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Abstract
Reaching ultracold temperatures within hybrid atom–ion systems is a major limiting factor for
control and exploration of the atom–ion interaction in the quantum regime. In this work, we
present results on numerical simulations of trapped ion buffer gas cooling using an ultracold
atomic gas in a large number of experimentally realistic scenarios. We explore the suppression of
micromotion-induced heating effects through optimization of trap parameters for various
radio-frequency (rf) traps and rf driving schemes including linear and octupole traps, digital Paul
traps, rotating traps and hybrid optical/rf traps. We find that very similar ion energies can be
reached in all of them even when considering experimental imperfections that cause so-called
excess micromotion. Moreover we look into a quantum description of the system and show that
quantum mechanics cannot save the ion from micromotion-induced heating in an atom–ion
collision. The results suggest that buffer gas cooling can be used to reach close to the ion’s
groundstate of motion and is even competitive when compared to some sub-Doppler cooling
techniques such as Sisyphus cooling. Thus, buffer gas cooling is a viable alternative for ions that
are not amenable to laser cooling, a result that may be of interest for studies into cold controlled
quantum chemistry and charged impurity physics.

1. Introduction

By immersing a trapped ion in a cold atomic bath, one creates a system that benefits both from the spatial
localization and addressability of the ion, as well as from the scalability and ultracold temperatures of the
atom cloud [1–3]. The result is a unique combination of two well-controllable platforms linked together by
the intermediate range ion–atom interaction, with applications in impurity physics [4–11], cold chemistry
[12–17] and quantum technology [18, 19]. Buffer gas cooling has long been used to obtain cold samples of
molecular ions [20–23] and singly trapped atomic ions [24–27]. However, in efforts to reach quantized ion
motion it has been outperformed by sub-Doppler laser cooling techniques, which have allowed small ion
crystals to be cooled to their ground state of motion [28, 29]. Meanwhile, developments in laser and
evaporative cooling techniques have opened up the possibility to prepare long-lived, ultracold atomic gases
below about 1 μK (e.g. [30, 31]), making them excellent buffer gases for cooling single ions. This progress
has allowed buffer gas cooling to become a promising route towards ultracold atom–ion mixtures and
exploring the realm of quantum effects within them.

Reaching the lowest possible temperatures in a hybrid atom–ion system is crucial to taking full
advantage of the research opportunities it has to offer. In particular, an ion cooled to the regime of
quantized motion would make an excellent probe to monitor interactions within the atomic bath and study
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impurity physics. Furthermore, cooling of both the atomic bath and the ion to atom–ion collision energies
below the quantum limit would allow tuning of their interaction via s-wave Feshbach resonances [32, 33],
similar to those widely used in neutral atom systems [34] and recently observed in atom–ion systems [35].
In previous work, we demonstrated that buffer gas cooling can be used to cool an atom–ion system to the
edge of the s-wave collision energy, where the ion reached an average of 3.7 motional quanta [36]. However,
the goals of reaching deeper into the quantum regime or buffer gas cooling an ion to its motional ground
state have remained elusive.

A major obstacle limiting buffer gas cooling of an ion in a radiofrequency (rf) trap is the heating effect
of the time-dependent potential. In such a trap, the attractive atom–ion interaction can allow energy stored
in the ion’s micromotion to be released during an atom–ion collision, heating the system even for a single
collision [37]. For multiple collisions, the micromotion-induced heating competes with the cooling of the
buffer gas. The ion thermalizes to a final temperature that is dictated by the balance between the two
competing mechanisms. It is higher than that of the atom cloud in which the ion is immersed, and depends
on the ion’s micromotion and the atom–ion species combination [36, 38]. In a rf ion trap, reduction of
atom–ion collision energies to the quantum regime are therefore predominantly limited by the kinetic
energy of the ion. Choosing an atom–ion species combination with a large mass ratio greatly suppresses the
effects of micromotion-induced heating [37, 39]. Therefore, the coldest atom–ion collision energies and
subsequent observation of quantum effects have been reported for Li/Yb+ [36] and Li/Ba+ [35] systems.
Attempts to avoid micromotion heating effects altogether by trapping ions in other types of trap, for
example optical traps, are ongoing, yet offer different challenges [40]. For rf traps, reducing the heating
effects of intrinsic micromotion (IMM) and minimizing the ion’s excess micromotion (EMM) through
compensation of experimental imperfections is critical to buffer gas cooling experiments [41]. Here we
investigate the parameters of the rf trap itself, and how they can be adjusted to minimize micromotion
heating, while keeping collisional cooling rates high. With this, one can hope to better explore the limits of
buffer gas cooling and answer the question: what are the lowest equilibrium temperatures achievable in a
rf-trapped ion–atom system?

In this paper, we numerically simulate buffer gas cooling in time-dependent traps, showing that the
optimization of trap parameters is crucial to reaching the lowest possible energies. We focus on the Li/Yb+

species combination in traps with realistic levels of EMM, and find that parameter optimization can allow
cooling to collision energies approximately two times smaller than what has previously been achieved
experimentally [36]. For these settings, we expect an occupancy of about one motional quanta on average,
putting buffer gas cooling on par with sub-Doppler cooling techniques such as Sisyphus cooling [42]. We
study the collision energies that can be achieved by buffer gas cooling in alternative rf traps including hybrid
rf-optical traps, digital Paul traps, rotating rf-traps and hexapole and octupole traps. We find that all
investigated traps can be used to achieve the same low collision energies as in a linear Paul trap. The only
investigated traps that offer a clear advantage over the linear Paul trap are the rf-optical hybrid trap and
multipole traps, in which even lower temperatures can be reached. However these depend on the use of
ambitious experimental parameters and, in the case of the hybrid trap, suppression of photon scattering
effects which could otherwise lead to heating of the atom cloud. All simulations show that within these
time-dependent traps, we can reach the energy regime where a quantum mechanical treatment of the
atom–ion interaction becomes necessary. Therefore, we also discuss how to describe the atom–ion collision
within a quantum description and show that the micromotion-induced heating survives.

The paper is organised as follows. In section 2 we outline the method with which we classically simulate
the buffer gas cooling process, indicating how we extract and compare the ion kinetic energies and
atom–ion collision energies reached in these simulations. In section 3 we detail the time-dependent
potential used to confine an ion in a linear Paul trap, and show simulation results for the ion energies that
can be reached in such a trap with variable parameters. In section 4, we consider other types of
time-dependent ion traps including digital, rotating and multipole traps, comparing buffer gas cooling
simulations in each of these to the results of the linear Paul trap. We make a similar comparison in
section 5, now focussing on a hybrid optical-rf trap. Finally, in section 6, we present a quantum description
of the atom–ion interaction to support our results also in the regime of low kinetic energies of the ion.

2. Method

For our investigation into buffer gas cooling, we simulate repeated collisions between a trapped ion and
atoms from an ultracold cloud. During these simulations, there are two effects that dictate the motion of
the colliding particles as they are propagated towards each other in time. These are the atom–ion
interaction Vai(r), and the time-dependent potential used to trap the ion Φtrap(t, r). The latter is adjusted to
describe the rf trap we wish to investigate. Our simulations (see appendix) follow the method outlined in
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reference [41], which has been shown to be in good agreement with experimental results [36]. We adapt
this process to allow for a broader choice of Φtrap(t, r), corresponding to a range of rf ion traps. We study
the role played by Φtrap(t, r), and its defining parameters, in dictating the properties of the simulated ion
after buffer gas cooling.

The atom–ion interaction consists of a long-range induced–dipole interaction, in which the charge of
the ion polarizes the atom, giving rise to an attraction between them, as well as a short-range repulsion. The
interaction is described in our simulation as

Vai(r) = −C4

r4
+

C6

r6
, (1)

with r the separation of the colliding particles. Here, C4 and C6 are the long-range attraction and
short-range repulsion interaction coefficients, respectively. The choice of C6 dictates the point at which the
atom–ion interaction becomes repulsive. It was shown in [41] that its exact value is unimportant as long as
the r−6 term starts to dominate at a short enough length scale of ∼1 nm. Meanwhile, the value of C4

depends on the polarizability of the species of buffer gas atoms. To describe buffer gas cooling of an ion to
the mK range, the short-range repulsion is enough [25]. However for cooling beyond this, the
induced–dipole interaction has been shown to play a significant role [37], as it is the mechanism by which
the ion can be pulled from the trap centre into a region where micromotion heating limits its final
temperature. Both terms are therefore crucial to our simulation of atom–ion collisions at the μK energy
level.

During each simulated atom–ion collision, we use a fourth-order step-size-adaptive Runge–Kutta
algorithm to propagate one atom towards the confined ion, under the influence of Φtrap(t, r) and Vai(r). We
assume the atom cloud is dilute enough to ignore non-binary collisions between the ion and the atoms. The
ion’s initial kinetic energy is set to 0 K. The atom position is chosen at random on a sphere centred around
the ion at the start of each collision. The sphere size is set to be large enough to accommodate large ion
motion if and when the ion is heated. Provided this condition is met, the choice of sphere radius does not
impact the energy to which the ion thermalizes [41]. We have verified this in the range 0.225 to 1.5 μm. The
atom’s velocity in the radial (angular) direction is also selected at random from a Weibull (Gaussian)
distribution corresponding to a chosen buffer gas temperature in the μK range. The two particles are then
propagated until the atom leaves the sphere. After each simulated collision we record the ion’s average
kinetic energy (Ekin) and motional properties. These are not reset after each collision. We investigate the
final values achieved after the ion has thermalized, usually after some hundreds of collisions. To stay within
a reasonable simulation time, the temperature of the buffer gas is set to 2 μK, which corresponds to the
experimental values of reference [36].

An example of the typical ion thermalization data obtained in our simulation is shown in figure 1. For
each simulation, we run at least 200 repeats of the thermalization process, averaging over them to find the
mean ion energy reached after the nth collision (green line). The blue shaded region indicates the standard
deviation in these energies. In general, higher ion energies are accompanied by a larger standard deviation.
This is because, dependent on the mass ratio of the atom–ion species combination, the ion energy statistics
after multiple collisions follow either a Tsallis or Maxwell–Boltzmann distribution [36, 43, 44]. In both
cases, the higher the mean ion energy, the larger the statistical spread of ion energies about this mean, as
reflected in the figure. To extract the final steady-state ion energy, we perform a weighted least-squares fit to
our data. The weighting of the fit is determined by the uncertainty at each data point. We fit according to
the equation

Ekin, i(n) = (Ekin, f − Ekin, 0)(1 − e−nΓ) + Ekin, 0. (2)

Here, Ekin,0 is the initial kinetic energy of the ion, Γ indicates the rate of thermalization and Ekin,f is the
kinetic energy reached by the ion at steady state. The latter two are fitting parameters. In figure 1, the fit is
shown by the black curve, and the steady-state kinetic energy is indicated by the grey, dashed line. Note that
n in this plot includes both Langevin and glancing collisions, meaning that the value of Γ extracted from
the fit depends strongly on the initial atom–ion separation. However, within the range used in our
simulation, this separation does not influence Ekin,f as shown in reference [41]. For comparison, we have
also plotted the thermalization curves as calculated by reference [25] (purple, dashed) and reference [37]
(red, dashed). The first considers how the ion will thermalize, using hard-sphere collisions, when the system
is in a temperature regime at which the repulsive term of the atom–ion interaction dominates. Meanwhile,
reference [37] calculates the maximum increase of the ion’s kinetic energy during a single collision, when
the system is in the regime at which the attractive r−4 interaction dominates. Our simulations explore the
intermediate temperature regime, where both the attractive and repulsive terms play significant roles, and
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Figure 1. Typical thermalization curve when simulating consecutive atom–ion collisions. The green line shows the average
temperature reached after each collision, averaged over 239 runs of the thermalization process. The blue shaded area indicates the
standard deviation about this average value and represents the width of the distribution of temperatures after the nth collision.
The black line shows the fit of equation (2) to the averaged data, with the grey dashed line indicating the Ekin,f found from this fit.
For comparison, the red dashed line shows the extrapolated ion energy trend found for a single, low-energy collision in reference
[37], while the purple dashed thermalization curve describes the ion in the buffer gas when only hard-sphere collisions are
considered [25].

looks at multiple collisions and the competition between cooling and heating, as well as the effects of EMM.
The latter is crucial to accurately predicting the minimum ion energy that is within reach in realistic setups.

We focus our simulations on the Li/Yb+ species combination, due to its proved effectiveness in reaching
s-wave collision energies in buffer gas cooling experiments [36]. The species choice has implications for the
atom–ion interaction strength. Choosing 6Li/171Yb+ corresponds to setting C4 = 2.803 × 10−57 Jm4 [33].
For the short-range repulsion we use C6 = 2.803 × 10−75 Jm6 [41]. The induced–dipole interaction has a

characteristic range R∗ =
√

μC4
�2 , with a corresponding energy scale given by E∗ = �2

2μ(R∗)2 , which also

represents the s-wave energy limit for the system. In a 6Li/171Yb+ system, these take the values 69.75 nm and
8.58 μK, respectively. To reach deep into the quantum regime with buffer gas cooling, the kinetic energy of
the ion must be reduced such that the collision energy of the atom–ion system Ecol =

μ
mi

Ekin, i +
μ

ma
Ekin, a is

significantly lower than E∗. Here, μ is the reduced mass.

3. The linear Paul trap

In an ideal linear Paul trap, the time-dependent potential can be written as

Φtrap(t, r) =
−vdc

R2
dc

∑
j=x,y,z

αjr
2
j +

vrf

2R2
rf

cos(Ωrft)
∑

j=x,y,z

α′
jr

2
j , (3)

with αx = αy ≈ −αz/2 = −0.5 and α′
x = −α′

y = 1, α′
z = 0 [41, 45]. Here, vdc and vrf correspond to the

direct-current (dc) and rf voltages applied to the trap electrodes. Meanwhile, Rdc and Rrf describe the fixed
geometry of the trap and are approximately half the separation between opposing dc and rf electrodes,
respectively. The frequency at which the rf voltage oscillates is given by Ωrf . The two terms of equation (3)
are commonly referred to as Φdc

trap(r) and Φrf
trap(t, r), respectively. The resulting ion motion is described by

the Mathieu equations, r̈j = −(aj + 2qj cos(Ωrft))
Ω2

rf
4 rj, with aj, qj the stability parameters of the ion trap for

all three directions (j = x, y, z). The stability parameters can be defined in terms of the trap geometry and
voltage signals as ax,y ≈ −az/2 = 4evdc/(miR2

dcΩ
2
rf), and q ≡ qx = −qy = 2evrf/(miR2

rfΩ
2
rf), qz = 0, with e

the charge of the ion. The stability parameters combined with Ωrf determine the frequency

ωsec,j ≈ Ωrf
2

√
aj +

q2
j

2 of the trapped ion’s secular motion.
In an ideal trap, the ion’s energy is mainly given by the kinetic energy, which is averaged over one period

of the ion’s secular motion. It is defined as

Ēkin,j ≈
1

4
miA

2
j

(
ω2

sec,j +
1

8
q2

j Ωrf

)
, (4)

and depends on the secular frequency and amplitude Aj of the ion motion, and the trap parameters q and
Ωrf . The latter two can be easily changed in experiments by changing the frequency and amplitude of the rf
signal applied to the trap electrodes, and will be studied in our work. Typical numbers used in our Li/Yb+
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experiment are q = 0.5, Ωrf = 2π × 2 MHz and vdc up to 6.3 V, corresponding to ωsec,x and ωsec,y up to
2π × 350 kHz, and ωsec,z up to 2π × 120 kHz. The size of our trap is Rdc = 5 mm and Rrf = 1.5 mm, as
outlined in reference [46].

The ion’s kinetic energy is connected to the number of excited motional quanta nj of the ion in each
direction j by the following equations

Tsec,j = �ωsec,j

(
n̄j +

1

2

)
/kB, (5)

and ∑
j=x,y,z

Ēkin,j ≈
kB

2

∑
j=x,y,z

Tsec,j + EIMM. (6)

Here Tsec,j, represents the secular temperature in direction j and kB is the Boltzmann constant. The IMM
energy EIMM = kB

(
Tsec,x + Tsec,y

)
/2 also contributes to the kinetic energy [47]. IMM is driven by the rf

field, and so depends on the radial temperature of the ion only. In our simulations, we focus on the average
number of excited motional quanta in the radial direction (n̄ = (nx + ny)/2), as the axial motion of the ion
is largely unaffected by variations in our parameters of interest, q and Ωrf .

In addition to q and Ωrf , the ion’s kinetic energy is also influenced by trap imperfections, which can lead
to EMM. Although trap-dependent, in a realistic simulation of the linear Paul trap these effects should be
included [36, 41]. There are three forms of EMM which all scale differently with q and Ωrf . Axial EMM
arises from the pickup of the rf signal on the dc electrodes, and contributes a kinetic energy (Eax) that scales
with q2 and Ω−2

rf . Phase EMM, Eph, results from a phase difference between the rf voltage signals on
opposing electrodes, and scales with q2 and Ω4

rf. Finally, Erad scales with q−2 and Ω−2
rf , and arises when stray

electric fields in the radial direction of the trap displace the ion from the trap centre. The ion’s total kinetic
energy is therefore

Ekin =
∑

j=x,y,z

Ēkin,j + bErad + cEax + dEph + g. (7)

Here, b, c, d are fitting parameters indicating the contributions of the experiment-specific energies Erad, Eax

and Eph. The fitting parameter g is added when an overall offset of Ekin needs to be taken into account. In
experiments, we can use ion position tracking or Ramsey microwave spectroscopy to measure stray fields to
an accuracy of ∼0.01 V m−1 [36]. It is feasible that radial stray fields can be compensated down to
0.05 V m−1. Note that the finite size of the trap can lead to qz �= 0, which can give rise to additional EMM.
However, since qz is much smaller than q and its EMM effects can be minimised by selection of an
appropriate ion position along the trap axis, we assume it is small enough to be ignored in our simulations.

We investigate the values that Ekin and n̄ can reach after buffer gas cooling by simulating collisions
between 6Li atoms and an 171Yb+ ion confined in a linear Paul trap with varying levels of EMM. The
temperature of the Li cloud is set to 2 μK. We vary q and Ωrf independently, to explore their impact, setting
Ωrf = 2π × 2 MHz while q is varied and q = 0.219 while Ωrf is varied. The simulated trap shares its
geometry with that of reference [46] and has vdc = 0.787 V such that ωsec,z = 2π × 4.24 kHz. We include
experimentally feasible levels of axial and phase EMM corresponding to an axial rf pickup of 2.02 V m−1

(Eax = 42.4 μK) and a phase of 0.041 mrad (Eph = 9.18 μK) when q = 0.219 and Ωrf = 2π × 2 MHz
[2, 41, 46]. We also vary the strength of the radial stray field around experimentally realistic values.

Our simulations show that the optimal values of q and Ωrf for buffer gas cooling depend on the radial
stray fields present in our system. This is shown in figure 2. Blue, orange and green data corresponds to a
trap with a radial stray field of strength 0, 0.05 and 0.1 V m−1, respectively. In the appendix, the range of
this field strength is extended to include 0.25, 0.5, 0.75 and 1.0 V m−1. Figures 2(a) and (b) show how the
ion energy Ekin varies with q and Ωrf . In general, the optimal trap parameters for minimising the ion energy
take non-zero values, and depend on the strength of the radial stray field. During atom–ion collisions, the
trap’s rf field does work to heat the ion mediated by the long-range attractive atom–ion interaction [37].
This heating competes with buffer gas cooling and leads to a trade-off between two effects. On the one
hand, high values of q and Ωrf provide tight ion confinement, meaning that the pull from the atoms does
not significantly alter its motion. On the other hand, low values of q and Ωrf will decrease the energy of the
rf electric field, lowering the energy that it can donate to the ion during an atom–ion collision. The optimal
trap parameters therefore provide a trade-off between these effects. Moreover, EMM provides additional
trap-parameter-dependent heating. The higher the field-strength of stray radial electric fields that
additionally pull the ion from the Paul trap centre, the higher the favoured optimal values of q and Ωrf . This
trend is confirmed for higher stray field strengths plotted in appendix B. Appropriate selection of q is
particularly important for optimal buffer gas cooling. This can be seen by the steeper slope of the fit lines in
figure 2(a), compared to figure 2(b).

5



New J. Phys. 24 (2022) 035004 E Trimby et al

Figure 2. Calculated ion energy and motion after buffer gas cooling in a linear Paul trap. The ion’s steady-state kinetic energy
Ekin and number of excited motional quanta n̄ are shown for cooling inside a trap of variable stability parameter q and rf Ωrf .
Blue, orange and green data corresponds to a trap with a radial stray field of strength 0, 0.05 and 0.1 V m−1, respectively. Red data
points in (a) and (b) show experimental results from reference [36], while the red dashed lines in (c) and (d) indicate the value of
Ωrf used in the same experiment. The lines in (a), (b) and (e) correspond to equation (7), fit to the data using fitting parameters
b, c, d, g and Ax,y,z. The fit values of these parameters can be found in appendix A. Errors are standard errors and are sometimes
smaller than the point size.

The lowest achievable kinetic energy depends significantly on the possibility to reduce electric stray
fields and optimal choice of q and Ωrf . For Ekin we find optimal values by fitting the data points using
equation (7). The fit values can be found in appendix B. For the chosen parameters, the lowest ion kinetic
energy achievable by buffer gas cooling in our Paul trap is 64.7 μK, which can be achieved using trap
parameters q = 0.147 and Ωrf = 2.28 MHz. In a 2 μK atom cloud, this corresponds to Ecol = 0.59 × E∗,
significantly below the s-wave limit. It is also two times lower than the lowest collision energy achieved in
previous experiments [36], which is indicated by the red data point in figure 2(a). This experiment yielded
collision energies 1.15 × E∗ by buffer gas cooling an ion to kinetic energies of 193 μK. The lowest achievable
ion kinetic energies indicated by our simulation are therefore roughly three times colder than what has been
achieved in experiments. Note that the discrepancy between the experimental data point and the simulation
predictions can be explained by an additional cooling step of adiabatic decompression that was used in the
plotted experiment, but is not included in our simulation. Our results suggest that with careful parameter
optimization, this final step is not necessary for reaching low temperatures. The value 64 μK is a lower limit
on what can be achieved for the ion in this setup with an atomic bath of 2 μK. Experiments will be limited
to higher energies due to background heating from technical noise [46], which varies across experiments
and is not included in our simulations. Quantum effects may also play a role in reducing the rate of buffer
gas cooling at very low temperatures, as the rate of atom–ion collisions is expected to be lower once Ecol

reaches below the s-wave energy [36]. More details on a quantum treatment of the atom–ion interaction
can be found in section 6.

From these simulations, the buffer gas cooling limit of an experiment with radial EMM can be inferred.
We see that the lowest possible energy to which the ion can be buffer gas cooled in a given trap (Ekin, min)
scales linearly with the strength of the radial stray field in that trap. Using the minimum of each curve in
figure 2(a) and appendix B, the equation Ekin, min μK = 1070.69 εrad m V−1 + 11.19 is found. Here εrad is
the radial stray field strength in V m−1 and Ekin, min is in units of μK. This trend tells us what minimum
kinetic energy is possible by optimising q for a given εrad, and is generally applicable for buffer gas cooling
in a linear Paul trap. The specific coefficients depend on the atom and ion species and the remaining trap
parameters. The optimal value of the q parameter can be found by using the relationship Ekin, min/μK =

2780.58 q2
opt − 17.77 qopt + 7.26, with Ekin, min in units of μK. From this, one can find the maximum

uncompensated radial stray field that can be present in the experiment, with which the s-wave limit can still
be reached. By calculating the collision energy using Ekin, min, we found this maximum εrad in our
simulations to be 0.146 V m−1, with the corresponding qopt = 0.243.
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Depending on the stray fields, n̄ is minimized for different values of the trap parameters to Ekin. This can
be seen when comparing figures 2(a) and (b) to figures 2(c) and (d). Each of these variables is affected
differently by sources of EMM. Therefore, to optimize buffer gas cooling experiments, one should consider
whether to prioritize reaching quantized ion motion or s-wave collision energies to inform the choice of
trap parameters. The lowest average number of excited motional quanta to which the ion can be cooled by
an atom cloud at 2 μK in our setup is 0.92(7), at a stability parameter q = 0.26. This is four times smaller
than what has been achieved in buffer gas cooling experiments, as indicated by the red data point in
figure 2(c). It allows us to reach quantized ion motion, making buffer gas cooling competitive with some
sub-Doppler laser cooling techniques, such as Sisyphus cooling [42]. However, it is not capable of reaching
n̄ � 1, as is possible using, for example, resolved sideband cooling [28].

4. Other types of rf ion traps

Since the ion’s final kinetic energy is limited by the trap parameters and EMM in a linear Paul trap, this
raises the question of whether other trap configurations are better suited for buffer gas cooling. Therefore,
in this section, we simulate a digital ion trap (DIT), multipole ion trap (MIT) and rotating ion trap (RIT).
We investigate how the dependence of Ekin on the trap parameters may differ for different traps and, where
relevant, consider the roles played by new parameters that are unique to certain traps.

4.1. Digital ion trap
The DIT is a modification of the previously-discussed linear Paul trap, whereby the rf voltage is driven
digitally (stepwise constant) instead of analogue (sinusoidally). This different driving could potentially lead
to more efficient buffer gas cooling. The shape of the digital voltage signal includes extended times for
which the voltage is maximal, and when it is switched off altogether. One might expect that buffer gas
collisions that occur during the latter would lead to more efficient buffer gas cooling, while collisions
occurring during a voltage switch will experience a violent change in potential, which may result in larger
ion heating, compared to in the traditional analogue Paul trap. Alternatively, since the time-averaged
potential in the DIT is the same as that in the analogue Paul trap, it could be expected that there will be no
change in the buffer gas cooling efficiency, provided the duration of each collision is greater than the rf
period.

Similar to equation (3), the time-dependent potential of a DIT can be described by

Φtrap(t, r) = Φdc
trap(r) +

vrf

2R2
rf

PDIT(t)
∑

j=x,y,z

α′
jr

2
j . (8)

Here, the variables are equivalent to those in equation (3) apart from the shape of the rf signal PDIT(t),
which is defined as

PDIT(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 when tr � τ T/2,

0 when τ T/2 < tr � (1 − τ) T/2,

−1 when (1 − τ) T/2 < tr � (1 + τ) T/2,

0 when (1 + τ) T/2 < tr � (2 − τ) T/2,

1 when (2 − τ) T/2 < tr � T.

(9)

Here, T = 2π/Ωrf is the period of the signal, tr is the remainder t = κ× T + tr [48], with κ an integer, and
τ is the fractional pulse width. The digital voltage driving is shown in figure 3(a). For a DIT, τ adds an
additional trap parameter that affects the stability of the trap [49]. Approximating the digital signal with the
first term of the corresponding Fourier series [50], the q parameter for a DIT becomes
qx,y,DIT = 16evrf sin(τπ)/(πmiR2

rfΩ
2
rf).

We investigate how Ekin varies when buffer gas cooling an ion in a DIT, dependent on the temperature of
the atomic bath Ta, and the trap parameters q and τ . The results can be seen in figures 3(b) and (c). In these
simulations, we use the same geometry, trap parameters and atomic bath temperature as in the linear Paul
trap simulations, except where otherwise stated. In figure 3(b), we choose τ = 0.285 and vrf = 34.467 V
such that we have q = 0.219, to match the previous simulations. In figure 3(c), we vary q and τ while
keeping the trap geometry constant. For a fixed τ , the variation in q corresponds only to a change in the
voltage of the digital pulses vrf . The black lines show the trends as given by an analogue Paul trap with the
same q, Ωrf and EMM parameters. Radial stray field strengths are set to 0 or 0.1 V m−1 in these simulations,
while sources of axial and phase MM are not included.
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Figure 3. Ion energy after buffer gas cooling in a DIT. (a) Analogue (black, dashed) versus digital (purple and red) driving of the
rf voltage. The fractional pulse width τ defines the driving. Digital signals are shown for τ = 0.285 (purple) and 0.5 (red).
(b) The kinetic energy reached for variable buffer gas temperatures, for q = 0.219 and τ = 0.285. (c) The kinetic energy reached
for variable trap parameter q for τ = 0.285 (purple), 0.4 (green) and 0.5 (red). The black dotted lines represent the trend in an
analogue linear Paul trap. Errors are standard errors and are sometimes smaller than the point size.

Our simulation shows that buffer gas cooling using a digital rf driving results in equal ion temperatures
to those in an analogue linear Paul trap. In figure 3(b), DIT results are in excellent agreement with the
analogue Paul trap trend line. Therefore, for the chosen τ and q of this plot, the energies reached in the DIT
are identical to those of an analogue trap, irrespective of the atomic bath temperature. In figure 3(c), we see
that in a DIT of variable q, the data points corresponding to the lowest Ekin also lie on the trend line of the
analogue trap. The range of q for which the DIT and analogue trends match is affected by the fractional
pulse width τ . While τ provides an extra degree of freedom for tuning the trap stability, its tunability does
not lead to lower ion kinetic energies than are achievable with an analogue Paul trap. The fact that the DIT
results are so similar to those of the analogue Paul trap suggests that the time scale of an atom–ion collision
is longer than the period of the rf trap, such that the shape of the rf voltage signal during the collision
period is unimportant [37].

4.2. Rotating ion trap
In a RIT, ion confinement is provided by a rotating potential, instead of the oscillating potential typical for
linear Paul traps. The ion motion is described by four components, instead of the infinite sum of Fourier
components needed for a linear Paul trap. Since fast MM plays an important role in atom–ion collisions, we
may therefore expect a different outcome for buffer gas cooling when comparing the two traps.

A RIT time-dependent trapping potential can be written as [51, 52]

Φtrap(t, r) = Φdc
trap(r) +

vrf

2R2
rf

[(rx cosΩrft − ry sinΩrft)2 − (rx sinΩrft + ry cosΩrft)2]. (10)

Here, variables are equivalent to those in equation (3), yet the rf driving part has changed. The resulting ion

motion is then r̈x = −(axrx + 2qx(rx cos Ωrft − ry sinΩrft))
Ω2

rf
4 , r̈y = −(ayry + 2qy(ry cos Ωrft +

rx sinΩrft))
Ω2

rf
4 , r̈z = −azrz

Ω2
rf

4 . An important consequence of this is that the ion’s motion is now circular,
instead of oscillating, and consists of four Fourier components: two secular motions and two IMM
components. The frequency of the secular motion in the RIT can be written to first order in q as

ωsec,RIT ≈ ±Ωrf

2

√
a + q2. (11)

8



New J. Phys. 24 (2022) 035004 E Trimby et al

Figure 4. Ion energy after buffer gas cooling in a RIT. Results are shown for traps of various q (a) and Ωrf (b), with (circles) and
without (triangles) a radial stray field of 0.1 V m−1. The black dotted and dashed lines represent the trend in a linear Paul trap
with similar trap parameters. Note that the black lines have been adjusted according to the relation qeff,RIT =

√
2qlin (see text).

Errors are standard errors and are sometimes smaller than the point size.

Here a = ax = ay, and q = qx = −qy = 2evrf/(miR2
rfΩ

2
rf). Note that if a is very small, the secular frequency

differs from that of a linear ion trap by a factor
√

2. Therefore, the ion confinement in a RIT is twice as tight
as in a linear trap with the same trap parameters.

We simulate buffer gas cooling of an ion in a RIT of variable q and Ωrf , and explore how the dependence
of Ekin on these parameters compares to the case of the linear Paul trap. Results can be seen in figure 4. We
set the same ion trap and atom cloud parameters as in our linear trap simulations. We simulate radial stray
field strengths of 0 and 0.1 V m−1 and do not include sources of axial and phase EMM. We set the stability
parameter qset,RIT in terms of the trap geometry and driving signal as qset,RIT = qlin = 2evrf/(miR2

rfΩ
2
rf),

which is the same definition as used in the linear Paul trap. However, due to the rotation of the potential, its
effect on the ion energy differs from that of qlin. We simulate buffer gas cooling in a RIT with and without a
stray electric field of 0.1 V m−1, as shown by the blue circles and triangles in figure 4. The data is compared
to the equivalent linear trap trends, represented by the black dotted and dashed lines.

We find good agreement between the RIT data and the linear Paul trap trend at low q when using
qeff,RIT =

√
2qlin to rescale the latter. Here, qeff,RIT refers to the effective stability parameter of the RIT and

qlin is that of the linear trap. In figure 4(a) the x-axis of the black trend line is rescaled by
√

2 to obtain the
match with the RIT data at low q, to within 3 μK. The black line in figure 4(b) is also in good agreement
with the RIT data when we use the same scaling of qlin. The Ekin dependence on Ωrf and q after this
adjustment is thus similar for both traps, and significantly lower energies cannot be reached in the RIT. In
figure 4(a), the minimum Ekin is achieved in the low-q region. Only at high q do the linear and RIT data
differ significantly, and in this limit Ekin is higher in the RIT. Note that the energies reached in this graph
cannot be compared to those in figure 2, as the latter includes sources of axial and phase MM, making the
system inherently hotter. We conclude that although the qset,RIT we set in the simulation is defined
identically in vrf , Ωrf and Rrf to qlin, the effect of the rotating potential is that of a linear trap that is a factor√

2 higher in q. In a RIT, we can therefore use a lower-amplitude voltage signal vrf to achieve similar ion
temperatures as in a linear Paul trap.

4.3. Multipole ion trap
The benefits of using a MIT for buffer gas cooling of molecular and atomic ions on the ∼K–mK level has
been extensively explored [53–55]. It has been shown that an increased number of trap poles minimises rf
heating effects, allowing more efficient buffer gas cooling than would otherwise be achievable, as well as
stable cooling of systems with a smaller ion–atom mass ratio than is possible in quadrupole traps [56, 57].
In our numerical trajectory simulations, we consider cooling to the μK regime, where the long-range
atom–ion interaction is significant. We investigate whether the same benefits seen in the ∼K regime extend
to these temperatures, and to the cooling of the high mass-ratio Yb+/Li system, beyond the lowest possible
energies that can be reached in a quadrupole trap. Moreover, we look at the impact of stray electric fields in
the MIT.

In a MIT, the four electrodes of the Paul trap are replaced by a higher number of electrodes, which are
used to create an rf potential with N poles. This requires N ground and N rf electrodes. For a Paul trap

9



New J. Phys. 24 (2022) 035004 E Trimby et al

Figure 5. Ion energy after buffer gas cooling in a MIT. Results are shown for an ion in a hexapole (red) and octupole (olive) trap,
without (a) and with (b) a radial stray field of 0.05 V m−1. The dotted and dash-dotted lines are the fit to the data from the
corresponding quadrupole trap without and with the radial stray field, respectively. The inset of (b) shows the same data, but
zoomed in on the range η = 0.1–0.5. Errors are standard errors and are sometimes smaller than the point size.

N = 2, while a hexapole trap uses N = 3 and an octupole trap has N = 4. The resulting potential can be
written as [58]

Φtrap(t, r) = Φdc
trap(r) +

vrf

2R2
rf

rN
⊥ cos Nφ. (12)

Here we use cylindrical coordinates r⊥ =
√

r2
x + r2

y and φ = tan−1(ry/rx). The resulting motion in each

direction j = x, y, z will depend on N and can be expressed as r̈x = −(ax +
N

(N−1)ηx cos Ωrft)
Ω2

rf
4 r⊥

cos[(N − 1)φ], r̈y = −(ay +
N

(N−1)ηy cos Ωrft)
Ω2

rf
4 r⊥ sin[(N − 1)φ] and r̈z = −azrz

Ω2
rf

4 . Here, all parameters
are defined as in equation (3), except now the rf-dependent motion is written in terms of a generalized
stability parameter ηj. We define this in terms of q as

ηj(r⊥) = qj(N − 1)

(
r⊥
Rrf

)(N−2)

, (13)

such that ηx = −ηy = q when N = 2. Here, q = qx = −qy = 2evrf/(miR2
rfΩ

2
rf) and qz = 0. For N > 2, ηj has

a r⊥-dependence that is not present in a quadrupole trap. Depending on its energy, the ion oscillates around
the trap axis with an amplitude A⊥. Therefore, in a MIT used for buffer gas cooling, the stability parameter
ηj changes throughout the cooling process as the ion’s energy decreases. In experiments, to ensure that
η(A⊥) is kept roughly constant, changes to A⊥ can be compensated by ramping the other trap parameters,
for instance vrf can be easily ramped.

We simulate buffer gas cooling of an ion in a hexapole (N = 3) and octupole (N = 4) trap of variable
stability. We use the same trap parameters as in the Paul trap from section 3, except for vrf , which we use to
tune the trap stability ηj. We set vrf to define ηj(r⊥) = η at a chosen ion position r⊥ = 100 nm. This
distance is on the order of the expected ion motion amplitude when cooled to the μK regime. We repeat the
simulations with and without a radial stray electric field of 0.05 V m−1. Attempts were made to simulate the
process at stronger fields, however for N > 2 this frequently resulted in a very unstable trap, as the ion was
pulled to high r⊥. Propagating the ion under these conditions is beyond the capability of our simulation.
Similarly, for simulations with N = 4 and η > 0.2, frequent stability problems were encountered, making it
difficult to repeat the simulations. Note that these simulations do not include sources of axial and phase
EMM.

The greater the number of poles of the MIT, the more efficient the buffer gas cooling process. Figure 5
shows the variation of Ekin with η for each trap, with (b) and without (a) stray electric fields. Black lines
show results for a quadrupole trap (N = 2), while red and olive data points show results for the hexapole
and octupole traps, respectively. In figure 5(a), the trends of the hexapole and octupole data follow similar
shapes to the lines of the quadrupole trap, but with a shallower gradient and an overall lower Ekin.
Meanwhile, for η � 0.1 in the trap with radial stray fields (figure 5(b) inset), we see indications that the
optimal value of η in an octupole trap is higher than in a quadrupole trap, and gives access to lower
energies. The gradients of the MIT trends in the inset are also shallower than in the quadrupole trap. The
lowest temperatures are therefore reached in traps of higher N, and the consequences of a sub-optimal
choice of η are most severe for traps with fewer poles.

Achieving the lowest possible ion energies in a MIT of high N requires well-compensated stray electric
fields or a high-amplitude voltage signal. This makes the use of high-order traps for buffer gas cooling
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practically challenging. When cooled to the μK range, an ion in the simulated trap will oscillate with an
amplitude on the scale of 10−4 × Rrf . Since ηj scales with (r⊥/R2

rf)
(N−2), traps of increasing N require

increasing vrf to maintain the reasonably high stabilities required for cooling benefits in a trap with
non-zero stray electric fields (see figure 5(b)). For example, an octupole trap with η = 0.2 requires
vrf = 4.72 GV, while the same stability parameter can be achieved in a quadrupole trap with vrf = 62.95 V.
This also has severe implications for axial EMM in the trap, as these voltages are likely to lead to significant
rf pickup on the dc electrodes. Another option to reach the same values of η using a more realistic vrf is to
drastically reduce the size of the hexapole trap. However, in practice setting Rrf < ∼100 μm may cause
problems because of ion heating [59].

Alternatively, we investigate whether a multipole trap of a more realistic vrf and reasonable Rrf could be
used for buffer gas cooling. We simulate a potential in which η = 2.67 × 10−4 at r⊥ = 100 nm,
corresponding to vrf = 629.5 V in a hexapole trap, which is about 10× what is typically used in our linear
Paul trap. This leads to a very shallow potential at the trap centre. Only at larger distances does η become
significant. As a result, the ion is able to travel much further from the trap centre before it experiences a
significant trapping potential, compared to in the high-vrf trap. Due to this reduction of the ion’s radial
confinement, vdc was also reduced in our simulation, to ensure that the axial and radial quadrupole fields
remained balanced.

For multipole traps with low vrf , the efficiency of buffer gas cooling depends greatly on the presence of
trap imperfections. In the absence of stray fields, buffer gas cooling is optimized for the lowest values of η,
as can be seen in figure 5(a). This can be accounted for by the very shallow, low-energy field at the centre of
the trap, where the ion spends most of its trajectory. If the ion’s motion is interrupted in this region, the
magnitude of the rf heating is low compared to in a trap of a higher vrf . On the other hand, figure 5(b)
shows a huge increase in the ion’s energy at equilibrium for the low-η trap, to 1.35 mK, when the radial
stray field strength is 0.05 V m−1. In the presence of this field, the shallowness of the trap close to its centre
is detrimental to buffer gas cooling, as the ion is easily pulled away from the trap centre, into a region of
higher micromotion-induced heating. The result is a thermalization energy over ten times greater than the
minimum achievable in a quadrupole trap with the same stray field. The shallow potentials created near the
trap centre make the ion more vulnerable to the effects of stray electric fields, leading to higher EMM
heating effects than in a quadrupole trap.

5. Hybrid optical-Paul trap

Another possible extension of the Paul trap is to combine it with an optical tweezer for the ion. This hybrid
optical-Paul trap would give an additional confinement for the ion which could benefit the attainable ion
kinetic energies and suppress the impact of stray fields. Several approaches of using optical ion trapping in
atom–ion setups have been experimentally explored [60–62], as an optical trap avoids the ion-heating
effects present in time-dependent trapping potentials. However, the optical trap for an ion is typically less
deep than an rf trap, meaning ions that gain energy due to inelastic collisions are more easily lost. Here, we
therefore focus on a hybrid approach, designed to combine the benefits of rf and optical traps. Unlike the
traps discussed so far, a deep optical-rf hybrid trap will also affect the density and temperature of the atom
cloud. This leads to a tightly-compressed buffer gas and off-resonant heating of the atoms. However, here
we focus on the effect on the ion alone, and assume in our simulations that the atoms are unaffected by the
optical potential.

The modelled hybrid optical-Paul trap consists of a quadrupole linear Paul trap with an optical tweezer
directed along its axis for additional ion confinement. The setup is shown in the inset of figure 6. This
corresponds to using the rf potential of (3) and adding to it a Gaussian potential

Vopt(r⊥, rz) = −U

⎛
⎜⎝ 1

1 +
(

rz
zR

)2

⎞
⎟⎠ exp

⎛
⎜⎜⎝− 2r2

⊥

w2
0

(
1 +

(
rz
zR

)2
)
⎞
⎟⎟⎠ . (14)

Here r⊥ =
√

r2
x + r2

y , w0 is the beam waist of our optical tweezer, zR =
πw2

0
λ is the Rayleigh length, and λ is

the frequency of the tweezer beam. The effective trap depth U is determined by the beam power P and the
polarizability α of the species in the trap. It is defined as U = αP

πε0cw2
0

, with ε0 the permittivity of a vacuum

and c the speed of light. The effect of the optical potential on the ion motion is to give an additional
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Figure 6. Ion energy after buffer gas cooling in an optical-rf hybrid trap. The tweezer has a radial frequency ωopt/ωsec of 0.23
(brown), 0.728 (orange) and 2.05 (pink). (a) Variation with trap parameter q. The black trend lines are simulations for a Paul
trap alone with varying radial stray fields of 0.1 (black, dotted), 0.05 (black, dash-dotted) and 0 V m−1 (black, dashed). In this
plot, the stray electric field for the data points is 0.1 V m−1. Inset: illustration of a hybrid optical-rf trap. (b) Varying buffer gas
temperature. The black, dashed line represents a Paul trap without radial stray fields, while the grey dash-dotted line represents a
unity gradient. Data points are taken for a setup with no radial stray field. Errors are standard errors and are sometimes smaller
than the point size.

position-dependent force towards the trap centre

Fopt,j = −dVopt

drj
= −miω

2
opt,jrj. (15)

Here ωopt,j is the trapping frequency of the optical trap in each direction ωopt,x,y =
√

4U
miw

2
0
, ωopt,z =

√
2Uλ2

miπ
2w4

0

[63]. The confinement of the tweezer in the axial direction is sufficiently weak for us to assume that ωopt,z

plays no significant role here.
We simulate buffer gas cooling of an ion in this hybrid optical-Paul trap, as a function of Ta and q for

varying optical confinements. The contribution from the linear Paul trap is taken with identical trap
parameters and geometry to those used in section 3. We choose a stray radial electric field of either 0 or
0.1 V m−1. For the former, no other EMM effects are included. The optical tweezer has a wavelength of
1070 nm, a variable power set to 0.423, 4.23 and 2.12 W and a variable beam waist set to 2, 2 and 1 μm,
respectively. The Stark shift of a 171Yb+ ion in such a tweezer gives it a dynamic polarizability α of
approximately 66 a.u. (1.09 × 10−39 Jm2 V−2) [64]. The chosen tweezer parameters therefore correspond to
respective trapping frequencies ωopt,x,y/ωsec,x,y = 0.230, 0.728 and 2.05 for the 171Yb+ ion. Here, trapping
frequencies are given as a ratio of the linear Paul trap’s secular frequency, as defined in section 3.

Our simulations show that adding an optical tweezer aids in decreasing the effects of radial stray fields
on the ion cooling. Therefore at low q, the ion can be cooled to temperatures significantly lower than those
accessible in a Paul trap alone. Figure 6(a) shows the simulation data of Ekin for variable q in a hybrid
trap with stray electric fields of 0.1 V m−1. The data is compared to the trend lines from a pure Paul trap
with varying levels of stray fields. All lines and data points in this plot also include Eax = 42.4 μK and
Eph = 9.18 μK at q = 0.219 and Ωrf = 2π × 2 MHz. For a hybrid trap with increasing ωopt, the data points
tend increasingly towards the trend line of an rf trap with no stray electric fields. In other words, the tighter
the optical tweezer, the smaller the heating effects of radial EMM, allowing the ion to reach much lower
temperatures than in an equivalent regular Paul trap. The same suppression of EMM effects is seen when
analysing simulations of a hybrid trap with variable Ωrf .

A tighter confinement of the optical tweezers leads to a more efficient buffer gas cooling process.
Figure 6(b) shows the linear relationship between the ion energies reached in a hybrid trap of variable
optical depth, and the temperature Ta of the buffer gas in which it is submerged. We also plot the same
relationship for a Paul trap without an optical tweezer as well as a line with unity gradient, for comparison.
The latter corresponds to a static trap. We find that the hybrid trap results follow lines of increasingly
shallow gradient for an increasingly tight optical tweezer. This reflects the time-independent tweezer
potential becoming increasingly dominant over rf contributions in determining the energy reached by the
ion. The value of Ekin,i at Ta = 0 K also decreases for an increasingly tight tweezer.

To benefit from the optical tweezer, it must be perfectly aligned with the Paul trap axis. Figure 7 shows
the simulation of buffer gas cooling in a hybrid trap in which the optical tweezer runs parallel to the Paul
trap axis, with a varying radial offset Δ between them. For comparison, we also indicate the ion energy
reached in an equivalent Paul trap with no optical tweezer. Offsets of 50 nm or greater lead to ion energies
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Figure 7. Ion energy after buffer gas cooling in a displaced rf-optical hybrid trap. Orange data points mark the temperatures
reached for a variable radial offset (Δ) between the Paul trap axis and the optical beam. The black dashed line shows the energy
achieved when simulating the same process with the dipole beam switched off. Errors are standard errors and are sometimes
smaller than the point size.

above this value, and the greater the offset, the higher the ion energy. For misalignment, the effect of the
tweezer is to pull the ion from the Paul trap axis, providing an additional source of EMM, akin to a radial
stray field.

Another important limitation for practical implementation of the optical-rf hybrid trap is the effect of
the optical potential on the atoms. At the high trapping frequencies required to observe a significant benefit
of the tweezer on the ion, heating and confinement of the atoms become significant. If we wish to trap an
Yb+ ion in a tweezer with λ = 1070 nm and ωopt,x,y = 2.05 × ωsec,x,y, a cloud of Li atoms in the path of the
beam will experience a trap depth of 82 mK [63]. This will lead to a tightly-compressed atom cloud.
Combined with the high photon-intensity of the tweezer, these atom densities give a possibility for
unwanted chemistry [15, 33]. The same tweezer would also lead to heating of the Li atoms due to photon
scattering at a rate of 128 μK s−1, significantly reducing the efficiency of buffer gas cooling. To address the
problem of trap depth, it may be possible that for some atom/ion species combinations one could confine
the ion in an optical tweezer with a wavelength equal to a tune-out wavelength of the atoms, as has been
proposed for multi-species atom experiments [65]. However for our Li/Yb+ species, this is not possible, as
the only Li tune-out wavelength that is red-detuned for Yb+ is too close to the D1 and D2 lines of Li [66].
Suitable combinations of bichromatic optical dipole traps can also be used for all-optical trapping of both
atoms and ions [40]. We consider this as an alternative method of reducing the compression effect of the
tweezer on the atom cloud in an optical-rf hybrid trap. However, the cooling in a bichromatic trap is highly
sensitive to relative position fluctuations between the two trapping beams. Furthermore, for our species and
desired trap depth, the wavelength and intensity requirements cannot be met simultaneously with the
requirement for a large detuning of each beam from the atom and ion transition lines, to avoid off-resonant
heating. In fact, the heating problem would be intensified by the higher-frequency beam.

A way to avoid the negative effects of the tweezer on the atoms may be to use a two-ion crystal, with one
ion submerged in the atomic bath and the other in the tweezer. Using the ion chain’s collective modes of
oscillation, the pinned ion could then be used to sympathetically enhance the cooling of the ion in the
buffer gas. We simulate this option and show the results in figure 8. It shows the energy reached by the
untweezed ion in the crystal, dependent on the trapping frequency of the optical tweezer. We also show for
comparison Ekin for a single ion (dashed line) and a two-ion crystal (solid line) after buffer gas cooling in a
Paul trap without an optical tweezer. The results show that the higher the trapping frequency of the optical
tweezer, the lower the achievable ion energies. However, these energies tend towards a minimum equal to
the energy of a single ion in a Paul trap, for large tweezer depths. The effect of the tweezer on the two-ion
crystal is to decouple the motion of the two ions, thereby giving no additional cooling benefits.

6. The quantum dynamics of micromotion-induced heating

Up until now, we have used classical physics to describe the dynamics of the trapped ion in the buffer gas.
However, at the simulated temperatures, quantum effects may play a role. In particular, the angular
momentum in the atom–ion collision and the energy of the ion in its trap will both be quantized.
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Figure 8. Energy of one ion in a two-ion crystal after buffer gas cooling, with the second ion confined by an optical tweezer
outside of the atom bath. Data points show results for a tweezer of varying depth. For comparison, the black lines show the
temperature reached by an ion in a Paul trap without a tweezer for the single ion case (black, dashed) and two-ion case (black,
solid). Errors are standard errors. The grey shaded regions indicate standard errors on the lines.

Furthermore, the dispersion of the atomic wavepacket may become much larger than the micromotion
amplitude of the ion such that it cannot be resolved at all in a collision.

Specifically, when looking into micromotion-induced heating due to the time-dependence of the trap,
the classical and quantum mechanical picture might differ. In the classical simulations of colliding atoms
and trapped ions, the heating stems from a temporary binding between the ion and atom during which
multiple collisions can occur [37]. At some point, and depending on the phase of the rf trap, the ion and
atom can violently separate again. During the whole process, energy can be absorbed from the rf field,
leading to heating of the system. One may wonder whether this behaviour survives in a quantum treatment,
in which binding can only occur in discrete molecular states with energy level spacings that may be larger
than the collision energy. In this section we investigate the role played by micromotion-induced heating in a
quantum description of the atom–ion collision.

One approach is to consider the same case that we studied in the classical regime, but this time
launching an atomic wavepacket at an ionic wavepacket that is held in a (quantized) rf Paul trap. Floquet
theory allows us to solve the Schrödinger equation, similar to previous theoretical investigations into
mechanically-controlled interactions between trapped atoms and ions [32, 67–70] and individually-trapped
atoms [71]. However, even if we restrict ourselves to one dimension to reduce the complexity, the required
Floquet Hilbert space is very large and convergence is very slow. Instead, we follow a qualitative analysis of
the problem, showing that quantum mechanics cannot eliminate micromotion-induced heating.

6.1. Quantum description of an ion in a Paul trap
We start by studying the ion motion quantum mechanically, when the ion is confined by an rf-potential
Φ̂trap(t) = 1

8 miΩ
2
rf

(
a + 2q cos (Ωrft)

)
x̂2

i . Its motion can be described by the Hamiltonian Ĥi(t) = p̂2
i /2mi +

Φ̂trap(t), with wavefunction |Ψi(t)〉 and momentum p̂i. Using the Cook and Shankland transformation, the
wavefunction |Ψi(t)〉 can be rewritten as |ΨCS(t)〉 = exp

[
−i/(4�)miqΩrfx̂2 sin (Ωrft)

]
|Ψslow(t)〉 [72]. The

fast dynamics is now contained in the exponential factor and the slow-varying part |Ψslow(t)〉 corresponds
to the rf potential V̂ rf(t). This can be separated into a secular and IMM part by

V̂ rf(t) =
1

2
miω

2
sec, ix̂

2
i + Ĥmm(t), (16)

where ωsec,i takes the same value as in our classical equations (see section 3). Here, the ion IMM
Hamiltonian Ĥmm(t) is given by

Ĥmm(t) = −mig
2ω2

sec, ix̂
2
i cos(2Ωt) − gωsec, i{x̂i, p̂i}sin(Ωrft). (17)

Furthermore, g = [2(1 + 2a/q2)]−1/2 and {., .} denotes the anti-commutator. Note that EMM is not
included in our quantum study.

Typically in analysis of the trapped ion, one would proceed with applying the secular approximation.
The basis for the secular approximation is to neglect Ĥmm(t) such that the dynamics of the ion is given by a
static harmonic oscillator alone. Note that the relative size of the terms in Ĥmm(t) are of a similar size to
those of the static harmonic oscillator and in fact, the mathematical basis for the secular approximation is
quite delicate. The reason it works at all is the structure of the eigenstates of the harmonic potential. The
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time-dependent part Ĥmm(t) contains terms ∝ x̂2
i . Taking the Fock states of the static harmonic oscillator as

a convenient basis in which to study the Hamiltonian Ĥi(t), we see that strict selection rules apply, i.e.
〈n|x̂2

i |m〉 = 0 except for n = m ± 2 and n = m, with |n〉 denoting the nth Fock state. Since Ωrf � ωsec,i such
transitions cannot be resonant. Therefore, the only effect of Ĥmm(t) here is to cause a small increase in the
effective secular trap frequency that becomes more prominent for large q.

However, any anharmonicity in the trapping potential can cause a serious breakdown of the secular
approximation. This is because transitions |n〉 → |m〉 close to the resonance condition |ωsec,i(n − m)| = Ωrf

are allowed in anharmonic traps. The observation of such parametric resonances in rf traps, in which ions
show rapid heating, dates back a long time [73–75]. Thus, for anharmonic potentials, the contribution of
Ĥmm(t) can not be ignored. A similar effect is expected when describing an ion in the presence of a buffer
gas, which adds an additional atom–ion interaction potential.

6.2. Quantum description of atom–ion interactions
Now we add the atom to our quantum description. Then, the Hamiltonian is given by

Ĥ(t) = Ĥa + Ĥi(t) + V̂ ai =
p̂2

a

2ma
+

p̂2
i

2mi
+ V̂ ai + V̂ rf(t), (18)

where V̂ai = −C4/r̂4 is the atom–ion interaction potential, r is the separation between the atom and the ion
and C4 takes the same value as that in our classical simulations (see section 2). Compared to equation (1),
in the quantum description, exact knowledge of the form of the repulsive short-range atom–ion potential
(r−6) is important to the system’s scattering dynamics. Since its exact form is unknown, we account for it
using quantum defect theory [69]. We transform to the relative (r) and centre of mass (R) coordinates, to
obtain the atom–ion dynamics. In these coordinates, equation (18) can be written as

Ĥ(t) = ĤR(t) + Ĥr(t) + ĤRr(t),

ĤR(t) = − �
2

2M

∂2

∂R2
+

1

2
Mω2

RR̂2 + ĤRR
mm(t), (19)

Ĥr(t) = − �
2

2μ

∂2

∂r2
+

1

2
μω2

r r̂2 − C4

r̂4
+ Ĥrr

mm(t), (20)

ĤRr(t) = μω2
sec, iR̂r̂ + ĤRr

mm(t), (21)

with ωR = ωsec, i

√
mi/M and ωr = ωsec, i

√
ma/M denoting the centre of mass and relative frequencies of the

system, respectively. The micromotion Hamiltonians are

ĤRR
mm(t) = −Mg2ω2

RR̂2 cos(2Ωt) − gωR{R̂, P̂} sin(Ωrft), (22)

Ĥrr
mm(t) = −μg2ω2

r r̂2 cos(2Ωt) − gωr{r̂, p̂}sin(Ωrft), (23)

ĤRr
mm(t) = −μg2ω2

sec, ir̂R̂ cos(2Ωt) − gωsec, i

( μ

M
{r̂, P̂}+ {R̂, p̂}

)
sin(Ωrft). (24)

Here P̂ and p̂ are the centre of mass and relative momenta, respectively.
To understand where heating can arise in this system, we must look at each of the above equations

individually. Let us begin with the centre of mass Hamiltonian equation (19). Excluding micromotion
effects (i.e. ĤRR

mm(t) = 0), the centre of mass motion can be treated as that of a harmonic oscillator, with
solutions that are Fock states |nR〉 and energies nR�ωR. If we include micromotion, ĤR(t) resembles the
Hamiltonian Ĥi(t) of a single ion in a Paul trap, as described in section 6.1, now with mi → M and
ωsec,i → ωR. Since this Hamiltonian is without anharmonicity, it describes a stably trapped particle for
which we may employ the secular approximation. As a result, looking at the centre of mass motion alone, it
would seem that no significant heating is expected.

The relative Hamiltonian, equation (20), takes a similar form to that of the centre of mass, except it
includes the additional static potential V̂ ai. Provided that there is no micromotion (i.e. Ĥrr

mm(t) = 0), this
static term does not give rise to heating effects. However, it does mean that, unlike the centre of mass
Hamiltonian, the solutions to the unperturbed relative Hamiltonian are not Fock states. Instead the
dynamics must be obtained by solving the Schrödinger equation by means of quantum defect theory [69].
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Figure 9. Matrixelements Dnr,n′r′ = |〈nR|〈r|Hmm, 1|r′ 〉|n′
R〉| versus the energy difference δE = |Enr − En′r′ |. Data is shown for a

system of 6Li and 171Yb+, confined in a Paul trap with parameters Ωrf = 2π × 2 MHz, a = 0 and q = 0.5.

In the limit where r → 0, the energy is dominated by the atom–ion interaction, and we obtain even and odd
solutions given by [32, 67]

ψ̃e(r) ∝ |r| sin

(
R∗

|r| + φe

)
, (25)

ψ̃o(r) ∝ r sin

(
R∗

|r| + φo

)
, (26)

where we set the even and odd short range phases as φe = π/4 and φo = −π/4. We can use equations (25)
and (26) as boundary conditions in a Numerov method to find the relative eigenstates |r〉 and energies εr of
(20). The eigenstates can be subdivided in two types. On the one hand we find many states that are mostly
confined by the harmonic part of (20) and we find a number of states that are deeply bound by the V̂ ai

term, which we identify as molecular states. Note that the basis states of the total unperturbed Hamiltonian
(18) (Ĥmm(t) = 0) are therefore given by |Ψ(b)

rn 〉 = |r〉 ⊗ |nR〉.
When including micromotion in equation (20), we again see similarities to equation (19), except for the

addition of V̂ai. The Hamiltonian for the relative coordinate resembles that of a single ion in a Paul trap
with mi → μ and ωsec,i → ωr, but with V̂ai acting as an additional anharmonic term. This anharmonicity
becomes a problem now that we include micromotion, as the time-dependent terms will cause parametric
heating in analogy to heating observed in anharmonic rf traps [73–75]. Note that due to the dense
spectrum of nearly-free scattering states, there will always be (near) resonant transitions available for the
parametric heating.

Finally, we consider the role of equation (21), which includes contributions from both the centre of
mass and relative motions. Its contribution to the total Hamiltonian (18) can be interpreted as a further
anharmonicity, in addition to V̂ ai, with implications for both the relative and centre of mass dynamics. This
anharmonicity is not a problem until we include non-zero micromotion terms, as the combination of
micromotion and an anharmonic potential gives rise to allowed transitions close to a resonance. In the case
of the total Hamiltonian (18), the crossterm ĤRr

mm(t) drives transitions |nR〉|r〉 → |nR + 1〉|r′〉 that follow the
resonance condition |εr − ε′r| = �ωi + k�Ω with k = 0,±1,±2. This leads to heating in both the relative
and centre of mass coordinates. Physically, it can be interpreted as the system absorbing and emitting
quanta of energy �Ω from the trap driving. By investigating the roles of ĤRr(t) and V̂ ai in this way, it
becomes clear that the mechanism by which micromotion may heat the atom–ion system is qualitatively
similar in the classical and quantum regimes.

Having established the sources of anharmonicity in the system, we now further investigate the
micromotion terms of (18), which perturb the dynamics of the system and combine with the anharmonic
potential to give rise to parametric heating. In particular, we will investigate the expected scale of this
micromotion perturbation, by looking at the full Hamiltonian and calculating the matrix elements
〈nR|〈r|Hmax

mm, 1|r〉|nR〉. Here Hmm,1 denotes the prefactor to the terms ∝ sinΩrft that dominate the
micromotion Hamiltonians ĤRR

mm(t), Ĥrr
mm(t) and ĤRr

mm(t) [69]. We consider the realistic scenario where
Ωrf = 2π × 2 MHz, a = 0 and q = 0.5, similar to the experimental parameters of reference [36]. The results
are shown in figure 9.
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We see that the couplings due to micromotion can be up to ∼0.1�ωsec, i for an energy difference
δE ∼ �Ωrf . This energy scale is comparable to the fractional change of kinetic energy K for a classical
hardcore collision. Assuming the atom is at rest initially and the initial ion kinetic energy is K1, we get for

the final ion kinetic energy K2 =
(

1 − 2β
(1+β)2

)
K1 = 0.93K1, with β = ma/mi. For a cold ion K1 ∼ �ωsec,i,

giving K1 − K2 ∼ 0.07�ωsec,i. We therefore conclude that buffer gas cooling to the ion ground state is not
possible, even in the quantum picture, as micromotion-induced heating will impose a limit on the ion
temperature, similar in scale to that seen in classical analysis.

7. Conclusion and outlook

In this work, we demonstrate that careful optimization of ion trap parameters is crucial for reaching cold
temperatures when buffer gas cooling ions with ultracold atoms in time-dependent traps. We show that,
under appropriate conditions, buffer gas cooling should allow one to reach the regime of quantized ion
motion. For the Li/Yb+ system, parameter optimization can allow buffer gas cooling to ion kinetic energies
three times colder than the previous best experimental values, corresponding to collision energies
approximately 0.6 times the s-wave limit. This makes buffer gas cooling capable of outperforming laser
Doppler cooling in some situations, and it is even competitive when compared to some sub-Doppler
cooling techniques such as Sishyphus cooling. These low energies are achievable by suppression of
micromotion-induced heating effects, through optimization of q and Ωrf , and by compensation of trap
imperfections to low, but experimentally realistic, levels. Additionally, we benefit from a large ion–atom
mass ratio. For equal mass systems, similar trap parameter dependencies were found for a linear Paul trap
[38], however the achievable temperatures for such systems remain far from the s-wave regime.

We further demonstrate that the lowest possible energies achievable in a linear Paul trap can also be
reached through similar parameter optimization in a range of rf traps. In the case of the multipole and
hybrid optical-rf traps, even lower temperatures can be reached, albeit with the requirement for challenging
experimental parameters and, for the hybrid trap, a method of avoiding photon-scattering heating effects.
In addition, we provide a quantum description of the atom–ion interaction, and argue that
micromotion-induced heating continues to play a significant role in this regime.

Our study shows a route towards reaching deeper into the quantum regime with time-dependent traps,
and presents buffer gas cooling as a feasible alternative to laser cooling techniques. A ground state
cooled-ion can be used for high-precision studies of charged impurity physics [8, 11] and studies with
atom–ion system in the quantum regime can benefit from the tunability of the atom–ion interaction
through Feshbach resonances [32, 33, 35]. Moreover Feshbach resonances provide control over the
collisions, from which studies of quantum chemistry and precision spectroscopy can benefit.
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Appendix A

The code of the simulations has been published with this paper. Please see the README file for instructions
on installing and running them. Further details on the simulations and their use can also be found in
reference [41].

Appendix B

We simulate buffer gas cooling of an ion in a linear Paul trap with imperfections leading to radial stray
electric fields. The results of these simulations, for a field strength varying between 0 and 1 V m−1, can be
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Figure 10. Further simulation results showing the ion’s energy at thermalization, after buffer gas cooling in a linear Paul trap
with variable stability parameter q. The navy, brown, black and grey data corresponds to a trap with a radial stray field strength of
0.25, 0.5, 0.75 and 1.0 V m−1, respectively.

Table 1. Fit parameters for the ion energy and motion after buffer
gas cooling in a linear Paul trap. These parameters together with
equation (7) are used to obtain the lines in figures 2(a) and (b) for
varying radial micromotion contributions. Note that these results
were obtained not only by fitting to the data shown in figure 2, but
also to data from similar simulations that excluded one or more
forms of EMM.

Fit parameter Trend in q Trend in Ωrf

Ax 2.483 × 10−8 1.335 × 10−8

Ay 2.488 × 10−8 1.335 × 10−8

Az 1.859 × 10−7 1.335 × 10−7

b 1.873 1.690
c 1.664 1.704
d 1.818 1.771
g 0 9.871

found here in figure 10. These are an extension to the results shown in figure 2 in the main text. Combining
these, as well as simulations where axial and phase EMM were excluded, and those where no sources of
EMM effects were simulated, we fit equation (7) to our results. The values of the fitting parameters can be
found in table 1.
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