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Article

Zero and One Inflated Item Response Theory Models

for Bounded Continuous Data

Dylan Molenaar

University of Amsterdam

Mariana Cúri and Jorge L. Bazán

Universidade de São Paulo (USP)

Bounded continuous data are encountered in many applications of item

response theory, including the measurement of mood, personality, and response

times and in the analyses of summed item scores. Although different item

response theory models exist to analyze such bounded continuous data, most

models assume the data to be in an open interval and cannot accommodate data

in a closed interval. As a result, ad hoc transformations are needed to prevent

scores on the bounds of the observed variables. To motivate the present study,

we demonstrate in real and simulated data that this practice of fitting open

interval models to closed interval data can majorly affect parameter estimates

even in cases with only 5% of the responses on one of the bounds of the observed

variables. To address this problem, we propose a zero and one inflated item

response theory modeling framework for bounded continuous responses in the

closed interval. We illustrate how four existing models for bounded responses

from the literature can be accommodated in the framework. The resulting zero

and one inflated item response theory models are studied in a simulation study

and a real data application to investigate parameter recovery, model fit, and the

consequences of fitting the incorrect distribution to the data. We find that

neglecting the bounded nature of the data biases parameters and that mis-

specification of the exact distribution may affect the results depending on the

data generating model.

Keywords: item response theory; bounded data; nonnormal data; Bayesian statistics

Bounded continuous dependent variables are common in various applications

of item response theory (IRT). Examples include the visual analogue scales in the

measurement of personality (Ferrando, 2001; Kuhlmann et al., 2017), mood (e.g.,

Barrows & Thomas, 2018; Cella & Perry, 1986), depression (e.g., Luria, 1975;

May & Pridmore, 2020), and quality of life (e.g., Guyatt et al., 1987; Hauser &
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Walsh, 2008), in which respondents indicate their item response on a line segment.

Furthermore, item response times on cognitive test items with item-level deadlines

(as advocated by, e.g., Goldhammer [2015]) can be considered bounded contin-

uous responses, and finally, summed dichotomous item scores or ordinal item

scores can (pragmatically) be considered as bounded and approximately contin-

uous in some situations (see Dolan, 1994; Rhemtulla et al., 2012).

Similarly as in IRT models for categorical responses, the key of IRT models

for bounded continuous responses is to model the expected value of the item

response variable for a given person as a function of the underlying person and

item parameters. In this article, we focus on bounded IRT models that use a

monotonic and S-shaped form for this function. This is similar to the well-known

one- and two-parameter logistic models for dichotomous data (Birnbaum, 1968),

but it is different from unfolding IRT models (Coombs, 1964; Roberts et al.,

2000; see Noel, 2014, for an approach to bounded continuous IRT modeling) that

adopt a nonmonotonic form for the response function and censored factor anal-

ysis (Muthen, 1989) that adopt a monotonic step function.

One of the first attempts to formulate an IRT model for bounded continuous

responses has been by Samejima (1973; see also Ferrando, 2002). Although

different special cases exist in this general model, in the most popular and

practically feasible special case, the SB distribution (Johnson, 1949) is assumed

for the conditional distribution of the responses. Other bounded IRT models have

been proposed based on the beta distribution (Noel & Dauvier, 2007; see also

Revuelta et al., 2022, for a related approach in the common factor model),

the simplex distribution (Flores et al., 2020), the truncated normal distribution

(Müller, 1987), and a distribution based on a truncated exponential function

(Verhelst, 2019). In addition, an unbounded normal distribution has been pro-

posed (Ferrando, 2009; Mellenbergh, 1994; Thissen et al., 1983), which is equiv-

alent to the common linear factor model for the continuous responses (Jöreskog,

1971; Spearman, 1904).

This article is motivated by two observations about conventional bounded

IRT models: First, interestingly, despite the importance of bounded continuous

data in the applications mentioned above, the existing IRT approaches have

mostly focused on responses in the open interval (0, 1), but not on responses in

the closed interval [0, 1]. Exceptions are the approaches by Verhelst (2019) and

Müller (1987) however; unfortunately, these models are challenging to esti-

mate (see Verhelst, 2019) hampering practical applications. As a result, if

respondents use the end points of the continuous measurement scale,

which—at least in our experience—happens often, the data need to be arbitra-

rily transformed to prevent the 0 and 1 scores in the dataset to allow the

application of bounded IRT models for the open interval (see, e.g., Noel &

Dauvier, 2007). We will show below that this practice can majorly affect the

parameter estimates of the bounded response model. Second, although there are
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different models available for bounded continuous responses, due to the lack of

a common modeling framework, these models have not been compared directly

in terms of parameter recovery, robustness to misspecification, model fit, and

real data applications.

Therefore, to address the two issues above, we present a zero and one inflated

IRT modeling framework for bounded continuous responses. In this framework,

it is straightforward to accommodate the existing bounded IRT models above. In

addition, a general Bayesian estimation procedure is proposed to fit and compare

the different models. The outline is as follows: First, we review the conventional

bounded IRT models and derive a general zero and one inflated approach to

accommodate closed interval responses. Next, we show in a real dataset and a

simulated dataset that only relatively mild zero or one inflation can already

substantially affect the person and item parameter estimates in the conventional

bounded IRT models. We then present the Bayesian procedure to estimate the

zero and one inflated bounded IRT models and to study model fit. After that, we

present the results of two simulation studies to investigate parameter recovery

and examine how misspecification of the conditional distribution of the

responses affects the modeling results. Finally, we present an application to 22

personality scales to compare the different models empirically. We end with a

general discussion.

IRT Models for Bounded Continuous Data

Let X
0
pi 2 ½L;U � denote the continuous bounded item score of person p ¼

1; . . . ;N to item i ¼ 1; . . . ; n that can take values between a theoretical lower

bound L and upper bound U. Commonly L ¼ 0 and U ¼ 100 in the case of visual

analogue scales, L ¼ 0 and U is equal to the item deadline (e.g., in seconds) in the

case of response times and L ¼ 0 and U ¼ n in the case of summed dichotomous

item scores (in the case of 0, 1 scoring). Next, these item scores X
0
pi are trans-

formed using Xpi ¼ ðX
0
pi � LÞ= ðU � LÞ, such that Xpi 2 ½0; 1�. As mentioned

above, similarly to IRT models for categorical data, IRT models for bounded

continuous data focus on EðXpijyp; τiÞ, the expected response of person p on item

i conditional on the underlying latent person parameter which is on the real line,

that is, yp 2 R, and the underlying vector of item parameters, τi 2 Rm, where m

denotes the number of item parameters in a given model. Commonly, the relation

between EðXpijyp; τiÞ and yp and τi is characterized by an S-shaped function

similarly to the well-known one- and two-parameter models for dichotomous

data (but see Noel, 2014, for bounded continuous IRT models that adopt non-

monotonic response functions). However, in the one- and two-parameter IRT

models, which are based on the Bernoulli distribution, there is only one natural

parameter to be modeled, while for bounded continuous IRT models, there are

different suitable distributions that commonly include more natural parameters.
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In the below, we discuss four bounded continuous IRT models mentioned above

that are based on different distributions of Xpi conditional on yp and τi: the

bounded IRT model based on the SB distribution for the conditional distribution

of Xpi (Samejima, 1973), the beta-IRT model (Noel & Dauvier, 2007), the

simplex-IRT model (Flores et al., 2020), and the normal-IRT model (Ferrando,

2009; Mellenbergh, 1994; Thissen et al., 1983). We do not consider the models

that are based on truncated distributions (Müller, 1987; Verhelst, 2019) because

these models are challenging to estimate as mentioned above (although para-

meter estimation is feasible using pairwise item parameter estimation, see

Verhelst, 2019).

SB-IRT Model

Probably, one of the most well-known models for bounded continuous

responses is the model by Samejima (1973). Although the framework outlined

by Samejima is much broader, arguably one of the most important special cases

(in terms of practical applicability and statistical properties, see Ferrando, 2002)

is based on the SB distribution. The SB distribution arises if a normally distributed

variable, Z, is transformed according to Z 0 ¼ cðZÞ, where cð:Þ is the logistic

function defined by cðdÞ ¼ ½1þ expð�dÞ��1: See Figure 1 (left) for some exam-

ple plots of this distribution. If the mean of Z is modeled using a linear IRT

FIGURE 1. Examples of the different distributions adopted by the bounded-item response

theory models. The parameters used for the SB distribution for, respectively, the black

solid, striped, and dotted lines are: m ¼ 0, 0.2, 0.1 and d ¼ 1.5, 2.0, and 3.0 and for the

gray solid, striped, and dotted lines: m¼�1.5,�1, and 0 and d¼ 1, 1, and 1. In addition,

the parameters used for the beta distribution for, respectively, the black solid, striped, and

dotted lines are: a ¼ 0:8; 2; and 4 and b ¼ 0:8; 2; and 4 and for the gray solid, striped,

and dotted lines: a ¼ 2, 3, and 4 and b ¼ 5; 5; and 5. Finally, the parameters used

for the simplex distribution for, respectively, the black solid, striped, and dotted lines are:

m¼ 0.3, 0.4, and 0.5 and f ¼ 1, 1, and 1 and for the gray solid, striped, and dotted lines:

m ¼ 0.3, 0.4, and 0.5 and f ¼ 4, 4, and 4.
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parameterization, the following model arises, which we will refer to as the

SB-IRT model:

f ðXpi jyp; τiÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2pdi

p 1

Xpið1� XpiÞ
exp �

log
Xpi

1� Xpi

� �
� mpi

� �2

2di

0
BBB@

1
CCCA; ð1Þ

with

mpi ¼ aiyp þ bi; ð2Þ

where ai 2 Rþ is an item discrimination parameter on the positive real line, bi 2
R is an item easiness parameter, and di 2 Rþ is a dispersion parameter. The

expressions for the conditional mean and variance of Xpi are complicated and are

not provided here (but we refer the reader to the appendix of Johnson [1949]).

However, most importantly, EðXpijyp; τiÞ has a symmetric S-shaped curve with

its maximum slope at EðXpijyp; τiÞ ¼ 1
2

for yp ¼ � bi

ai
, similarly to the two-

parameter model for dichotomous responses (Johnson, 1949; see Ferrando,

2002). In addition, characteristic for this model is that the test information func-

tion is constant across yp, that is:

IðypÞ ¼
Xn

i¼1

a2
i

di

;

while for the IRT models considered next, the test information is not constant

across yp.

Beta-IRT Model

The beta-IRT model (Noel & Dauvier, 2007) assumes a beta distribution for

Xpi with person and item-specific shape parameters, that is:

f ðXpi jyp; τiÞ ¼
Gðapi þ bpiÞ
GðapiÞGðbpiÞ

X
api�1

pi ð1� XpiÞbpi�1; ð3Þ

where Gð:Þ is the gamma function defined by GðdÞ ¼
ð1

0

td�1expð�tÞdt and

where api 2 Rþ and bpi 2 Rþ. See Figure 1 (middle) for some example plots

of this distribution. In the beta-IRT model, api and bpi are given by

api ¼ exp
aiyp þ bi þ oi

2

� �
; ð4Þ

and

bpi ¼ exp
�ðaiyp þ biÞ þ oi

2

� �
; ð5Þ
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with ai, bi, and yp defined as before, and with oi 2 R , so that a dispersion

parameter is defined as o
0
i ¼ exp

oi

2

� �
. For the beta-IRT model, the conditional

mean and variance of Xpi are, respectively, given by

EðXpi jyp; τiÞ ¼ cðaiyp þ biÞ; ð6Þ

and

VARðXpi jyp; τiÞ ¼
EðXpi jyp; τiÞ 1� EðXpi jyp; τiÞ

n o
1þ 2o0i cosh

aiyp þ bi

2

� � ;

where cð:Þ is defined before. Thus, the conditional mean has the same parametric

form as the two-parameter logistic model. The original model proposed by Noel

and Dauvier (2007) did not contain a discrimination parameter, ai; however, we

added this parameter to the model to ensure comparability among the different

models considered in this study. The test information function for this model is

given by

IðypÞ ¼ �
Xn

i¼1

a2
i Oðapi þ bpiÞ

api � bpi

2

� �2

� OðapiÞ
api

2

� �2

� OðbpiÞ
bpi

2

� �2
 !

;

where Oð:Þ is the trigamma function defined by OðdÞ ¼ q2lnGðdÞ
qd2

. Note that this

expression differs slightly from that of Noel and Dauvier (2007) as in their model

ai ¼ 1. The individual terms in IðypÞ are the item information functions, which

are unimodal functions similar to the item information function in the two-

parametric logistic model for dichotomous data with the maximum information

at aiyp þ bi ¼ 0 and with the information about yp decreasing as jaiyp þ bij
increases.

Simplex-IRT model

In the simplex-IRT model (Flores et al., 2020), the conditional distribution of

Xpi is assumed to follow a simplex distribution (Barndorff-Nielsen & Jørgensen,

1991), that is:

f ðXpi jyp; τiÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pfi½Xpið1� XpiÞ�3

q exp �
ðXpi � mpiÞ2

2fiXpið1� XpiÞm2
pið1� mpiÞ2

( )
; ð7Þ

with mpi 2 ð0; 1Þ and with dispersion parameter fi 2 Rþ. See Figure 1 (right) for

some example plots of this distribution. Although relatively less well known as

compared to the beta distribution, the simplex distribution has previously been

applied in a generalized linear mixed modeling framework to analyze propor-

tions (see Zhang et al., 2016, for applications and an implementation in R). Using
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the simplex distribution, an IRT model is specified by submitting mpi to a two-

parameter logistic model decomposition (Flores et al., 2020):

mpi ¼ cðaiyp þ biÞ; ð8Þ

where cð:Þ, ai, bi, and yp are defined as before. The conditional mean and

variance for the simplex-IRT model are then, respectively, given by

EðXpi jyp; τiÞ ¼ mpi ¼ cðaiyp þ biÞ; ð9Þ

and

VARðXpi jyp; τiÞ ¼ mpið1� mpiÞ �
1ffiffiffiffiffiffiffi
2fi

p exp
1

fim
2
pið1� mpiÞ2

( )
G 1

2
;

1

2fim
2
pið1� mpiÞ2

( )
;

ð10Þ

where Gð:Þ is the upper incomplete gamma function defined by Gðx; dÞ ¼ð1
x

td�1expð�tÞdt and where cð:Þ is defined before.

The simplex-IRT model above has originally been proposed by Flores et al

(2020) as a measurement model response times. Here, we study the model in the

broader context of measurement models for bounded continuous responses. As

Flores et al. focused on response times modeling, they did not provide an expres-

sion for the test information function. However, it is straightforward to derive,

that is:

IðypÞ ¼ �
Xn

i¼1

Ef ð:Þ
@2lnLðyp; τiÞ

@y2
p

 !
¼
Xn

i¼1

Ef ð:Þ
@ lnLðyp; τiÞ

@yp

� �2
 !

¼

¼
Xn

i¼1

Ef ð:Þ a2
i

ðXpi � mpiÞ
�

Xpið2mpi � 1Þ � m2
pi

�
ðXpi � 1ÞXpifið1� mpiÞ2m2

pi

8<
:

9=
;

2
0
B@

1
CA; ð11Þ

where the expectation is taken in the distribution of Xpi, that is, f ð:Þ in Equation 7,

mpi is given by Equation 8, and lnLðyp; τiÞ is the log-likelihood function based

on Equation 7. The form of the item information functions (i.e., the individual

terms in IðypÞ) differs importantly from those of the beta-IRT model. That is, for

the simplex-IRT model, the item information is increasing toward both ends of

the yp-scale, whereas for the beta-IRT model, the information is decreasing

toward the ends of the yp-scale. Similar to the beta-IRT model, however, the

item information function of the simplex-IRT model has a maximum at �bi=ai.

As the simplex-IRT model is not well studied yet and the item and test informa-

tion functions have not been derived before, we provide some example item

information plots in Figure 2. As mentioned in the figure caption, the item
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FIGURE 2. Examples of the simplex-item response theory item information function (left

column) and the corresponding marginal distributions (right column) for ai ¼ 0.5,

ji ¼ 15, and bi equal to �1, �0.5, 0, 0.5, or 1. The vertical striped line indicates

yp ¼ �bi=ai. Note that in all situations, the information increases to infinity for y!�1
and y!1, but this is not visible in all plots.
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information in the simplex-IRT increases to infinity for y! �1 and y!1.

This can be verified from Equation 11: In the squared first-order derivative of the

log-likelihood with respect to y,
@lnLðyp; τiÞ

@yp

� �2

, it holds that for mpi ! 0 and

mpi ! 1, which happens for y! �1 and y!1,
@lnLðyp; τiÞ

@yp

� �2

approaches

1. As a result, the item information also approaches 1.

In comparing the distributions from the different models in Figure 1, it can be

seen that all models can account for bimodality to some degree, which has shown

to be relevant in psychological data by Noel (2014). The models still however

differ in the exact form of the bimodality, for instance, in the beta distribution,

the two modes always occur for Xpi ! 0 and Xpi ! 1, while for the SB and the

simplex distribution, both modes can occur for 0 > Xpi > 1.

Normal-IRT Model

An unbounded normal distribution has also been proposed for bounded con-

tinuous data. The main focus of this article is on the bounded IRT models above,

but we will also consider the normal-IRT model as a reference to compare the

results to. We focus on the parameterization of Mellenbergh (1994) and Thissen

et al. (1983), that is:

f ðXpi jyp; τiÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

i

p exp �

�
Xpi � ðaiyp þ biÞ

�2

2s2
i

8><
>:

9>=
>;; ð12Þ

where ai, bi, and yp are defined as before, and where s2
i 2 Rþ is a dispersion

parameter. The conditional mean and variance of Xpi in the normal-IRT model

are, respectively, given by aiyp þ bi and s2. In addition, similar like the SB-IRT

model, the test information function is constant and given by

IðypÞ ¼
Xn

i¼1

a2
i

s2
i

:

Comparability of the Parameters

As the models differ in their formulation, question arises how the parameters

can be compared across the models. First, if yp is identified in the same way

across all models, its estimates can readily be compared. That is, as yp is a latent

variable, it lacks a scale. By identifying this scale in the same way in all models

(e.g., by imposing a Normal(0,1) distribution), yp estimates can be compared

across models.
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For the ai and bi parameters, the estimates from the beta-IRT and simplex-

IRT model can also readily be compared as both parameters occur in the same

logistic function between the conditional mean of Xpi and yp (i.e., Equations 6

and 9). However, for the SB-IRT model, these parameters are on a different scale

as the conditional mean of Xpi is not a logistic function of yp, even though the

function is S-shaped. Yet, there is a transformation possible, which enables

comparability of both ai and bi across models. First, as noted above, for the

SB-IRT model, it holds that EðXpijyp; τiÞ ¼ 1
2

for yp ¼ � bi

ai
, which is also true for

the beta-IRT model and the simplex model. Therefore, by relying on b�i ¼ �
bi

ai
,

the item easiness parameters can be meaningfully compared across models. To

enable comparison of the discrimination parameters, we focus on a�i , which

denotes the maximum slope of EðXpijyp; τiÞ with respect to yp. As is well known,

in a logistic IRT model like Equations 6 and 9, the curve has its maximum slope

at yp ¼ � bi

ai
and is equal to a�i ¼ 1

4
ai. Although the SB-IRT model does not rely

on a logistic function for EðXpijyp; τiÞ, it has been shown that the maximum slope

in the SB-IRT model also occurs at yp ¼ � bi

ai
with the slope being given by (see,

e.g., Ferrando, 2002)

a�i ¼
qEðXpi jyp; τiÞ

qyp

						
yp¼�bi

ai

¼ ai
1

4
� VARðXpi jyp; τiÞ

� �
: ð13Þ

As a result, using Equation 13, a�i from the SB-IRT model can meaningfully be

compared to a�i from the beta-IRT and simplex-IRT models.

As the normal-IRT model does not account for the bounded nature of the

responses, it is misspecified by definition. However, the model may provide a

reasonable approximation in some situations (Ferrando, 2002). To enable a

meaningful comparison of the parameters, similarly as above, we define b�i
as the yp value in the normal-IRT model for which EðXpijyp; τiÞ ¼ 1

2
, which is

b�i ¼
1
2
�bi

ai
. In addition, because in the normal-IRT model the slope of EðXpijyp; τiÞ

with respect to yp is constant, ai is equal to the maximum slope, that is, a�i ¼ ai.

Thus, using these results, the parameters from the normal-IRT model can be

compared to the transformed parameters from the bounded IRT models.

Two Motivating Examples: Consequences of Zero and One Inflation

Except for the normal-IRT models, all models above are unsuitable for

responses in the closed interval [0,1]. That is, for Xpi ¼ 0 or Xpi ¼ 1, density

f ðXpijyp; τiÞ in the beta-IRT model is either equal to 0 or equal to1 (depending

on api and bpi in Equation 3) making the log-likelihood infinite for observations

on the bounds of the response variable. In addition, for the SB-IRT and simplex-IRT
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models, the densities are undefined at Xpi ¼ 0 and Xpi ¼ 1. In practice, researchers

recode responses on the bounds to prevent problems with the likelihood and to

enable application of the models above. That is, 0 responses are recoded, so that

they are slightly above the lower bound (e.g., to 1e-5), and 1 responses are recoded,

so that they are slightly below the upper bound (e.g., to 1 – 1e-5). However, even

though the likelihoods of the models are now tractable, the models cannot account

for an excess of scores near the bounds. Below, we present a real data example and a

simulated data example to show that the consequences of not accounting for zero

and one inflation can be quite severe.

Example 1: Adjectives Checklist

We took two scales from the Adjectives Checklist (ACL; Gough, & Heil-

brun, 1980) data (N ¼ 244Þ that are analyzed in more depth in the real data

illustration section. The first scale is the Affiliation scale (10 bounded contin-

uous items), for which both end points of the response scale are hardly used

(i.e., there is hardly zero or one inflation, only four subjects used the lower end

point once, the upper end point is not used at all). The second scale is the

Abasement (also 10 bounded continuous items), for which the lower end point

of the response scale is used more frequently resulting in zero inflation. That is,

the lower end point of the scale is used in 10.75% of the responses on average

across the items from the scale.

To these data, we fit the conventional beta-IRT model for open interval data from

Equations 3 through 5 and the zero-one inflated extension proposed in this article. To

enable application of the conventional model to the closed interval data from the

ACL, we recoded 0 into 1e-5 and 1 into 1 – 1e-5 for the conventional model

application. See Figure 3 for a plot of the estimates of yp, bi, ai, and oi in the

conventional model and the estimates in the proposed model. If the estimates from

the two models agree, they should scatter around the straight gray line. As can be

seen, for the Affiliation scale with hardly any zero inflation, the estimates seem to

agree. However, for the Abasement scale with substantial zero inflation, the esti-

mates are systematically different for the item parameters and are very variable in the

case of yp as compared to the Affiliation scale without inflation.

The zero inflation in this real data example thus seems to affect the estimates

from the conventional beta-IRT model. This is also true for the other models

discussed above (the simplex and SB models). However, of course, a more sys-

tematic approach is needed to demonstrate this. Therefore, below we verify this

finding in a simulated data example.

Example 2: Simulated Data

We simulated seven datasets according to the conventional beta-IRT model

using N ¼ 244 and n ¼ 10 similar to the real data above. The true item para-

meters ai, bi, and oi were set to the estimates as found for the Affiliation scale
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FIGURE 3. Plots of the parameter estimates for the conventional beta-item response

theory model (y-axis) and the proposed zero and one inflated model (x-axis) for the

Affiliation scale (hardly any zero and one inflation) and for the Abasement scale (on

average 10.75% zero inflation across items).
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above. Person parameters yp are drawn from a normal distribution. In these data,

we increased the amount of zero and one inflation using the newly proposed

model (which will be discussed in more detail below). Specifically, we consid-

ered the scenarios, in which 0%, approximately 5%, or approximately 10% of the

scores on each item are in the lower and/or upper end point.1 We considered the

following scenarios: (1) no inflation, (2) 5% zero inflation, (3) 10% zero infla-

tion, (4) 5% one inflation, (5) 10% one inflation, (6) 5% zero and 5% one

inflation, and (7) 10% zero and 10% one inflation. See the left column of plots

in Figure 4 or 5 for the distribution of Item 1 in Scenarios 1, 2, 3, 6, and 7.

To these seven datasets, we fit the conventional beta-IRT model for open interval

data from Equations 3 through 5. To enable application of this model to the closed

interval data from Scenarios 2 through 7, we recoded 0 into 1e-5 and 1 into 1 – 1e-5.

See Figures 4 and 5 for the estimates of, respectively, bi and yp in the conventional

model (left column of plots) and the estimates in the proposed data generating model

(right column of plots) in Scenarios 1, 2, 3, 6, and 7. As can be seen, for the proposed

model, the estimates of both bi and yp seem acceptably close to the true parameter

values, while for the conventional model, the estimates are biased for bi and have

increased variability for yp. Results for Scenarios 4 and 5 (which are not in the

figure) are comparable to the results from Scenarios 2 and 3. In addition, the effect

on the discrimination parameters ai is comparable to the effect on yp (i.e., increased

variability in the estimates). Overall, it seems thus desirable to have an IRT approach

available to takes zero and one inflation into account.

A Zero and One Inflated Bounded IRT Approach

Here, we present the zero and one inflated approach illustrated above. The

idea is that we model a dummy variable, Zpi, which codes three possible out-

comes of the response process:

Zpi ¼ 0 if respondent p decides to score on the lower boundary of item i.

Zpi ¼ 1 if respondent p decides to score between the lower and upper boundary of item i.

Zpi ¼ 2 if respondent p decides to score on the upper boundary of item i.

Next, Zpi is submitted to a logistic graded response model (Samejima, 1969) with

category threshold parameter g1i 0 and g2i 0 , for which it holds that g02i < g01i, so that

PðZpi � cjyp; τiÞ ¼ cðaiyp þ g0ciÞ; for c ¼ 1; 2 ð14Þ

where ai and yp are from the model under consideration, and PðZpi � cjyp; τiÞ ¼
1 for c ¼ 0. Next, to facilitate interpretation, we use g0i ¼ �g01i and g1i ¼ �g02i,

so that in the final model (see below), parameter g0i directly models the condi-

tional probability of Xpi ¼ 0, and parameter g1i directly models the conditional

probability of Xpi ¼ 1. Note that now, g1i > g0i. The probability distribution of

Zpi is then given by
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FIGURE 4. Left column: Histograms of an example item (Item 1) in the different scenar-

ios. Middle column: Estimates of the conventional beta-item response theory model

(x-axis) and the true values (y-axis) for bi in the different scenarios. Right column:

Estimates of the proposed model (x-axis) and the true values (y-axis) for bi in the different

scenarios. The gray line indicates a one-to-one correspondence.
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FIGURE 5. Left column: Histograms of an example item (Item 1) in the different scenar-

ios. Middle column: Estimates of the conventional beta-item response theory model (x-

axis) and the true values (y-axis) for yp in the different scenarios. Right column: Estimates

of the proposed model (x-axis) and the true values (x-axis) for yp in the different scenar-

ios. The gray line indicates a one-to-one correspondence.
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PðZpi ¼ 0jyp; τiÞ ¼ cðg0i � aiypÞ;

PðZpi ¼ 1jyp; τiÞ ¼ cðg1i � aiypÞ � cðg0i � aiypÞ;

PðZpi ¼ 2jyp; τiÞ ¼ 1� cðg1i � aiypÞ: ð15Þ

The final model consists of the joint conditional density of Zpi and Xpi, which

will be denoted by kð:Þ. As Zpi is deterministically related to Xpi, Zpi itself can be

neglected. Therefore, the final model is defined according to

kðXpi jyp; τiÞ ¼ cðg0i � aiypÞ for Xpi ¼ 0;

kðXpi jyp; τiÞ ¼ cðg1i � aiypÞ � cðg0i � aiypÞ

 �

� f ðXpi jyp; τiÞ for 0 < Xpi < 1;

kðXpi jyp; τiÞ ¼ 1� cðg1i � aiypÞ for Xpi ¼ 1; ð16Þ

where f ð:Þ corresponds to the density from the original models above and τi

contains the item parameters of that model including g0i and g1i.

A mechanism similar to the above is used by Ospina and Ferrari (2010, 2012)

to model zero or one inflation in the beta distribution and beta regression models.

In those models however, kðXpi jyp; τiÞ is estimated freely for Xpi ¼ 0 or for

Xpi ¼ 1 (i.e., the proportion of zeros or ones in the data), while here these

probabilities are constrained according to the IRT model. These constraints

make sure that information about the IRT parameters ai, bi, and yp is drawn

from the zero and one scores. If estimated freely in the present approach, the

zero and one scores will not contribute to the parameter estimation of these IRT

parameters. An addition difference between the present work and the work by

Ospina and Ferrari is that we consider zero and one inflation simultaneously, so

that Zpi has three levels as discussed above. Ospina and Ferrari only considered

zero or one inflation, by which Zpi only has two levels. Accommodating both

zero and one inflation is desirable in the present IRT case as in continuous

items, both end points may be used by the subjects.

Due to the inflation mechanism introduced above, the test information func-

tion of the models will change. The derivation of the test information function for

the zero and one inflated bounded IRT model is given in the Appendix. Most

importantly, the item and test information includes a contribution by the infor-

mation from the zero and one scores and a contribution by the regular test

information function IðypÞ from the bounded IRT model f ðXpijyp; τiÞ used for

0 < Xpi < 1 in Equation 16. Note that for the SB-IRT model, the resulting test

information function is not constant anymore but has an inverted U-shape. The

exact shapes of the test information functions are illustrated later for the different

models.
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Estimation and Model Comparison

Parameter Estimation

We implemented the models above in a Bayesian Markov Chain Monte Carlo

(MCMC) framework. If θ denotes a vector of y1, . . . , yN , T denotes a matrix with

the stacked τi vectors for i ¼ 1; . . . ; n, and X denotes the N � n matrix of item

responses, then, the full posterior is proportional to

pðθ;TjXÞ / sðθ;TjXÞ;

sðθ;TjXÞ ¼
YN

p¼1

Yn

i¼1
kðXpi jyp; τiÞhðτiÞgðypÞ; ð17Þ

where kð:Þ is given above. For all models, τi contains logðaiÞ, bi, g0i, and g1i. In

addition, τi contains logðdiÞ for the SB-IRT model, oi for the beta-IRT model,

and logðfiÞ for the simplex-IRT model. Note that the number of free parameters

is thus equal to N � 5n for all models. To facilitate parameter estimation, we

estimate the untransformed parameters (i.e., ai and bi instead of a�i and b�i ) as

this parameterization is more stable for bi. However, the parameters can always

be transformed afterwards. In addition, we estimate logðaiÞ to avoid sign switch-

ing during estimation. In all models, the prior distribution of yp, gðÞ, is specified

to be a Normal(0,1) distribution, and the prior distribution of τi is specified to be

independent Normal(0,10) distributions for each element of τi. For g1i, the nor-

mal prior is truncated below g0i to ensure that g1i > g0i. The models are imple-

mented in Stan using Rstan (Stan Development Team, 2019) in the R statistical

computing environment (R core team, 2019). The scripts to fit the different

models are available from www.dylanmolenaar.nl.

Model Comparison Using the Log Marginal Likelihood

To be able to select between the different models, we propose to use the fully

marginalized log-likelihood, that is:

‘ðXÞ ¼ lnLðXÞ ¼
XN

p¼1

ln

ð
y

�Yn

i¼1

ð
τ

kðXpi jyp; τiÞhðτiÞdτ
�

gðypÞdy: ð18Þ

The advantage of the log marginal likelihood is that it incorporates a penalty

for model complexity in a natural way. As determining model complexity of the

models under investigation in this study is not straightforward, we consider the

log marginal likelihood better suitable to select between competing models as

compared to, for example, the Deviance Information Criterion (DIC), Watanabe-

Akaike Information Criterion (WAIC), and Bayesian Information Criterion

(BIC). The marginal likelihood is the key ingredient of Bayes’s factors com-

monly used for selection between two competing models. Here, we use the log
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marginal likelihood as a fit index on its own by selecting the model with the

highest log marginal likelihood as best fitting model; however, calculation of

Bayes’s factors is straightforward, which is illustrated in the real data application.

Calculating the fully marginalized log-likelihood directly is infeasible due to the

high number of nested integrals. However, the marginal likelihood can be

approximated using bridge sampling (e.g., Gronau et al., 2017; Meng & Wong,

1996).

Simulation Study A: Item Parameter Recovery and Model Fit

In this simulation study, we simulate data according to the zero and one

inflation mechanism in Equation 16 with f ðXpijyp; τiÞ given by either the SB-IRT

model (Equation 1), the beta-IRT model (Equations 3–5) or the simplex-IRT

model (Equation 7). We use the same item parameters across replications to

study parameter recovery of the item parameters. We use 12 items with true

values given in Table 1. The true values for g0i and g1i correspond to the *10%
zero and one inflation scenario from Figures 4 and 5, which we chose because it

is the most challenging scenario for the inflated IRT model due to the reasonably

large inflation in the data. In addition, for ai and bi, we use the same values

across the different models as these parameters are either comparable (between

the beta-IRT model and the simplex-IRT model due to Equations 6 and 9) or

highly related (between the SB-IRT model and the other models). For the disper-

sion parameters, we use different values for the models as these parameters have

different scales across the models. To give an illustration of how the simulated

data look, we plotted the resulting densities and information functions for the

different models in Figure 6 for Item 5. The distributions differ across items but

are generally left-skewed comparable to Figure 6.

The true item parameter values in this study are inspired by the real dataset

used in the example below. That is why the values of the item easiness para-

meters bi are chosen to represent a relatively easy test (this is what was found

throughout most of the 22 scales in our real dataset, with the exception that for

some scales the items are relatively difficult, but this generally only affects bi, so

that the observed distributions are right skewed, but the simulation results below

are equally applicable to these cases). We think that a relatively easy test as used

in this simulation study is typical for tests with continuous items, which are

mostly concerned with measuring constructs like personality and mood. Using

a relatively easy test for the simulation does however result in smaller informa-

tion about yp in its upper range. As the test information functions of the models

differ in their shape, the relative easiness of the test will affect parameter esti-

mates differently across the models. We think that this is interesting, as this will

also happen in practice. However, this differential effect of the distribution of

item easiness should be kept in mind when interpreting the results.
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In this study, we use sample sizes of 50, 100, and 200 persons. In addition, we

use 100 replications. In each replication, we sample yp from a Normal(0,1)

FIGURE 6. Density and item information function of Item 5 (bi ¼ 0:685; ai ¼ 0:5;
g0 ¼ �2; and g1 ¼ 2Þ for the SB-IRT model (di ¼ 2), the beta-IRT model (oi ¼ 2),

and the simplex-IRT model (ji ¼ 7Þ. The zero and one inflation is not incorporated in

the density plots as these are reflected by probabilities and not by densities. The zero

and one inflation is however incorporated in the item information function. IRT ¼
item response theory.
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distribution. To the data in each replication, we fit the three bounded-IRT models

subject to zero and one inflation (Equation 16). In addition, we estimate the

unbounded normal-IRT model to investigate the effect of neglecting the bounded

nature of the data. To enable a fair comparison to the other models, this model is

also subjected to the zero and one inflation in Equation 16. Finally, the models

are compared using the log marginal likelihood discussed above. We also con-

sidered the DIC (Spiegelhalter et al., 2002) and WAIC (Watanabe, 2010) model

fit indices, to have a reference to compare the performance of the log marginal

likelihood to. However, note that there are other fit indices that may perform

better than the DIC and WAIC (e.g., the LOO-IC; Vehtari et al., 2017).

Results

Parameter Recovery of the True Model

To study the parameter recovery, we focus on the posterior mean estimates of

the correctly specified models in the different conditions in the simulation study

for N ¼ 200. Tables 2 through 4 depict the mean squared error (MSE), the

squared bias (BIAS2), and the variance of the estimates (VAR) for the parameters

of respectively the SB-IRT, the beta-IRT, and the simplex-IRT models for Items

TABLE 2.

The Mean Squared Error (MSE), the Squared Bias (BIAS2), and the Variance of the

Estimates (VAR) for the Item Parameters in the Case of a Correctly Specified SB-Item

Response Theory Model for N ¼ 200

i bi ai di g0i g1i

1 MSE .014 .026 .068 .044 .052

BIAS2 .000 .003 .002 .002 .001

VAR .014 .024 .066 .043 .051

2 MSE .016 .022 .067 .048 .052

BIAS2 .000 .000 .002 .006 .000

VAR .017 .022 .066 .043 .053

5 MSE .016 .025 .074 .055 .050

BIAS2 .000 .001 .000 .003 .002

VAR .016 .024 .074 .053 .049

6 MSE .020 .017 .073 .032 .060

BIAS2 .000 .000 .000 .000 .000

VAR .020 .017 .074 .032 .060

9 MSE .013 .033 .073 .049 .057

BIAS2 .000 .002 .003 .000 .004

VAR .013 .031 .070 .049 .054

10 MSE .014 .020 .075 .054 .049

BIAS2 .000 .000 .002 .001 .002

VAR .014 .021 .074 .053 .047
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1, 2, 5,6, 9, and 10 in the N ¼ 200 condition. To save space, we selected this

subset to represent a mix of odd and even items (which differ in their item

discrimination, see Table 1). For an adequate parameter recovery, the MSE is

approximately equal to the VAR, which results in a BIAS2 close to 0. As can be

seen, for all parameters in all models, the parameter recovery seems acceptable

with the difference between MSE and VAR being only notable in the third

decimal. The results for the other sample size conditions (N ¼ 50 and

N ¼ 100) are acceptable with adequate parameter recovery and a minor bias

in the case of N ¼ 50, where the estimates are pulled toward their prior means.

Consequence of Misfit

To study the consequences for the item parameters of fitting an incorrect

model to the data, we focus on the parameter estimates of the discrimination

parameters and the easiness parameters across the different models for the dif-

ferent data scenarios in the simulation study. To enable a meaningful compari-

son, we focus on a�i and b�i as discussed above. Figures 7 and 8 depict the

boxplots of the errors of, respectively, expðb�i Þ and a�i across replications for

the different fitted models under the different data generating scenarios for

TABLE 3.

The Mean Squared Error (MSE), the Squared Bias (BIAS2), and the Variance of the

Estimates (VAR) for the Item Parameters in the Case of a Correctly Specified Beta-Item

Response Theory Model for N ¼ 200

i bi ai oi g0i g1i

1 MSE .005 .006 .053 .050 .054

BIAS2 .000 .000 .000 .000 .003

VAR .005 .006 .053 .050 .052

2 MSE .008 .008 .066 .060 .052

BIAS2 .001 .000 .002 .001 .001

VAR .007 .008 .065 .060 .052

5 MSE .007 .006 .053 .041 .048

BIAS2 .000 .000 .000 .001 .003

VAR .007 .006 .053 .040 .045

6 MSE .009 .006 .060 .046 .052

BIAS2 .000 .000 .000 .001 .002

VAR .009 .006 .060 .046 .051

9 MSE .005 .009 .057 .071 .045

BIAS2 .000 .000 .002 .001 .001

VAR .005 .009 .056 .071 .045

10 MSE .007 .009 .065 .061 .047

BIAS2 .000 .000 .000 .000 .002

VAR .007 .009 .066 .061 .046
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N ¼ 200. We rely on expðb�i Þ for clarity of the figure as in a few cases b�i is large

and negative which distorts the figure.2 From Figure 7, it can be seen that for the

bounded IRT models, b�i is hardly affected by misspecification. The only case

where b�i is slightly underestimated is in the SB-IRT model in the case of simplex-

IRT data. In the normal-IRT model, b�i is underestimated, in all data scenarios

but the bias is minor. From Figure 8, it can be seen that model misspecification

has a larger effect on a�i . That is, for the SB-IRT model, the simplex-IRT para-

meters are underestimated, and for the simplex-IRT model, the SB-IRT model

parameter and the beta-IRT model parameters are overestimated. In addition, for

the beta-IRT model, the simplex-IRT model parameters are underestimated. The

beta-IRT model and the SB-IRT model are less biased with respect to each other.

For the normal-IRT model, a�i is underestimated in all data scenarios with the

bias being larger for the items with a larger item easiness.

Model Fit

In Table 5, the proportion of replications in which a given model is selected

according to the log marginal likelihood, the DIC, and the WAIC is depicted

(detection rates). As can be seen, the models are well separable: For N ¼ 50, the

log marginal likelihood performs overall better compared to the DIC and WAIC

TABLE 4.

The Mean Squared Error (MSE), the Squared Bias (BIAS2), and the Variance of the

Estimates (VAR) for the Item Parameters in the Case of a Correctly Specified

Simplex-Item Response Theory Model for N ¼ 200

i bi ai fi g0i g1i

1 MSE .008 .006 0.789 .062 .058

BIAS2 .000 .000 0.003 .002 .002

VAR .008 .006 0.795 .061 .057

2 MSE .008 .011 1.166 .047 .051

BIAS2 .000 .000 0.007 .000 .001

VAR .008 .011 1.171 .047 .051

5 MSE .007 .008 0.730 .042 .056

BIAS2 .000 .000 0.002 .000 .001

VAR .007 .007 0.735 .042 .057

6 MSE .008 .008 0.932 .055 .056

BIAS2 .000 .000 0.047 .001 .000

VAR .008 .008 0.893 .054 .057

9 MSE .006 .008 0.774 .051 .063

BIAS2 .000 .000 0.008 .001 .003

VAR .006 .008 0.773 .050 .061

10 MSE .008 .011 1.264 .074 .061

BIAS2 .000 .000 0.003 .007 .001

VAR .009 .011 1.274 .068 .061
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with a true positive rate of at least 0.88. The true positive rates for the DIC are

unacceptable for the SB-IRT and the beta-IRT model (0.36 and 0.60, respec-

tively) but acceptable although lower as compared to the log marginal likelihood-

for the simplex-IRT model. The WAIC results are unacceptable for the SB-IRT

model with a true positive rate of 0.50 but acceptable for the beta-IRT model and

the simplex-IRT model. For the simplex-IRT, the WAIC slightly outperforms the

true positive rate of the log marginal likelihood (although the difference is

FIGURE 7. Boxplots of the errors in expðb�i Þ in each bounded item response theory model

(rows) for the different data generating models (columns) in Simulation Study A. The

x-axis contains the individual items (i ¼ 1; :12), which are ordered on their true item

easiness parameters by the design of the study.
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insignificant, p ¼ :591). For N ¼ 100, the log marginal likelihood overall still

performs best, but with smaller differences. For N ¼ 200, the three fit measures

perform optimal with all false positive rates equal to 0.00.

Conclusion

From the above, we can conclude that the parameter recovery of the different

models is acceptable with MSE’s close to the parameter variability. With respect

to model selection, it appeared that for smaller sample sizes, the log marginal

FIGURE 8. Boxplots of the errors in a�i in each bounded item response theory model

(rows) for the different data generating models (columns) in the Simulation Study A. The

x-axis contains the individual items (1–12), which are ordered on their easiness.
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likelihood outperforms the DIC and WAIC, but for larger sample sizes, this

difference diminishes. In addition, the three bounded IRT models are relatively

robust with respect to each other in the estimation of the item easiness. However,

with respect to the item discrimination, the beta-IRT and SB-IRT models are

relatively robust to each other while they are biased if the data are generated

from the simplex-IRT model. In addition, the simplex-IRT model appeared to be

biased with respect to the beta-IRT and SB-IRT models. The normal-IRT model

was biased in all scenarios with small effects on the easiness but relatively large

effects on the discrimination parameter.

Simulation Study B: Person Parameter Recovery

Similarly, as in Simulation Study A, we simulate data according to the zero

and one inflated bounded-IRT models above. However, we now use the same

values for yp across replications to study parameter recovery of the person

parameters. Specifically, we use the following levels for yp : �3, �2.5, �2,

�1.5,�1,�0.5, 0, .5, 1, 1.5, 2, 2.5, and 3. The frequency with which the different

levels for yp occur follows a standard normal distribution. In addition, we use 240

subjects, 6, 12, and 18 items, and 100 replications. In each replication, we sample

the item parameters from a specific distribution (see Table 6). The choice for

these distributions is again inspired by the real data application below. The test

information across the replications on the basis of the true item parameters is

depicted in Figure 9 for each model and n ¼ 18. To the data in each replication,

we fit the same four models as in Simulation Study A and study parameter

recovery of yp.

Results

For all models, a small shrinkage effect is found for the yp estimates in all

models and conditions. That is, due to the finite numbers of item (18 at most), the

yp estimates are pulled slightly to their prior mean. To be able to study parameter

recovery, we adjust for the shrinkage effect by dividing the yp estimates by the

TABLE 6.

Distributions Used to Simulate Item Parameters in Simulation Study B

bi ai Dispersion

SB-IRT model Uniform(.5,1) Uniform(.5,.7) Uniform(1,3)

Beta-IRT model Uniform(.5,1) Uniform(.5,.7) Uniform(5,10)

Simplex-IRT model Uniform(.5,1) Uniform(.5,.7) Uniform(1,1.5)

Note. IRT ¼ item response theory.
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standard deviation of the estimates. As a result, all departures from the true yp

values are due to bias and not due to shrinkage.

Parameter Recovery of the True Model

To study the parameter recovery, we focus on the estimates of the true model

in the different conditions in the simulation study to see whether the expected

squared bias approaches 0. Tables 7–9 contain the MSE, BIAS2, and VAR for the

parameters of, respectively, the SB-IRT, the beta-IRT, and the simplex-IRT

FIGURE 9. Test information functions across replications in Simulation Study B for the

different models and n ¼ 18.

TABLE 7.

The Mean Squared Error (MSE), the Squared Bias (BIAS2), and the Variance of the

Estimates (VAR) for the Person Parameters of the SB-Item Response Theory Model

n ¼ 6 n ¼ 12 n ¼ 18

y MSE BIAS2 VAR MSE BIAS2 VAR MSE BIAS2 VAR

�3 0.959 .035 0.934 .435 .040 .399 .252 .001 .254

�2.5 0.886 .015 0.880 .385 .003 .385 .204 .000 .206

�2 0.960 .002 0.968 .491 .001 .494 .271 .000 .273

�1.5 0.900 .003 0.907 .441 .010 .436 .236 .004 .235

�1 0.905 .007 0.907 .325 .002 .327 .225 .006 .222

�0.5 0.957 .010 0.956 .386 .004 .386 .357 .000 .360

0 1.020 .001 1.030 .439 .003 .440 .285 .001 .287

0.5 1.124 .001 1.135 .448 .000 .452 .283 .000 .286

1 0.864 .000 0.873 .346 .020 .329 .282 .000 .285

1.5 0.934 .001 0.942 .408 .008 .404 .303 .000 .306

2 0.781 .004 0.785 .325 .000 .328 .250 .005 .248

2.5 0.819 .034 0.793 .478 .016 .467 .256 .000 .259

3 0.960 .023 0.947 .394 .025 .373 .281 .014 .270

Zero and One Inflated IRT

720



models for the different values of yp and for a different number of items. As can

be seen, for all models, the parameter recovery seems acceptable with the MSE

being mostly due to parameter variability and with a small to neglectable con-

tribution of the squared bias. For six items (n ¼ 6Þ, bias seems slightly larger for

larger absolute values of yp , but this bias decreases for larger number of items.

The MSE seems to follow the test information functions in Figure 9, at least for

the beta-IRT and the simplex-IRT model, with the MSEs being somewhat

smaller toward the upper yp values for the simplex-IRT model, while being

somewhat smaller in the middle yp region for the beta-IRT model. Note that the

values of the MSE itself cannot be compared between the models as these results

are based on different data with different characteristics. For instance, the test

information is overall much smaller for the data generated with the SB model (see

Figure 9), which results in overall larger MSEs.

Consequences of Misfit

To study the consequences for the person parameters of fitting an incorrect

model to the data, we focus on the parameter estimates of yp across the different

models for the different data scenarios in the simulation study. Figure 10 depicts

boxplots of the errors of the person parameters across replications for the differ-

ent fitted models under the different data generating scenarios for 18 items. As

expected due to the above, if the correct model is fit, the boxplots indicate no

TABLE 8.

The Mean Squared Error (MSE), the Squared Bias (BIAS2), and the Variance of the

Estimates (VAR) for the Person Parameters of the Beta-Item Response Theory Model

n ¼ 6 n ¼ 12 n ¼ 18

y MSE BIAS2 VAR MSE BIAS2 VAR MSE BIAS2 VAR

�3 .303 .020 .286 .223 .019 .206 .123 .009 .116

�2.5 .343 .000 .346 .204 .005 .201 .123 .006 .118

�2 .273 .000 .275 .158 .000 .160 .093 .001 .093

�1.5 .318 .008 .313 .187 .002 .187 .126 .003 .124

�1 .406 .006 .404 .145 .000 .146 .114 .000 .115

�0.5 .426 .001 .430 .178 .001 .179 .114 .002 .113

0 .241 .010 .233 .151 .000 .153 .121 .003 .120

0.5 .415 .011 .408 .213 .000 .214 .147 .011 .138

1 .335 .005 .333 .148 .000 .149 .122 .004 .120

1.5 .350 .002 .352 .197 .000 .199 .108 .001 .109

2 .339 .025 .317 .175 .008 .169 .151 .006 .147

2.5 .245 .013 .235 .219 .008 .213 .128 .012 .117

3 .412 .091 .324 .199 .030 .171 .157 .036 .122
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bias. If the incorrect model is fit, it is most notable that the normal-IRT model is

biased, with under estimation of the lower yp values and over estimation of the

upper yp values. In addition, it seems that the SB-IRT and beta-IRT model are

relatively robust with respect to each other. However, if the data are generated

according to a simplex-IRT model, the yp estimates in both the SB-IRT and beta-

IRT model are biased for the upper yp values. In addition, the simplex-IRT model

is biased for the lower and upper yp values if the data follow a beta-IRT model.

Figure 11 depicts the boxplots of the estimated posterior standard deviations

of the person parameters across replications for each true value of yp in the

different fitted models and under the different data generating scenarios for 18

items. As a reference, the boxes of the estimates in the true model are in gray. As

can be seen, the normal-IRT model overestimates the posterior standard devia-

tion under all data generation scenarios with the largest effect for the SB-IRT data

scenario. For the other models, some differences are also evident, but smaller:

For instance, in the beta-IRT, the posterior standard deviation is overestimated

for larger values of yp in the SB-IRT data scenario. In addition, the SB-IRT and

simplex-IRT underestimate the posterior standard deviation for larger yp values

in the beta-IRT scenario. Finally, the beta-IRT model overestimates the posterior

standard deviation for larger values of yp in the simplex scenario. Similarly as

above, these local effects in the upper range of yp are due to positive skew in the

simulated data. If these effects are reversed into negative skew, the lower range

of yp will be affected.

TABLE 9.

The Mean Squared Error (MSE), the Squared Bias (BIAS2), and the Variance of the

Estimates (VAR) for the Person Parameters of the Simplex-Item Response Theory Model

n ¼ 6 n ¼ 12 n ¼ 18

y MSE BIAS2 VAR MSE BIAS2 VAR MSE BIAS2 VAR

�3 .415 .007 .412 .243 .029 .216 .142 .010 .134

�2.5 .501 .046 .459 .293 .012 .284 .110 .002 .108

�2 .387 .004 .387 .257 .011 .249 .156 .001 .156

�1.5 .497 .012 .491 .222 .000 .224 .138 .006 .134

�1 .602 .000 .607 .235 .004 .234 .142 .000 .143

�0.5 .522 .011 .516 .204 .001 .204 .148 .002 .147

0 .601 .021 .586 .201 .001 .202 .142 .000 .144

0.5 .435 .011 .429 .212 .000 .214 .153 .000 .154

1 .448 .001 .452 .248 .001 .249 .129 .000 .130

1.5 .408 .001 .412 .235 .001 .236 .130 .008 .124

2 .323 .001 .325 .255 .000 .257 .127 .002 .126

2.5 .369 .044 .327 .178 .000 .180 .100 .003 .098

3 .447 .101 .349 .197 .004 .194 .095 .001 .095
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FIGURE 10. Boxplots of the errors in yp in each model (rows) for the different data

generating models (columns) in the simulation study.
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Conclusion

The person parameter recovery is acceptable in all models. If an incorrect

model is fit to the data, the person parameter estimates and posterior standard

deviations in a normal-IRT model are biased across the full yp range. For the

other models, the person parameters and posterior standard deviations may be

biased in the upper or lower range of yp depending on the estimated model and

the properties of the data under the data generation model.

Application

Data

In this application, we apply the zero and one inflated IRT models from the

present study to a dataset containing the responses of 244 respondents to 218

items from the ACL (Gough & Heilbrun, 1980) of which two scales were con-

sidered above in Motivating Example 1. The ACL is a personality questionnaire

consisting of adjectives like “stable,” “responsible,” and “organized” to which

respondents indicate to what degree this adjective applies to them. In the present

study, the ACL was administered using a continuous response scale consisting of

a 60-mm line segment. Responses are scored as the distance (in millimeters) from

the left end of the line segment (“totally not applicable to me”). These responses

are rescaled into the [0,1] interval to enable application of the present models.

The ACL administration considered here covered 22 scales (the original ACL

covers 30 scales). All scales contained 10 items, except for the two final scales 21

and 22 which contain nine items. In the ACL data, the upper end point of the

response scale is never used. The average percentage of lower end point (zero)

scores is between 0.2% and 10.7% (see Table 10).

Models

The four zero and one inflated IRT models considered in the simulation study

are fit to each scale of the ACL separately. Aim is to see which models fit best

and how the results from the different models compare to each other. In addition,

we fitted the conventional models to see how the results differ. In our MCMC

implementation, we used four chains of 10,000 samples from the posterior para-

meter distribution each. For each chain, the first 5,000 samples are discarded as

burn-in. The chains are judged to be converged based on the split R-hat (Vehtari

et al., 2021). For one scale, Scale 20 (Nurturant parent), the inflated SB-IRT

model failed to converge with the split R-hat well above 1 for multiple para-

meters. Therefore, for Scale 20, we omit the results concerning the SB-IRT

model. For the conventional models, we transformed all zero scores to 1e-05

except for the simplex-IRT model as this resulted in divergence of the dispersion

parameter. For this model, we transformed the zeros to 0.01.
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Results

Table 10 contains the log marginal likelihood for the different bounded-IRT

models and the different ACL scales. Note that the log marginal likelihood can

also be used to calculate Bayes’s factors. For instance for the Communality scale,

the log Bayes’s factor between the SB-IRT model and the beta-IRT model equals

1446� 1346 ¼ 100, indicating that evidence is strongly in favor of the SB-IRT

model. Here, however, similarly as in the simulation study, we rely on the log

marginal likelihood as a fit statistic, that is, the larger values indicate a better

model fit. In addition, the DIC and WAIC fit indices agree about the best fitting

model for all scales except Scale 22 (Adapted Child). For this scale, the DIC and

TABLE 10.

Model Fit for the Different Models in the Application as Indicated by the Log-Marginal

Likelihood

Log Marginal Likelihood

Scale % Zeros SB-IRT Beta-IRT Simplex-IRT

1. Communality 0.6 1,446 1,346 1,494

2. Achievement 0.5 613 648 579

3. Dominance 1.4 406 420 374

4. Endurance 0.9 299 279 279

5. Order 2.1 298 314 215

6. Intraception 0.4 654 723 559

7. Nurturance 0.2 864 835 876

8. Affiliation 0.2 701 760 620

9. Exhibition 1.8 187 228 126

10. Autonomy 6.4 �20 �51 �82

11. Aggression 5.2 179 150 147

12. Change 0.2 565 583 541

13. Succorance 6.4 180 139 108

14. Abasement 10.7 188 125 127

15. Deference 1.1 360 340 371

16. Personal Adjustment 2.2 290 275 304

17. Ideal Self 0.2 439 542 348

18. Critical Parent 4.9 213 200 140

19. Nurturant Parent 1.3 432 443 434

20. Adult 1.3 — a 131 33

21. Free Child 0.5 296 358 230

22. Adapted Child 1.4 72 64 59

Note. The log marginal likelihood for the best fitting model is indicated in boldface. “% zeros”

indicates the percentage of zero scores averaged over the items of the corresponding scale. IRT ¼ item

response theory.
a For this scale, the SB-IRT model failed to converge.
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WAIC indicate the beta-IRT model as best fitting model, while the log marginal

likelihood indicates the SB-IRT model. As in the results of the simulation study,

the log marginal likelihood is associated with overall fewer false positives, and

we rely on the log marginal likelihood and conclude that the SB-IRT model fits

best for Scale 22.

As can be seen in Table 10, the beta-IRT model fits best to the majority of the

scales followed by the SB-IRT model. The simplex-IRT model fits best to three of

the 22 scales. Interestingly, the SB-IRT model fits best to the scales with the

higher degrees of zero inflation. Below, we look closer to the results of the

“Abasement” scale that was analyzed in the motivating example above and that

has the most severe zero inflation on average (10.7%). Table 11 contains the

posterior means and standard deviations for the a�i , b�i , dispersion, and g0i para-

meters across models. Note that a�i and b�i are transformed parameters, which can

be compared across the different models. In addition, g1i are not considered as

there are no one responses in the data. As can be seen from the table, results differ

most notably between the normal-IRT model and the bounded-IRT models with

the posterior means for b�i being systematically higher and a�i being system-

atically smaller for the normal-IRT model. The posterior means and standard

deviations for the bounded-IRT models differ minorly for some items, but in

general, the results tend to converge for the item parameters.

Figure 12 contains histograms with fitted curves and item information for the

zero-one inflated IRT models and the conventional bounded IRT models for

three example items (2, 3, and 9) from the Abasement scale. As can be seen,

generally, the information is larger in the inflation IRT model. In addition, the

fitted curves differ notably across the inflation IRT models and the conventional

models, especially in the case of a higher percentage of zero scores in the item.

Figure 13 depicts the posterior means of yp of the Abasement scale for the four

different models. As can be seen, for the normal-IRT model, these estimates

differ substantially from the others especially in the upper and lower range of

yp. In addition, for the SB-IRT and beta-IRT model, the posterior mean estimates

are almost perfectly related, while for the simplex-IRT model, some minor

differences are notable in the upper and lower range of yp.

Discussion

In this study, we proposed a zero and one inflated IRT framework for bounded

continuous data in the closed interval. In two motivating examples, we showed in

both real and simulated data that not taking zero and one inflation into account

can seriously distort modeling results. Next, in the simulation study, we demon-

strated the viability of the proposed framework and the suitability of the log

marginal likelihood to select among the different models, even in small sample

sizes. In addition, we studied the consequences of misfit in the distribution

assumed by the continuous IRT models. It turned out that not modeling the
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TABLE 11.

Posterior Mean and Standard Deviations for the Abasement Scale of the Adjectives

Checklist

b�i a�i Dispersion g0i

Model i Mean SD Mean SD Mean SD Mean SD

SB 1 2.967 0.599 .099 .018 1.196 0.118 �2.237 .219

2 3.442 0.539 .122 .018 0.909 0.099 �1.684 .182

3 1.458 0.146 .238 .023 0.840 0.113 �2.395 .231

4 3.519 0.729 .104 .020 1.468 0.155 �1.643 .179

5 1.673 0.193 .185 .020 1.044 0.120 �2.178 .215

6 1.182 0.120 .254 .023 0.678 0.104 �2.332 .227

7 1.368 0.439 .086 .019 1.842 0.175 �3.009 .294

8 1.771 0.224 .182 .022 1.370 0.151 �2.194 .218

9 0.744 0.233 .092 .017 1.303 0.126 �3.686 .406

10 2.348 0.313 .148 .019 1.020 0.108 �2.165 .213

Beta 1 3.038 0.066 .096 .019 1.719 0.179 �2.197 .210

2 3.659 0.046 .113 .019 2.300 0.193 �1.739 .181

3 1.360 0.069 .263 .024 2.700 0.267 �2.488 .234

4 3.811 0.060 .095 .021 1.422 0.184 �1.687 .176

5 1.527 0.072 .203 .022 2.109 0.217 �2.212 .216

6 1.107 0.088 .273 .024 3.097 0.314 �2.422 .233

7 1.384 0.230 .081 .019 0.932 0.165 �3.245 .330

8 1.697 0.074 .186 .024 1.520 0.200 �2.176 .215

9 0.710 1.732 .092 .017 1.494 0.172 �5.076 .786

10 2.432 0.058 .141 .020 2.014 0.192 �2.136 .210

Simplex 1 2.852 0.070 .108 .020 9.186 0.917 �2.218 .216

2 2.742 0.054 .158 .022 9.283 1.013 �1.798 .188

3 1.387 0.074 .263 .021 7.472 0.910 �2.499 .234

4 3.956 0.074 .099 .026 15.140 1.571 �1.693 .180

5 1.569 0.082 .191 .021 9.272 1.050 �2.191 .210

6 1.173 0.097 .256 .022 6.006 0.785 �2.383 .228

7 1.604 0.195 .086 .020 12.524 1.197 �3.254 .336

8 1.475 0.077 .235 .023 11.070 1.286 �2.288 .225

9 0.712 0.714 .103 .017 8.353 0.797 �5.087 .771

10 1.977 0.066 .179 .022 8.565 0.949 �2.208 .217

Normal 1 5.567 8.139 .055 .017 0.035 0.003 �2.140 .211

2 6.324 1.573 .053 .012 0.020 0.002 �1.668 .177

3 1.639 0.164 .160 .014 0.021 0.003 �2.107 .208

4 8.094 9.836 .045 .017 0.033 0.003 �1.638 .174

5 1.673 0.183 .148 .014 0.024 0.003 �1.985 .199

6 1.162 0.112 .190 .014 0.014 0.003 �2.030 .199

7 1.504 0.653 .065 .019 0.057 0.005 �3.194 .329

8 2.081 0.300 .123 .016 0.035 0.004 �1.982 .198

9 0.714 0.230 .086 .016 0.045 0.004 �5.003 .775

10 3.477 0.591 .082 .013 0.026 0.003 �2.017 .202
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bounded nature of the data can result in severe bias in the posterior means and

standard deviations of the person and item parameters, but that misspecification

of the bounded IRT model generally has a smaller impact on the results. There-

fore, in practice, a general advice is to use the simplex-IRT model if (some of) the

items show bimodality (as this model is most flexible in these cases) and to use

the beta-IRT and SB models in the case of unimodal data (as these models are

FIGURE 12. First three rows: Histograms with fitted curves and item information for the

zero-one inflated item response theory (IRT) models and the conventional bounded IRT

models for three example items (2, 3, and 9) from the Abasement scale. Fourth row: Test

information functions.
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more flexible in these cases, although these models can handle some degree of

bimodality). In addition, as misfit may still bias the results depending on the data

generating model and the parameters of interest, it is always advisable to test

different models and to base inferences on the best fitting model to decrease the

misfit to a minimum.

Although we thus argue for avoiding misfit of the conditional response dis-

tribution in practical applications involving bounded continuous data, the present

methodology is fully parametric, so that there will always be some misfit. An

alternative may be a nonparametric approach (e.g., based on splines, Jungbacker

et al., 2014) or an approach based on mixtures (e.g., Dolan & Van der Maas,

1998); however, in these more complex models, more parameter uncertainty is

introduced. Therefore, we emphasized the model fit and model selection aspect

of the present topic, to hopefully decrease misfit while retaining the benefits from

the parametric form of the distribution. To this end, further research may focus on

FIGURE 13. Posterior mean estimates of yp for the Abasement scale.
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item specific distributions (e.g., the beta distribution for some of the items and

the SB distribution for others) and other distributional forms. For instance, Smith-

son and Shou (2017; see also Shou & Smithson, 2019) proposed the family of

CDF-quantile distributions for bounded continuous variables. Although we are

not aware of implementations in an IRT or factor analysis framework, these

distributions are promising as they have shown to be more flexible than the beta

distribution for instance.

Appendix

The model is given by

kðXpi jyp; τiÞ ¼ cðg0i � aiypÞ; for Xpi ¼ 0

kðXpi jyp; τiÞ ¼ cðg1i � aiypÞ � cðg0i � aiypÞ

 �

� f ðXpi jyp; τiÞ; for 0 < Xpi < 1

kðXpi jyp; τiÞ ¼ 1� cðg1i � aiypÞ for Xpi ¼ 1;

where cð:Þ is the logistic function, and all parameters are as defined in this

article. Note that the test information implied by the traditional model,

f ðXpijyp; τiÞ is denoted IðypÞ in this article and is known for all models consid-

ered. The test information for the zero and one inflated model above is

IinflatedðypÞ ¼ Ex

@logkðXpi jyp; τiÞ
@yp

� �2
 !

¼ Ex¼0

@logkðXpi jyp; τiÞ
@yp

� �2
 !

þ E0<x<1

@logkðXpi jyp; τiÞ
@yp

� �2
 !

þ Ex¼1

@logkðXpi jyp; τiÞ
@yp

� �2
 !

:

Below, we give each of the three expectations. For brevity, denote

P0 ¼ cðg0i � aiypÞ;

Q0 ¼ 1� cðg0i � aiypÞ;

P1 ¼ cðg1i � aiypÞ;

Q1 ¼ 1� cðg1i � aiypÞ:

Then, the expectations are given by

Ex¼0

@logkðXpi jyp; τiÞ
@yp

� �2
 !

¼ a2
i Q2

0P0;

Ex¼1

@logkðXpi jyp; τiÞ
@yp

� �2
 !

¼ a2
i P2

1Q1;
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E0<x<1

@ logkðXpi jyp; τiÞ
@yp

� �2
 !

¼ ðP1 � P0Þ �a2
i

P1Q1 � P0Q0

P1 � P0

� �2

þ IðypÞ
" #

;

where IðypÞ denotes the test information function of the conventional model.
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Notes

1. In the model that we present later, we used the following values to create the

data (depending on the scenario): g0i ¼ �1 (no zero inflation), g1i ¼ 1 (no

one inflation), g0i ¼ �3 (*5% zero inflation), g0i ¼ �2 (*10% zero infla-

tion), g1i ¼ 3 (*5% one inflation), and g1i ¼ 2 (*10% zero inflation). As

mentioned in the text, the values for ai, bi, and oi were set to the estimates as

found for the Affiliation scale.

2. Specifically, in the calculation of b�i ¼ �
bi

ai
, one divides by ai. In the present

simulation study, the true value of ai is 0.5 for the odd items. As a result, in a

few replications, the estimate of ai is close to 0. This is unproblematic for the

model, but, for these cases, b�i can become large and negative, which distorts a

figure like Figure 7. We therefore relied on the bias of expðb�i Þ.

References

Barndorff-Nielsen, O.E., & Jørgensen, B. (1991). Some parametric models on the sim-

plex. Journal of Multivariate Analysis, 39, 106–116.

Barrows, P. D., & Thomas, S. A. (2018). Assessment of mood in aphasia following stroke:

Validation of the Dynamic Visual Analogue Mood Scales (D-VAMS). Clinical Reha-

bilitation, 32(1), 94–102.

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s

ability. In E. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores

(chap. 17–20). Addison Wesley.

Zero and One Inflated IRT

732



Cella, D. F., & Perry, S. W. (1986). Reliability and concurrent validity of three visual-

analogue mood scales. Psychological Reports, 59(2), 827–833.

Coombs, C. H. (1964). A theory of data. Wiley.

Dolan, C. V. (1994). Factor analysis of variables with 2, 3, 5 and 7 response categories: A

comparison of categorical variable estimators using simulated data. British Journal of

Mathematical and Statistical Psychology, 47(2), 309–326.

Dolan, C. V., & van der Maas, H. L. (1998). Fitting multivariage normal finite mixtures

subject to structural equation modeling. Psychometrika, 63(3), 227–253.

Ferrando, P. J. (2001). A nonlinear congeneric model for continuous item responses.

British Journal of Mathematical and Statistical Psychology, 54(2), 293–313.

Ferrando, P. J. (2002). Theoretical and empirical comparisons between two models for

continuous item response. Multivariate Behavioral Research, 37(4), 521–542.

Ferrando, P. J. (2009). Difficulty, discrimination, and information indices in the linear

factor analysis model for continuous item responses. Applied Psychological Measure-

ment, 33(1), 9–24.

Flores, S., Bazán, J. L., & Bolfarine, H. (2020). A hierarchical joint model for bounded

response time and response accuracy. In M. Wiberg, D. Molenaar, J. González,
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