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Abstract
In a sequential hypothesis test, the analyst checks at multiple steps during data collection whether sufficient evidence has
accrued to make a decision about the tested hypotheses. As soon as sufficient information has been obtained, data collection
is terminated. Here, we compare two sequential hypothesis testing procedures that have recently been proposed for use
in psychological research: Sequential Probability Ratio Test (SPRT; Psychological Methods, 25(2), 206–226, 2020) and
the Sequential Bayes Factor Test (SBFT; Psychological Methods, 22(2), 322–339, 2017). We show that although the two
methods have different philosophical roots, they share many similarities and can even be mathematically regarded as two
instances of an overarching hypothesis testing framework. We demonstrate that the two methods use the same mechanisms
for evidence monitoring and error control, and that differences in efficiency between the methods depend on the exact
specification of the statistical models involved, as well as on the population truth. Our simulations indicate that when
deciding on a sequential design within a unified sequential testing framework, researchers need to balance the needs of test
efficiency, robustness against model misspecification, and appropriate uncertainty quantification. We provide guidance for
navigating these design decisions based on individual preferences and simulation-based design analyses.

Keywords Bayesian inference · Likelihood tests · Sample size determination · Bayes factor design analysis · Experimental
design · Statistical error control · Design optimization · Hypothesis testing

Across scientific disciplines, researchers use statistical
hypothesis tests to evaluate the outcomes of experiments
that assess the validity of claims about the world.
Conducting scientific experiments can require substantial
resources of time, money, and effort, and can put human and
animal subjects under considerable strain. It is therefore in
the best interest of all scientific stakeholders to use efficient
hypothesis testing procedures (Hunter & Hoff, 1967). Since
the costs of a study are often proportional to sample size
(Dupont & Plummer, 1990), optimizing research efficiency
means finding a research design that minimizes the number
of observations needed (Myung & Pitt, 2009).
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Sequential designs constitute a powerful tool to achieve
experimental efficiency (e.g., Wald & Wolfowitz 1948;
Schönbrodt et al. 2017). On average, sequential hypothesis
tests yield substantially smaller sample sizes than conven-
tional hypothesis tests that assume a fixed sample size
based on a statistical power analysis. Studies investigat-
ing the efficiency of sequential designs have consistently
found reductions in sample sizes of 50% or more com-
pared to these fixed sample size designs (e.g., Wald 1945;
Schönbrodt et al. 2017; Schnuerch & Erdfelder 2020). This
makes sequential hypothesis testing an attractive choice
when resources are scarce.

In a sequential hypothesis test, researchers check at every
step of the data collection process whether sufficient evi-
dence has been obtained to make a decision about the tested
hypotheses.1 Data collection is terminated as soon as suf-
ficient information about the tested hypotheses has accrued

1Throughout the manuscript we assume that a test is conducted after
each datapoint. However, sequential tests also allow for larger sets of
data to be collected at each step. This will influence the sample sizes
and error rates of the design.
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(Wald, 1945). Conceptually, this sequential sampling proce-
dure resembles the practice of “optional stopping” that has
been repeatedly criticized as a questionable research prac-
tice (Armitage et al., 1969; John et al., 2012). However,
sequential hypothesis tests provide a framework of care-
fully designed decision rules that allow for valid statistical
inference despite optional stopping (Wald, 1945).

Recently, two existing sequential hypothesis testing
methods have been brought to the attention of a wide audi-
ence of psychology researchers: the Sequential Probability
Ratio Test (SPRT; Schnuerch & Erdfelder 2020) and the
Sequential Bayes Factor Test (SBFT; Schönbrodt et al.
2017). Both methods are applicable to a wide range of
hypothesis tests, and can therefore be used in many research
scenarios (Wald, 1945; Rouder, 2014).

In some disciplines of psychology, the SPRT has already
enjoyed great popularity for many years. In psychological
assessment, Ferguson designed a sequential mastery test
using the SPRT methodology as early as 1969. Seminal
work by Reckase (1983) combined the SPRT with item
response theory, and has been the basis for more recent
methodological developments in the field of computerized
classification testing (e.g., Lin and Spray 2000; Eggen
& Straetmans 2000; Eggen 2011; Finkelman 2008). The
SPRT has also been used to study speeded decision making
in humans and other animals (Luce, 1986; Townsend &
Ashby, 1983; Bogacz et al., 2006; Ratcliff, 1978; Purcell
et al., 2010; Milosavljevic et al., 2010), and is the basis
for modern models of human decision making such as the
Drift Diffusion Model (Bogacz et al., 2006; Griffith et al.,
2021). With the increasing uptake of Bayesian statistics
in psychology in the past years, SBFTs have become
more popular as well. For example, Bayesian sequential
testing has been applied in developmental psychology in
experiments on early word learning (Mani et al., 2020),
or in cognitive psychology in experiments on learning and
decision making (Perquin et al., 2020; Stojić et al., 2020).
Recently, there has been a strong focus on developing,
comparing, and promoting sequential testing procedures for
the independent-samples t-test, one of the most commonly
used statistical tests in psychological research (Wetzels
et al., 2011). Our paper will use the t-test as an example as
well, but our results apply to the broader class of SPRTs and
SBFTs.

In a recent article, Schnuerch and Erdfelder (2020)
contrasted the SPRT t-test and the sequential Bayesian t-
test based on simulations with diffuse priors and a specific
set of stopping rules. For this scenario, they concluded that
the two main advantages of the SPRT are that (1) it is
more efficient than the sequential Bayesian test, and (2) it
allows for explicit control of error rates. A similar claim was
made by Pramanik et al. (2020) based on their comparison

of the SBFT and a modified SPRT procedure that allows
researchers to set a maximum sample size.

Here, we demonstrate that the simulation conditions
used by Schnuerch and Erdfelder (2020) constitute an
extreme case within an otherwise more nuanced relationship
between the two hypothesis testing procedures. Specifically,
we extend their simulations to show that the SPRT and
SBFT are procedurally and mathematically similar, and
that their relative efficiency depends on the exact model
specification and the true population parameters. We argue
that recent attempts to compare the efficiency of the
two methods have presented favorable scenarios for the
SPRT, as the true effect sizes perfectly matched the
effect size assumptions postulated in its statistical models.
We also demonstrate that simulation and optimization
techniques make explicit error control possible for both
hypothesis testing procedures. Given the close relationship
between the SPRT and SBFT, we argue that the choice
of the sequential testing method can be regarded as
a multi-dimensional choice within a unified framework
where several desiderata can be weighted with regard to
the specific research context at hand. This presents a
new perspective because although previous research has
acknowledged the similarities between the two sequential
testing methods (e.g., Schnuerch & Erdfelder 2020), authors
have typically treated them as distinct methodologies.
We believe that there are many theoretical and practical
advantages to viewing them as part of an overarching
framework, and will present these in the course of our paper.

Our manuscript is structured as follows. First, we
will show that the SPRT and SBFT can be regarded as
two instances of a common sequential hypothesis testing
framework. Then, we explore what this means for the
efficiency of the two hypothesis testing methods using
a set of simulation studies. We show that differences in
efficiency between the two hypothesis testing procedures
are gradual and depend on the exact model specification.
The third part of our manuscript addresses the question of
choosing an adequate sequential hypothesis testing method
in an applied research setting. Based on our simulations, we
discuss several desiderata that researchers need to weigh in
planning sequential designs, and present several pragmatic
research strategies that result from these design decisions.

How similar are the SBFT and SPRT?

Previous research has presented the SBFT and SPRT as
two distinct methodologies for sequential hypothesis testing
(e.g., Schnuerch & Erdfelder 2020; Pramanik et al. 2020). In
the following sections, we will demonstrate that the methods
are, in fact, part of the same overarching hypothesis testing
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framework. Our argument rests two pillars: First, we show
that the monitored outcome that quantifies the collected
evidence at every step of the sequential process, is closely
related in the SPRT and SBFT. Second, we demonstrate that
stopping rules can be defined based on the same principles
for both sequential testing procedures. Since the error rates
of a sequential hypothesis test are governed by the definition
of the stopping rule, we also show that error rates can be
explicitly controlled in both procedures.

Evidencemonitoring: Likelihood ratio vs. Bayes
factor

All sequential hypothesis tests are based on monitoring
an analysis outcome as sample size increases. If the
outcome fulfills certain pre-specified stopping criteria, data
collection is terminated. If it does not fulfill the criteria,
data collection is continued by collecting an additional
observation (Wald, 1945; Schönbrodt et al., 2017). Both
the SPRT and the SBFT monitor a quantity that measures
the relative evidence for two competing models, with the
models representing the null and the alternative hypothesis,
respectively. As soon as sufficient evidence for either model
has accrued, the data collection is stopped and a decision is
made in favor of the model that received stronger support
from the data (Wald, 1945).

SPRT: Monitoring the likelihood ratio

In the SPRT, the monitored quantity is a likelihood ratio
that is defined as the likelihood of the data D under the
alternative model M1 divided by the likelihood of the data
under the null modelM0,

LR10 = f (D | M1)

f (D | M0)
= f (D | θ1)

f (D | θ0)
. (1)

Each model likelihood function contains a set of fixed
parameter values, θ i , with i ∈ {0, 1}.

For example, in the one-sided SPRT t-test, the likelihood
functions for the null and alternative model are both t-
distributions with ν = n1 + n2 − 2 degrees of freedom,
where n1 and n2 are the sample sizes of the two groups
that should be compared.2 The data are summarized by a t-
statistic (Rushton, 1950; Schnuerch & Erdfelder, 2020). The
null model posits that Cohen’s δ0, the standardized mean

2Note that SPRT t-tests are technically testing composite hypotheses,
as a weight function (i.e., prior) of 1/V ar on the variance is implied
under both models (Cox, 1952). Therefore, they are not optimal tests
in the sense of Wald and Wolfowitz (1948). However, in all other
aspects they are equivalent to Wald’s SPRT (Wald, 1945, p. 181f; Cox,
1952), which makes the distinction of limited practical importance
(Cox, 1952). In fact, Lai (1981) showed that Wald and Wolfowitz’s
proof may also hold asymptotically for SPRT t tests.

difference between the groups, equals zero. The alternative
model assumes a fixed effect size δ1 that differs from
zero. The non-centrality parameter �i of the t-distributions
depends on the effect size that is assumed in the models,

LRSPRT t-test, one-sided = f (t | ν, �1)

f (t | ν, �0)
,

with �i = δi

√
n1 × n2

n1 + n2
for i = {0, 1} . (2)

In the two-sided SPRT t-test (Hajnal, 1961), the likelihood
functions are based on squared t-values to indicate that no
knowledge about the sign of the effect exists. Since it can
be shown that t2(ν, �) = F(1, ν, �2), the likelihood ratio
can be expressed as the ratio of a noncentral to a central
F -distribution (Brereton, 2015),

LRSPRT t-test, two-sided = f (t2 | ν, �1)

f (t2 | ν, �0)
= f (F | 1, ν, �2

1)

f (F | 1, ν, �2
0)

.

(3)

Note that the quantity monitored in the SPRT differs
from the test statistic in the generalized likelihood ratio
test (GLR; Neyman & Pearson 1928). Specifically, the
likelihood functions are evaluated at fixed parameter values,
and not at their data-dependent maximum. This is also true
for the sequential extensions of the GLR test, as developed
by Li et al. (2014), or by Thompson (2009) for computerized
adaptive testing.

SBFT: Monitoring the Bayes factor

In the SBFT, the monitored analysis outcome is the Bayes
factor. Conceptually, the Bayes factor can be understood
as an extension of the likelihood ratio that accounts for
uncertainty about the model parameters (Jeffreys, 1961).
This epistemic uncertainty is expressed through the prior
distribution, that is, a probability density function that
is placed on parameter values in the statistical model.
Mathematically, the Bayes factor is defined as the ratio of
two marginal likelihoods (Kass & Raftery, 1995), in which
the likelihood function, f (D | θ), is weighted by the prior
distribution, p(θ), and averaged across the parameter space.
The Bayes factor can therefore be defined as

BF10 = p(D | M1)

p(D | M0)
=

∫
f (D | θ1) p(θ1) dθ1∫
f (D | θ0) p(θ0) dθ0

. (4)

The specification of the prior distribution has been
a longstanding topic of discussion among Bayesian
statisticians (e.g., Jeffreys 1961; Goldstein 2006; Berger
2006; Lindley 2004). Researchers often use so-called
“uninformative” or “default” prior distributions for the
alternative model (Berger, 2006). These prior distributions
are specified to fulfill several conceptual desiderata and
assign non-negligible probabilities to a wide range of values
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(Consonni et al., 2018). A common default prior distribution
for the effect size parameter δ in the alternative model in a
Bayesian t-test is a zero-centered Cauchy distribution with
a scale parameter of

√
2/2 (Rouder et al., 2009; Morey &

Rouder, 2018). In this distribution, 50% of the probability
mass lies between values of −0.707 and +0.707. In the
remainder of this article, we refer to this prior specification
as the default prior setup.

An alternative to default prior distributions are informed
prior distributions that incorporate substantive application-
specific prior knowledge about the parameter (Goldstein,
2006). As a general rule, informed prior distributions are
more peaked around certain parameter values when more
prior knowledge exists (Dienes, 2019). In the most extreme
case, the prior distribution can be reduced to a point
prior that assigns all mass to a single value (Etz et al.,
2018). Informed prior distributions can be defined based
on theoretical considerations, previous literature, or expert
knowledge (Vanpaemel, 2010; Verhagen & Wagenmakers,
2014; Stefan et al., 2020). In Bayesian t-tests, informed
prior distributions on the effect size δ in the alternative
model most often take the form of a non-central normal or
t-distribution (Gronau et al., 2020). One particular piece of
information that can be integrated in the prior distribution
is the information about the sidedness of the effect. For
example, the facial feedback hypothesis posits a one-sided
effect, namely that participants who hold a pen between
their teeth rate a cartoon as more funny than participants
who hold the pen between their lips (Strack et al., 1988).
For positive directional one-sided tests like this, the prior
distribution on the parameter of interest is truncated to
include only positive values (Wagenmakers et al., 2010).

Bayes factors converge to likelihood ratios

It is important to note that if point priors are placed on all
model parameters, the Bayes factor reduces to a likelihood
ratio (Jeffreys 1961, p. 396). In Bayesian null hypothesis
testing, it is customary to specify a point prior on zero
for the parameter of interest in the null hypothesis and a
default or informed prior distribution for the parameter of
interest in the alternative model (Wagenmakers et al., 2010).
Therefore, as the width of the prior distribution around
a parameter value in the alternative model decreases, the
Bayes factor approaches the likelihood ratio that specifies
the same parameter value in the alternative model. Figure 1
demonstrates this in an example for the t-test. In the
example, the Bayes factor uses a normal distribution
centered on Cohen’s δ of 0.5 as a prior distribution on effect
size in the alternative model. The alternative model in the
likelihood ratio also assumes an effect size of δ1 = 0.5. As
the variance of the normal prior decreases, the difference
between the log Bayes factor and the log likelihood ratio for
the same data decreases as well.

Implications for sequential testing

For sequential tests, the relationship between likelihood
ratios and Bayes factors implies that the monitored outcome
in the SPRT and in the SBFT can be numerically very
close. The degree of similarity depends on the extent to
which the SPRT parameter value is representative of the
prior distribution in the Bayesian test. Although the effect of
informed prior distributions on Bayesian sequential testing
has been demonstrated earlier (Stefan et al., 2019), recent
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Fig. 1 Difference between the log likelihood ratio and the log Bayes factor for a t-value of 2.5, i.e., a sample effect size of δ=0.5 in a sample
of size 50 per group. The mode of the prior distribution and the effect size assumed in the alternative model in the likelihood ratio are equal to
δ1 = 0.5. The Bayes factor approaches the likelihood ratio as the width of the prior distribution decreases
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efforts to compare the SPRT and SBFT have focused solely
on sequential Bayesian tests with default prior distributions
(Schnuerch & Erdfelder, 2020; Pramanik et al., 2020).
However, as becomes clear from Fig. 1, this comparison
provides an extreme example of the differences that can
occur between the SPRT and sequential Bayesian tests. The
reason for this is that default prior distributions are not only
relatively wide, but their mode also does not coincide with
the parameter value in the alternative model in the SPRT.
Notably, the specification of uncertainty about parameters
allows for a seamless integration of model comparison
and parameter estimation in the Bayesian framework, since
prior distributions can be meaningfully updated to posterior
distributions. Thus, although the Bayes factor is numerically
nearly identical to the likelihood ratio if the prior is
extremely narrow, there remains a qualitative difference in
the possibility of the model to incorporate new information.
We will discuss this in more detail in the section about
uncertainty specification later in this paper.

Stopping rules and error rate control

The sequential testing procedure in the SPRT and SBFT
requires the definition of an upper and lower evidence thresh-
old (Wald, 1945; Schönbrodt et al., 2017). If the outcome
measure is smaller than the lower threshold, a decision for
the null hypothesis is made; if the outcome measure is
larger than the upper threshold, a decision for the alternative
hypothesis is made; if the outcome measure lies between the
two thresholds, an additional observation is collected.

The threshold definition is directly related to the error
rates and the average sample size of the sequential design.
Generally, wider thresholds lead to higher average sample
sizes because more evidence is required to make a decision.
However, wider thresholds also lead to lower rates of
false-positive and false-negative decisions (Schnuerch &
Erdfelder, 2020; Stefan et al., 2019). This makes the
definition of thresholds for sequential designs an interesting
optimization problem. In the following, we show that the
definition of optimal thresholds follows the same principles
in the SPRT and SBFT.

SPRT: Controlling error rates with Wald’s thresholds

For the SPRT, Wald (1945) recommended constant thresh-
olds defined through the following formulae,

A = (1 − β)

α
,

B = β

(1 − α)
, (5)

where A and B are the values of the two thresholds on the
likelihood ratio, and α and β are the maximum rates of

false-positive evidence and false-negative evidence, respec-
tively, that a researcher is willing to tolerate. For example,
a researcher aiming for nominal error rates of α = 0.05
and β = 0.1 would calculate Wald’s thresholds as A =
(1 − 0.1)/0.05 = 18, and B = 0.1/(1 − 0.05) = 0.105.

It can be shown that if either of the postulated models is
the true data generating process, Wald’s thresholds provide
an upper limit to the effective α and β error rate, namely,
α′ ≤ 1/A and β ′ ≤ B (see the online appendix at
https://osf.io/5esbc/ for an outline of Wald’s proof). In
certain situations, effective error rates can be substantially
smaller than α and β, which means that Wald’s thresholds
can overcontrol the error rates. The extent of overcontrol
depends on the model specification. If the effect size
postulated in the alternative model approaches zero, that is,
if the null and alternative model get increasingly similar, the
effective error rates approach the nominal error rates. If the
alternative model postulates a large effect size, the SPRT
overcontrols the error rates.

The reason for this imprecise error control is that
the likelihood ratio often exceeds the thresholds rather
than matching them exactly at the termination of the
sequential process (Wald 1945, p. 132). This phenomenon
of “overshooting” is more likely to happen when the models
are dissimilar, because in these cases the likelihood ratio
can be changed substantially by a single observation. In
contrast, when the models are similar, each new observation
causes only small changes in the likelihood ratio, which
leads to less overshooting and a closer match in error
rates. It is important to note that overshooting does
not prohibit exact error control altogether. For dissimilar
models, stopping thresholds that provide exact error control
are narrower than Wald’s thresholds and can be found via
numeric optimization methods (see Fig. 3 for an example
with δ0 = 0 and δ1 = 0.5).

Figure 2 demonstrates the dependence of error rates on
the model specification in the SPRT with Wald’s thresholds
for the t-test. The effective error rates (here, displayed as the
sum of false-positive and false-negative errors) are based on
Monte Carlo simulations from the null and the alternative
model with 10,000 iterations and stopping according to
Wald’s thresholds. Note that error control in the SPRT as
displayed in the figure is conditional on the truthfulness
of one of the two models, that is, the design no longer
guarantees error control if a third model is the true data
generating model. We will discuss this issue later in this
paper.

SBFT: Symmetric and non-symmetric thresholds

In the SBFT, thresholds are often chosen to be symmetric
around a Bayes factor of BF = 1 (Schönbrodt et al., 2017).
For example, a researcher might choose to collect data until
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Fig. 2 In the SPRT t-test with Wald’s thresholds, the sum of effective
error rates approaches the sum of nominal error rates as the effect
size postulated in the alternative model decreases. Depicted effective
error rates are based on Monte Carlo simulations from the null and
the alternative model with 10,000 iterations and Wald’s thresholds for
nominal error rates of α = 0.05 and β = 0.1

a Bayes factor larger than 10 or smaller than 1/10 is reached.
This practice often signals that the researcher’s primary
concern is strength of evidence rather than control of error
rates. For example, a researcher might aim for a strength of
evidence of 10, that is, the data should be at least 10 times
more likely to have occurred under the selected model than
under the competing model (Schönbrodt & Wagenmakers,
2018; Stefan et al., 2019).

Although it is common practice, there is no statistical
reason for exclusively using symmetric thresholds in the
SBFT. In fact, there are many reasons why a researcher
might choose non-symmetric thresholds, for example to
account for the fact that evidence accumulates more slowly
for the null hypothesis than for the alternative hypothesis
(Johnson & Rossell, 2010) or to incorporate utilities
of hypotheses in the design (Good, 1983). As can be
seen from Wald’s thresholds, non-symmetric thresholds
are also beneficial if a researcher wants to control the
rates of misleading evidence of their design. Adjusting the
thresholds independently does not only allow the researcher
to match the envisioned error rates of the design more
closely, but also leads to lower average sample sizes (Stefan
et al., 2019).

As in many other complex hypothesis testing scenarios
(e.g., Green & MacLeod 2016), there is no analytical
solution to obtain the error rates of an SBFT. However,
optimal thresholds can be found in an iterative process
using Bayes Factor Design Analysis (BFDA; Schönbrodt
& Wagenmakers 2018), a simulation-based methodology
that allows researchers to obtain the expected sample
size and rates of misleading evidence of a sequential
Bayesian design. In a BFDA, a large number of samples
is generated from a population model representing the null
or the alternative hypothesis, respectively. These samples

are then analyzed using the sequential Bayesian design
and the sample sizes and error rates of the design are
tracked (Schönbrodt & Wagenmakers, 2018; Stefan et al.,
2019). Optimal thresholds can be determined by defining
an objective function on sample size and error rates and re-
running the BFDA in an iterative process using optimization
methods to find the thresholds that minimize the objective
function. Notably, these optimal thresholds do not lead to an
overcontrol of error rates because they are adjusted to the
statistical models used in the test. We provide commented
code for the simulation and optimization in the online
appendix of this manuscript at https://osf.io/5esbc.

Samemechanism of error control

Both in the SPRT and in the SBFT, error rates can be
controlled by adjusting the stopping thresholds of the
design. Wald’s thresholds provide a computationally simple,
analytic solution to the boundary optimization problem in
the SPRT, but they lead to effective error rates that can be
substantially smaller than the envisioned maximum error
rates of the design. To obtain exact error control, simulation-
based methods are necessary to determine optimal stopping
thresholds in both sequential testing procedures.

Figure 3 shows such computationally optimized thresh-
olds for α = 0.05 and β = 0.1. Wald’s thresholds are
wider than thresholds that provide exact error control, and
therefore lead to an overcontrol of error rates. Addition-
ally, it is evident from the figure that optimal thresholds
depend on the model specification. The SPRT model and
different Bayesian models clearly require different stopping
thresholds to control the error rates at the same level.
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Optimized thresholds (δ1=0.5)
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Fig. 3 Stopping thresholds that provide exact error control in the SPRT
and in the SBFT for αmax = 0.05 and βmax = 0.1, as well as
Wald’s thresholds. Left panel: Computationally optimized thresholds
that provide exact error control in the SPRT are different from Wald’s
thresholds. Right panel: Optimized thresholds for SBFT designs with
different prior distributions (see legend). All thresholds are determined
under the assumption of a population effect size of δ = 0.5
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Implications for sequential testing

Based on the previous sections, we can make three
observations about threshold definition and error control in
the SPRT and SBFT: (1) SPRT and SBFT control error rates
through the same mechanism, namely threshold adjustment;
(2) thresholds need to be defined through simulation
methods in both tests if exact error control is desired; and
(3) optimal thresholds depend on the model specification.
Thus, if an SBFT with symmetric thresholds is compared
to an SPRT with Wald’s thresholds, as has recently been
proposed by Schnuerch and Erdfelder (2020), it is only
natural that error control in the SBFT will be inferior to
the SPRT because the thresholds in the SBFT were not
adjusted to control error rates. In the same vein, it cannot
be expected that the same stopping thresholds applied to
two different designs will yield the same error rates. A
difference in observed average sample sizes between the
SPRT and SBFT can only be interpreted as a difference
in test efficiency if the testing procedures are equated on
at least one other dimension, that is, if they control error
rates at the same level or if they yield the same amount of
evidence. Researchers who wish to compare an SPRT and
an SBF design therefore need to decide whether they want
to impose the same stopping thresholds (i.e., the tests stop
when the same amount of evidence is collected) or whether
they want to compare two designs with the same error rates
(i.e., differing stopping thresholds). We will present both
types of comparison in the next sections.

Which sequential testing procedure is more
efficient?

In the previous sections, we showed that the SPRT and the
SBFT are similar in many respects. Here, we show that
differences in efficiency between the methods are gradual
and depend on the exact model and design specification.
Efficiency is important in all practical applications where
time, money, or effort are proportional to the sample size
required by a research design, or where the well-being of
research subjects is affected by long testing procedures
(Hunter & Hoff, 1967). In all sequential hypothesis testing
procedures, sample size is a random variable that can
vary between experiments. Therefore, we present average
(expected) sample sizes for each procedure. As described
earlier, we compare designs that either have the same
error rates (i.e., optimized thresholds) or the same stopping
thresholds (i.e., require the same amount of evidence for
data collection to be stopped). This allows us to disentangle
the effects of threshold definition on the expected sample
size and on the error rates of the design. Since the
difference between likelihood ratios in the SPRT and the

Bayes factor in the SBFT depends on the definition of the
prior distribution, we also use SBFTs with different prior
distributions in our comparison.

Efficiency under ideal conditions: A note on oracle
priors

In the following two sections, we investigate the efficiency
of the SPRT and SBFT under ideal conditions, where the
true effect size matches the model expectations as closely
as possible. This means that the population effect size is
either equal to zero, i.e., the parameter postulated in the
null hypothesis, or it matches the effect-size parameter
(SPRT) or the mode of the prior distribution on effect size
(SBFT) in the alternative model. We call this an oracle
prior setup because it implies that researchers are able to
make correct predictions about the population parameters.
It should be noted that the SPRT naturally benefits from this
setup, because the models compared in the SPRT are exact
representations of the true population models. Due to the
inherent uncertainty about parameter values, the efficiency
of the SBFT can only approach the efficiency of the SPRT
in these cases.

In reality, it is of course highly unlikely that the true
data generating process matches the a-priori expectations
of a researcher exactly (Wald, 1945; Box, 1976). However,
it is still relevant to compare models under idealized
circumstances because they describe a reliable best-case
scenario with minimal expected sample sizes and effective
error control. Any model misspecification distorts the stated
properties of the hypothesis tests, most prominently, the
desired error rates of the design. We will analyze the
behavior of the two hypothesis testing methods under the
condition of model misspecification after the investigation
of the idealized scenario.

Efficiency of one-sided tests

In the following, we will use Monte Carlo simulations to
compare the efficiency of the one-sided SPRT t-test and
the one-sided sequential Bayesian t-test in an oracle-prior
setup. As outlined before, we compare tests that are either
matched in terms of error rates or in terms of stopping
thresholds. We use true effect sizes of δ = 0.2, δ = 0.5,
and δ = 0.8 under the alternative hypothesis, and a true
effect size of δ = 0 under the null hypothesis. We decided
to use these effect sizes because they cover the range of
typical effect sizes in psychological studies (Wetzels et al.,
2011) and have been used in earlier studies comparing the
SPRT and SBFT (Schnuerch & Erdfelder, 2020). In the
SBFT, we use four different prior distributions on effect
size under the alternative model for each comparison: A
default zero-centered Cauchy distribution with scale r =
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√
2/2 and informed normal distributions that are centered

on the population effect size and have variances of σ 2 =
0.3, σ 2 = 0.1, or σ 2 = 0.001. We decided to use
three informed priors with increasingly smaller variances
to be able to demonstrate what happens if the informed
prior approaches a point prior. In the SPRT, the effect size
postulated in the alternative model is always equal to the
simulated population effect size. In the SBFT, the simulated
population effect size is equal to the mean of the informed
prior. Analysis code and tables can be found in our online
appendix (https://osf.io/5esbc/).

Same thresholds

In the following, we apply Wald’s thresholds for maximum
error rates of α = 0.05 and β = 0.1 to both sequential
hypothesis tests. We decided to use Wald’s thresholds
because they are commonly recommended for the SPRT
(Wald, 1945; Schnuerch & Erdfelder, 2020), and they
allow researchers to control error rates (although issues of
overcontrol exist, as discussed earlier). Figure 4 displays
the results of these analyses. The upper panels display
the average sample sizes under the null and alternative

hypothesis. In all cases, the SPRT has the lowest average
sample size. This can be expected since the true data
generating process exactly matches the models postulated in
the SPRT. The average sample sizes in the SBFT approach
the SPRT as the prior distribution becomes narrower around
the population parameter. The wide, zero-centered default
prior distribution typically leads to the highest average
sample sizes. This result corroborates earlier simulation
results by Schnuerch and Erdfelder (2020), and can be
explained by the (dis)similarity between the Bayes factor
and likelihood ratio discussed earlier (see also Fig. 1).
Another interesting aspect visible in the figure is that
average sample sizes in SPRT and SBFT are more similar if
the (postulated) population effect size under the alternative
hypothesis is large. In this case, both tests can capitalize
on faster rates of evidence accumulation and typically stop
data collection after a very small number of observations.
The lower panels of Fig. 4 show the false-positive and false-
negative error rates of the designs when Wald’s thresholds
are imposed on all tests. It becomes clear that Wald’s
thresholds do not control error rates for all configurations of
the SBFT; however, the deviations from the maximum false-
positive and false-negative error rates are typically minor. In

Fig. 4 Average sample sizes and error rates for the one-sided SPRT t-test (crosses) and sequential Bayesian t-test (circles, squares) with Wald’s
thresholds. All results are based on the assumption of an oracle prior, i.e., that the true effect size is either zero or the parameter δ1 specified in the
alternative model of the SPRT. Dotted lines show the maximum false-positive and false-negative error rates
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fact, Wald’s thresholds also overcontrol error rates for most
SBFT settings.

Same error rate

In the following, we optimized thresholds in the SBFT to
yield the same effective error rates as the SPRT with Wald’s
thresholds, i.e., a false-positive error rate of α = 0.039, and
false-negative error rates of β = 0.090, β = 0.082, and
β = 0.052 for population effect sizes of δ = 0.2, δ = 0.5,
and δ = 0.8, respectively (see crosses in Fig. 4).

Finding the optimal thresholds that can provide exact
error control with minimal sample sizes in the SPRT or
SBFT requires an efficient optimization procedure. At the
heart of the optimization procedure is an objective function
that takes in the two threshold values, and computes
a summary statistic (e.g., the mean) of the expected
sample sizes under the null and alternative model, while
penalizing for error rates that exceed the desired levels.
This objective function can be minimized using a standard
multidimensional optimization algorithm. Here, we used a
differential evolution algorithm as implemented in the R
package NMOF (Schumann, 2019). Differential evolution
is a derivative-free stochastic optimization algorithm that
was developed to be applied to continuous-valued problems
(Engelbrecht, 2007). The calculation of error rates and
expected sample sizes requires a large number of Monte
Carlo simulations of the sequential process under each
of the two competing models. As the data generating
models remain constant regardless of the thresholds, it is
possible to draw the Monte Carlo samples once at the
beginning of the optimization for each hypothesis, and
limit the objective function to “cutting off” the sampled
trajectories based on the proposed thresholds. This reduces

computing time for the optimization from several hours
to a few seconds, since Bayes factors or likelihood ratios
only have to be computed on the original sample. The
optimization procedure yields evidence thresholds for the
SBFT that are model-specific and lead to an exact matching
to the effective error rates of the SPRT while keeping
the average sample sizes at a minimum. We provide
commented sample code with customizable functions for
the threshold optimization procedure in our online appendix
(https://osf.io/5esbc/).

As can be seen from Fig. 5, the SPRT yielded lower
average sample sizes than the SBFT when thresholds are
optimized such that the tests have the same error rates.
However, the differences in average sample size are not as
pronounced as when the same thresholds are applied to both
testing procedures. A reason for this is that the optimized
thresholds in the SBFT are typically narrower than the
thresholds yielding the same error rates in the SPRT, as can
be seen from Fig. 3.

Efficiency of two-sided tests

As we discussed earlier, the sidedness of a sequential
test influences the models involved in the test. Therefore,
it is important to consider both one-sided and two-sided
tests when comparing the efficiency of the SBFT and of
the SPRT. In the previous sections, we compared the two
procedures for one-sided tests. To provide a comprehensive
comparison, we repeated all simulations with two-sided
tests. Unless otherwise mentioned, the comparison setup
is identical to the one-sided analyses. Informed prior
distributions in the SBFT are unimodal and peak at the
simulated population effect size. Analysis code and tables
can be found in our online appendix (https://osf.io/5esbc/).

Fig. 5 Average sample sizes for the one-sided SPRT t-test (crosses) and sequential Bayesian t-test (circles, squares) when thresholds are optimized
so that the tests yield the same error rates. All results are based on the assumption of an oracle prior, i.e., that the true effect size is either zero or
the parameter δ1 specified in the alternative model of the SPRT
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Same thresholds

Figure 6 displays the average sample sizes under the null
and under the alternative model for the two-sided test when
Wald’s bounds are applied to both procedures. Interestingly,
we can see that the SPRT t-test is no longer more efficient
than the sequential Bayesian t-test. Across all conditions,
the sequential Bayesian design with an extremely narrow
prior distribution (σ 2 = 0.001) has lower average sample
sizes. How can this be explained? As we outlined earlier,
the SPRT model is defined in absolute terms, that is, the
squared t-value is entered into the likelihood. However,
raw values occur on the real line, which means that the
alternative hypothesis in the test effectively places a point
prior on both +� and −�. In contrast, one-sided and two-
sided models in the SBFT differ due to the truncation of
the prior distribution. While the prior distribution covers the
whole range of values in the two-sided case, it is truncated
at δ = 0 in the one-sided case. However, for highly
informed prior distributions, the truncation does not change
the probability densities of the distribution much because

the full distribution assigned only little prior mass to values
in the truncated area. Therefore, for (highly) informed prior
distributions, the two-sided Bayesian t-test is more similar
to the one-sided Bayesian t-test than to the two-sided SPRT.

Same error rates

When error rates are controlled through optimized stopping
thresholds, the same pattern emerges (see Fig. 7). The two-
sided SBFT with an extremely narrow prior distribution
yields lower average sample sizes than the two-sided
SPRT. The default Cauchy prior typically yields the highest
average sample sizes.

The question remains whether any of the most efficient
models in the two-sided case can be justified from a model
building perspective. Neither a “double” point prior on an
effect size and its additive inverse, nor a spiked prior on
an effect size that allows for effect sizes of a different
sign seems to be an intuitive choice in most application
scenarios. We will discuss the question of theory-based
model specification later in this manuscript.

Fig. 6 Average sample sizes and error rates for the two-sided SPRT t-test (crosses) and sequential Bayesian t-test (circles, squares) with Wald’s
thresholds. All results are based on the assumption of an oracle prior, i.e., that the true effect size is either zero or the parameter δ1 specified in the
alternative model of the SPRT. Dotted lines show the maximum false-positive and false-negative error rates
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Fig. 7 Average sample sizes for the one-sided SPRT t-test (crosses) and sequential Bayesian t-test (circles, squares) when thresholds are optimized
so that the tests yield the same error rates. All results are based on the assumption of an oracle prior, i.e., that the true effect size is either zero or
the parameter δ1 specified in the alternative model of the SPRT

Robustness against model misspecification

In the SPRT and sequential Bayesian tests, expectations
about the population effect size determine the model spec-
ification. The previous sections assumed that these expec-
tations were true, that is, that either the null or the
alternative model of the SPRT were the data generating
process. However, in real-life applications, it is fair to
assume that this idealized scenario rarely if ever applies
(Wald, 1945; Box, 1976). The ensuing model misspecifica-
tion distorts the properties of the hypothesis test.

In the following, we explore how model misspecification
influences the average sample sizes and the test decisions in
the SPRT and in the sequential Bayesian t-test. To ensure
continuity to the previous sections, we compare the SPRT
and the SBFT with the same settings for expected effect

sizes and prior distributions. In our simulations of model
misspecification, we allowed for population effect sizes
under the alternative model between δ = 0.1 and δ = 1.0.
This implies that the (most likely) effect size δ1 specified
in the alternative model can both over- and underestimate
the true effect size. We compare directional designs that
yield the same error rates if either of the specified models
is true. In the SPRT, the error rates were controlled using
Wald’s thresholds. Error rates in the SBFT were matched to
the effective error rates in the SPRT using the optimization
procedure described earlier in this paper.

False-negative results

Figure 8 depicts the rate of test decisions in favor of the null
hypothesis. Given that the simulated true population effect
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Fig. 8 False-negative error rates for the SPRT and sequential Bayesian t-test when the true effect size δtrue does not match the effect size postulated
in the null or alternative model (δ0 = 0 and δ1 = δ, respectively)
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size is always larger than zero, this rate can be considered
the false-negative error rate of the design. If the true effect
size is smaller than expected, the false-negative error rate of
the design exceeds the nominal error rate. The results show
that throughout all conditions, false-negative error rates in
the SPRT are higher than in the SBFT. This demonstrates
that the SBFT is a more conservative testing procedure
that is more robust against model misspecification than the
SPRT in terms of false-negative error rates. The reason
for this is that the Bayesian test spreads probability across
an effect size range, such that multiple effect sizes can
be considered to be in accord with the model. As in
the previous analyses, the properties of the SBFT are
more similar to the SPRT if narrow prior distributions are
chosen.

Average sample sizes

Figure 9 depicts the average sample sizes under different
degrees of model misspecification. For all conditions,
average sample sizes increase if the true population effect
size is smaller than expected. However, if the population
effect size approaches zero, the average sample sizes
decrease again in many conditions. As can be seen from
the increasing false-negative error rates in Fig. 8, this can
be explained by early termination in favor of the null
model. If the true effect size is larger than expected, average
sample sizes decrease compared to the oracle prior scenario.
Interestingly, this decrease is particularly strong for the
SBFT with wide prior distributions in the alternative model.
If the effect size is sufficiently large, the average sample
size for the SBFT can even be smaller than for the SPRT
(see, e.g., the left panel of Fig. 9 for large δtrue). The reason

is that wide prior distributions assign a higher plausibility
to large effect sizes, which means that these models make
better predictions if these large effect sizes materialize.

Implications for sequential testing

Our efficiency comparisons showed that the SPRT requires
substantially smaller average sample sizes than the SBFT
under ideal conditions, that is, when the true population
effect size equals the effect size proposed in the alterna-
tive model of the SPRT. However, this increased efficiency
comes at the cost of lower robustness against misspecifica-
tions. If the population effect size is smaller than the effect
size proposed in the alternative model of the SPRT, error
rates in the SPRT are higher than in the SBFT. If the popula-
tion effect size is larger than expected, the SPRT eventually
has larger average sample sizes than the SBFT. It can there-
fore be concluded that the SPRT benefits substantially from
an oracle prior simulation setup. Generally, the design prop-
erties of the SBFT approach the SPRT when increasingly
narrow prior distributions under the alternative model are
used. This means that SBFTs with highly informed prior
distributions are more efficient in terms of average sample
sizes, but also less robust against model misspecifications
than SBFTs with wide prior distributions. Taken together,
our results indicate that differences in the SPRT and the
SBFT are contingent on the specifics of model formulation
as well as on the data generating process at the popula-
tion level. Researchers planning a sequential hypothesis test
should be aware that the model and threshold specification
dynamically influence the properties of the planned design.
In the next section, we provide guidance on how to navigate
these design decisions.
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Fig. 9 Sample sizes for the SPRT and sequential Bayesian t-test when the true effect size δtrue does not match the effect size postulated in the null
or alternative model (δ0 = 0 and δ1 = δ, respectively)
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How to choose a sequential testing
procedure in real-world applications

In this final section, we address the question how
researchers can decide on a model specification for real-
world applications. We provide several guiding principles
and investigate pragmatic research strategies that have been
proposed with regard to the SPRT and SBFT.

Uncertainty specification

The SBFT assumes uncertainty about parameter values
under the alternative hypothesis (Schönbrodt et al., 2017)
while this is not the case for the SPRT (Wald, 1945; Hajnal,
1961). Therefore, one important consideration in the choice
of the sequential hypothesis testing framework is whether
uncertainty about parameter values should be quantified.

From a theoretical standpoint, the question arises
which situations warrant the specification of uncertainty.
Arguably, only a very limited number of research contexts
provides researchers with sufficient background knowledge
to confidently define a single specific effect size under
each of the competing models. For example, researchers
in physics might wonder whether a physical constant
takes one value or another, or mechanical engineers might
be interested in the question whether a certain object
was built with either of two materials. In the social sci-
ences, however, it is difficult to find examples where
a theory provides researchers with an unequivocal sin-
gle effect size. In fact, in Bayesian statistics, there has
even been a longstanding debate whether research con-
texts typically provide sufficient reliable prior informa-
tion for the specification of informed prior distributions
(Goldstein, 2006; Fienberg, 2006). A substantial number
of Bayesian statisticians advocate for the use of wide
default prior distributions because they reflect a high
amount of uncertainty, such as the Cauchy distribution used
here (Savage, 1954; Consonni et al., 2018). Moreover, in the
Bayesian statistical framework, learning about parameter
values from the data becomes impossible when a point prior
is used because the prior distribution cannot be meaning-
fully updated to a posterior distribution (Etz & Vandeker-
ckhove, 2018). Thus, from a Bayesian perspective, formu-
lating a point prior on parameter values in the alternative
model in the face of uncertainty seems rash or even reckless.
However, proponents of the SPRT argue that it is not neces-
sary to view the specified parameters as a researcher’s best
guess for the underlying population effect (Schnuerch &
Erdfelder, 2020). Instead, they argue that the parameter val-
ues can be interpreted as the smallest effect size researchers
are interested in detecting. This view stems from approaches
to power analysis where a smallest effect size of interest
(SESOI) or the lower threshold of a confidence interval is

used to plan for sufficiently large sample sizes (Lakens &
Evers, 2014; Perugini et al., 2014). However, this leads to a
model that can be no longer interpreted as a manifestation
of theory, as we will discuss below.

Model predictions

Traditionally, statistical models are interpreted as mathe-
matical manifestations of theories (Vanpaemel, 2010). From
this perspective, one of the key aspects of a model is its
generative property, that is, its ability to make realistic pre-
dictions that are in accord with a theory (Gelman et al.,
2017; Vanpaemel, 2010). If a researcher acknowledges the
null and alternative model as justifiable manifestations of
plausible theories, the results of the test can be directly
interpreted as a test of theory.

In the SPRT, researchers following a theory-driven model
specification approach would engage in a “Best Guess”
heuristic when determining the effect size for the alternative
model. This means that they would specify the parameter
based on their beliefs about the most likely parameter
values under a given theory (Dienes, 2019). Note that by
definition a SESOI specification of the effect size parameter
does not represent a researcher’s best guess, but a lower
bound on what the researcher deems realistic or interesting
(e.g., Button et al. 2015; Simonsohn 2015; Perugini et al.
2014; Lakens et al. 2018). Thus, the SESOI specification
results in an effect size that is likely to underestimate the
true population effect size and can lead to biased model
predictions. From a purely frequentist point of view, this
may be viewed as unproblematic since the primary focus is
on error control, and model predictions are only secondary.

In the SBFT, informed prior distributions allow mod-
els to make theoretically meaningful predictions (Lee &
Wagenmakers, 2013). Informed prior distributions can be
formulated based on theoretical considerations, previous
literature, or beliefs of substantial experts (Lee & Van-
paemel, 2017; Verhagen & Wagenmakers, 2014; Stefan
et al., 2020). If there is a high degree of uncertainty
about the effect size, default prior distributions, such as
the central Cauchy, can also yield models with realistic
predictions that reflect researchers’ theory-based beliefs.
However, researchers arguably often have more pre-data
knowledge about an effect size than the vague predictions
of default prior distributions suggest (Dienes, 2019). There-
fore, the use of default prior distributions is in practice rarely
driven by substantive theories and often results in unrealistic
model predictions (Stefan et al., 2020).

Design planning vs. model inference

An interesting aspect about the SPRT and SBFT is that
design planning and model inference are not independent
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of each other. As we showed before, optimal decision
thresholds that control error rates are dependent on the
model specification, and average sample sizes depend on
the combination of models, thresholds, and true population
effect size. Researchers eager to save resources might
be tempted to start planning a sequential hypothesis
test by examining the average sample sizes of different
sequential hypothesis testing setups, and selecting the one
that promises conclusive results with minimal sample sizes.
However, the test yielding the lowest average sample sizes
under ideal conditions is not necessarily an appropriate test
for a specific research scenario. For example, an SPRT
postulating an effect size of δ = 1 under the alternative
model may stop after few observations, but it might not
compare models that are realistic for social science where
effect sizes are typically smaller (Wetzels et al., 2011).
More generally, restricting prior distributions on effect size
under the alternative model to a small range of values can
result in considerable efficiency gains, but it can also lead
to more frequent model rejections and can therefore be
regarded as a risky choice in terms of design planning.
Due to dependencies like the ones outlaid, researchers
planning an SPRT or SBFT always need to consider the
interplay between efficiency and model inference in the
design planning process. However, it might be useful to
remember at this point that even the least efficient sequential
design is typically more efficient than the most efficient
design with fixed sample sizes. Therefore, researchers may
benefit from considering the aspect of design efficiency in a
broader context.

One sequential testing configuration that stands out in
terms of design planning is the SBFT with default prior
distributions. Models with default prior distributions signal
a high a-priori uncertainty about the effect size (Consonni
et al., 2018). Unlike informed or point priors, default priors
do not place much prior mass on any particular parameter
values. Therefore, any parameter value can reasonably be
assumed to be the true effect size during design planning
(this parameter value is also known as the “design prior”;
Schönbrodt & Wagenmakers 2018; Stefan et al. 2019). The
thresholds of the default SBFT can be constructed with
regard to this effect size, such that error rates of the design
are controlled if the true population effect size is equal to
or larger than the specified design prior (see for examples
Figs. 5 and 8). In practice, the design prior could for
example be a best guess or a SESOI, but theoretically, the
error rates of the design can be controlled with regard to
any postulated effect size, without having to assign a high
weight to this effect size in the model itself (Schönbrodt
& Wagenmakers, 2018; Stefan et al., 2019). Therefore, for
models with default prior distributions, design planning
can be disentangled from model specification. Although
this is technically possible for models with informed prior
distributions, it is only theoretically meaningful for default
prior distributions.

A Comparison of pragmatic research strategies

In the previous sections, we mentioned several pragmatic
research strategies that have been proposed with regard

Table 1 Advantages and disadvantages of pragmatic research strategies

Research strategy Advantages (✔) and Disadvantages (✖)

SESOI SPRT ✔ Small average sample sizes compared to SBFT*
✔ Robust error control
✖ Unrealistic model predictions
✖ Uncertainty quantification impossible

Best-Guess SPRT ✔ Small average sample sizes compared to SBFT*
✔ Theoretically meaningful model predictions
✖ Highly susceptible to model misspecification
✖ Uncertainty quantification impossible

Informed SBFT ✔ Theoretically meaningful predictions
✔ Smaller average sample sizes than default SBFT*
✖ Larger average sample sizes than SPRT*
✖ More susceptible to model misspecification than default SBFT

Default SBFT ✔ Can be specified without prior knowledge about effect size
✔ Independence of design planning and model specification
✖ Likely to yield unrealistic model predictions
✖ High average sample sizes compared to all other methods*

Note: SESOI SPRT: SPRT with δ1 = Smallest Effect Size of Interest; Best-Guess SPRT: SPRT with δ1 = best guess / constant predicted by
theory; Informed SBFT: SBFT with informed prior distribution; Default SBFT: SBFT with default prior distribution; * in an ideal (oracle prior)
scenario
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to sequential hypothesis testing. Researchers can decide
to use an SPRT based on a best guess or a smallest
effect size of interest, or they can opt for an SBFT
with informed or default prior distributions. Each of the
proposed strategies has advantages and disadvantages that
might manifest themselves to a different extent in different
research contexts. Table 1 summarizes these properties
of the research strategies that were described in the
previous sections. Researchers deciding for a sequential
testing procedure must carefully weigh the advantages and
disadvantages in the context of their application domain.
For example, researchers in a field with high uncertainty
about effect sizes might find uncertainty quantification
more important than researchers who work in fields with
theories that make precise predictions. It is important to
note that the “informed SBFT” strategy in fact incorporates
a wide variety of prior specifications that can morph
into all of the other categories (as we explained in the
section on evidence monitoring earlier in this manuscript).
Therefore, the strategies listed in Table 1 should not
be understood as distinct approaches, but as archetypal
examples on a continuous dimension. It is also important to
mention that the list in Table 1 assumes that a researcher
has already decided to use a sequential hypothesis
testing procedure (as opposed to a fixed sample design).
Therefore, the items are limited to relative advantages
and disadvantages within the sequential hypothesis testing
framework.

Conclusions

Sequential hypothesis testing procedures constitute a
powerful tool to achieve experimental efficiency (Wald
& Wolfowitz, 1948). In this manuscript, we compared
two sequential hypothesis testing procedures that have
been proposed for the use in psychological research,
the sequential probability ratio test (SPRT; Wald 1945;
Hajnal 1961) and the Sequential Bayes Factor Test (SBFT;
Schönbrodt et al. 2017). We showed that recent efforts to
compare the two designs have exaggerated the differences
between the two approaches and that, philosophical
differences notwithstanding, the choice between the two
methods can be regarded as a continuous choice within
a unified framework rather than a dichotomous decision.
We demonstrated that differences in efficiency between the
methods are gradual, and discussed how the desideratum
of efficiency needs to be weighed against other desiderata
(e.g., robustness against model misspecification) when
choosing a sequential testing design.

In this paper, our focus has been to lay out similarities
between the SPRT and SBFT. Nevertheless, it should
be noted that the two hypothesis testing procedures are

associated with different philosophies of statistical testing.
While the SPRT has been developed to optimize the
balance between error control and expected sample size
(Wald, 1945; Wald & Wolfowitz, 1948), the SBFT has
been proposed with a focus on Bayesian evidence strength
(Schönbrodt et al., 2017). This raises the question whether,
from a theoretical point of view, a sequential design that
takes both evidence strength and error rates into account
should be classified as an SBFT, an SPRT, or a new
hybrid methodology. For example, a researcher might
initially define stopping thresholds based on error rate
considerations, but then widen the thresholds if they do not
deem the resulting evidence compelling. Or a researcher
might decide to monitor a likelihood ratio but define
stopping thresholds based on evidence strength. Indeed,
hybrid forms of sequential hypothesis tests can already
be found in the early literature on sequential testing,
among others in Wald’s own work regarding SPRTs for
composite hypotheses (Wald 1945, p. 181 ff.). Sequential
tests for composite hypotheses have also been proposed
more recently in the context of ability testing with IRT
(Thompson & Ro, 2007). Here, we take the stance that it
is not necessary to proclaim a new hybrid methodology
for each of these applications. In our opinion, design
decisions on the continuum between SPRT and SBFT
can reflect different philosophies of statistical testing as
well as different priorities with regard to the operating
characteristics of the test.

Both sequential hypothesis testing methods discussed
in this manuscript have been shown to be substantially
more efficient than comparable tests with fixed sample
sizes (Schnuerch & Erdfelder, 2020; Wald & Wolfowitz,
1948; Schönbrodt et al., 2017). They can also be considered
superior to traditional frequentist sequential hypothesis
testing procedures such as group sequential designs
(Pocock, 1977; O’Brien & Fleming, 1979) because they do
not require a strict schedule for interim analyses and do not
lose statistical power with an increasing number of interim
analyses. Thus, SPRT and SBFT can yield substantial
efficiency gains for experiments in scientific fields that
decide to adopt them.

Many results in our paper rely on finding a sequen-
tial design with pre-specified error rates by optimizing
the stopping thresholds. In the literature, many examples
for simulation-based power analyses for sequential designs
with fixed thresholds can be found (e.g., Schönbrodt &
Wagenmakers 2018; Stefan et al. 2019; Schnuerch & Erd-
felder 2020). However, to the best of our knowledge, opti-
mizing thresholds using numeric optimization algorithms
to obtain certain design characteristics is a novel idea.
We believe that the procedure will be most relevant to
researchers using the SBFT, since Wald’s thresholds are not
guaranteed to provide effective error control for Bayesian
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sequential designs,3 and optimal thresholds often differ sub-
stantially from Wald’s thresholds. In the SPRT, optimizing
thresholds might only lead to a small absolute reduction in
average sample sizes, since Wald’s thresholds deviate most
from the optimal thresholds for large effect sizes, where
expected sample sizes are already low. However, when each
observation is costly or data collection is time consum-
ing, these small efficiency gains on the scale of average
sample sizes may be equivalent to large reductions in the
study cost or study duration. Therefore, we believe that
researchers conducting an SPRT may also be interested in
threshold optimization. In the online appendix of this paper,
we provide commented R code for the threshold optimiza-
tion procedure in the SBFT and SPRT, which we hope will
be easy to use and adapt for researchers in practice.

The SPRT and SBFT are both guaranteed to stop at a
finite sample size (Wald, 1945; Ly et al., 2016). However, a
limitation of the procedures is that they are not guaranteed to
end at a sample size that is practically feasible. This means
that researchers might be forced to stop sampling early due
to a lack of resources. In this case, no test decision can be
made, but the monitored outcome of the tests, that is, the
Bayes factor or likelihood ratio, can still be interpreted as
evidence strength in favor of the models (Rouder, 2014).
Existing adaptations of the procedures, such as the maxSBF
design (Schönbrodt et al., 2017) or the MSPRT (Pramanik
et al., 2020), have attempted to resolve this issue. Depending
on the maximum sample size defined for the procedure,
these methods can yield very similar results to the SPRT
or the SBFT described in this manuscript (Schönbrodt &
Wagenmakers, 2018; Pramanik et al., 2020).

In sum, sequential hypothesis tests provide an important
addition to a researcher’s methodological toolbox and can
substantially increase the efficiency of research designs.
Similar to other statistical analysis methods, it is crucial that
researchers employing these methods are familiar with their
theoretical assumptions and practical implications. Here, we
investigated the theoretical underpinnings of two sequential
methods, the SPRT and the SBFT, and discussed several
guiding principles for their application. We hope that this
provides researchers with the necessary knowledge to find
the adequate sequential hypothesis testing strategy for their
application domain.

3Schnuerch et al. (2021) make a point that the weighted average of
all type II error rates based on the effect sizes specified in the prior
distribution under M1 will be smaller than the maximum error rate.
However, this does not imply that the effective error rate is smaller
than the specified error rate for any specific effect size.
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