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Logistic growth on networks: Exact solutions for the susceptible-infected model
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The susceptible-infected (SI) model is the most basic of all compartmental models used to describe the
spreading of information through a population. Despite its apparent simplicity, the analytic solution of this model
on networks is still lacking. We address this problem here using a novel formulation inspired by the mathematical
treatment of many-body quantum systems. This allows us to organize the time-dependent expectation values
for the state of individual nodes in terms of contributions from subgraphs of the network. We compute these
contributions systematically and find a set of symmetry relations among subgraphs of differing topologies. We
use our novel approach to compute the spreading of information on three different sample networks. The exact
solution, which matches with Monte Carlo simulations, visibly departs from the mean-field results.

DOI: 10.1103/PhysRevE.105.044303

I. INTRODUCTION

The dynamical processes of information spreading through
a population via individual interaction is ubiquitous in nature
and society [1–7], and their importance is demonstrated by
the recent COVID-19 pandemic [8–10]. Typically, there are
two approaches to formulate spreading processes: a collective
approach based on deterministic compartmental models gov-
erning the state of the population as a whole [1,11–13] and
a more detailed approach aimed at describing the stochastic
individual interactions [14–16]. Various approximation and
numerical schemes have been used to solve compartmental
models of epidemic spreading, and in certain cases, exact
results are known [17–20]. These models are effective and
often give a good estimate of the temporal evolution of the
system. However, they are insensitive to the connectivity
properties of the individuals within the population. To take
this into account, stochastic models of epidemic spreading
on networks have been proposed and studied extensively over
the past decades [14,16,21–32]. Nonetheless, the presence of
dynamical correlations and the nonlinear nature of spread-
ing processes make mean-field approximations and numerical
simulations a necessity, while exact solutions in network epi-
demiology remain a rare treat [33–36].
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In this paper we present a general framework to describe
the spreading process on a network, which allows for exact
analytic solutions. We focus on the most basics and yet rel-
evant [37,38] of all spreading processes, the SI system. The
nodes of the network are either susceptible (S) or infected
(I) and, by a Poisson process, infected nodes can infect their
susceptible neighbors. While the compartmental model for
this system is solved by the Verhulst logistic function [39],
to the best of our knowledge, exact solutions to the stochastic
network model are still unavailable. Here we intend to fill this
gap, while simultaneously introducing a general procedure
applicable to other, more complex, spreading processes.

Our exact treatment of the SI system relies on the for-
mulation of [40], inspired by many-body quantum systems.
Time-dependent expectation values of target nodes (sinks),
given an initial configuration of infected nodes (sources), can
be obtained as a diagrammatic expansion over subgraphs of
the network. Each subgraph represents a contribution to the
spreading process from the sources to the sinks. We present
a systematic way to compute these contributions as func-
tions of time and, furthermore, we find a set of symmetry
relations among subgraphs of different topology, which sim-
plifies the computational task. We illustrate our methods by
analytically solving the spreading dynamics on three sample
networks. The result differs visibly from the individual-
based mean-field approximation, but agrees with Monte Carlo
simulations.

II. THE FORMALISM

Consider an unweighted and undirected network of N
nodes, each of which can be in one of two states: S or I.
These states can be used as an orthonormal basis for a two-
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dimensional (2D) vector space, such that [41]

|S〉 =
(

1
0

)
, |I〉 =

(
0
1

)
. (1)

The network as a whole can be in 2N possible configurations
C ∈ {S, I}N , each of which has an associated vector |C〉 con-
structed as the tensor product of N individual state vectors (1):

|C〉 = |1〉 ⊗ |2〉 ⊗ · · · ⊗ |N〉, (2)

where each state |i〉 = {|S〉, |I〉}. The probabilities p(C, t ) for
the network to be in configuration C at time t are the compo-
nents of a 2N -dimensional probability vector |ρ(t )〉,

|ρ(t )〉 =
∑

C∈{S,I}N
p(C, t )|C〉. (3)

This vector has unit L1-norm by normalization of probability,
which we will denote as 〈1|ρ(t )〉 = 1, where 〈1| = ⊗N

i=1(1 1)
denotes the flat state. The SI spreading is a Markovian process
and hence the probability vector evolves in time by a master
equation:

d

dt
|ρ(t )〉 = Q(A)|ρ(t )〉. (4)

The infinitesimal generator Q(A) is a 2N -dimensional matrix
containing the possible transitions induced between neighbor-
ing states in a network with adjacency matrix A. It can be
constructed from tensor products of 2D matrices, which act
as linear operators on the individual state vectors. In the case
of the SI model, it is given by [40]

Q(A) =
N∑

i, j=1

Ai jPi
I · q j

S→I. (5)

The 2N -dimensional matrices Pi
I and q

j
S→I are constructed by

taking the tensor product of N − 1 2D identity matrices with
the projection operator PI inserted at site i and the infinitesimal
stochastic matrix qS→I inserted at site j, respectively, and

PI =
(

0 0
0 1

)
, qS→I =

(−1 0
1 0

)
. (6)

Each term in Q(A) performs the following local operations
on the individual nodes i, j connected by an edge: PI checks
whether node i is infected by projecting it to the infected basis
vector |I〉. The matrix qS→I simultaneously acts on node j and
maps the state |S〉 to the infinitesimal stochastic state |I〉 − |S〉.
This state with vanishing L1-norm subtracts probability for the
node j to remain in the susceptible state and adds probability
of it being infected.

Our goal is to compute the probability for a certain sink
node i to be infected at time t , given a fixed configuration of
initially infected source nodes at time t = 0,

〈Ii(t )〉 = 〈1|Pi
I |ρ(t )〉. (7)

We will show in Sec. IV below how this quantity can be
expressed as a sum over subgraph diagrams with specific
node configurations. Terms where any node other than i are
in the infinitesimal stochastic state |I〉 − |S〉 will vanish due to
the contraction with the flat state 〈1|. Therefore, the function

〈Ii(t )〉 will only receive contributions from terms where no
node other than i is in an infinitesimal stochastic state. We
can hence identify the sinks of the spreading process with
nodes in an infinitesimal stochastic state. Before proceeding
to the diagrammatic expansion of (7), we will discuss how
this formula is derived from a dynamical partition function.

III. DYNAMICAL PARTITION FUNCTION

In this section we will give an expression for the dynamical
partition function [42,43] in the ensemble average over all
possible trajectories of the spreading process. We will use
this to derive Eq. (7), as well as expressions for higher-order
moments. The partition function is defined as the moment
generating function for the observables I i(t ), which tracks
whether node i is infected at time t .

ZI ({si}, t ) =
〈

exp

(
N∑

i=1

siI
i(t )

)〉
. (8)

Where here I i(t ) = 1 if node i is infected at time t and I i(t ) =
0 otherwise. The dynamical partition function depends on
a set of N (dual) variables {si}, which serve as chemical
potentials for the observables I i(t ). The expectation value
〈Ii1 (t ) · · · Iin (t )〉 for the joint probability of nodes i1, . . . , in to
be infected at time t is obtained from (8) by derivation with
respect to si1 , . . . , sin , followed by setting all {si} = 0:

〈Ii1 (t ) · · · Iin (t )〉 = ∂si1
· · · ∂sin

ZI ({si}, t )|{si}=0. (9)

The dynamical partition function (8) can be computed by sum-
ming e

∑
i siI i (C) p(C, t ) over all microscopic configurations C ∈

{S, I}N , where I i(C) gives 1 only if node i is infected in the con-
figuration C. In the vector notation |ρ(t )〉 = ∑

C p(C, t )|C〉,
we can express e

∑
i siI i (C) as a linear operator T ({si}) which

places a factor esi for each infected node i in the configuration
C. This operator is a 2N -dimensional diagonal matrix with the
following product form:

T ({si}) = exp

(
N∑

i=1

siP
i
I

)
=

N⊗
i=1

(|S〉〈S| + esi |I〉〈I|). (10)

Now (8) can be written as the L1-norm of the contraction of
T ({si}) with the probability vector |ρ(t )〉:

ZI ({si}, t ) = 〈1|T ({si})|ρ(t )〉. (11)

By plugging (11) in (9), one obtains the expression

〈Ii1 (t ) · · · Iin (t )〉 = 〈1|Pi1
I · · · Pin

I |ρ(t )〉. (12)

Specifically, the probability for individual nodes i to be
infected at time t is (7). From the dynamical partition func-
tion (11) it also follows that all higher moments of I i(t ) are
equal to the expectation value 〈Ii(t )〉, since

〈(Ii )n(t )〉 = ∂n
si
Z ({si}, t )|{si}=0

= 〈1|(Pi
I

)n|ρ(t )〉 = 〈1|Pi
I |ρ(t )〉. (13)

Here we have used the fact that the projection operator is
idempotent, i.e., P2

I = PI. This implies that knowledge of the
single node expectation values is sufficient to compute all
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higher moments for the single nodes. Hence, the variance for
individual nodes is

Var(Ii(t )) = 〈Ii(t )〉 − 〈Ii(t )〉2. (14)

For this reason we will focus in the remainder of the text on
computing the single node expectation values (7).

The expectation value for the prevalence in the whole net-
work 〈I(t )〉 is obtained by averaging (7) over all nodes:

〈I(t )〉 = 1

N

N∑
i

〈Ii(t )〉. (15)

This can be obtained from a dynamical partition function
ZI (s, t ) by setting si = s/N for all i in (8):

ZI (s, t ) = 〈1| exp

(
s

N

N∑
i=1

Pi
I

)
|ρ(t )〉, (16)

∂sZI (s, t )|s=0 = 1

N

N∑
i=1

〈1|Pi
I |ρ(t )〉 = 〈I(t )〉. (17)

By using the link between (8) and (16), it is also possible to
express the variance of the prevalence in the ensemble average
over trajectories as

Var(I(t )) = 1

N
〈I(t )〉 + 1

N2

N∑
i, j=1
i �= j

〈1|Pi
I P j

I |ρ(t )〉 − 〈I(t )〉2. (18)

Unlike with the variance for individual nodes (14), the total
variance depends on the joint probability for nodes i and
j to be infected simultaneously 〈IiI j (t )〉 = 〈1|Pi

I P j
I |ρ(t )〉 for

all node pairs. In the diagrammatic expansion, these terms
receive contributions from diagrams where both i and j are
infinitesimal stochastic nodes (sinks). Higher-order moments
are also obtainable from this formalism, but in this paper we
will focus only on single node expectation values.

IV. DIAGRAMMATIC EXPANSION

We will now present a systematic procedure for computing
the single node expectation values (7). Its expression depends

on the time-dependent probability vector |ρ(t )〉. By the master
equation (4) we can express it as |ρ(t )〉 = exp(tQ)|C0〉, where
the initial state vector |C0〉 corresponds to the initial configura-
tion of sources and susceptible nodes. The probability vector
can be expanded as

|ρ(t )〉 =
(

1 + t Q + t2

2!
Q2 + t3

3!
Q3 + · · ·

)
|C0〉. (19)

Here, henceforth, we adopt a graphical notation to represent
the action of the operators Pi

I , q j
S→I appearing in the infinites-

imal generator Q(A). We suppress displaying any susceptible
nodes, as they have not been acted upon by either of the
operators; we denote infected nodes as white circles, and sinks
as blue ones:

|i = , |i |s = . (20)

Any source node will be displayed as a crossed-out white
node: ⊗. The local operators PI and qS→I in (6) act on the
colored and susceptible nodes as

Pi|s = 0 , Pi = , Pi = ,

qs→i|s = , qs→i = 0 , qs→i = − .

(21)

In addition, the operator Q adds a directed edge pointing from
i to j as specified by the adjacency matrix Ai j . The expan-
sion (19) can now be organized as a perturbative series of
directed diagrams with an increasing number of edges. When
starting from an initial configuration with a single source
node, the most general diagrammatic expansion for subgraphs
with up to three edges reads

|ρ(t) = +
s.g.

∞

n=1

tn

n!
+ + + + + + + + . . . .

(22)

Where the dots denote diagrams with more than three
edges. Here each diagram G graphically represents a vec-
tor aG[n]|G〉. The combinatorial coefficient aG[n] counts the
number of ways G can be constructed by n applications of Q
on the initial configuration, up to a sign discussed below. The
vector |G〉 is created as the tensor product of the displayed
nodes states, times all the suppressed susceptibles |S〉. Sub-
graph diagrams of the displayed topology can appear in the
network A with a multiplicity, which is accounted for by the
sum over subgraphs (s.g.) in the above equation. Depending

on the network A some of the diagrams might not appear in
the expansion, i.e., their multiplicity is zero.

V. DYNAMICS OF THE SI SYSTEM.

To compute the sum over n in (22) we must obtain the co-
efficients aG[n] for each diagram. To solve this combinatorial
problem we consider the action of Q on an arbitrary diagrams
state vector |G〉. This defines four rules from which diagrams
with m + 1 edges are constructed from “parent diagrams”
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with m edges. Two rules govern the addition of new nodes
to the diagram:

Rule 1: If qS→I acts on a new susceptible node and PI on
a white node, a new sink is attached to the white node by a
directed edge.

Rule 2: If qS→I acts on a new susceptible node and PI on
a blue node, the latter node is turned white and a new sink is
attached to it.

In addition, internal edges between nonsusceptible nodes
are added to the diagrams by two more rules:

Rule 3: When qS→I acts on a blue node and PI on a white
node, an edge is added from the latter to the former node and
a minus sign appears.

Rule 4: When qS→I acts on a blue node and PI acts on a
blue node, this node is turned white and a minus sign appears.

Diagrammatically, examples of these rules are

Rule 1 : → (23)

Rule 2 : (24)

Rule 3 : → − (25)

Rule 4 : → − . (26)

When following the third rule, the operators PI and qS→I could
act on a node pair which are already connected. This operation
does not change the number of edges in the diagram, only
the sign of the coefficient. It implies that aG[n] receives a
contribution −c aG[n − 1], where c is the number of edges
ending in sinks. Together with the contributions from parent
diagrams pG[n − 1] we can derive a recursive relation for
aG[n]:

aG[n] = −c aG[n − 1] + pG[n − 1], (27)

with

pG[n] =
∑

H∈P(G)

αGH aH [n]. (28)

Here P(G) denotes the set of parents of the graph G and
αGH gives the multiplicity and sign of the corresponding
parental relationship. The set P(G) is obtained by tracing
the rules (23)–(26) backwards, and contain only diagrams
with one less edge ending a blue node. The collection of all
possible diagrams can be thought of as a weighted directed
graph of diagrams, where edges represent the child→parent
relationships and the edge weights correspond to the αGH

in (28). We display this graph of diagrams explicitly for all
possible diagrams with four nodes in Fig. 1.

Equation (27) can be solved iteratively. To this end, it is
convenient to express each diagram as a function of t by
performing the sum over n in (22). If we define

aG(t ) =
∞∑

n=1

t n

n!
aG[n] (29)

FIG. 1. The graph of parental relations between diagrams with
up to four nodes. Each diagram contribution as a function of t can be
computed by performing the integral (31). The parental contribution
pG(t ) for each diagram is obtained by the sum of the parent diagrams
times edge weights αGH , denoted inside the squares.

for each diagram, the recursion relation (27) becomes a differ-
ential equation

d

dt
aG(t ) = −c aG(t ) + pG(t ), (30)

with the initial condition aG(0) = 0, except when G = ⊗, for
which a⊗(0) = 1. The solution for a diagram G is given by

aG(t ) = e−c t
∫ t

0
ec s pG(s) ds. (31)

So any diagrams contribution to the probability vector (22)
can be explicitly computed from knowledge of the contribu-
tions of parent diagrams. As the parent diagrams necessarily
have one edge less, we can compute all contributions sys-
tematically by starting from the smallest possible diagram: a
single source node. The expectation value 〈Ii(t )〉 in (7) is then
obtained by summing the contributions aG(t ) for all subgraphs
G with fixed source, where the node i is the only sink in G.

A. Simple example: K3 network

Let us present and work out a simple example: The com-
plete graph with three nodes K3. We suppose that one of the
three nodes is the initially infected source node. There are then
four terms in the expansion of (22):

, , , . (32)

To obtain the contributions corresponding to each of these di-
agrams, we can explicitly compute the integral (31), following
the graph of parental relationships in Fig. 1. The first diagram
only receives contributions from the single source node. We
will denote its contribution as a function of t by the diagram
itself, appended by (t ):

(t) = e−t
t

0

esa⊗(s)ds = 1 − e−t(t) = e−t
t

0

esa⊗(s)ds = 1 − e−t
. (33)
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Here we have used the initial condition a⊗(t ) = 1. The next
two diagrams in (32) can be derived from this result as

(t) = e−2t
t

0

e2s 2(1 − e−s)ds

= (1 − e−t)2 , (34)

(t) = e−t
t

0

es(1 − e−s)ds

= [1 − e−t(t + 1)] . (35)

The final diagram receives parent contributions from both
these diagrams, with a relative sign due to (25) and (26):

(t) = e−2t
t

0

e2s − (s) − (s)

= −(1 − e−t)[1 − e−t(t + 1)] . (36)

The infected expectation value for each of the two initially
susceptible nodes receives contributions only from subgraphs
where the node of interest is blue. This can now be computed
from the above contributions as

ii(t) = (t) + (t) + (t)

= 1 − e−2t(1 + t) . (37)

While the loop contribution is a strictly negative function, it
is balanced by two positive contributions corresponding to the
two ways to reach the sink node in the loop diagram. Only the
sum over all three diagrams corresponds to a probability and
is hence bounded between 0 and 1. Using Eqs. (15) and (18) it
is straightforward to compute the prevalence and variance for
the K3 network.

B. Diagram properties

For any diagram, aG(t ) will be monotonically increasing
(or decreasing) and converge to a positive (or negative) integer
for t → ∞. Hence, each diagram possesses a sign, which
determines whether its contribution is strictly positive or neg-
ative. This sign can be derived by the following argument:
consider a diagram G with n nodes (of which ni initial in-
fected) and m edges. The action of the generator Q(A) creates
a directed edge between two nodes i → j and may change
their state through the action of the operators PI and qS→I. The
in-degree kin

i for node i counts the number of times this node
has been acted upon with qS→I. There is no sign change when
qS→I acts on a susceptible node, but after the node is turned
blue any consequent action of qS→I on the node produces a
minus sign. If the node is ultimately projected upon by Pi

I ,
no further sign changes occur. Hence the sign contribution
from each white or blue node is (−)kin

i −1. The total sign of the
diagram G is then the product over all blue and white nodes,

which can be written as

sgn(G) =
n−ni∏
i=1

(−)kin
i −1 = (−)m−n+ni . (38)

Here we have used the fact that initially infected nodes have
no incoming edges, so the sum over all in-degrees of white and
blue nodes equals the total number of edges in the diagram m.

In the above derivation we are assuming that the subgraph
G has only single directed edges. For larger graphs, diagrams
with double directed edges can appear, as there could be
several paths from sources to sinks through a particular edge.
The first example of a double directed diagram is

. (39)

The double directed edge implies that some of the parents of
this diagram have the arrow pointing one way, while other
parents have it in the other direction. In this case, when
computing the sign of the diagram, the double directed edges
should be counted only once, and hence m in (38) represents
the total number of edges of the undirected diagram.

The expectation value 〈Ii(t )〉 receives contributions from
all subgraphs where node i is the only sink. This sum is,
by construction, bounded between 0 and 1, even though the
individual terms may not be. In fact, the individual contribu-
tions aG(t ) to |ρ(t )〉 do not correspond to a probability. Some
diagrams have strictly positive contributions and others have
strictly negative contributions. In Appendix A we prove that in
the limit of infinite time, the diagrams contributions converge
to a finite integer value kG:

kG = sgn(G) no, (40)

where no denotes the number of valid orientations the double
directed arrows in the diagram G can take on. [For example,
no = 2 for (39) as the double directed arrow can point both
up or down.] Since (40) can take on any integer value, it is
clear that only the final sum over all contributing diagrams
is bounded as a probability; the individual contributions will
conspire to balance negative contributions with positive ones.

The number of subgraphs contributing to the expan-
sion (22) grows quickly with the number of edges. However,
not all diagrams will give independent and new contributions.
We have found and proven a set of symmetry relations and
decomposition rules on the diagrams which we will now
discuss.

VI. SYMMETRY RELATIONS

The dynamics of the SI system gives rise to a number of
relations between the contributions of different diagrams. For
notational simplicity, each diagram below will now immedi-
ately represent its function aG(t ).

A. Reverse the flow: Sources ↔ sinks

The first relation states that aG(t ) is equal, up to a sign, to
aG′ (t ), where G′ is obtained from G by transforming all of its

044303-5



WOUT MERBIS AND IVANO LODATO PHYSICAL REVIEW E 105, 044303 (2022)

ni sources into sinks and all of its nb sinks into sources:

ni

.

.

.
−−→s.g.

.

.

. nb = (−1)ni−nb ni

.

.

.
←−−s.g.

.

.

. nb , (41)

Here −→s.g. denotes any arbitrary directed subgraph consisting
solely out of white nodes. This relation states that the flow of
information from source to sink is invariant under changing
the direction of the flow, up to a possible sign.

Some of the first nontrivial instances of this relation are

(t) = (t) , (42)

and

(t) = − (t) , (43)

The invariance under reversal of the flow of the diagram can
be understood from the way the diagrams are constructed. For
each edge in the diagram, a single operation of Ai jPi

I q
j
S→I must

have been applied to construct the edge from i to j [44]. If
we replace , then the diagram of the same topology
is constructed by applying Ai jP j

I q
i
S→I to the node pairs (i, j),

creating the same edges in the opposite direction. Since the
total number of operations to create this inverted diagram is
unchanged, the only difference between the two contributions
can be a sign. The sign arises because to obtain the flipped
diagram the operator qS→I may act on a different number of
blue nodes. Specifically, from (38), by reversing the flow the
contribution gets a minus sign if the difference (ni − nb) is
odd.

An extension of the above rule exists for diagrams whose
only parents are related by the above symmetry relation. For
instance, since the parents of the first two diagrams below
satisfy the relation (42), it follows that

(t) = (t) = (t) ,

(44)
where the last diagram is obtained from the second by again
reversing the flow. This relation generalizes to any diagram
consisting out of a n node chain with an arbitrary subgraph g
in the middle. For any k � n, we have diagrammatically:

. . .
n − k

. . .
k.

.

.
.
.
.

g

= . . .
n .

.

.
.
.
.

g = . . .
n.

.

.
.
.
.

g

(45)

Here g represents an arbitrary graph consisting solely out of
white nodes.

B. Merging and separating sources and sinks

The second relation states that for a graph G with s sources
of degree one, each connected to distinct nodes, aG(t ) =

aG′ (t ) where G′ is obtained from G by merging all sources
into a single source of degree s:

s
.
.
.

g =
.
.
.

g . (46)

By the first relation (41) this implies that also s sinks can be
merged into one, now producing the sign (−1)s−1:

s
.
.
.g̃ =(−1)s−1 .

.

.g̃ . (47)

In the above equalities, the subgraph g can in principle contain
other sources or white nodes, but it must contain at least
one sink; contrarily, the subgraph g̃ must contain at least one
source but it can contain other white or blue nodes.

Two elementary examples of this rule are

(t) = (t) , (48)

(t) = − (t) . (49)

A consequence of this relation is that diagrams containing
multiple branches from the source node can be factorized
into the product of the branches. For instance, the last dia-
gram above can be further decomposed by separating the two
branches from the source node, resulting in two disconnected
diagrams. The diagram contribution thus factorizes into the
contributions from the branches:

(t) = (t) × (t). (50)

In general, any diagram containing multiple branches from
the source node factorizes into the product of the branches.
Graphically

.

.

.
.
.
.

.

.

.

B1

Bn

= B1
.
.
. × · · · × Bn

.

.

. . (51)

Here B1, . . . , Bn are n mutually disconnected subgraphs con-
taining at least one blue node. The proof follows immediately
by separating the source into n sources. As the spreading
pathways on disconnected components correspond to inde-
pendent events, the contribution factorizes into the product of
the branches contributions.

C. Cutting off sources

A final relation involves diagrams with a single source of
degree one. It is graphically

(c − 1)
.
.
.

g =
.
.
.

pg − .
.
.

g .

(52)
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Here g represents a diagram with c edges to sinks, and pg

represents its parent contribution. The last diagram on the
right-hand side is obtained from the original diagram by mov-
ing the source node along its only edge. An explicit example
of this rule is

(t) = 2 (t) − (t). (53)

In Appendix B we provide a proof of this symmetry relation-
ship.

D. Decomposing tree diagrams

Using combinations of the symmetry relations, many dia-
grams containing a single source can be expressed in terms
of (sums or products of) simpler diagrams. For instance, any
tree diagram can be decomposed completely in terms of only
chain diagrams by using (51) and (52). The contribution from
chains of any length d is given by [40]

〈Id (t )〉chain = 1 − �(d, t )

�(d )
, (54)

where �(d, t ) is the upper incomplete Gamma function

�(d, t ) =
∫ ∞

t
sd−1e−sds = (d − 1)!e−t

d−1∑
n=0

t n

n!
. (55)

Any diagram which can be mapped to a tree by separating
sinks can consequently also be decomposed in terms of chain
diagrams. One example of such decomposition is

[ ] ].[ (56)

Here the first equality is obtaining by separating the sink. The
second line follows from (52) and on the third line (53) has
been used, together with the observation (51) that branches
emanating from a single source factorize into the product of
the branches.

VII. EXAMPLES: SAMPLE NETWORKS

Due to the large number of subgraphs contributing to (22),
explicit computation becomes increasingly prohibitive. For
this reason we have created a Python package [49] that, given
an input network with specified sources and sinks, computes
all contributing subgraphs, their parental relations (28) and
the integrals (31) analytically. Here we present explicitly the
exact solutions for the prevalence (15) on three small sample
networks in Fig. 2. We suppose that the node marked dark red
is a source and compute the expectation values (7) for all of
the other nodes. Our algorithm, as detailed in Appendix C,
computes for each graph all contributing diagrams, finds their
parent contributions and constructs the graph of parental rela-
tionships. This allows us to integrate (31) starting from the

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

〈i(
t)
〉

Analytic

Monte Carlo

Mean-field

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

〈i(
t)
〉

Analytic

Monte Carlo

Mean-field

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

〈i(
t)
〉

Analytic

Monte Carlo

Mean-field

FIG. 2. The prevalence 〈I(t )〉 for three selected networks: The
graph of Florentine family relations [45] with 15 nodes and 20 edges
(top), a randomly generated Newman-Watts-Strogatz small-world
network [46,47] with 9 nodes and 16 edges (center), and a random
Erdös-Rényi graph [48] of 12 nodes and 17 edges (bottom). In each
graph, the dark red node is the initial infected source. The solid
black line gives the analytic result from summing all contributing
diagrams, and agrees well with the numerical simulations (black
dots, averaged over 60 000 runs). The green dashed line shows the
individual based mean-field approximation and is in poor agreement
with the exact result.

smallest subgraph. The normalized sum over all diagrams
with a single sink node gives the prevalence, which we plot
as solid black lines in Fig. 2.

Our analytical results (black line) are in perfect agreement
with Monte Carlo simulations (black dots). These were per-
formed by initializing the networks in the same initial state as
in the analytic computation. Then, the Markovian dynamics is
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FIG. 3. The absolute value of the difference between the simulated averages and the analytical function (|Error|) compared to σ/
√

n, where
n is the number of simulation runs and σ the standard deviation at each moment in time. The networks considered are Florentine families (left),
random small-world (center), random Erdös-Rényi (right).

simulated by taking small time steps where susceptible nodes
connected to infected nodes are infected with a small infection
probability τ . As this is the only parameter in the model, τ

effectively plays the role of the time-step �t for a dimension-
less time. We choose the value of τ = 0.002, small enough to
guarantee that at most a single node will flip its state in any
one time step. We simulate n = 60 000 spreading trajectories
over the same network and record the infection averages. The
difference between the simulated average and the analytical
formula is of the order of σ/

√
n with σ the standard deviation

of the simulated runs, as shown in Fig. 3. This is a good
indication that the averages converge to the exact result in
the limit of infinite simulation runs. Note also that analytic
and Monte Carlo results clearly depart from individual-based
mean-field approximation (green dashed line), which gives
an overestimation of the prevalence for finite t , as can be
seen in Fig. 2. Besides the average expectation value for
the full graph, we have also obtained the expectation value
for individual nodes in the network. In Fig. 4 we plot the
analytical result (solid line), the Monte Carlo averages (dots),
and the individual based mean-field approximations (dashed
line) for three selected nodes in each network. The mean-field
approximations are obtained by standard methods (see for
instance [7]). The nodes in the network are assumed to be
statistically independent, such that 〈IiS j〉 = 〈Ii〉〈S j〉 at each
moment in time. The individual-based mean-field approxima-
tion then consists of the coupled set of ordinary differential

equations (ODEs):

∂t n
i
I (t ) =

N∑
j=1

Ai j
[
1 − ni

I (t )
]
n j

I (t ). (57)

Here ni
I (t ) is the (mean-field) probability of node i to be

infected at time t . This set of equations is easily integrated nu-
merically using a standard ODE integration routine (odeint).
The approximation can by improved by including the dy-
namics for pairs and triples, closing the equations at higher
orders [50], though our exact approach captures all correla-
tions present in the network.

VIII. CONCLUSION

In this paper we have presented a general formalism which
allows for obtaining analytic solutions for the expectation
values, as well as higher momenta, for the SI spreading
process on a general network. We have decomposed the
time-dependent probability vector into a sum over subgraph
diagrams, each of which can be computed systematically. We
uncovered a set of symmetry relations, which relate contri-
butions from diagrams among each other. Our methods are
implemented numerically in [44] and give results which match
with Monte Carlo simulations for several small sample net-
works of differing topologies.
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FIG. 4. Expectation values for selected nodes from the Florentine families graph (left), a random small world network (center), and a
random Erdös-Rényi graph (right). The dark red node denotes the source node, and the blue, orange, and green curves correspond to the
like-colored nodes. The solid lines always correspond to the analytical expression obtained by summing all contributing diagrams. The dots
correspond to the average of 60 000 Monte Carlo simulation runs. The dotted lines are the mean-field predictions, obtained by numerically
integrating (57), and give overestimates of the spreading process.
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Even for the relatively small networks analyzed in the
previous section, the explicit computation still involves per-
forming thousands of integrals. It is a difficult task to
determine exactly how the number of contributing diagrams
scales with system size, as this depends strongly on the
network topology. In general, the addition of a new edge
could potentially double the number of contributing sub-
graphs, which will then scale exponentially with the number
of edges. Using our formalism, one can track only the neces-
sary diagrams contributing to the spreading and systematically
organize their contributions by number of edges. In fact, since
any diagram with m edges will start contributing at the order
tm in the expansion (22), only the smallest contributing sub-
graphs need be taken into account for an early time estimate of
the spreading process. Furthermore, the uncovered symmetry
relations and combinations thereof further reduce the number
of independent diagrams to be computed. For example, for
the three sample networks in Fig. 2, the number of inequiv-
alent diagrams, including all parents, are 9314 (top), 21 376
(center), and 6055 (bottom), out of which only 2274, 1082,
and 358 cannot be reduced to smaller diagrams using the
symmetry relations presented. More symmetry relations may
exist, which could further reduce the number of independent
diagrams needed to compute the expectations values analyti-
cally. For instance, it would be interesting to study relations
among contributions of diagrams with double directed edges.

The formalism presented in this article can be applied to
different compartmental models of epidemiology and other
out-of-equilibrium stochastic systems on networks [4,16,51].
It would be interesting to determine under which conditions
exact solutions of such models can be found. We suspect this
to be the case for any system where the graph of diagrams
is acyclic, such that any diagrams contribution can be traced
back to the smallest diagram of a single source.
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APPENDIX A: INFINITE TIME LIMIT

We will now prove that the contribution aG(t ) of each
diagram G reaches asymptotically a constant integer value
kG �= 0. As a first step, we explicitly check that the function
of t for the unique network with m = 1 edge converges to a
constant (integer) value. This is trivial since the expectation
value for a one-edge network takes on the form 1 − e−t which
converges to 1 for t → ∞. Next we use the inductive hypoth-
esis that all diagrams Gm−1 with m − 1 edges converge to a
nonzero constant for t → ∞, i.e.,

aGm−1 (t ) = kGm−1 + fGm−1 (t ), (A1)

such that limt→+∞ fGm−1 (t ) = 0 and kGm−1 �= 0. Now we want
to show, using the above hypothesis, that all diagrams with m
edges converge to a nonzero constant asymptotically. Let us
consider the integral

aGm (t ) = e−ct
∫ t

0
ec s pGm (s) ds

= e−ct
∫ t

0
ec s

∑
K∈P(Gm )

αGK aK (s) ds, (A2)

where P(Gm) are all parents of the m-edged diagram Gm,
which necessarily have m − 1 edges. Plugging in the inductive
hypothesis (A1), we get

aGm (t ) = e−ct
∫ t

0
ec s

∑
K∈P(Gm )

αGK [kK + fK (s)] ds, (A3)

where αGK is the multiplicity and relative sign of the (m − 1)-
edged parent diagram K and kK denotes the limiting value of
that parent. Now we can separate two contributions:

aGm (t ) =
∑

K∈P(Gm )

αGK
kK

c
(1 − e−ct )

+
∑

K∈P(Gm )

αGK e−ct
∫ t

0
ec s fK (s) ds. (A4)

Note that the first term contains a finite contribution when t →
∞. The second term converges to 0 for t → ∞. To see this,
consider

e−ct
∫ t

0
ec s f (s) ds = e−ct [F (t ) − F (0)]

with F ′(t ) = ect f (t ). (A5)

The asymptotic limit of e−ct F (t ) is evaluated as

lim
t→∞ e−ct F (t ) = lim

t→∞
F (t )

ect
= lim

t→∞
F ′(t )

cect

= lim
t→∞

ect f (t )

cect
= lim

t→∞
f (t )

c
= 0, (A6)

where to obtain the second equality we used L’Hôpital’s rule,
and in the second line the inductive assumption (A1) was used.
In addition, limt→∞ e−ct F (0) = 0, since F (0) can only be a
constant. Hence we have shown that all diagrams, regardless
of the number of edges, will converge asymptotically to a
nonzero constant kG, such that

kG = lim
t→∞ aG(t ) = 1

c

∑
K∈P(G)

αGK kK . (A7)

Next, we prove that kG is a nonzero integer, i.e., kG ∈ Z. First,
the one-edge diagram G1 has asymptotic value kG1 = 1. Let us
assume (inductive hypothesis) that all diagrams with m − 1
single-directed edges have limit ±1. If no double-directed
edges are present, the number of parents will always be equal
to the number of edges going into the blue nodes in the
original diagram c. To see this, consider one such diagrams
Gm with m edges: one can unequivocally obtain its parents
Gm−1 ∈ P(Gm) by systematically removing one of the edges
connecting to one of the sinks. As there are c such edges, there
will be c parents. Finally, the sign of each parent contribution
to (A7) is equal to the sign of G, sgn(αGK kK ) = sgn(G).
This is due to the fact that parents K with signs opposing
G will transition into G by one of the rules which induce
a sign change. This sign is then contained in αGK and the
resulting product αGK kK will have the same sign as G. By
induction, then, for the m-edged diagram G, we have that∑

K∈P(G) αGK kK = sgn(G)c and hence (A7) gives

kG = sgn(G). (A8)

If double directed edges exist in a diagram GD with c edges
to blue nodes, then there could be more than c parents. The
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reason for this is that each direction on the double directed
edge will correspond to different parent diagrams. We can
then write down all possible diagrams with the same topology
as GD, but where the D double directed edges take on a
given orientation, consistent with the graphs source and sink
configuration. The number no of these diagrams is bounded
no � 2D, since certain double-arrows may exist only condi-
tionally to the existence of other double arrows. Now, each
diagram among these no will have no double-directed edges
and c edges to blue nodes, and hence, c parents. Each of these
parents will have limit sgn(GD) by the above argument, so
finally,

kGD = sgn(GD) no. (A9)

Hence any diagram will, regardless of its topology, converge
to a nonzero integer. This integer corresponds to the number
of possible orientations of the double directed edges in the
diagram (or equal 1 if there are no double directed edges). For
example, the first diagram with a double directed edge (39)
converges to −2, since its sign (38) is negative and there are
two possible orientations of the double directed edge (up or
down). Each choice of orientation has 2 parents with limit −1,
resulting in a total of 4 parents. The diagram has c = 2, such
that (A7) gives −2.

APPENDIX B: PROOF OF (52)

Here we will provide a proof of the “cutting off sources”
symmetry relation, presented in Sec. VI C. For notational
convenience, we will use the functions aG+ (t ), pG+ (t ), and
aG(t ) to denote the diagrams contributions. Here G+ is the
graph obtained from G by extending the source by one edge.
Equation (52) of the main text then reads

(c − 1)aG+ (t ) = pG+ (t ) − aG(t ). (B1)

Let us first start by considering aG+ (t ), recalling the definition
of the contribution as

aG+ (t ) =
+∞∑

n=m+1

aG+ [n]
t n

n!
. (B2)

Here m is the number of edges of the diagram G. The coeffi-
cients aG+ [n] count the number of ways the graph G+ can be
constructed by applying Q n times on the initial configuration.
The difference between the diagrams G+ and G is the presence
of a chain of length one emanating from the source. Hence
to construct the diagram G+, first the chain must be made,
and then the diagram G can be created. So for the operator
Q to generate G+ in n > m steps, it must be applied at least
once to create the chain, and at most n − 1 times to create the
m edges of G. The total number of ways to construct G+ is
then given by the sum over all ways to construct the chain in
1 � i � n − m steps times the number of ways to construct G
in n − i steps, such that

(B3)

Now, the chain of length one G1 satisfies the recursion relation

(B4)

with the boundary conditions that aG1 [n = 1] = 1. This im-
plies that aG1 [n] = (−1)n+1 so that Eq. (B4) becomes

aG+ [n] =
n−m∑
i=1

(−1)i+1 aG[n − i]. (B5)

Consider now the sum

aG+ [n] + aG+ [n − 1]

=
n−m∑
i=1

(−1)i+1aG[n − i] +
n−m−1∑

i=1

(−1)i+1aG[n − i − 1]

=
n−m∑
i=1

(−1)i+1aG[n − i] +
n−m∑
i=2

(−1)iaG[n − i]

= aG[n − 1] (B6)

or equivalently

aG+ [n + 1] = aG[n] − aG+ [n]. (B7)

Next, we multiply this equation by t n/n! and sum over n.
The right-hand side immediately turns into the corresponding
contributions as a function of t . The left-hand side can instead
be expressed as the time derivative of aG+ (t ):

aG(t ) − aG+ (t ) =
+∞∑
n=m

aG+ [n + 1]
t n

n!

= ∂t

( +∞∑
n=m

aG+ [n + 1]
t n+1

(n + 1)!

)
= ∂t aG+ (t )

(B8)

= −c aG+ (t ) + pG+ (t ). (B9)

Here we have used the dynamical equation (30) in the main
text to obtain the last equality. A simple rewriting now repro-
duces Eq. (B1) for a generic graph G. One can also obtain a
relation between aG+ (t ) and aG(t ) independent of the parents
pG+ (t ) from solving the differential equation in the first line
of (B8) as

aG+ (t ) = e−t
∫ t

0
esaG(s) ds. (B10)

APPENDIX C: ANALYTICAL METHODS AND CODE

To compute the exact solution for the expectation value in a
sample network we developed a numerical code in Python for
the integration of each diagram, which combines the network
functionality of NetworkX with the symbolic manipulation
and integration functionality of SymPy. The algorithm to ob-
tain the exact solution for 〈Ii(t )〉 in (7) consists out of three
basic steps. First, we create a list of contributing diagrams
as NetworkX DiGraphs by collecting all (labeled) subgraph
configurations where the node i is blue. Second, the graph
of diagrams GG for each inequivalent diagram in the list
is constructed by finding the parents of all diagrams, start-
ing from the largest subgraph down to the initial conditions.
Grandparents are added iteratively and each diagram is stored
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Algorithm 1 Compute expectation value

1: procedure COMPUTEEXPVAL(G, s, i)

2: Input: graph G, source node s, sink node i

3: Output: Expectation value 〈Ii(t )〉
4: contributions ← CONTRIBUTINGDIAGRAMS(G, s, i)

5: GG.nodes ← inequivalent diagrams from contributions

6: for all diagram ∈ GG.nodes do � Run from largest to smallest diagram

7: parents ← GETPARENTS(diagram)

8: Append parents to GG.nodes

9: for All p ∈ parents do

10: add edge (diagram, p) to GG.edges with weight w = SIGN(diagram) ∗ SIGN(p)

11: a(t ) ← 1 for the initial configuration s

12: for all diagram ∈ GG.nodes do � Run from smallest to largest diagram

13: p(t ) ← sum over w ∗ a(t ) for all neighbors p of diagram

14: c ← total degree of blue nodes in diagram

15: a(t ) ← e−ct
∫ t

0 ec s p(s)ds

16: result ← sum over a(t ) for each diagram ∈ contributions

17: return result

as a node in GG. The multiplicities αGH of topologically
inequivalent parents are stored as the edge weights of GG.
Finally, aG(t ) for each diagram in GG is obtained by in-
tegrating Eq. (31). This is done starting from the smallest
diagram up to the largest contributing diagram. The result is
then the sum over all diagrams contributions obtained in the
first step.

The pseudocode for the algorithm to compute the ex-
pectation value is given in Algorithm 1. It relies on a
number of functions which we will expand upon below.
CONTRIBUTINGDIAGRAMS(G, s, i) computes a list of all la-
beled subgraph configurations which contribute to the expec-
tation value for the node i to be infected at time t , given that
node s was initially infected. GETPARENTS(diagram) gives
a list of parent diagrams which transition into diagram by
applying the dynamical rules of the SI system. SIGN(diagram)
simply computes the sign (38) of a diagram and is needed if
the dynamical rules generate a sign difference between the
parent and the child diagram, for instance by closing a loop
on a blue node.

1. Contributing diagrams

The list of contributing diagrams is constructed as follows.
First, the graph G is initialized by defining the states of the
source node s and the sink node i. Then all possible paths
from s to i are stored in a list and a directed diagram is built
from these paths, with only white nodes in between s and i.
The resulting diagram is an acyclic directed graph containing
all possible paths from s to i corresponding to the largest

possible diagram contributing to the expectation value. From
this diagram, edges are removed systematically such that the
resulting graph is connected and all remaining nodes stay
within the in-component of the blue node i. If any node is not
in the in-component of the node i, it is removed along with
all edges connected to it. Each resulting connected diagram is
added to the list of contributing diagrams. The pseudocode for
this algorithm is provided in Algorithm 2.

2. The get parents function

In order to integrate any give diagram, one needs to recover
the parents of that diagram. This can be done by tracing the
rules of the SI model backwards. The parents of any given
diagram necessarily have one edge less connected to a blue
node. They can thus be obtained by systematically removing
single edges connected to the sinks, while leaving all other
edges intact. However, the neighbor connected to the removed
edge might change state from white to blue, as the forward
action of Q can project blue nodes into white ones. Special
care must be made to include only actual parents in the list
of parent diagrams, as some coloring of nodes cannot be
obtained from the forward action of Q on the initial conditions.
For instance, it is impossible to have a diagram with two
neighboring blue nodes (connected by an edge). Similarly,
it is not possible to have a branch in the diagram without a
blue node, as there would be no path from source to sink in
that branch.

To determine whether a candidate parent of a given di-
agram can actually exist, we exploit the directed edges

044303-11



WOUT MERBIS AND IVANO LODATO PHYSICAL REVIEW E 105, 044303 (2022)

Algorithm 2 Collect contributing diagrams

1: procedure CONTRIBUTINGDIAGRAMS(G, s, i)

2: Input: graph G, source node s, sink node i

3: Output: list of contributing diagrams contributions

4: edges ← (u, v) such that ∃ path(s, i) ∈ G passing through (u, v)

5: contributions ← Digraph ← edges

6: for diagram ∈ contributions do

7: for edge ∈ diagram do

8: remove edge

9: if diagram = connected then

10: for all j ∈ diagram do

11: if � path(s, i) through j then

12: remove node j � Removes nodes not in the in-component of i

13: add diagram to contributions � Only add each unique configuration once

14: return contributions

representing the flow from sources to sinks. Specifically, we
must check that for each neighbor i of a sink, after removal
of their edge, other outgoing edges from i exist. If so, the
node i cannot be blue and must be white (sinks cannot have
outgoing edges). If, on the other hand, the neighboring node
has only incoming edges, it must be turned blue, since the flow
of information must end in a sink. Finally, there is a scenario
where the node i can be both blue or white. This happens when
the node has only double directed edges as outgoing edges,
and so the set of out-neighbors of i, ni

out is contained within
the set of in-neighbors ni

in. In that case, both the diagrams with
node i white and blue are valid parents. It could also be that
some paths are no longer possible after removing the edge to

a blue node, or after turning a white node blue. Therefore,
the direction of the edges for the parent diagrams should be
reevaluated in each case. The pseudocode for the algorithm
which constructs all physical parents of any arbitrary diagram
is given in Algorithm 3.

Our code is freely available in the online public repos-
itory [49], along with a list of contributions aG(t ) for
all 80 332 diagrams with up to 10 edges. The repository
also includes several Jupyter notebooks where the example
graphs of the main text are computed using our algorithms.
These notebooks contain the exact analytical expressions
for the infection prevalence plotted in Fig. 2 of the main
text.

Algorithm 3 Find the parent diagrams

1: procedure GETPARENTS(diagram)

2: Input: diagram

3: Output: list of parent diagrams parents

4: for b ∈ diagram such that state[b] = blue do

5: neighbors ← list of neighbors of b

6: for i ∈ neighbors do

7: remove edge (i, b) � If b is now disconnected, remove b

8: if ki
out = 0 then � If there are no outgoing edges, the neighbor i must be blue

9: state[i] = blue

10: append diagram to parents

11: if ni
out ∈ ni

in then � All outgoing edges are double directed: the neighbor can be both white and blue

12: fix directed edges of diagram and append to parents

13: if state[i] �= source then � Sources can not change state to blue

14: state[i] = blue

15: fix directed edges of diagram and append to parents

16: else � There is at least one single directed outgoing edge and the neighbor must stay white

17: fix directed edges of diagram and append to parents

18: return parents
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APPENDIX D: EXPLICIT FUNCTIONS FOR THE FIRST FEW DIAGRAMS

For completeness, we list here the explicit functions aG(t ) corresponding to all diagrams with up to four edges.

(t) = 1 − e−t ,

(t) = 1 − (1 + t)e−t ,

(t) = (1 − e−t)2 ,

(t) = 1 − 2te−t − e−2t ,

(t) = 1 − (1 + t + 1
2 t2)e−t ,

(t) = − (t) = (1 − e−t)[(1− (1 + t)e−t)] ,

(t) = (1 − e−t)3 ,

(t) = (t) = − (t) = −1 + (−1 + 2t + 1
2 t2)e−t + (2 + t)e−2t ,

(t) = − (t) = (1 − e−t)(1 − 2te−t − e−2t) ,

(t) = − (t) = (1 − e−t)2[(1− (1 + t)e−t)]

(t) = − (t) = (1 − e−t)[(1− (1 + t + 1
2 t2)e−t)]

(t) = − (t) = (1 − [(1+ t)e−t)]2

(t) = 1 − (1 + t + 1
2 t2 + 1

6 t3)e−t ,

(t) = 1 − (2 + t2)e−t + e−2t ,

(t) = 1 + (3
2 − 3t)e−t − 3e−2t + 1

2e−3t ,

.(t) = (1 − e−t)4
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