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The ability to program and control interactions provides the key to implementing large-scale quantum simula-
tion and computation in trapped-ion systems. Adding optical tweezers, which can tune the phonon spectrum and
thus modify the phonon-mediated spin-spin interaction, was recently proposed as a way of programing quantum
simulators for a broader range of spin models [Arias Espinoza et al., Phys. Rev. A 104, 013302 (2021)]. In this
work we study the robustness of our findings in the presence of experimental imperfections: micromotion, local
stress, and intensity noise. We show that the effects of micromotion can be easily circumvented when designing
and optimizing tweezer patterns to generate a target interaction. Furthermore, while local stress, whereby the
tweezers apply small forces on individual ions, may appear to enable further tuning of the spin-spin interactions,
any additional flexibility is negligible. We conclude that optical tweezers are a useful method for controlling
interactions in trapped-ion quantum simulators in the presence of micromotion and imperfections in the tweezer
alignment, but require intensity stabilization on the subpercent level.

DOI: 10.1103/PhysRevA.106.042612

I. INTRODUCTION

Trapped ions are at the forefront of both digital and ana-
log quantum simulation [1–3]. On the digital side, trapped
ions are the building blocks of the highest fidelity two-qubit
universal gates [4–6] and the recent demonstration of on-the-
fly quantum error correction adds to the robustness of this
architecture [7]. On the analog side, they have been used
to emulate the dynamics and prepare the ground states of
quantum magnets, as well as study the dynamics of quantum
correlations, quantum information, and entanglement in the
presence of engineered, variable-range interactions [8–12].

Trapped-ion quantum simulators allow one to engineer
power-law spin-spin interactions which decay as 1/rα , where
0 < α < 3 and r is the distance between two ions. This is
the direct result of the mechanism behind the interactions.
The interion interactions are phonon mediated and as such
depend on the spectrum and structure of the collective vibra-
tional modes of the ion crystal [13,14]. So far experimental
efforts utilizing trapped ions as analog simulators have been
restricted to the aforementioned power-law interactions. Re-
cently it has been shown that the addition of optical tweezers
to the typical trapped-ion platform produces a highly tunable
quantum simulator in terms of connectivity, range, and sign
of the interactions in both linear (or 1D) and triangular (2D)
ion crystals in Paul traps [15–18]. If a target interaction matrix
passes our feasibility criterion, we search for the optimal opti-
cal tweezer pattern to manipulate the frequencies and structure
of the collective vibrational modes of the crystal.

*Corresponding author: L.J.Bond@uva.nl

In this work we study the robustness of our scheme in the
presence of typical experimental imperfections: micromotion,
tweezer misalignment, and tweezer intensity noise. In Sec. II
we review the radio-frequency (rf) Paul trap and the formalism
describing the motion (including micromotion) of ion crystals.
In Sec. III we extend previous studies to characterize the effect
of small-amplitude micromotion [19–21] and correct for it
in our tweezer patterns, before including first-order Doppler
modulation. Section IV investigates if local stress due to mis-
alignment of the tweezers can improve the optimization and
considers the effect of laser intensity fluctuations.

II. TRAPPED-ION QUANTUM SIMULATOR

We consider a one- or two-dimensional crystal of N ions
in a Paul trap. The potential energy of the system is given
by V0 = VCoulomb + Vtrap. The first term is the contribution due
to the Coloumb repulsion between the ions VCoulomb(ri ) =
1
2

∑
i �= j |ri − r j |−1, while the second term is the confinement

supplied by the external trapping potential

Vtrap(ri,α, t ) = �2
rf

8

∑
i,α

[aα − 2qα cos(�rft )]r2
i,α, (1)

generated by dc fields and ac components oscillating at �rf .
Here a and q are the (dimensionless) Mathieu parameters
and ri,α is the position of the ith ion in the α = x, y, z di-
rection. The ion positions and the oscillation frequency are
dimensionless and in terms of the characteristic length scale
d = [e2/(4πε0mω̄2)]1/3 and a characteristic frequency ω̄, re-
spectively. Here e is the electron charge, ε0 is the vacuum
permittivity, and m is the ion mass. This allows us to define
time t in units of 1/ω̄. Thus Eq. (1) is dimensionless with an
energy scale mω̄2d2.
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FIG. 1. Effect of micromotion on a N = 12 ion zigzag crystal.
(a) Ion positions during one rf period with motion indicated by
blurring. Micromotion occurs only in the y direction. (b) Mode
frequency spectrum for yz plane (orange) and x (blue). The com
mode frequencies (vertical black dashed lines) are unchanged by
micromotion. (c) Frequency shift �ωm normalized to ω f

m. All shifts
are small (kHz) relative to the mode frequencies themselves (MHz).

The interplay between the external trapping potential and
the Coulomb repulsion results in stable Coulomb crystals. The
dimensionality of the crystal depends on the relative strength
of the trapping potential along the different axes [22,23]. We
focus on the case of a 2D zigzag crystal in the yz plane, as
shown in Fig. 1(a). Tight confinement along x ensures the
crystal forms in the yz plane, while a weaker potential along
z compared to y (or vice versa) leads to the formation of the
zigzag structure.

The equilibrium positions of the ions are given by the
solutions to ∇V0 = 0. The full solution is equilibrium po-
sitions with explicit time dependence Ri(t ) to account for
micromotion even at ultralow temperatures. However, when
|a|, q2 � 1 we make the pseudopotential approximation and
replace the time-dependent potential Vtrap with a static har-
monic potential [24]

Vpseudo(ri,α ) = 1

2

∑
i,α

�2
αr2

i,α, (2)

where �α = γα�rf/2 are effective frequencies determined
by the characteristic exponents of the Mathieu equation,
γα ≈ √

aα + q2
α/2 [25]. Note that although the Mathieu expo-

nents are usually denoted by β, we use γ to avoid confusion
with a later use of β.

The emergence of effective spin-spin interactions, medi-
ated by the collective oscillations (phonon modes) of the
crystal, have been previously studied. The phonon-mediated
interactions are generated by applying a spin-dependent force,
using a Raman beam pair, to couple the electronic spin
of the ion to the collective motion of the crystal. Within
this approximation trapped-ion quantum simulators allow us
to engineer spin-spin interactions that decay as 1/rξ , with
0 � ξ � 3 [2,8,13,26]. The interaction strength between ions
i and j is given by

Ji, j =
∑

m

(k · bi,m)(k · b j,m)

μ2 − ω2
m

, (3)

where bi,m is a three-element vector (each element describ-
ing a direction α) of the mth mode and the ith ion, k the
three-element wave vector of the Raman beam pair, ωm the
frequency of the mth mode, and μ the Raman beat-note fre-
quency. Thus the structure of the spin-spin interactions is fully
determined by the normal modes of the crystal and the beat-
note frequency μ. Here we have assumed that the phase of
the Raman beam pair driving the sideband transitions remains
constant at the equilibrium position of the ions.

In the absence of any additional control knob, one is lim-
ited to the power-law interactions described above. We have
previously shown that a wider variety of target spin-spin in-
teractions can be engineered by modifying the mode structure
with optical tweezers [15]. We assume that the tweezers have
cylindrical symmetry and supply confinement in the yz plane
only. We also assume that the micromotion amplitude is suf-
ficiently small such that each ion stays near the center of the
tweezer beam and that the tweezer beam is focused on the ion
equilibrium positions Ri. Then the tweezer potential can be
written as a local harmonic potential for each ion,

Vtweezer(ri,α ) = 1

2

N∑
i=1

∑
α=y,z

ν2
i (r̃i,α )2, (4)

where νi is the pinning frequency on the ith ion and
r̃i = ri − Ri are the ion positions relative to their equilib-
rium. In the pseudopotential approximation the equilibrium
positions are natively time independent; when including
micromotion we average the time-dependent equilibrium po-
sitions over one rf period. Finally, on the experimental side we
note that during the cooling of the ions the optical tweezers are
turned off and thus do not influence the formation of the ion
crystal. After cooling, the tweezers must be turned on with a
time scale that is slow compared to the mode frequencies (∼1
ms). The crystal remains stable as the ions only experience a
local potential which further pins them in place. Also, para-
metric excitations are not possible as the tweezers correspond
to local trap frequencies of a few hundred kHz, which is much
smaller than the drive frequency (∼20 MHz) [27].

A. Equilibrium positions with micromotion

When optical tweezers are added to the system, the equi-
librium positions are in principle given by the solution to
∇Vtotal = 0, where Vtotal = Vtrap + VCoulomb + Vtweezer. How-
ever, for simplicity we assume that the equilibrium positions
are unaffected by the tweezer potentials, which we justify in
Sec. III by showing that our engineered coupling matrix is
unaffected by this approximation.

The equilibrium positions are thus given by the solution to
∇V0 = 0. We set the characteristic frequency ω̄ = �/2, and
rescale time accordingly t → �t/2 to make the micromotion
π periodic. The 3N coupled equations of motion (EOMs) are
then [28]

r̈i,α + [aα − 2qα cos(2t )]ri,α −
∑
i �= j

ri,α − r j,α

|ri − r j |3 = 0. (5)

The addition of a cooling term Vcool = f (t )ṙi, where f (t ) is
a time-dependent cooling profile that ramps from f (0) = 1
to f (tmax) = 0, allows us to start from an initial guess and
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evolve to the equilibrium configuration at tmax. We then evolve
the positions for one more period with f (t > tmax) = 0 to
determine the time-dependent equilibrium positions Ri(t ).

B. Linearized motion

To calculate the normal-mode structure we follow the steps
in Refs. [19,20]. We linearize the EOMs about small oscilla-
tions of the equilibrium positions r̃i = ri − Ri,

¨̃ri,α + [aα − 2qα cos(2t )]r̃i,α +
∑
j,β

Dα,β
i, j (t )r̃ j,β = 0, (6)

where the time-dependent Hessian is defined as

Dα,β
i, j (t ) = ∂2VCoulomb

∂ri,α∂r j,β

∣∣∣∣
ri,α=Ri,α

. (7)

The linearized EOMs have periodic coefficients and thus can
be treated using Floquet theory. Expanding the Hessian matrix
in a Fourier series as

D = D0 − 2D2 cos(2t ) − · · · , (8)

where the matrices A and Q are defined as A = diag(a) + D0

and Q = diag(q) + D2, the matrix �(t ) and vector φ are in-
troduced as

�(t ) =
(

0 1
−A + 2Q cos(2t ) 0

)
, φ =

(
r̃i,α
˙̃ri,α

)
, (9)

where 1 is a 3N-dimensional identity matrix. The linearized
EOMs are then written as linearly independent equations in
6N-dimensional phase space as

φ̇ = �(t ) φ. (10)

We solve the set of differential equations to obtain the Floquet
modes and exponents, which are related to the eigenmodes b f

m

and eigenfrequencies ω
f
m of the linearized ion-crystal motion

(using superscript f to denote that the solutions are from the
full motion treatment).

To obtain the eigenmodes and eigenfrequencies in the
pseudopotential approximation we construct the Hessian as
defined in Eq. (7), but where the partial derivatives are
now with respect to the static equilibrium positions Ri. The
Hessian is therefore time independent and can be simply diag-
onalized to yield the eigenmodes bp

m and eigenfrequencies ω
p
m

(using superscript p to denote the pseudopotential solutions).

C. Micromotion of a 2D zigzag crystal

To characterize the effect of micromotion we study a N =
12 ion crystal using experimentally relevant trap parameters.
Specifically we use a = {0.018 704,−0.018 900, 0.000 196},
q = {0.202 780,−0.202 780, 0}, and �rf = 2π × 20 MHz.
The corresponding pseudopotential frequencies are �α =
2π × {2, 0.4, 0.14} MHz.

Figure 1(a) shows the ion equilibrium positions with blur-
ring to indicate micromotion over one rf period. Micromotion
occurs only in y with amplitude proportional to the ion’s dis-
tance from the y = 0 trap axis, as described by the first-order
approximation (1/2)qαRi,α . In Fig. 1(b) we plot the spectrum.
Because the micromotion is a breathing mode oscillation the
center-of-mass (c.m.) modes are unchanged. The out-of-plane

modes (along x) are decoupled from the in-plane modes (y
and z) and have a higher frequency and smaller bandwidth.
Figure 1(c) shows the frequency shift �ωm = ω

f
m − ω

p
m nor-

malized to ω
f
m. Although the frequency shift is larger for

modes with more breathing or zigzaglike structure, the fre-
quency shifts are all relatively small (kHz) compared to the
mode frequencies themselves (MHz). As such, from the mode
structure itself we conclude that the pseudopotential approxi-
mation is justified.

III. ENGINEERING SPIN-SPIN INTERACTIONS
IN OPTICAL TWEEZERS

In this section we investigate if micromotion restricts
our ability to engineer a target spin-spin interaction. We
demonstrate that although tweezer patterns determined in the
pseudopotential approximation are unsuitable once micromo-
tion is included, corrected tweezer patterns can be found.
However, the Doppler shift of the laser implementing the
spin-spin interactions does cause an appreciable degradation
in the engineered interaction compared to the target which is
challenging to correct.

A. Naive inclusion of micromotion

We first make the pseudopotential approximation and nu-
merically optimize the tweezer frequencies νi and Raman
beat-note frequency μ to engineer a target coupling matrix.
To characterize the success of the optimization, we define an
error function as

ε = ‖JT − JE‖
‖JT ‖ , (11)

where JE and JT are the engineered and target interaction
matrices, respectively, and where the matrix norm is the
Frobenius norm.

During the optimization we assume that the equilibrium
positions are unchanged by the tweezers. To justify this ap-
proximation we find that applying a maximum 2π × 10 MHz
tweezer frequency on all ions causes an ion position change
of ∼10 nm and that using the corrected ion positions with an
optimal set of tweezer frequencies causes a negligible change
in ε on the order of 10−3.

For the target coupling we use a spin-ladder interaction,
as shown in Fig. 2(a). Here we choose the spin ladder since
it is challenging to realize in ion crystals utilizing only the
collective modes of the crystal in the absence of the tweezer
potentials. It also offers variety via the coupling strength ratio
j2/ j1 enabling us to study the interplay of frustration and fluc-
tuations, necessary ingredients for spontaneous continuous
or discrete symmetry breaking in condensed-matter systems.
The ability to tune the range of zigzag coupling strengths
(| j2/ j1| � 1) will allow us to study the phase diagram of
this well-known frustrated magnetic system with no exact
solution.

To perform the numerical optimization we use simulated
annealing, implemented using Optim.jl [29] version 1.6.1 in
Julia [30] version 1.6.2. We limit the maximum tweezer
laser power to 30 W and use beam waists of w = 1 μm.
The tweezer frequencies are upper bounded by νi/(2π ) �
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FIG. 2. (a) Spin-spin couplings for the target zigzag coupling JT

with − j2/ j1 = 0.5. (b) Engineered couplings JE in the pseudopoten-
tial approximation. With optical tweezers, the target coupling can be
engineered with reasonably low error. (c) “Naive” inclusion of micro-
motion by using the tweezer parameters found in the pseudopotential
case. The difference in mode structure results in a large increase in
ε, making the tweezer solution found in the pseudopotential approx-
imation unsuitable.

1.0 MHz, while the Raman transition frequency is bounded
by 0.3 MHz � μ/(2π ) � 1.0 MHz. In addition we demand
that |μ − ωm| > 10 kHz to ensure the phonon modes are only
excited virtually. We implement this final requirement in the

optimization routine by adding a large value to the cost func-
tion defined in Eq. (11) if the condition is not satisfied.

Figure 2(b) shows the optimal interaction graph and cor-
responding error εp = 0.304 that can be realized in the
pseudopotential approximation. In Fig. 2(c) we “naively” take
the optimal tweezer pattern found in the pseudopotential ap-
proximation and recalculate the error using the micromotion
equilibrium positions and mode structure, finding εm = 0.654.
The difference εm − εp = 0.350 is significant, with the inter-
action graph showing little spin-ladder structure. As such, any
optimization should include micromotion during the routine.

B. Including micromotion during optimization

Including micromotion during the optimization routine re-
quires recalculating the time-dependent Hessian with a given
set of νi and solving the 6N Floquet equations to find the new
mode structure. Although this procedure is computationally
costly, for larger N the cost can be reduced by using the
symmetry of the coupling matrix in the tweezer patterns. For
example, the spin-ladder interaction is symmetric about z = 0
and thus the tweezer frequencies can be assumed to obey the
same symmetry. For the N = 12 Coulomb crystal we find
this is not necessary and so optimize over all 12 tweezer
frequencies.

In Fig. 3 we plot the optimization of ε. When micromotion
is included in the optimization, ε approaches the pseudopo-
tential result. As such, micromotion itself is not a significant
barrier to engineering interactions with optical tweezer.

FIG. 3. Panels (a), (b), and (c) show the error ε as a function of optimization evaluations (i) for wave vectors k = [0, 1, 0], k = [0, 0, 1], and
k = [0, 1, 1], respectively. The target coupling is the spin-spin ladder shown in Fig. 2. When including micromotion in the optimization (dark
blue line) we obtain a similar ε as the pseudopotential case (dotted orange line). The k = [0, 1, 0] case [panel (a)] shows the best performance
due to the tighter confinement along y. Modulation has a detrimental effect in this scenario, as this is the direction where the micromotion
amplitude is largest. Panels (d), (e), and (f) show the native spectrum (yellow) and tweezer-modified spectrum (dark blue) corresponding to
(a), (b), and (c), respectively. The black dashed line shows the optimized beat note frequency μ. Note that |ω f

m − μ| < 10 kHz to maintain a
dispersive spin-phonon coupling.
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C. First-order Doppler modulation

The first-order Doppler shift can have a significant impact
on the spin-spin couplings. Following the procedure used in
Ref. [31] to lowest order in a and q the laser field (up to a
phase factor) in the reference frame of the moving ion is

Ei(t ) = Re

[
E0eik·ri

∞∑
n=−∞

Jn(β )e−iωt+in(�rft )

]
, (12)

where ω is the frequency and k the wave vector and Jn(βi )
the Bessel function. The (dimensionless) modulation index βi

is given by

βi = 1

2

∣∣∣∣∣
∑

α

kαRi,αqα

∣∣∣∣∣. (13)

The carrier transition amplitude is modified by J0(βi ) and
thus the interaction matrix element becomes

JDoppler
i, j = J0(βi )J0(β j )Ji, j, (14)

where Ji, j is the unmodulated coupling matrix element given
in Eq. (3). Assuming a 411 nm laser we include Doppler
modulation in the optimization. The resulting ε is shown in
Fig. 3. Although there is no Doppler modulation in z (because
qz = 0) nor x (because Ri,x = 0), there is significant modu-
lation along y. The reduction in coupling strength depends
on the distance of each ion from the y = 0 rf null, which
makes it challenging to correct for using optical tweezers.
While this ion-dependent source of error can be compensated
by tuning the intensity of the Raman beams on each ion, the
extra infrastructure cost is prohibitive.

IV. LOCAL STRESS

In Sec. III we used tweezer beams centered on the average
equilibrium positions of the ions to more accurately engineer
spin-ladder interactions. However, if the tweezer beams are
offset from the equilibrium positions, the tweezers add not
only a local trapping potential but also supply a force. In
this section we investigate if this local stress enables further
improvements to our engineered couplings. We show that
tweezer offsets of up to 0.25 μm offer only small improve-
ments to ε.

A. First-order approximation

For simplicity we assume that we have a geometry in which
micromotion does not play a role. As before we assume that
the tweezers have cylindrical symmetry and supply confine-
ment in the yz plane only. The tweezer potential including an
offset is then given by

Vtweezer(ri,α ) = 1

2

N∑
i=1

∑
α=y,z

ν2
i (r̃i,α − δri,α )2, (15)

where r̃i = ri − Ri are the positions of the ions relative to
their equilibrium, δri is the tweezer offset from r̃i, and the
characteristic frequency is now set to ω̄ = �z.

Offsetting the tweezers changes the equilibrium positions
of the ions. To find the new equilibrium positions Ri + ρi we
need to solve ∇r̃Vtotal = 0. This is computationally costly for

large crystals, particularly when included in an optimization
routine. Instead, as a first approximation we assume that the
tweezers pull lightly on the ions, ρi/δri � 1. This is equiva-
lent to treating the tweezers as a small perturbation compared
to the Paul trap and Coulomb interactions. For simplicity
we omit the x direction, which is justified when the laser
implementing the spin-spin interactions has no effective wave
vector in the x direction and the sound wave modes in the
x direction decouple, such as in a 2D ion crystal in the yz
plane. These prerequisites can be easily obtained by design.
Denoting the Hessian matrix of V0 = Vtrap + VCoulomb by D0,
we expand ∇r̃Vtot(ρ) to first order,

∇r̃Vtot(ρ) ≈ {∇r̃[∇r̃V0(r̃)]}r̃=0 ρ + ν2(ρ − δr)

= D0(0)ρ + ν2(ρ − δr), (16)

where ν is a 2N × 2N diagonal matrix with diagonal elements
νi. Note the zeroth-order term drops out since (∇V0)r̃=0 = 0
by definition. The lowest-order shifts in the equilibrium posi-
tions are therefore

ρ ≈ [Dtot(0)]−1ν2δr, (17)

where Dtot(0) = D0(0) + Dtw and Dtw = ν2.
Having approximated the new equilibrium positions, we

now calculate the change in the Hessian matrix. To avoid cal-
culating the Hessian Dtot(ρ) directly from the new potential,
we use an approximation to further reduce the computational
cost,

Dtot(ρ) ≈ Dtot(0) + [∇r̃(D0)]r̃=0 ρ + · · · . (18)

Dtot(ρ) has new eigenfrequencies ω̃str
m and eigenvectors b̃str

m
resulting in new spin-spin interactions as defined by Eq. (3).
Although only approximate, this equation gives insight into
the effect of the local stress on the mode spectrum. Because
both Dtw and Dtrap are constant diagonal matrices, the deriva-
tives of Dtot(0) originate from the Coulomb interaction alone.
Due to the long-range character of the Coulomb interactions
we expect that the local stress should ease the simulation of
long-range interactions. On the other hand, the local stress
terms are higher order than the tweezer curvature terms, so
we expect the capability of local stress to significantly change
the mode spectrum to be limited. Although this suggests local
stress will not offer improvements to our engineered cou-
plings, the benefit is that errors due to misaligned tweezers
are suppressed.

B. Optimization

We investigate numerically whether it is possible to im-
prove on the results obtained in the previous section if we
allow the tweezers to supply local stress on the ions. For the
N = 12 ion crystal we fix the tweezer pattern to the optimal
solution found in Sec. III and optimize the tweezer offsets 0 �
δri � 0.25 μm. The offset bounds enable us to approximate
the tweezers as harmonic. By fixing the tweezer parameters,
we only need to optimize over the 2N offset parameters,
and therefore in the optimization routine can calculate the
new equilibrium positions Ri = ρi and Hessian directly. Note
that optimization over the full parameter set (including the
tweezer parameters) is possible, particularly with a two-step
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FIG. 4. Error ε as a function of the spin-ladder coupling strength
ratio − j2/ j1. The error is smallest at − j2/ j1 = 1.5 as this most
closely resembles power-law interactions that can be well engineered
natively. The addition of tweezers offers significant improvement
at all ratios. As predicted by our approximate expression Eq. (18),
local stress of up to 0.25 μm only offers a small improvement. This
suggests that the couplings are robust to tweezer misalignments.

optimization routine that first uses the approximate calcula-
tions of Eqs. (17) and (18) to determine if the parameters are
promising, and then when the error falls below a set threshold
uses the exact calculation to fine-tune the parameters and
obtain the true error. We also optimize the full parameter set
in this manner and find no difference to our fixed-tweezer
optimization.

In Fig. 4 we vary the ratio − j2/ j1 in the 12-ion spin ladder
and calculate the error as defined in Eq. (11). As expected,
the inclusion of tweezers results in significant improvements
in engineering the target spin-spin interactions. However, ap-
plying local stress to the ion crystal only results in minimal
improvements. As such we conclude that in the perturbative
regime local stress offers little benefit, but is reassuring since
the interactions are therefore robust to tweezer misalignments.

C. Intensity noise

Finally, we study the effect of tweezer intensity fluctua-
tions. We consider a worst-case shot-to-shot noise scenario,
whereby an optimal set of tweezer frequencies ν are each sub-
ject to a fluctuation δν. Note that δν ∝ √

δP, where δP is the
power fluctuation, since the square of the tweezer frequencies
are proportional to the laser power. To simulate the noise we
multiply an optimal tweezer pattern by a random fluctuation
sampled from a normal distribution with standard deviation
δP. We repeat the calculation Nrepeat = 104 times and take the
average. In Fig. 5 we plot ε as a function of the percentage
noise in the tweezer power δP. We find that for typical exper-
imental parameters intensity noise on the order of �1% can
have a noticeable impact on the engineered coupling. As such,
intensity stabilization on the order of subpercent is required to
accurately engineer the target spin-ladder coupling.

V. CONCLUSIONS

Local optical potentials, supplied by optical tweezers,
allow us to create analog trapped-ion quantum simulators
with an unprecedented level of flexibility concerning the

FIG. 5. Error ε when tweezer intensity fluctuations δP are in-
cluded for two different spin-ladder coupling strength ratios. The
error is calculated assuming random Gaussian noise in the laser
generating the optical tweezers at frequencies much slower than the
coupling time.

possible spin-spin interaction patterns. In this work we stud-
ied the robustness of this approach in a typical experimental
setup. In particular, we focused on three sources of error:
(i) micromotion, (ii) tweezer misalignment, and (iii) tweezer
intensity noise. We used the ferromagnetic zigzag model,
with j1 > 0 and j2 < 0, to quantify the adverse effect of
each source of error. Our choice of model is motivated by
the fact that tweezers play a fundamental role in generating
the target connectivity and the range of interactions. Hence
this model provides us with an upper bound on the sen-
sitivity of the scheme to the three sources of error listed
above.

We showed that the effect of micromotion is twofold. First,
it shifts the motional modes of the crystal and, second, it
causes a first-order Doppler shift and in turn modulates the
spin-spin couplings for each ion. We showed that the shift in
the motional modes is at the level of a few percent, justifying
the use of the pseudopotential approximation. However, the
first-order Doppler shift may be a major source of error along
the weaker confinement direction when micromotion is the
largest. In contrast, we find that in the limit where the tweezer
potential is perturbative compared to the Paul trap and the
Coulomb interactions, any additional stress and strain force on
the ions due to the misalignment of the tweezers is negligible.
Finally we find that the intensity noise should be controlled
to the subpercent level, as this shot-to-shot noise severely
impacts the fidelity with which the target interactions can be
realized.
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