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Improving the Output Quality of Official Statistics Based
on Machine Learning Algorithms

Q.A. Meertens1, C.G.H. Diks2, H.J. van den Herik3, and F.W. Takes3

National statistical institutes currently investigate how to improve the output quality of
official statistics based on machine learning algorithms. A key issue is concept drift, that is,
when the joint distribution of independent variables and a dependent (categorical) variable
changes over time. Under concept drift, a statistical model requires regular updating to
prevent it from becoming biased. However, updating a model asks for additional data, which
are not always available. An alternative is to reduce the bias by means of bias correction
methods. In the article, we focus on estimating the proportion (base rate) of a category of
interest and we compare two popular bias correction methods: the misclassification estimator
and the calibration estimator. For prior probability shift (a specific type of concept drift), we
investigate the two methods analytically as well as numerically. Our analytical results are
expressions for the bias and variance of both methods. As numerical result, we present a
decision boundary for the relative performance of the two methods. Our results provide a
better understanding of the effect of prior probability shift on output quality. Consequently,
we may recommend a novel approach on how to use machine learning algorithms in the
context of official statistics.

Key words: Output quality; concept drift; prior probability shift; misclassification bias.

1. Introduction

Recently, the demand for readily available official statistics with a high data resolution has

increased rapidly. In the pandemic context, an eminent example is the demand for accurate

statistics on the number of deceased persons and the causes of their death. For policy

makers, it is crucial that such statistics are available swiftly and at a high frequency. Also

in other contexts, national statistical institutes (NSIs) experience an increase in the

demand for new, more frequent, and more detailed official statistics (Braaksma and

Zeelenberg 2015).

1.1. A Paradigm Shift in Official Statistics

Traditionally, NSIs adopt strict quality frameworks when collecting data and producing

official statistics. Two important quality frameworks include the OECD quality
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framework (OECD 2011) and the Regulation on European Statistics (European

Commission 2009) translated into the European Statistics Code of Practice (Eurostat

2017). With such quality frameworks as a foundation, NSIs could be categorised as part of

the data modelling culture as defined by Breiman (2001). Within that culture, a stochastic

data model is the basis of any further statistical analysis.

Currently, a paradigm shift from a data modelling culture to an algorithmic modelling

culture, as envisioned by Breiman (2001), is taking place in the field of official statistics

(De Broe et al. 2020). Indeed, many NSIs have initiated experiments with supervised

machine learning algorithms with the purpose of producing new or improved official

statistics. Beck et al. (2018) provide a list of 136 machine learning projects at NSIs in 25

countries. In many projects, machine learning was used for classification (78) or for

imputation (22). The results of these machine learning projects are promising.

Moreover, the quality of official statistics has a broad interpretation nowadays.

Statistical quality (e.g., statistical accuracy) as well as information quality (e.g., data

resolution, temporal relevance and chronology of data and goal) should be appreciated

when evaluating official statistics (Kenett and Shmueli 2016). With such a broad quality

framework in mind, official statistics based on algorithmic modelling are quite promising.

A particularly appealing aspect of information quality in the context of machine learning is

construct operationalisation. It questions whether the measured variables are of interest to

the study goal (Kenett and Shmueli 2016).

Many of the projects presented by Beck et al. (2018) that use machine learning for

classification, were intended to measure variables that could only be measured by

employing machine learning algorithms. A typical example is identifying small innovative

companies (too small to be included in traditional surveys), using data from their websites

(Daas and Van der Doef 2020). Therefore, we aim for the best of Breiman’s two cultures,

complementing statistical quality with information quality.

1.2. Statistical Output Quality and Misclassification Bias

In this article, we consider classification algorithms (having high information quality) and

investigate how to maximise their statistical output quality. We measure statistical output

quality by the mean squared error (MSE) of the aggregated output as estimator of the

desired quantity (Buelens et al. 2016). As a first step, we consider the simplest type of

statistical output produced by NSIs, namely the proportion (relative occurrence) of a

category of interest within a target population of objects. It corresponds to binary

classification problems in machine learning. The proportion that we intend to estimate is

referred to as the base rate and is denoted by a. Although this type of statistical output is

rather uncomplicated, we stress that it occurs in a wide variety of applications, also outside

official statistics. Examples include counting solar panels (Curier et al. 2018), estimating

the relative occurrence of small innovative companies (Daas and Van der Doef 2020),

measuring deforestation and other applications of land cover mapping (Costa et al. 2018),

and predicting election outcomes based on sentiment analysis (O’Connor et al. 2010).

Moreover, results for estimating the base rate generalise to more complicated statistical

output. An important example is aggregating a numerical variable over the subpopulations

obtained from the classification algorithm (Van Delden et al. 2016). The result of
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aggregating the outcome of a classification algorithm will be referred to as a classifier-

based statistic.

The definition of statistical output quality, that is, the accuracy of the algorithm measured

by the MSE of its aggregated output as estimator of a, differs conceptually from that of

algorithmic accuracy as used in the machine learning literature. The difference is that

algorithmic accuracy is measured at the level of individual data points while statistical

accuracy is measured at the population level (Forman 2005; Scholtus and Van Delden

2020). In fact, classification algorithms that have high algorithmic accuracy might still

produce highly biased statistical output. The statistical bias in estimating a that can be

attributed to the algorithm’s incorrect classifications is referred to as misclassification bias.

Misclassification bias occurs in general when dealing with measurement error in

categorical data. Consequently, it occurs in applications outside machine learning as well.

It can be argued that any categorical variable (either statistically modelled or directly

measured) containing incorrect classifications will result in misclassification bias when

aggregated. This observation was first made by Bross (1954). Since then, misclassification

bias has been neglected or overlooked by a large part of the statistical community

(Schwartz 1985; González et al. 2017).

Fortunately, after several decades of scientific research, a rich body of statistical

literature on misclassification bias is currently available. Tenenbein (1970) and Kuha and

Skinner (1997) provide significant contributions to the literature on misclassification bias.

A relatively recent overview is provided by Buonaccorsi (2010). Misclassification bias can

be reduced significantly, if some form of extra information is available. In the broad

context of categorical data analysis, this extra information can be, for instance, replicate

values, validation data, or instrumental variables (Buonaccorsi 2010). Although such extra

information might not always be available, in general, it is available in the context of

supervised machine learning that we are considering here. In the context of machine

learning, the extra information is validation data. Such data are often used for model

selection, training and testing. We will use the test set as validation data to estimate error

rates, and thus to correct misclassification bias. Below, we will argue why correcting

misclassification bias in the context of official statistics is challenging.

1.3. Prior Probability Shift and Our Problem Statement

When machine learning projects at NSIs are initiated, the test set often is a random sample

from the target population. The setup then corresponds to the double sampling scheme

introduced by Tenenbein (1970). Among the correction methods discussed by

Buonaccorsi (2010), the one proposed by Tenenbein (1970), referred to as the calibration

estimator in this article, outperforms all the others in terms of MSE (Kloos et al. 2020).

However, correcting misclassification bias in the production process of official statistics

is more challenging. In that situation, a statistical model is often estimated once and then

applied for a longer period of time without updating the model parameters. This is

common in the context of supervised machine learning, because otherwise new data have

to be annotated manually in each publication period leading to high production costs. Still,

the key issue remains that both the data distribution and the relation between the dependent

and independent variables might change over time, causing the outcome of the model to
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become biased. In the machine learning literature, this issue is known as concept drift. It

has been investigated in stream learning and online learning for several decades (see

Widmer and Kubat 1996), dating back at least to the work on incremental learning in the

1980s (Schlimmer and Granger 1986). The term concept was originally used for a set of

Boolean-valued functions (Helmbold and Long 1994). Currently, it has a statistical

interpretation that is more closely related to our setting. Nowadays, Webb et al. (2016)

state that the term concept refers to the joint distribution P(Y, X), with class labels

(dependent variable) Y and features (independent variables) X, as proposed by Gama et al.

(2014). Allowing such a joint distribution to depend on a time parameter t, concept drift in

the setting of supervised learning means that Ptl
ðY ;XÞ – Pt2

ðY ;XÞ; for t1 – t2: The effect

of concept drift is that misclassification bias might increase even further over time.

In this article, we aim to prove theoretically which of two popular correction methods

discussed by Buonaccorsi (2010), that is, the misclassification estimator and the

calibration estimator, reduces the MSE of the base rate a most. The most restrictive type of

concept drift is known as prior probability shift (Moreno-Torres et al. 2012). We

investigate prior probability shift as a first step in understanding the effect of concept drift

on the output quality of official statistics based on machine learning algorithms. In

summary, our problem statement reads: how to reduce misclassification bias of classifier-

based statistics that are affected by prior probability shift?

1.4. Three Contributions and an Overview of the Article

Our article focuses on the production process of official statistics (where concept drift

arises) and contains three contributions.

The first contribution consists of analytical derivations of the bias and variance of the

misclassification estimator and calibration estimator as estimators of the base rate a. We

show that the calibration estimator is no longer unbiased when it is affected by prior

probability shift. Moreover, we provide a sharp lower bound for the absolute value of its

bias. Consequently, the conclusions drawn by Kloos et al. (2020) fail to hold when prior

probability shift arises.

The second contribution is that we show how the optimal choice for a correction method

depends on three parameters, (1) the model accuracy, (2) the class distribution (or class

imbalance) and (3) the size of the test set. By visualising how the decision boundary

depends on these three parameters, the article contributes to concept drift understanding

Lu et al. (2019). It complements concept drift quantification (Goldenberg and Webb 2019)

and concept drift adaptation (Gama et al. 2014).

Our third contribution is a practical recommendation on how to implement classification

algorithms in the production process of official statistics. The recommended approach is

based on the decision boundary as a function of the three parameters (1)–(3).

The remainder of the article is organised as follows. In Section 2, we introduce the

notation, enumerate our assumptions, and define the two popular methods to reduce

misclassification bias. Section 3 contains our analytical results on the bias and variance of

the misclassification estimator and the calibration estimator, assuming prior probability

shift. Subsequently, in Section 4, we numerically investigate the location and shape of the

decision boundary as a function of the three parameters (1)–(3). Based on our numerical
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results, we provide a practical recommendation on how to implement classification

algorithms in the production process of official statistics (Subsection 4.4). In Section 5, we

present our conclusions and suggest four promising directions for future research.

2. Methods

In the context of official statistics, the convention is to use the MSE to evaluate statistical

output quality, also when using statistical models (Buelens et al. 2016). Within that

context, our article focuses on prior probability shift. We recall that our problem statement

reads: how to reduce misclassification bias of classifier-based statistics that are affected by

prior probability shift? Admittedly, the answer depends on the assumptions made.

Therefore, we will describe our assumptions and their implications carefully in this

section.

In Subsection 2.1, we will introduce the notation and make three general assumptions.

Subsequently, we provide a precise definition of misclassification bias. In Subsection 2.2,

we will then provide two methods to reduce misclassification bias. Next, we distinguish two

cases. In the first case, described in Subsection 2.3, we assume that manually annotated data

are available in each publication period (month, quarter, or year). The assumption

corresponds to the double sampling scheme (Tenenbein 1970). In the second case, described

in Subsection 2.4, we drop the assumption on frequent availability of manually annotated

data. Instead, we consider prior probability shift (Moreno-Torres et al. 2012).

2.1. Notation and Three General Assumptions

Consider a population I of N objects (households, enterprises, aerial images, company

websites, or other text documents) and some target classification si (stratum) for each

object i [ I. In this article, we restrict ourselves to dichotomous categorical variables, that

is, si [ {0,1}, where category 1 indicates the category of interest. A compelling example

is the use of aerial images of rooftops to identify houses (the objects indexed by i ) with

solar panels (si ¼ 1) (Curier et al. 2018). We will now provide three general assumptions.

The first general assumption (G1). We assume that there is some (possibly time

consuming or otherwise expensive) way to retrieve the true category si for each i [ I: In

the example of identifying houses with solar panels, the true category could be obtained by

manually inspecting the aerial images and annotating them with a label indicating whether

the image contains a solar panel.

The second general assumption (G2). We assume that background variables or other

features in the data contain sufficient information to estimate si accurately, that is, with few

classification errors. More specifically, we assume that a machine learning model can be

trained of which the probabilities of correct classification are strictly larger than 0.5 for

each of the two classes. To that end, we proceed as follows. We draw a small random

sample from the population and determine the true category si for the objects in the

sample, see general assumption (G1). Then, the obtained data are split at random into two

sets. The first set is used for model selection and training, that is, to select a machine

learning model and to estimate its parameters. The second set is used to estimate the out-

of-sample prediction error of the model. It is referred to as the test set and it is denoted by
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Itest , I. The number of observations in the test set is denoted by n, which is very small

compared to N.

The third general assumption (G3). The machine learning model is then used to produce

an estimate ŝi of the true category to which object i belongs. We assume that the

probabilities of correct and incorrect classifications of the model depend on i, but only

through the true value of si. More precisely, we let pab be the probability that ŝi ¼ b given

si ¼ a; for a; b [ {0; 1}: This assumption specifies the classification error model as

introduced by Bross (1954), following the notation in Van Delden et al. (2016).

In addition, we adopt the notation ai;which is a 2-vector equal to (1,0) if si ¼ 1 and (0,1)

if si ¼ 0. The sum of all ai is the 2-vector of counts v. We then define the 2-vector a ¼ v=N

and denote its first component by a. The scalar a is called the base rate. The vector ai is

estimated by âi;which is obtained by replacing si by ŝi in the definition of ai. We obtain the

estimate v̂ of v as the sum of all âi. The resulting estimates of the vector a and the base rate

a are denoted by âm and âm to indicate that they are produced by the machine learning

algorithm. It is immediate that E½âm� ¼ PTa; where P is the matrix given by

P ¼
p11 p10

p01 p00

 !
: ð1Þ

In general, PTa – a; which indicates that âm is a biased estimator of the base rate a. The

statistical bias of âm as estimator of the base rate a is referred to as misclassification bias.

2.2. Two Methods to Reduce Misclassifiction Bias

A wide range of methods that reduce misclassification bias is available, see Chapter 2 in

Buonaccorsi (2010). Five of these correction methods were compared by Kloos et al.

(2020), who conclude that two correction methods are most promising. The first correction

method is the misclassification estimator âp. It is defined as the first component of the

2-vector

âp ¼ ðP̂
T Þ21âm; ð2Þ

in which P̂ is the row-normalised confusion matrix obtained from the test set, that is,

P̂ ¼
p̂11 p̂10

p̂01 p̂00

 !
¼

n11

n11 þ n10

n10

n11 þ n10

n01

n01 þ n00

n00

n01 þ n00

0
BB@

1
CCA; ð3Þ

in which nab denotes the number of objects i in the test set for which si ¼ a and ŝi ¼ b.

The second correction method is the calibration estimator âc. It is defined as the first

component of the 2-vector

âc ¼ Ĉâm; ð4Þ

in which Ĉ is the column-normalised confusion matrix obtained from the test set, that is,
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Ĉ ¼
ĉ11 ĉ10

ĉ01 ĉ00

 !
¼

n11

n11 þ n01

n10

n10 þ n00

n01

n11 þ n01

n00

n10 þ n00

0
BB@

1
CCA: ð5Þ

The entries of the matrix are referred to as the estimated calibration probabilities.

2.3. The Double Sampling Scheme

In the context of categorical data analysis, Tenenbein (1970) proposed the double

sampling scheme to improve categorical data that suffer from measurement error. His

proposal is to obtain accurate measurements for a small random subset of the data (as such

measurements will be expensive to obtain) and to correct population estimates using the

calibration estimator from Equation (4).

The context of machine learning corresponds to the context of categorical data analysis

as follows: the algorithmic predictions are the categorical data that suffer from

measurement error and the accurate (but expensive) measurements correspond to the

manually annotated data. In the context of machine learning, the double sampling scheme

corresponds to the following (Double sampling) assumption (D1): the test set Itest is a

random sample from the population I. If we assume (G1)-(G3) as well as (D1), then the

MSE of the calibration estimator âc is always (for any model applied to any data set)

smaller than that of the misclassification estimator âp (Kloos et al. 2020).

2.4. Prior Probability Shift

Official statistics on a particular social or economic indicator are often produced for a long

period of time and are published periodically (monthly, quarterly, or annually). The output

quality of indicators produced by NSIs is required to be high. A key issue in using

classification algorithms in the production process of official statistics is that the target

population I changes over time, including the background variables xi and the base rate a.

Therefore, the test set drawn at random from the population at one publication period

cannot be viewed as a random sample from the population at the next publication period. A

first solution would be to draw a new test set from the population (and then manually

annotate the data) at each publication period for as long as the statistical indicator is

produced. It corresponds to assumption (D1), see Subsection 2.3. However, due to cost

constraints, such frequent data annotation is infeasible in practice. Thus, we must relax

assumption (D1) and subsequently investigate the results achieved by Kloos et al. (2020)

in the context of official statistics.

Henceforth, we will retain the three general assumptions (G1)-(G3), and we will replace

assumption (D1) by prior probability shift. We follow the definition by Moreno-Torres

et al. (2012), which states that prior probability shift is captured by the following two

assumptions:

(P1) the class si causally determines the features xi that are used to model ŝi, and (P2) the

causal relation does not change between (at least) two consecutive months or quarters.

Assumption (P1) seems reasonable in many applications, three of which we include.

Moreno-Torres et al. (2012) specifically mention medical diagnosis, where the disease
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causally determines the symptoms. A second application is sentiment analysis (see

O’Connor et al. 2010), where the writer’s sentiment causally determines the words that the

writer chooses. A third application is land cover mapping (Costa et al. 2018), where the

mapped object causally determines the pixel values in the image. Assumption (P2) implies

that P(ŝijsi) does not change between consecutive months or quarters. However, the base a

is allowed to change, in contrast to the setup captured by assumption (D1), that is, the

double sampling scheme. The interpretation of assumption (P2) should be that the change

in the causal relation between consecutive months or quarters is sufficiently small to

neglect it. Assumption (P2) should not be repeated indefinitely, but only for a limited

period of time, say for a year.

In the setting of prior probability shift, we consider two different moments in time, say t1
and t2, with t1 , t2. The model parameters as introduced in Subsection 2.3 refer to their value

at time t1. For the value of the parameters at time t2 we add an apostrophe to the notation. For

example, a refers to the base rate at time t1 and a0 refers to the base rate at time t2.

The test set Itest , I has been obtained as a random sample fromthe target population I at time

t1. The aim is to estimate the base rate a0 at time t2 within population I0. We use predictions bsi 0si 0
0

for i0 [ I0 produced by the same model as the one trained at time t1. In particular, it holds that

ŝi
0 ¼ ŝi for i [ I > I0. Assumption (P2) reads that p 0ab ¼ pab, for a; b [ {0; 1}; so we use the

estimates p̂ab of pab based on Itest , I. It follows that â 0p ¼ P̂T
� �21

â 0m.

Prior probability shift can be quantified by the difference d :¼a 0 –a; which we will

briefly refer to as the drift. The double sampling scheme (see Subsection 2.3) corresponds

to the special case d ¼ 0. In Section 3, we analytically derive expressions for the MSE of

the misclassification estimator and calibration estimator when d – 0.

3. Analytical Results

In this section, we provide new analytical derivations of the bias and variance of (1) the

misclassification estimator and (2) the calibration estimator. The resulting expressions for

the bias and variance of the misclassification estimator are presented in Subsection 3.1.

Those of the calibration estimator are presented in Subsection 3.2. Moreover, new sharp

upper and lower bounds for the bias of calibration estimator are obtained.

The analytical derivations are rather long. Therefore, we have decided to include only a

description of the proof strategy in the main text. The full details of the derivations can be

found in the Appendix (Section 6).

3.1. Bias and Variance of the Misclassification Estimator

Expressions for the bias B and variance V of the misclassification estimator ap under drift d

can be derived easily from the expressions presented by Kloos et al. (2020). It follows that

B â 0p

h i
¼

1

n p00 þ p11 2 1
� �2

�
a 0

a
p11 1 2 p11

� �
2

1 2 a 0

a
p00ð1 2 p00Þ

� �
þ O

1

n2

� �
ð6Þ

¼
p00 2 p11

n p00 þ p11 2 1
� �þ d

n p00 þ p11 2 1
� �2

�
p11 1 2 p11

� �
a

þ
p00 1 2 p00

� �
1 2 a

� �
þ O

1

n2

� �
;
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which is increasing in d. We note that the bias might be negative when d ¼ 0, so the

absolute value of the bias might first decrease for increasing d. The variance of the

misclassification estimator equals

V â 0p

� 	
¼

1 2 a 0
� �2

V p̂00

� �
þ a 02V p̂11

� �
p00 þ p11 2 1
� �2

þ O
1

n2

� �
: ð7Þ

We neglect the terms of order 1=n2 and use Expressions (14) and (15) from the

Appendix to obtain

V â 0p

� 	
¼

1

n p00 þ p11 2 1
� �2

:
h
T þ 2dð p00 2 p11Þð p00 þ p11 2 1Þ

þ d2�
� p11ð1 2 p11Þ

a
þ

p00ð1 2 p00Þ

1 2 a

	i
þ O

1

n2

� �
; ð8Þ

in which T :¼ ð1–aÞp00ð1–p00Þ þ ap11ð1–p11Þ: If p00 $ p11; then the variance increases

as the drift d increases. If p00 , p11; then the effect of the drift is not immediately clear: a

larger value of d might result in a lower variance, depending on the values of a and d. In

Section 4, we will numerically analyse the behaviour of Vðâ 0pÞ as a function of a and d.

3.2. Bias and Variance of the Calibration Estimator

Kloos et al. (2020) describe their proof strategy as follows. The expressions for the bias

and variance of the calibration estimator are derived by conditioning on the base rate in the

target population. However, if the drift d is nonzero, the proof strategy chosen breaks

down. Therefore, we have adapted the proof strategy to hold for nonzero d, resulting in the

following expressions (see Expressions (9) and (10)).

Theorem 1. The bias of â 0c as estimator of a under drift d is given by

B â 0c

 �

¼ d
T

b 1 2 b
� �þ O

1

n2

� �
; ð9Þ

in which b :¼ ð1–aÞð1–p00Þ þ ap11 and T ¼ ð1–aÞp00ð1–p00Þ þ ap11ð1–p11Þ: With that

notation, the variance of â 0c, under drift d, is given by

Vðâ0cÞ ¼
að1 2 aÞ

n

T

bð1 2 bÞ
þ 2d p00 þ p11 2 1

� � p11ð1 2 p00Þ

b2
2

p00ð1 2 p11Þ

ð1 2 bÞ2

� ��

þd2 p00 þ p11 2 1
� �2 p11ð1 2 p00Þ

b3
þ

p00ð1 2 p11Þ

ð1 2 bÞ3

� ��
þ O

1

n2

� �
: ð10Þ

Proof strategy. The calibration estimator at time t2 is given by

â 0c ¼ â 0mĉ11 þ ð1 2 â 0mÞĉ10. We first show that (the square of) the calibration estimator

âm (at time t1) and (the square of) ĉab are approximately uncorrelated. We use the results

derived by Kloos et al. (2020) for the expectation and variance of the product âmĉab. We

then compute the expectation and variance of ĉab, which is a ratio of two random variables.

Moreover, the ratio has the form X=ðX þ YÞ; so the numerator and denominator are not
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independent. To compute the expectation (and variance) of such a ratio, we first choose a

suitable random variable to condition on, then we need to apply Taylor’s theorem to

approximate the expectation of a ratio, and finally we apply the law of total expectation.

Consequently, we assume that (the square of) â 0m (at time t2) and (the square of) ĉab are

approximately uncorrelated as well. We then derive the expressions for the bias and

variance of the calibration estimator â 0c as estimator of the base rate a 0. The full proof can

be found in the Appendix.

In contrast to the misclassification estimator, the calibration estimator is unbiased if

d ¼ 0. However, the calibration estimator may be biased strongly if the drift d is nonzero.

Using Expression (9), we are able to derive analytically the following sharp upper bound

and sharp lower bound for the absolute value of the bias in terms of the absolute value of

the drift.

Theorem 2. The absolute value of the bias of â 0c as estimator of a 0 ¼ a þ d is bounded

from above by jdj. If p00 # p and p11 # p for some 1/2 # p # 1, then the absolute value

of the bias is at least 4p(1 – p)jdj.

Proof strategy. Theorem 1 states that the quadratic approximation of B â 0c

 �

(in p00 and p11)

is a linear function in d. The slope of that linear function is decreasing in both p00 and p11,

which can be shown by computing the partial derivatives of that slope with respect to p00

and p11. The statement of Theorem 2 follows immediately. The full proof can be found in

the Appendix.

In summary, the bias of the misclassification estimator is of order 1/n while that of the

calibration estimator does not decrease for increasing n. The implication is that the

conclusions drawn by Kloos et al. (2020), assuming the double sampling scheme (see

assumption (D1) in Subsection 2.3), do not hold when assuming nonzero prior probability

shift (see assumptions (P1) and (P2) in Subsection 2.4). More specifically, if the drift d is

nonzero, our analytical results indicate that a decision boundary arises that depends on the size

n of the test set. The aim of Section 4 is to investigate the properties of the decision boundary.

4. Numerical Results

The analytical results from Section 3 indicate that, in case d is nonzero, a decision

boundary arises (between preferring (1) the misclassification estimator and (2) the

calibration estimator to reduce misclassification bias). The aim of this section is to

understand that decision boundary and use it to provide a practical recommendation on

machine learning applications in official statistics. The latter is the main focus of

Subsection 4.3. In advance, we investigate the bias of the calibration estimator more

closely in Subsection 4.1 and the difference in MSE between the two estimators in

Subsection 4.2. To facilitate the use of our practical recommendation, we include a brief

example in Subsection 4.4.

4.1. Bias of the Calibration Estimator

We start plotting T/(b(1 – b)), the absolute value of the slope of the bias of the calibration

estimator, as a function of the probability of correct classification for different values of a,

that is, the base rate in the test set. For visualisation purposes, we restrict the function to
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p00 ¼ p11, parameterised by p. The results are depicted in Figure 1, including the

theoretical lower bound stated in Theorem 2. The slope of the bias as a function of p is

decreasing from 1 at p ¼ 0.5 to 0 at p ¼ 1. The smaller the value of a, the later the function

drops to 0. The reason is that the drift d is defined as an absolute number and therefore it is

relatively larger for smaller values of a. From this observation we may conclude that the

impact of (an absolute) drift d on the bias of â 0c increases if a is further away from 0.5, that

is, if the so-called class imbalance increases.

4.2. Difference in Mean Squared Error

Subsequently, we investigate the difference Dðâ 0p; â
0
cÞ :¼ MSEðâ 0pÞ2 MSE â 0c

� �
between the

MSE of the misclassification estimator and that of the calibration estimator. The value of

Dðâ 0p; â
0
cÞ as a function ofd is depicted in Figure 2 for each possible combination ofa [ {0.05,

0.3}, n [ {50,1000} and p00, p11 [ {0.6, 0.7}. Note that the drift d ranges from 2a to 1 2 a,

because a0 ¼ a þ d must lie between 0 and 1. We report the following four observations.

First, the difference is positive if d ¼ 0 in any of the line plots, which corresponds to the main

conclusion drawn by Kloos et al. (2020). Second, when n is sufficiently large (thin lines), the

difference between the line plots are small. The reason is that the contribution of the variance

terms is negligible compared to that of the squared bias of â 0c;which does not depend on n (see

Theorem 1). Third, for highly imbalanced data sets combined with small test sets, that is, a

close to 0 and n small (thick dash-dotted lines), the variance of â 0p dominates if either p00 is

close to 0.5 or p11 is close to 0.5. As a result, the calibration estimator has the lowest MSE,

independent of the magnitude of the drift d. Fourth, if the class distribution is relatively
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Fig. 1. The slope of the bias of the calibration estimator â0c as a function of the drift d is equal to –T/(b(1–b)),

which is strictly negative. The absolute value of that slope is plotted against the probability of correct

classification p, assuming that p00 ¼ p11 ¼ p, for four different values of a. The solid black line depicts the

theoretical lower bound (see Theorem 2) for the slope of the bias.
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balanced (dotted lines), the difference D â 0p; â
0
c

� 	
will become negative if d increases, but the

intersection moves farther away from d ¼ 0 as n decreases.

4.3. The Decision Boundary

Here, we numerically compute the unique positive value d* (if it exists) at which the MSE

of the misclassification and calibration estimator are identical. That is, we collect and

reorganise the points of intersection Dðâ 0p; â
0
cÞ ¼ 0 as discussed in Subsection 4.2. We set

p00 ¼ p11 and view Dðâ 0p; â
0
cÞ as a map from R2 to R by fixing a and n and using d and

p :¼ p00 ¼ p11 as variables. Then, we define d*( p) as the positive solution d . 0 of the

equation Dðâ 0p; â
0
cÞ ¼ 0 for p fixed, if the solution exists. Otherwise, we set d*( p) ¼ 1,

which occurs when a, n, and p are all small. For an example, see the thick dash-dotted line

(a ¼ 0.05 and n ¼ 50) in the top left panel ( p00 ¼ p11 ¼ 0.6) in Figure 2. The obtained

function p |! d*( p) is shown in Figure 3.
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Fig. 2. The difference Dðâ0p; â
0
cÞ between the MSE of the misclassification estimator â0p and that of the

calibration estimator â0c, plotted as a plotted as a function of the drift d for each possible combination of a [

{0.05, 0.3}, n [ {50, 1000} and p00, p11 [ {0.6, 0.7}. Note that the drift d ranges from 2a to 12a, because

a0 ¼ a þ d must lie between 0 and 1.
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Interestingly, the result is a decreasing function of p. At first sight, the result might seem to

contradict the result obtained in the first analysis, cf. Figure 1. There, the absolute slope of

the bias as function of d decreases with increasing p. Hence, the MSE of â 0c increases more

slowly as a function of d with increasing p. However, the result in Figure 3 follows from the

fact that the difference in variance between â 0c and â 0prapidly decreases as p increases.

We stress that the lines in Figure 3 can be interpreted as decision boundaries. Each

statistical indicator that is based on a classification algorithm plots somewhere in the

( p, d)-plane depicted in Figure 3. If the plot of the indicator in the ( p, d)-plane ends up

above the decision boundary (which depends on a and n), then the misclassification

estimator should be preferred over the calibration estimator to reduce misclassification

bias. Otherwise, the calibration estimator should be preferred. In Subsection 4.4 below, we

describe this approach in more detail.

4.4. The Recommended Approach and an Illustrative Example

The analysis of the decision boundary, in Subsection 4.3 above, shows that the decision for

an optimal correction method depends on the true value of the drift d. In practice, the drift

d cannot be estimated before estimating a and a0, but an official statistician will use his or

her intuition about the possible size of d. We therefore recommend the following

approach.

First, estimate p00 and p11 using the test set of size n and estimate a (at time t1) by âc.

Then, use the analytical results in Section 3 to compute d* as depicted in Figure 3. Finally,

consider if d could be larger than d*. If so, use the misclassification estimator â 0p to

estimate a 0. Otherwise, use the calibration estimator â 0c to estimate a 0.
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Fig. 3. The unique positive value d* (if it exists) for which D(â0p, â0c) ¼ 0, as a function of the probability of

correct classication p, assuming p00 ¼ p11 ¼ p. The lines should be interpreted as decision boundaries: below

each of these lines the calibration estimator is preferred, while above each of the lines the misclassication

estimator is preferred.
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We illustrate the recommended approach by including the following example. Consider

two populations I (population at time t1) and I0 (population at time t2) that contain at least

one million objects each. Draw a random sample Itest , I of size n ¼ 500 from the

population at time t1. Based on that random sample, referred to as the test set, we estimate

the probabilities of correct classification. We assume that they result in p̂00 ¼ 0.7 and

p̂11 ¼ 0.8. Following the recommendation by Kloos et al. (2020), we apply the calibration

estimator âc to population I and obtain an estimate of a (at time t1). We assume that the

result equals âc ¼ 0.2.

Next, we estimate the MSE of â 0p at time t2 by plugging in the values of n, âc, p̂00, and

p̂11 into Expressions (6) and (8), yielding

dMSEMSE â 0p

� 	
< V̂ â 0p

� 	
< 0:0085�d2 2 0:0008�dþ 0:0016: ð11Þ

In the above computation, we have neglected terms of order 1=n2 and smaller. Similarly,

we find

dMSEMSE â 0c
� �

< 0:694796�d2 þ 0:000356�dþ 0:00267: ð12Þ

It follows that

D̂ â 0p; â
0
c

� 	
< 20:686296�d2 2 0:001156�dþ 0:001333: ð13Þ

Straightforward computation results in d* < 0.043 (and the other root of (13) equals

20.045).

Thus, in the example above, our recommendation is to use the calibration estimator if d

can be assumed to lie between 20.045 and 0.043. Otherwise, we recommend to use the

misclassification estimator. Although neither the true value nor an estimate of d is known a

priori, we believe that computing d* (and estimating Dðâ 0p; â
0
cÞ as function of d) provides

an official statistician with sufficient information to select one of the two bias correction

methods in practice.

We conclude this section by two remarks. Our first remark is that one should always

compute the (estimated) bias and variance of the applied estimator, for they might still be

high, for example, when n and p are small. Our second remark is that the recommended

approach should be adopted if the misclassification estimator and calibration estimator are

the only two estimators under consideration. We admit that there may exist other

estimators that might reduce misclassification bias even further.

5. Conclusions and Discussion

In this article, we investigated the statistical output quality of official statistics that are

based on classification algorithms. The problem statement reads: how to reduce

misclassification bias of classifier-based statistics that are affected by prior probability

shift? In our research, we focused on two bias correction methods, namely (1) the

misclassification estimator and (2) the calibration estimator. So far, the results known for

these two estimators under the double sampling scheme (see Kloos et al. 2020) fail to hold
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under prior probability shift. We have examined the MSE of the two estimators under prior

probability shift, resulting in the following three contributions.

The first contribution of the article consists of expressions of the bias and variance of the

two estimators when assuming prior probability shift (see Section 3). They extend the

derivations by Kloos et al. (2020), for we obtain their results by setting the drift parameter

d to 0. Moreover, our analytical results show that (1) the calibration estimator is no longer

unbiased and that (2) the quadratic approximation (in p00 and p11) to the bias is a linearly

decreasing function of the drift d and does not depend on the test set size n. The second

contribution of the article is that we present a decision boundary for choosing between the

two estimators (see Section 4). The decision boundary depends on (a) the model accuracy

measured by p11 and p00, (b) the class distribution measured by a and (c) the test set size n.

This specific result provides a better understanding of the output quality of official

statistics based on machine learning algorithms. The third contribution of the article is our

practical recommendation for choosing between the two estimators in practice (see

Subsection 4.4).

The main conclusion of the article, enveloping the three contributions, is that if either

(A) the performance of the classifier (in terms of p00 and p11) is relatively low or (B) the

drift d is close enough to 0, then the calibration estimator should be preferred over the

misclassification estimator. In earlier studies, this distinction has never been made.

Moreover, our results show the impact of the size and frequency of the training and test data

sets on output quality. Essentially, we show that an official statistician should be careful

when applying the calibration estimator to time series data, unless training and test data in

each publication period are available to retrain the classifier and adapt it to concept drift.

In the event that concept drift adaptation is considered too expensive, given particular

cost constraints, the main conclusion (see above) implies that some minimal classification

accuracy is required in order to use the misclassification estimator. In general, more

labelled training data have to be created to guarantee higher classification accuracy. In

other words, NSIs should be vigilant when evaluating the cost efficiency of implementing

machine learning algorithms in the production process of official statistics. In the end, a

substantial amount of high quality annotated data have to be created manually and

consistently over a long period of time, which requires long-term investments in data

analysts and domain experts.

Finally, our results suggest four directions for future research. First, the robustness of

classifier-based estimators should also be investigated for other types of concept drift,

starting with the less restrictive type of prior probability shift as defined by Webb et al.

(2016). Second, it might be worthwhile to examine methods for concept drift adaptation

that are based partly on unlabelled data, by carefully incorporating changes in the

distribution of P(X). Third, combinations or ensembles of different estimators require

further research. We believe that a well-chosen combination of estimators will increase the

overall robustness of classifier-based estimators under concept drift. Fourth, we

recommend to investigate applications of machine learning in official statistics that are

more complicated than applications involving the base rate. An ambitious goal is to

understand the effect of misclassification bias and concept drift in applications of machine

learning to panel-based surveys, such as estimating panel attrition (Liu 2020) or

nonresponse adjustments (Buskirk and Kolenikov 2015).
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6. Appendix

This appendix contains the proofs of the theorems presented in this article. First, we

remark that Kloos et al. (2020) have shown that p̂00 and p̂11 are uncorrelated, and that the

variance of p̂11 is equal to

Vðp̂11Þ ¼
p11ð1 2 p11Þ

na
1þ

1 2 a

na

� �
þ O

1

n3

� �
: ð14Þ

Similarly, the variance of p̂00 is given by

Vðp̂00Þ ¼
p00ð1 2 p00Þ

nð1 2 aÞ
1þ

a

nð1 2 aÞ

� �
þ O

1

n3

� �
: ð15Þ

The proof of Theorem 1 relies on the following lemma.

Lemma 1. The expectation and variance of ĉ11 are given by

E ĉ11½ � ¼
ap11

b
and V ĉ11ð Þ ¼

að1 2 aÞ

n

p11ð1 2 p00Þ

b3
; ð16Þ

in which b ¼ ð1 2 aÞð1 2 p00Þ þ ap11 as before. Similarly, the expectation and variance

of ĉ10 are given by

E ĉ10½ � ¼
að1 2 p10Þ

1 2 b
and V ĉ10ð Þ ¼

að1 2 aÞ

n

p00ð1 2 p11Þ

ð1 2 bÞ3
: ð17Þ

Moreover, the covariance of ĉ11 and ĉ10 satisfies Cðĉ11; ĉ10Þ ¼ Oð1=n2Þ:

Proof of Lemma 1. We will first compute the expectation and variance of ĉ11.

The derivations of the expectation and variance of ĉ10 are similar to those of ĉ11 and are

therefore not included. At the end, we show that the covariance of ĉ11 and ĉ10 is equal to 0.

Expectation. To compute the expectation of ĉ11, we condition on n1þ:¼ n11 þ n10. Note

that n0þ ¼ n – n1þ is known as soon as n1þ is known. It holds that ĉ11 j n1þ
d
¼ X/(Xþ Y),

with X , Bin(n1 þ ,p11) and Y , Bin(n0 þ , 1 – p00). We introduce the random variable

bþ:¼ n1þp11 þ n0þ(1 – p00). A second-order Taylor approximation then yields

E½ĉ11jn1þ� ¼
n1 þ p11

bþ
2

n0þð1 2 p00Þ

b3
þ

n1 þ p11ð1 2 p11Þ þ
n1 þ p11

b3
þ

n0 þ p00ð1 2 p00Þ

þ O
1

n2

� �
¼

n1 þ p11

bþ
þ p11ð1 2 p00Þð p00 þ p11 2 1Þ

n0 þ n1þ

b3
þ

þ O
1

n2

� �
: ð18Þ
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We then introduce the random variable Z , Bin(n, a) (that is, Z
d
¼ n1þÞ:Applying a Taylor

approximation to the first term of Expression (18) yields

E
n1 þ p11

bþ

� �
¼ E

p11Z

nð1 2 p00Þ þ ð p00 þ p11 2 1ÞZ

� �

¼
ap11

b
2

1

2

2np11ð1 2 p00Þð p00 þ p11 2 1Þ

n3b3
nað1 2 aÞ þ O

1

n2

� �

¼
ap11

b
2

að1 2 aÞ

n

p11ð1 2 p00Þð p00 þ p11 2 1Þ

b3
þ O

1

n2

� �
: ð19Þ

Next, apply a Taylor approximation to (the stochastic part of) the second term in (18):

E
Zðn 2 ZÞ

b3
þ

" #
¼

að1 2 aÞ

nb3
þ O

1

n2

� �
: ð20Þ

The law of total expectation, combining (19) and (20), results in

E ĉ11½ � ¼
ap11

b
þ O

1

n2

� �
: ð21Þ

Similarly, it can be shown that

E ĉ10½ � ¼
að1 2 p11Þ

1 2 b
þ O

1

n2

� �
; ð22Þ

Variance. We compute Vðĉ11Þ as E ĉ2
11


 �
2 E ĉ11½ �2, because we have already derived an

expression for the latter term. The random variable ĉ2
11jn1þ is distributed as X 2=ðX þ YÞ2;

with X and Y as before. Setting f ðx; yÞ ¼ x2=ðxþ yÞ2 yields the partial derivatives (twice in

x and twice in y)

f xxðx; yÞ ¼
2y2 2 4xy

ðxþ yÞ4
; and f yyðx; yÞ ¼

6x2

ðxþ yÞ4
: ð23Þ

It follows, neglecting terms of higher order, that

E ĉ2
11jn1þ


 �
<

n2
1 þ p2

11

b2
þ

þ
n2

0þð1 2 p00Þ
2 2 2n1þn0þp11ð1 2 p00Þ

b4
þ

n1þp11ð1 2 p11Þ þ
3n2

1 þ p2
11

b4
þ

n0þp00ð1 2 p00Þ ¼
n2

1 þ p2
11

b2
þ

þ p11ð1 2 p00Þ

n1þn0þ nð1 2 p00Þð1 2 p11Þ þ n1þð p00 þ p11 2 1Þð2p11 þ 1Þ
� �

b4
þ

: ð24Þ

Again, let Z , Bin(n, a) and consider the function f (z) ¼ z 2/(A þ Bz)2, with A ¼

nð1–p00Þ and B ¼ ðp00 þ p11 –1Þ: The partial derivative twice in z equals

f zzðzÞ ¼
2A2 2 4ABz

ðAþ BzÞ4
: ð25Þ
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The conditional expectation then equals (up to terms of order 1=n2Þ

E
n2

1þp2
11

b2
þ

" #
¼ E

p2
11Z 2

ðAþ BZÞ2

� �
¼

a2p2
11

b2

þ p2
11

n2ð1 2 p00Þ
2 2 2n2a 1 2 p00

� �
p00 þ p11 2 1
� �

n4b4
nað1 2 aÞ þ O

1

n2

� �

¼ c2
11 þ

að1 2 aÞ

n

p2
11 1 2 p00

� �
1 2 p00 2 2a p00 þ p11 2 1

� �� �
b4

þ O
1

n2

� �
: ð26Þ

Apply a Taylor approximation to (the stochastic part of) the second term in (24) to obtain

að1 2 aÞ

n

p11 1 2 p00

� �
ð1 2 p00Þð1 2 p11Þ þ a p00 þ p11 2 1

� �
ð2p11 þ 1Þ

� �
b4

þ O
1

n2

� �
:

ð27Þ

At last, combining (26) and (27), and subtracting (21) squared, the variance of ĉ11 can be

expressed as

V ĉ11ð Þ ¼
að1 2 aÞ

n

p11ð1 2 p00Þ

b3
þ O

1

n2

� �
: ð28Þ

Similarly, it can be shown that

V ĉ10ð Þ ¼
að1 2 aÞ

n

p00ð1 2 p11Þ

ð1 2 bÞ3
þ O

1

n2

� �
: ð29Þ

Covariance. We compute the covariance of ĉ11 and ĉ10 as C(ĉ11,ĉ10) ¼ E[ĉ11ĉ10]-E[ĉ11]

E[ĉ10]. It remains to compute E[ĉ11ĉ10]. The strategy is similar to that of the computation

of E ĉ2
11


 �
, so the details are not included. In brief, we again condition on n1þ and note that

ĉ11ĉ10jn1þ is distributed as Xðn1þ � XÞ=ððX þ YÞðn � ðX þ YÞÞ; with X and Y as before.

Apply a second-order Taylor approximation to compute the conditional expectation

E[ĉ11ĉ10j n1þ]. Then, use that n1þ is distributed as Z , Bin(n, a) and apply the law of total

expectation to find

E ĉ11ĉ10½ � ¼
að1 2 aÞp11ð1 2 p11Þ

bð1 2 bÞ
þ O

1

n2

� �
: ð30Þ

Combined with expressions (21) and (21) this concludes the proof of Cðĉ11; ĉ10Þ ¼

Oð1=n2Þ:

We will now provide the proof of Theorem 1 below.

Proof of Theorem 1. We will compute the bias and variance of the calibration estimator â 0c
as estimator of the base rate a 0 at time t2.

Bias. Recall that the calibration estimator âc at time t1 is given by

âc ¼ âmĉ11 þ ð1 2 âmÞĉ10: ð31Þ
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The expectation of the product âmĉ11 has been derived by Kloos et al. (2020) and equals

E½âmĉ11� ¼ ap11: ð32Þ

The expectation of âm equals E½âm� ¼ ð1 2 aÞð1 2 p00Þ þ ap11 ¼: b: Lemma 1 then

implies

E âmĉ11½ � ¼ E âm½ �E ĉ11½ � þ O
1

n2

� �
: ð33Þ

Hence, âm and ĉ11 are approximately uncorrelated. Similarly, âm and ĉ10 are

approximately uncorrelated as well.

Therefore, we assume that â 0m (at time t2) and ĉab (at time t1), for a; b [ {0; 1}; are also

approximately uncorrelated. Hence,

E â 0c

 �

¼ E â 0m

 �

E ĉ11½ � þ E 1 2 â 0m

 �

E ĉ10½ �: ð34Þ

We introduce the notation b 0:¼ ð1–a 0Þð1–p00Þ þ a 0p11 ¼ E â 0m

 �

. Substituting

a0 ¼ a þ d and neglecting terms of order 1/n 2 yields

E â 0c

 �

¼ b 0
ap11

b
þ ð1 2 b 0Þ

að1 2 p11Þ

1 2 b

¼ ap11 þ dð p00 þ p11 2 1Þ
ap11

b
þ að1 2 p11Þ þ dð1 2 p00 2 p11Þ

að1 2 p11Þ

1 2 b

¼ aþ
da

bð1 2 bÞ
ð1 2 bÞp11 2 bð1 2 p11Þ
� �

ð p00 þ p11 2 1Þ

¼ aþ
dað1 2 aÞðp00 þ p11 2 1Þ2

bð1 2 bÞ
: ð35Þ

It is straightforward to check that

bð1 2 bÞ2 að1 2 aÞðp00 þ p11 2 1Þ2 ¼ ap11ð1 2 p11Þ þ ð1 2 aÞp00ð1 2 p00Þ ¼: T:

ð36Þ

Hence,

E â 0c

 �

¼ aþ d
bð1 2 bÞ2 T

bð1 2 bÞ

� �
þ O

1

n2

� �
¼ a 0 2 d

T

bð1 2 bÞ
þ O

1

n2

� �
: ð37Þ

Thus, we may conclude that the bias of â 0c as estimator of a 0 is equal to

B½â 0c� ¼ d
T

bð1 2 bÞ
þ O

1

n2

� �
: ð38Þ

Variance. The variance of the product âmĉ11 has been derived by Kloos et al. (2020) and

equals

Vðâmĉ11Þ ¼
b

n

ap11

b
1 2

ap11

b

� �
þ O

1

n2

� �
¼

að1 2 aÞ

n

p11ð1 2 p00Þ

b
þ O

1

n2

� �
: ð39Þ

Meertens et al: Statistics Based on Machine Learning Algorithms 503



Lemma 1 then implies that

Vðâmĉ11Þ ¼ E âm½ �ð Þ2Vðĉ11Þ þ O
1

n2

� �
: ð40Þ

Moreover, note that

E½ðâ 0mÞ
2� ¼ E½â 0m�

2 þ Vðâ 0mÞ ¼ E½â 0m�
2 þ O

1

N

� �
: ð41Þ

The above (combined with n ! N) proves that

E½ðâ 0mĉ11Þ
2�2 E½ðâ 0mÞ

2�E½ðĉ11Þ
2� ¼ O

1

n2

� �
: ð42Þ

Thus, we conclude that (1) â2
m and ĉ2

11 are approximately uncorrelated. Similarly, it can

be shown that (2) â2
m and ĉ2

10 are approximately uncorrelated and that (3) âmð1– âm) and

ĉ11ĉ10 are approximately uncorrelated.

Therefore, we assume that (1)-(3) still hold when âm is replaced by â 0m. These three

assumptions, combined with Expression (41), imply that

Vðâ 0cÞ ¼ Vðâ 0mĉ11Þ þ V 1 2 â 0m
� �

ĉ10

� �
þ Cðâ 0mĉ11; ð1 2 â 0mÞĉ10Þ

¼ E â 0m

 �2

Vðĉ11Þ þ E 1 2 â 0m

 �2

V ĉ10ð Þ þ E â 0m

 �

E 1 2 â 0m
� �
 �

Cðĉ11; ĉ10Þ; ð43Þ

where we have neglected terms of order 1/N and 1/n 2. We substitute E â 0m

 �

¼ b 0 in the

above and use the expressions for Vðĉ11Þ, V ĉ10ð Þ and Cðĉ11; ĉ10Þ from Lemma 1. We may

conclude that

Vðâ 0cÞ ¼
að1 2 aÞ

n
b 02

p11 1 2 p00

� �
b3

þ ð1 2 b 0Þ2
p00ð1 2 p11Þ

ð1 2 bÞ3

� �
þ O

1

n2

� �
: ð44Þ

Substituting a 0 ¼ aþ d yields

Vðâ 0cÞ ¼
að1 2 aÞ

n

T

bð1 2 bÞ
þ 2dð p00 þ p11 2 1Þ

p11ð1 2 p00Þ

b2
2

p00ð1 2 p11Þ

ð1 2 bÞ2

� ��

þ d2ð p00 þ p11 2 1Þ2
p11ð1 2 p00Þ

b3
þ

p00ð1 2 p11Þ

ð1 2 bÞ3

� ��
þ O

1

n2

� �
: ð45Þ

The expression above completes the derivation of the variance of the calibration

estimator under prior probability shift. This concludes the proof of Theorem 1.

To prove the Theorem 2, we need the following lemma.

Lemma 2. The slope of the absolute value of the quadratic approximation (in p00 and p11)

to the bias of the calibration estimator as a function of the absolute value jdj of the prior

probability shift is decreasing in p00 and p11 for all 1=2 # p00 # 1 and 1=2 # p11 # 1:
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Proof. We introduce the notation x ¼ p00; y ¼ p11 and b ¼ bðx; y;aÞ ¼ ð1–aÞð1–xÞ

þay: We then define the functions

f x; y;a
� �

¼
ð1 2 xÞy

b
and g x; y;a

� �
¼

xð1 2 yÞ

1 2 b
: ð46Þ

The function h ¼ f þ g then satisfies jdj z h( p00, p11, a) ¼ jB[â 0c] j up to terms of order

1/n 2. We will examine the sign of the partial derivatives of h with respect to x and y, which

we denote by hx and hy, respectively. To that end, we compute the partial derivatives of f

and g, giving

f xðx; y;aÞ ¼
2ay2

b2
and gxðx; y;aÞ ¼

að1 2 yÞ2

ð1 2 bÞ2
: ð47Þ

Hence, we obtain

hxðx; y;aÞ ¼
a

b2ð1 2 bÞ2
� 1 2 y

� �
b

� �2
2 y 1 2 b

� �� �2
� 	

: ð48Þ

Setting this to zero yields (1 2 y)*b ¼ y(1 2 b) or (1 2 y)b ¼ 2y(1 2 b). As 1/2 # x,

y # 1 and 0 , a , 1 it follows that 1 2 x # b # y with equality if and only if 1 2 x ¼ y,

that is, x ¼ y ¼ 1/2. It implies that (1 2 y)b is nonnegative and that y(1 2 b) is strictly

positive, hence the Equation (1 2 y)b ¼ 2y(1 2b) has no solution. Moreover, it implies

that (1 2 y)b # y(1 2b) with equality only at x ¼ y ¼ 1/2. From this we may conclude

that h is decreasing in x for all 1/2 , x # 1 and that hxð
1
2
; ·; ·Þ ¼ 0:

The partial derivatives hx and hy can be related through a simple symmetry argument: it

holds that b ( y, x, a) ¼ 1 – b(x, y, 1 – a), which implies that h( y, x, a) ¼ h(x, y, 1 – a).

Consequently, it holds that hy(·, ·, a) ¼ hx(·, ·, 1 – a). It follows that h is also decreasing in

y for all 1/2 , y # 1 and that hy(·,1
2
,·) ¼ 0.

We conclude that the slope h of the quadratic approximation (in p00 and p11) to the bias

of the calibration estimator under prior probability shift is decreasing in p00 and p11 for

1=2 , p00; p11 , 1; attaining its global maximum at p00 ¼ p11 ¼ 1=2; where h ¼ 1 and

jB½â0c�j ¼ jdj:

The statement of Theorem 2 is an immediate consequence of the lemma above.

Proof of Theorem 2. Lemma 2 implies that jB[â 0c]j# jdj and that jB[â 0c]j$ jdj · h( p, p, a).

To simplify the latter, observe that T ( p, p, a) ¼ p(1 2 p) and that 0 # 1 2 p , b( p, p,

a) , p # 1, using that 1/2 # p # 1 and 0 , a , 1. It follows that b(1 2 b) # 1/4,

which completes the proof.
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