pproximated as the form below; 

 ( r, t) = 

f te 

1 + 

(
˜ r 
[ 

˜ r sub , vir −˜ r te 
˜ r sub , vir ̃ r te 

] )δ
, (D2) 

here ̃  r = r/r s , init , such that all radii in equation ( D2 ) are normalized
o the initial NFW scale radius of the subhalo r s, init . 

Equation ( D2 ) contains three model parameters and those depend 
n the initial subhalo concentration c sub and the bound mass fraction 
f the subhalo at the epoch t (denoted as f bound ). Throughout this
aper, we adopt 

 te = f 
a 1 ( c sub , 10 ) a 2 
b c 

a 3 (1 −f bound ) a 4 
sub , (D3) 

˜  te = ˜ r sub , vir f 
b 1 ( c sub , 10 ) b 2 
b c 

b 3 (1 −f bound ) b 4 
sub 

× exp 
[
b 5 ( c sub , 10 ) 

b 6 (1 − f bound ) 
]
, (D4) 

= c 0 f 
c 1 ( c sub , 10 ) c 2 
b c 

c 3 (1 −f bound ) c 4 
sub , (D5) 

here c sub, 10 = c sub /10, a 1 = 0.338, a 2 = 0.000, a 3 = 0.157, a 4 
 1.337, b 1 = 0.448, b 2 = 0.272, b 3 = −0.199, b 4 = 0.011, b 5 =
1.119, b 6 = 0.093, c 0 = 2.779, c 1 = −0.035, c 2 = −0.337, c 3 
 −0.099, and c 4 = 0.415. Note that the function in equation ( D2 )

as been calibrated for the collisionless dark matter. Hence, we have 
ested if it can be applied to collisional scenarios in Section 4.1 . 

PPEN D IX  E:  A  SEMI-ANA LY TIC  M O D E L  IN  

I A N G  ET  A L .  (  2 0 2 1 A  )  

or the sake of clarity, we here summarize a semi-analytic model in
iang et al. ( 2021a ). The model assumes that an isolated SIDM halo
ollows a NFW profile at its initial state and the density profile at a
iven age t can be approximated as 

SIDM , J21 ( r) = 

1 

4 πr 2 

d M SIDM , J21 

d r 
, (E1) 
 SIDM , J21 ( r) = tanh 

(
r 

r c 

)
M NFW 

( r) , (E2) 

here M NFW 

( r ) is the enclosed mass of the initial NFW profile, and
 c represents an ef fecti ve core radius of the SIDM halo and depends
n the time of t . To be specific, r c is given by min[0.5 r 1 , r s ] ( r s is the
caled radius for the initial NFW profile) and r 1 is set by 

 σv/m 〉 ρSIDM , J21 ( r 1 ) t = 1 , (E3) 

here the abo v e equation means that the SIDM core size can be
elated to the radius where every SIDM particle has interacted once
y the time t . The average in equation ( E3 ) is given by 

 σv/m 〉 = 

∫ ∞ 

0 
d v v 

σ

m 

f ( v; v c ) , (E4) 

here f ( v ; v c ) is the Maxwell–Boltzmann distribution of equa-
ion ( 39 ). The parameter v c is set to 4 σv, J21 ( r) / 

√ 

π with 

2 
v, J21 ( r ) = 

1 

ρSIDM , J21 ( r ) 

∫ ∞ 

r 

d r ′ 
ρSIDM , J21 ( r ′ ) 

r ′ 
GM SIDM , J21 ( r ′ ) 

r ′ 
. (E5) 

n Jiang et al. ( 2021a ), the authors solve the orbital evolution of
nfalling subhaloes as same as in Section 3.2 . The mass loss due to the
idal stripping is also set by equation ( 27 ), but they adopt A = 0 . 55
nd q = 1 for any SIDM models. They also take into account the
ass loss by the self-interacting e v aporation as in equation ( 32 ). For
 given mass loss rate, the model in Jiang et al. ( 2021a ) then updates
he subhalo density profile after a finite time of � t by rules below; 

 sub ( ρ0 , r 
′ 
out ) − M sub ( ρ0 , r out ) = 

(
d M sub 

d t 

)
TS 

�t, (E6) 

 sub ( ρ
′ 
0 , r out ) − M sub ( ρ0 , r out ) = 

(
d M sub 

d t 

)
RPe 

�t, (E7) 

here M sub ( ρ0 , r out ) is the enclosed mass of the subhalo at its
oundary radius of r out with the density amplitude being ρ0 . We
enote r ′ out and ρ ′ 

0 as the quantities to be updated. Equations ( E6 and
7 ) are designed so that the tidal stripping can remo v e the subhalo
ass at its outermost radius, while the ram-pressure effects can affect

he o v erall subhalo density profile. 
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