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ABSTRACT: A peptide’s amino acid sequence affects its taste, but how? A rigorous structure−property connection is challenging to
determine because of both the exponentially growing peptide sequence space and the scarcity of experimental measurements
compared to the size of that space. By sensory methods, many peptides have been identified as tasting bitter or umami. Baselines
have been determined but relate only single amino acid characteristics, in particular hydrophobicity in bitter peptides and negative
charges for umami. In this work, we refine this picture by extracting sequential amino acid patterns. Our method coarse-grains the
peptide sequence space to facilitate the systematic identification of common residue patterns. We identify optimal patterns for both
bitter and umami peptides: one hydrophobic followed by four polar residues and two negative followed by three polar residues,
respectively. We find systematic improvements compared to both random and the baselines mentioned above. Our method
complements quantitative structure−activity relationship methods by leveraging sequential information to help locate taste-specific
characteristics in peptides and proteins.
KEYWORDS: bitterness, umami, peptide taste, pattern finding, plant-based proteins, taste generation

■ INTRODUCTION
Special compounds evoke specific tastes: sodium chloride
(salty), sugars (sweet), acids (sour), phenols (bitter, astringent,
and sour), alkaloids (bitter), glutamic acids (umami), and
nucleotides (umami enhancers). Tastes are crucial because the
gustatory system, the sensory system that helps in perceiving
taste, often informs us about safe and harmful foods through
their tastes.1 In addition, taste determines most of our food
preferences.2 For example, vegetables such as cabbage,
cucumber, and spinach often taste bitter because they contain
plant alkaloids, which can be toxic if consumed in large
amounts and are known to have excessive bitter taste;2,3

consequently, we avoid them. Because we tend to avoid bitter
foods and seek savory ones, classifying foods on the basis of the
taste responses they evoke and modulate and finding the
physicochemical reasons behind those responses are indis-
pensable steps in designing new nutritional and palatable
foods. The growing number of curated databases of bitter- and
umami-tasting foods4,5 indicates recent progress in this
direction.
Bitter and umami represent two major taste modalities of

peptides. Bitter peptides are often found in fermented foods,6,7

protein hydrolysates,3 and matured cheese.8 In matured
cheese, for example, they are produced during ripening
because most of the bitter-tasting amino acids are hidden in
the caseins. Because bitter-tasting amino acids are generally
hydrophobic,9 it would not be surprising if an abundance of
hydrophobic peptides strongly affects the flavors of foods such
as still-ripening and well-matured cheeses. As for savory foods,
most of them result from protein hydrolysis that occurs in
long-cooked foods, fermented foods such as soy, fish, oyster
sauces, and miso pastes, and long-matured foods such as

cheese and cured meat.10−15 It is now well-accepted that
amino acids and peptides contribute significantly to the overall
taste of savory foods.16 While single amino acids are likely to
form aroma compounds during thermal and microbiological
processing,11,17 peptides may remain more stable and can
contribute to taste depending on process parameters. Taken
together, these observations suggest a connection between the
physicochemical properties of the amino acids and their tastes.
Given the impact of individual amino acids, the challenging

question, then, is to understand the role of specific residue
patterns in determining a peptide’s taste via physicochemical
properties such as hydrophobicity, polarity, and charge. With
the discovery of new taste-relevant peptides in foods from
various preparations18 and progress in plant-based foods, this
question is becoming more relevant. For example, if we design
surrogate products from plant proteins, it would be useful to
identify which short sequences of these proteins exhibit
particular flavors. These proteins can then be thermally and
enzymatically treated to extract flavor peptides for use as flavor
enhancers.
Traditionally, the study of the tastes of peptides relied on the

quantitative structure−activity relationship (QSAR) frame-
work that relates peptide descriptors to some desired target
property using statistical and machine learning (ML)
methods.19−21 For bitter peptides, a QSAR has been used
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along with physicochemical descriptors, for example, to predict
the threshold concentration for bitterness,22 to predict bitter
and nonbitter peptides,23 to find residue types of bitter di- and
tripeptides,24 and to find bioactivity of bitter peptides.25

Predicting bitter taste on the basis of only sequence
information has been attempted recently by Charoenkwan et
al.26,27 Though early on it was suggested that the positions of
residues of a peptide do not affect its taste,6,9 multiple studies
since then have found that the residue positions do affect the
taste.24,28

For umami peptides, there are fewer QSAR studies
compared to the number for bitter peptides. One reason for
this may be that sensory evaluation, one of the primary
methods used to determine the umami-ness of foods, can be
subjective29 and expensive (see ref 30 for a summary of
currently used methods). Accordingly, defining the target
variable for umami intensity proved to be difficult. To
overcome this difficulty, the computational methods that
have been generally used to predict and analyze umami
peptides relied on structural analysis such as homology
modeling and molecular docking31−33 of possible umami
peptides to umami taste receptors such as T1R1/T1R3.34

Quite recently, physicochemical descriptors35 and only
sequence information36 were used along with ML-based
methods to classify umami and non-umami peptides.
As we have seen so far, QSAR and ML methods focus either

on classifying peptides or on predicting values of some target
variables using physicochemical descriptors or sequential
information. While QSAR methods are generally easy to
interpret, the physicochemical descriptors they use come from
linear and nonlinear dimensionality reduction techniques;37

this can make the final models less interpretable. In addition,
often multiple descriptors are needed to achieve higher
prediction accuracy;19,25 this makes the models multidimen-
sional and even more difficult to interpret. While ML is shown
to make accurate predictions using only sequence informa-
tion,27 they inherit the low interpretability issue often found in
ML methods such as deep neural networks. The scarcity of
experimentally verified data on the tastes of peptides creates an
additional, often rate-limiting, step for black-box ML models
that generally work well only when they are trained with a
large, labeled data set. Thus, while QSAR and ML methods are
essential for making accurate predictions given a peptide
sequence, their low interpretability becomes an issue if, for
example, the aim is to design new (i.e., out-of-sample) umami
peptides or to locate bitter-causing segments in a long protein.
Instead, a systematically derived generic residue pattern, which
is possibly connected to taste, can provide a better starting
point and thus can substantially accelerate the realization of
these aims. In this paper, we propose a method that identifies
such generic coarse-grained residue patterns that are often
found in bitter and umami peptides. The lower granularity of a
coarse-grained model is necessary as it helps in identifying
generic residue patterns by reducing the size of the peptide
sequence space.
To this end, we first reduced the size of the peptide

sequence space by classifying the amino acids into four coarse-
grained residue types: hydrophobic (H), polar and hydrophilic
(P), positively charged (+), and negatively charged (−)
(Figure 1). We combinatorially constructed seven compre-
hensive, increasingly large libraries of peptides with coarse-
grained residue patterns. We compiled a database of bitter and
umami peptides from the literature. After dividing the database

peptides into train and test sets, we compared the library
peptides to the coarse-grained bitter and umami peptides from
the training sets using a sequence comparison index38 and two
surrogate measures, defined using the comparison index, for
bitterness and umami-ness. This comparison identified the best
residue patterns that have the highest average overlaps with the
bitter and umami peptides, for each library. Finally, we
compared the average overlaps of the peptides, constructed
from the predicted patterns from different libraries, with
peptides from the test sets to find the shortest pattern that has
the greatest (or close to the highest) overlap. To assess the
accuracy of the predicted bitter and umami patterns, we
checked if they have greater overlaps with bitter and umami
peptides from test sets compared to overlaps with an all-
hydrophobic bitter baseline peptide and an all-acidic umami
baseline peptide, respectively, and, also, to a peptide with
randomly chosen residues. We used this method to assess the
accuracy of our predicted patterns because our goal is to reveal
generic residue patterns rather than predicting whether an
individual peptide has bitter or umami taste. Compared to
QSAR and ML methods, which typically correlate aggregate
physicochemical properties, our method predicts statistically
robust and easily interpretable residue patterns that are
connected to the tastes of peptides. In addition, our method
prioritizes the role of relative sequential positions of the
residues on a peptide’s taste; this is difficult to capture in a
QSAR framework. Taken together, our method systematically
expands the currently known set of bitter and umami residue
patterns and suggests a way to identify residue patterns that
can be responsible for bitter or umami taste in a peptide or a
protein.

■ METHODS
Database of Labeled Peptides. In this work, we relied on bitter

and umami peptides collected from the existing literature. Our
principal source is the database of 299 bitter and 140 umami peptides
provided by Charoenkwan et al., who compiled the list from
experimentally validated data sets and the literature.36 To the list of
bitter peptides of Charoenkwan et al. we added 24 new bitter peptides
that we found in Ney’s paper.9 As for umami peptides, we added 12
more peptides from the literature39,40 to the list of Charoenkwan et al.
As more than 90% of the collected peptides are composed of 2−10
amino acid residues, we discarded single-residue peptides and
peptides with more than 10 residues. This resulted in 292 bitter
and 146 umami peptides that were used in this work.
Coarse-Grained Representation. The size of the sequence

spaces of peptides, which are made from a combination of the 20

Figure 1. Schematic diagram illustrating the method we used to
identify the most common coarse-grained residue patterns present in
known bitter and umami peptides.
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canonical amino acids, grows as 20n, where n is the number of
residues in the longest allowed peptide. As we have only 292 bitter
and 146 umami peptides, we need to reduce the size of the peptide
sequence space to make reliable predictions. One way of reducing the
size is by coarse-graining the amino acids. We did this by classifying
each amino acid into one of the four classes: hydrophobic (H), polar
and hydrophilic (P), positively charged (+), or negatively charged
(−). We have used the Kyte−Doolittle (KD) hydrophobicity scale to
find hydrophobic (KD hydrophobicity > 0) and hydrophilic (KD
hydrophobicity < 0) residues. In this scheme, at a physiological pH of
7.4, the 20 canonical amino acids are classified as follows:
hydrophobic (H), {Ala, Cys, Ile, Leu, Met, Phe, Val}; hydrophilic
(P), {Asn, Gln, Gly, Pro, Ser, Thr, Trp, Tyr}; positively charged (+),
{Arg, His, Lys}; and negatively charged (−), {Asp, Glu}. For example,
in our representation scheme, the umami peptide LLLPGELAK is
represented as “HHHPP−HH+”. With this representation, the size of
the possible peptide sequence space decreases drastically. For
example, the number of possible dipeptides decreases from 202 =
400 to 42 = 16. We converted all of the collected peptides from the
literature to coarse-grained sequences and then proceeded to
construct a library of coarse-grained peptides.
Library of Coarse-Grained Peptides. To extend the prediction

beyond the peptide data set with which we started, we need new
peptide sequences. To systematically generate new peptide sequences,
we constructed seven increasingly larger peptide libraries formed by
repeating a fixed set of coarse-grained patterns. While each of these
libraries produced two best, i.e., most overlapped, matching patterns
for bitter and umami peptides, we also compared patterns from these
seven libraries. In this way, we can avoid choosing an unnecessarily
large library when a smaller one performs comparably; i.e., we will not
overfit. We do not seek a very small library of peptides either, as that
will lead to underfitting. In the Results and Discussion, we will see
how until N = 3 the libraries underfit the data while beyond N = 5 the
predictive power of the libraries saturates.

We constructed each library in four steps. First, we fixed the
maximum length (N) of the repeating patterns. Second, we generated
a list of all ∑i=1

N 4i possible combinatorial patterns containing N or
fewer coarse-grained residues. Third, we repeated each pattern with
itself to form an arbitrarily long (set to 420 residues in this work)
peptide. Finally, we kept unique full peptides in the final library.
Generating the library peptides in this way kept the number of
peptides in each library low, which aided in deriving statistically
robust patterns. Allowing for randomly selected neighbors of the
repeating unit in the library would rapidly increase its size; this will
lead to increased uncertainty of the predicted patterns.

For example, in the N = 1 library, there are only four repeating
patterns, {H, P, + , −}, and only four unique peptides, {HH···, PP···, +
+···, and −−···}. For N = 3, the library has ∑i=1

3 4i = 84 repeating
patterns such as {H, −P, +−H,···}, and they can combine to generate
76 unique peptides, {HH···, −P−P···, +−H+−H···, ···}. In this way,
we went up to N = 7 and constructed seven libraries. We stopped at N
= 7 because as we increase N, the number of peptides in the library
increases sharply, and we will risk overfitting the data. For example,
the N = 7 library has 21 844 repeating patterns and 21 736 unique
peptides. Now to compare the library peptides and labeled peptides,

we need an index that can measure the similarity between any two
coarse-grained sequences.
Sequence Overlap Index. Following Schilling et al.,38 we defined

an overlap index between two coarse-grained peptides, X and Y, as the
ratio of the number of position-dependent residue matches (|X∩Y|seq)
and the length of the smaller peptide:

=
| |

| | | |
I

X Y

X Y
(X, Y)

min( , )
seq

(1)

where |X| denotes the number of residues in peptide X. For example,
two peptides, −H++ and +H+−−, have two position-dependent
residue matches (H and + at positions 2 and 3, respectively), so I(−H
++, +H+−−) = 2/4 = 0.5.

The overlap index, I, allows us to define a surrogate measure for
bitter and umami tastes of a library peptide. For a coarse-grained
library peptide, we defined bitterness (umami-ness) as the average
overlap between the library peptide and all coarse-grained bitter
(umami) peptides from the compiled data set.
Best Patterns and Their Validation. With this surrogate

measure for the bitterness (umami-ness) in our formalism, we
considered each of the seven libraries in turn, computed the bitterness
(umami-ness) of its constituent peptides, and then sorted them to
find five peptides with the largest bitterness (umami-ness) values.
(For the N = 1 library, there are only four possible peptides; we chose
the best one.) We found that the bitterness (umami-ness) values of all
five chosen bitter (umami) peptides were similar, so we did not assign
a higher weight to the most bitter (umami) peptide when determining
the best bitter (umami) pattern. At each sequence position of the
repeating patterns of these five peptides, we found the most frequent
residue type (from H, P, + , and −). By sequentially merging these
most frequent residue types, we finally obtained the best pattern. For
example, the most frequent residue types in the five most bitter
peptides from the N = 3 library are H, P, and P (see Figure 3a3). As a
result, our predicted N = 3 bitter pattern is “HPP”. Note that this
composed best pattern has the same length as the maximum length of
the repeating patterns (N) of a library. Thus, the best pattern depends
on the library, the taste type (bitter or umami), and the external
database of peptides that we use to measure the taste (bitter- or
umami-ness). Therefore, choosing a well-curated and sufficiently large
(so that the prediction errors are small) set of taste-labeled peptides is
crucial in our data-driven approach.

To ensure reproducibility of the predicted pattern, we performed
extensive out-of-sample testing. To this end, we split the external
taste-labeled peptide database into an 80% training set and a 20% test
set using stratified random sampling. We used stratified sampling to
keep the ratio of bitter and umami peptides roughly similar in the
training and test sets. Otherwise, a random sampling will pick more
bitter peptides than umami ones because we have 292 bitter and 146
umami peptides in the peptide database. This, in turn, will result in
imbalanced training data for identifying the bitter and umami
patterns. Finally, we obtained the best bitter (umami) pattern for
each of the seven libraries by using the training set peptides. To gather
enough statistics, we repeated this procedure 500 times.
Baseline Patterns. Following the literature, we set a peptide with

all hydrophobic residues as the baseline bitter peptide6,9,41 and a

Figure 2. Physicochemical properties of bitter (gray) and umami (blue) peptides from the compiled database. Histograms of (a) peptide lengths
and of percentage compositions of amino acid (AA) residue types, (b) hydrophobic, (c) hydrophilic, (d) positively charged, and (e) negatively
charged, that comprise the database peptides. While bitter peptides are rich in hydrophobic residues (panel b), umami peptides mostly contain
negative and polar residues (panels e and c, respectively). The vertical dashed lines indicate mean values of the distributions.
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peptide with all negatively charged residues as the baseline umami
peptide.30,32,42,43 While the compositions of longer umami peptides
are known to be varied,30 the importance of the presence of negatively
charged acidic residues is generally well accepted in the community.
In addition, setting a baseline will allow us to quantitatively assess the
conjecture that the relative locations of the residues do not affect a
peptide’s taste.6,9 In Figure 1, we present the main steps of the
complete pipeline that we used in this paper.

■ RESULTS AND DISCUSSION
Physicochemical Properties of the Database Pep-

tides. We first analyzed the physicochemical properties of the
labeled coarse-grained peptides from the compiled database.
Both bitter and umami peptides from the assembled data set
have approximately four residues, on average (Figure 2a).
Interestingly, ∼54% of the database peptides have only two or
three residues. This reflects the fact that while consensus often
exists regarding the tastes of shorter peptides, there are some
disagreements regarding the taste of longer peptides, especially
for longer umami peptides.30 This makes the exploration of
longer peptide patterns even more relevant for the food
industry because it can lead to the discovery of new bitter and
umami peptides.43

To determine the relative abundance of the four coarse-
grained residue types (i.e., H, P, +, and −), we computed the
corresponding histograms (Figure 2b−e) of their presence (in
percent) in the bitter and umami peptides from the compiled
database of peptides. We found that in both bitter and umami
peptides, the hydrophilic residues are abundantly present
(Figure 2c) while positively charged residues are mostly absent
(Figure 2d). On average, bitter peptides contain more
hydrophobic residues than the umami peptides: ∼42%
compared to ∼28% (Figure 2b). The umami peptides are
richer in negatively charged amino acids (∼33%) compared to
the bitter peptides (∼5%) (Figure 2e). Both of these
observations are in accord with the current consensus that
the hydrophobic residues dominate bitter peptides,9,41 while
negative residues dominate umami peptides.30,32,42,43 We,
however, also note the significant presence of hydrophilic

residues in bitter peptides. This observation asks for a
systematic analysis of residue patterns in the primary sequence
of coarse-grained bitter and umami peptides. In the next
section, we present our findings from such an analysis.
Predicted Bitter and Umami Patterns. Figure 3 shows

the patterns that best predict bitterness (left panel, Figure
3a1−a7) and umami-ness (right panel, Figure 3b1−b7) for all
seven libraries, from N = 1 to N = 7. For N = 1, we have the
smallest library, and the predicted pattern simply picks the
most common residue type in bitter and umami peptides from
the training sets. For bitter peptides, hydrophilic residues are
most common (∼46%), followed by hydrophobic residues
(∼42%) (Figure 2c,b), while for umami peptides, negative
residues are most common (∼33%), followed by hydrophilic
residues (∼31%) (Figure 2e,c). Therefore, it is not surprising
to find that for the N = 1 library our algorithm predicts
hydrophilic (P) and negative residues (−) as the best patterns
for bitter and umami peptides, respectively (Figure 3a1,b1).
This prediction, however, is an example of underfitting the data
as we did not allow for enough complexity (i.e., enough
peptides) in our library.
The lack of complexity affects the results for the library with

N = 2, too. We find the residue types compete closely at both
sequence positions of the predicted patterns (Figure 3a2,b2).
The algorithm predicts an all-hydrophilic residue pattern, “PP”,
as the best bitter pattern and an all-negative residue pattern,
“−−”, as the best umami pattern. Though for umami peptides
the predicted pattern matches with the literature consensus,30

for bitter peptides it does not, which is similar to the result
from the N = 1 library. The presence of longer peptides with
many hydrophilic residues in our bitter peptide data set
subdues the expected “HH” pattern. Interestingly, however, the
“HH” pattern is predicted to be the second-best bitter pattern
(Figure 3a2). This compares well with the findings of Xu et
al.,21 who found the dominant presence of hydrophobic
residues in both positions of bitter dipeptides. Observe that we
derived the patterns in Figure 3 using the surrogate measures for
tastes that we defined; we did not have labels or bitterness

Figure 3. Predicted coarse-grained sequence patterns that have the greatest overlap with bitter (left panel, a1−a7) and umami (right panel, b1−b7)
peptides. The maximum lengths of the peptide library patterns (N) increase from top to bottom in each panel. The colored bars show the
probabilities of finding a specific residue type at a given sequence position of the predicted pattern. The color codes are displayed at the top. Black
error bars indicate standard deviations computed over 500 training sets.
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values for the combinatorially constructed library peptides.
The similarity between the second-best bitter peptide pattern
from our analysis and the findings of Xu et al.21 computed with
12 amino acid descriptors on labeled bitter dipeptides data set
demonstrates the strength of the surrogate measure we defined.
From the N = 3 library onward, we started to obtain more

robust predictions across the training sets. We found that the
best predicted bitter and umami patterns for the N = 3 library
are “HPP” and “−−P” (with “HPH” and “−PP” as close
second-best patterns), respectively (Figure 3a3,b3). Interest-
ingly, the close second-best bitter pattern, “HPH”, matches
well with the result of Xu et al.,21 who found hydrophobicity of
the C-terminal residue and electronic properties of the second
residue are important for bitterness in tripeptides. The bitter
pattern we obtained from the N = 4 library, “HPPP” (Figure
3a4), also compares well at residue positions 1, 3, and 4 with
the findings of Xu et al. for tetrapeptides. However, for the
second position, they found that hydrophobicity plays a role;
we obtained a polar residue in our predicted pattern.
We could not find systematic sequential residue type analysis

for bitter peptides with more than four residues and umami
peptides with more than three residues. As a consequence, the
longer patterns we found, {HPPPP, HPPPPH, HPPPPHH} for
bitter (Figure 3a5−a7) and {−−PP, −−PPP, −−PPPH, and
−−PPPHH} for umami peptides (Figure 3b4−b7), can
provide useful templates for exploring new bitter and umami
peptides. Note that different residue types closely compete for
the sixth and seventh residue positions of the N = 6 and 7
umami patterns. Also, the dominant residue type at each
sequence position mostly remains conserved across the N ≥ 2
libraries. The presence of several predictions from these
libraries naturally leads to the question of which library and its
predicted bitter and umami patterns should be selected if we
need to pick one “best” pattern for each taste.
Selecting the Minimal Peptide Pattern. To answer this

question, we computed the average overlaps of the predicted
bitter and umami patterns, which we found using the training
sets, with the corresponding test sets’ bitter and umami
peptides, for each of the seven libraries (Figure 4a,b, shown as
red dots). We also computed the average overlaps of the
baseline bitter (“HH···”) and the baseline umami (“−−···”)
patterns (black dots, Figure 4a,b) and the average overlaps of a
peptide with randomly chosen residues (gray dots, Figure
4a,b). All averages were computed with the test sets’ bitter and
umami peptides. The standard errors of the mean of the
averages are smaller than the sizes of the dots.
For bitter peptides, the predicted patterns for the smallest

two libraries (N = 1 and 2) are entirely made of hydrophilic
residues (Figure 3a1,a2). The average overlaps for those
predicted patterns (red dots, Figure 4a) are larger than the all-
hydrophobic baseline pattern (black dots, Figure 4a). This
counterintuitive result, however, is an artifact of having a large
number of hydrophilic residues in the bitter peptide data set, as
discussed above. For umami peptides, the smallest predicted
patterns (N = 1 and 2) consist entirely of negative residues
(Figure 3b1,b2). Because we have considered an all-negative
residue as our umami baseline, the overlaps of the predicted
patterns and baseline patterns with the test sets’ umami
peptides match (overlapped red and black dots, Figure 4b).
For both bitter and umami peptides, with an increase in N, the
overlaps increase until N = 5; then they mostly plateau. From
this observation, we chose the N = 5 library as the minimal
library that is large enough to have enough coarse-grained

peptide patterns that it neither underfits the data nor has more
peptide patterns than necessary, given the model complexity.
In addition, there are disagreements in the community
regarding the umami tastes of some small peptides that are
present in the published resources that we used36 (see ref 44
for a review); even if those peptides are removed from the
database, the predicted N = 5 umami pattern remains the
same. See the Supporting Information for a more in-depth
discussion about the disputed umami peptides.
To demonstrate how the N = 5 peptide library overlaps with

peptides from the test sets, we computed the histograms of the
average overlaps of the N = 5 library’s predicted patterns,
“HPPPP” for bitter and “−−PPP” for umami peptides, with
bitter and umami peptides from the test sets (Figure 4c,d).
The predicted patterns (in red) clearly are improvements over
the baseline patterns (in black) and randomly chosen patterns
(in gray). The improvements are more pronounced for the
bitter pattern than for the umami pattern. This analysis
demonstrates the accuracy of our method, which is designed to
identify generic sequence patterns rather than predicting a
property or classifying a new peptide. Taken together, these
observations imply that the predicted bitter and umami

Figure 4. Increasing the maximum length, N, of the residue patterns,
i.e., allowing for more complexity in pattern libraries, does not lead to
a better pattern above N = 5. Panels a and b show average overlaps of
the predicted bitter and umami patterns from each library (red dots),
the baseline bitter (“HH···”) and umami (“−−···”) patterns (black
dots), and a randomly generated residue pattern (gray dots) with
bitter and umami peptides from 500 test sets, respectively. The
standard errors of the mean are smaller than the sizes of the dots.
Panels c and d show histograms of overlaps of the N = 5 library’s
predicted bitter (“HPPPP”) and umami (“−−PPP”) patterns with
bitter and umami peptides from the test sets, respectively. The
ordinates denote the number of test sets with overlaps in a certain
range. Horizontal lines above the histograms indicate the means and
standard deviations of the distributions.
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patterns can act as promising design templates for bitter and
umami peptides.
For bitter and umami peptides, our analysis offers a set of

coarse-grained residue patterns that are possibly linked to the
peptides’ bitter and umami tastes. The predicted bitter patterns
can be useful, for example, in finding short, possibly bitter-
causing, patterns in longer proteins. As test cases, we
considered two proteins that are associated with bitter taste:
Patatin-T5 (UniProt ID P15478)45 and Legumin-A (UniProt
ID P02857).46 We first converted the primary sequence of
these proteins to a sequence of coarse-grained residues (see the
Supporting Information for the full primary and coarse-grained
sequences) and then searched for the predicted pattern from N
= 5 library (“HPPPP”). The search resulted in eight five-
residue-long sequence segments in Patatin-T5: {ATTNS (2),
ATTSS (16), IGGTS (73), ITTPN (86), FQSSG (114),
ATNTS (200), LGTGT (258), LTGTT (324)}. The numbers
in parentheses denote the positions of the first residues of the
segments in the protein’s primary structure. For Legumin-A,
we found five such short sequences: {IQQGN (93), IGPSS
(347), CNGNT (418), VPQNY (436), AGTSS (468)}. The
analysis provides a possible experimental way to determine
where to cleave the protein to decrease its bitterness.
Accordingly, it may be useful to study these short sequences
further in experiments.
In summary, in this study we aim to build a simple and

interpretable model that identifies generic residue patterns that
are prevalent in bitter and umami peptides and, possibly, evoke
those tastes. By coarse-graining the 20 canonical amino acid
residues into four physicochemically relevant classes [hydro-
phobic (H), hydrophilic (P), positively charged (+), and
negatively charged (−)], we drastically reduced the dimension-
ality of the peptide sequence space. With these coarse-grained
residues, we systematically built seven increasingly larger, more
complex, combinatorial libraries of peptides. We compiled and
coarse-grained a library of bitter and umami peptides from the
literature. We used a sequence overlap index38I (eq 1) to
compare library peptides with the bitter and umami peptides,
at a coarse-grained level. Importantly, the overlap index
allowed us to compute the average overlaps of a library
peptide with bitter and umami peptides from the compiled
data set and define those average overlaps as surrogate
measures for bitterness and umami-ness, respectively. For each
of the seven peptide libraries, the best (i.e., most overlapping)
bitter and umami patterns provided us with the predicted
patterns. We checked the robustness of the predicted patterns
through 80%−20% train−test splitting, and we reported the
patterns that we obtained after averaging over 500 such splits.
By comparing the average overlap of the predicted patterns
with test set peptides, we found the minimal N = 5 library
whose patterns, “HPPPP” for bitter and “−−PPP” for umami
peptides, have almost equal overlap compared to larger
libraries. In addition, we found that these predicted patterns
represent the known bitter and umami peptides more
accurately than baseline patterns�all hydrophobic residues
for bitter peptides and all negatively charged residues for
umami peptides�and peptides with randomly chosen
residues.
A QSAR or ML model typically connects aggregate

properties; they are commonly not used as a tool for
identifying residue patterns in peptides. They are useful, for
example, when the goal is to determine how taste is affected by
specific physicochemical properties such as peptide conforma-

tions or residue charge distributions. Our method is not
designed to answer those questions. Thus, instead of
competing with QSAR and ML, our method complements
them by providing a way to rapidly identify taste-inducing
residue patterns hidden in peptides and proteins. While we
could include more physicochemical descriptors, doing so
increases the number of coarse-grained units, which increases
the uncertainty in the predicted patterns. By coarse-graining
the peptide space while retaining key physicochemical
properties such as hydrophobicity and charge, our method
provides statistically robust predictions with limited exper-
imental data.
The potential of the proposed coarse-grained peptide

pattern search is demonstrated in Figure 5. The amino acids

of the primary structure of Legumin-B (Uniprot ID P16078), a
storage protein from broad beans (Vicia faba), are colored
according to the scheme from Figure 3. Employing the results
from Figure 3, a search for the pattern HPPPP, the N = 5
pattern with bitter taste, provides three peptides: IPYWT (2),
LGGNP (38), and VNSQG (238) (the numbers denote the
positions of the peptides in the sequence). They are marked
with gray boxes in Figure 5. The umami potential of this
protein is very high: a complete hydrolysis provides 38
glutamic and 10 aspartic acids; they constitute >14% of the
protein’s total amino acid content. While there are no matches
for the N = 5 umami pattern “−−PPP” in this particular
protein, a search for the N = 4 pattern “−−PP” returns one
peptide, EEQQ (51), and the N = 3 umami pattern “−−P”
returns seven peptides: DEP (11), EEQ (51), EES (76), EEQ
(79), EDT (104), EET (157), and EEG (271). All of them are
marked with blue boxes in Figure 5. Note that short bitter and
umami pattern matches from the reversed and cleaved primary
structure of the protein may also have bitter and umami tastes.
These predicted patterns can be used, for example, in
experimentally designing new umami peptides or in finding
short bitter or umami segments in a long protein. Also,
specially chosen or designed enzymes that can cleave proteins
at defined peptide bonds may be appropriate for guiding taste
profiles of hydrolysates; they may then be used as new flavors
of plant origin.
In conclusion, our coarse-grained peptide search provides a

simple and quick screening for the taste potential of proteins.
In addition, by predicting coarse-grained residue patterns
instead of specific peptides, it offers considerable latitude when
designing new bitter and umami peptides. The new peptides
can be validated via in silico methods such as molecular
docking and via sensory evaluations following in vitro synthesis.
Taken together, our method can help both in locating possible
bitter and umami patterns in a long protein and in designing

Figure 5. Illustration of the method along the protein Legumin-B
(Uniprot ID P16078), which is present in broad beans (Vicia faba).
The primary structure is colored according to our scheme. Possible
bitter and umami peptides are framed in gray and blue boxes,
respectively.
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new bitter and peptides. In addition, it is not tied to only bitter
or umami tastes; it can be readily applied to identify residue
patterns for other taste modalities of peptides. The need to
identify peptide taste profiles is becoming increasingly
important for plant-based meat surrogates. However, one
point remains clear: many umami peptides, particularly the
longer ones, of animal origin are signatures of specific proteins,
and it remains difficult and seemingly impossible to find those
in plant proteins.
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