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a b s t r a c t 

Quantitative MRI (qMRI) acquired at the ultra-high field of 7 Tesla has been used in visualizing and analyzing 

subcortical structures. qMRI relies on the acquisition of multiple images with different scan settings, leading to 

extended scanning times. Data redundancy and prior information from the relaxometry model can be exploited 

by deep learning to accelerate the imaging process. We propose the quantitative Recurrent Inference Machine 

(qRIM), with a unified forward model for joint reconstruction and 𝑅 

∗ 
2 -mapping from sparse data, embedded in 

a Recurrent Inference Machine (RIM), an iterative inverse problem-solving network. To study the dependency 

of the proposed extension of the unified forward model to network architecture, we implemented and compared 

a quantitative End-to-End Variational Network (qE2EVN). Experiments were performed with high-resolution 

multi-echo gradient echo data of the brain at 7T of a cohort study covering the entire adult life span. The error 

in reconstructed 𝑅 

∗ 
2 from undersampled data relative to reference data significantly decreased for the unified 

model compared to sequential image reconstruction and parameter fitting using the RIM. With increasing accel- 

eration factor, an increasing reduction in the reconstruction error was observed, pointing to a larger benefit for 

sparser data. Qualitatively, this was following an observed reduction of image blurriness in 𝑅 

∗ 
2 -maps. In contrast, 

when using the U-Net as network architecture, a negative bias in 𝑅 

∗ 
2 in selected regions of interest was observed. 

Compressed Sensing rendered accurate, but less precise estimates of 𝑅 

∗ 
2 . The qE2EVN showed slightly inferior re- 

construction quality compared to the qRIM but better quality than the U-Net and Compressed Sensing. Subcortical 

maturation over age measured by a linearly increasing interquartile range of 𝑅 

∗ 
2 in the striatum was preserved 

up to an acceleration factor of 9. With the integrated prior of the unified forward model, the proposed qRIM 

can exploit the redundancy among repeated measurements and shared information between tasks, facilitating 

relaxometry in accelerated MRI. 
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. Introduction 

The human subcortex is involved in complex activities of normal be-

avior and physiology, e.g., in decision-making ( Ding and Gold, 2013 ),

eward processing ( O’Doherty et al., 2004; Schultz et al., 1997 ), and mo-
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or behavior ( Mink, 1996 ). Magnetic resonance imaging (MRI) has been

n important tool in researching subcortical structures. At lower field-

trength, this has however been challenging due to the large number,

mall size and close spatial proximity of the structures ( Keuken et al.,

018 ). 
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The advent of ultra-high field 7 Tesla MRI has fundamentally

hanged the opportunities for subcortical imaging. First, by increased

ignal-to-Noise Ratio (SNR), image acquisition at an unprecedented

evel of detail has become possible. Second, the field strength depen-

ence of relaxometry parameters such as 𝑅 

∗ 
2 has enabled identification

nd parcellation of subcortical structures ( Bazin et al., 2020a; Keuken

t al., 2018 ). By performing quantitative magnetic resonance imaging

qMRI), intrinsic tissue properties are measured, in which the result-

ng values are independent of the specific MRI sequence parameters

 Tofts, 2005 ). The quantitative metrics allow for cross-sectionally mon-

toring of subtle changes over the life span and longitudinally in disease

rogression. Quantitative 7T MRI has thus set a new standard in visual-

zing subcortical structures ( Alkemade et al., 2020 ). 

The relaxation parameter 𝑅 

∗ 
2 measures the effective spin-spin relax-

tion rate of tissues and finds its application in image-guided Deep Brain

timulation for Parkinson’s disease ( Isaacs et al., 2020 ), and detection

f hemorrhage, micro-calcifications, and iron deposits ( Stüber et al.,

014 ). These iron deposits are a marker of maturation, as they are

nown to accumulate with increasing age, leading to an increasing in-

omogeneous appearance of 𝑅 

∗ 
2 in deep nuclei. The interquartile range

f 𝑅 

∗ 
2 in e.g. the striatum shows a strong linear correlation with age

 Mileti ć et al., 2022 ). This demonstrates the joint added benefit of in-

reased 𝑅 

∗ 
2 -contrast and ultra high-resolution imaging at 7T. 

Quantitative maps of tissue properties typically need the acquisition

f multiple images with different specifications ( Tofts, 2005 ). Conven-

ionally, 𝑅 

∗ 
2 is fitted from reconstructed images of multiple echo times

cquired with a multi-echo gradient echo (ME-GRE) sequence. While

onventional ultra-high resolution MRI acquisitions are already time-

onsuming, scanning the multiple images under varying relaxometry

onditions necessary for qMRI may take even longer. This often exceeds

he acceptable time in the clinic and can make imaging vulnerable to

nvoluntary subject motion ( Andre et al., 2015 ). 

Imaging may be accelerated by acquiring fewer samples in k-space,

esulting in sparse data, for which multiple reconstruction methods have

een proposed. Parallel imaging ( Griswold et al., 2002; Pruessmann

t al., 1999 ) is well established, which with its more recent variants

uch as SPIRiT ( Lustig and Pauly, 2010 ), ESPIRiT ( Uecker et al., 2014 ),

ORAKS ( Haldar, 2013 ), and joint virtual coil reconstructions ( Bilgic

t al., 2018; Zhang et al., 2021; 2020 ) makes use of the extra spatial

ncoding from multi-channel receive coils. Compressed sensing ( Bilgic

t al., 2011; Chatnuntawech et al., 2016; Ehrhardt and Betcke, 2016;

aldar et al., 2011; Kopanoglu et al., 2020; Küstner et al., 2016; Lustig

t al., 2008; Maier et al., 2019 ) and dictionary learning based methods

 Caballero et al., 2014; Huang et al., 2014; Ravishankar and Bresler,

010; Rueda et al., 2013; Wang and Ying, 2014; Zhan et al., 2015 ) fur-

her exploit the image prior of sparsity in a sparsifying domain, e.g., by

he wavelet transform, total variation, or adaptively learned dictionary

ransform of the image. 

Following up, deep learning-based methods have been proposed,

iming to further accelerate imaging. Deep neural networks can approx-

mate a prior customized to the task of MRI reconstruction by learn-

ng from training data. Deep learning has set the state-of-the-art perfor-

ance in multiple reconstruction tasks recently ( Knoll et al., 2020; Liang

t al., 2020; Muckley et al., 2021 ). Defining an optimization problem

or reconstruction, the iterative optimization process can be unrolled

nto deep networks ( Gregor and LeCun, 2010 ), or approached with the

ecurrent neural networks ( Putzky and Welling, 2017 ). Following up,

t was understood that deep learning-based reconstruction may bene-

t from the physics-based known forward model for image reconstruc-

ion. Typically, this model is formulated in the optimization problem

nd embedded in the learning and inference processes, e.g., in the vari-

tional networks ( Hammernik et al., 2018 ) and the Recurrent Inference

achine (RIM) ( Lønning et al., 2019 ), among others ( Schlemper et al.,

017; Aggarwal et al., 2018; Tezcan et al., 2019; Wang et al., 2020 ). 

While the acceleration techniques in weighted imaging treat acqui-

itions independently, qMRI gives the unique opportunity to further ac-
2 
elerate imaging thanks to the shared information implicitly embedded

n repeated acquisitions. In qMRI applications, the domain prior knowl-

dge provided by a compact forward model that maps the parameters

irectly into the k-space can be exploited. This has been done in pi-

neering works such as in compressed sensing ( Doneva et al., 2010 ),

ow-rank reconstruction ( Lee et al., 2016 ), and through an end-to-end

onvolutional neural network ( Liu et al., 2019 ). Recent work showed

he feasibility in the context of T 1 -mapping using an unfolded network

 Jun et al., 2021 ). 

In this paper, we present the quantitative Recurrent Inference Ma-

hine (qRIM) for reconstructing accurate and precise 𝑅 

∗ 
2 maps from

ighly accelerated high-resolution 7T data. To this end, we adopt a

hysical model jointly describing the parametric model and image re-

onstruction. This model describes the expected signal in k-space given

 

∗ 
2 while accommodating field inhomogeneities. We embed this model

n a RIM network towards better exploitation of the implicit correlation

ver the multiple images in the acquisition. Specifically, with the uni-

ed forward physical model, we adopt the convolutional RIM network

 Lønning et al., 2019 ) to directly reconstruct the parameter map from

he subsampled k-space. We also implicitly exploit the signal correlation

ithin a vicinity of the voxel through the receptive field of the network.

e thereby aim to avoid large errors due to amplified noise at the voxel

evel in sparsely sampled data at ultrahigh resolution. An overview of

he proposed framework for accelerated 𝑅 

∗ 
2 -mapping is given in Fig. 1 . 

The qRIM network is trained on motion-corrected raw data of

he Amsterdam Ultra-high field adult lifespan database (AHEAD)

 Alkemade et al., 2020 ). Experiments are performed to assess accuracy

nd precision in 𝑅 

∗ 
2 for increasing acceleration factors. Furthermore, we

erform a validation experiment into subcortical maturation, taking the

ncreasingly inhomogeneous appearance of 𝑅 

∗ 
2 with age in the striatum

s an implicit resolution marker. We expect the qRIM to be better able

o maintain tissue structure while reducing imaging noise compared to

onventional reconstruction. 

Since the extension of the unified forward model is in general ap-

licable to the physics-informed deep networks that wrap an unrolled

ptimization, we also extended the proposed framework in the state-of-

he-art End-to-End Variational Network ( Sriram et al., 2020 ) as compar-

son. 

The remainder of the paper is organized as follows.

ection 2 presents the joint optimization problem of a unified model of

mage reconstruction and relaxation for 𝑅 

∗ 
2 mapping. Section 3 explains

he quantitative RIM that is customized to estimate 𝑅 

∗ 
2 with the unified

odel. Section 4 explains the Quantitative End-to-End Variational Net-

ork with the extended unified forward model. Section 5 describes the

atasets, the RIM network architecture, and the details of training and

valuation of which the results are presented in Section 6 . Following a

iscussion in Section 7 , the conclusions are drawn in Section 8 . 

. Theory 

.1. Unified model 

In order to define a unified forward model from the quantitative

elaxation parameter map 𝑅 

∗ 
2 to k-space coil signals, let us first introduce

he 𝑅 

∗ 
2 relaxation model. 

In qMRI, multiple images are acquired in the same subject with dif-

erent acquisition parameters in order to obtain quantitative parameter

aps. Specifically, for 𝑅 

∗ 
2 estimation with the ME-GRE sequence, images

f multiple echoes are acquired. With noise neglected, the measured

omplex-valued image 𝒙 𝑡 ∈ ℂ 

𝑃 of 𝑃 voxels at echo 𝑡 with echo time TE t 
ollows this forward relaxation model: 

 𝑡 = 𝑴 ⊙ e − 𝑇𝐸 𝑡 ( 𝑹 
∗ 
𝟐 − 𝑩 0 𝑖 ) , (1)

here 𝑴 ∈ ℂ 

𝑃 is the net magnetization, and ⊙ represents Hadamard

roduct. 𝑹 

∗ ∈ ℝ 

𝑃 is the parameter map of 𝑅 

∗ 
2 and 𝑩 0 ∈ ℝ 

𝑃 is the off-
𝟐 



C. Zhang, D. Karkalousos, P.-L. Bazin et al. NeuroImage 264 (2022) 119680 

Fig. 1. An overview of the conventional parameter 

fitting pathway (via gray arrows) and our proposed 

pathway (via the orange arrow), in application to 𝑹 

∗ 
𝟐 - 

mapping. In qMRI, each echo time in the echo train 

is filled into its individual k-space. The conventional 

pathway performs image reconstruction from k-space 

of every echo time and subsequently voxel-wise fit- 

ting of the relaxation model from the reconstructed 

images, while our proposed method performs simulta- 

neous reconstruction and relaxation model fitting with 

the unified model and computes the optimized param- 

eter maps from k-space using the quantitative Recur- 

rent Inference Machine (qRIM). 
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esonance of the static magnetic field, and the exponent is taken element

ise. 

Providing the known image 𝒙 𝑡 and following the forward model of

mage reconstruction for acquisition with a multi-channel receive coil,

he corresponding k-space of coil channel 𝑐 is given by 

 𝑡,𝑐 = 𝐺ℱ 𝑺 𝑐 𝒙 𝑡 + 𝒏 𝑡,𝑐 , (2)

here the image 𝒙 𝑡 is sensed by coil channel 𝑐 with the sensitivities

ontained in a diagonal matrix 𝑺 𝑐 ∈ ℂ 

𝑃×𝑃 , and Fourier transformed

n k-space signals by ℱ , followed by the subsampling operation 𝐺 ∈
0 , 1} 𝑄 ×𝑃 , 𝑄 ≪ 𝑃 , with exactly one nonzero in each row and usually

ot more than one nonzero in each column, which is a common prac-

ice for accelerating the imaging. 𝒏 𝑡,𝑐 ∈ ℂ 

𝑄 is the noise of the sampled

ositions for echo 𝑡 in coil channel 𝑐. 

Substituting Eq. (1) into Eq. (2) , we unify the relaxation model and

he forward model of image reconstruction as 

 𝑡,𝑐 = 𝐺ℱ 𝑺 𝑐 ( 𝑴 ⊙ e − 𝑇𝐸 𝑡 ( 𝑹 
∗ 
𝟐 − 𝑩 0 𝑖 ) ) + 𝒏 𝑡,𝑐 . (3)

his unified forward model facilitates mapping from our parameters of

nterest, i.e., 𝑹 

∗ 
𝟐 , 𝑴 , and 𝑩 0 , to k-space signals 𝒚 . 

.2. Problem formulation 

With the unified forward model, we aim to estimate the parameters

= { 𝑹 

∗ 
𝟐 , 𝑴 , 𝑩 0 } from k-space 𝒚 . From the perspective of maximum a

osteriori (MAP) estimation, this inverse problem is solved by maximiz-

ng the sum of the log-likelihood and log-prior distributions: 

̂ = arg max 
𝚽

{ log 𝑝 ( 𝒚 |𝚽) + log 𝑝 ( 𝚽)} . (4)

The (negative) log-likelihood log 𝑝 ( 𝒚 |𝚽) is derived as data consis-

ency between the measured k-space 𝒚 and the prediction through

q. (3) with the estimated parameters: 

og 𝑝 ( 𝒚 |𝚽̂) = 

1 
𝜎2 

𝑇 ∑
𝑡 =1 

𝐶 ∑
𝑐=1 

‖‖‖‖𝐺ℱ 𝑺 𝑐 ( 𝑴̂ ⊙ e − 𝑇𝐸 𝑡 ( ̂𝑹 
∗ 
𝟐 − ̂𝑩 0 𝑖 ) ) − 𝒚 𝑡,𝑐 

‖‖‖‖
2 

2 
. (5)

The log-prior log 𝑝 ( 𝚽) can be seen as a regularizer, acting dependent

n how the prior knowledge is modeled. For example, in compressed
3 
ensing, it is commonly regarded as the 𝑙1 -norm of sparsity of parame-

ers in sparsity domains. In deep learning based methods it can be the

etwork trained from datasets with similar distributions as the target

ata. 

. Quantitative recurrent inference machine 

The Recurrent Inference Machine can be seen as an iterative inverse

roblem solver ( Putzky and Welling, 2017 ). Here, training the RIM aims

o train a network that learns how to estimate 𝑹 

∗ 
𝟐 from k-space data.

he RIM is recurrent in nature. While commonly recurrency in neural

etworks is adopted for modeling time signals, here this architecture is

xploited for iterative problem solving. Through a single set of reused

etwork parameters, the network is highly efficient. Still, network com-

lexity is implicitly increased through the iterations. The hidden states,

hich do vary over iterations, allow the network to pay attention to

ifferent regions over the image. 

To solve the inverse problem of Eq. (4) , with an iterative approach

o the MAP inference, 𝚽 is recursively computed as 

𝜏+1 = 𝚽𝜏 + 𝛾𝜏∇( log 𝑝 ( 𝒚 |𝚽) + log 𝑝 ( 𝚽))( 𝚽𝜏 ) , (6)

here 𝛾𝜏 is the step size at iteration 𝜏. With an explicit forward model,

ollowing the framework of the Recurrent Inference Machine this update

unction can be generalized as Putzky and Welling (2017) 

𝜏+1 = 𝚽𝜏 + ℎ (∇ log 𝑝 ( 𝒚 |𝚽)( 𝚽𝜏 ) , 𝚽𝜏 , 𝒔 𝜏 ) , (7)

here ℎ is a learnable network model that implicitly learns both the

cheduling of the step size and the gradient of the prior. The gradient

f the log-likelihood encodes the domain knowledge with the included

orward model, and is kept as an input. A latent memory variable 𝒔 𝜏
s added to maintain the framework of the recurrent neural network.

he update equation of 𝒔 𝜏 given by 𝒔 𝜏+1 = 𝑔( log 𝑝 ( 𝒚 |𝚽)( 𝚽𝜏 ) , 𝚽𝜏 , 𝒔 𝜏 ) with

nitialization 𝒔 0 = 𝟎 , where 𝑔 is a learnable update model for 𝒔 . 

For computing the gradient of the log-likelihood, we reparameterize

he forward model by 𝑹 = 𝑹 

∗ 
2 − 𝑩 0 𝑖 , and essentially estimate 𝑴 , 𝑹 ∈ ℂ 

𝑃 

n practice, instead of 𝑴 ∈ ℂ 

𝑃 , and 𝑹 

∗ 
𝟐 , 𝑩 0 ∈ ℝ 

𝑃 , to facilitate Wirtinger

erivatives ( Kreutz-Delgado, 2009 ). The estimates of 𝑹 

∗ and 𝑩 0 can
2 
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Fig. 2. The network architecture of the quantitative Recurrent Inference Ma- 

chine. 
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hen be obtained by taking the real and imaginary components of the

stimated 𝑹 , respectively. The gradient of the log-likelihood log 𝑝 ( 𝒚 |𝚽)
s now given as follows: 

 

 

 

 

 

 

 

𝜕𝐿 

𝜕𝑀 

∶= 

1 
𝜎2 

𝑇 ∑
𝑡 =1 

𝐶 ∑
𝑐=1 

𝑹 ⊙ e − TE 𝑡 ⊙ 𝚲, 

𝜕𝐿 

𝜕𝑅 
∶= − 

1 
𝜎2 

𝑇 ∑
𝑡 =1 

𝐶 ∑
𝑐=1 

TE 𝑡 𝑴 ⊙ e − TE 𝑡 𝑹 ⊙ 𝚲, 
(8) 

here 𝐿 = log 𝑝 ( 𝒚 |𝚽) , and 𝚲 = 𝑺 

𝐻 

𝑐 
ℱ 

−1 𝐺 

𝑇 ( 𝐺ℱ 𝑺 𝑐 𝒙 𝑡 − 𝒚 𝑡,𝑐 ) . The opera-

ion ⋅𝐻 denotes the Hermitian conjugate and ⋅ denotes the complex con-

ugate. The RIM implicitly learns the log-prior log 𝑝 ( 𝚽) with the training

ata. To distinguish the RIM for quantitative parameter mapping from

he network for image reconstruction purposes, we designate it as the

uantitative RIM (qRIM). 

The architecture of the model, depicted in Fig. 2 , is built as follows.

ach of the first two convolutional layers (Conv) is followed by the Rec-

ified Linear Unit (ReLU) activation function and interleaved with the

ated recurrent units (GRU) ( Cho et al., 2014 ) which are used to main-

ain the internal state. This results in two internal states 𝒔 = { 𝒔 1 , 𝒔 2 } for

 in Eq. (7) . The first convolutional layer is with 8 input channels (4

or the estimate of parameter maps 𝚽𝜏 , and another 4 for the gradients

f the log-likelihood for the estimate), 128 output channels, and kernel

ize of 5 × 5 , whereas the second convolutional layer is with 128 input

hannels, 128 output channels, and kernel size of 3 × 3 . Each GRU is

ith 2 × (128 × 384 + 384) parameters. The second GRU is followed by a

hird convolutional layer with 128 input channels, 4 output channels,

ernel size of 3 × 3 , and without bias terms. In total the network is with

76,064 parameters. 

We chose to initialize 𝚽0 , an input to the qRIM network, with the fit-

ed parameter maps using the conventional sequential models of image

econstruction and relaxation, as described in Section 5 . 

. Quantitative end-to-end variational network 

The extension of the unified forward model may also be adopted

n other physics-based deep learning MRI reconstruction frameworks
4 
ith unrolled optimization. For the purpose of comparison to the

RIM, we implemented the quantitative End-to-End Variational Net-

ork (qE2EVN). The qE2EVN extends the state-of-the-art E2EVN

 Sriram et al., 2020 ) which solves the inverse problem of accelerated

RI reconstruction through unrolled optimization by gradient descent.

By defining the regularizer as a UNet, the qE2EVN iteratively per-

orms updates for the optimization of Eq. (4) through a number of cas-

ades, given by 

𝑘 +1 = 𝚽𝑘 + 𝜆𝑟 
(
𝑺 

𝐻 

𝑐 
ℱ 

−1 𝐺 

𝑇 
(
log 𝑝 ( 𝒚 |𝚽𝑘 ) 

))
, (9)

here 𝑘 is the current cascade, and 𝑟 is a regularizer weighted by a factor

. The architecture of the model is presented in Fig. 3 . 

For the qE2EVN we chose 8 cascades of UNets, consisting of 18 chan-

els and 4 pooling layers, while the padding size was set to 11. The

elected hyperparameters were taken from Karkalousos et al. (2022) ,

here extensive hyperparameters search was performed. The result-

ng number of trainable parameters was 19 . 6 × 10 6 . The source code of

E2EVN is made available online. 1 

. Experiments 

.1. Dataset 

Data were selected from the AHEAD brain database ( Alkemade et al.,

020 ), covering the adult life span with a uniform age range distribu-

ion between 21 and 81 years of age. The Institutional Review Board

pproval and informed consent from the volunteers were obtained.

he MP2RAGE-ME (Magnetization Prepared 2 Rapid Acquisition Gra-

ient Echoes Multi Echo) sequence ( Caan et al., 2019 ) with FatNav mo-

ion navigators ( Bazin et al., 2020c ) was used for 3D acquisitions on

 Philips 7T scanner equipped with a 32-channel Nova Medical head

oil (Wilmington MA, USA). The sequence parameters include band-

idth = 405 Hz, TR MP2RAGEME = 6 . 8 s, inversion times TI 1 = 0 . 67 s and

I 2 = 3 . 7 s, repetition times TR 1 = 6 . 2 ms and TR 2 = 31 ms, flip an-

le = 

4 ◦ for both readouts. The echo time of the single readout at the first

nversion time was TE 1 = 3 . 0 ms, and echo times of the four readouts at

he second inversion time were TE 2 = [3 . 0 , 11 . 5 , 20 . 0 , 28 . 5] ms. The ma-

rix size was 292 × 290 × 234 with a resolution of 0.7 mm isotropic. The

cquisition was two-fold accelerated along one phase-encoding dimen-

ion and had a turbo factor of 150. 

Before motion correction, the k-space data were GRAPPA-

nterpolated ( Griswold et al., 2002 ). To account for translations and

otations between shots, FatNavs were rigidly coregistered, and the cor-

esponding k-space lines per turbo shot were corrected. To this end, the

ranslation parameters were converted into a phase factor by which k-

pace data were multiplied. Data were then rotated according to the

stimated rotation parameters and regridded using a non-uniform Fast

ourier Transform (for details, see Bazin et al., 2020c ). This reconstruc-

ion is referred to as the reference data in the later training of the net-

ork and evaluations of the methods. 

Sensitivity maps to be used in the forward model of Eqs. (2) and

3) were acquired with an additional coil sensitivity reference scan.

rom this reference scan, coil sensitivities were estimated using auto-

alibration ( Lustig et al., 2007 ). This scan matched the field of view of

he MP2RAGE-ME sequence, with a flip angle of 6 ◦ and a resolution of

.0 mm isotropic. 

A total of 71 subjects were included in this study. In training, valida-

ion, and testing of the qRIM, 18, 2, and 10 subjects were used, respec-

ively. Of each subject, a stack of 50 slices in the mid-brain was selected.

or 3-fold cross-validation, the test set was cycled in the three folds over

ll subjects, and the training and validation subjects were randomly se-

ected out of the remaining batch. For testing generalizability, we used

https://github.com/wdika/mridc
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Fig. 3. The network architecture of the quantitative End-to-End Variational Network (qE2EVN). K is the total number of cascades. 
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 set of 42 subjects over a broad range from 19 to 80 years of age. Raw

ata of the AHEAD database is made available online. 2 

For 𝑅 

∗ 
2 mapping, the four echoes of the second inversion data TE 2 

ere used. In this study, we focused on 2D 𝑅 

∗ 
2 mapping, for which 2D

-space slices were extracted from the inverse Fourier-transformed ref-

rence 3D k-space of individual coil images in the readout direction. 

The 2D k-space was retrospectively subsampled with variable density

long both dimensions. The subsampling was with Gaussian pseudo-

andom patterns with a relative full width at half maximum of 0.7 times

he acquisition matrix, and with a fraction of 0.02 fully sampled in the

-space center. Subsampling patterns varied per echo time and were

enerated with different random seeds (see Fig. 1 ). 

.2. Training 

The reference maps acting as the ground-truth were obtained by least

quares fitting (LSQ) on reference images of four echo times to Eq. (1) .

he phase of every echo time was unwrapped for fitting 𝑩 0 ( Abdul-

ahman et al., 2005 ). 

The source code of the qRIM is made available online. 3 For training

f the qRIM, structural similarity index measure (SSIM) ( Wang et al.,

004 ) was computed as a loss metric of each time step. SSIM was com-

uted over all estimated parameters 𝚽 = { 𝑹 

∗ 
𝟐 , 𝑴 , 𝑩 0 } . The final loss

( 𝚽𝑇 ) is the average over all time steps as 

( 𝚽𝑇 ) = 

1 
𝑇 

𝑇 ∑
𝜏=1 

∑
𝝓∈𝚽

𝝎 𝝓SSIM ( 𝚽𝜏,𝜙 ⊙𝑫 , 𝚽𝜙 ⊙𝑫 ) , (10)

here SSIM () computes the summation of SSIMs between the two

nputs. 𝐷 ∈ {0 , 1} 𝑃 is a binary brain mask computed using SPM12

 Ashburner and Friston, 2005 ) in MATLAB (MathWorks, Natick, Mas-

achusetts) on the magnitude image of the second echo time. Therefore,

he loss 𝑙( 𝚽𝑇 ) was effectively computed in the brain region only. For

 ∈ 𝚽 the SSIM was computed separately in real and imaginary chan-

els. The SSIM of 𝑹 

∗ 
𝟐 was assigned with a higher weight with 𝝎 𝑹 ∗ 𝟐 

= 3
han other parameters which are with 𝝎 { ℜ𝔢 ( 𝑴 ) , ℑ𝔪 ( 𝑴 ) , 𝑩 0 } = 1 . 

Although parameter maps created with zero-filled reconstruction

nd subsequent LSQ can act as the initialized input for qRIM, a bet-

er initialization is usually preferred to ease the learning and improve

he network output. Therefore, a single RIM for image reconstruction

 Lønning et al., 2019 ) was trained on data of individual echoes from the

raining data specified above. The model specifications were the same

s in Lønning et al. (2019) with the SSIM as loss metric. This trained

IM was used to independently reconstruct all echo time images from

he subsampled data. The initialized parameter maps for the qRIM were

omputed with LSQ of these reconstructions to Eq. (1) . We refer to this

nitialization method as RIM + LSQ in the rest of the paper. For all net-

orks that are used in this work, the training lasted until their training
oss was stabilized. 

2 https://doi.org/10.34894/IHZGQM . 
3 https://github.com/chaopingzhang/qRIM . 
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.3. Comparison methods 

Four methods were selected for comparison. First, a conventional

on-deep learning approach was adopted, being the widely used Com-

ressed Sensing image reconstruction with LSQ (CS + LSQ). The CS re-

onstruction was performed using the BART toolbox ( Lustig et al., 2007 )

ith regularization on the 𝑙1 -norm of the wavelet coefficients with the

egularization factor 0.01. The regularization factor was selected for an

ptimal root mean squared error (RMSE) with the reference 𝑹 

∗ 
𝟐 map

hile avoiding excessive noise. 

Second, a different network architecture, being the U-Net was

ncluded for evaluation. The U-Net model was adapted for pa-

ameter mapping, with the same architecture as described in

onneberger et al. (2015) except that we used four input channels and

our output channels to fit our application. This network was initialized

n the same way as qRIM and was also trained with the same SSIM as

he loss metric. 

Third, the RIM + LSQ was used. As introduced above for initializa-

ion of the qRIM, this method has separate image reconstruction and

arameter estimation. Fourth, the qE2EVN described in Section 4 as an-

ther physics-based deep learning method that unrolls an optimization

as included in comparison to the qRIM. The qE2EVN used the same

nitialization as qRIM. 

.4. Evaluations 

Besides the visual comparison of the 𝑹 

∗ 
𝟐 maps among all methods,

he RMSE was computed on 𝑹 

∗ 
𝟐 maps for all testing subjects. Because the

tructural Similarity Index (SSIM) and peak signal-to-noise ratio (PSNR)

re widely adopted in the image reconstruction field, they were com-

uted alongside the RMSE. 

To test for an effect of reconstruction model on 𝑹 

∗ 
𝟐 and 𝑩 0 , two-way

nalysis of variance (ANOVA) was performed for the RMSE per accelera-

ion factor. Post-hoc tests were conducted to test for differences between

airs of models. To test for an increasing improvement in performance

ith acceleration factor, the RMSE difference between RIM + LSQ and

RIM, i.e. △RMSE, was computed for different acceleration factors.

ubsequently, the linear trend of △RMSE as a function of acceleration

actor was computed for all subjects and statistically tested using a one-

ample signed t -test. 

To assess the variability of RMSE over subjects, we conducted a 3-

old cross-validation (see Section 5.1 ). To constrain the training time,

his cross-validation was conducted for 12-times accelerated data only.

ean and standard deviation of △RMSE were computed and tested us-

ng a one-sample signed t -test. 

We conducted an ablation study to evaluate the effect of k-space

ampling over different echo times (TEs). In addition to variable sam-

ling over TEs, we performed the qRIM prediction with identical k-space

atterns. We quantified a possibly reduced reconstruction performance

sing the same testing subjects, and computed the RMSE of the predicted

 

∗ maps with regards to the reference maps. 
𝟐 

https://doi.org/10.34894/IHZGQM
https://github.com/chaopingzhang/qRIM
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Fig. 4. The maps of 𝚽𝑇 : 𝑹 

∗ 
𝟐 , |𝑴 |, ∠𝑴 , and 

𝑩 0 of the qRIM with acceleration factors of 3, 

6, 9, and 12, and the corresponding reference 

maps from fully sampled data. 
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While the qRIM model was trained and validated with pseudo-

andom subsampling k-space patterns, we did extra predictions on data

ith the commonly used equidistance subsampling patterns to test the

eneralization ability of qRIM. 

To evaluate accuracy and precision of the methods in selected re-

ions of interest (ROIs) in the subcortex, the mean and standard devi-

tion (std) of the reconstruction errors, i.e., the difference with regard

o the reference, were computed within the thalamus (Tha), the red nu-

leus (RN), the substantia nigra (SN), the subthalamic nucleus (STN),
6 
nd the striatum (Str) for all methods. These sub-cortical brain regions

re most relevant in the clinical context of e.g. deep brain stimulation

 Isaacs et al., 2020 ). The segmentations of Tha, RN, SN, STN, and Str

ere computed using the MASSP algorithm ( Bazin et al., 2020b ) of the

ighRes toolbox ( Huntenburg et al., 2018 ) on reference reconstructions

f the same subjects from the AHEAD database ( Alkemade et al., 2020 ).

Finally, we studied the extent to which subcortical maturation ef-

ects are preserved by the qRIM for increasing acceleration factors. The

triatum is known to show a strong linear correlation between the in-
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Fig. 5. The sagittal and coronal planes of 𝑹 

∗ 
𝟐 of the qRIM with acceleration factors of 3, 6, 9, and 12, and the corresponding reference 𝑹 

∗ 
𝟐 (1 ×) from fully sampled 

data. 

Fig. 6. Example 𝑹 

∗ 
𝟐 maps of the U-Net, CS + LSQ, RIM + LSQ, qE2EVN, and qRIM, with acceleration factors of (a) 3, (b) 6, (c) 9, (d) 12, and the difference images 

with regard to the reference next to each 𝑹 

∗ 
𝟐 map. The 𝑹 

∗ 
𝟐 map (1 ×) in Fig. 4 shows the reference map. 

7 
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Fig. 7. RMSE of 𝑹 

∗ 
𝟐 as a function of acceleration factor (acce) for CS + LSQ, U-Net, RIM + LSQ, qE2EVN, and qRIM. Each plot refers to data of a single test subject. 
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o  
erquartile range (IQR) of 𝑹 

∗ 
𝟐 and age ( Mileti ć et al., 2022 ), related to

ocal iron deposition. A linear fit of the IQR of 𝑹 

∗ 
𝟐 as a function of age

as computed for the mapping from qRIM, RIM + LSQ, and the ref-

rence data. In this experiment, the 𝑹 

∗ 
𝟐 maps of 42 subjects were com-

uted. This independent test dataset had no intersection with neither

he training nor the validation set. The distribution of the age of these

ubjects covers a wide range from 19 to 80 years of age. 

. Results 

The maps of 𝚽𝑇 , i.e. 𝑹 

∗ 
𝟐 , |𝑴 |, ∠𝑴 , and 𝑩 0 of the proposed qRIM

re shown in Fig. 4 , with multiple acceleration factors for one axial slice

f one selected subject, as well as the reference maps (with 1× acceler-

tion). The 𝑹 

∗ 
𝟐 map shows expected contrasts and the 𝑴 map shows

xpected magnitude and phase. The 𝑩 0 map also shows the expected

ff-resonance pattern in the frontal and temporal regions of the brain.

 stable parameter fit has been observed for all acceleration factors.

ig. 5 shows the sagittal and coronal planes of the qRIM predicted 𝑹 

∗ 
𝟐 

aps. 

Fig. 6 shows the same axial slice of the 𝑹 

∗ 
𝟐 maps for all methods

ith all acceleration factors and the error images with regard to the

eference map next to each reconstruction. Visually, with a higher ac-

eleration factor, the image appears as more blurred. The U-Net results

how the most biased 𝑹 

∗ 
𝟐 , and the RIM + LSQ and the qRIM achieved

etter 𝑹 

∗ 
𝟐 maps with less error than the CS + LSQ. The qEVEVN results

how similar quality to the RIM + LSQ results but are with sharper de-

ails for 12-fold acceleration. Compared to the RIM + LSQ, the 𝑹 

∗ 
𝟐 map

f the qRIM shows less blurred image content, revealing the heteroge-
8 
eous tissue properties. The images of more subjects are provided in

upplementary material, and lead to the same observations as in Fig. 6 .

Fig. 7 shows the RMSE of the 𝑹 

∗ 
𝟐 maps per subject as a func-

ion of acceleration factor for the comparison methods and the pro-

osed qRIM model. Two-way analysis of variance (ANOVA) of the

MSE of 𝑹 

∗ 
𝟐 showed a significant effect of reconstruction methods

 𝑝 < 1 × 10 −4 ). Post-hoc analyses showed that the qRIM had a lower

MSE than RIM + LSQ for 9 and 12-fold acceleration ( 𝑝 = 0 . 04 and

 < 1 × 10 −4 ), but not for 3 and 6-fold acceleration ( 𝑝 = 0 . 8 and 𝑝 = 0 . 5 ).
he qRIM had lower RMSE than CS + LSQ and the U-Net for all accel-

ration factors. Comparing RIM + LSQ to U-Net, the U-Net was inferior

p to 9-fold acceleration ( 𝑝 < 1 × 10 −4 , 𝑝 = 3 × 10 −4 , 𝑝 = 0 . 02 for 3, 6 and

-fold acceleration), but not for 12-fold acceleration ( 𝑝 = 0 . 44 ). A two-

ay ANOVA of the RMSE of 𝑩 0 also showed an effect of reconstruction

ethods ( 𝑝 < 1 × 10 −8 ). The RMSE of 𝑩 0 of the qRIM did not differ from

S + LSQ and RIM + LSQ, but was lower than the RMSE of the U-

et reconstruction ( 𝑝 < 1 × 10 −4 ). The CS + LSQ and the U-Net show

he largest RMSE, which agrees to the visual observation in Fig. 6 . The

IM + LSQ has a lower RMSE than the U-Net for most subjects but

onsistently higher RMSE than the qRIM. The qEVEVN shows slightly

igher RMSE than the RIM + LSQ. The SSIM is shown in Fig. S4 and

he PSNR is shown in Fig. S5 in supplementary material. Both of them

gree well to the RMSE results. In the ablation study into k-space sam-

ling over TEs, the qRIM showed an increase in RMSE of 𝑹 

∗ 
𝟐 of 0.5%

hen using fixed instead of variable sampling patterns. 

To assess the effect of acceleration in the two best performing meth-

ds, the △RMSE between the RIM + LSQ and the qRIM as a function
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Fig. 8. The 𝑹 

∗ 
𝟐 maps predicted from data with equidistance subsampling patterns using the qRIM model trained with pseudo-randomly subsampled data. The 𝑹 

∗ 
𝟐 

maps with acceleration factors of 2 × 2 , 1 × 3 , 2 × 3 and the reference maps ( 1 × 1 ) are shown for four testing subjects. 
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f acceleration factor is shown in Fig. 9 with error bars denoting the

tandard error of the mean. This shows that the RMSE reduction by

RIM over all subjects increases with the acceleration factor. The slope

f the curve, depicting the improvement with acceleration factor, was

ound to be significantly larger than zero in a one-sample signed t -test

 𝑝 = 2 × 10 −4 ). 
A 3-fold cross-validation experiment was then conducted on 12-fold

ccelerated data. Visual inspection showed ghosting artifacts due to mo-

ion in one subject and incorrect masking in an other, these two subjects

ere henceforth excluded from analysis. The mean and standard devi-

tion for △RMSE were 0 . 47 ± 0 . 28 , 0 . 20 ± 0 . 26 , and 0 . 45 ± 0 . 39 . These

ifferences were all statistically significant ( 𝑝 < 1 × 10 −3 , 𝑝 = 0 . 03 and

 = 0 . 004 ). 
Fig. 8 shows the 𝑹 

∗ 
𝟐 maps predicted from data with equidistance sub-

ampling patterns using the qRIM model trained with pseudo-randomly

ubsampled data. The results show good quality 𝑹 

∗ 
𝟐 maps with no visi-
9 
le aliasing artifacts for subsampling factors 2 × 2 and 1 × 3 , and strong

rtifacts for 2 × 3 . 
Fig. 10 shows statistics on accuracy and precision in selected ROIs,

or 12-fold acceleration. Fig. 10 (a) shows that the qRIM is least bi-

sed among all the 𝑹 

∗ 
𝟐 reconstructions. The U-Net, the RIM + LSQ,

nd the qE2EVN underestimated 𝑹 

∗ 
𝟐 in all ROIs, while CS + LSQ has

arying performance of the reconstruction accuracy over different ROIs.

ig. 10 (b) indicates that among all methods, the reconstruction errors

f CS + LSQ were with the lowest precision in all ROIs, which coincides

ith the error maps shown in Fig. 6 . 

Fig. 11 shows the linear fitting of IQR of 𝑹 

∗ 
𝟐 in the striatum as a

unction of age for the mapping from qRIM, RIM + LSQ, and the refer-

nce data. The qRIM experiences no bias in the offset and a negligible

ncrease in slope of the curve until an acceleration factor of 9. The slope

s slightly overestimated for 12-fold acceleration. For RIM + LSQ, the

QR fitting shows a negatively biased offset compared to the fitting to
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Fig. 9. The RMSE difference between RIM + LSQ and qRIM (i.e. 

ΔRMSE = RMSE(RIM + LSQ) - RMSE(qRIM)) as a function of acceleration factor 

with error bars denoting the standard error of the mean. Positive values yield 

an improvement of the proposed method. 
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he reference data. The magnitude of the bias increases with the accel-

ration factor. 

. Discussion 

This paper presents the Recurrent Inference Machine for acceler-

ted quantitative MRI (qRIM) in application to 𝑹 

∗ 
𝟐 mapping at 7T. A

nified forward model of image reconstruction and signal relaxation is

ormulated and employed, allowing for jointly optimizing image recon-

truction and parameter mapping. The proposed qRIM benefits from the

hared knowledge between these two tasks and integrates them into the

orward model. 

These advantages become apparent in comparison to conventional

equential image reconstruction and parameter fitting (RIM + LSQ).

he proposed method shows a reduced error in 𝑹 

∗ 
𝟐 , with an increasing

mprovement for higher acceleration factors. Specifically, the accuracy

f all ROIs is preserved, while RIM + LSQ experiences a negative bias.

lso, the qRIM qualitatively presents reduced image blur compared to

he RIM + LSQ. 
ig. 10. The distribution over subjects of the mean (a) and the std (b) of reconstructi

igra (SN), Subthalamic Nucleus (STN), and Striatum (Str) with the acceleration fac

o +1 times the std over subjects. The dashed red line in (a) indicates where the m

gure legend, the reader is referred to the web version of this article.) 

10 
For the subcortical maturation, accumulating iron deposition leads

o an increasingly heterogeneous appearance of the striatum and

hereby an increase in the IQR of 𝑹 

∗ 
𝟐 with age ( Mileti ć et al., 2022 ).

ith an increasing acceleration factor, it is increasingly more difficult

o adequately reconstruct this heterogeneous texture. The smoothing as

ntroduced by RIM + LSQ mapping led to an underestimated IQR of 𝑹 

∗ 
𝟐 ,

anifested as a negative bias in the fitting. This bias increased with the

cceleration factor. In contrast, with preserved sharpness in the qRIM

econstruction of 𝑹 

∗ 
𝟐 , the fitting is unbiased up to an acceleration factor

f 9. At a 12-fold acceleration, the SNR becomes low even for qRIM in

lder subjects due to increasing iron accumulation, leading to a noisier

rediction and hence a marginal overestimation of the IQR of 𝑹 

∗ 
𝟐 . 

The better performance of the qRIM could be explained by the 𝑹 

∗ 
𝟐 -

elaxometry model included in the qRIM, which provides additional

rior information. With this model, information across echo times can be

hared during the reconstruction process. Hence, the proposed qRIM has

dditional spatial information compared to the RIM model which recon-

tructs each echo time image independently. Additionally, the convolu-

ional nature of the RIM network allows learning spatial correlations

ithin the receptive field which may stabilize the fitting compared to

he independent voxel-wise estimation of LSQ. Another contributing fac-

or to the increased performance could be that by initializing through

he RIM + LSQ, the qRIM effectively has more iterations and capacity

o learn. 

The ablation study showed improved 𝑹 

∗ 
𝟐 mapping with variable k-

pace patterns over TEs compared to fixed patterns. Complementary

hase encoding over TEs might attribute to the ability of the qRIM to

econstruct highly accelerated data. 

In this study, pseudo-random subsampling k-space patterns were

sed and validated, because of the improved suppression of aliasing

oise compared to equidistant subsampling ( Lustig et al., 2008 ). While

seudo-random patterns have now been implemented for most vendors,

quidistance subsampling patterns are still broadly used in the clinic.

ur experiments with such patterns illustrate that the qRIM model

rained with data using pseudo-random subsampling k-space patterns

ere able to reconstruct equidistance subsampled data with good qual-

ty images and 𝑹 

∗ 
𝟐 maps with no visible artifacts with acceleration fac-

ors of 2 × 2 and 1 × 3 . For six-fold acceleration ( 2 × 3 ), the image qual-

ty was unacceptable with strong aliasing artifacts. The qRIM model

hus generalizes to a certain extent to subsampling patterns unseen dur-
on errors of the 𝑹 

∗ 
𝟐 in the ROIs: Thalamus (Tha), Red Nucleus (RN), Substantia 

tor of 12. Each bar is centered on the mean over subjects and extends from − 1 
ean of the error is zero. (For interpretation of the references to color in this 
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Fig. 11. Linear fitting of the interquartile range (IQR) of 𝑹 

∗ 
𝟐 in the striatum as a function of age for the mapping from qRIM, RIM + LSQ, and the reference data. 
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i  
ng training. Nevertheless, careful validation is still needed. We expect

hat models trained with equidistance subsampling patterns yield an im-

roved outcome ( Muckley et al., 2021 ). 

When evaluating and comparing to another network structure, the

-Net performs worse than both qRIM and RIM + LSQ with an overall

ore biased estimation of 𝑹 

∗ 
𝟐 . The RMSE increase of the U-Net along

he acceleration factors is inconsistent over different subjects, which

uggests possible overfitting. Contrary to the U-Net, the RIM model has

n iterative learning process through its recurrent network. The forward

odel of the inverse problem is used to compute the gradient of the log-

ikelihood in each iteration. This provides an assessment of how well the

urrent step estimate fits the reconstruction process with the given mea-

urements, and the RIM model learns to make use of this information in

he iterative process. As has been validated in Lønning et al. (2019) , with

he benefits of robustness against overfitting, RIM requires relatively lit-

le data to train a good model. The provided training data seemed suffi-

ient for the current qRIM and RIM + LSQ where no signs of overfitting

merged. 

We also show that the proposed extension of the unified forward

odel is not limited to the RIM framework. With qE2EVN good qual-

ty 𝑹 

∗ 
𝟐 maps were reconstructed, although slightly inferior to the qRIM

econstruction. An advantage of the qRIM is that the gradient of log-

ikelihood is explicitly computed for the unrolled optimization and the

ata consistency is implicitly embedded in the network infrastructure,

hile in the qE2EVN the data consistency is performed explicitly. We

xpect the integration of the extended unified forward model to also

ork in other model-based deep networks that unroll an optimization,

.g., cascades of independently RIMs ( Karkalousos et al., 2022 ). 

The CS + LSQ, which is a non-deep learning method, shows overall

he highest RMSE among all comparison methods (see Fig. 7 ), mainly

aused by a significantly higher standard deviation of 𝑹 

∗ 
𝟐 in multiple

OIs (see Fig. 10 ). This makes the CS + LSQ inferior to the qRIM and

he RIM + LSQ, and demonstrates the added value of learning from data

or this application. 

A practical limitation of the qRIM method for the specific 𝑹 

∗ 
𝟐 map-

ing problem is that the training of the qRIM needs to be constrained

o the brain region, thus requiring a segmentation as a preprocessing

tep. This step is required because of otherwise observed phase wrap-

ing in the skull region over successive TEs, such that the reference 𝑩 0 
s ill-defined in this region. In the test stage, such a step is not needed,

hereby minimizing the impact of the required segmentation. 

Since all supervised methods are to some extent dependent on the

raining dataset and experience a domain shift problem, some fine tun-

o  

11 
ng will be needed if the SNR changes due to resolution, field strength, or

arameter shifts. That said, recent work demonstrated high robustness

f the RIM to noise ( Sabidussi et al., 2021 ). 

Clinical populations (e.g., Parkinson’s disease) might experience an

ncrease in R2 ∗ , and thus even lower signal at high TE ( Jorge et al.,

020 ). Therefore, sufficient SNR is crucial. We expect the trained model

o be robust to reduced SNR ( Sabidussi et al., 2021 ). A validation study

ill be needed to assess whether this observed robustness generalizes to

imultaneous reconstruction and parameter estimation. 

With the validated 𝑹 

∗ 
𝟐 mapping using the ME-GRE sequences, we

xpect to generalize this work to the mapping of other relaxometry pa-

ameter in future work that may serve various clinical applications. For

his purpose, the forward models need to be customized, and the net-

orks need to be retrained with different datasets. As an example, recent

ork showed that R1-mapping using deep learning is feasible ( Jun et al.,

021 ). 

Future work could investigate the applicability of 𝑹 

∗ 
𝟐 mapping in

resurgical planning of Deep Brain Stimulation in Parkinson’s patients.

nother potential extension includes motion compensation. Motion is

n important source of artifacts in qMRI ( Zaitsev et al., 2015 ). Hence a

otential extension to this work is to integrate a motion model in the

orward model to reduce motion-induced artifacts. 

. Conclusions 

The proposed qRIM using a unified forward model for reconstruction

nd parameter estimation can exploit the redundancy among TEs and

hared knowledge between the two tasks thanks to the forward model.

 stable reconstruction of 𝑹 

∗ 
𝟐 of the human subcortex up to 9-fold ac-

eleration is achieved. Subcortical maturation can be reliably quantified

ver the life span. The qRIM thus allows for the reconstruction of more

ccurate parameters, with improved image sharpness compared to the

onventional pathway. 
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