
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Functional representation learning for uncertainty quantification and fast skill
transfer

Wang, Q.

Publication date
2022
Document Version
Final published version

Link to publication

Citation for published version (APA):
Wang, Q. (2022). Functional representation learning for uncertainty quantification and fast
skill transfer. [Thesis, fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/functional-representation-learning-for-uncertainty-quantification-and-fast-skill-transfer(83bebfaa-a01e-403f-a5e3-0f8cffbb8c0d).html

Functional R
epresentation Learning for U

ncertainty Q
uantification and Fast Skill Transfer

Real-world scenarios are posing increasing practical demands
for deep learning models. Two particular considerations are
uncertainty quantification and fast skill transfer. The thesis
aims at learning representations of distributions over functions
with partial observation. This study has the potential to solve
risk-sensitive decision-making problems and enable the
deployment of learning models in a fast way.

Functional Representation Learning for
Uncertainty Quantification and

Fast Skill Transfer

Qi Wang

Q
i W

ang

Functional Representation Learning
for Uncertainty Quantification and Fast

Skill Transfer

Qi Wang

ISBN: 978-90-832951-1-4
Cover design: Pretrained Deep Generative Models and Super-Resolution Models

Copyright © 2022 by Qi Wang.
All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopy, recording,
or any information storage and retrieval system, without permission from the author.
The author was financially supported by the Chinese Scholarship Council under grant #
201803170241.

Functional Representation Learning for Uncertainty Quantification and Fast
Skill Transfer

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op vrijdag 23 december 2022, te 13.00 uur

door Qi Wang

geboren te Anhui

Promotiecommissie

Promotor: prof. dr. M. Welling Universiteit van Amsterdam

Copromotor: dr. H.C. van Hoof Universiteit van Amsterdam

Overige leden: prof. dr. M. de Rijke Universiteit van Amsterdam
dr. E. Gavves Universiteit van Amsterdam
prof. dr. A. Plaat Universiteit Leiden
dr. S. Magliacane Universiteit van Amsterdam
dr. X. Zhen United Imaging

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

To my parents, my brother and my friends.

5

S U M M A RY

This thesis aims at Functional Representation Learning for Uncertainty Quantification
and Fast Skill Transfer. Real-world scenarios are posing increasing practical demands
for deep learning models. Two particular considerations are uncertainty quantification
and fast skill transfer. The first consideration has the potential to address risk-sensitive
decision-making or reduce sample complexity in query problems. The second consid-
eration is to avoid learning from scratch and increase the adaptive capability of deep
learning models.

My thesis is that learning functional representation offers a tractable scheme to
accomplish the above missions. Unlike representing a single data point with variational
autoencoders (VAEs) (Kingma and Welling, 2013), this thesis will focus on representing
a set of data points from a function. Throughout this thesis, the summary of context data
pointsDC = {(xi, yi)}ni=1 to represent an underlying function y = f (x) will be referred
to as the functional representation.

A typical example can be the vanilla neural process (NP) (Garnelo et al., 2018b),
where the approximate functional prior qϕ(z|DC) as the functional representation helps
induce the predictive function distribution Eqϕ(z|DC) [p(y|z, x)]. Also, the vanilla NP
as the functional representation model is the foundation of our developed models and
algorithms in this thesis. A large body of our work is to incorporate structural inductive
biases into functional representations. This thesis will also present a rethink of the
optimization of vanilla NPs and propose a new method to bridge the inference gap.

Our contributions in this thesis are as follows:

• In Chapter (3), a Doubly Stochastic Variational Neural Process (DSVNP) is devel-
oped (Wang and Van Hoof, 2020) for multi-output regression and uncertainty quan-
tification in image classification. DSVNP is a type of hierarchical Bayesian model
which simultaneously represents functions and captures correlations between in-
puts and outputs. Experimental results show DSVNP’s competitive performance
in fitting high dimensional real-world datasets and quantifying the classification
uncertainty in a collection of image datasets.

• In Chapter (4), the Mixture of Expert Neural Process (MoE-NP) (Wang and
Van Hoof, 2022a) is designed for few-shot regression and meta reinforcement
learning problems. MoE-NP is a Bayesian mixture model with both continuous
latent variables and categorical latent variables, which handles functions from a
mixture of diverse components and tasks in multi-modal distributions. Experimen-
tal results show that MoE-NP can distinguish different function components with
latent variables and exhibit state-of-art performance in CIFAR10 image completion
and continuous control tasks.

• In Chapter (5), the Graph Structured Surrogate Model (GSSM) is proposed together
with Amortized Policy Search (APS) (Wang and Van Hoof, 2022b), which applies

7

to model-based meta reinforcement learning. The method simultaneously learns
dynamics models and optimal policies with a few transitions in a model-based
meta reinforcement learning setup. Given limited training episodes, the dynamics
model with graph structured latent variables can generalize to new MDPs while
the learned global latent variable induces task-specific value functions and policies
with high performance in Cartpole/Acrobot and Mujoco environments.

• Chapter (6) rethinks the optimization objectives of NPs, analyzes the inference
suboptimality, and then solves this within the framework of variational expecta-
tion maximization (Wang et al., 2022). The resulting model, referred to as the
Self-normalized Importance weighted neural process (SI-NP), can learn the effec-
tive functional prior straightforwardly without variational inference and has an
improvement guarantee with respect to the log-likelihood of the function dataset.
Meanwhile, the conditional neural process (CNP) (Garnelo et al., 2018a) is demon-
strated to be equivalent to SI-NPs with a one-sample Monte Carlo estimate. These
theoretical claims are verified in the Gaussian process and image completion
datasets.

8

C O N T E N T S

1 I N T RO D U C T I O N 13

1.1 Probabilistic Deep Learning & Meta Learning 13
1.1.1 Uncertainty Quantification 13
1.1.2 Fast Skill Transfer . 14

1.2 Notations . 14
1.3 Background & Preliminaries . 14

1.3.1 Deep Latent Variable Models 14
1.3.2 Functional Representations 16
1.3.3 Variational Inference & ELBO 18

1.4 Research Questions & Technical Contributions 19
1.5 The Layout of this Thesis . 21

2 P U B L I C AT I O N S & CONTRIBUTIONS 23

2.1 List of Publications . 23
2.2 Software & Repositories . 24

3 BAY E S I A N H I E R A R C H I C A L F R A M E W O R K F O R F U N C T I O NA L R E P R E S E N -
TAT I O N 25

3.1 Introduction . 25
3.2 Related Work . 26
3.3 Preliminaries . 27

3.3.1 Gaussian Processes in the Implicit LVM 28
3.3.2 Neural Processes in the Implicit LVM 28
3.3.3 Connection to Other Models 29

3.4 Methods . 30
3.4.1 Neural Process with Hierarchical Latent Variables 30
3.4.2 Approximate Inference and ELBO 31
3.4.3 Scalable Training and Uncertainty-aware Prediction 32
3.4.4 More Insights and Implementation Tricks 33

3.5 Experiments . 34
3.5.1 Synthetic Experiments . 34
3.5.2 System Identification on Physics Engines 35
3.5.3 Multi-Output Regression on Real-world Dataset 36
3.5.4 Classification with Uncertainty Quantification 37

3.6 Conclusion & Discussion . 39
4 M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L R E P R E S E N TA-

T I O N 41

4.1 Introduction . 41
4.2 Related Work . 42
4.3 Preliminaries . 43

9

Contents

4.3.1 Few-Shot Supervised Learning 43
4.3.2 Meta Reinforcement Learning 44

4.4 Methods . 44
4.4.1 Mixture of Expert Neural Processes 45
4.4.2 Scalable Training & Prediction 46
4.4.3 Module Details for Meta Learning 47

4.5 Experiments . 51
4.5.1 General Setup . 51
4.5.2 Illustration in Toy Regression 52
4.5.3 Few-Shot Supervised Learning 54
4.5.4 Meta Reinforcement Learning 55
4.5.5 Ablation Studies . 57

4.6 Conclusion & Discussion . 58
5 G R A P H S T RU C T U R E D F U N C T I O NA L R E P R E S E N TAT I O N F O R DATA E FFI -

C I E N T C O N T RO L 59

5.1 Introduction . 59
5.2 Related Work . 60
5.3 Preliminaries . 61

5.3.1 Optimization Objective in MBMRL 61
5.3.2 MBMRL with Latent Variables 62
5.3.3 Influence of Model Discrepancy 62

5.4 Methods . 63
5.4.1 Graph Structured Latent Variables 63
5.4.2 Approximate Inference & Scalable Training in GSSM 65
5.4.3 Amortized Policy Search . 66

5.5 Experiments . 69
5.5.1 General Settings . 69
5.5.2 Cart-Pole Systems . 70
5.5.3 Other Simulation Systems 72

5.6 Conclusion & Discussion . 73
6 B R I D G I N G T H E I N F E R E N C E G A P S I N N P S W I T H E X P E C TAT I O N M A X I -

M I Z AT I O N 75

6.1 Introduction . 75
6.2 Related Work . 76
6.3 Preliminaries . 77
6.4 Inference Gaps and Statistical Traits 78

6.4.1 Inference Suboptimality in vanilla NPs 78
6.4.2 Evaluation Criteria & Asymptotic Performance 80

6.5 Tractable Optimization via Expectation Maximization 80
6.5.1 Variational Expectation Maximization for NPs 81
6.5.2 Scalable Training and Testing 84

6.6 Experiments . 85
6.6.1 Synthetic Regression . 85
6.6.2 Image Completion . 85

10

Contents

6.7 Conclusion & Discussion . 87
7 C O N C L U S I O N 89
8 A P P E N D I C E S 91

A Supplementary Materials in Chapter 3 91
A.1 Some Basic Concepts . 91
A.2 Proof of Proposition 1 . 92
A.3 Proof of DSVNP as Exchangeable Stochastic Process 94
A.4 Derivation of Evidence Lower Bound for DSVNP 95
A.5 Implementation Details in Experiments 96

B Supplementary Materials in Chapter 4 101
B.1 Frequently Asked Questions 101
B.2 Probabilistic Graphs in Meta Training/Testing 102
B.3 More Descriptions of NP Family Models and Meta RL 103
B.4 MoE-NPs as Exchangeable SPs 104
B.5 Summary of Existing NP Related Models 105
B.6 Formulation of Evidence Lower Bounds 107
B.7 Experimental Settings and Neural Architectures 112
B.8 Additional Experimental Results 115

C Supplementary Materials in Chapter 5 121
C.1 Frequently Asked Questions 121
C.2 Proof of Lemma 1 . 123
C.3 Proof of Model Discrepancy 124
C.4 GSSM Modules in PyTorch 125
C.5 Evidence Lower Bound for GSSM 125
C.6 Computational Graphs and Detailed Descriptions 126
C.7 Policy Gradient Estimates in Amortized Policy Search 127
C.8 Experimental Settings and Training Details 129
C.9 Neural Architectures and Parameter Settings 132

D Supplementary Materials in Chapter 6 134
D.1 Probabilistic Generative Process in NPs 134
D.2 Run-time Complexity of Predictive Distributions in GPs & NPs 134
D.3 NPs Formulation & Structural Inductive Biases 134
D.4 Neural Architectures in Implementations 136
D.5 Formulation of Variational Expectation Maximization Method . 136
D.6 Proof of SI-NPs Equivalence with CNPs 139
D.7 Experimental Setup & Implementation Details 141

Bibliography 153
Samenvatting 154
Acknowledgments 156

11

1

I N T RO D U C T I O N

1.1 P RO BA B I L I S T I C D E E P L E A R N I N G & META LEARNING

In the past decade, with the help of model capacity and computational power increase,
deep learning has achieved remarkable progress in computer vision (Krizhevsky et al.,
2012), natural language processing (Pennington et al., 2014), sequential decision making
(Silver et al., 2017) and so forth. Multiple processing layers in computational models, e.g.
deep neural networks, enable abstraction of concepts at different levels and significantly
improve the state-of-art in related domains due to the compact representation of data
(LeCun et al., 2015).

To further release the potential of neural networks, researchers have developed a
collection of modules to improve generalization capability, including convolutional
networks (LeCun et al., 1995), recurrent networks (Hochreiter and Schmidhuber, 1997),
attention networks (Vaswani et al., 2017), residual networks (He et al., 2016), etc. Even
so, there remain some limitations that incur doubts from the industry when deploying
these models in real-world scenarios. Among them, uncertainty quantification and fast
skill transfer are practical concerns.

The predictive uncertainty, e.g. the output standard deviation in regression models,
is an essential consideration on risk-sensitive decision-making. Meanwhile, adapting
trained models to domain-similar scenarios can help save deployment costs in money
and time. Hence, this thesis primarily concentrates on these two issues. The devel-
oped methods are built upon probabilistic deep learning models within a meta learning
paradigm.

1.1.1 Uncertainty Quantification

Once we build up machine learning systems, we can predict the variable of interest with
observed variables. Instead of point estimates, we prefer probabilistic estimates with a
meaningful confidence interval in predictions. Such a confidence interval is important in
many applications, such as quantitative finance and the robotics industry. It estimates
the likelihood of producing a certain outcome when some aspects are unknown in the
real-world system. For example, a well-constructed quantitative trading system can
forecast the upper and low bounds of shares’ price and enable the swing trade in the
confidence interval. With uncertainty estimates, we can avoid unnecessary risk and make
relatively conservative choices in cost-sensitive decision-making (Gal and Ghahramani,
2016). The process of learning these confidence intervals is what we call uncertainty
quantification.

13

I N T RO D U C T I O N

Such demand inspires the increasing investigation of probabilistic deep learning
(Ghahramani, 2015). For example, deep Gaussian processes (GPs) (Titsias, 2009) as
typical non-parametric models are applied to reason over uncertainties with the help of
placed Gaussian priors over functions. Key ingredients in probabilistic deep learning
are methods to characterize the different types of uncertainty and utilize uncertainty in
decision-making (Gal and Ghahramani, 2016).

1.1.2 Fast Skill Transfer

In real-world scenarios, training deep learning models requires heavy computational
resources and is time-consuming when the dataset is large-scale. Meanwhile, deep
learning models are sensitive to changes in tasks, and the distribution drift inside the
dataset can easily cause catastrophic failure using previously trained models. For example,
adaptive cruise control is essential in Tesla Autopilot systems (Yaqoob et al., 2019).
Cameras in Autopilot capture an enormous amount of images, and the distributions vary
from scenario to scenario, e.g. different landscapes, buildings, and vehicles in different
countries. This reality demands Autopilot’s controller to rapidly adapt to new scenarios
with a few samples rather than learn policies from scratch.

The above demands drive us to look for learning strategies that can guide models to
rapidly adapt to new environments. The paradigm of meta learning or learning to learn
extracts patterns across so-called source tasks and exploits these patterns when learning
on new target tasks. In other words, it seeks a strategy to distill meta knowledge from
the distribution of tasks to unseen ones. The approach often results in improved learning
speed and generalization on these target tasks (Hospedales et al., 2020). Some methods
within this paradigm are referred to as fast learning via slow learning (Duan et al., 2016).
As a result, the meta training process is time-consuming because it requires leveraging
sufficient past experiences, while the meta testing process of adapting to unseen tasks is
relatively fast.

1.2 N OTAT I O N S

In this section, general math notations are shared across all chapters and are summarized
in Table (1). As for other commonly used math notations in separate chapters, I will
detail them in corresponding chapters when necessary.

1.3 BAC K G RO U N D & PRELIMINARIES

1.3.1 Deep Latent Variable Models

As pointed out in Prof. Max Welling’s response to “The Bitter Lesson (Sutton, 2019)”
(Welling, 2019), it is challenging to predict without inductive biases. As an indispensable
part of learning systems, the role of inductive biases is to restrict the model’s hypothesis
in a reasonable space, which reflects the understanding of the learning task and impacts
the optimization towards a regularized direction.

14

1.3 BAC K G RO U N D & PRELIMINARIES

Table 1: General Necessary Math Notations in this Thesis. All of these appear in the
main thesis and appendices. Some specialized notation will be pointed out in separate
chapters.

Examples Descriptions

(xi, yi) A single data point with the input xi and the output yi

[xC , yC] A set of context data points {(xi, yi)}

[xT , yT] A set of target data points {(xi, yi)}

Id A d-dimensional identity matrix

Rk A k-dimensional real value vector

diag[·] A diagonal matrix

O Scale of computational complexity

D A set of data points

L An optimization objective function

M An Markov decision process

J An expected reward function in RL

G A structured graph for the model

< V,E > VerticesV and edges E for a structured graph

τ A sampled task from a distribution

ρ An exchangeable stochastic process

δ(z − ẑ) A Dirac delta function with a center ẑ

k(·, ·) A kernel function in Gaussian processes

πφ A policy function with parameters φ in RL

p(·) or q(·) A probability density function with q to denote the varitional distribution

N(·; µ, Σ) A Gaussian distribution with a mean vector µ and a covariance matrix Σ

Cat(·; K,α) A categorical distribution with K categories and α vector of probabilities

DKL [· ∥ ·] Kullback-Leibler divergence between two probability distributions

E[·] The expectation function over the random variable

V[·] The variance function over the random variable

H[·] The entropy of a random variable’s probability distribution∑
A summation over values of interest

limx→c[·] A limitation operation over variables of interest

∇ϕ or ∂
∂ϕ Obtation partial derivatives w.r.t. the parameter ϕ∫

[·]dz Obtain the integral w.r.t. the random variable z

◦ The convolutional operator⊕
Mean poolings over the values of interest

15

I N T RO D U C T I O N

An inductive bias prevalent in recent years is the existence of unobserved random
variables in modeling to explain how data is generated. Deep latent variable models
(LVMs) are typical examples. As powerful probabilistic deep learning models, deep
LVMs focus on the data generation mechanism. They can either generate more data
points of our interest from the same distribution with the learned mechanism or achieve
prediction with uncertainty quantification by running stochastic forward passes multiple
times.

Here we take variational auto-encoders (VAEs) (Kingma and Welling, 2013; Rezende
et al., 2014) as example. Let observationsD = {x1, . . . , xn} be a set of independent and
identically distributed (i.i.d.) random variables and ∀xi ∈ Rd, it is assumed that there
exists a set of k-dimensional unobserved random variables Z = {z1, . . . , zn} as latent
variables to explain the observation. Each paired data point (z, x) is generated as follows.z ∼ p(z)

pθ(x|z) = N(x; µθ(z), Σθ(z))
(1.1)

In this way, the marginal distribution of the observed data point x can be expressed as

pθ(x) =
∫

Rk
p(z)︸︷︷︸
prior

pθ(x|z)︸ ︷︷ ︸
generative likelihood

dz =
∫

Rk
N(z; 0,Ik)N(x; µθ(z), Σθ(z))dz

where a Gaussian distribution N(z; 0,Ik) works as the prior in vanilla VAEs.
We can apply the posterior prediction to generate new samples with VAEs, and

the posterior computation is vital. However, the exact posterior inference is often
computationally expensive or even intractable. A popular strategy is to apply amortized
inference (Ritchie et al., 2016). In such a scheme, typically, a neural network is trained to
output that the inference procedure would have yielded with a single forward pass. Thus,
a one-time investment in training this inference network replaces frequent and ongoing
expensive (approximate) posterior computations (Ritchie et al., 2016). This makes it
scalable in large datasets. Importantly, the learned latent variable z can be interpreted as
the representation of a data point in a lower dimensional space.

1.3.2 Functional Representations

In VAEs, as well as some other probabilistic deep learning models, the collected data
points are treated as the i.i.d. random variables. This hypothesis ignores the existence
of correlations between data points, which can be indispensable for reasoning over
uncertainty.

In comparison, exchangeable stochastic processes (Ross et al., 1996) in Definition (1),
e.g. Gaussian process latent variable models (GP-LVMs) (Titsias and Lawrence, 2010),
attempt to model the joint distribution over all data points and enable the computation
of predictive distributions (or equivalently conditional distributions in the output space).
This family of models applies to a set of data points. However, it is known that in previous
deep stochastic process models, e.g. GP-LVMs: (i) the inference method is complex, (ii)
the modeled function distribution is restricted to be Gaussian, (iii) the computation of
predictive distributions is time-consuming.

16

1.3 BAC K G RO U N D & PRELIMINARIES

Definition 1 (Exchangeable Stochastic Processes) Given a probability space (Ω,F , P),
let µx1,...,xN be a probability measure on Rd with {x1, . . . , xN} as a finite index set. The
defined process is called an exchangeable stochastic process (SP), S : X ×Ω → Rd

such that µx1,...,xN (F1 × · · · × FN) = P(Sx1 ∈ F1, . . . ,SxN ∈ FN) if it satisfies the
exchangeable consistency and marginalization consistency in Kolmogorov extension
theorem (Oksendal, 2013).

Naturally, there arises a question: How can we extend the inference efficient deep
LVM such as VAEs to the function space and learn representations of functions? The
neural process (NP) model well answers this question, and the generative process of
NPs is given in Example (1). The primary motivation of NPs is to capture correlations
among data points via latent variables and obtain the function distribution via a stochastic
forward pass. Under certain conditions, the NP can be interpreted as learning implicit
deep kernels in Gaussian processes (Rudner et al., 2018). Also, note that the NP is the
foundation of this thesis.

Example 1 (Neural Processes (Garnelo et al., 2018b)) This family of deep directed
latent variable models belongs to exchangeable stochastic processes. A generative
process is written as Eq. (1.2) with a global Gaussian latent variable z shared across all
data points,

ρx1:N (y1:N) =

∫
p(z)︸︷︷︸

functional prior

N∏
i=1

N(yi; µθ([xi, z]), Σθ([xi, z]))︸ ︷︷ ︸
generative likelihood

dz (1.2)

where µθ and Σθ are respectively neural network modules to parameterize mean
functions and covariance matrices with the concatenated input [xi, z].

Concept of Functional Representations. The summary of context data pointsDC =
{(xi, yi)}ni=1 to represent an underlying function y = f (x) is referred to as the functional
representation. The context points are partial observations of a function. The func-
tional representation is in the form of the functional prior and its role is to formulate a
distribution of predictive functions.

The functional representation relies on a tractable generative model to characterize
the distribution of functions. This significantly distinguishes it from the representation
of a single data point in a generative model. In GPs, the learned kernel parameters or
distributional parameters specify the functional prior and induce predictive distributions.
While in NPs, the latent variable distribution p(z) explains the functional representation
straightforwardly. Since the real functional the prior p(z) is intractable, the approxi-
mate ones qϕ(z|DC) work as the surrogate to obtain the predictive function distribution
Eqϕ(z|DC) [p(y|z, x)] in NPs.

Connection with Uncertainty Quantification & Fast Skill Transfer. Since the func-
tional representation model, such as the NP, learn distributions over functions, it can
provide predictive mean and variances.

17

I N T RO D U C T I O N

When the integral Eqϕ(z|DC) [p(y|z, x)] is not analytical, uncertainty quantification

can be achieved via multiple stochastic forward pass, in the form z(k) ∼ qϕ(z|DC)
and y ∼ p(y|z(k), x). Finally, we can obtain the Monte Carlo estimate of the mean
Eqϕ(z|DC) [p(y|z, x)] and variance Vqϕ(z|DC) [y|x] statistics in prediction.

At the same time, the process of obtaining the predictive function distribution with the
help of learned functional priors corresponds to the fast skill transfer in the meta testing
process.

1.3.3 Variational Inference & ELBO

In the presence of deep probabilistic models, inference over distributions of unobserved
latent variables is the central object of interest. For example, the computation of the
posterior is fundamental in Bayesian inference. Again, the VAE model works as an
example to illustrate the relevant concepts. Given the prior distribution p(z) and the
generative distribution pθ(x|z) in VAEs, the exact form of the posterior is

pθ(z|x) =
pθ(x|z)p(z)∫
pθ(x|z)p(z)dz

.

The posterior plays a crucial role in Bayesian prediction or sample generation, e.g.
Epθ(z|x) [pθ(x|z)]. However, we can hardly obtain the exact form of the posterior when the
integral in the denominator is computationally complicated and the prior is not conjugate
in Bayesian statistics (Ray, 2013). Though exact sampling methods with convergence
guarantee exist, e.g. Markov Chain Monte Carlo, they require expensive sampling and
are prohibitive in large-scale high dimensional cases.

As an alternative, approximate methods provide a scalable scheme, and we mainly
focus on variational inference (VI) in most of the thesis since it is easy to implement,
requires fewer Monte Carlo samples, and obtains relatively satisfying inference perfor-
mance. Theoretically, we can cast variational inference as an optimization problem,
which suits large-scale dataset well.

VI considers a family of parameterized distributions QΦ = {qϕ(z|x)|ϕ ∈ Φ} to approxi-
mate the real posterior pθ(z|x). In optimization, the objective of our interest is reduced to
finding ϕ∗ = arg minϕ∈Φ DKL [qϕ(z|x) ∥ pθ(z|x)]. By expanding such Kullback–Leibler
(KL) divergence term, we can obtain the Evidence Lower Bound (ELBO) L(θ, ϕ) in Eq.
(1.3) as a surrogate to maximize.

DKL [qϕ(z|x) ∥ pθ(z|x)] =
∫

qϕ(z|x) ln
[
qϕ(z|x)
pθ(z|x)

]
dz

=

∫
qϕ(z|x) ln

[
qϕ(z|x)pθ(x)
pθ(x|z)p(z)

]
dz

=

∫
qϕ(z|x) ln pθ(x)dz −

[
Eqϕ(z|x) [ln pθ(x|z)] − DKL [qϕ(z|x) ∥ p(z)]

]
= ln pθ(x) −L(θ, ϕ)

(1.3)

18

1.4 R E S E A R C H Q U E S T I O N S & TECHNICAL CONTRIBUTIONS

Since the KL divergence term is non-negative, the log-likelihood ln pθ(x) is lower
bounded by the ELBO. Maximization overL(θ, ϕ) tends to increase the evidence ln pθ(x)
when QΦ is flexible enough. The resulting parameters {ϕ∗, θ∗} = arg maxL(θ, ϕ) can
directly induce the Bayesian prediction function Eqϕ∗ (z|x) [pθ∗(x|z)].

Though VI reduces sampling frequencies in statistical inference and has better scalabil-
ity, the chosen parameterized distribution generally does not perfectly fit the distribution
to approximate. The difference between these distributions is also known as the approx-
imate gap (Cremer et al., 2018). However, this is not the focus point in this thesis. In
Example (1), VI is applied to optimize the model (Garnelo et al., 2018b). Also, we
utilize VI to obtain tractable optimization objectives for developed models in Chapter
(3), Chapter (4) and Chapter (5).

Here we need to tell the difference between VAEs and the functional representation
models. Learning functional priors matters more than posterior inference in scenarios
to recover the complete function with partial observations (Foong et al., 2020). While
in VAEs, prior distributions are mostly fixed as constant and do not work in Bayesian
prediction. Chapter (6) will revisit this.

1.4 R E S E A R C H Q U E S T I O N S & TECHNICAL CONTRIBUTIONS

As mentioned above, learning functional representations is our primary research goal
throughout this thesis. Though neural processes provide a simple and elegant way to
represent functions, it is non-trivial to develop a universal functional representation model
that applies to all scenarios. In this thesis, we refer to constraints on neural network
modules or special probabilistic structures for exchangeable stochastic process models
as the structural inductive biases.

Apart from the structural inductive biases, the optimization objectives or inference
methods for exchangeable stochastic process models are other topics to investigate. This
direction has not attracted enough attention, and our preliminary study is an important
trial in this domain.

As a result, we tend to split the research questions on exchangeable stochastic processes
into ones with available inductive biases and ones concerning general inference problems.
The first part corresponds to Chapter (3), Chapter (4) and Chapter (5). We consider
incorporating diverse structural inductive biases to learn functional representations and
apply variational inference to optimize them. The second part corresponds to Chapter
(6). Diverse optimization objectives for functional representations are analyzed, and
inference suboptimality inside vanilla neural processes can be resolved with the help of
variational expectation maximization. The specific contents in these two parts are around
the following research questions.

Firstly, existing vanilla neural processes for functional representations cannot reasonably
handle the learning problems in high-dimensional input/output (I/O) or non-Gaussian
output cases (Jha et al., 2022). Based on this investigation, we pose the research question
as follows.

19

I N T RO D U C T I O N

Research Question 1: In the traditional pattern recognition problems with high dimen-
sions in I/O, e.g., regression or classification, can we develop more expressive neural
process models for prediction with uncertainty quantification?

To answer this question, we propose DSVNP (Wang and Van Hoof, 2020), a hierarchi-
cal variant of neural processes. Our model is built upon the framework of hierarchical
Bayes and introduces latent variables at different levels. The global latent variable,
similar to its use in NPs, works on the summary of an underlying function, while the
introduced local latent variable captures correlations between high dimensional output
and the input to improve predictive performance. We combine the inference methods of
NPs and conditional VAEs to obtain the tractable objective in optimization. The method
can achieve superior performance in real-life multi-output regression and uncertainty
quantification in image classification. We refer the reader to Chapter (3) for more details.

Secondly, previous works (Garnelo et al., 2018a,b) assume the studied functions belong to
the same family with similar properties and have a simple task distribution, e.g. uniform
distributions, in the latent space. To overcome the limitations of this assumption, we
pose the research question as follows.

Research Question 2: Considering the complicated data generative processes, e.g.,
sourced from a mixture of function distributions, can neural processes discover distin-
guished components and accommodate the functional representations to these cases?

To answer this question, we propose MoE-NP (Wang and Van Hoof, 2022a), a mixture
variant of neural processes. We incorporate the mixture of expert inductive biases
into the neural process. As a result, multiple expert latent variables and assignment
latent variables participate in generative processes. This design can find a mixture
of functional representations as the expert latent variable and categorical variables in
identifying appropriate functional components for separate x-domains. Empirically, when
the function is discontinuous or multiple co-founders govern the data generation, our
model can achieve state-of-art performance. These are examined in few-shot regression
tasks, image completion tasks, and meta reinforcement learning tasks. We refer the
reader to Chapter (4) for more details.

Thirdly, we notice the NP can be applied to data efficient control (Galashov et al., 2019).
However, using multilayer perceptron (MLP) in neural architectures ignores correlations
among transition samples, which weakens NP’s performance in predicting physics system
dynamics. Also, previous work seldom considers fast adaptation in model-based policy
search, which might be critical in time-sensitive control. With these two points, we pose
the research question as follows.

Research Question 3: When the functional presentation meets with model based meta
reinforcement learning, can we find functional representations for optimal value functions
and policy functions to enable fast deployment in practice?

To answer this question, we contribute a new meta dynamics model GSSM and amor-
tized policy search (Wang and Van Hoof, 2022b) for model-based meta reinforcement
learning missions. Our work is an extension of MLSM (Galashov et al., 2019). Unlike

20

1.5 T H E L AYO U T O F T H I S T H E S I S

MSLM, our meta learning purpose include (i) learning effective dynamics models in
the MDPs family and (ii) learning representations of optimal policies. To achieve this,
we develop a variational graph structured dynamics model GSSM with the local latent
variable to predict individual transition and the global latent variable to summarize an
MDP. Importantly, we amortize the process of seeking model-based optimal policies to
induce the optimal policies conditioned on MDP representations. We refer the reader to
Chapter (5) for our competitive results and details.

Finally, designing various inductive biases or applying neural processes to different
domains has attracted increasing attention. However, the use of approximate inference
leads to the suboptimality inside the vanilla neural process. And the source of the
underfitting phenomenon arising in neural processes and solutions to these questions are
less studied. Hence, we pose the research question as follows.

Research Question 4: Can we build up connections between optimization objectives
of functional representation models, analyze the convergence results, and seek new
optimization methods with improvement guarantees for these models?

To answer this question, we rethink the optimization objectives of neural processes.
After analyzing the relation between approximate objectives in neural processes and
evidence lower bounds, we find the optimization in vanilla NPs cannot guarantee a
convergence towards local optimality in the likelihood of meta datasets. Hopefully, this
can be resolved by designing a new surrogate function for neural processes. With the help
of an importance sampling trick, we can obtain SI-NP with a likelihood improvement
guarantee (Wang et al., 2022). Meanwhile, we perform the limit analysis to demonstrate
that the conditional neural process is an example of SI-NP with one Monte Carlo sample.
Our learned functional prior seldom collapse to a Dirac delta function and can retain
satisfying uncertainty quantification performance in typical benchmarks. We refer the
reader to Chapter (6) for more details.

1.5 T H E L AYO U T O F T H I S T H E S I S

To make connections between chapters clear, we have the diagram next page. Following
are paragraphs concerning chapters of models/algorithms.

Chapter (3), Chapter (4), and Chapter (5) are parallel in the organization. We mainly
contribute new functional representation models in this part. The developed DSVNPs,
MoE-NPs, GSSM-APS correspond to different structural inductive biases for functional
representations and hence apply to different scenarios. Variational inference is utilized to
optimize these models.

Chapter (6) independently focuses on optimization objectives and inference methods.
We contribute an expectation maximization based inference algorithm for functional
representation models and report the resulting functional representation model SI-NPs.
This inference algorithm can be combined with all structural inductive biases, not limited
to those in Chapter (3), Chapter (4), and Chapter (5).

21

I N T RO D U C T I O N

the

Chapter 3. Bayesian Hierarchical
Framework

Chapter 4. Mixture of Experts Structure

Chapter 5. Graph Structure Models

High-dimensional I/O
(DSVNPs)

Mixture Functional
Components (MoE-NPs)

Model-based Policies/Value
Functions (GSSM-APS)

Chapter 6. Inference Gaps & Objectives

Inference Suboptimality
in vanilla NPs

Optimization with
Improvement Guarantee

(SI-NPs)

St
ru

ct
ur

al
 In

du
ct

iv
e

B
ia

se
s

In
fe

re
nc

e
M

et
ho

ds

Chapter 7. Conclusion

Chapter 1. Introduction

Backgrounds & Concepts
& Notations

Research Questions &
Solutions

Appendices (For Chapter 3/4/5/6)

Functional R
epresentation (L

earning Functional Prior)

Variational Inference

Expectation Maximization

Chapter 2. Publications & Contributions

Summary

Figure 1: Overview of the Thesis Layout.

22

2

P U B L I C AT I O N S & CONTRIBUTIONS

2.1 L I S T O F P U B L I C AT I O N S

The following publications and work in progress constitute this Ph.D. thesis. These
research outputs were done when Qi Wang pursued a Ph.D. at AMLab from June
2019 to October 2022. Note that Chapters (3)/(4)/(5)/(6) are respectively built upon
the publications (Wang and Van Hoof, 2020)/(Wang and Van Hoof, 2022a)/(Wang and
Van Hoof, 2022b)/(Wang et al., 2022).

• Qi Wang, Herke van Hoof. Doubly Stochastic Variational Inference for Neural
Processes with Hierarchical Latent Variables. International Conference on Ma-
chine Learning, PMLR, 2020. http://proceedings.mlr.press/v119/
wang20s/wang20s.pdf.

• Qi Wang, Herke van Hoof. Learning Expressive Meta-Representations with Mix-
ture of Expert Neural Processes. International Conference on Neural Information
Processing Systems, 2022. Final Version: https://drive.google.com/
file/d/1LfR43Cr8TliZcwqErhT7nsAOK296BZ0g/view?usp=sharing.

• Qi Wang, Herke van Hoof. Model-based Meta Reinforcement Learning using
Graph Structured Surrogate Models and Amortized Policy Search. International
Conference on Machine Learning, PMLR, 2022. https://proceedings.
mlr.press/v162/wang22z/wang22z.pdf.

• Qi Wang, Marco Federici, Herke van Hoof. Bridge the Inference Gaps of Neu-
ral Processes via Expectation Maximization. In preparation for International
Conference on Learning Representations 2023.

Meanwhile, we specify the contributions of participants in this project. Qi Wang
contributed original ideas, algorithm design, experimental examination, and paper writing
in all the above publications. Herke van Hoof provided important insights, feedback
and suggestions on the written manuscripts. For the work “Bridge the Inference Gaps
of Neural Processes via Expectation Maximization”, Marco Federici provided helpful
discussions and feedback on the submission draft. He also contributes an explanation
of SI-NPs from an information theoretical perspective in the future version, which is
however not covered in this thesis. The whole research project received consistent
support from Max Welling.

23

http://proceedings.mlr.press/v119/wang20s/wang20s.pdf
http://proceedings.mlr.press/v119/wang20s/wang20s.pdf
https://drive.google.com/file/d/1LfR43Cr8TliZcwqErhT7nsAOK296BZ0g/view?usp=sharing
https://drive.google.com/file/d/1LfR43Cr8TliZcwqErhT7nsAOK296BZ0g/view?usp=sharing
https://proceedings.mlr.press/v162/wang22z/wang22z.pdf
https://proceedings.mlr.press/v162/wang22z/wang22z.pdf

P U B L I C AT I O N S & CONTRIBUTIONS

2.2 S O F T WA R E & REPOSITORIES

Overall, the first author in the above publications contributes python packages and
GitHub repositories for the corresponding models & algorithms developed in publications.
Details are as follows.

• The implementation of DSVNP can be easily found in the Appendix file.

• Two examples of MoE-NPs implementations are listed as follows
https://github.com/codeanonymous233/ICMoENP for image com-
pletion
and https://github.com/codeanonymous233/MoENP for meta RL.

• The implementation of GSSM+APS can be found in
https://github.com/codeanonymous233/anonymouscode.

• The implementation of SI-NPs will be uploaded to
https://github.com/hhq123gogogo/SI NPs after the final acceptance.

Note that all codes will be further polished and updated to Qi Wang’s personal Github
repository https://github.com/hhq123gogogo.

24

3

BAY E S I A N H I E R A R C H I C A L F R A M E W O R K F O R
F U N C T I O NA L R E P R E S E N TAT I O N

In this chapter, we investigate the use of the Bayesian hierarchical framework in neural
processes and introduce a new variant of a neural process model. With the help of
hierarchical latent variables, our model can address functional representation problems
with the high dimensional input/output and achieve satisfying performance.

3.1 I N T RO D U C T I O N

Placing distributions over functions has a lot of advantages. It can characterize the under-
lying uncertainties from observations and enable reliable decision-making. For example,
the uncertainty-aware dynamics model enjoys popularity in model-based reinforcement
learning, and Gaussian processes (GPs) deployed in PILCO enable the propagation of un-
certainty in forecasting future states (Deisenroth and Rasmussen, 2011). Another specific
instance can be found in demonstration learning; higher uncertainty in prediction would
suggest the learning system to query new observations to avoid dangerous behaviors
(Thakur et al., 2019).

In the past few years, a variety of models combining GPs and deep neural networks
have been proposed (Salimbeni and Deisenroth, 2017; Snelson and Ghahramani, 2006;
Titsias, 2009; Titsias and Lawrence, 2010). However, there still remain some concerns in
GP induced predictive distributions. One is high computational complexity in prediction
due to the matrix inversion, and another is less flexibility in function space. Recognized as
an explicit stochastic process model, the vanilla GP strongly depends on the assumption
that the joint distribution is Gaussian. The computational and scalable issues facilitate
the birth of adaptations or approximate variants for GP related models (Garnelo et al.,
2018a,b; Louizos et al., 2019), which incorporate latent variables in modeling to account
for uncertainties.

Research Motivations. As an alternative for GPs, the neural process (NP) can character-
ize function distributions. By learning a global latent variable, NPs are able to obtain
the predictive distribution at the cost of lower computations. However, such a model is
known to suffer from underfitting (Kim et al., 2019) and cannot sufficiently handle cases
when variables’ input/output are high dimensional.

Developed Methods. We investigate NP related models with a unified model and explore
more expressive approximations toward general stochastic processes (SPs). To this end,
hierarchical latent variables, respectively global and target specific local latent variables,

25

BAY E S I A N H I E R A R C H I C A L F R A M E W O R K F O R F U N C T I O NA L R E P R E S E N TAT I O N

are considered part of the model structure, which helps improve flexibility in predictive
distributions. In this way, the novel variational approximate model for NPs has the
potential to solve learning problems in high-dimensional cases.

Our primary contributions are two-fold in this chapter:

• We systematically revisit NPs, SPs, and other related models from a unified
perspective with an implicit Latent Variable Model (LVM). Both GPs and NPs are
studied in this hierarchical LVM.

• The Doubly Stochastic Variational Neural Process (DSVNP) is proposed to enrich
the NP family. Experimental results demonstrate the effectiveness of the proposed
Bayesian model in high dimensional domains, including regression with multiple
outputs and uncertainty-aware image classification.

3.2 R E L AT E D W O R K

Scalability and Expressiveness in Stochastic Process. GPs are the most well-known
member of SPs family and have inspired many extensions, such as deep kernel learning
(Wilson et al., 2016a,b) and sparse GPs (Snelson and Ghahramani, 2006) with better
scalability. Especially, the latter incorporated sparse prior in function distribution and
utilized a small proportion of observations in predictions. In multi-task cases, several GP
variants were proposed (Moreno-Muñoz et al., 2018; Bonilla et al., 2008; Zhao and Sun,
2016). Other works also achieve sparse effect but with variational inference, approxi-
mating the posterior in GPs and optimizing ELBO (Hensman et al., 2015; Salimbeni
et al., 2019; Titsias and Lawrence, 2010). Another branch is about directly capturing
uncertainties with deep neural networks, which is revealed in NP related models. Other
extensions include generative query network (Eslami et al., 2018), sequential NP (Singh
et al., 2019) and convolutional conditional NP (Gordon et al., 2020). Variational implicit
process (Ma et al., 2019) targeted at more general SPs and utilized GPs in latent space
as approximation. Sun et al. (2019) proposed functional variational Bayesian neural
networks, and variational distribution over functions of measurement set was used to
represent SPs. The more recently proposed functional NPs (Louizos et al., 2019) char-
acterized a novel family of exchangeable stochastic processes, placing more flexible
distributions over latent variables and constructing directed acyclic graphs with latent
affinities of instances in inference and prediction.

Uncertainty Quantification and Computational Complexity. GPs can well character-
ize aleatoric uncertainty and epistemic uncertainty through kernel function and Gaussian
noise. Nevertheless, SPs with non-Gaussian marginals are crucial in modeling. Apart
from GPs, some other techniques exist, such as Dropout (Gal and Ghahramani, 2016)
or other variants of Bayesian neural networks (Louizos et al., 2017) to quantify uncer-
tainty. In (Depeweg et al., 2018), uncertainties were further decomposed in a Bayesian
neural network. DSVNP can theoretically capture both uncertainties as an approximate
prediction model for general SPs and approaches the problem in a Bayesian way. For
the computational cost in prediction, the superior sparse GPs with K-rank covariance
matrix approximations (Burt et al., 2019) are with the complexity O((M + N)K2),

26

3.3 P R E L I M I NA R I E S

while the variants of CNPs or NPs mostly reduce the complexity O((N + M)3) in
GPs to O(M + N) in the prediction process. And those for AttnNP and DSVNP are
O((M + N)N).

3.3 P R E L I M I NA R I E S

（a）CNP （b）NP （c）AttnNP （d）DSVNP (Ours)

Training
Process

Testing
Process

Figure 2: Probabilistic Graphs for CNP, vanilla NP, Attentive NP and DSVNP. The blue
dotted lines characterize the inference towards global latent variable zG, while the pink
dotted lines are for target specific local latent variables z∗. The ones in the first row are
training cases, while those in the second row are testing cases.

Generally, a stochastic process places a distribution over functions, and any finite
collections of variables can be associated with an implicit probability distribution. Here,
we naturally formulate an implicit LVM (Rezende et al., 2014; Kingma and Welling,
2014) to characterize General Stochastic Function Processes (GSFPs). The conceptual
generation paradigm for this LVM can be depicted in the following equations,

zi = ϕ(xi) + ϵ(xi) (3.1a)

yi = φ(xi, zi) + ζi (3.1b)

where terms ϵ and ζ respectively indicate the stochastic component in the latent space
and random noise in observations. To avoid ambiguity in notation, we declare the
stochastic term ϵ as an index dependent random variable ϵ(xi), and ζi is observation
noise in the environment. Also, the transformations ϕ and φ are assumed to be Borel
measurable, and the latent variables in Eq. (3.1a) are not restricted. Note that they can be
some set of random variables with statistical correlations without loss of generality.

When Kolmogorov Extension Theorem (Oksendal, 2013) is satisfied for ϵ(xi), a
latent SP can be induced. Eq. (3.1a) decomposes the process into a deterministic and
stochastic component. The transformation φ in Eq. (3.1b) is directly connected to the
output. Such a generative process can simultaneously inject aleatoric uncertainty and
epistemic uncertainty in modelling (Hofer et al., 2002), but inherent correlations in
examples make the exact inference intractable mostly.

Another principal issue is a prediction with permutation invariance, which learns a
conditional distribution in SP models. With the context C = {(xi, yi)|i = 1, 2, . . . , N}

27

BAY E S I A N H I E R A R C H I C A L F R A M E W O R K F O R F U N C T I O NA L R E P R E S E N TAT I O N

and input variables of the target xT , we seek a stochastic function fθ mapping from X to
Y and formalize the distribution as pθ(yT |xC , yC , xT)1 invariant to the order of context
observations. The definitions of permutation invariant functions (PIFs) and permutation
equivariant functions (PEFs) are included in Appendix (A.1).

3.3.1 Gaussian Processes in the Implicit LVM

Let us consider a trivial case in the LVM when the operation φ is an identity map, ζ is
Gaussian white noise, and the latent layer follows a multivariate Gaussian distribution.
This degenerated case indicates a GP, and terms ϕ, ϵ are respectively the mean function
and the zero-mean GP prior. Meanwhile, recall that the prediction at target input xT in
GPs relies on a predictive distribution p(yT |xC , yC , xT), where the mean and covariance
matrix are inferred from the context [xC , yC] and target input xT .

µ(xT ; xC , yC) = ϕθ(xT) + ΣT ,CΣ−1
C,C

(
yC − ϕθ(xC)

)
Σ(xT ; xC , yC) = ΣT ,T − ΣT ,CΣ−1

C,CΣC,T
(3.2)

Here ϕθ and Σ in Eq. (3.2) are vectors of mean functions and covariance matrices. For
additive terms, they embed context statistics and connect them to the target sample xT .
Furthermore, two propositions are drawn, which we prove in Appendix (A.2).

Proposition 1 The statistics of GP predictive distributions, such as mean and (co)-
variances, for a specific point x∗ are permutation invariant functions, while those in
p(yT |xC , yC , xT) are permutation equivariant functions.

3.3.2 Neural Processes in the Implicit LVM

In non-GP scenarios, inference and prediction processes for the LVM can be non-trivial,
and NPs are the family of approximate models for implicit SPs. Also, relationship
between GPs and NPs can be explicitly established with deep kernel network (Rudner
et al., 2018). Note that NPs translate some properties of GPs to predictive distributions,
especially permutation invariance of context statistics, which is highlighted in Propo-
sition (1). Here three typical models are investigated, respectively conditional neural
process (CNP) (Garnelo et al., 2018a),vanilla NP (Garnelo et al., 2018b) and attentive
neural process (AttnNP) (Kim et al., 2019).

When approximate inference is applied to NP family with Latent Variables, a prelimi-
nary evidence lower bound (ELBO) for the training process can be derived, which aims
at predictive distributions for most NP related models.

ln
[
p(yT |xC , yC , xT)

]
≥ Eqϕ(zT |xC ,yC ,xT ,yT) ln

[
pθ(yT |xT , zT)

]
−DKL

[
qϕ(zT |xC , yC , xT , yT) ∥ p(zT |xC , yC , xT)

] (3.3)

1 For brief notations, the inputs, outputs of the context and the target are respectively denoted as xC = x1:N ,
yC = y1:N , xT = x1:N+M , yT = y1:N+M . Only in CNP, xT = xN+1:N+M , yT = yN+1:N+M . And [x∗, y∗]
refers to any instance in the target.

28

3.3 P R E L I M I NA R I E S

To ensure context information invariant to orders of points, CNP embeds the context
point [xC , yC] in an elementwise way and then aggregates them with a permutation
invariant operation ⊕, such as mean or max pooling.

ri = hθ(xi, yi), rC =
N⊕

i=1

ri (3.4)

The latent variable in CNP is a deterministic embedding of the form pθ(zC |xC , yC) =
rC(xC , yC). Following Eq. (3.1b), CNP decodes statistics as the mean and the variance
for a predictive distribution.

For vanilla NPs, the encoder structure resembles CNPs, and the learned embedding
variable r in Eq. (3.4) is no longer a function but a Gaussian variable after amortized
transformations. For the graphical structure of this LVM in vanilla NPs (Refer to Figure 2
(b)), all latent variables are degraded to a global Gaussian latent variable, which accounts
for the consistency.

AttnNP further improves the expressiveness of context information in NP, leaving the
latent variable as the combination of a global variable and a local variable. Especially, the
attention network uses self-attention or dot-product attention to enable transformations of
context points and the extraction of hierarchical dependencies between context points and
target points. For the graphical model of this LVM in AttnNP, the context information
is instance-specific. The latent variable of AttnNP in Eq. (3.5) is the concatenation of
attention embedding zattn from element-wise context embedding si and a global latent
variable zG drawn from an amortized distribution parameterized with Eq. (3.4).

zattn =
N⊕

i=1

w(xi, x∗)si, z = [zattn, zG] (3.5)

In summary, AttnNP boosts performance with attention networks, which implicitly
seek more flexible functional translations for each target.

3.3.3 Connection to Other Models

In some scenarios, when the latent layer in Eq. (3.1a) is specified as a Markovian
chain, the LVM degrades to the classical state space model. If random variables in the
latent layer of the LVM are independent, the resulted neural network is similar to the
conditional variational auto-encoder (Sohn et al., 2015), and no context information is
utilized for prediction. Instead, correlations between latent variables in the hidden layer
increase the model capacity.

The induced SP in Eq. (3.1b) is a warped GP when the latent SP is a GP and the
transformation φ is nonlinear monotonic (Snelson et al., 2004). In addition, several
previous works integrate this idea in modeling as well, and representative examples are
deep GPs (Dai et al., 2016) and hierarchical GPs (Tran et al., 2016).

29

BAY E S I A N H I E R A R C H I C A L F R A M E W O R K F O R F U N C T I O NA L R E P R E S E N TAT I O N

3.4 M E T H O D S

3.4.1 Neural Process with Hierarchical Latent Variables

In the last section, we gain more insights into the mechanism of GPs and NPs and
disentangle these models with the implicit LVM. A conclusion can be drawn that the
posterior inference conditioned on the context requires both approximate distributions
with permutation invariance and some bridge to connect observations and the target in
latent space. Note that the global induced latent variable may be insufficient to describe
dependencies, and critical challenge comes from non-stationarity and locality, which are
even crucial in high-dimensional cases.

Table 2: Structure Summary over NP Related Models on Training Dataset. Here f
corresponds to some functional operation. Global latent variable in CNP only governs
points to predict, while that in NP works for the whole points. Furthermore, local latent
variables in AttnNP and DSVNP are distinguished, with the latter as a latent random
variable.

NP Family Recognition Model Generative Model Prior Distribution Latent Variable

CNP zC = f (xC , yC) p(yT |zC , xT) NULL Global
NP q(zG |xC , yC , xT , yT) p(yT |zG, xT) p(zG |xC , yC) Global

AttnNP q(zG |xC , yC , xT , yT), p(y∗|zG, z∗, x∗) p(zG |xC , yC) Global
z∗ = f (xC , yC , x∗) +Local

DSVNP (Ours) q(zG |xC , yC , xT , yT), p(y∗|zG, z∗, x∗) p(zG |xC , yC), Global
q(z∗|zG, x∗, y∗) p(z∗|zG, x∗) +Local

Hence, we present a hierarchical way to modify NPs, and the trick is to involve
auxiliary latent variables for NPs and derive a new evidence lower bound for different
levels of random variables with doubly stochastic variational inference (Salimbeni and
Deisenroth, 2017; Titsias and Lázaro-Gredilla, 2014). The original intention of involving
auxiliary latent variables is to improve the expressiveness of approximate posteriors, and
it is commonly used in deep generative models (Maaløe et al., 2016). So, as displayed in
Table (2), DSVNP considers a global latent variable and a local latent variable to convey
context information at different levels. Our work is also consistent with the hierarchical
implicit Bayesian neural networks (Tran et al., 2016, 2017), which distinguish the role of
latent variables and induce more powerful posteriors. Without exception, the local latent
variable z∗ refers to any data point (x∗, y∗) for prediction in DSVNP in the remainders of
this paper.

To extract hierarchical context information for the predictive distribution, we distin-
guish the global latent variable and the local latent variable in a Bayesian model, and
the induced LVM is DSVNP. This variant shares the same prediction structure with
AttnNP. The global latent variable is shared across all observations, and the role of
context points resembles inducing points in sparse GP (Snelson and Ghahramani, 2006),
summarizing general statistics in the task. As for the local latent variable in our proposed
DSVNP, it is an auxiliary latent variable responsible mainly for variations of instance
locality. From another perspective, DSVNP combines the global latent variable in vanilla

30

3.4 M E T H O D S

NPs with the local latent variable in conditional variational autoencoder (C-VAE). This
implementation in model construction separates the global and sample-specific variations
and theoretically increases the expressiveness of the neural network.

As illustrated in Fig. (2.d), the target to predict is governed by these two latent
variables. The global latent variable zG and the local latent variable z∗ contribute to the
prediction. Formally, the generative model as a SP is described as follows, where exact
inferences for latent variables zG and z∗ are infeasible.

ρx1:N+M(y1:N+M) =
x

p(zG)
N+M∏
i=1

p(yi|zG, zi, xi)p(zi|xi, zG)dz1:N+MdzG (3.6)

Meanwhile, we emphasize that this generation method naturally induces an exchange-
able stochastic process (Bhattacharya and Waymire, 2009). The proof is given in
Appendix (A.3).

3.4.2 Approximate Inference and ELBO

With the relationship between these variables clarified, we can characterize the inference
process for DSVNP, and then a new ELBO is presented. Distinguished from AttnNP, we
need to infer global and local latent variables with evidence from the collected dataset.
Posteriors of the global and local latent variables on the training dataset are approximated
with distributions like vanilla NPs, mapping Eq. (3.4) to means and variances. And
inference towards local latent variables requires target information in the approximate
posterior,

qϕ1,1 = N
(
zG |µ(xC , yC , xT , yT), Σ(xC , yC , xT , yT)

)
(3.7)

qϕ2,1 = N
(
z∗|µ(zG, x∗, y∗), Σ(zG, x∗, y∗)

)
(3.8)

where qϕ1,1 and qϕ2,1 are approximate posteriors in training process. The generative
process is reflected in Eq. (3.9) for DSVNP, where gθ indicates a decoder in a neural
network.

p(y∗|xC , yC , x∗) = gθ(zG, z∗, x∗) (3.9)

Consequently, this difference between vanilla NP and DSVNP leads to another ELBO
or negative variational free energy L as the right term,

ln
[
p(y∗|xC , yC , x∗)

]
≥ Eqϕ1,1

Eqϕ2,1
ln[p(y∗|zG, z∗, x∗)]

−Eqϕ1,1
[DKL[qϕ2,1(z∗|zG, x∗, y∗) ∥ pϕ2,2(z∗|zG, x∗)]

]
−DKL

[
qϕ1,1(zG |xC , yC , xT , yT) ∥ pϕ1,2(zG |xC , yC)

] (3.10)

where pϕ1,2(zG |xC , yC) and pϕ2,2(z∗|zG, x∗) parameterized with neural networks are
used as prior distributions. Here we no longer employ standard normal distributions with

31

BAY E S I A N H I E R A R C H I C A L F R A M E W O R K F O R F U N C T I O NA L R E P R E S E N TAT I O N

Algorithm 1: Variational Inference for DSVNP in Training.
Input: DatasetD, Maximum context points Nmax, Learning rate α, Batch size B and
Epoch number m.
Output: Model parameters ϕ1, ϕ2 and θ.
Initialize parameters ϕ1, ϕ2, θ of recognition model and generative model in Eq. (3.7),
(3.8) and (3.9).
for i = 1 to m do

Draw some context number NC ∼ U[1, Nmax];
Draw mini-batch instances and formulate context-target pairs
{(xC , yC , xT , yT)bs}

B
bs=1 ∼ D;

Feedforward the mini-batch instances to recognition model qϕ1:
Draw sample of latent variable zG ∼ qϕ1,1 in Eq. (3.7);
Draw sample of latent variable z∗ ∼ qϕ2,1 in Eq. (3.8);

Feedforward the latent variables to discrimination model pθ:
Compute conditional probability distribution in Eq. (3.9);

Update parameters by Optimizing Eq. (3.11):
ϕ1 ← ϕ1 − α∇ϕ1LMC with ϕ1 = [ϕ1,1, ϕ1,2];
ϕ2 ← ϕ2 − α∇ϕ2LMC with ϕ2 = [ϕ2,1, ϕ2,2];
θ ← θ − α∇θLMC;

end for

zero prior information. Instead, these are parameterized with two diagonal Gaussians for
simplicity and learned in an amortized way.

3.4.3 Scalable Training and Uncertainty-aware Prediction

Based on the inference process in DSVNP and the corresponding ELBO in Eq. (3.10),
the Monte Carlo estimation for the negative lower bound is derived, in which we wish to
minimize,

LMC = −
1
K

K∑
k=1

[1
S

S∑
s=1

ln[p(y∗|x∗, z(s)
∗ , z(k)G)] − DKL[q(z∗|z

(k)
G , x∗, y∗) ∥ p(z∗|z

(k)
G , x∗)]

]
+DKL

[
q(zG |xC , yC , xT , yT) ∥ p(zG |xC , yC)

]
(3.11)

where latent variables are sampled as z(k)G ∼ qϕ1,1(zG |xC , yC) and z(s)
∗ ∼ qϕ2,1(z∗|z

(k)
G , x∗, y∗).

Moreover, the resulting Eq. (3.11) is employed as the objective function in the training
process. To reduce variance in sampling, Kingma and Welling (2014) introduces the
reparameterization trick for all approximate distributions, and the model is optimized
using Stochastic Gradient Variational Bayes (Kingma and Welling, 2014). More details
can be found in the Algorithm (1).

The predictive distribution is of our interest. For DSVNP, prior networks as p(zG |xC , yC)
and p(z∗|zG, x∗) are involved in prediction, and this leads to the integration over both
global and local latent variables here as revealed in Eq. (3.12).

32

3.4 M E T H O D S

p(y∗|xC , yC , x∗) =
x

p(y∗|zG, z∗, x∗)pϕ1,2(zG |xC , yC)pϕ2,2(z∗|zG, x∗)dzGdz∗ (3.12)

For uncertainty-aware prediction, there exist different approaches for Bayesian neu-
ral networks. Generally, the conditional distribution in neural networks can be de-
rived once the model is well trained. The accuracy can be evaluated through deter-
ministic inference over latent variables, i.e., z̃G = E[zG |xC , yC], z̃∗ = E[z∗|zG, x∗],
y∗ = arg maxy p(y|z̃∗, ˜zG, x∗).

The Monte Carlo estimation over Eq. (3.12), which is commonly used for prediction,
can be written in the following equation,

p(y∗|xC , yC , x∗) ≈
1

KS

K∑
k=1

S∑
s=1

pθ(y∗|x∗, z(s)
∗ , z(k)G) (3.13)

where the global and local latent variables are sampled in prior networks through
ancestral sampling as z(k)G ∼ pϕ1,2(zG |xC , yC) and z(s)

∗ ∼ pϕ2,2(z∗|z
(k)
G , x∗).

3.4.4 More Insights and Implementation Tricks

The global and local latent variables govern different prediction and sample generation
variations. This is a part of the motivations for AttnNP and DSVNP. Interestingly, the
inference for our induced SP integrates the aspects of vanilla NPs (Eslami et al., 2018)
and C-VAEs (Sohn et al., 2015).

Similar to β-VAE (Higgins et al., 2017), we rewrite the right term in Eq. (3.10) with
constraints and these restrict the search for variational distributions. Equivalently, tuning
the weights of divergence terms in Eq. (3.10) leads to a varying balance between global
and local information.

max
ϕ1,ϕ2,θ

Eqϕ1,1
Eqϕ2,1

ln[pθ(y∗|zG, z∗, x∗)]

DKL
[
q(zG |xC , yC , xT , yT) ∥ p(zG |xC , yC)

]
< ϵG

Eqϕ1,1

[
DKL[q(z∗|zG, x∗, y∗) ∥ p(z∗|zG, x∗)]

]
< ϵL

(3.14)

Here, a more practical objective in implementations derived from weight calibrations
in Eq. (3.15).

LW
MC = −

1
K

K∑
k=1

[1
S

S∑
s=1

ln[p(y∗|x∗, z(s)
∗ , z(k)G)] − β1DKL[q(z∗|z

(k)
G , x∗, y∗) ∥ p(z∗|z

(k)
G , x∗)]

]
−β2DKL

[
q(zG |xC , yC , xT , yT) ∥ p(zG |xC , yC)

]
(3.15)

Also, training stochastic model with multiple latent variables is non-trivial, and several
works about KL divergence term annealing (Sønderby et al., 2016) or dynamically

33

BAY E S I A N H I E R A R C H I C A L F R A M E W O R K F O R F U N C T I O NA L R E P R E S E N TAT I O N

adapting for the weights exist. Notably, the target-specific KL divergence term is
sometimes suggested to assign more penalty to guarantee the consistency between
approximate posterior and prior distribution (Kohl et al., 2018; Sohn et al., 2015).

(a) CNP (b) NP (c) AttnNP (d) DSVNP

Figure 3: Function Prediction in Interpolation and Extrapolation. Blue curves are ground
truth with dotted units as context points, and orange ones are predicted results. Rows from
up to down indicate cases: single function with noise, interpolation, and extrapolation
towards realizations from a stochastic process. The shadow regions are ±3 standard
deviations from the mean.

3.5 E X P E R I M E N T S

This section starts with learning predictive functions on several toy datasets. Then
high-dimensional tasks, including system identification on physics engines, multioutput
regression on the real-world dataset, and image classification with uncertainty quantifi-
cation, are performed to evaluate the properties of NP related models. The dot-product
attention is used in all AttnNPs. All implementation details are attached in Appendix
(A.5).

3.5.1 Synthetic Experiments

We initially investigate the episdemic uncertainty captured by NP related models on
a 1-d regression task, and the function (Osband et al., 2016a) is characterized as y =
x + ϵ + sin(4(x + ϵ)) + sin(13(x + ϵ)). Observations as the training set include 12
points and 8 points respectively uniformly drawn from intervals U[0, 0.6] and U[0.8, 1.0],
with the noise drawn from ϵ ∼ N(0, 0.0032).

As illustrated in the first row of Fig. (3), we can observe that CNP and DSVNP better
quantify variance outside the interval [0, 1.0]. At the same time, AttnNP either overes-
timates or underestimates the uncertainty to show higher or lower standard deviations
in regions with fewer observations. All models share similar properties with GPs in
predictive distributions, displaying lower variances around observed points. As for the
gap in interval [0.6, 0.8], the revealed uncertainty is consistent to that in (Sun et al., 2019;
Hernández-Lobato and Adams, 2015) with intermediate variances.

34

3.5 E X P E R I M E N T S

Table 3: Average Negative Log-likelihoods over all target points on realizations from
Synthetic Stochastic Process. (Figures behind ± are variances.)

Prediction CNP NP AttnNP DSVNP

Inter -0.802±1E-6 -0.958±2E-5 -1.149±8E-6 -0.975±2E-5
Extra 1.764±1E-1 8.192±7E1 8.091±7E2 4.203±9E0

Further, we conduct curve fitting tasks in SP. The SP initializes with a zero mean
Gaussian Process y(0) ∼ GP(0, k(., .)) indexed in the interval x ∈ [−2.0, 2.0], where
the radial basis kernel k(x, x′) = σ2exp(−(x − x′)2/2l2) is used with l-1 0.4 and σ
1.0. Then the transformation is performed to yield y = sin (y(0)(x) + x). The training
process follows that in NP (Garnelo et al., 2018b).

Predicted results are visualized in the second and the third rows of Fig. (3). Note that
CNP only predicts points out of context in default settings. More evidence is reported
in Table (3), where 2000 realizations are independently sampled and predicted for both
interpolation and extrapolation.

After several repetitive observations, we find that in terms of the interpolation accuracy,
DSVNP works better than vanilla NP, but the improvement is not as significant as that in
AttnNP, which is also verified in visualizations. All (C)NPs show higher uncertainties
around index 0, where fewer context points are located, and variances are relatively close
in other regions. For extrapolation results, since all models are trained in the dotted
column lines restricted regions, it is tough to scale to regions out of training interval, and
all negative log-likelihoods (NLLs) are higher. When many context points exist outside
the interval, the learned context variable may deteriorate predictions for all (C)NPs, and
observations confirm findings in (Gordon et al., 2020). Interestingly, DSVNP tends to
overestimate uncertainties out of the training interval but predicted extrapolation results
mostly fall into the one σ confident region, and this property is similar to CNP. On the
other hand, vanilla NP and AttnNP sometimes underestimate the uncertainty.

3.5.2 System Identification on Physics Engines

Capturing dynamics in systems is crucial in control-related problems, and we extend
synthetic experiments on a classical simulator, Cart-Pole systems, which is detailed in
(Gal et al., 2016). As shown in Fig. (4), the original intention is to conduct actions to
reach the goal with the end of a pole, but here we focus on dynamics, and the state is a
vector of the location, the angle, and their first-order derivatives. Specifically, the aim is
to forecast the transited state [xc, θ, x′c, θ′] in time step t + 1 based on the input as a state
action pair [xc, θ, x′c, θ′, a] in time step t.

To generate a variety of trajectories under a random policy for this experiment,
the mass mc and the ground friction coefficient fc are varied in the discrete choices
mc ∈ {0.3, 0.4, 0.5, 0.6, 0.7} and fc ∈ {0.06, 0.08, 0.1, 0.12}. Each pair of [mc, fc] values
specifies a dynamics environment, and we formulate all pairs of mc ∈ {0.3, 0.5, 0.7} and
fc ∈ {0.08, 0.12} as training environments with the rest 16 pairs of configurations as the
testing environments.

35

BAY E S I A N H I E R A R C H I C A L F R A M E W O R K F O R F U N C T I O NA L R E P R E S E N TAT I O N

Goal

Figure 4: Cart-Pole Dynamical Systems.The cart and the pole are with masses mc and mp,
and the length of the pole is l. And the configuration of the simulator is up to parameters
of the cart-pole mass and the ground friction coefficient here with other hyper-parameters
fixed in this experiment.

Table 4: Predictive Negative Log-Likelihoods and Mean Square Errors on Cart-Pole State
Transition Testing Dataset. (Figures behind ± are variances.)

Metrics CNP NP AttnNP DSVNP

NLL -2.014±9E-4 -1.537±1E-3 -1.821±7E-3 -2.145±9E-4
MSE 0.096±3E-4 0.074±2E-4 0.067±1E-4 0.036±2.1E-5

For each configuration of the simulator, including training and testing environments,
we sample 400 trajectories of the horizon as 10 steps using a random controller. Please
refer to Appendix (A.5) for more details. The training process follows Algorithm (1)
with the maximum number of context points as 100. During the testing process, 100 state
transition pairs are randomly selected for each environment configuration, working as
the maximum context points to identify the dynamics configuration.

Furthermore, the collected results are reported in Table (4), where prediction per-
formance on 5600 trajectories from 14 configurations is revealed. As can be seen, the
negative log-likelihood values are not consistent with those of mean square errors, and
DSVNP shows both better uncertainty quantification with lowest NLLs and approxima-
tion errors in MSEs. AttnNP improves NP in both metrics, while CNP shows relatively
better NLLs, but the approximation error is a bit higher than others.

3.5.3 Multi-Output Regression on Real-world Dataset

Further, more complicated scenarios are considered when the regression task relates to
multiple outputs. As investigated in (Moreno-Muñoz et al., 2018; Bonilla et al., 2008),
distributions of output variables are implicit, which means no explicit distributions are
appropriate to be used in parameterizing the output. We evaluate the performance of all
models on dataset, including SARCOS 2, Water Quality (WQ) (Džeroski et al., 2000)
and SCM20d (Spyromitros-Xioufis et al., 2016). Details about these datasets and neural
architectures for all models are included in Appendix (A.5).

2 http://www.gaussianprocess.org/gpml/data/

36

3.5 E X P E R I M E N T S

Table 5: Predictive MSEs on Multi-Output Dataset. CNP’s results are for target points. D
records (input,output) dimensions. MC-Dropout runs 50 stochastic forward propagation
and average results for prediction in each data point. (Figures behind ± are variances.)

Dataset D MC-Dropout CNP NP AttnNP DSVNP

Sarcos (21,7) 1.215±3E-3 1.437±2.9E-2 1.285±1.2E-1 1.362±8.4E-2 0.839±1.5E-2
WQ (16,14) 0.007±9.6E-8 0.015±2.4E-5 0.007±5.2E-6 0.01±8.5E-6 0.006±1.6E-6

SCM20d (61,16) 0.017±2.4E-7 0.037±6.7E-5 0.015±7.1E-8 0.015±8.1E-7 0.007±2.3E-7

Furthermore, Monte-Carlo Dropout is included for comparison. Similar to NP (Gar-
nelo et al., 2018b), the variance parameter is not learned, and the objective in optimization
is pointwise mean square errors (MSEs) after averaging all dimensions in the output.
Each dataset is randomly split into 2-folds as training and testing sets. The training
procedure in (C)NPs follows that in Algorithm (1), and some context points are randomly
selected in batch samples. We randomly select 30 instances in the testing stage as the
context and then perform predictions with (C)NPs. The weights of data likelihood and
KL divergence terms in models are not tuned here.

During training, ELBOs in NP-related models are optimized, while MSEs are used as
an evaluation metric in testing (Dezfouli and Bonilla, 2015)3. The predictive results on
the testing dataset are reported in Table (5). All MSEs are averaged after 10 independent
experiments. We observe DSVNP outperforms other models, and deterministic context
information in CNP hardly increases performance. Compared with NP models, MC-NN
is relatively satisfying on Sarcos and WQ, and AttnNP works not well in these cases. A
potential reason can be that deterministic context embedding with dot product attention
is less predictive for output with multiple dimensions. At the same time, the role of the
local latent variable in DSVNP not only bridges the gap between input and output but
also extracts some correlation information among variables in outputs. The attention
mechanism is more suitable for extracting local information when the output dimension
is lower in synthetic experiments.

3.5.4 Classification with Uncertainty Quantification

Here image classification is performed with NP models and MC-Dropout, and out
of distribution (o.o.d.) detection is chosen to measure the goodness of uncertainty
quantification. We train models on MNIST and CIFAR10, and the dimensions for latent
variables are 64 on MNIST and 128 on CIFAR10. The training process for NP related
models follows Algorithm (1), with the number of context images randomly selected in
each batch update.

We randomly select 100 instances from the domain dataset for the testing process
as the context for (C)NP models. The commonly used measure for uncertainty in
K-class o.o.d. detection is entropy (Lakshminarayanan et al., 2017), H[y∗|x∗] =

3 Directly optimizing Gaussian log-likelihoods does harm to performance based on experimental results.

37

BAY E S I A N H I E R A R C H I C A L F R A M E W O R K F O R F U N C T I O NA L R E P R E S E N TAT I O N

Figure 5: Cumulative Distribution Functions of Entropies in O.O.D. Detection Tasks.
Values on X-axis are example entropies ranging from 0 to 2.3, and the y-axis records
cumulative probabilities. The first row corresponds to the predictive result with models
trained on MNIST, while the second is with models trained on CIFAR10. NN means the
baseline neural network without a dropout layer. Curves in CDFs closer to triangular
arrows reveal better uncertainty quantification.

−ΣK
c=1 pw(y∗c |x

∗;Dtr) ln pw(y∗c |x
∗;Dtr), where data point (x∗, y∗) comes from either do-

main test datasetDte or o.o.d datasetDood.
For classification performance with NP related models, we observe the difference is

extremely tiny on MNIST with all accuracies around 99%, while on CIFAR10, DSVNP
beats all baselines with the highest accuracy 86.3% and lowest in-distribution entropies
in Table (6). The involvement of a deterministic path does not improve much, and in
contrast, MC-Dropout and CNP achieve intermediate performance. A possible cause
can be that implicit kernel information captured by the attention network in images is
imprecise.

The cumulative distributions of predictive entropies are reported in Fig. (5). For
models trained on MNIST, we observe no significant difference in the domain dataset,
but DSVNP achieves the best results on FMNIST/KMNIST, and MC-Dropout performs
superior on the Uniform/Gaussian noise dataset. Interestingly, AttnNP tends to un-
derestimate uncertainty on FMNIST/KMNIST, and the measure is close to the neural
network without dropout. Those trained on CIFAR10 differ from observations in the
second row of Fig. (5). It can be noticed that DSVNP shows the lowest uncertainty on
the domain dataset (CIFAR10) and medium uncertainty on SVHN/Gaussian/Uniform
Dataset. MC-Dropout and AttnNP seem not to work so well overall, but CNP well
measures uncertainty on Gaussian/Uniform dataset. Results again verify SVHN as a
tough dataset for the task (Nalisnick et al., 2019). Also, note that entropy distributions on
Rademacher Dataset are akin to that on the domain dataset, which means the Rademacher
noise is riskier for CIFAR10 classification, and DSVNP is a better choice to avoid such
adversarial attack in this case.

That evidence shows that the deterministic path in AttnNP does not boost classification
performance on the domain dataset but weakens the ability of o.o.d. detection mostly,
while local latent variables in DSVNP improve both performances. Maybe deterministic
local latent variables require more practical attention information, but here only dot-
product attention information is included. As a comparison, the local latent variable

38

3.6 C O N C L U S I O N & DISCUSSION

Table 6: Tested Entropies of Logit Probability on Classification Dataset. For rows of
MNIST and CIFAR10, the second figures in columns are classification accuracies. Both
MC-Dropout and DSVNP are averaged with 100 Monte Carlo samples.

NN MC-Dropout CNP NP AttnNP DSVNP

MNIST 0.011/0.990 0.009/0.993 0.019/0.993 0.010/0.991 0.012/0.989 0.027/0.990

FMNIST 0.385 0.735 0.711 0.434 0.337 0.956
KMNIST 0.282 0.438 0.497 0.322 0.294 0.545
Gaussian 0.601 1.623 1.313 0.588 0.611 0.966
Uniform 0.330 1.739 0.862 0.094 0.220 0.375

CIFAR10 0.151/0.768 0.125/0.838 0.177/0.834 0.124/0.792 0.124/0.795 0.081/0.863

SVHN 0.402 0.407 0.459 0.315 0.269 0.326
Rademacher 0.021 0.062 0.079 0.078 0.010 0.146

Gaussian 0.351 0.266 0.523 0.451 0.349 0.444
Uniform 0.334 0.217 0.499 0.463 0.261 0.374

in DSVNP captures some target-specific information during the training process and
improves detection performance.

3.6 C O N C L U S I O N & DISCUSSION

Technical Discussions. This chapter presents a novel exchangeable stochastic process
as DSVNP, formulated as a latent variable model. DSVNP integrates latent variables
hierarchically and improves the expressiveness of the vanilla NP model. Experiments
on high-dimensional tasks demonstrate better capability in prediction and uncertainty
quantification.

Existing Limitations. DSVNP achieves satisfying performance in the benchmark
mentioned above, but it suffers from the risk of underfitting when the output dimension
is low. This is because we apply the inference way of C-VAEs (Sohn et al., 2015) to local
latent variables with the output in the approximate posterior. In this case, more weights
are assigned to KL divergence penalties of local latent variables.

Future Extensions & Broader Implications. Since DSVNP mainly concentrates on
latent variables and associated inference methods, future directions can enhance latent
variables’ representation, such as using more flexible equivariant transformations over
the context or the dedicated selection of proper context points. Meanwhile, our proposed
DSVNP separates latent variables at different levels and has the potential for video
generation in the future.

39

4

M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L
R E P R E S E N TAT I O N

In the previous chapter (3), we examined the usefulness of the Bayesian hierarchical
inductive bias in neural processes for high dimensional learning problems. This chapter
considers the scenario when learning datasets originate from a mixture of function
distributions. To solve the problem, we incorporate the mixture of expert inductive bias
into neural processes. The resulting model can effectively represent functions from
mixture distributions and achieve state-of-art performance in experiments.

4.1 I N T RO D U C T I O N

Figure 6: Generative Process
of MoE-NPs. HereDC

τ refers
to dataset of context points
in the paper. {zk}

K
k=1 are a

set of expert latent variables
and e is an assignment latent
variable. Observed variables
are grey in circles with latent
variables white.

Humans can naturally adapt to new environments after
developing related skills, which relies on the excellent
abstraction of environments. Similarly, meta learning or
learning to learn tries to leverage past experiences, and
with the help of the incorporated meta learned knowledge,
a new skill can be mastered rapidly with a few instances.

During the past decade, an increasing number of meth-
ods have emerged in meta learning domains. In this paper,
we concentrate on a particular branch of meta learning
methods, referred to as context-based meta learning (Gar-
nelo et al., 2018b,a). A representative one is a neural
process (NP) (Garnelo et al., 2018b), which was initially
proposed to approximate Gaussian processes with lower
computational cost. The core purpose of NPs is to learn
meta-representations (Gondal et al., 2021), which encode
context points into latent variables and represent the task
in a functional form. In comparison to gradient-based
meta learning algorithms, e.g. model-agnostic meta learn-
ing (MAML) (Finn et al., 2017), the NP directly learns a
functional representation and does not require additional
gradient updates in fast adaptation.

Research Motivations. Fundamentally, vanilla NPs employ global Gaussian latent
variables to specify different tasks. This setting raises several concerns in some scenarios.
(i) When observations originate from a mixture of stochastic processes (Rasmussen
and Ghahramani, 2002), a single Gaussian latent variable is faced with deficiencies in

41

M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L R E P R E S E N TAT I O N

formulating complex functional forms. (ii) In context-based meta reinforcement learning,
the uncertainty of value functions revealed from latent variables encourages effective
exploration in environments (Rakelly et al., 2019). However, when multiple variates
govern tasks, e.g. velocities, masses, or goals in Mujoco robots (Todorov et al., 2012),
the use of a unimodal Gaussian latent variable restricts the flexibility of randomized
value functions (Osband et al., 2016b), leading to sub-optimality in performance.

Developed Methods. Instead of using a global latent variable in modeling, we employ
multiple latent variables to induce a mixture of expert NPs to specify diverse functional
priors. Meanwhile, the discrete latent variables as assignment variables are introduced to
establish connections between a single data point and expert NPs. We utilize variational
inference to formulate the evidence lower bound to optimize this model with hybrid
types of latent variables. Additionally, special modules are designed to accommodate
few-shot supervised learning and meta reinforcement learning tasks.

Our primary contributions are two-fold in this chapter:

• We introduce a new exchangeable stochastic process, referred to as MoE-NPs, to
enrich the family of NPs. Our model inherits the advantages of both mixtures of
expert models and NPs, enabling multi-modal meta representations for functions.

• We specify inference modules in MoE-NPs for few shot supervised learning and
meta reinforcement learning tasks. Extensive meta learning experiments show
that MoE-NPs can achieve competitive performance compared to most existing
methods.

4.2 R E L AT E D W O R K

Meta Learning. Meta learning is a paradigm to enable fast learning (fast adaptation
to new tasks) via slow learning (meta training in the distribution of tasks). There exist
several branches of meta learning algorithms. Gradient-based meta learning algorithms,
e.g. MAML (Finn et al., 2017) and its variants (Zintgraf et al., 2019; Rajeswaran et al.,
2019; Finn et al., 2018), perform gradient updates over model parameters to achieve
fast adaptation with a few instances. Metrics-based meta learning algorithms try to
learn representations of tasks in distance space, and models e.g. prototypical networks
(Snell et al., 2017; Allen et al., 2019) are popular in computer vision domains. As for
context-based meta learning methods of our interest, latent variable models, e.g. NPs
(Garnelo et al., 2018b), are designed to learn task representations in a functional space.
This family does not require gradient updates in fast adaptation.

Neural Processes Family. Apart from vanilla NPs or CNPs (Garnelo et al., 2018a,b),
other variants are developed, and these are built on various inductive biases. To address
underfitting issues, attention networks (Kim et al., 2019, 2021) are introduced to augment
NPs. (Foong et al., 2020; Gordon et al., 2020) improve the generalization capability of
NPs with help of convolutional operations. To learn distributions of group equivariant
functions, (Kawano et al., 2020) has proposed EquiCNP. Similarly, SteerCNPs also
incorporate equivariance to approximate stochastic fields (Holderrieth et al., 2021). Our

42

4.3 P R E L I M I NA R I E S

work is to get NPs married with Mixture of Experts (MoEs) models (Xu et al., 1995;
Waterhouse et al., 1996), which model datasets with a collection of expert NPs. We
provide more technical summary of the NP family together with other probabilistic meta
learning methods (Gordon et al., 2018; Iakovleva et al., 2020; Requeima et al., 2019; Sun
et al., 2021) in the Appendix (B.5).

4.3 P R E L I M I NA R I E S

Notations. The paradigm of meta learning is considered in the distribution of tasks
p(T), and a task sampled from p(T) is denoted by τ in this paper. The form of a task
depends on applications. For example, a task of our interest in regressions can be a
function f to fit, which is a realization from unknown stochastic processes (Rasmussen,
2003).

Let DC
τ refer to a set of context points used to specify the underlying task, and

DT
τ = [xT , yT] is a set of target points to predict, e.g. f (xT) = yT . In the context-

based meta learning with latent variables, we write the probabilistic dependencies in
distributions of target functions as follows,

p(f (xT)|D
C
τ , xT) =

∫
p(f (xT)|z, xT)p(z|DC

τ)dz (4.1)

where the functional prior p(z|DC
τ) is injected in modeling via latent variables z.

Neural Processes. The family of NPs (Garnelo et al., 2018b) belongs to exchangeable
stochastic processes (Ross et al., 1996). A generative process is written as Eq. (4.2) with
a global Gaussian latent variable z placed in Eq. (4.1),

ρx1:N (y1:N) =

∫
p(z)

N∏
i=1

N(yi| fθ(xi, z),σ2
i)dz (4.2)

where fθ is a mean function and σ2
i is the corresponding variance. In our settings, we

treat the conditional neural process (Garnelo et al., 2018a) as a special case in NPs, when
the distribution of z is collapsed into a Dirac delta distribution p(z) = δ(z − ẑ) with ẑ a
fixed real valued vector.

4.3.1 Few-Shot Supervised Learning

In the context-based meta learning, we formulate the few-shot supervised learning
objective within the expected risk minimization principle as follows.

min
Θ

Eτ∼p(T)

[
L(DT

τ ;DC
τ , Θ)

]
(4.3)

43

M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L R E P R E S E N TAT I O N

The risk function L, e.g. negative log-likelihoods, measures performance of meta
learning structure on the task-specific dataset DC

τ and DT
τ , and Θ means parameters

of common knowledge shared across tasks and parameters for fast adaptation (e.g, Θ
denotes parameters of the encoder ϕ and decoder θ, and L is the approximate objective
in NPs).

With the set of context pointsDC
τ = {(x1, y1), . . . , (xm, ym)} and the target pointsDT

τ ,
the posterior of a global latent variable z in Eq. (4.1) is approximated with a variational
distribution qϕ(z|DT

τ) and an evidence lower bound (ELBO) is derived to optimize in
practice. A general meta training objective of NPs in few-shot supervised learning is
L(θ, ϕ) in Eq. (4.4), where pθ(DT

τ |z) =
∏n

i=1 pθ(yi|[xi, z]).

Eτ

[
ln p(DT

τ |D
C
τ)

]
≥ Eτ

[
Eqϕ(z|DT

τ)
[ln pθ(DT

τ |z)] − DKL[qϕ(z|DT
τ) ∥ qϕ(z|DC

τ)]
]

(4.4)

4.3.2 Meta Reinforcement Learning

For the context-based meta reinforcement learning, the context pointsDC
τ are a set of ran-

dom transition samples from an environment asDC
τ = {(s1, a1, s2, r1), . . . , (sH , aH , sH+1, rH)},

where rt is the one-step reward after performing action at at state st. HereDC
τ plays a role

in task inference (Humplik et al., 2019) to obtain the information bottleneck qϕ(z|DC
τ)

andDT
τ is the dataset of state action values to fit.

For example, in an off-policy meta reinforcement learning algorithm, e.g. PEARL
(Rakelly et al., 2019) or FCRL (Gondal et al., 2021), the general optimization objective
consists of two parts: (i) to approximate distributions of task-specific optimal value
functions in Eq. (4.5), where Qθ is optimal Q-value with the state value V̂ (ii) to
maximize the cumulative rewards Eτ

[
Eqϕ(z|DC

τ)
[R(τ, z;φ)]

]
, where R is the expected

cumulative rewards in the environment τ given policies πφ(a|[s, z]).

L(θ, ϕ) = EτE (s,a,s′,r)∼DT
τ

z∼qϕ(z|D
C
τ)

[Qθ([s, z], a) − (r + V̂([s′, z]))]2

+βEτ

[
DKL[qϕ(z|DC

τ) ∥ p(z)]
] (4.5)

Different from the few-shot supervised learning, here, the context points are not part
of the fitting dataset, which meansDC

τ 1 D
T
τ . As implemented in (Rakelly et al., 2019),

the prior distribution p(z) is typically selected as a fixed one, e.g. N(0, I). The induced
distribution of task-specific value functions p(Qθ([s, z], a)) enables posterior sampling
(Russo and Van Roy, 2014) in meta learning scenarios, which brings additional benefits
of exploration for continuous control problems.

4.4 M E T H O D S

This section presents our developed MoE-NPs and connects them to the hierarchical
Bayes framework. Then approximate objectives are derived, and stochastic gradient
variational Bayes (Kingma and Welling, 2013) is used to optimize the developed model.
Finally, specialized neural modules are described for MoE-NPs application to different

44

4.4 M E T H O D S

meta learning tasks. Detailed computational diagrams in training and testing are attached
in Appendix (B.2). For simplicity, we derive equations w.r.t. a task τ in the following
section, but a batch of tasks are considered in training in implementation.

4.4.1 Mixture of Expert Neural Processes

Vanilla NPs often suffer underfitting in experiments (Garnelo et al., 2018b; Kim et al.,
2019). This can be attributed to expressiveness bottlenecks when employing a global
latent variable in learning functional priors of tasks from unknown distributions (Dilok-
thanakul et al., 2016).

To alleviate mentioned deficiencies, we make two modifications for the NP family.
(i) Multiple functional priors are encoded in modeling with the help of K expert latent
variables, which can capture statistical traits, e.g. distributional multi-modality, in data
points. This setting is also an extension of Mixture of Experts (MoEs) models (Xu et al.,
1995; Shazeer et al., 2016; Yuksel et al., 2012; Pei et al., 2020) to meta learning scenarios.
(ii) Like the gating mechanism in (Rasmussen and Ghahramani, 2002), assignment latent
variables are included in modeling to select functional forms for each data point in
prediction. The resulting MoE-NPs can learn more expressive functional priors and
exhibit the approximation power for local properties of the dataset.

Generative Process

As displayed in Fig. (6), the graphical model involves two types of latent variables
respectively the continuous expert latent variables z1:K and the discrete assignment latent
variable e. Further, we can translate the generative process into equations as follows,

ρx1:N (y1:N) =

∫ K∏
k=1

p(zk) ·
N∏

i=1

 K∑
k=1

p(yi|xi, z1:K , ek = 1)p(ek = 1|xi, z1:K)

 dz1:K

(4.6)

where the sampled assignment variable e is in the form of K-dimensional one-hot
encoding, and ek = 1 in Eq. (4.6) indicates the k-th expert zk is selected from z1:K
for prediction. A more detailed probabilistic generative process can also be found
in Appendix (B.4.1). In this way, our developed model constitutes an exchangeable
stochastic process. And we demonstrate this claim with help of Kolmogorov Extension
Theorem (Bhattacharya and Waymire, 2009) in Appendix (B.4.2).

Link to Hierarchical Bayes

Note that latent variables in Eq. (4.6) are of hybrid types. K functional priors are
incorporated in expert latent variables z1:K , while the assignment latent variable e is input
dependent. The dependencies between z1:K and e are reflected in modeling, and this
connects our work to Hierarchical Bayes (Lawrence and Platt, 2004; Daumé III, 2009)
in a latent variable sense. Also, when only one expert latent variable is used here, the
hierarchical model degenerates to the vanilla (C)NPs (Garnelo et al., 2018b,a).

45

M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L R E P R E S E N TAT I O N

4.4.2 Scalable Training & Prediction

Inference Process

Given a task τ, due to existence of unknown latent variables, it is intractable to perform
exact inference w.r.t. p(DT

τ |D
C
τ). As an alternative, we apply variational inference to our

developed model. Here we use [x, y] to denote a single data point from a set of target
pointsDT

τ .

ln p(y|x,DC
τ) ≥ Eqϕ1

[
Eqϕ2,1

[ln pθ(y|x, z1:K , e)] − DKL[qϕ2,1(e|x, y, z1:K) ∥ pϕ2,2(e|x, z1:K)]
]

−

K∑
k=1

DKL[qϕ1,k(zk|D
T
τ) ∥ qϕ1,k(zk|D

C
τ)] = −L(θ, ϕ1, ϕ2)

(4.7)

An example for the k-th expert latent variable zk can be in the form of a Gaussian
distribution N(zk; µk, Σk). And in meta training processes, the assignment variable e
is assumed to be drawn from a categorical distribution Cat(e; K,α(x, y, z1:K)) with
parameters α(x, y, z1:K).

The existence of discrete latent variables e makes it tough to optimize using traditional
methods. This is because either sampling algorithms or expectation maximization
algorithms are computationally intensive when utilized here (we have discussed this
point in Appendix (B.6)) for expert latent variables.

To reduce the computational cost, we again utilize variational inference and the decoder
directly formulates the output as a mixture of log-likelihoods Eqϕ2,1

[ln pθ(y|x, z1:K , e)] =∑K
k=1 αk(x, y, z1:K; ϕ2,1) ln pθ(y|x, zk).
This results in a general ELBO as Eq. (4.7) for few-shot supervised learning in

meta training, where qϕ1 denotes a collection of K independent variational distribution
{qϕ1,1 , . . . , qϕ1,K }. qϕ2,1 and pϕ2,2 respectively define the variational posterior and prior for
assignment latent variables. Please refer to Appendix (B.2)/(B.6) for definitions and
more detailed derivations.

Monte Carlo Estimates & Predictions

Meta-training processes consider a batch of tasks to optimize in iterations, and we apply
Monte Carlo methods to the obtained negative ELBO L(θ, ϕ1, ϕ2) as follows.

LMC(θ, ϕ1, ϕ2) = −
1

NB

B∑
b=1

N∑
i=1

 K∑
k=1

α
(b)
k ln p(y(b)i |x

(b)
i , z(b)k)

+

1
NB

B∑
b=1

N∑
i=1

DKL[qϕ2,1(e
(b)
i |x

(b)
i , y(b)i , z(b)1:K) ∥ pϕ2,2(e

(b)
i |x

(b), z(b)1:K)]

+
1

NB

B∑
b=1

K∑
k=1

DKL[qϕ1,k(z
(b)
k |D

T
b) ∥ qϕ1,k(z

(b)
k |D

C
b)]

(4.8)

46

4.4 M E T H O D S

With the number of tasks B and the number of data points N in mini-batches, the
Monte Carlo estimate with one stochastic forward pass is Eq. (4.8) for meta training
objectives.

Like that in NPs (Garnelo et al., 2018b), we derive the predictive distribution as
Eq. (4.9) with one stochastic forward pass and parameters of discrete latent variables
pϕ2,2(ek = 1|x∗, z1:K) = αk(x, z1:K; ϕ2,2).

p(y∗|x∗,DC
τ) ≈

K∑
k=1

αk(x, z1:K; ϕ2,2)pθ(y|x∗, zk) with z1:K ∼ qϕ1(z1:K |D
C
τ) (4.9)

And the point estimate in prediction E[Y |X = x,DC
τ] can also be obtained in Appendix

(B.6.4).

Replay
Buffer

(a) Few Shot Supervised Learning using MoE-NPs

(b) Meta Reinforcement Learning using MoE-NPs

Figure 7: Computational Diagram of MoE-NPs in Meta Testing. In (a): The context
variables areDC

τ = [xC , yC], and the expert latent variables z1:K are approximated with
neural networks. For discrete assignment latent variables e∗, we learn parameters of
categorical distributions α∗ with neural networks. In (b): The context variablesDC

τ are
sampled transitions from a memory buffer. During policy search, the selected expert
latent variable z∗ is a context variable in both Actor and Critic networks.

4.4.3 Module Details for Meta Learning

Inference Modules in MoE-NPs

The equations define a framework that can be implemented in different meta learning
tasks. Two examples are given in Fig. (7). Note that two types of latent variables
are involved in modeling, we need different structures of encoders for latent variables.
Inference Modules are required for them to satisfy different conditions. In variational
inference, the distribution parameters of these latent variables are approximated with the
output of these specialized encoders.

47

M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L R E P R E S E N TAT I O N

Inference Modules for Continuous Latent Variables. For neural networks to parame-
terize the encoder of continuous latent variables qϕ1 , we use the same architectures in
(C)NPs (Garnelo et al., 2018b,a), which are permutation invariant to the order of context
points [xC , yC] = {[x1, y1], . . . , [xN , yN]}. That is, for any permutation operator σ over
the set of context points, the neural network (NN) parameters of an output distribution for
each expert zk should satisfy [µk, Σk] = NNϕ1,k([xσ(1:N), yσ(1:N)]).

rk,i = hϕ1,k([xi, yi]), rk =
N⊕

i=1

rk,i, [µk, Σk] = gϕ1,k(rk) (4.10)

Eq. (4.10) is an example, where h is the embedding function,
⊕

denotes a mean
pooling operation, and g is part of encoder networks.

Inference Modules for Categorical Latent Variables. For neural networks to param-
eterize the encoder of discrete latent variables qϕ2,1 and pϕ2,2 , we need the categorical
distribution parameters α to be permutation equivariant (Finzi et al., 2021) with respect
to the order of z1:K . This means for any order permutation operation σ, the condition is
satisfied as [ασ(1),ασ(2), . . . ,ασ(K)] = NNϕ2,1(x, y, zσ(1:K)).

bk = hϕ2,1(x, y, zk) ∀k ∈ {1, 2, . . . , K}, [α1,α2, . . . ,αK] = softmax(b/t) (4.11)

An example implementation for the variational posterior Cat(e; K,α(x, y, z1:K)) can
be Eq. (4.11), where the vector of logits is b = [b1, b2, . . . , bK] with t a temperature
parameter. And this implementation applies to prior networks NNϕ2,2(x, zσ(1:K)) to learn
distribution parameters of Cat(e; K,α(x, z1:K)) in the same way.

Meta RL Modules in MoE-NPs.

When extending MoE-NPs to meta RL tasks, optimization objectives in Eq. (4.7) need to
be modified for Actor-Critic methods, which are employed in our settings. Like that in
PEARL (Rakelly et al., 2019) and FCRL (Gondal et al., 2021), the soft actor critic (SAC)
algorithm (Haarnoja et al., 2018) is used to learn policies due to good sample efficiency.

Given a specific MDP τ, posterior distributions of optimal value functions are for-
mulated via latent variables z in context-based meta RL. That is, p(Qθ(s, a;M)) is
approximated in the form p(Qθ([s, z], a)). The resulting objectives for the Actor and
Critic functions are respectively in Eq. (4.12) and Eq. (4.13), whereZθ is a normalization
factor.

LτA = E s∼DT
τ ,a∼πφ

z∼qϕ

[
DKL

[
πφ(a|[s, z]) ∥

exp
{
(Qθ([s, z], a))

}
Zθ(s)

]]
(4.12)

The variational posterior qϕ(z|s,DC
τ) in Eq. (4.13) is a state dependent distribution

with V̂ a state value function, and sampling processes refer to steps in Algorithm (4).

48

4.4 M E T H O D S

LτC = E (s,a,s′,r)∼DT
τ

z,z′∼qϕ

[Qθ([s, z], a) − (r + V̂([s′, z′]))]2 (4.13)

A key difference from PEARL (Rakelly et al., 2019) lies in that several expert latent
variables and assignment latent variables are involved in modeling. So we refer the
Kullback–Leibler divergence term to Eq. (4.14) in MoE-NPs with coefficient β0 and β1.

LτKL = β1E (s,a,s′,r)∼DT
τ

qϕ1 (z1:K |D
C
τ)

[DKL[qϕ2(e|s, z1:K) ∥ p(e)]] + β0

K∑
k=1

DKL[qϕ1,k(zk|D
C
τ) ∥ p(zk)]

(4.14)

The Monte Carlo estimates w.r.t. Eq. (4.12/4.13/4.14) are used in meta training, and
Pseudo code to optimize these functions is listed in Algorithm (4).

Algorithm 2: MoE-NPs for Few-Shot Supervised Learning.
Input :Task distribution p(T); Task batch size B; Length of mini-batch

instances Nmax; Epochs m; Learning rates λ1 and λ2.
Output :Meta-trained parameters ϕ = [ϕ1, ϕ2] and θ.

1 Initialize parameters ϕ and θ;
2 for i = 1 to m do
3 Sample a random value NC ∼ U[1, Nmax] as the number of context points;
4 Sample mini-batch instancesD to split dataset {(xC , yC , xT , yT)bs}

B
bs=1;

// generative process
5 Sample expert latent variables z1:K ∼ qϕ1(z1:K |D

T);
6 Compute distribution parameters α with Eq. (4.11);
7 Compute negative ELBOs LMC(θ, ϕ) in Eq. (4.8);

// amortized inference process
8 ϕ← ϕ − λ1∇ϕLMC(θ, ϕ) in Eq. (4.8);
9 θ ← θ − λ2∇θLMC(θ, ϕ) in Eq. (4.8);

10 end

49

M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L R E P R E S E N TAT I O N

Algorithm 3: MoE-NPs for Few Shot Supervised Learning (Meta-Testing
Phases).
Input :Task τ; Meta-trained ϕ = [ϕ1, ϕ2,2] and θ.
Output :Predictive distributions.

1 Initialize parameters ϕ and θ;
2 Set the number of context points NC;
3 Split test dataset into the context/target {(xC , yC , xT , yT)bs}

B
bs=1 ∼ D;

// generative process
4 Sample expert latent variables of the mini-batch z1:K ∼ qϕ1(z1:K |D

C
τ);

5 if discrete l.v.s for hard assignment then
6 Sample assignment latent variables of the mini-batch e ∼ pϕ2,2(e|xT , z1:K);
7 Output the distribution pθ(yT |xT , z1:K , e);
8 else
9 Compute the distribution parameters α of assignment latent variables via Eq.

(4.11);
10 Output the predictive distribution pθ(yT |xT ,DC

τ) via Eq. (4.9);
11 end

50

4.5 E X P E R I M E N T S

Algorithm 4: MoE-NPs for Meta RL.
Input :MDP distribution p(T); Batch size of tasks B; Training steps m;

Learning rates λ1, λ2 and λ3.
Output :Meta-trained parameters ϕ, θ and φ.

1 Initialize parameters ϕ, θ, φ and replay buffer{MC
τ }
B;

2 while Meta-Training not Completed do
3 Sample a batch of tasks {τ}B ∼ p(T);

// collect context transitions
4 for each τ ∈ {τ}B do
5 Initialize the contextDC

τ = {};
6 Execute Algorithm (5) in Appendix
7 to updateDC

τ

8 end
// actor critic learning in batchs

9 for i = 1 to m do
10 for each τ ∈ {τ}B do
11 Sample context pointsDC

τ ∼ Sc(MC
τ)

12 & batch of transitions bτ ∼ Mτ;
13 Sample z1:K ∼ qϕ1(z1:K |D

C
τ);

14 for each s ∈ bτ do
15 Sample e ∼ qϕ2(e|z1:K , s) to select z
16 and augment the state as [s, z] ∈ bτ;
17 end

// run forward propagation
18 LτA = LτA(bτ) in Eq. (4.12);
19 LτC = LτC(bτ) in Eq. (4.13);
20 LτKL = LτKL(D

C
τ , bτ) in Eq. (4.14)

21 end
// run back propagation

22 ϕ← ϕ − λ1∇ϕ
∑
τ(L

τ
C +LτKL) in Eq. (4.13/4.14);

23 φ← φ − λ2∇φ
∑
τL

τ
A in Eq. (4.12);

24 θ ← θ − λ3∇θ
∑
τL

τ
C in Eq. (4.13);

25 end
26 end

4.5 E X P E R I M E N T S

4.5.1 General Setup

The implementation of MoE-NPs in meta training can be found in Algorithms (2)/(4), and
also please refer to Algorithms (3)/(5) for the corresponding meta-testing processes. We
leave the details of experimental implementations (e.g. parameters, neural architectures,
corresponding PyTorch modules and example codes) in Appendix (B.7).

51

M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L R E P R E S E N TAT I O N

Algorithm 5: MoE-NPs for Meta RL (Meta-Testing Phases).
Input :MDP distribution p(T); meta-trained parameters ϕ, θ.
Output :Cumulative rewards.

1 Sample a test task τ ∼ p(T);
2 Initialize parameters ϕ, θ, φ and replay bufferMC

τ ;
// collect transitions for memory buffers

3 Initialize the contextDC
τ = {};

4 for k = 1, 2, . . . , K do
5 Sample z1:K ∼ qϕ1(z1:K |D

C
τ);

6 for state s of each time step do
7 Sample e ∼ qϕ2(e|s, z1:K);
8 Gather data from πφ(a|[s, z1:K , e]) to updateMC

τ ;
9 UpdateDC

τ = {(s j, a j, s′j, r j)}Nj=1 ∼ M
C
τ ;

10 end
11 end

Baselines for Learning Tasks. Apart from MoE-NPs, methods involved in comparisons
are context-based methods such as CNPs (Garnelo et al., 2018a), NPs (Garnelo et al.,
2018b) and FCRL (Gondal et al., 2021), and gradient-based methods such as MAML
(Finn et al., 2017) and CAVIA (Zintgraf et al., 2019). For FCRL, contrastive terms from
SimCLR (Chen et al., 2020) are included in the objective. In meta RL, the modified NP
model corresponds to PEARL (Rakelly et al., 2019). Meanwhile, in Appendix (B.8), we
include additional experimental results compared with other NPs models augmented by
attentive modules (Kim et al., 2019) or convolutional modules (Gordon et al., 2020).

4.5.2 Illustration in Toy Regression

We visually show the effects of stochastic function fitting and quantified uncertainty
in the toy dataset to see the different roles of latent variables. Our goal is to discover
potential components of distributions from limited observed data points.

Ground Truth MoE-NP CNP NP FCRL

Figure 8: The Ground Truth and Predictive Distributions of Curves using NP related
Models. The gray dots around curves are the context points. The shaded regions
correspond to 3x standard deviations. In MoE-NPs, two components of the sampled
mixture curve in blue and orange can be identified via assignment latent variables with
more than 85% accuracy.

The learning data points are sampled in x-domain [−π, 3π] and merged from a mixture
of randomized functions f1(x) = sin(x) + ϵ1 and f2(x) = cos(x) + ϵ2 with equal
probability for mixture components, where ϵ1 ∼ N(0, 0.032) and ϵ2 ∼ N(0, 0.012).

52

4.5 E X P E R I M E N T S

We sample a batch of data points in each training iteration and randomly partition
context points and target points for learning. In the testing phase, we draw 100 data
points from this mixture of distributions with 15 random data points selected as the
context. The fitting results for one sampled mixture curve are shown in Fig. (8).

It can be seen that both CNPs and FCRL display similar patterns, overestimating
the uncertainty in the mixture curve of the second component. NPs show intermediate
performance and still fail to match context points well. As for MoE-NPs, with help of
predicted assignment variables parameters e∗ = one hot[argk∈{1,2}maxαk], we set the
number of experts as two and partition data points to visualize predictive distributions
pθ(y∗|x∗, z∗) . The MoE-NP can precisely separate mixture components inside the dataset
and provides more reliable uncertainty.

Furthermore, we can understand the assignment latent variables from an entropy
perspective. Remember that the role of the discrete latent variable e is to assign the
diverse functional prior z1:K to a given data point. With the learned conditional prior
pϕ2,2(e|z1:K , xi) for a data point xi, we can quantify the uncertainty of assignment via the
entropy of such a Bernoulli latent variable H[e].

H[e] =
K∑

k=1

−pϕ2,2(ek = 1|z1:K , xi) ln pϕ2,2(ek = 1|z1:K , xi) =
K∑

k=1

−αk lnαk (4.15)

This has a practical significance in discontinuous functions. For example, in regions
close to demarcation points, it should be difficult to judge the best expert z1:K to handle
these data points, which means the set of H[e] theoretically exhibits higher uncertainty.
Similarly, in regions without context points, it is hard to determine the function as well.

Ground Truth MoE-NP

Figure 9: Entropy of Assignment Latent Variables in MoE-NPs. From left to right are
respectively the sampled ground truth function, MoE-NP fitting results and the entropy
value of discrete latent variable for each data point H[pϕ2,2(e|z1:K , xi)].

Interestingly, we observe that MoE-NPs are able to exhibit the above effect on the
right side of Fig. (9). The sampled function consists of two components respectively
in the interval [−π, π] and [π, 3π]. The entropy values of our interest are computed via
Eq. (4.15). Here K = 2 and the learned conditional prior pϕ2,2(e|z1:K , xi) has highest
entropy around the demarcation data point π and the data point −2.0 with no context
points nearby. This finding further verifies the role of the assignment latent variable in
MoE-NPs.

53

M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L R E P R E S E N TAT I O N

4.5.3 Few-Shot Supervised Learning

We evaluate the performance of models on a system identification task in Acrobot (Killian
et al., 2017) and an image completion task in CIFAR10 (Krizhevsky et al., 2009). Both
tasks are common benchmarks in the meta learning or NPs literature (Killian et al., 2017;
Galashov et al., 2019; Garnelo et al., 2018b,a; Kim et al., 2019).

Table 7: System Identification Performance in Meta Testing Acrobot Tasks. Shown are
mean square errors and standard deviations in fitting meta-testing tasks. Figures in the
Table are scaled by multiplying E-3 for means and standard deviations. The best results
are in bold.

CNP NP FCRL MAML CAVIA MoE-NP

2.3±0.13 7.2±0.5 2.0±0.15 2.5±0.35 2.0±0.23 1.4±0.06

System Identification

For Acrobot systems, different tasks are generated by varying masses of two pendulums.
A dataset of state transitions is collected by using a complete random policy to interact
with sampled environments. The state consists of continuous as angles and angular veloc-
ities [θ1, θ′1, θ2, θ′2]. The objective is to predict the resulting state after a selected Torque
action from {−1, 0,+1}. For more details about meta training dataset and environment
information, refer to Appendix (B.7.2).

In the meta testing phase, 15 episodes with the length of horizon 200 are collected
for each task, and we report the average predictive errors and standard deviations for
all transitions. Here we use 50 transitions as the context points to identify the task. As
exhibited in Table (7), gradient-based methods, e.g. CAVIA and MAML, beat NP in
terms of predictive accuracy but show higher variances than all other models. With
three experts in modeling, MoE-NPs significantly outperform other baselines in terms of
dynamics prediction. Our finding is consistent with observations in (Kégl et al., 2021),
where multi-modal distributions are necessary for Acrobot systems. We also illustrate the
asymptotic performance of MoE-NPs with increasing the context points in the following
Section (4.5.5) Ablation part.

Image Completion

We use the CIFAR10 dataset (Krizhevsky et al., 2009) in this experiment, which is
formulated with 32x32 RGB images. In the meta training process, a random number of
pixels are masked to complete in images. That is, given the context pixel locations and
values [xC , yC], we need to learn a map from each 2-D pixel location x ∈ [0, 1]2 to pixel
values y ∈ R3. Here two expert latent variables are used in MoE-NPs.

In Fig. (10), we evaluate image completion performance on the test dataset, and the
number of context pixels is varied in three levels. It can be found that CAVIA works best
in cases with 10 random context pixels or less than 500 ordered context pixels. In other

54

4.5 E X P E R I M E N T S

0 200 400 600 800 1000
Number of Context Pixels

0.02

0.04

0.06

0.08

0.10

M
SE

Testing in CIFAR10 Completion (Ordered)
NP
CNP
FCRL
MAML
CAVIA
MoE-NP

0 200 400 600 800 1000
Number of Context Pixels

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

Testing in CIFAR10 Completion (Random)
NP
CNP
FCRL
MAML
CAVIA
MoE-NP

Figure 10: CIFAR10 Completion Performance with Various Number of Context Pixels.
The numbers of context points used in prediction are 10, 100, 200, 500, 800, 1000. The
left figure is with random context pixels while the right one is with the ordered context
pixels.

cases, MoE-NP surpasses all baselines. With more observed pixels, the predictive errors
of MoE-NPs can be decreased in both random and ordered context cases. An example of
image completion results is displayed in Fig. (11).

0 25 50 75 100 125 150 175 200

0

10

20

30

0 25 50 75 100 125 150 175 200

0

10

20

30

0 25 50 75 100 125 150 175 200

0

10

20

30

Figure 11: Image Completion Visualization using MoE-NPs. From top to bottom: the
number of random context pixels is 10, 500, and 1000. From left to right (every two) are
original, masked, and reconstructed images.

For gradient-based methods, CAVIA and MAML are sensitive to the number of context
points and do not exhibit asymptotic performance like that in MoE-NP. NP still suffers
underfitting in performance.

4.5.4 Meta Reinforcement Learning

To evaluate the meta RL implementation of our model, we conduct the experiments in a
2-D point robot and Mujoco environments (Todorov et al., 2012). Fig. (12) exhibits the
environments used in this paper, and we leave more details in Appendix (B.7.1).

2D Navigation Results

For 2-D point robot tasks, the agent needs to navigate with sparse rewards. The navigation
goal of a task is sampled from a mixture of arcs in a semi-circle in Fig. (12.a) during
meta training processes.

55

M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L R E P R E S E N TAT I O N

(a) Point Robot (b) H-Cheetah-CD (c) S-Humanoid-CG

Figure 12: Environments for Meta Reinforcement Learning. In (a): Blue arcs are
distributions of goals in orange for the robot to reach with sparse rewards. In (b)/(c):
Goals in orange and directions in blue are varied in tasks.

From Fig. (13.a-c), we can observe the evaluation performance of agents over itera-
tions. For gradient-based methods, CAVIA shows better performance than MAML in
exploration, but both are weaker than context-based baselines. MoE-NPs can converge
earlier with fewer training samples and show a slight advantage over vanilla PEARL. In
particular, we test the asymptotic performance in out of distributions (O.O.D.) tasks and
show results in Fig. (13.d). We notice O.O.D. tasks are challenging for all algorithms
to generalize, but average returns are gradually increased with more trials. PEARL and
FCRL achieve comparable rewards, while MoE-NP behaves better in this case.

（a） （b） （c） （d）

Figure 13: Results in Meta Learning Continuous Control. In (a)/(b)/(c): Learning curves
show tested average returns with variances in 4 runs. 100 transitions are randomly
collected from a task-specific memory buffer for point robot environments to infer the
posterior. For Mujoco environments, 400 transitions are randomly collected from a task-
specific memory buffer to infer the posterior. In (d): Fast Adaptation Performance in
Meta Testing Point Robot Environments. The collected episodes are gradually increased
to 50, and the average returns together with variances are visualized. 5 goals are sampled
from the white part of arcs in Fig. (12.a).

Locomotion Results

Half Cheetah-Complex-Direction (H-Cheetah-CD) and Slim Humanoid-Complex-Goal
(S-Humanoid-CG) tasks correspond to locomotion in complicated environments. Note
that multiple directions and goals are involved in tasks.

Fig. (13) illustrates the performance of learned policies in meta learning tasks. In H-
Cheetah-CD, MoE-NP shows a slight advantage over FCRL, and it exhibits comparable
performance in S-Humanoid-CG. In both environments, MoE-NP and FCRL outperform
other baselines. This implies the importance of functional representations for task-
specific value functions. Either contrastive or multiple functional priors lead to better
exploration and have the potential to boost performance in continuous control. For

56

4.5 E X P E R I M E N T S

gradient-based methods, observations show that they can easily get stuck in the local
optimal (Rakelly et al., 2019; Li et al., 2019).

4.5.5 Ablation Studies

Figure 14: Predictive Performance of MoE-NPs in Acrobot Meta Testing Processes using
Varying Numbers of Expert Latent Variables and Context Points. The scale for mean
square errors together with standard deviations is E-3.

Number of Experts

We examine the influence of the number of experts in meta-trained MoE-NPs, and system
identification in the Acrobot system is selected as an example here. As displayed in Fig.
(14), the number of experts are 3, 5, 7 and 9 in different MoE-NPs. Here we test the
predictive performance of meta-trained MoE-NP by varying the number of transitions.
We set respectively 15, 25, 50, and 100 transition samples as the number of context
points to identify the system. All settings for meta testing processes are already described
in Section (4.5.3). It can be seen that when the expert number is 5, the predictive
performance is largely enhanced with the increase of context points and the variance
shrinks accordingly. But with more experts, e.g. greater than 5, MoE-NPs exhibit higher
predictive errors and show no significant performance improvement with the increase
of the number of context points. These suggest that increasing the number of experts
beyond a certain point can deteriorate the predictive performance of the MoE-NPs.

0 100 200 300 400 500
Number of Iterations

250

500

750

1000

1250

1500

1750

2000

Av
g

Re
wa

rd
s

Slim-Humanoid-CG
MoE-NP
MoE-NP (Deterministic)

Figure 15: Ablation Performance in S-Humanoid-CG. Learning curves display tested
average returns with variances in 4 runs.

57

M I X T U R E O F E X P E RT S S T RU C T U R E S F O R F U N C T I O NA L R E P R E S E N TAT I O N

Latent Variables in Meta RL

As mentioned in Preliminaries Section, using a latent variable can induce task-specific
optimal value functions. Here we take the S-Humanoid-CG as the example, and the
expert encoder of MoE-NPs (Deterministic) is set to the deterministic. In Fig. (15), we
observe the performance degrades greatly using deterministic expert latent variables.
These further verify findings in PEARL (Rakelly et al., 2019). The randomness of
value function distributions captures task uncertainty and encourages more efficient
exploration.

4.6 C O N C L U S I O N & DISCUSSION

Technical Discussions. In this chapter, we have developed a new variant of NP models
by introducing multiple expert latent variables. Our work illustrates the roles of different
latent variables in MoE-NPs for meta learning tasks. MoE-NPs are able to separate data
points from different clusters of stochastic processes and exhibit superior performance
in few-shot supervised learning tasks. Also, MoE-NPs are consistently among the best
methods in meta learning continuous control.

Existing Limitations. Though the developed model provides more expressive functional
priors, the appropriate number of experts is still hard to determine. Also, the mechanism
of gradually incorporating new expert latent variables has not been explored and this
raises concerns in additional computational cost and more effective inference.

Future Extensions & Broader Implications. Here we provide a couple of heuristics to
determine the optimal number of experts for MoE-NPs in the future. Information metrics,
e.g. Bayesian information criterion, can be incorporated in modeling. Another way is to
place priors over distributions of discrete latent variables like that in hierarchical Dirichlet
processes (Teh et al., 2006) and select the optimal number of experts in a Bayesian way.
Besides, the MoE-NP can potentially solve few-shot learning problems with multi-modal
signals, such as the mixture of images and texts.

58

5

G R A P H S T RU C T U R E D F U N C T I O NA L R E P R E S E N TAT I O N
F O R DATA E F F I C I E N T C O N T RO L

In the previous chapters (3)/(4), we explored the use of hierarchical and mixture inductive
biases in neural processes, which are appropriate for different functional representation
problems. This chapter considers the representation of optimal value or policy functions
in data efficient control problems. To achieve this, we employ graph structured neural
networks to formulate dynamics models and policies. Our method is able to learn
representations of optimal policy functions with high cumulative rewards.

5.1 I N T RO D U C T I O N

Reinforcement learning (RL) has been successfully applied to several complicated tasks
and achieved remarkable performance, even surpassing outstanding human players in a
variety of domains (Mnih et al., 2015; Silver et al., 2017; Vinyals et al., 2019). Exploiting
and exploitation can theoretically address a collection of sequential decision-making
problems in this paradigm.

Research Motivations. As a cutting-edge research topic, there remain long-standing
challenges when putting RL into practice. In particular, these can be viewed from
three aspects: i) data efficiency, the prevalent branch of RL algorithms as model-free
reinforcement learning (MFRL) poses great demands on massive interactions with an
environment, making it unrealistic to conduct in most real-world applications (Sutton
and Barto, 2018; Chua et al., 2018). ii) robustness to unseen environments, when an
environment of interest drifts in terms of dynamics or reward mechanisms, previously
learned skills suffer the risk of poor generalization (Jing et al., 2018; Clavera et al., 2019).
Furthermore, dynamics mismatch easily leads to Sim2Real problems (Peng et al., 2018).
iii) instantaneously planning, either model predictive control or calibration in previously
learned policies consumes additional time in execution phases (Wang and Ba, 2019).
Moreover, critical issues might arise in real-time decision-making missions with strict
time constraints, e.g., autonomous driving.

Developed Methods. To address the above mentioned concerns, we propose a graph
structured surrogate model (GSSM) with an amortized policy search strategy. The
work is within the framework of Model-based Meta Reinforcement Learning (MBMRL)
(Nagabandi et al., 2019; Sæmundsson et al., 2018; Killian et al., 2017; Lee et al., 2020b).
Our approach attempts to improve dynamics prediction, accelerate policy learning and
enable fast adaptation across tasks via latent variables. Importantly, unlike most existing

59

G R A P H S T RU C T U R E D F U N C T I O NA L R E P R E S E N TAT I O N F O R DATA E FFI C I E N T C O N T RO L

MBMRL methods using time-expensive derivative-free algorithms in model predictive
control, we look for the representation of optimal policies and our developed amortized
policies do not require adaptation time when faced with a new task.

Our primary contributions are two-fold, respectively in designing flexible meta dy-
namics models and attaining fast adaptation in policy search in MBMRL:

• Graph Structured Surrogate Models. We develop a novel graph structured dy-
namics model across tasks, which enables the effective encoding of memories and
abstracting environments in a latent space. Compared to related work (Kim et al.,
2019), ours is more lightweight but achieves comparable or better performance in
forecasting dynamics.

• Amortized Meta Model-based Policy Search. We propose a new meta model-
based policy search strategy that learns latent variable conditioned policies. This
enables fast adaptation without additional policy gradient updates and significantly
improves policy performance. Interpretations are given from a perspective of
posterior sampling (Osband et al., 2013).

5.2 R E L AT E D W O R K

As already mentioned, several critical bottlenecks restrict universal applications of RL
algorithms. In terms of mastering new skills rapidly, meta learning is an ideal paradigm
to achieve with a few instances. As for data efficiency, both model-based reinforcement
learning (MBRL) and meta learning can reduce sample complexity.

Meta Learning. The core of meta learning is discovering common implicit structures
across a collection of similar tasks and then generalizing such knowledge to new scenarios.
Leveraging knowledge from a meta learner to a task-specific learner is called fast
adaptation. Two strategies are commonly used for meta learning: Gradient-based Meta-
Learning and Contextual Meta-Learning. A representative framework for gradient-based
meta-learning is model agnostic meta learning (MAML) (Finn et al., 2017; Flennerhag
et al., 2019; Lee and Choi, 2018), where both a meta learner and an adaptor are derived
via gradient information after a few shots in a specific task. The contextual meta
learning algorithms rely on task specific latent variables to identify a task after a few
observations. This strategy theoretically does not require gradient adaptation in new
tasks but constructing task relevant latent variables is decisive (Garnelo et al., 2018a,b;
Hausman et al., 2018).

Model-based Reinforcement Learning. The key to applications within an RL frame-
work is how to boost sample efficiency, and MBRL serves the role of approximating a
target environment for the agent to interact with. In an environment with unknown dynam-
ics, MBRL either learns a deterministic map or a distribution of transitions p(∆s|[s, a]).
Generally, deterministic modeling on dynamical systems does not involve random vari-
ables in the hidden units, and some auto-regressive neural network structures are typical
in this family (Leibfried et al., 2016; Nagabandi et al., 2017; Amos et al., 2018; van der
Pol et al., 2020). Stochastic modeling on dynamical systems is mainly formulated by

60

5.3 P R E L I M I NA R I E S

incorporating uncertainty in system parameters and observation noise (Deisenroth and
Rasmussen, 2011; Kamthe and Deisenroth, 2017; Hafner et al., 2018; Chua et al., 2018).

Meta Reinforcement Learning. Most of meta RL algorithms follow a model-free
paradigm, e.g. MAESN (Gupta et al., 2018), RL2 (Duan et al., 2016), Learn2Learn
(Wang et al., 2016) and PEARL (Rakelly et al., 2019). However, experimental results
show that these methods work poorly with limited training samples. To obtain satisfying
performance with lower sample complexity, researchers focus on combining meta learn-
ing and MBRL. Nagabandi et al. (2019) takes a gradient-based strategy as MAML and
alleviates the gap of Sim2Real. In (Sæmundsson et al., 2018), Gaussian process latent
variable models perform task inference and learn dynamics across tasks. CaDM (Lee
et al., 2020b) is a novel SOTA MBMRL method that includes forward and backward
models to utilize sequential dynamics more effectively. Another model strongly related
to ours is in (Galashov et al., 2019), where neural processes (NPs) are used to identify
dynamics of tasks, but it requires to re-train or fine-tune parameterized policies via
gradient updates in new tasks. Note that most of these MBMRL methods focus on fast
adaptation in dynamics models. These either make use of derivative-free algorithms
for model predictive control or re-train policies in separate tasks, which requires an
additional computational cost on environments with higher dimensionality (Wang and
Ba, 2019). In AdMRL (Lin et al., 2020), task-specific policies are optimized using an
implicit function theorem, but it considers the case when dynamics are shared across
tasks with different goals. In MIER (Mendonca et al., 2020), labels are updated by
querying a neural network of a dynamics system, which is efficient in practice. In our
method, we amortize this step and further reduce computations in adaptation.

5.3 P R E L I M I NA R I E S

RL’s decision-making process is usually characterized by a discrete-time Markov De-
cision Process (MDP), denoted by M. Given states st ∈ S, actions at ∈ A, policy
functions π, state transition distributions P, reward functions R and a discount factor γ
for a step-wise reward, a MDP can be formalized with a tuple of these elementsMk =
(S,A,Pk,Rk, γ). The return of cumulative rewards is a summation of discounted reward
feedback r(st, at) along the trajectories τ := (s0, a0, r0, . . . , sH−1, aH−1, rH−1, sH).

The optimization objective in model-free RL methods is to find policies that maximize
the expected cumulative rewards over trajectories. In contrast, MBMRL considers a
distribution over MDPs p(M), and the goal is to simultaneously build dynamics models
and act optimally w.r.t. the learned dynamics models.

5.3.1 Optimization Objective in MBMRL

More formally, we study MBMRL problems from the optimization perspective and
formulate the following two correlated objectives.

61

G R A P H S T RU C T U R E D F U N C T I O NA L R E P R E S E N TAT I O N F O R DATA E FFI C I E N T C O N T RO L

max
θ

E M∼p(M)
([s,a],s′)∼M

ln
[
pθM(s′|[s, a])

]
, s.t. pθM = u(θ,Dtr

M
) (5.1a)

max
φM

E s′∼pθM
(s′|[s,a])

a∼πφM

H−1∑
t=0

γtrM(st, at)

 , M ∼ p(M) (5.1b)

Here Eq. (5.1a) is to maximize the log-likelihood of state-transitions p(s′|[s, a])
in a collection of MDPs and u represents a fast adaptation mechanism inM to learn
an updated dynamics model pθM with meta-learned parameters θ and a few transition
instances Dtr

M
. Eq. (5.1b) corresponds to learning a policy πφM or finding a planning

strategy in separate dynamics models. It is worth noting that our objective of MBMRL
differs from previous work, and it consists of two phases as dynamics model learning
and policy optimization.

5.3.2 MBMRL with Latent Variables

Latent variables play diverse roles in meta RL (Gal et al., 2016; Rakelly et al., 2019). Here
we focus on a branch of MBMRL methods, which uses latent variables to help formulate
meta dynamics models. A latent variable z is mainly inferred from a few shots of
transitions to summarize statistics of a specific environmentM (Garnelo et al., 2018b,a).
Then the learned latent variables participate in dynamics prediction pθ(∆s|[s, a], z) and
approximate dynamics of different MDPs (Galashov et al., 2019; Lee et al., 2020b).

The meta learning surrogate model (MLSM) (Galashov et al., 2019) is an example
of latent variable MBMRL methods, which is closest to ours in literature. The neural
processes (Garnelo et al., 2018b) work as meta dynamics models in MLSM. But we notice
that in MLSM: (1) a simple mean pooling over context points to obtain latent variables is
challenging to utilize the relevance between the context and the target transition samples
for all data points’ prediction; (2) computationally expensive policy gradient updates are
required in policy search when faced with a new task.

5.3.3 Influence of Model Discrepancy

For more insights, we define the discrepancy between a distribution over MDPs and a
distribution over learned dynamics models using the expected form of the total variance
distance as E M∼p(M)

(s,a)∼ν(s,a)

[
DTV[PM̂(·|s, a)), PM(·|s, a)]

]
, where PM̂(·|s, a) and PM(·|s, a) are

respectively a learned state transition distribution and a transition distribution in a real
environment and ν(s, a) is a distribution over state action pairs. By extending findings in
(Rajeswaran et al., 2020) to meta learning, we can depict a performance gap between
dynamics models and real environments under an arbitrary policy in Lemma (1).

Lemma 1 Assume the discrepancy between transition distributions over MDPs and
the learned approximated models E M∼p(M)

(s,a)∼ν(s,a)

[
DTV[P̂M(·|s, a), PM(·|s, a)]

]
≤ ϵ, we can

estimate the performance gap under a policy π as follows,

62

5.4 M E T H O D S

EM∼p(M) [|JM̂(π) −JM(π)|] ≤
2ϵRmax

(1 − γ)2 (5.2)

where Rmax is the supremum value of one step reward with discount factor γ, M̂ and
M are a sampled approximated MDP and a corresponding real MDP, and the expected
rewards are JM(π) = E s′∼pM(s′|[s,a])

a∼π(·|s)

[∑∞
t=0 γ

trM(st,at)

]
.

Theorem 2 Suppose a bounded dynamics models’ discrepancy as

E M∼p(M)
(s,a)∼ν(s,a)

[
DTV[P̂M(·|s, a), PM(·|s, a)]

]
≤ ϵ

over a MDP distribution and optimal policies for any MDPM and its approximation M̂
are respectively πM̂ and πM. Then the regret bound is estimated as follows.

EM∼p(M) [JM(πM̂)] ≥ EM∼p(M) [JM(πM)] −
4ϵRmax

(1 − γ)2 (5.3)

The proposition in Lemma (1) is to disentangle the relationship between dynam-
ics learning and policy performance with a performance difference, suitable for most
MBMRL algorithms. In addition, the inherent model bias in MBRL tends to bring
catastrophic failure, and in meta learning scenarios Theorem (2) implies that potential
expected regret can be well bounded or minimized if the discrepancy in a dynamics
model sense is small enough. The proof is given in Appendix (C.2/C.3).

5.4 M E T H O D S

In this section, we aim to address the shortcomings of insufficiently expressive models
and expensive policy gradient optimization by MLSM.

In order to do so, we first develop a graph structured surrogate model to learn repre-
sentations of latent variables via message passing, which better approximates the local
dynamics of MDPs. Then an amortized policy search strategy is introduced to enable
fast policy adaptation without gradient updates in new tasks.

In GSSM, two types of latent variables are learned. Fig. (16), which will be explained
fully in the following section, illustrates target latent variables zt to predict individual state
transition and a global latent variable zc to encode the context for policies to condition.
For the sake of simplicity, we denote the dynamics model input by x = [s, a] and the
dynamics model output by y = ∆s.

5.4.1 Graph Structured Latent Variables

For the transition dataset from a task, we have a set of context points [xc, yc] and the
target point [xt, yt]. Similar to other context-based meta learning algorithms (Garnelo
et al., 2018b), [xc, yc] are observed state transitions used to infer the task. We treat these
context points in a form of graph structured dataset G =< V,E >, which comprises of

63

G R A P H S T RU C T U R E D F U N C T I O NA L R E P R E S E N TAT I O N F O R DATA E FFI C I E N T C O N T RO L

Training Paradigm in GSSM in the
Background of a Collection of MDPs

*

Message Passing across
Context Points

Message Passing from the
Context to the Target

Dynamics Model Policy Network

target l.v. contextual l.v.

Figure 16: Graph Structured Surrogate Models. On the Left: The colored □ denotes a
node feature vector in our fully connected graphs with nodes⃝, and lines between⃝
record pairwise similarities sim. V(0)

C
denotes the initial feature matrix of all context

nodes. Information Flows in Dynamics Models from the left to the right describe the
Message Passing between context points c (Edges in solid lines ec→c) and to the target
point xt (Edges in dashed lines ec→t) to obtain the transformed node feature matrix
V

(1)
C

. On the Right: In amortized policy search, latent variables participate in both
approximate Dynamics Models and Policy Networks (Dashed elements are involved in
the module when using Actor-Critic frameworks and Double arrows mean interactions to
learn amortized policies).

a collection of verticesV = [xc, yc] and relational edges E ⊆ V×V (notations edge e
and vertex value v in Fig. (16)).

Here a fully connected graph is built to characterize the pairwise relationship. The
value as the initial node feature vector refers to [xi, yi], and the construction of a graph
Laplacian matrix is based on the pairwise similarities between samples sim(xi, x j) =
⟨u(xi),u(x j)⟩

∥u(xi)∥2·∥u(x j)∥2
, where u(x) is the embedding of a sample input x using neural networks,

and the notation ⟨·, ·⟩ means a dot product. All of these are illustrated on the left side of
Fig. (16).

Message Passing between Context Points

This process is to deliver and aggregate neighborhood information for node representa-
tions, which can be specified via the normalized Laplacian as follows.

ŝi j =
exp

{
(β · sim(xi, x j))

}
∑

j∈Oi exp
{
(β · sim(xi, x j))

} (5.4a)

h(l+1)
i = σ

W(l)h(l)i +
∑
j∈Oi

ŝi jW(l)h(l)j

 (5.4b)

where β is a tunable parameter for pairwise similarities, W(l) is the network parameter
for node feature transformations in l-th layer, ŝi j is the element in a normalized Laplacian

64

5.4 M E T H O D S

matrix L, and h(l)i is the l-th intermediate node feature vector after message passing from
sample i’s neighborhoods Oi to itself.

In Eq. (5.4), a self-loop is added for message passing. The node j’s feature vector
after the final message passing is denoted by h j. With the operation of message passing
in Eq. (5.5), a learned representation for each node summarizes statistics of interactions,

vi =
∑
j∈Oi

ŝi jh j, gc =
⊕
i∈V

vi, qϕ2(zc) = N
(
µ(gc), Σ(gc)

)
(5.5)

where
⊕

denotes a mean pooling operation over all node feature vectors, and the last
term describes the amortized distribution (Zhang et al., 2018) for context points.

Message Passing from the Context to the Target

This process is to transmit task-beneficial information from the context to the target. And
the representation of the node i is vi in Eq. (5.5). Considering relevance to the target
point [xt, yt] varies from instance to instance, we compute the weight for each context
point xi, denoted by ŝit, via Eq. (5.4.a) to measure the relevance. Then the aggregated
context message can be represented as gt in a weighted way.

gt =
∑
i∈Ot

ŝitvi, qϕ1(zt) = N
(
µ(gt), Σ(gt)

)
(5.6)

After the message passing from the context to the target, gt is further mapped into
mean and variance parameters of a proposal distribution qϕ1(zt) using neural networks, as
displayed on the right side of Eq. (5.6). Here we employ mean field amortized inference,
using diagonal Gaussian distributions for the convenience of computations. Also, note
that ϕ1 and ϕ2 share part of graph neural net parameters, e.g. parameters in feature
embeddings, but denote separate variational parameters.

5.4.2 Approximate Inference & Scalable Training in GSSM

To learn system dynamics with latent variables, we need to specify an objective in
optimization together with a predictive distribution p(yt|xt, xc, yc). Here we sample the
context data points [xc, yc] together with the target [xt, yt] from meta learning dataset
p(D).

Though the exact inference for this predictive distribution is intractable, a plausible
way is to use the above mentioned variational distribution qϕ1(zt|xt, xc, yc) in Eq. (5.6).
As a result, the evidence lower bound (ELBO) is formulated on the right side of Eq.
(5.7).

Ep(D)

[
ln p(yt|xt, xc, yc)

]
≥ Ep(D)

[
Eqϕ1

[ln pθ(yt|xt, zt)]
]

−Ep(D) [DKL[qϕ1(zt|xt, xc, yc) ∥ p(zt)]]
(5.7)

65

G R A P H S T RU C T U R E D F U N C T I O NA L R E P R E S E N TAT I O N F O R DATA E FFI C I E N T C O N T RO L

Similar to (Denton and Fergus, 2018; Pertsch et al., 2020; Garnelo et al., 2018b), a
variational distribution qϕ2(zc|xc, yc) is selected as a prior distribution p(zt) in ELBO to
specify a dynamical system from context points and further used in the following amor-
tized policy search. As a result, the induced objective with a learned prior distribution is
as follows.

Ep(D)

[
ln p(yt|xt, xc, yc)

]
≥ Ep(D)

[
Eqϕ1

[ln pθ(yt|xt, zt)]

−DKL[qϕ1(zt|xt, xc, yc) ∥ qϕ2(zc|xc, yc)]
] (5.8)

In implementations, the Monte Carlo estimation is performed for the negative ELBO
to obtain Eq. (5.9),

L(θ, ϕ1, ϕ2) = −
1
K

B∑
b=1

K∑
k=1

ln pθ(y
(b)
t |x

(b)
t , z(b,k)

t)

+DKL
[
qϕ1(z

(b)
t |x

(b)
t , x(b)c , y(b)c) ∥ qϕ2(z

(b)
c |x

(b)
c , y(b)c)

] (5.9)

where B is the batch size of samples in meta training, K is the number of particles
in estimation, and latent variable values are sampled from the approximate posterior
z(b,k)

t ∼ qϕ1(z
(b)
t |x

(b)
t , x(b)c , y(b)c).

Similarly, when it comes to prediction using the learned dynamics model, the Monte
Carlo estimator can be applied again to derive a predictive distribution in Eq. (5.10) with
the approximate posterior qϕ1 and collected context points [xc, yc].

p(yt|xt, xc, yc) =

∫
qϕ1(zt|xt, xc, yc)pθ(yt|xt, zt)dzt ≈

1
K

K∑
k=1

pθ(y
(k)
t |xt, z(k)t) (5.10)

5.4.3 Amortized Policy Search

Once a dynamics model is learned, policy search can be executed by interacting with a
learned dynamics model. Here we concentrate on fast adaptation of policies in MBMRL
and introduce the concept of amortized policy search. This differs from previous planning
or policy optimization objectives in separate dynamics models.

To this end, we utilize the strategy of posterior sampling (Osband et al., 2013; Rakelly
et al., 2019) to capture task-specific policies. Specifically, a collection of approximate
MDPs are sampled from the posterior of task-specific dynamics models, and the agent
acts optimally w.r.t. these models. Finding optimal policies for different tasks are
time consuming in previous approaches, which require either re-training or fine-tuning
meta-learned policies πφ(a|s) in separate dynamics models (Galashov et al., 2019).
So we propose to induce task-specific policies πφ(a|[s, zc]) by sampling zc from task
relevant latent variable distributions qϕ2(zc|xc, yc), and optimize policies w.r.t. sampled
approximate MDPs. The process of finding these task-specific optimal policies is termed

66

5.4 M E T H O D S

as amortized policy search and the obtained policy πφ(a|[s, zc]) after meta training is
called an amortized policy.

In our settings, meta model-based policy search is considered in a distribution of
learned approximate dynamics models p(M̂; θ, ϕ). A parameterized policy πφ is used to
collect trajectories τ from a learned dynamics model and evaluate rewards of policies in
Eq. (5.11) to maximize.

J(φ; θ, ϕ) =
x

p(M̂; θ, ϕ)p(τ|M̂;φ, ϕ)R(τ)dτdM̂ (5.11)

The following two model-based policy search strategies are commonly used in this
domain, so we modify these to enable the use of amortized policies in MBMRL. Impor-
tantly, we take more interest in computing gradients of policies w.r.t. policy parameters
φ.

• Direct policy search via BPTT. The objective of back-propagation through time
(BPTT) (Deisenroth and Rasmussen, 2011; Parmas et al., 2018) in MBMRL can
be written in the form of Monte Carlo estimation as follows.

∇φJ(φ) ≈
1

BK

B∑
b=1

K∑
k=1

∇φ T−1∑
t=0

γtr(b,k)
t+1

 (5.12)

where τ = [s0, a0, s1, r1, . . .], at ∼ πφ(·|[st, zc]), st+1 ∼ pθ(st+1|[st, at], zt), B is
the number of batch in tasks, and K is the number of sampled simulated trajectories
for each task.

• Actor-Critic policy gradient optimization. The induced policy gradient w.r.t Eq.
(5.11) is estimated as Eq. (5.13) under our amortized policy search method, where
At is the computed advantage function.

∇φJ(φ) = E M̂∼p(M̂;θ,ϕ)
τ∼p(τ|M̂;φ,ϕ)

[
T−1∑
t=0

∇φ ln π(at|[st, zc]) · At([st, zc], at)] (5.13)

Besides, the optimization of value function approximation is inside policy search
during meta-training processes via gradient updates. For the sake of simplicity, we skip
this step in Algorithm (6), and the optimization is executed in step (10) as default. For
more details about Actor-Critic settings, please refer to Appendix (C.7) for more details.

Note that the universal value function approximator augments MDPs with goal in-
formation to identify diverse tasks (Schaul et al., 2015). Similarly, in our settings, the
task is inferred from context points, and the transition sample is augmented with the
inferred task/goal as {([st, zc], at, rt)}Tt=1. The approximate value function Qπφ([s, zc], a)
or Vπφ([s, zc]) is task-specific. In this case, our proposed amortized policy search can
be interpreted as finding a universal value function approximator in MDPs of various
dynamics.

67

G R A P H S T RU C T U R E D F U N C T I O NA L R E P R E S E N TAT I O N F O R DATA E FFI C I E N T C O N T RO L

Algorithm 6: Meta-Training Process.
Input :MDP distribution ρ(M); Batch of tasks B; Exploration policy πe.
Output :Trained parameters ϕ, θ and φ.

1 Initialize parameters ϕ, θ and φ;
2 while Meta-Training not Completed do

// meta train dynamics models

3 Sample a batch of tasks {Mk}
B
k=1 from a distribution ρ(M);

4 Perform roll-outs to collect transition datasetDB = {Dk}
B
k=1 with πe;

5 Optimize {ϕ, θ} onDB in Eq. (5.10) to obtain {M̂k}
B
k=1;

// meta model-based policy search
6 for i = 1, 2, . . . , N do
7 Sample initial states from {M̂k}

B
k=1;

8 Collect episodes by interacting with {M̂k}
B
k=1 using πφ and update

dynamics buffersDB;
9 Evaluate rewards in Eq. (5.11);

10 Optimize the policy πφ: φ← φ+ α∇φJ .
11 end
12 end

Algorithm 7: Meta-Testing Phases.
Input :Meta-trained ϕ, θ and φ ; Null buffer B; Adaptation steps K.
Output :Cumulative rewards of episodes.

1 Sample a testing taskM∗∼ρ(M);
2 if Use GSSM and Amortized Policy Search then
3 Run πe to collect the memory τ : B ← B∪ {τ};
4 Evaluate πφ(a|s, z) with z ∼ q(zc|B) in Eq. (5.11) inM∗.
5 else
6 Run πe to collect the memory τ : B ← B∪ {τ};
7 for i = 1, 2, . . . , K do
8 Sample an initial state from the learned M̂∗;
9 Collect an episode in M̂∗ using πφ(a|s);

10 Evaluate return in Eq. (5.11);
11 Optimize the policy πφ: φ← φ+ α∇φJ .
12 end
13 Evaluate fine-tuned πφ(a|s) inM∗.
14 end

68

5.5 E X P E R I M E N T S

Figure 17: Experimental Results on Cart-Pole Tasks. (a) Learning curves of MBMRL
algorithms using non-latent variable conditioned policies. (b) Learning curves of GSSM
using (non-)latent variable conditioned policies. (c) t-SNE visualizations of latent
variables in GSSM (samples are from 5 tasks with a pole mass as 1.0 and cart masses as
{1.0, 1.25, 1.5, 1.75, 2.0}). (d) Learning curves of GSSM+APS with different dimensions
of latent variables. For all learning curves, the averaged rewards are tested after each
iter in an offline way, and results indicate means and a standard error of the mean in 5
runs.

5.5 E X P E R I M E N T S

We perform experiments in environments with diverse task-specific dynamics to evaluate
our approach. Meanwhile the implementation of our developed approach is available in
Appendix (C.8).

5.5.1 General Settings

In all MBMRL related experiments, meta training and testing phases respectively follow
that in Algorithm (6)/(7), where M̂ is an approximate dynamics model. Similar to
that in (Galashov et al., 2019), the exploratory policy πe is completely random without
parameters to initialize the transition buffer or collect transitions for identifying the task
in meta testing phases.

Some baseline methods include:

• L2A (Nagabandi et al., 2019). As a gradient-based meta RL approach, the Learning
to Adapt (L2A) utilizes a MAML paradigm to learn dynamics and adaptation
strategies.

• MLSM-v0 (Galashov et al., 2019). Meta Learning Surrogate Model (MLSM)
makes use of neural processes in MBMRL, where latent variables are incorporated
to identify tasks.

• MLSM-v1 (Galashov et al., 2019; Kim et al., 2019). This is a boosted version of
MLSM-v0, where an attention neural network is added to learn sample dependent
latent variables.

• M-DPILCO (Gal et al., 2016). Deep PILCO, which uses Bayesian neural networks
(BNNs) to fit dynamics. Ensemble of episodes from BNNs are used for policy
optimization.

For GSSM/M-DPILCO/MLSM-v0/MLSM-v1, we use the same policy search strategy:
a policy πφ(a|s) is optimized across a collection of approximate dynamics models in

69

G R A P H S T RU C T U R E D F U N C T I O NA L R E P R E S E N TAT I O N F O R DATA E FFI C I E N T C O N T RO L

Algorithm (6), and in testing processes, this policy is fine-tuned via policy gradient
updates as fast adaptation in separate dynamics models like that in Algorithm (7). For
GSSM+APS, we use a latent variable conditioned policy πφ(a|s, zc) to enable amortized
policy search (APS) in GSSM meta dynamics models. As for L2A, the implementation
follows that in (Nagabandi et al., 2019), each learned dynamics model after fast adaptation
via gradient updates is used to plan separately.

With these models, we use formerly introduced meta model-based policy search
strategies to combine: (i) direct policy search trained via BPTT (Parmas et al., 2018)
(only applied to Cart-Pole environments) (ii) actor-critic policy search using proximal
policy optimization (PPO) (Schulman et al., 2017) (applied to all the other environments).

Meanwhile, DR-PPO is included as a model-free RL baseline, where PPO is trained
across tasks via Domain Randomization. Another algorithm as the probabilistic em-
bedding for actor-critic RL (referred to as PE-PPO) is also introduced in comparisons,
which follows the same implementation in PEARL algorithms (Rakelly et al., 2019).
More details about task settings and available PyTorch modules are given in Appendix
(C.8).

Figure 18: Meta Testing Performance. The average cost is negative of average rewards,
and standard deviations are attached as error bars. For methods except GSSM+APS,
additional time is required to perform gradient-based adaptation in policies.

5.5.2 Cart-Pole Systems

At first, we evaluate MBMRL models on a Cart-Pole Swing-Up task. The physics system
can be found in (Gal et al., 2016; Galashov et al., 2019), and meta tasks are generated
in the following way. We respectively sample masses of a cart mc and a pole mp from
uniform distributions U[1.0, 2.0] and U[0.7, 1.0]. The mission is to perform actions
to reach the goal with the end of the pole. The state is [xc, θ, x′c, θ′], while the action
corresponds to the force in a continuous interval a ∼ [−10,+10] N. The horizon in
episodes is set to be 25, the same as that in former works.

In meta training processes, various tasks are sampled during iterations, and results
are averaged step-wise rewards. In Fig. (17.a), with the same policy search strate-
gies (non-amortized policies), we observe GSSM shows best performance with lower
variances in learning curves, followed by MLSM-v1 with larger variances. Also note
that GSSM’s model complexity is more lightweight than AttnNP in MLSM-v1 while
retaining satisfying dynamics prediction capability (Refer to Table (25)/Table (24)). In
Fig. (17.b), when amortized policies are combined with GSSM, the performance is

70

5.5 E X P E R I M E N T S

Figure 19: Performance of Policies in Meta-Training Processes. Figures in the first row
are MBMRL results, while those in the second row are MFRL results (Red vertical dotted
lines indicate the threshold of required time-steps used to train MBMRL baselines.). Here
environments are varied in terms of dynamics during iterations. The average rewards are
tested after each iter in an offline way, and results indicate means and corresponding
standard errors of the mean in 5 runs.

further advanced. In Fig. (17.c), we sample latent values by encoding trajectories from 5
tasks to visualize using t-SNE (Van der Maaten and Hinton, 2008). It can be seen that
the latent embeddings of different tasks formulate several clusters, which reveal cart
masses’ impact on latent variables. In Fig. (17.d), we also vary the dimension of latent
variables and find that when amortized policies are used, a lower dimension results in
more compact task embeddings and obtains better results with lower variance.

Note that the principal goal of MBMRL is to generalize previously learned skills to
unseen tasks, so we stress the importance of the performance in meta testing processes,
which is more appropriate to assess the generalization capability. Here 50 unseen tasks
are sampled to validate the performance (each task with 50 episodes) and averaged
results are displayed in Fig. (18). We observe that GSSM and MLSM-v1 are comparable

Table 8: Meta-testing Results using Model-free Baselines. MUL records multiple of
required samples used in MBMRL.

Env Mul DR-PPO PE-PPO

Acrobot 1x -0.836±0.047 -0.828±0.052

3x -0.433±0.043 -0.420±0.05

H-Cheetah 1x 453.4±150 -44.1±51

25x 1360.5±130 608.2±73

S-Humanoid 1x 538.5±91 252.4±260

25x 3533.3±110 1248.1±150

71

G R A P H S T RU C T U R E D F U N C T I O NA L R E P R E S E N TAT I O N F O R DATA E FFI C I E N T C O N T RO L

Table 9: Average Rewards in Meta-testing Tasks using Learned Policy Networks. (For
each testing task, 50 episodes are sampled and averaged in rewards. Figures behind ±
are standard deviations across testing tasks, with bold ones the best.)

Env GSSM+APS GSSM M-DPILCO MLSM-v0 MLSM-v1 L2A

Acrobot -0.478±0.049 -0.506±0.068 -0.645±0.06 -0.560±0.064 -0.524±0.052 -0.7775±0.054

H-Cheetah 1597.4±200 1306.6±140 862.0±280 827.3±190 1226.8±64 -17.9±130

S-Humanoid 1641.8±170 717.1±130 596.0±340 285.9±360 745.6±150 124.9±570

in policy performance, but the former has fewer parameters. As for M-DPILCO and
MLSM-v0, they show intermediate performance in testing results. With the same type
of dynamics models, GSSM+APS does not require adaptation time and reduces 10%
step-wise costs than GSSM. This suggests that amortized policies reveal task relevant
information from MDP embeddings and then guide the agent to explore better in separate
environments.

5.5.3 Other Simulation Systems

Other explorations are performed in more complicated simulation systems. These include
Acrobot, Half-Cheetah and Slim-Humanoid. For Acrobot, masses m of two pendulums
are respectively drawn from uniform distributions as U[0.8, 1.2] and U[0.8, 1.2] to
configure different tasks with 200 steps as the default horizon (Killian et al., 2017; Sutton
and Barto, 2018). For H(alf)-Cheetah/S(lim)-Humanoid from Mujoco (Todorov et al.,
2012), we vary mass scales and damping coefficients for different tasks, where the default
horizon is 1000 steps.

Main Results in Meta-training Processes. It can be seen in Fig. (19) that with the equal
volume of samples, MBMRL models mostly outperform MFRL baselines. Without the
use of amortized policies, GSSM shows an advantage over other MBMRL baselines. For
MLSM-v0/MLSMv-1, intermediate rewards are obtained in Acrobot/H-Cheetah. We
also observe unstable results using other baselines in S-Humanoid. When amortized
policies are employed, GSSM+APS shows significant performance improvement over
all baselines, including GSSM. This reflects that task-specific information is beneficial
in policy optimization. Especially, GSSM+APS reaches around -0.57, equivalent to
model-free performance with 3x fewer time steps in Acrobot. A similar phenomenon
can be seen in H-Cheetah, and GSSM+APS mostly starts with poor initialization but
gradually surpasses others as latent variables become more and more meaningful.

Main Results in Meta-testing Processes. As exhibited in Table (25), we evaluate
predictive performance of dynamics models in unseen tasks. After executing the paired-t
test, we find GSSM+APS significantly surpasses MLSM-v0 in Cart-Pole/Acrobot/S-
Humanoid and achieves comparable performance to MLSM-v1 in forecasting dynamics.
However, GSSM is simpler in terms of model complexities.

72

5.6 C O N C L U S I O N & DISCUSSION

The corresponding policy performance is also displayed in Table (9). We also no-
tice that with the same policy search strategy, GSSM outperforms other baselines in
Acrobot/H-Cheetah. When amortized policies are used, GSSM+APS is significantly
superior to MLSM-v11. These findings reflect strong generalization capability in unseen
tasks when combining GSSM and amortized policies. L2A works not so well in our
environments even after trying several hyper-parameters, similar to observations in work
(Hiraoka et al., 2020; Lee et al., 2020b), and lower rewards could be due to unstable
adaptation in dynamics models. Results in model-free cases are also illustrated in Table
(8). PE-PPO performs worse than DR-PPO in two environments, even though proba-
bilistic embeddings of tasks join the policy learning. Here we use permutation invariant
amortized distributions to formulate π(a|s, z) as in PEARL (Rakelly et al., 2019), but
PEARL algorithms seem sensitive to neural architectures of latent variables. It turns out
latent variables in amortized policies can lead to task-specific optimal values (Schaul
et al., 2015) in actor-critic policy search, but appropriate embeddings are also decisive.

5.6 C O N C L U S I O N & DISCUSSION

Technical Discussions. We have proposed a novel meta dynamics model (GSSM),
which consists of a local latent variable zt for individual dynamics prediction and a
global latent variable zc to summarize an MDP for the policy to condition. Learning
the representations of these latent variables is achieved via message passing. GSSM
demonstrates its effectiveness in capturing task-specific system dynamics and exhibits
good generalization capability across tasks. Meanwhile, amortized policies are developed
for a more efficient meta model-based policy search. These policies allow for fast
adaptation to meta-testing tasks without additional policy gradient updates and show
competitive performance. It is important to note that this trait helps us avoid either
re-planning or adaptation in policies. So our proposed amortized policy search is more
suitable to apply in time-sensitive decision-making missions.

Existing Limitations. In principle, we summarize two limitations in this work: Even
though MBMRL can theoretically achieve data efficiency and fast skill transfer, the
instability of policy performance, including GSSM and other models, is unavoidable due
to the bias of dynamics models. Dyna-style is used in training GSSM, so a potential
limitation can be the additional time required to configure appropriate hyper-parameters,
which decide when to collect new transitions and where to stop policy optimization.

Future Extensions & Broader Implications. Our proposed model-based policy search
strategy has the potential of enhancing robotic skills’ generalization capability. Designing
heuristic rules is worthwhile to investigate for an optimal parameter setting of Dyna-
style training. Meanwhile, we stress the importance of connections between posterior
sampling and model-based meta reinforcement learning. The optimism in the face of
uncertainty and fast policy adaptation can be further explored in a model-based setup.

1 A paired-t test between GSSM and MLSM-v1 over all tasks is executed, and results are significant with a
default significance level 0.05.

73

6

B R I D G I N G T H E I N F E R E N C E G A P S I N N P S W I T H
E X P E C TAT I O N M A X I M I Z AT I O N

As revealed in the previous chapters (3)/(4/(5), solving functional representation problems
in different scenarios strongly rely on diverse structure inductive biases to achieve
outstanding performance. Variational inference works as the essential tool to optimize
developed models. This chapter is distinguished from all the above chapters, and we study
optimization objectives and inference ways within the vanilla neural process structure.
We optimize the neural process with a variational expectation maximization framework,
and the resulting model has the potential to obtain at least the local optimal functional
representation.

6.1 I N T RO D U C T I O N

The combination of deep neural networks and stochastic processes is a powerful frame-
work for modeling data points with correlations. As a fundamental model in our studies,
the neural processes (NP) (Garnelo et al., 2018b) exploits high capacity in neural net-
works and enables uncertainty quantification in distribution over functions. This family
of models can significantly reduce the run-time complexity of predictive distributions
compared to Gaussian processes (Titsias, 2009).

Still, we study the vanilla NP as a deep directed latent variable model shown in
Fig. (20). In particular, let us recap the inference methods used in vanilla NPs:
It approximates the functional posterior qϕ(z) ≈ p(z|DT ;ϑ) and a functional prior
qϕ(z|DC) ≈ p(z|DC;ϑ), which are permutation invariant to the order of data points.
Then the predictive distribution for a data point [x∗.y∗] can be formulated in the form
Eqϕ(z|DC) [p(y∗|[x∗, z];ϑ)].

Figure 20: Deep Directed Latent Variable Models for Neural Processes. Here z is a global
latent variable to summarize function properties. The model involves a functional prior
distribution p(z|DC;ϑ) and a functional generative distribution p(DT |z;ϑ). Please refer
to Section (6.3) for the meaning of notations.

75

B R I D G I N G T H E I N F E R E N C E G A P S I N N P S W I T H E X P E C TAT I O N M A X I M I Z AT I O N

With various structural inductive biases incorporated in modeling, variants of NPs
exhibit better expressiveness and are able to handle complicated functional representation
tasks, such as uncertainty-aware image classification (Wang and Van Hoof, 2020), few
shot regression (Wang and Van Hoof, 2022a), and data-efficient control (Wang and
Van Hoof, 2022b).

Research Motivations. Previous works (Garnelo et al., 2018a,b; Kim et al., 2019;
Gordon et al., 2020; Wang and Van Hoof, 2020, 2022a) fail to explain why the vanilla
NPs suffer underfitting and less precise uncertainty quantification issues and what kind
of functional priors the vanilla NPs can obtain. Meanwhile, we point out the remaining
crucial issues that have not been investigated in this domain, respectively: (i) understand-
ing the inference suboptimality of NPs (ii) quantifying statistical traits of NPs. To this
end, we make more efforts to diagnose the vanilla NP from its optimization objective.
Our primary interest is to find a tractable way to optimize NPs and examine the statistics
of learned functional priors from diverse optimization objectives. For these issues, we
make two essential claims throughout the investigations.

• Optimization Gap. The primary source of suboptimality of NPs originates from
the ill-posed optimization objective. Due to the consistent regularizer, the opti-
mization concerning NPs cannot guarantee the performance improvement to the
likelihood of meta dataset.

• Prior Inference. The functional prior deserves more attention than the functional
posterior since it is closely related to predictive distributions in NPs family. Hence,
direct optimization concerning the prior is more effective than variational inference
towards the posterior.

Developed Methods. To understand the inference suboptimality of vanilla NPs, we
establish connections among a collection of optimization objectives, e.g. approximate
evidence lower bounds (ELBOs) and Monte Carlo estimates of log-likelihoods, in Section
(6.4). Then we formulate a tractable optimization objective within the variational expec-
tation maximization framework and obtain the Self-normalized Importance weighted
neural process (SI-NP) in Section (6.5).

Our primary contributions are three-fold: (i) we analyze the inherent inference sub-
optimality of NPs from an objective optimization perspective; (ii) we demonstrate the
equivalence of conditional NPs (Garnelo et al., 2018a) and SI-NPs with one Monte Carlo
sample, which closely relates to the prior collapse issue; (iii) our developed SI-NPs have
an improvement guarantee to the likelihood of meta dataset in optimization and show a
significant advantage over baselines with other objectives.

6.2 R E L AT E D W O R K

Structural Inductive Biases in NPs. NPs are simple and flexible in model formulations,
but they suffer a bit from underfitting (Garnelo et al., 2018b; Kim et al., 2019). Previous
researchers concentrate more on the use of structural inductive biases in NPs. (Kim

76

6.3 P R E L I M I NA R I E S

et al., 2019, 2021) improves the predictive performance by adding attention based local
variables. Translation equivariance and invariance are incorporated in modeling NPs
with help of convolutions (Gordon et al., 2020; Foong et al., 2020; Kawano et al.,
2020). To find more compact functional representations, the contrastive loss is used to
regularize (C)NPs’ training (Gondal et al., 2021). Hierarchical and mixture structures
are also explored to induce diverse latent variables in NPs (Wang and Van Hoof, 2020,
2022a). Lee et al. (2020a) combines boostrapping tricks with neural processes to improve
expressiveness of latent variables.

Expectation Maximization & Wake-Sleep Algorithms. For log-likelihood maximiza-
tion problems with incomplete observations, expectation maximization (Bishop and
Nasrabadi, 2006) is a tractable optimization method for latent variable models. It consists
of an E-step to optimize the distribution of latent variables and a M-step to maximize the
likelihood parameters. The optimization of VAEs and variants is also built upon an EM
framework (Ghojogh et al., 2021; Gao et al., 2021). Our developed algorithm can be
interpreted as EM for NPs. Another family of algorithms related to ours is wake-sleep
algorithms (Bornschein and Bengio, 2014; Eslami et al., 2016; Le et al., 2020), where
self-normalized importance sampling is used in Monte Carlo estimates. In this case,
our method can be also viewed as the extension of the reweighted wake-sleep (RWS)
algorithm to NPs with an improvement guarantee. Another difference between original
RWS algorithm and our method lies in that optimizing a learnable functional prior is
of most importance in NPs, while RWS algorithms are mostly used in scenarios with a
fixed prior.

6.3 P R E L I M I NA R I E S

General Notations. We study NPs in a meta learning setup. T defines a set of tasks
with τ a sampled task. LetDC

τ = {(xi, yi)}ni=1 andDT
τ = {(xi, yi)}

n+m
i=1 denote the context

points for the functional prior inference and the target points for the function prediction.
The latent variable z is a functional representation for a task τ. We refer to ϑ ∈ Θ as the
parameters of the deep directed latent variable model for NPs.

In detail, ϑ consists of encoder parameters in a functional prior p(z|DC
τ ;ϑ) and de-

coder parameters in a generative distribution p(DT
τ |z;ϑ). ϕ is the parameter of an

approximate posterior qϕ(z) = qϕ(z|DT
τ) in variational inference, while η is the pa-

rameter of a proposal distribution qη(z) in self-normalized importance sampling. Gaus-
sian distributions are used as the default for these distributions, e.g. p(z|DC

τ ;ϑ) =
N(z; µϑ(DC

τ), Σϑ(DC
τ)), qϕ(z) = N(z; µϕ(DT

τ), Σϕ(DT
τ)) and qη(z) = N(z; µη(DT

τ), Ση(DT
τ)).

NPs in Meta Learning Tasks. Given a collection of tasks T , we can decompose the
marginal distribution p(DT

T
|DC
T

;ϑ) with a global latent variable z in Eq. (6.1). Here the
conditional distribution p(z|DC

τ ;ϑ) with τ ∈ T is permutation invariant w.r.t. the order
of data points and encodes the functional prior in the generative process.

p(DT
T
|DC
T

;ϑ)︸ ︷︷ ︸
Marginal Likelihood

=
∏
τ∈T

∫

p(DT
τ |z;ϑ)︸ ︷︷ ︸

Generative Likelihood

p(z|DC
τ ;ϑ)︸ ︷︷ ︸

Functional Prior

dz

 (6.1)

77

B R I D G I N G T H E I N F E R E N C E G A P S I N N P S W I T H E X P E C TAT I O N M A X I M I Z AT I O N

Throughout the chapter, the optimization objective of our interest is the marginal
log-likelihood of a meta learning dataset in Eq. (6.2). Furthermore, this applies to all NP
variants.

max
ϑ

∑
τ∈T

ln
[∫

p(DT
τ |z;ϑ)p(z|DC

τ ;ϑ)dz
]

(6.2)

For the sake of simplicity, we consider the task τ to derive equations in the following
section1, which corresponds to maximizing the objective

L(ϑ) = ln
[∫

p(DT
τ |z;ϑ)p(z|DC

τ ;ϑ)dz
]

.

The target data points are conditionally independent given the global latent variable
p(DT

τ |z;ϑ) =
∏n+m

i=1 p(yi|[xi, z];ϑ). The marginal distribution can be interpreted as the
infinite mixture of distributions when z is Gaussian. Now learning distributions over
functions is reduced to a probabilistic inference problem (Garnelo et al., 2018a; Gordon
et al., 2018; Kim et al., 2019).

6.4 I N F E R E N C E G A P S A N D S TAT I S T I C A L T R A I T S

6.4.1 Inference Suboptimality in vanilla NPs

Previously, variational auto-encoder (VAE) models (Kingma and Welling, 2013; Rezende
et al., 2014) mostly set a prior distribution fixed, e.g. N(0, I), as the default to approxi-
mate the posterior. This differs significantly from NPs family settings. On the one hand,
the functional prior is learned in NPs. On the other hand, the functional prior participates
in the performance evaluation.

Exact ELBO for NPs.

Following the essential variational inference operation, we can establish connections
between the exact ELBO and the log-likelihood in Eq. (6.3). Given the functional prior
p(z|DC

τ ;ϑ) and the generative distribution p(DT
τ |z;ϑ), the exact functional posterior can

be obtained by the Bayes rule

p(z|DT
τ ;ϑ) =

p(DT
τ |z;ϑ)p(z|DC

τ ;ϑ)∫
p(DT

τ |z;ϑ)p(z|DC
τ ;ϑ)dz

.

The existence of the denominator p(DT
τ |D

C
τ) makes exact inference infeasible, and

the family of variational posteriors is introduced to approximate p(z|DT
τ ;ϑ). Here the

variational posterior family is defined in a parameterized set QΦ = {qϕ(z)|ϕ ∈ Φ}.

1 In experimental sections, both training and testing phases are implemented in a collection of tasks.

78

6.4 I N F E R E N C E G A P S A N D S TAT I S T I C A L T R A I T S

L(ϑ) = ln p(DT
τ |D

C
τ ;ϑ) = Eqϕ(z)

[
ln

p(DT
τ , z|DC

τ ;ϑ)
qϕ(z)

]
︸ ︷︷ ︸

Exact ELBO

+ DKL
[
qϕ(z) ∥ p(z|DT

τ ;ϑ)
]︸ ︷︷ ︸

Posterior Approximation Gap

(6.3)

When the variational posterior family is flexible enough, e.g. p(z|DT
τ ;ϑ) ∈ QΦ, the

posterior approximation gap can be reduced to a tiny quantity. In this case, maximizing
the exact ELBO in Eq. (6.4) brings the increase of the likelihood in Eq. (6.3) accordingly.

LELBO(ϑ, ϕ) = Eqϕ(z)

[
ln p(DT

τ |z;ϑ)
]
− DKL

[
qϕ(z) ∥ p(z|DC

τ ;ϑ)
]

(6.4)

Approximate ELBO for NPs.

As previously mentioned, the inference is complicated since the functional prior and the
posterior in the exact ELBO are unknown. To this end, Garnelo et al. (2018b) proposes
a surrogate objective as an approximate ELBO for NPs. This is defined as Eq. (6.5) to
maximize.

LNP(ϑ, ϕ) = Eqϕ(z)

ln p(DT
τ |z;ϑ)︸ ︷︷ ︸

Generative Likelihood

 − DKL
[
qϕ(z) ∥ qϕ(z|DC

τ)
]︸ ︷︷ ︸

Consistent Regularizer

(6.5)

Here the approximate posterior qϕ(z) and the approximate prior qϕ(z|DC
τ) are con-

strained in a Kullback-Leibler divergence term, referred to as the consistent regularizer
in this chapter. We claim that the consistent regularizer is the source of the suboptimality
of vanilla NPs, and this is shown in Appendix (D.3) as the proof of Remark (1).

Remark 1 The Eq. (6.5) is a problematic objective w.r.t. maximizing the likelihood of
the dataset.

Other Available Objectives in NPs Family.

Now we turn to other tractable optimization objectives in NPs. These include conditional
neural processes (CNPs) (Garnelo et al., 2018a) and convolutional neural processes
(ConvNPs) (Foong et al., 2020).

Here the CNP is treated as a particular case of NPs. The objective LCNP(ϑ) can be
obtained when the functional prior collapses into a Dirac delta distribution.

LCNP(ϑ) = Ep(z|DC
τ ;ϑ)

[
ln p(DT

τ |z;ϑ)
]

with p(z|DC
τ ;ϑ) = δ(|z − ẑ|) (6.6)

For the ConvNP, we skip the convolutional structural inductive bias and concentrate
more on the optimization objective itself. Its objective in Eq. (6.7) is a biased Monte

79

B R I D G I N G T H E I N F E R E N C E G A P S I N N P S W I T H E X P E C TAT I O N M A X I M I Z AT I O N

Carlo estimate of Eq. (6.2). A benefit is that we can maximize the log-likelihood of
marginal distributions straightforwardly.

LML-NP(ϑ) = ln

 1
B

B∑
b=1

exp
(
ln p(DT

τ |z
(b);ϑ)

) with z(b) ∼ p(z|DC
τ ;ϑ) (6.7)

This is termed as Monte Carlo Maximum LikelihoodLML-NP(ϑ)2, and B is the number
of used Monte Carlo samples. Without the involvement of the consistent regularizer,
both LCNP(ϑ) and LML-NP(ϑ) will not encounter the approximation gap in practice.

6.4.2 Evaluation Criteria & Asymptotic Performance

As in (Le et al., 2018; Foong et al., 2020), we take a multi-sample Monte Carlo method to
evaluate the performance. This applies to both meta training and meta testing processes.
In detail, NP models need to run B times stochastic forward pass by sampling z(b) ∼
p(z|DC

τ ;ϑ) and then compute the log-likelihoods as ln
[

1
B
∑B

b=1 p(DT
τ |z

(b);ϑ)
]
.

After describing the evaluation criteria, we turn to a phenomenon of our interest.
In Gaussian processes (Ghahramani, 2015), with more observed context points, the
epistemic uncertainty can be decreased, and the predictive mean function is closer to the
ground truth.

Similarly, this trait is also reflected in NPs family and can be quantitatively described
as follows. Given metrics of an average predictive error β, the number of context points
n and the evaluated dataset, DT

τ , the introduced metrics β(DT
τ ; n) are decreased when

increasing n in prediction. In our paper, we refer to this trait as the asymptotic effect.

Definition 2 (Prior Collapse) The functional prior p(z|DC
τ ;ϑ) = N(z; µϑ(DC

τ), Σϑ(DC
τ))

is said to collapse in learning when the trace of the covariance matrix satisfies

Tr[Σϑ(D
C
τ)] =

d∑
i=1

σ2
i ≈ 0

with Σϑ(DC
τ) = diag[σ2

1, . . . ,σ2
d].

As previously mentioned, we can more precisely keep track of measures β(DT
τ ; n),

such as predictive log-likelihoods or mean square errors of data points, to assess the
asymptotic behavior. The role of latent variables z is to propagate the uncertainty about
the partial observations in functions. And Definition (2) provides a quantitative way to
examine the extent of prior collapse in ML-NPs and SI-NPs.

6.5 T R AC TA B L E O P T I M I Z AT I O N V I A E X P E C TAT I O N M A X I M I Z AT I O N

In this section, we propose alleviating the inference suboptimality of NPs by formulating
a surrogate optimization objective. Meanwhile, we design the variational expectation

2 The Monte Carlo maximum likelihood corresponds to the optimization objective that in (Foong et al.,
2020) except that the convolutional inductive bias is removed.

80

6.5 T R AC TA B L E O P T I M I Z AT I O N V I A E X P E C TAT I O N M A X I M I Z AT I O N

Convergence Iteration

Optimization Gap

-th Iteration-st Iteration

Figure 21: Illustration of Expectation Maximization for NPs. Green lines indicate the
results after the E-steps while the red lines are for the M-steps in Algorithm (8). In
the convergence iteration, the performance gap L(ϑH) −L(ϑH−1) is close to zero and
the algorithm results in at least a local optimal solution. Values of these quantities are
increased from the left to the right.

maximization algorithm to accommodate this objective. The benefit of our method is to
guarantee performance improvement w.r.t. the likelihood of meta dataset in iterations
and finally result in at least a local optimal.

6.5.1 Variational Expectation Maximization for NPs

This part is to bridge the inference suboptimality as mentioned earlier. We retain the
neural architectures used in NPs. The basic idea has already been illustrated in Fig. (21).

In detail, we iteratively construct the lower bound L(ϑK) and maximize the surrogate
function L(ϑK+1;ϑK). The referred optimization gap is sourced from the optimizer
and measures the difference between converged (local) optimal functional prior and the
theoretical optimal functional prior. The general pseudo code is Algorithm (8).

Algorithm 8: Variational Expectation Maximization for NPs.
Input :Task distribution p(T); Task batch size, Number of particles,

Initialized ϑ and η.
Output :Meta-trained parameters ϑ and η.

1 for k = 1 to K do
2 E-step #1: k ← k + 1 and reset the variational posterior

qϕ(z) = p(z|DT
τ ;ϑk) in Eq. (6.3);

3 if Use the Conditional Prior as the Proposal then
4 Set qη(z|DT

τ) = p(z|DC
τ ;ϑk);

5 else
6 E-step #2: update the proposal ηk = arg minηLKL(η; ηk−1,ϑk) in Eq.

(6.13);
7 end
8 M-step: optimize surrogate functions ϑk+1 = arg maxϑLSI-NP(ϑ; ηk,ϑk) in

Eq. (6.11);
9 end

81

B R I D G I N G T H E I N F E R E N C E G A P S I N N P S W I T H E X P E C TAT I O N M A X I M I Z AT I O N

Surrogate Function for Exact NPs

Definition 3 (Surrogate Function) 3 Given the objective function f (ϑ) to maximize,
surrogate functions g(ϑ;ϑk) w.r.t. f (ϑ) are a family of functions with the following
properties.

• Both f (ϑ) and g(ϑ;ϑk) are C2-functions, which means f (ϑ) has first order and
second order derivatives of those functions exist and these are smooth in the
domain of the function.

• The following two formulas hold:

g(ϑ;ϑk) ≤ f (ϑ) ∀ϑ; g(ϑk;ϑk) = f (ϑk). (6.8)

To make the optimization of meta dataset log-likelihood feasible, we construct surro-
gate functions as the proxy in each iteration step. These meta learning surrogate functions
with special properties are closely connected with the original objective, and we leave
this discussion in Appendix (D.5).

Here ϑk denotes the parameter of directed latent variable models for NPs in the k-th
iteration of variational expectation maximization. In Eq. (6.4), we take the step by
replacing the approximate posterior with the last time updated p(z|DT

τ ;ϑk) in Algorithm
(8). And this results in the following equation,

L(ϑ;ϑk) = Ep(z|DT
τ ;ϑk)

[
ln p(DT

τ , z|DC
τ ;ϑ) − ln p(z|DT

τ ;ϑk)
]

(6.9)

where p(z|DT
τ ;ϑk) is the posterior distribution.

Proposition 3 The proposed meta learning function L(ϑ;ϑk) in Eq. (6.9) is a surrogate
function w.r.t. the log-likelihood of the meta learning dataset.

The above proposition is examined based on the definition in Appendix (D.5.2).

Tractable Optimization with Self-Normalized Importance Sampling

Since the second term in Eq. (6.9) is constant in the iteration, we can drop it to simplify
the surrogate objective as the right side of the following equation.

max
ϑ
L(ϑ;ϑk)⇔ max

ϑ
LEM(ϑ;ϑk) = Ep(z|DT

τ ;ϑk)

[
ln p(DT

τ , z|DC
τ ;ϑ)

]
(6.10)

Proposition 4 Optimizing this surrogate function of a batch of tasks via the variational
expectation maximization leads to an improvement guarantee w.r.t.

∑
τ∈T ln p(DT

τ |D
C
τ ;ϑ).

3 Note that the surrogate function above is defined in the Minorize-Maximization (MM) algorithm (Hunter
and Lange, 2004)

82

6.5 T R AC TA B L E O P T I M I Z AT I O N V I A E X P E C TAT I O N M A X I M I Z AT I O N

Still we cannot optimize LEM(ϑ;ϑk) since the expected form is not analytical and is
intractable to sample from p(z|DT

τ ;ϑk) for Monte Carlo estimates4. Remember that the
marginal distribution p(DT

τ |D
C
τ ;ϑk) is task dependent and can not be ignored in comput-

ing the posterior p(z|DT
τ ;ϑk). To circumvent this, we introduce a proposal distribution

qη(z|DT
τ) and optimize the objective via self-normalized importance sampling (Tokdar

and Kass, 2010). The resulting meta learning surrogate function is as follows.

LEM(ϑ;ϑk) = Eqη

 p(z|DT
τ ;ϑk)

qη(z|DT
τ)

ln p(DT
τ , z|DC

τ ;ϑ)

≈

B∑
b=1

ω̂(b) ln p(DT
τ , z(b)|DC

τ ;ϑ)

=
B∑

b=1

ω̂(b)︸︷︷︸
Importance Weight

ln p(DT
τ |z

(b);ϑ)︸ ︷︷ ︸
Generative Likelihood

+ ln p(z(b)|DC
τ ;ϑ)︸ ︷︷ ︸

Functional Prior Likelihood

= LSI-NP(ϑ; ηk,ϑk)

(6.11)

where z(b) ∼ qηk(z|D
T
τ),

ω(b) = exp
(
ln p(DT

τ |z
(b);ϑk) + ln p(z(b)|DC

τ ;ϑk) − ln qηk(z
(b)|DT

τ)
)

and ω̂(b) = ω(b)∑B
b′=1 ω

(b′) .

In terms of the first conditional term in Eq. (6.11), all the data points are conditional in-
dependent and this is further expressed as ln p(DT

τ |z
(b);ϑ) =

∑n+m
i=1 ln p(yi|[xi, z(b)];ϑ).

Proposition 5 With one Monte Carlo sample used in Eq. (6.11), the presumed diagonal
Gaussian prior p(z|DC

τ ;ϑ) will collapse into a Dirac delta distribution in convergence.
In this case, the one sample Monte Carlo approximate objective of SI-NP in Eq. (6.12) is
equivalent with CNP in Eq. (6.6).

LSI-NP(ϑ; ηk,ϑk) ≈ Ep(z|DC
τ ;ϑk)

ln p(DT
τ |z;ϑ)︸ ︷︷ ︸

Generative Likelihood

+ Ep(z|DC
τ ;ϑk)

[
ln p(z|DC

τ ;ϑ)
]︸ ︷︷ ︸

Prior Collapse Term

(6.12)

The Proposition (5) establishes connections between SI-NPs and CNPs in optimization
and we attribute this to the collapse term in Eq. (6.12). Hence, CNP can be viewed as a
particular example in SI-NPs. The complete proof is based on limit analysis and can be
found in Appendix (D.6).

4 Though the exact posterior distribution p(z|DT ;ϑ) can be inferred by Bayes rule, the denominator∫
p(DT

τ |z;ϑ)p(z|DC
τ ;ϑ)dz is not available.

83

B R I D G I N G T H E I N F E R E N C E G A P S I N N P S W I T H E X P E C TAT I O N M A X I M I Z AT I O N

Update of Proposal Distributions (Optional)

The use of proposal distribution qη enables sampling z for Monte Carlo estimates. An-
other role of the proposal distribution is to work as a proxy for the posterior p(z|DT

τ ;ϑk),

and the variance Varqη

[
p(z|DT

τ ;ϑk)

qη(z|DT
τ)

ln p(DT
τ , z|DC

τ ;ϑ)
]

is expected to be lower for stable
training. So a reasonable optimization objective is to get two distributions as close as each
other, e.g. minimizing the Kullback–Leibler divergence DKL[p(z|DT

τ ;ϑk) ∥ qη(z|DT
τ)].

This treatment is equivalent to wake phase updates in (Bornschein and Bengio, 2014).
We can obtain the optimization objective on the right side of Eq. (6.13) with the help of
the self-normalized importance sampling.

min
η

DKL[p(z|DT
τ ;ϑk) ∥ qη(z|DT

τ)]

⇔ min
η
LKL(η; ηk−1,ϑk) = −

B∑
b=1

ω̂(b) ln qη(z(b)|DT
τ)

(6.13)

Here the self-normalized importance weights {ω̂(b)}Bb=1 inside the above equation are
the same with that in Eq. (6.11). Also note that the the denominator 1

B
∑B

b′=1 ω
(b′) of the

weight relates to the estimate of p(DT
τ |D

C
τ), which has biases with limited samples at

the beginning of training. But with the improvement of approximation, the bias can be
decreased accordingly (Zimmermann et al., 2021).

In practice, the selection of proposal distributions can be tricky. We make the update
of proposal distributions optional in implementations. In our experimental settings, we
simply use the conditional prior p(z|DC

τ ;ϑ) as the default, which is competitive enough
in performance.

6.5.2 Scalable Training and Testing

As shown in Algorithm (8), the meta training process consists of two steps. As it turns
out to be challenging to stably optimize E-step #2, we skip this optional step. Instead,
we use p(z|DC

τ ;ϑ) as the proposal distribution. By repeating E-step #1/M-step iterations
until convergence, the method can theoretically find at least a local optimal w.r.t. the
log-likelihood of meta learning dataset. The previous Proposition (4) guarantees this
property.

Once the learning progress reaches the final convergence, we can make use of the
learned functional prior to obtain the predictive distribution. With B particles in predic-
tion, the distribution can be expressed as follows.

p(y|x,DC
τ ;ϑ) = Ep(z|DC

τ ;ϑ)p(y|[x, z];ϑ)

≈
1
B

B∑
b=1

p(y|[x, z(b)];ϑ) with z(b) ∼ p(z|DC
τ ;ϑ)

(6.14)

84

6.6 E X P E R I M E N T S

6.6 E X P E R I M E N T S

In this section, two central questions are answered: (i) can variational EM based models
SI-NPs, lead to better local optimal? (ii) what is the role of randomness in functional
priors? Specifically, we examine the influence of NPs optimization objectives on typical
downstream tasks and understand the functional prior quantitatively.

Baselines & Evaluations. Since our concentration is on optimization objectives in NPs
family, we simply include NP (Garnelo et al., 2018b), and CNP (Garnelo et al., 2018a),
ML-NP (Foong et al., 2020) in comparison. Note that our developed SI-NP and ML-NP
(Foong et al., 2020) are importance weighted models, but the mechanisms in estimating
weights are significantly different. As for evaluations, we refer the reader to Sec. (6.4.2)
for more information.

6.6.1 Synthetic Regression

We create synthetic regression tasks by sampling functions from Gaussian processes.
Three types of kernels, respectively Matern−5

2 , RBF, and Periodic, are used to generate
diverse function distributions. In each iteration, a batch of data points from functions is
randomly processed into the context and the target for training models. In meta testing,
the same strategy is used to generate functions and data points. For each kernel case, we
sample 1000 tasks to evaluate the average log-likelihoods and standard deviations. We
report the results in Table (10). It shows SI-NPs outperform the vanilla NPs in all cases
and are at least competitive with other baselines. Though ML-NPs are superior to NPs,
they cannot beat CNPs in RBF and Periodic cases.

Table 10: Test average log-likelihoods with reported standard deviations for 1-
dimensional Gaussian process dataset with various kernels.

Matern − 5
2 RBF Periodic

LNP (Garnelo et al., 2018b) -0.225±0.03 -0.183±0.03 -0.611±0.034
LCNP (Garnelo et al., 2018a) 0.295±0.017 0.463±0.023 -0.533±0.009
LML-NP (Foong et al., 2020) 0.303±0.013 0.439±0.009 -0.547±0.036

LSI-NP (ours) 0.305±0.006 0.493±0.007 -0.532±0.036

6.6.2 Image Completion

Similar to experiments in (Garnelo et al., 2018b; Kim et al., 2019), we perform image
completion experiments in this section. We implement NPs baselines in four commonly
used datasets, namely MNIST (Bottou et al., 1994), FMNIST (Xiao et al., 2017), CI-
FAR10 (Krizhevsky et al., 2009) and SVHN (Sermanet et al., 2012). In meta training
processes, the mission is to randomly mask the pixels and then try to complete the
images with observed pixels. In detail, we learn latent variable models that map all pixel
locations x ∈ [0, 1]2 to Gaussian distribution parameters of pixel values based on the

85

B R I D G I N G T H E I N F E R E N C E G A P S I N N P S W I T H E X P E C TAT I O N M A X I M I Z AT I O N

Context

Mean

Variance

(a) (b)

Figure 22: Examples of Completed Images using SI-NP. We randomly sample test images
from FMNIST and SVHN datasets, and ground truth images are in the first row. The
predictive means and variances of completed images are visualized in the third and fourth
rows.

context pixel locations and values. Fig. (22) is an example of completion results from
sampled images. For implementation details, please refer to Appendix (D.4).

Table 11: Test average log-likelihoods with reported standard deviations for image
completion in MNIST/FMNIST/SVHN/CIFAR10 (5 runs). We test the performance
of different optimization objectives in both context data points and target data points.
Except CNPs, we use 32 Monte Carlo samples from the functional prior to evaluate the
average log-likelihoods. Bold ones are the best.

MNIST FMNIST SVHN CIFAR10
context target context target context target context target

LNP 0.81±0.006 0.73±0.007 0.83±0.007 0.73±0.009 3.19±0.02 3.07±0.02 2.35±0.04 2.03±0.02

LCNP 1.05±0.005 0.99±0.008 0.95±0.007 0.90±0.009 3.57±0.003 3.48±0.004 2.71±0.004 2.53±0.006

LML-NP 1.06±0.004 0.99±0.006 0.94±0.008 0.89±0.007 3.51±0.008 3.43±0.006 2.60±0.005 2.41±0.005

LSI-NP (ours) 1.09±0.006 1.02±0.004 0.98±0.004 0.94±0.005 3.57±0.003 3.50±0.003 2.75±0.004 2.60±0.005

We examine the performance in a testing subset of the above image datasets and report
the average log-likelihoods in Table (11). Note that in evaluation, a random number of
pixels is selected to formulate the context points for each image, and the Table (11) is the
mean result. We can see that SI-NP achieves the best performance in all image datasets.
Significantly, performance differences between SI-NPs and NPs are primarily huge.
Furthermore, the asymptotic behaviors of all baselines are illustrated in Fig. (23). All
models exhibit asymptotic behaviors by varying the number of context points, and NPs
mainly cause extremely lower log-likelihoods with 10 context points. The observations
at different levels are consistent with the conclusion in Table (11).

Another critical finding lies in Fig. (24), which checks the difference between ap-
proximate posteriors and priors in NPs and examines whether the learned functional
priors collapse into the deterministic ones. In MNIST dataset, SI-NPs encounter the
prior collapse, and ML-NPs also obtain extremely lower trace values of covariance
matrices. We attribute the prior collapse in MNIST to its most superficial structures
and limited semantic diversity. For image datasets with more complicated semantics,
the computed trace values in SI-NPs retain a reasonable interval. The scale of SI-

86

6.7 C O N C L U S I O N & DISCUSSION

Figure 23: Asymptotic Performance in Image Completion. We meta test pixel average
log-likelihoods with varying number of context points in image datasets. Context points
are randomly selected for each image in testing processes. For MNIST/FMNIST datasets,
the numbers of context pixels in testing are {10, 100, 300, 500, 700}. For CIFAR10/SVHN
datasets, the numbers of context pixels in testing are {10, 100, 300, 500, 800, 1000}.

NPs’ trace values can implicitly reveal the semantics complexity of image datasets:
CIFAR10>SVHN>FMNIST>MNIST.

The above reflects the meaning of the learned functional priors in SI-NPs: with more
complicated semantics, the prior distribution exhibits higher uncertainty, and hence it can
generate functional samples with more diversity. Similarly, the scale of KL divergence
values in vanilla NPs in the first line of Fig. (24) is positively correlated with the
semantic complexity. Also, note that the approximate functional prior in vanilla NPs
seldom collapses, but it has a theoretical bias away from the optimal functional prior.

0 100 200 300 400 500 600 700
0

100

200

300

400

KL
D

NP (MNIST)

0 100 200 300 400 500 600 700
0

100

200

300

400

500
NP (FMNIST)

0 200 400 600 800 1000
0

500

1000

1500

2000
NP (CIFAR10)

0 200 400 600 800 1000
0

200

400

600 NP (SVHN)

0 100 200 300 400 500 600 700
0.0000
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006

Co
va

ria
nc

e
Tr

ac
e ML-NP (MNIST)

0 100 200 300 400 500 600 700

0.00002

0.00004

0.00006

0.00008
ML-NP (FMNIST)

0 200 400 600 800 1000

3.5
4.0
4.5
5.0
5.5
6.0

1e 8

ML-NP (CIFAR10)

0 200 400 600 800 1000
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1e 8

ML-NP (SVHN)

0 100 200 300 400 500 600 700
0

2

4

6

Co
va

ria
nc

e
Tr

ac
e

1e 16

SI-NP (MNIST)

0 100 200 300 400 500 600 700

0.0080

0.0082

0.0084

0.0086 SI-NP (FMNIST)

0 200 400 600 800 1000
0.0205
0.0210
0.0215
0.0220
0.0225
0.0230 SI-NP (CIFAR10)

0 200 400 600 800 1000

0.0144
0.0146
0.0148
0.0150
0.0152
0.0154 SI-NP (SVHN)

Figure 24: Statistics of Learned Functional Priors. In meta testing, we still vary
the number of context points in image datasets. For NPs, the KL divergence value
DKL

[
qϕ(z) ∥ qϕ(z|DC

τ)
]

is computed. For ML-NPs/SI-NPs, the trace of learned
functional priors’ covariance matrices Tr[Σϑ(DC

τ)] is computed with p(z|DC
τ ;ϑ) =

N(z; µϑ(DC
τ), Σϑ(DC

τ)).

6.7 C O N C L U S I O N & DISCUSSION

Technical Discussions. In this chapter, we study NPs family from an optimization
objective perspective and analyze the inference suboptimality of vanilla NPs. Within the
variational expectation maximization framework, our developed SI-NPs are guaranteed

87

B R I D G I N G T H E I N F E R E N C E G A P S I N N P S W I T H E X P E C TAT I O N M A X I M I Z AT I O N

to obtain at least a local optimal functional prior. Besides, experimental results tell us
the learned functional prior has close connections with the number of context points and
complexity of function families.

Existing Limitations. Compared to vanilla NPs, our developed SI-NP requires more
than one Monte Carlo sample from the functional prior in training. This causes addi-
tional computations but can effectively avoid the prior collapse. Though intuitively, the
uncertainty of the functional prior can be forward propagated to the output distribution,
the influence of such uncertainty has not been mathematically studied.

Future Extensions & Broader Implications. The objective of the SI-NP is regardless
of neural architectures so that any structural inductive bias can be easily incorporated
with ours. Theoretically, this combination will produce superior functional representation
baselines in the domain. Another extension lies in the improvement of proposal distri-
butions. The setup in this chapter directly uses the functional prior as the proposal to
estimate the importance weights. If we can find a reasonable objective for stably training
the proposal distributions, SI-NPs are likely to achieve even better performance.

88

7

C O N C L U S I O N

In this thesis, we are in pursuit of effective functional representations, which can be used
for uncertainty quantification and fast skill transfer. The research topic is motivated by
the neural process (NP) model (Garnelo et al., 2018b), which represents the underlying
function with a global latent variable. Though the modeling in NPs is simple and elegant,
it fails to generalize well in some tasks and suffers suboptimal results. In order to make
NPs more practical, we partition research pipelines into two parts: (i) incorporating
various inductive biases in the functional representation to accommodate complicated
scenarios and (ii) making diagnoses with respect to the inference suboptimality of vanilla
NPs and improving the model from an optimization perspective.

For the first part, we report our developed models and discoveries in Chapters
(3)/(4)/(5). We believe the inductive bias plays a crucial role in generalizing NPs to
various scenarios: DSVNP (Wang and Van Hoof, 2020) suits function datasets with high
dimensional inputs/outputs well, MoE-NP (Wang and Van Hoof, 2022a) can recover
functions with diverse components, and GSSM+APS (Wang and Van Hoof, 2022b)
learns optimal representations of value functions/policies in data efficient control. The
effectiveness of the functional representations with mentioned models are examined in
a wide range of benchmarks: uncertainty quantification in image classification, curve
fitting in stochastic processes, physics system identification, image completion, and meta
reinforcement learning.

For the second part, in Chapter (6), we start with objectives in NPs families and then
build connections between evidence lower bounds (ELBOs), maximum likelihood objec-
tives with Monte Carlo estimates, and Self-normalized Importance weighted objectives.
We do not modify the neural architecture of NPs, but focus on the optimization objective.
In this chapter, we theoretically show that training within the expectation maximization
framework can bring a functional representation with an improvement guarantee over the
likelihood of function datasets. The resulting SI-NP (Wang et al., 2022) can unify most
NP models and shows significant performance advantages over typical baselines. Such
discovery is quite encouraging, and SI-NP can be combined with any inductive biases for
NPs, e.g. translation equivariance (Gordon et al., 2020), attention modules (Kim et al.,
2019), mixture of experts (Wang and Van Hoof, 2022a) and graph structures (Wang and
Van Hoof, 2022b), to release the potential of functional representations further.

To conclude, we have proposed various techniques in improving the functional rep-
resentation with deep latent variable models. Admittedly, learning exact functional
representations is difficult. There remain a series of issues to investigate in the future:

89

C O N C L U S I O N

More Inductive Biases & Advanced Inference Methods. Available inductive biases
and probabilistic inference methods play different but critical roles in learning functional
representations. The design and choice of structural inductive biases depend on the trait
of functional representation problems. For example, spatio-temporal datasets require
translation equivariance in the spatio-temporal domain, and this can inspire another in-
ductive bias used in functional representations. Concerning advanced inference methods,
it is an open question of how to avoid the functional prior collapse (refer to Chapter (6))
in the meta training process. These two core topics still deserve more attention in the
future.

Understanding Uncertainty and the Functional Representation. As known in this
domain, exact uncertainty quantification is a long-standing challenge for functions. In
the NP family, running multiple stochastic forward passes provides a way to measure the
uncertainty roughly. However, the connections between the learned variance parameters
in the functional prior and the estimated variance parameters in the output distribution
are not yet uncovered. At the same time, we need a general measure to quantify the
diversity and realism in generated functions. Another direction worth exploring is
the decomposition of uncertainty learned from the functional representation models.
Fine-grained uncertainty, such as aleatoric and epistemic uncertainty, will be helpful in
decision-making.

Real-World Application Scenarios. It is also necessary to explore the deployment of
the functional representation models in real-world scenarios: With partially collected
sequence information, there is the potential to generate the structure of molecules, which
can accelerate drug discovery. By analyzing the past sensory wildfire dataset, we can
develop the functional representation model to monitor wildfire situations and pose the
alert in advance. We believe our life will benefit from this family of interpretable and
generative models to an extent.

90

8

A P P E N D I C E S

This chapter provides all necessary supplementary materials for our developed methods
DSVNP in Chapter (3)/MoE-NP in Chapter (4)/GSSM-APS in Chapter (5)/SI-NP in
Chapter (6). These include proofs of propositions, lemmas and theorems, required neural
architectures, implementation details, and external experimental results.

A S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 3

A.1 Some Basic Concepts

At first, we revisit some basics, which would help us understand the properties of
GPs and NPs. Fundamental concepts include permutation invariant function (PIF),
general stochastic function process (GSFP) etc. We stress the importance of relationship
disentanglement between GPs and NPs and motivations in approximating stochastic
processes (SPs) in the main passage.

Definition 4 (Permutation Invariant Function) The f mapping a set of N M-dimension
elements to a D-dimension vector variable is said to be a permutation invariant function
if:

f : ×N
i=1R

M
i → R

D

x = [x1, . . . , xN] 7→ f =
[
f1(xπ(1:N)), . . . , fD(xπ(1:N))

] (8.1)

where xi is a M-dimensional vector, x1:N = [x1, x2, . . . , xN] is a set, operation π :
[1, 2, . . . , N] 7→ [π1, π2, . . . , πN] imposes a permutation over the order of elements in the
set. The PIF suggests the image of the map is regardless of the element order. Another
related concept permutation equivariant function (PEF) keeps the order of elements in
the output consistent with that in the input under any permutation operation π.

f : ×N
i=1R

M
i → R

N

xπ = (xπ1 , . . . , xπN) 7→ fπ = π ◦ f(x1:N)
(8.2)

The Definition (4) is important since the exchangeable stochastic function process of
our interest in this domain is intrinsically a distribution over set function, and PIF plays
an inductive bias in preserving invariant statistics.

Permutation invariant functions are candidate functions for learning embeddings of a
set or other order uncorrelated data structure X1:N , and several examples can be listed in
the following forms.

91

A P P E N D I C E S

Example 2 (Permutation Invariant Functions) Some structure with mean/summation
over the output:

F(Xπ(1:N)) =
(1
N

ΣN
i=1ϕ1(xi), . . . ,

1
N

ΣN
i=1ϕM(xi)

)
(8.3)

Example 3 (Permutation Invariant Functions) Some structure with Max/Min/Top k-
th operator over the output (Take maximum operator for example), such as:

F(Xπ(1:N)) =
(
maxi∈{1,2,...,N}ϕ1(xi), . . . , maxi∈{1,2,...,N}ϕM(xi)

)
(8.4)

Example 4 (Permutation Invariant Functions) Some structure with symmetric higher
order polynomials or other functions with a symmetry bi-variate function ϕ:

F(Xπ(1:N)) =
(
Σi, j={1,2,...,N}ϕ1(xi, x j), . . . , Σi, j={1,2,...,N}ϕM(xi, x j)

)
(8.5)

The invariant property is easy to be verified in these cases, and note that in all settings
of NP family in this paper, Eq. (8.3) is used only. For the bi-variate symmetric function
in Eq. (8.5) or other more complicated operators would result in more flexible functional
translations, but additional computation is required as well. Some of the transformations
mentioned above are instantiations in DeepSet. Further investigations in this domain can
exploit these higher order permutation invariant neural networks into NPs since more
correlations or higher order statistics in the set can be mined for prediction. Additionally,
Set Transformer is believed to be powerful in a permutation invariant representation.

Definition 5 (General Stochastic Function Process) Let X denote the Cartesian prod-
uct of some intervals as the index set and let dimension of observations d ∈N. For each
k ∈N and any finite sequence of distinct indices x1, x2, .., xk ∈ X, let ν(x1, x2, .., xk) be
some probability measure over (Rd)k. Suppose the used measure satisfies Kolmogorov
Extension Theorem, then there exists a probability space (Ω,F ,P), which induces a
general stochastic function process (GSFP) F : X ×Ω → Rd, keeping the property
ν(x1,x2,..,xk)(C1 × C2 × ... × Ck) = P(F (x1) ∈ C1,F (x2) ∈ C2, ...,F (xk) ∈ Ck) for all
xi ∈ X, d ∈N and measurable sets Ci ∈ Rd.

The Definition (5) presents an important concept for stochastic processes in high-
dimensional cases, and this is a general description for the task to learn in mentioned
related works. This includes but is not limited to GPs and characterizes the distribution
over the stochastic function family.

A.2 Proof of Proposition 1

As we know, a Gaussian distribution is closed under marginalization, conditional prob-
ability computation, and some other trivial operations. Here the statistical parameter
invariance towards the order of the context variables in per sample predictive distribution
would be demonstrated.

Given a multivariate Gaussian as the context

X = [x1, x2, . . . , xN]
T ∼ N(X; [µ1, µ2, . . . , µN]

T , Σ(x1, x2, . . . , xN))

92

A S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 3

, and for any permutation operation over the order π : [1, 2, . . . , N] → [π1, π2, . . . , πN],
there exist a permutation matrix Pπ = [eT

π1
, eT
π2

, . . . , eT
πN
], where only the πi-th position is

one with the rest zeros. Naturally, it results in a permutation over the random variables in
coordinates.

Pπ[x1, x2, . . . , xN]
T = [xπ1 , xπ2 , . . . , xπN]

T = Xπ (8.6)

The random variable Xπ follows another multivariate Gaussian as

Xπ ∼ N(Xπ; Pπµ, PπΣPT
π) = N(Xπ; µπ, Σπ)

. In an elementwise way, we can rewrite the statistics in the form as follows.

E[xπi] = µπi

σπls = eT
l Σπes = eT

l PπΣPT
π es = eπlΣeπs = cov(xπl , xπs)

(8.7)

Notice in Eq. (8.7), the statistics are permutation equivariant now.
As the most critical component in GPs, the predictive distribution conditioned on the

context D = [X1:N , Y1:N] can be analytically computed once GPs are well trained and
result in some mean function mθ.

p(y∗|Y1:N) = N(y∗|µ̃, σ̃2)

µ̃ = mθ(x∗) + Σx∗,DΣ−1
D,D(yD −mθ(xD))

σ̃2 = σ2
x∗,x∗ − Σx∗,DΣD,DΣD,x∗

(8.8)

Similarly, after imposing a permutation π over the order of elements in the context, we
can compute the first and second order of statistics between Dπ = [Xπ(1:N), Yπ(1:N)] and
per target point [x∗, y∗].

Σx∗,Dπ = Σx∗,DPT
π = PπΣD,x∗

Σ−1
Dπ,Dπ

= PπΣ−1
D,DPT

π

yDπ −mθ(xDπ) = Pπ(yD −mθ(xD))

(8.9)

Hence, with the property of orthogonality of permutation matrix Pπ, it is easy to verify
the permutation invariance in statistics for per target predictive distribution.

Σx∗,DΣ−1
D,D(yD −mθ(xD)) = Σx∗,DπΣ

−1
Dπ,Dπ

(yDπ −mθ(xDπ))

Σx∗,DΣD,DΣD,x∗ = Σx∗,DπΣDπ,DπΣDπ,x∗
(8.10)

To inherit such a property, NP employs a permutation invariant function in embeddings,
and the predictive distribution in NP models is invariant to the order of context points.
Also, when multiple target samples exist in the predictive distribution, it is trivial that
the statistics between the context and the target in a GP predictive distribution are
permutation equivariant in terms of the order of target variables.

93

A P P E N D I C E S

A.3 Proof of DSVNP as Exchangeable Stochastic Process

In the main passage, we formulate the generation of DSVNP as:

ρx1:N+M(y1:N+M) =
x N+M∏

i=1

p(yi|zG, zi, xi)p(zi|xi, zG)p(zG)dz1:N+MdzG (8.11)

which indicates the scenario of any finite collection of random variables in y-space. Our
intention is to show this induces an exchangeable stochastic process. Equivalently, two
conditions for Kolmogorov Extension Theorem are required to be satisfied.

• Marginalization Consistency. Generally, when the integral is finite, the swap
of orders in integration is allowed. Without exception, Eq. (8.11) is assumed to
be bounded with some appropriate distributions. Then, for the subset of indexes
{N + 1, N + 2, . . . , N + M} in random variables y, we have:∫

ρx1:N+M(y1:N+M)dyN+1:N+M =
y N+M∏

i=1

p(yi|zG, zi, xi)

p(zi|xi, zG)p(zG)dz1:N+MdzGdyN+1:N+M

=
x N∏

i=1

p(yi|zG, zi, xi)p(zi|xi, zG)
[x N+M∏

i=N+1

p(yi|zG, zi, xi)p(zi|xi, zG)

dyN+1:N+MdzN+1:N+M
]
p(zG)dzGdz1:N

=
x N∏

i=1

p(yi|zG, zi, xi)p(zi|xi, zG)p(zG)dz1:NdzG = ρx1:N (y1:N)

(8.12)

hence, the marginalization consistency is verified.

• Exchangeability Consistency. For any permutation π towards the index set
{1, 2, . . . , N}, we have:

ρx1:N (y1:N) =
x N∏

i=1

p(yi|zG, zi, xi)p(zi|xi, zG)p(zG)dz1:NdzG

=
x N∏

i=1

[
p(yπi |zG, zπi , xπi)p(zπi |xπi , zG)dzπi

]
p(zG)dzG

=
x N∏

i=1

p(yπi |zG, zπi , xπi)p(zπi |xπi , zG)p(zG)dzπ(1:N)
dzG = ρxπ(1:N)

(yπ(1:N))

(8.13)

hence, the exchangeability consistency is demonstrated as well.

With properties in Eq. (8.12) and (8.13) verified, our proposed DSVNP is an exchange-
able stochastic process in this case.

94

A S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 3

A.4 Derivation of Evidence Lower Bound for DSVNP

Akin to vanilla NPs, we assume the existence of a global latent variable zG, which captures
summary statistics consistent between the context [xC , yC] and the complete target
[xT , yT]. With the involvement of an approximate distribution q

(
zG |[xC , yC , xT , yT]

)
, we

can naturally have an initial ELBO in the following form.

ln
[
p(y∗|xC , yC , x∗)

]
= ln

[
Eq(zG |xC ,yC ,xT ,yT)p(y∗|zG, x∗)

p(zG |xC , yC)

q(zG |xC , yC , xT , yT)

]
≥ Eq(zG |xC ,yC ,xT ,yT) ln

[
p(y∗|zG, x∗)

]
− DKL

[
q(zG |xC , yC , xT , yT) ∥ p(zG |xC , yC)

]
(8.14)

Note that in Eq. (8.14), the conditional prior distribution p(zG |xC , yC) is intractable
in practice, and the approximation is used here, and such a prior is employed to
infer the global latent variable in testing processes. For the approximate posterior
q(zG |xC , yC , xT , yT), it uses the context and the full target information, and the sample
[x∗, y∗] is just an instance in the full target.

Further, by introducing a target specific local latent variable z∗, we can derive another
ELBO for the prediction term on the right side of Eq. (8.14) with the same trick.

Eq(zG |xC ,yC ,xT ,yT) ln
[
p(y∗|zG, x∗)

]
= Eq(zG |xC ,yC ,zT ,yT) ln

[
Eq(z∗|zG,[x∗,y∗])p(y∗|zG, z∗, x∗)

p(z∗|zG, x∗)
q(z∗|zG, [x∗, y∗])

]
≥ Eq(zG |xC ,yC ,xT ,yT)Eq(z∗|zG,[x∗,y∗]) ln

[
p(y∗|zG, z∗, x∗)

]
−Eq(zG |xC ,yC ,xT ,yT)

[
DKL[q(z∗|zG, [x∗, y∗]) ∥ p(z∗|zG, x∗)]

]
(8.15)

With the combination of Eq. (8.14) and (8.15), the final ELBO L as the right term in
the following is formulated.

ln
[

p(y∗|xC , yC , x∗)︸ ︷︷ ︸
implicit data likelihood

]
≥ Eqϕ1(zG)

Eqϕ2(z∗)
ln[p(y∗|zG, z∗, x∗)︸ ︷︷ ︸

data likelihood

]

−Eqϕ1(zG)
[DKL[q(z∗|zG, x∗, y∗) ∥ p(z∗|zG, x∗)︸ ︷︷ ︸

local prior

]
]

−DKL
[
q(zG |xC , yC , xT , yT) ∥ p(zG |xC , yC)︸ ︷︷ ︸

global prior

] (8.16)

The real data likelihood is generally implicit, and the ELBO is an approximate ob-
jective. Note that the conditional prior distribution in Eq. (8.16), p(z∗|zG, x∗) functions
as a local latent variable and is approximated with a Gaussian distribution for the sake
of easy implementation. With reparameterization trick, used as: zG = µϕ1 + ϵ1σϕ1 and

95

A P P E N D I C E S

Table 12: Pointwise Average Negative Log-likelihoods for 2000 realizations. Rows with
J consider all data points, including the context, while those with P exclude the context
points in statistics. (Figures in brackets are variances.)

Prediction CNP NP AttnNP DSVNP

Inter(J) NaN -0.958±2E-5 -1.149±8E-6 -0.975±2E-5
Inter(P) -0.802±1E-6 -0.949±2E-5 -1.141±6E-6 -0.970±2E-5
Extra(J) NaN 8.192±7E1 8.091±7E2 4.203±9E0
Extra(P) 1.764±1E-1 8.573±8E1 8.172±7E2 4.303±1E1

z∗ = µϕ2 + ϵ2σϕ2 , we can estimate the gradient towards the sample (x∗, y∗) analytically
in Eq. (8.17), (8.18) and (8.19).

∂L

∂ϕ1
= Eϵ1∼N(0,I)Eϵ2∼N(0,I)

∂

∂ϕ1
ln

[
p(y∗|µϕ1 + ϵ1σϕ1 , µϕ2 + ϵ2σϕ2 , x∗)

]
−Eϵ1∼N(0,I)

∂

∂ϕ1
DKL

[
q(µϕ2 + ϵ2σϕ2 |µϕ1 + ϵ1σϕ1 , x∗, y∗) ∥ p(µϕ2 + ϵ2σϕ2 |µϕ1 + ϵ1σϕ1 , x∗)

]
−Eϵ1∼N(0,I)

∂

∂ϕ1
DKL

[
q(µϕ1 + ϵ1σϕ1 |xC , yC , xT , yT) ∥ p(µϕ1 + ϵ1σϕ1 |xC , yC)

]
(8.17)

∂L

∂ϕ2
= Eϵ1∼N(0,I)Eϵ2∼N(0,I)

∂

∂ϕ2
ln

[
p(y∗|µϕ1 + ϵ1σϕ1 , µϕ2 + ϵ2σϕ2 , x∗)

]
−Eϵ1∼N(0,I)

∂

∂ϕ2
DKL

[
q(µϕ2 + ϵ2σϕ2 |µϕ1 + ϵ1σϕ1 , x∗, y∗) ∥ p(µϕ2 + ϵ2σϕ2 |µϕ1 + ϵ1σϕ1 , x∗)

]
(8.18)

∂L

∂θ
= Eϵ1∼N(0,I)Eϵ2∼N(0,I)

∂

∂θ
ln

[
pθ(y∗|µϕ1 + ϵ1σϕ1 , µϕ2 + ϵ2σϕ2 , x∗)

]
(8.19)

A.5 Implementation Details in Experiments

Unless explicitly mentioned, otherwise we make of an one-step amortized transfor-
mation as dim lat 7→ [µ lat, lnσ lat] to approximate parameters of the posterior in
NP models. Especially for DSVNP, the approximate posterior of a local latent vari-
able is learned with the neural network transformation in the approximate posterior
[dim lat, dim latx, dim laty] 7→ dim lat and the prior network [dim lat, dim latx] 7→
dim lat. (For the sake of simplicity, these are not further mentioned in tables of neural
structures.) All models are trained with Adam and implemented on Pytorch.

96

A S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 3

Table 13: Neural Network Structure of (C)NP Models for 1-D Stochastic Process. The
transformations in the table are in linear form, followed by ReLU activation mostly. And
Dropout rate for DNN is defined as 0.5 for all transformation layers in Encoder. As
for AttnNP and DSVNP, the encoder network is doubled in the table since some local
variable exists for prediction.

NP Models Encoder Decoder

CNP&NP [dim x, dim y] 7→ 32 7→ 32 7→ dim lat [dim x, dim lat] 7→ 2 ∗ dim y

AttnNP&DSVNP [dim x, dim y] 7→ 32 7→ 32 7→ dim lat [dim x, 2 ∗ dim lat] 7→ 2 ∗ dim y

Synthetic Experiments

For synthetic experiments, all implementations resemble that in Attentive NPs 1. More-
over, the neural structures for NPs are reported in Table (13), where dim lat is 128. Note
that for the amortized transformations in encoders of NP, AttnNP and DSVNP, we use the
network to learn the distribution parameters as: dim lat 7→ [µlat, lnσlat]. In the training
process, the maximum number of iterations for all (C)NPs is 800k,, and the learning rate
is 5e-4. For the testing process, the maximum number of context points in interpolation
tasks is 50, while that in extrapolation tasks is 200. Note that the coefficient for KL
divergence terms in (C)NPs is set 1 as default. However, for DSVNP, we assign more
penalty to KL divergence term of a local latent variable to avoid overfitting, where the
weight is set β2 = 1000 for simplicity. Admittedly, more penalty to such a term reduces
prediction accuracy, and some dynamically tuning such parameter would bring some
promotion in accuracy.

System Identification Experiments

In the Cart-Pole simulator, the input of the system is the vector of the coordinate/angle
and their first order derivative and a random action [xc, θ, x′c, θ′, a], while the output is
the transited state in the next time step [xc, θ, x′c, θ′]. The force as the action space ranges
between [-10,10] N, where the action is a randomly selected force value to impose in the
system. For the training dataset from 6 configurations of environments, we sample 100
state transition pairs for each configuration as the maximum context points. These context
points work as the identification of a specific configuration. The neural architectures for
CNP, NP, AttnNP and DSVNP refer to Table (14), and default parameters are listed in
{dim latxy = 32, dim lat = 32, dim h = 400}. All neural network models are trained
with the same learning rate 1e-3. The batch size and the maximum number of epochs
are 100. For AttnNP, we notice the generalization capability degrades with the training
process, so early stopping is used. For DSVNP, the regularization weight is set as
{β1 = 1, β2 = 5}, while the KL divergence term weight is fixed as 1 for NP and AttnNP.

1 https://github.com/deepmind/neural-processes

97

A P P E N D I C E S

Table 14: Neural Network Structure of (C)NP Models in System Identification Tasks.
The transformations in the table are linear, followed with ReLU activation mostly. As
for AttnNP and DSVNP, the encoder network is doubled in the table since some local
variable exists for prediction. Here only dot product attention is used in AttnNP.

NP Models Encoder Decoder

[dim x, dim y] 7→ dim latxy 7→ dim latxy︸ ︷︷ ︸
2 times

[dim x, dim lat] 7→ dim h 7→ dim h

CNP&NP dim latxy 7→ dim lat. dim h 7→ 2 ∗ dim y

[dim x, dim y] 7→ dim latxy 7→ dim latxy︸ ︷︷ ︸
2 times

[dim x, 2 ∗ dim lat] 7→ dim h 7→ dim h

AttnNP&DSVNP dim x 7→ dim latx;
[dim latx, dim laty] 7→ dim lat. dim h 7→ 2 ∗ dim y

Multi-output Regression Experiments

SARCOS records inverse dynamics for an anthropomorphic robot arm with seven degree
freedoms, and the mission is to predict 7 joint torques with 21-dimensional state space (7
joint positions, 7 joint velocities and 7 accelerations). WQ targets to predict the relative
representation of plant and animal species in Slovenian rivers with some physical and
chemical water quality parameters. SCM20D is some supply chain time series dataset
for many products, while SCFP records online click logs for several social issues.

Before data split, standardization over input and output space is operated on a dataset,
scaling each dimension of the dataset in zero mean and unit variance 2. Such pre-
processing is required to ensure the stability of training. Also, we find that directly
treating the data likelihood term as some Gaussian and optimizing the negative log-
likelihood of Gaussian to learn both mean and variance do harm to the prediction.
Hence average MSE is selected as the objective. As for the variance estimation for
uncertainty, Monte Carlo estimation can be used. For all dataset, we employ the neural
structure in Table (15), and default parameters in Encoder and Decoder are in the list
{dim h = 100, dim latx = 32, dim laty = 8, dim lat = 64}. The learning rate for
Adam is selected as 1e-3, the batch size for all datasets is 100, the maximum number
of context points is randomly selected during training, and the maximum epochs in
training are up to the scale of the dataset and convergence condition. Here the maximum
epochs are respectively 300 for SARCOS, 3000 for SCM20D, and 5000 for WQ. For
the testing process, 30 data points are randomly selected for each batch’s prediction
context. Also, the hyper-parameters as the weights of KL divergence term are the same
in implementation as one without additional modification in this experiment.

2 https://scikit-learn.org/stable/modules/preprocessing.html

98

A S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 3

Table 15: Neural Network Structure of (C)NP Models in Multi-Output Regression Tasks.
The transformations in the table are linear, followed with ReLU activation mostly. And
Dropout rate for DNN is defined as 0.01 for all transformation layers in Encoder. As for
AttnNP and DSVNP, the encoder network is doubled in the table since there exist some
local variable for prediction. Here only dot product attention is used in AttnNP.

NP Models Encoder Decoder

DNN(MC-Dropout) dim x 7→ dim h 7→ dim h︸ ︷︷ ︸
2 times

dim lat 7→ dim h

dim h 7→ dim lat dim h 7→ dim y

dim x 7→ dim h 7→ dim h︸ ︷︷ ︸
2 times

7→ dim latx [dim latx, dim lat] 7→ dim h

CNP&NP dim y 7→ dim laty;
[dim latx, dim laty] 7→ dim lat. dim lat 7→ dim y

dim x 7→ dim h 7→ dim h︸ ︷︷ ︸
2 times

7→ dim latx [dim latx, 2 ∗ dim lat] 7→ dim h

AttnNP&DSVNP dim y 7→ dim laty;
[dim latx, dim laty] 7→ dim lat. dim lat 7→ dim y

Image Classification and O.O.D. Detection

The implementations of NP related models and the Monte-Carlo Neural Network are
pretty similar. On MNIST task, the feature extractor for images is taken as LeNet-like
structure as [20, ’M’, 50, ’F’, ’500’]3, and the decoder is one-layer transformation. On
CIFAR10 task, the extractor is parameterized in VGG-style network as [64, 64, ’M’, 128,
128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 512, 512, ’M’, 512, 512, 512, 512, ’M’]4, and
the decoder is also one-layer transformation from latent variable to label output in softmax
form. Other parameters are in the list {dim latx = 32, dim laty = 64, dim lat = 64}
for MNIST and {dim latx = 32, dim laty = 64, dim lat = 128}. Both labels are
represented in a one-hot encoding way and then further transformed to some continuous
embedding. Batch size in training is 100 as default, the number of context samples
for NP related models is randomly selected no larger than 100 in each batch, while the
optimizer Adam is with learning rate 1e−3 for MNIST task and 5e−5 for CIFAR10 task.
The maximum epochs for both are 100 in both cases, and the size of all sources and o.o.d.
dataset is 10000. Dropout rates for MC-Dropout in encoder networks are respectively
0.1 and 0.2 for LeNet-like ones and VGG-like ones. In the testing process, 100 samples
from the source dataset are randomly selected as the context points.

Before the prediction process (estimating predictive entropies on both domain dataset
and o.o.d dataset), images on MNIST are normalized in the interval [0, 1], those on
CIFAR10 are standardized as well, and all o.o.d. datasets follow a similar way as that on
MNIST or CIFAR10. More specifically, the Rademacher dataset is generated in the way:

3 Numbers are dimensions of Out-Channel with kernel size 5, ’F’ is flattening operation, and each layer is
followed with ReLU activation.

4 Numbers are dimensions of Out-Channel with kernel size 3 and padding 1 in each layer, followed with
BatchNorm and ReLU function, here M means max-polling operation.

99

A P P E N D I C E S

Table 16: Neural Network Structure of (C)NP Models in Image Classification Tasks. The
transformations in the table are linear, followed by ReLU activation mostly. And Dropout
rate for DNN is defined as 0.5 for all transformation layers in Encoder. As for AttnNP
and DSVNP, the encoder network is doubled in the table since some local variables exist
for prediction.

NP Models Encoder Decoder

DNN(MC-Dropout) dim x 7→ dim h︸ ︷︷ ︸
embedding net

dim lat 7→ dim y

dim h 7→ dim lat

dim x 7→ dim h︸ ︷︷ ︸
embedding net

7→ dim latx

CNP&NP dim y 7→ dim laty; [dim latx, dim lat] 7→ dim y
[dim latx, dim laty] 7→ dim lat.

dim x 7→ dim h︸ ︷︷ ︸
embedding net

7→ dim latx

AttnNP&DSVNP dim y 7→ dim laty; [dim latx, 2 ∗ dim lat] 7→ dim y
[dim latx, dim laty] 7→ dim lat.

place bi-nominal distribution with probability 0.5 over in image-shaped tensor and then
minus 0.5 to ensure the zero-mean in statistics. A similar operation is taken in uniform
cases, while the Gaussian o.o.d. dataset is from standard Normal distribution. All results
are reported in Table (6).

100

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

B.1 Frequently Asked Questions

Here we collected some frequently asked questions from reviewers and other literature
researchers. We thank these reviewers for these precious questions and add more
explanations.

Selection of Benchmarks. Admittedly, NP variants can be applied to a series of
downstream tasks. Our selection of benchmark missions is based on existing literature
for NP models. The system identification task was previously investigated with NP
variants in work (Galashov et al., 2019; Volpp et al., 2020), in which learning transferable
physics dynamics with NPs is a crucial application. The image completion task is
more commonly used in work (Zintgraf et al., 2019; Garnelo et al., 2018a,b). The meta
reinforcement learning task can also be studied within NP framework (Gondal et al.,
2021; Eslami et al., 2018).

NP Family in Classification Tasks. We have tried to search neural architectures for
few-shot image classification tasks, but the performance is not ideal compared to other
metrics based methods. Meanwhile, we have gone through most NP related work, and it
is challenging to achieve SOTA few-shot image classification results with standard neural
architectures in NPs, e.g. multi-layer perceptrons (MLPs). Maybe this is due to the
nature of stochastic processes, which can address regression problems more efficiently.
Unless specialized modules instead of MLPs are used, we do not expect NP variants
with MLPs can achieve SOTA performance. The aim of this paper focuses more on a
mixture of expert inductive biases and places less attention on neural architecture search.
So MLPs are shared across all baselines to enable a fair comparison.

Expressiveness of Mixture of Expert Inductive Biases. A natural question about
learning diverse functional representation is whether these multiple expert latent variables
will collapse into one. We refer the collapsed representation to vanilla (C)NPs, and the
previous empirical results show the collapsed ones work poorer than the mixture of expert
ones in both few-shot regression tasks and meta reinforcement learning tasks. Also,
from the multimodal simulation result, we discover that both latent assignment variables
and expert variables are meaningful, which reflects the effectiveness of mixture expert
inductive biases. That means we have not encountered meta representation collapse
issues in experiments.

Extension with other Mixture of Experts Models. Our work is the first to examine
MoEs inductive biases in NPs family, and the used MoE module is an amortized inference
one. We have not found a trivial implementation of MoEs in the meta learning domain.
Nevertheless, in MoEs literature, other more effective MoE models exist, which can
better trade-off communication/memory and performance. So NPs families can also be
combined with these models, such as GShard (Lepikhin et al., 2020), Deepsepeed MoEs
(Rajbhandari et al., 2022) and etc.

101

A P P E N D I C E S

Potential Applications in Industry. Here we provide two available applications with
MoE-NPs in the industry. One is in multilingual machine translation or multilingual
language auto-completion. In this case, a mixture of experts corresponds to multilingual
functional priors for multi-modal signals (Shi et al., 2019) and enables the prediction with
partial observations. Another application lies in modelling irregular time series (Kidger
et al., 2020; Schirmer et al., 2022). In this case, diverse experts can handle discontinuous
components in a wealthy family of stochastic functions. Meanwhile, the entropy of
learned assignment latent variables can tell us the regions likely to be discontinuous,
which is quite helpful in anomaly detection in a black-box system.

B.2 Probabilistic Graphs in Meta Training/Testing

As exhibited in Fig. (25)/(26), shown are computational diagrams when implementing
MoE-NPs in meta learning tasks.

Variational Posteriors. Since the real posteriors for both {zk}
K
k=1 and eT are computation-

ally intractable, the approximate ones are used in practice. These are called variational
posteriors, e.g. qϕ1,k for an expert latent variable zk and qϕ2,1(e|x, y, z1:K) for assignment
latent variables e. For the sake of simplicity, we denote {qϕ1,k}

K
k=1 by qϕ1 in some time.

Importantly, the Gumbel-softmax trick (Jang et al., 2016) is used to sample assignment
latent variable e from categorical approximate distributions.

Variational Priors. In some cases, the prior distributions for {zk}
K
k=1 and eT are set to

constrain the scope of prior distributions. For example, in few-shot supervised learning,
since the context and the target have the same form, the variational prior is selected
to be qϕ1 as well to ensure consistency, and this works in meta-testing phases. For the
assignment latent variable e, this uses the same form in conditional VAE (Sohn et al.,
2015) as pϕ2,2 .

(a) Inference Process (b) Generative Process

Figure 25: Computational Diagram in Few-shot Supervised Learning. Blue dotted lines
are for expert latent variables, while red dotted lines are for assignment latent variables
in inference.

102

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

Figure 26: Computational Diagram in Meta Reinforcement Learning. This is in an
information bottleneck form (Rakelly et al., 2019; Gondal et al., 2021). The variational
posteriors are pϕ,k = qϕ1,k(z|D

C
τ) and qϕ2 = qϕ1,k(e|s, z1:K). As for the variational prior,

we use the same strategy as that in (Rakelly et al., 2019). They are respectively the fixed
normal p(z) = N(0, I) and the categorical p(e) = Cat(e; K, [1

K , 1
K , . . . , 1

K]).

B.3 More Descriptions of NP Family Models and Meta RL

In the main paper, we unify the description of NP family models in both few-shot super-
vised learning and meta reinforcement learning. This is the same as that in FCRL (Gondal
et al., 2021). Meta learning in NP related models is to learn functional representations of
different tasks and formulate the fast adaptation via inferring the task specific conditional
distribution p(DT

τ |D
C
τ) =

∫
p(DT

τ |z)p(z|DC
τ)dz (equivalent to Eq. (4.1)).

To clarify the downstream reinforcement learning task using NP family models, we
add the following explanations. In few-shot supervised learning, DC

τ and DT
τ are of

the same form. However, in context-based meta reinforcement learning, DC
τ is a set

of task-specific transitions, and DT
τ is a set of state (action) values. As a result, the

approximate posteriors and the selected priors to resolve Eq. (4.1) are distinguished in
separate meta learning cases.

In context-based meta reinforcement learning, we can translate our problem into find-
ing the distribution of optimal value functions in Eq. (4.5); this corresponds to learning
meta critic modules with NP family models. Given a transition sample [s, a, r(s, a), s′],
the target input is the state xT = s and the target output is the temporal difference target
yT = Q̂(s, a) = r(s, a) + γV([s′, z′]). The standard Gaussian distribution is used as the
prior p(zk) = N(0, I) in Eq. (4.14), while the approximate posterior is learned fromDC

τ

with permutation invariant functions.

In total, sampling from the state-dependent approximate posterior z ∼ qϕ(z|s,DC
τ)

corresponds to Eq. (8.20), where the operator ⊙ denotes the selection process with help
of Hadamard products.

z1:K ∼ qϕ1(z1:K |D
C
τ), e ∼ qϕ2(e|s, z1:K), z = z1:K ⊙ e (8.20)

103

A P P E N D I C E S

B.4 MoE-NPs as Exchangeable SPs

Generative Processes

To better understand our developed model in meta learning scenarios, we translate Eq.
(4.6) into a step-wise generative process. The same with that in the main paper, the task
distribution is denoted by p(T), and we presume K-experts to summarize the stochastic
traits of a task.

τ ∼ p(T), zk ∼ p(zk|T) ∀k ∈ {1, 2, . . . , K} (8.21a)

x ∼ p(x), e ∼
K∏

k=1

αk(x, z1:K)
I[ek=1], z = [z1, z2, . . . , zK]

T ⊙ e (8.21b)

[µx, Σx] = gθ(x, z), y ∼ N(µx, Σx + ϵ2I) (8.21c)

Here a MoE-NP for the task τ is specified with K-expert latent variables z1:K in Eq.
(8.21.a). The probability mass function for a data point related categorical distribution
Cat(K,α(x, z1:K)) is denoted by p(e|x, z1:K) =

∏K
k=1 αk(x, z1:K)I[ek=1] in Eq. (8.21.b),

and e is an assignment latent variable to select an expert for the generative process. After
that, the distributional parameters for the output of a data point are learned via a function
gθ in Eq. (8.21.c), followed by the output distribution N(µx, Σx + ϵ2I).

Note that a collection of sampled functional experts are represented in a vector of
variables z1:K = [z1, z2, . . . , zK]T and e = [0, · · · , 1︸︷︷︸

k-th position

, · · · , 0]T ⇔ ek = 1 is a one-

hot vector in Eq. (8.21.b). In Eq. (8.21.c), the expert is selected in a way z = z1:K ⊙ e.
For the sake of generality, irreducible noise N(0, ϵ2I) is injected into the output. In
experiments, K-expert latent variables z1:K , as well as discrete assignment latent variables
e, are non-observable.

Consistency Properties

Remember that the generative model is induced in the main paper as follows. And we
claim that our designed generative model MoE-NP formulates a family of exchangeable
SP in Definition (5).

ρx1:N (y1:N) =

∫ K∏
k=1

p(zk)
N∏

i=1

 K∑
k=1

p(yi|xi, z1:K , ek = 1)p(ek = 1|xi, z1:K)

 dz1:K

(8.22)

So it is necessary to verify two formerly mentioned consistencies according to Kol-
mogorov Extension Theorem (Bhattacharya and Waymire, 2009) and de Finetti’s Theo-
rem (De Finetti, 1937). This is to show the existence of SPs in Eq. (8.22).

104

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

Exchangeability Consistency. For N data points from Eq. (8.22), we impose any
permutation operation σ over their indices, and this results in σ : [1, 2, . . . , N] →
[σ1,σ2, . . . ,σN]. Then we can check that the following equation is satisfied since the
element-wise product of probabilities can be swapped.

ρx1:N (y1:N) =

∫ K∏
k=1

p(zk)

 dz1:K

N∏
i=1

 K∑
k=1

p(yσi |xσi , z1:K , ek = 1)p(ek = 1|xσi , z1:K)

=

∫ K∏
k=1

p(zk)

 N∏
i=1

 K∑
k=1

p(yσi |xσi , z1:K , ek = 1)p(ek = 1|xσi , z1:K)

 dz1:K

= ρxσ(1:N)
(yσ(1:N)) □

(8.23)

Marginalization Consistency. Given the assumption that the integral in Eq. (8.22) is
finite, we pick up a subset of indices [M + 1, M + 2, . . . , N] and make M < N without
difference in orders. Furthermore, the result after marginalization over y-variable in the
selected indices can be verified based on the following equation.

∫
ρx1:N (y1:N)dyM+1:N =

∫ K∏
k=1

p(zk)

 dz1:K

∫ N∏
i=1

p(yi|xi, z1:K)dyM+1:N

=

x M∏
i=1

p(yi|xi, z1:K)
N∏

i=M+1

(p(yi|xi, z1:K)
K∏

k=1

p(zk)dz1:KdyM+1:N

=

∫ K∏
k=1

p(zk)

 dz1:K

M∏
i=1

 K∑
k=1

p(yi|xi, z1:K , ek = 1)p(ek = 1|xi, z1:K)

= ρx1:M(y1:M) □

(8.24)

Built on these two sufficient conditions, our developed MoE-NP is a well-defined
exchangeable SP.

B.5 Summary of Existing NP Related Models

Comparison in Technical Details

Here we give a summary of the difference between MoE-NPs and existing typical Neural
Process models in Table (23). Some crucial traits include forms of encoders and decoders
structures, types of latent variables, and inductive biases injected in modeling. Especially,
the inductive bias for MoE-NP is reduced to be multiple functional priors, which means a
collection of expert neural processes to induce the generated dataset. A general inductive
bias behind NPs related models is the modeling of exchangeable stochastic processes
with cheap computations. This corresponds to a distribution of functions, termed as

105

A P P E N D I C E S

functional in the Table. Note that the recognition model of NP models in Meta
Training Scenarios is replaced with qϕ(z|[xT , yT]) since all target points can be available,
but in Meta Testing Scenarios, only [xC , yC] are accessible.

Time Complexity

As for running time complexity, the vanilla NPs and CNPs are with O(N + M), while
MoE-NPs are with O(K ∗ (N + M)) (making M predictions with N observations). In
practice, the number of experts is small, so the increase in running time complexity can
be ignored in practice. In contrast, traditional Gaussian processes are O((N + M)3) in
terms of running time complexity.

Table 17: Summary of Typical Neural Process Related Models (Meta-Testing Scenarios).
The recognition model and the generative model respectively correspond to the encoder
and the decoder in the family of neural processes.

Models Recognition Model Generative Model Inductive Bias

CNP (Garnelo et al., 2018a) z = fϕ(xC , yC) pθ(y|[x, z]) conditional functional

NP (Garnelo et al., 2018b) qϕ(z|[xC , yC]) pθ(y|[x, z]) global functional

AttnNP (Kim et al., 2019, 2021) qϕ1(z|[xC , yC]) pθ(y|[x, z, z∗]) global functional
fϕ2(z∗|[xC , yC], x∗) local embedding

FCRL (Gondal et al., 2021) fϕ(z|[xC , yC]) pθ(y|[x, z]) contrastive functional

ConvNP (Foong et al., 2020) pϕ(z|[xC , yC]) pθ(y|[x, z]) convolutional functional

Conv-CNP (Gordon et al., 2020) fϕ(z∗|[xC , yC], x∗) pθ(y|[x, z∗]) convolutional functional

MoE-NP (Ours) qϕ1(z1:K |[xC , yC]) pθ(y|[x, z1:K , e]) multiple functional
qϕ2,1(e|z1:K , x, y) pϕ2,2(e|z1:K , x)

Additional Literature Review

We include other related works in this subsection. In unsupervised learning, the Neural
Statistician Model (Edwards and Storkey, 2017) is introduced to compute summary
statistics inside the dataset. The Generative Query Network (Eslami et al., 2018), a
variant of NPs for the visual sensory dataset, uses a latent variable to abstract scenes in
high dimensions. To capture heteroscedastic noise inside the stochastic process, DSVNP
(Wang and Van Hoof, 2020) induces latent variables at different levels. The functional
neural processes infer the directed acyclic graph in the latent space and formulate
flexible exchangeable stochastic processes for single task problems (Louizos et al., 2019).
Inspired by self-supervised learning, (Gondal et al., 2021; Mathieu et al., 2021) propose
to augment the neural process with contrastive losses. (Yoon et al., 2020) combines
context and recurrent memories to formulate sequential neural processes (SNPs). Though
there exist several NP variants, none of them consider injecting multiple functional
inductive biases in modeling.

106

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

B.6 Formulation of Evidence Lower Bounds

Since functional priors reflected in the K-expert latent variables z1:K are learned via
approximate distributions, this can be directly optimized within the variational inference
framework. So we leave these out in this discussion. The difficulty of optimization prin-
cipally comes from the involvement of discrete latent variables. We, therefore, discuss
the chance of using another traditional optimization algorithm, called Expectation Maxi-
mization (EM) (Moon, 1996), in our settings. Omitting the K-expert latent variables z1:K
and corresponding variational distributions, we take a closer look at the assignment latent
variable e in the logarithm likelihood as ln

(∑K
k=1 p(y|x, z1:K , ek = 1)p(ek = 1|x, z1:K)

)
and derive the corresponding EM algorithm.

Expectation(E)-Step: Note that the assignment variable e is discrete with the categorical
probability function p(e|x, z1:K) = Cat(e; K,α(x, z1:K)). This step is to update the
posterior of the proportional coefficients α(x, z1:K) based on the last time step model
parameters θ(t).

α
(t+1)
k = p(ek = 1|x, z1:K , y) ∝ p(ek = 1)pθ(t)(y|x, z1:K , ek = 1) (8.25)

Here the prior distribution p(e) can be a commonly used one Cat(K, [1
K , 1

K , . . . , 1
K]) or

the last time updated one p(t)(e). As a result, updated categorical distribution parameters
are:

α(t+1) =

α
(t+1)
1

α
(t+1)
2

...

α
(t+1)
K

=

exp
(
(ln

(
p
θ(t)

(y|x,z1:K ,e1=1)
)
)/τ

)
∑K

k=1 exp
(
(ln

(
p
θ(t)

(y|x,z1:K ,ek=1)
)
)/τ

)
exp

(
(ln

(
p
θ(t)

(y|x,z1:K ,e2=1)
)
)/τ

)
∑K

k=1 exp
(
(ln

(
p
θ(t)

(y|x,z1:K ,ek=1)
)
)/τ

)
...

exp
(
(ln

(
p
θ(t)

(y|x,z1:K ,eK=1)
)
)/τ

)
∑K

k=1 exp
(
(ln

(
p
θ(t)

(y|x,z1:K ,ek=1)
)
)/τ

)

(8.26)

where τ is the temperature parameter.

Maximization(M)-Step: Once the distributional parameter of assignment latent vari-
ables are updated, the next step is to maximize the logarithm likelihood as θ(t+1) =
arg maxθ

∑
(x,y)∈D ln

[
pθ(t)(y|x, z1:K , e)

]
given the last time updated model parameter θ(t).

With the help of gradient ascent, this can be written as follows,

θ(t+1) ← θ(t) + λ
∑

(x,y)∈D

∇θ ln
[
pθ(t)(y|x, z1:K , e)

]
,

with e = one hot[arg max
k
α(t+1)] ∀(x, y) ∈ D

(8.27)

107

A P P E N D I C E S

where λ is the learning rate.

Note that the coefficient α is data point dependent, and the derivation of EM algorithms
considers a subset of data pointsD. However, in meta learning scenarios, we handle large-
scale datasets, and the above-mentioned EM framework is computationally expensive
and impractical. Due to these considerations, we do not apply EM algorithms to estimate
the discrete distribution and instead variational inference is employed for the assignment
latent variable in optimization.

Variational Distributions

For continuous latent variables, diagonal Gaussians are commonly used as variational
distributions. With Gaussian variational posteriors N(z; µ, Σ) and corresponding priors
N(z; µp, Σp), the Kullback–Leibler Divergence can be analytically computed as follows.

DKL[N(z; µ, Σ) ∥ N(z; µp, Σp)] =
1
2
[ln
|Σp|

|Σ|
− d + (µ − µp)

T Σ−1
p (µ − µp)

+Tr{Σ−1
p Σ}]

(8.28)

Meanwhile, when it comes to categorical distributions, the corresponding prior distri-
bution is selected as Cat(K,α0) with distribution parameters α0 = [α0,1,α0,2, . . . ,α0,K].
And the Kullback–Leibler Divergence is computed as follows.

DKL[Cat(K,α∗) ∥ Cat(K,α0)] =
K∑

k=1

α∗,k ln
[
α∗,k

α0,k

]
(8.29)

When α0 = [1
K , 1

K , . . . , 1
K], the divergence is further simplified as follows.

DKL[Cat(K,α∗) ∥ Cat(K,α0)] =
K∑

k=1

α∗,k ln
[α∗,k
1/K

]
=

K∑
k=1

lnα∗,k + ln K (8.30)

Lower Bound on the Evidence for Few-Shot Supervised Learning

Since K-expert latent variables are independent in settings, we denote the corresponding
variational parameters by qϕ1 = {qϕ1,1 , qϕ1,2 , . . . , qϕ1,K }. ϕ1,k denotes parameters of
encoders for k-th expert model. Hence, the distribution follows that qϕ1(z1:K |D

C
τ) =∏K

k=1 qϕ1,k(zk|D
C
τ) and qϕ1(z1:K |D

T
τ) =

∏K
k=1 qϕ1,k(zk|D

T
τ).

Note that (x, y) ∈ DT
τ and the variational posterior for expert latent variables are

qϕ1(z1:K |D
T
τ) in the general NPs. As for the variational posterior for assignment latent

variables, we choose qϕ2,1(e|x, y, z1:K) as default. We will use these notations to formulate
the evidence lower bound (ELBO) as follows.

108

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

ln p(y|x,DC
τ) = ln

∫
p(y|x, z1:K)p(z1:K |D

C
τ)dz1:K

(8.31a)

≥ Eqϕ1 (z1:K |D
T
τ)
[ln p(y|x, z1:K)] − DKL[qϕ1(z1:K |D

T
τ) ∥ p(z1:K |D

C
τ)]

(8.31b)

= Eqϕ1 (z1:K |D
T
τ)

ln K∑
k=1

p(y, ek = 1|x, z1:K)

 − DKL[qϕ1(z1:K |D
T
τ) ∥ p(z1:K |D

C
τ)]

(8.31c)

= Eqϕ1 (z1:K |D
T
τ)

ln K∑
k=1

p(y|x, zk)p(ek = 1|x, z1:K)

 − DKL[qϕ1(z1:K |D
T
τ) ∥ p(z1:K |D

C
τ)]

(8.31d)

≥ Eqϕ1 (z1:K |D
T
τ)

[
Eqϕ2,1 (e|x,y,z1:K) [ln pθ(y|x, z1:K , e)]

]
(8.31e)

−Eqϕ1 (z1:K |D
T
τ)

DKL[qϕ2,1(e|x, y, z1:K)︸ ︷︷ ︸
variational discrete posteriors

∥ p(e|x, z1:K)]

(8.31f)

−

K∑
k=1

DKL[qϕ1,k(zk|D
T
τ)︸ ︷︷ ︸

K functional experts

∥ p(zk|D
C
τ)]

(8.31g)

≈ Eqϕ1 (z1:K |D
T
τ)

[
Eqϕ2,1 (e|x,y,z1:K) [ln pθ(y|x, z1:K , e)]

]
(8.31h)

−Eqϕ1 (z1:K |D
T
τ)

DKL[qϕ2,1(e|x, y, z1:K)︸ ︷︷ ︸
variational discrete posteriors

∥ pϕ2,2(e|x, z1:K)︸ ︷︷ ︸
variational discrete priors

]

(8.31i)

−

K∑
k=1

DKL[qϕ1,k(zk|D
T
τ)︸ ︷︷ ︸

K functional experts

∥ qϕ1,k(zk|D
C
τ)] = −L(θ, ϕ1, ϕ2) □

(8.31j)

By introducing the variational distribution qϕ2 for the discrete assignment latent vari-
able e, Eq.(8.31.d) is further bounded by Eq. (8.31.e-g). Recall that when vanilla NP
modules are used here, the approximate posterior in Eq. (8.31) in meta training should
be substituted with qϕ1(z1:K |D

T
τ) with the corresponding approximate prior p(zk) =

qϕ1,k(zk|D
C
τ). And this matches the general form in the main paper for −L(θ, ϕ1, ϕ2) in

Eq. (4.7). When Dirac delta distributions are used in MoE-NPs, the divergence term

109

A P P E N D I C E S

about the continuous latent variable is removed as default. Denoting the approximate pos-
terior by qϕ2,1(e|x, y, z1:K) = Cat(e; [α1(x, y, z1:K),α2(x, y, z1:K), . . . ,αK(x, y, z1:K)]),
we rewrite the log-likelihood inside the ELBO as Eq. (8.32).

Eqϕ2,1 (e|x,y,z1:K) [ln p(y|x, z1:K , e)] =
K∑

k=1

αk ln p(y|x, zk) (8.32)

As for the approximate posterior of the assignment latent variable qϕ2,1(e|x, y, z1:K), we
provide two ways of implementations in our experiments: (i) use the target input y as the
additional input to formulate qϕ2,1(e|x, y, z1:K) (ii) use the same form as the conditional
prior qϕ2,1(e|x, y, z1:K) = pϕ2,2(e|x, z1:K).

Selection of Categorical Approximate Posteriors/Priors

As previously observed in Acrobot system identification results, increasing the number of
expert latent variables tends to weaken the generalization capability. This also happens in
image completion, so we set the number of experts used is 2 in the task. We can attribute
this to inference sub-optimality in categorical approximate posteriors/priors.

Remember that in image completion and Acrobot system identification, the used
approximate posterior for the categorical latent variable is qϕ2,1(e|x, y, z1:K) with the target
information y for the input. Since the developed MoE-NP is a VAE-like model (Kingma
and Welling, 2013), the number of expert latent variables K decides the dimension of
the assignment latent variable e. In auto-encoder models, when the dimension of latent
variables in all hidden layers is higher than that of the input, the model tends to copy the
input to the output and fails to learn effective representations. This is the direct source
of overfitting and applies to conditional VAE methods (Sohn et al., 2015). For example,
the output dimension in Acrobot is 6, which implies the bottleneck constraint is weaker
when the number of experts exceeds 6.

It is reasonable to alleviate such sub-optimality by directly using the conditional
prior as the approximate posterior qϕ2,1(e|x, y, z1:K) = pϕ2,2(e|x, z1:K). You can find
more clues from the following stochastic gradient estimates for the assignment latent
variables in Eq. (8.36). Meanwhile, we report empirical results in image completion
when qϕ2,1(e|x, y, z1:K) = pϕ2,2(e|x, z1:K) in Sec. (B.8.1). Moreover, you can see that
inference in this way does not suffer the overfitting issue caused by more experts.

Stochastic Gradient Estimates

Here the stochastic gradient estimates with respect to parameters in the negative ELBO
L(θ, ϕ1, ϕ2) in Eq. (4.7) are provided as follows.

∂

∂θ
L(y; x, θ, ϕ1, ϕ2) = Eqϕ1 (z1:K |D

T
τ)

K∑
k=1

qϕ2,1(ek = 1|x, y, z1:K)
∂

∂θ
ln pθ(y|x, zk) (8.33)

110

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

∂

∂ϕ1,k
L(y; x, θ, ϕ1, ϕ2) =

∫ [
∂

∂ϕ1,k
qϕ1,k(zk|D

T
τ)

]
ln pθ(y|x, zk)dzk

−
∂

∂ϕ1,k
DKL[qϕ1,k(zk|D

T
τ) ∥ qϕ1,k(zk|D

C
τ)]

(8.34)

∂

∂ϕ2
L(y; x, θ, ϕ1, ϕ2) = Eqϕ1 (z1:K |D

T
τ)

 K∑
k=1

[
∂

∂ϕ2
qϕ2,1(ek = 1|x, y, z1:K)

]
ln pθ(y|x, zk)

−Eqϕ1 (z1:K |D

T
τ)

[
∂

∂ϕ2
DKL[qϕ2,1(e|x, y, z1:K) ∥ pϕ2,2(e|x, z1:K)]

]
(8.35)

The reparameterization trick (Kingma and Welling, 2013) is used to sample values
from variational distributions of expert latent variables throughout the inference process
and stochastic gradient estimates in Eq. (8.33)/(8.34)/(8.35). In prediction processes, the
way to get values of assignment latent variables follows that in (Gumbel, 1954).

Besides, we provide the stochastic gradient estimate for another case when the vari-
ational posterior for the assignment latent variable is selected as the variational prior,
which means qϕ2,1(e|x, y, z1:K) = pϕ2,2(e|x, z1:K). This case can drop off the divergence
term for the discrete variable. Let the conditional prior for the discrete variable be
pϕ2,2(e|x, z1:K) = Cat(e; [α1(x, z1:K),α2(x, z1:K), . . . ,αK(x, z1:K)]), we apply the log-
derivative trick in a REINFORCE estimator (Williams, 1992) to Eq. (8.35) and can
obtain the following equation as the gradient estimator5.

∂

∂ϕ2,2
L(y; x, θ, ϕ1, ϕ2) = Eqϕ1 (z1:K |D

T
τ)

 K∑
k=1

[
∂

∂ϕ2,2
pϕ2,2(ek = 1|x, z1:K)

]
ln pθ(y|x, zk)

= Eqϕ1 (z1:K |D

T
τ)

K∑

k=1

pϕ2,2(ek = 1|x, z1:K)

∂

∂ϕ2,2
ln pϕ2,2(ek = 1|x, z1:K) ln pθ(y|x, zk)︸ ︷︷ ︸

Score Function

= Eqϕ1 (z1:K |D
T
τ)

 K∑
k=1

αk
∂

∂ϕ2,2
ln pϕ2,2(ek = 1|x, z1:K) ln pθ(y|x, zk)

(8.36)

As can be seen from Eq. (8.36), the posterior update implicitly exploits supervision
information.

5 For discrete latent variables, we can obtain the analytical form of the stochastic gradient.

111

A P P E N D I C E S

Estimates of Statistics

Momentum. Given the pre-trained MoE-NPs, we can formulate the statistical momentum
in predictive distributions. For the first order momentum, equivalently mean of the
predictive distribution, we need to compute the conditional version E[Y |X = x,DC

τ] in
meta learning scenarios. Here the predictive distribution of one expert is parameterized
in the form p(y|x, zk) = N(y; m(x, zk), Σk), where m is the learned mean function using
a neural network and σ2 is a variance parameter. Using a single stochastic forward
pass in the expert latent variable z1:K , we can derive the estimate of the predictive mean
m̂ = E[Y |X = x,DC

τ].

m̂ =
K∑

k=1

αk ·m(x, zk), αk = pϕ2,2(ek = 1|z1:K , x) (8.37)

The second order moment can be estimated accordingly. Here we consider the case
when the output is one dimensional and Σk = σ2

k .

V[Y |X = x,DC
τ] = E[Y2] −E[Y]2 =

K∑
k=1

αk(σ
2
k + m(x, zk)

2) − m̂2 (8.38)

Entropy. Note that our developed MoE-NPs can also be applied to out of detection
(O.O.D) tasks. In this case, the entropy of predictive distribution plays a crucial role.
Though the exact estimate of the predictive entropy for MoE-NPs is intractable due to
the complexity inside the mixture components, we can measure the expected result of the
entropy E[H(Y)|X = x,DC

τ] in prediction. We still use a single stochastic forward pass
in the expert latent variable z1:K in estimation. If H(Yk|X = x, zk) = −

∫
p(Y = y|X =

x, zk) ln p(Y = y|X = x, zk)dY is bounded ∀k ∈ {1, . . . , K}, the estimate of entropy term
is as follows.

Ê[H(Y)|X = x,DC
τ] =

K∑
k=1

αk

∫
p(Y = y|X = x, zk)H(Y = y)dy

=
K∑

k=1

αkE[H(Yk|X = x, zk)]

(8.39)

B.7 Experimental Settings and Neural Architectures

In this section, we provide with more experimental details. Importantly, neural mod-
ules of MoE-NPs in the PyTorch version are listed. For the few-shot regression, we
provide an example of our implementation of MoE-NPs from the anonymous Github link
https://github.com/codeanonymous233/ICMoENP. For the context-based
meta RL algorithms, you can find the implementation of MoE-NPs from the anonymous
Github link https://github.com/codeanonymous233/MoENP.

112

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

Dataset & Environments

System Identification. Note that in the used Acrobot simulator 6, the observation is the
preprocessed state as a 6 dimensional vector [sin(θ1), cos(θ1), sin(θ2), cos(θ2), θ′1, θ′2].
The input of the Acrobot system is the concatenation of the observation and the exe-
cuted action [sin(θ1), cos(θ1), sin(θ2), cos(θ2), θ′1, θ′2, a]. The output of Acrobot system
is the predicted transited state. We generate 16 meta training tasks by varying the
masses of two pendulums m1 and m2, which means the hyper-parameters of the sys-
tem come from the Cartesian combination of the set m1 ∈ {0.75, 0.85, 0.95, 1.15} and
m2 ∈ {0.75, 0.85, 0.95, 1.15}. In meta training processes, a complete random policy
interacts with a batch of sampled MDPs to formulate a transition dataset. As for meta
testing tasks, we follow the same way to generate tasks by setting m1 ∈ {0.85, 1.05, 1.25}
and m2 ∈ {0.85, 1.05, 1.25}.

Image Completion. CIFAR10 dataset consists of 60000 32x32 color images in 10
categories. Among these images, 50000 are for meta training, with the rest for meta
testing as the default in image completion tasks. CIFAR10 images are processed via
torchvision modules to normalize the pixel values between [0, 1].

Environments in Meta Reinforcement Learning. Note that 2-D point robot navi-
gation tasks, the distribution for meta training is a mixture of uniform distributions
[0, 2π/12] ∪ [5π/12, 7π/12] ∪ [10π/12, π]. The rest of the regions along the arc is for
out of distribution tasks. The tasks in Mujoco (Todorov et al., 2012) follow adaptations
from (Rakelly et al., 2019; Ren et al., 2019), where goals/velocities or multiple hyper-
parameters of simulation systems are sampled from mixture distributions. The horizon
of an episode for a mixture of point robots is 20, while that for Mujoco environments is
500. The required number of meta training processes environment steps are 2.5 ∗ 1e6 for
point robots, 7.5 ∗ 1e6 for Half-Cheetah-CD, and 6.5 ∗ 1e6 for Slim-Humanoid-CG. We
leave more details and settings of each environment in the above github code link. 2-D
point robots attempt to reach goals located in specified arc regions. 2-D Cheetah robots
aim at running in given directions. The task includes multiple target directions, and these
change with split steps of episodes. 3-D Humanoid robots aim at running towards goals.
The task includes multiple goals, and these change with split steps of episodes.

Implementations in Meta Learning Tasks

Toy Experiments. The input of functions is in a range [−π, π] ∪ [π, 2π]. The general
implementations of MoE-NPs are as follows. The x-domain for the function f1(x) =
sin(x) + ϵ1 with ϵ1 ∼ N(0, 0.032) is [−π, π], while that for f2(x) = cos(x) + ϵ2 with
ϵ2 ∼ N(0, 0.012) is [π, 2π]. Sampling from these two components leads to a mixture
dataset. The Encoder for all continuous latent variables is with two hidden layers (32
neuron units each). The Gaussian distribution is used for continuous latent variables
in MoE-NPs. The Encoder for the discrete assignment latent variable in MoE-NPs

6 https://github.com/openai/gym/blob/master/gym/envs/classic control/acrobot.py

113

A P P E N D I C E S

corresponds to a softmax-output neural network with two hidden layers (16 neuron
units each). The Decoder also has three hidden layers (128 neuron units each). The
number of data points in each sampled task is 100. For gradient based methods, we use
implementations of MAML7 and CAVIA8.

System Identification. The general implementations are as follows. For all NP re-
lated models, the dimension of a latent variable is set to be 16. The Encoder for all
continuous latent variables is with two hidden layers (32 neuron units each). Since
this case works best in few-shot supervised learning, Dirac delta distributions are used
for continuous latent variables in MoE-NPs. For MoE-NPs, we use three expert latent
variables as the default, and the Encoder for the discrete assignment latent variable
in MoE-NPs corresponds to a softmax-output neural network with two hidden layers
(32 neuron units each). The Decoder also has four hidden layers (200 neuron units
each). The number of tasks in batch training is 4, batch size in training is 200 transition
steps (for each task). The horizon for each episode of transitions is 200 time steps. In
each iteration of meta training, 4 different environments are randomly selected, and the
uniform random controller is used to interact for the collection of 5 episodes (for each
task). In training dynamics systems, the training batch size in the transition buffer is 200,
the training epoch is 5, and the whole process iterates until convergence (the iteration
number is 25). The learning rate for Adam optimizer is 1e − 3 as the default.

Image Completion. The general implementations follow that in (Zintgraf et al., 2019;
Garnelo et al., 2018a) and are applied to all baselines and MoE-NPs. The dimension of a
latent variable is set to 128. The Encoder for all NP variants is with three hidden layers
(128 neuron units each). Since this case works best in few-shot supervised learning,
Dirac delta distributions are used for continuous latent variables in MoE-NPs. The
Decoder also has five hidden layers (128 neuron units each). For MoE-NPs, we use
three expert latent variables as the default, and the Encoder for the discrete assignment
latent variable corresponds to a softmax-output neural network with two hidden layers
(32 neuron units each). Adam (Kingma and Welling, 2013) is used as the optimizer,
where the learning rate is set to be 5e − 4. The batch size in training is 8 images, and
we meta train the model until convergence (the maximum epoch number is 50). Also,
note that the number of context pixels in CAVIA is 10 for fast adaptation in default
implementations, which leads to the best testing result of CAVIA in 10 pixel cases in Fig.
(10). Note that, to train NP models, including CNP/NP/FCRL/MoE-NP, we set the form
of negative log-likelihood objective consistent based on that in (Le et al., 2018). But in
evaluation, to keep results of all methods consistent, we follow that in (Garnelo et al.,
2018a; Zintgraf et al., 2019; Gondal et al., 2021) and report the MSEs in Fig. (10) in the
testing phase.

7 https://github.com/cbfinn/maml rl
8 https://github.com/lmzintgraf/cavia

114

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

Meta Reinforcement Learning. In terms of implementations of baselines, we directly
use the following open sourced code: PEARL9, MAML10 and CAVIA11. Note that the
TRPO algorithm (Schulman et al., 2015) is used for MAML/CAVIA as the default. We
do not change too much except the replacement of our environments when running
experiments.

Further, we provide more details on how to modify MoE-NPs in meta RL domains.
Notice that MoE-NP can also be seen as a latent variable model, and there exists a
close relationship with PEARL algorithms (Rakelly et al., 2019) when it comes to meta
RL. Implementations of MoE-NPs are the same as in PEARL (Rakelly et al., 2019)
except for latent variable distributions and the inference way. Note that Soft Actor Critic
(SAC) algorithm (Haarnoja et al., 2018) is used in policy optimization, which requires
parameterization of both actor and critic functions. As for the number of experts in
MoE-NPs, we use 3 for all environments as default. You can find more details about
neural architectures/optimizers for each module from the link mentioned above.

As mentioned before, we use p(zk) = N(0, I) as the prior distribution for expert
latent variables. The approximate posterior is parameterized with a diagonal Gaussian
distribution. The coefficient for KL divergence terms in Eq. (4.14) are β0 = 1.0, β1 = 1.0.
The main paper finds the meta-training processes for reinforcement learning in Algorithm
(4). In terms of meta-testing processes, we report the pseudo code in Algorithm (5).

B.8 Additional Experimental Results

Additional Analysis of Learned Latent Variables

Here we give more detailed analysis w.r.t. learned latent variables in MoE-NPs.

Number of Expert Latent Variables. By setting the approximate posterior of assign-
ment latent variables as qϕ2,1(e|x, y, z1:K) = pϕ2,2(e|x, z1:K), we further investigate the
scalability issue of MoE-NPs in CIFAR10 image completion. As reported in Table (18),
we can find with more experts (>= 3), the performance can be further improved, and no
overfitting issue occurs. It can also be inferred that when the number of experts reaches
a certain level, the improvement from the increase of expert numbers is quite limited.
So, in general, when the output dimension is lower, the best choice of the approximate
posterior for assignment latent variables is in a form without y as the input.

Additional Results of NP Variants in Toy Regression

Note that the variation of tasks in the previous toy regression is quite limited, and its goal
is to show the role of latent variables. To further examine the performance, we construct
the mixture of sinusoidal functions by varying the amplitude and phase.

The learning data points are randomly sampled in x-domain and merged from a mixture
of randomized functions f1(x) = A sin(x − B) + ϵ in x-domain [−π, π] and f2(x) =

9 https://github.com/katerakelly/oyster
10 https://github.com/cbfinn/maml rl
11 https://github.com/lmzintgraf/cavia

115

A P P E N D I C E S

Table 18: Pixel-wise mean squared errors (MSEs) with varying number of experts in
CIFAR10 image completion. The number of random context points is varied in a range
(10, 200, 500, 800, 1000) to test performance at different levels.

10 200 500 800 1000

MoE-NPs (3 experts) 0.0482 0.0183 0.0170 0.0166 0.0165

MoE-NPs (5 experts) 0.0362 0.0103 0.0071 0.0061 0.0057

MoE-NPs (7 experts) 0.0359 0.0095 0.0062 0.0052 0.0048

A cos(x − B) + ϵ in x-domain [π, 3π] with equal probability, where ϵ ∼ N(0, 0.032).
The range of the amplitude is A ∈ [0.1, 5.0] while that of the phase is B ∈ [0, π].

We sample a batch of data points in each training iteration and randomly partition
context points and target points for learning. Each task consists of 100 randomly sampled
data points from the mixture of sinusoidal functions with the random number of context
points between [5, 50]. The default number of tasks in a meta batch is 25, and we set the
number of iteration steps at most 50000. As for neural architectures of all baselines, we
retain that in the previous toy regression in Sec. (B.7.1). Still, we use two experts for
MoE-NPs as default to fit mixture sinusoidal functions.

Table 19: Test Performance in Mixture Sinusoidal Functions. Shown are mean square
errors and standard deviations in fitting 500 sampled tasks. The best results in 5 runs are
in bold with standard deviations in bracket.

CNP NP FCRL AttnNP MoE-NP

0.053±1E-4 0.070±3E-4 0.040±0.0 0.027±2E-4 0.032±1E-4

In the meta testing phase, we draw up 500 tasks with 15 random data points selected as
the context. These testing tasks are generated in the way: the couple of the amplitude and
the phase [A, B] are orderly set from the amplitude list numpy.linspace(0.1, 5.0,num =
500) and phase list numpy.linspace(0.0, π,num = 500). The sampled x-values for
these tasks are a list torch.linspace(−π, 3π,steps = 500). As shown in Table
(19), AttnNP achieves the best performance in meta testing, followed by MoE-NP.

Additional Results of NP Variants in System Identification

To understand how performance evolves with more context transitions in Acrobot system,
we extend the result of 50 context points in the main paper to Fig. (27). As can be seen,
MoE-NP still outperforms all NP baselines in all cases. Moreover, with the increase in
context transitions, we can find that predictive MSEs degrade accordingly.

116

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

20 40 60 80 100
Number of Context Transitions

2

3

4

5

6

7

8

M
SE

(x
E-

3)

Testing in Acrobot System Identification
NP
CNP
FCRL
MoE-NP

Figure 27: Asymptotic Performance in System Identification of NPs Family. The numbers
of random transitions as the context are respectively {15, 25, 50, 100}.

Comparison with Attentive Neural Processes

Since neural architectures for attentive neural processes (AttnNPs) (Kim et al., 2019) are
a bit different from used baselines and cannot be trivially modified to meta RL cases, we
report additional results in this subsection.

We implement AttnNPs with dot attention networks (since AttnNPs have more model
complexity and can easily lead to cuda out of memory in practice, we choose the basic
version of AttnNPs), the input embedding dimension of to compute attention weights
is 32 and 4 layers are used to transform the deterministic embedding zattn. The local
embedding is concatenated with the input x and the global latent variable z for the
decoder. We use three heads for system identification tasks and one head for image
completion tasks. The related results are reported as follows. It can be seen in Table
(20), MoE-NPs still outperform AttnNPs, while AttnNPs beat NPs a lot in predicting
Acrobot system dynamics. As for CIFAR10 image completion, we can conclude in Table
(21) that Mixture Expert inductive biases are more effective than local latent variables
embedded in attention modules.

Table 20: System identification in Acrobot. Meta testing results are reported. We use
the number of random transitions as the context and test performance for AttnNPs to
compare. Figures in the Table are scaled by multiplying E-3 for means and standard
deviations.

15 25 50 100

AttnNP 3.0±0.36 2.8±0.41 2.5±0.14 2.8±0.19

MoE-NP 2.0±0.45 1.9±0.28 1.4±0.06 1.5±0.06

Augmenting MoE-NPs with Convolutional Modules

In this section, we examine the chance of Since neural architectures of encoders are
quite different between ConvCNPs (Gordon et al., 2020) and previously mentioned NP
baselines, we only report the results of NP related models with the same functional

117

A P P E N D I C E S

Table 21: Pixel-wise mean squared errors (MSEs) in the image completion tasks on
the CIFAR10 dataset. The number of random context points is varied in a range
(10, 200, 500, 800, 1000) to test performance at different levels.

10 200 500 800 1000

AttnNP 0.0377 0.0223 0.0217 0.0215 0.0215

MoE-NP 0.0377 0.0142 0.0117 0.0110 0.0107

encoder structures in the main paper. Note that the translation equivariance is injected
in ConvCNPs, which is a strong inductive bias for the image dataset. Naturally, we
also develop the convolutional version of MoE-NPs. Moreover, we report the different
results in image completion here. In our settings, MoE-ConvCNPs use 3 experts in
convolutional modules. The implementation of ConvCNPs can be found in (Gordon
et al., 2020). It can be seen that in Table. (22), in comparison to ConvCNP, the image
completion performance is further improved with the help of multiple experts.

Table 22: Pixel-wise mean squared errors (MSEs) in the image completion tasks on
the CIFAR10 dataset. The number of random context points is varied in a range
(10, 200, 500, 800, 1000) to test performance at different levels.

10 200 500 800 1000

ConvCNPs 0.036 0.0062 0.002 0.0011 0.0019

MoE-ConvCNPs 0.035 0.0057 0.0017 0.0007 0.0009

More Visualization Results

Here we include more visualized CelebA images by varying the number of observed
pixels. These are produced using CNN Augmented MoE-NPs (MoE-ConvCNPs). Fig.s
(28)/(29)/(30)/(31) are image completion results given the fixed number of random
context pixels. Fig.s (32)/(33)/(34)/(35) are image completion results given the fixed
number of ordered context pixels.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 28: Image Completion Results using CNN Augmented MoE-NPs.

118

B S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 4

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 29: Image Completion Results using CNN Augmented MoE-NPs.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 30: Image Completion Results using CNN Augmented MoE-NPs.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 31: Image Completion Results using CNN Augmented MoE-NPs.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 32: Image Completion Results using CNN Augmented MoE-NPs.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 33: Image Completion Results using CNN Augmented MoE-NPs.

119

A P P E N D I C E S

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 34: Image Completion Results using CNN Augmented MoE-NPs.

0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200
0 50 100 150 200 250

0

25

50

75

100

125

150

175

200

Figure 35: Image Completion Results using CNN Augmented MoE-NPs.

120

C S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 5

Table 23: Summary of Typical MBMRL Models. Encoders are for dynamics models.
Policy search strategies include model predictive control (MPC), policy gradient (PG)
methods and amortized policy search (APS). As for fast adaptation, we consider whether
this step is directly included in learning dynamics models or policy search.

MBMRL Encoders Policy Search Dynamics Model Fast adaptation

L2A NULL MPC MAML DM

MLSM-v0 qϕ(z|MeanPool([xc, yc])) PG LVM DM

MLSM-v1 qϕ1(z|MeanPool([xc, yc])) PG LVM DM
fϕ2(zt|Attn([xc, yc], xt))

GSSM qϕ2(zc|GNN([xc, yc])) PG LVM DM
qϕ1(zt|GNN([xc, yc], xt))

GSSM+APS qϕ2(zc|GNN([xc, yc])) APS LVM DM/PS
qϕ1(zt|GNN([xc, yc], xt))

Table 24: Parameter Scales of Context-based Dynamics Models in different tasks. It can
be found GSSM and MLSM-v0 have the same model complexity while MLSM-v1 has
more parameters in meta dynamics models.

MLSM-v0 MLSM-v1 GSSM

Cart-Pole 8.9*1E4 9.3*1E4 8.9*1E4
Acrobot 8.1*1E5 8.4*1E5 8.1*1E5

H-Cheetah 2.1*1E5 2.3*1E5 2.1*1E5
S-Humanoid 2.3*1E5 2.6*1E5 2.3*1E5

C S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 5

C.1 Frequently Asked Questions

According to feedback from other reviewers, we summarize frequently asked questions
and add explanations in this part. This is to make our work clearer to potential readers.

Possibility to combine Graph Neural Net (GNN) modules with meta model-free
RL methods. A combination of GNN latent variable and meta model-free methods in
our work is not applicable for an ablation experiment. That is because (1) the input
and output for GNN modules cannot be accordingly specified (in model-based settings,
the input and output are respectively [s, a] and ∆s; in model-free settings, the input is
s for policies). (2) the optimization objectives for GNN modules differ a lot in model-
based (Maximize the likelihood of dynamics prediction in GNN related modules) and
model-free cases (Maximize the expected rewards in GNN related modules). (3) we do

121

A P P E N D I C E S

Table 25: Mean Square Errors (MSEs) in Meta-testing Tasks using Learned Dynamics
Models. (For each testing task, 50 episodes are sampled to average. Figures in brackets
are standard deviations across testing tasks, with bold ones the best.) Here the results for
Acrobot are different from that in MoE-NPs since we use different neural architectures
in separate research periods and MoE-NPs come out later in publications.

Env GSSM M-DPILCO MLSM-v0 MLSM-v1 L2A

Cart-Pole 0.0296±0.042 0.0475±0.051 0.0626±0.081 0.0310±0.036 0.0397±0.04

Acrobot 0.0024±0.0019 0.0030±0.0029 0.004±0.0042 0.0024±0.0021 0.0039±0.0017

H-Cheetah 0.530±0.22 0.678±0.14 0.533±0.14 0.636±0.14 0.785±0.084

S-Humanoid 1.78±0.13 1.9±0.15 2.0±0.16 1.75±0.15 2.364±0.078

not find an appropriate GNN related meta model-free RL baseline, and the extension is
non-trivial to design.

Technical summary of context-based meta model-based RL methods. Comparisons
between our developed graph structured surrogate model and other dynamics models are
summarized in Table (23). We mainly focus on methods to enable fast adaptation in both
dynamics models and policy networks.

Performance comparison to other meta model-based RL algorithms with non-GNN
encoders. In Chapter (5) Section (5.5), non-GNN encoders correspond to NPs in MLSM,
where a mean reduction is already used to obtain the encoded latent variable. Recurrent
encoders are improper in our settings since the randomly sampled transitions from the
memory buffer to identify the dynamical system are not entirely sequential in the dataset.
However, the use of Recurrent encoders is more effective when the transitions in the
dynamics buffer are collected and stored in an ordered way. The model benefits from
the sequential information. In this case, CaDM (Lee et al., 2020b) can achieve SOTA
performance in the domain.

Performance comparison to other existing meta model-free RL methods, e.g. RL2
(Duan et al., 2016). See Chapter (5) Section (5.5), PE-PPO follows the same implemen-
tation in PEARL (Rakelly et al., 2019) except that PPO is used in policy optimization.
This is to ensure all policy optimization methods are consistent in experimental analysis.
We also tried PEARL in model-free experiments with 1x volume of samples, but the
results were poorer than used baselines. Meanwhile, please refer to learning curves of
other model-free meta RL papers with 1x volume of samples, e.g., FOCAL (Li et al.,
2020) and MBML (Li et al., 2019), conclusions are: with limited episodes (1x samples),
model-free ones, including RL2 or Learn2Learn, work far worse than model-based
baselines illustrated in our papers. This means the selection of model-free meta RL
baselines does not influence the comparison results, and this is due to the performance
bottleneck of model-free ones with limited training episodes.

122

C S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 5

C.2 Proof of Lemma 1

This proof is based on partial results in (Rajeswaran et al., 2020), and an extension is
performed here. The context is set in distribution over MDPs M ∼ p(M), and a sampled
real environment and the corresponding learned dynamics model are respectively denoted
as M and M̂.

Corollary 1 Assuming a single step reward in a Markov Decision Process has a supre-
mum value Rmax and the discounted factor for rewards γ < 1, then the state value
function Vπ(s) under a policy π can be bounded with the following inequality.

max
s∈S

Vπ(s) ≤
Rmax

1 − γ
, ∀π (8.40)

Proof 1 The state value Vπ(s) can be computed in the form of Eπ

[∑∞
t=0 γ

tRt|S 0 = s
]
=∫

p(τ)R(τ)dτ, where the cumulative reward for trajectory τ is R(τ) =
∑∞

t=0 γ
tRt with

an initial state S 0 = s. Also note that sup{Rt} ≤ Rmax, it is trivial to verify the equation.

R(τ) ≤ (
∞∑

t=0

γt)Rmax =
Rmax

1 − γ

Vπ(s) =
∫

p(τ)R(τ)dτ ≤
Rmax

1 − γ

(8.41)

Note the Bellman equation in terms of any state value V M
π (s) under a policy π in a

dynamics model M,

V M
π (s) =

∫ (
r(s, a, s′) + γV M

π (s′)
)
π(a|s)p(s′|s, a)dads′

= RM
π (s) + γEs′∼pM

π (·|s)

[
V M
π (s′)

] (8.42)

where RM
π (s) is the expected one step rewards and pM

π (·|s) is the state transition distri-
bution and both depend on the environment and the policy.

Hence, we can naturally estimate the difference between state values in the two
mentioned dynamics models with the help of Corollary (1) as follows.

|V M
π (s) − V M̂

π (s)| ≤ |RM
π (s) −RM̂

π (s)|+ γ|Es′∼pM
π (·|s)

[
V M
π (s′)

]
−Es′∼pM̂

π (·|s)

[
V M̂
π (s′)

]
|

≤ 2RmaxDTV[pM̂
π (·|s), pM

π (·|s)] + γ|Es′∼pM
π (·|s)

[
V M
π (s′)

]
−Es′∼pM̂

π (·|s)

[
V M
π (s′)

]
|

+γ|Es′∼pM̂
π (·|s)

[
V M
π (s′)

]
−Es′∼pM̂

π (·|s)

[
V M̂
π (s′)

]
|

≤ 2RmaxDTV[pM̂
π (·|s), pM

π (·|s)] + 2γ
(

max
s′

V M
π (s′)

)
DTV[pM̂

π (·|s), pM
π (·|s)]

+γmax
s′
|V M
π (s′) − V M̂

π (s′)|, ∀s ∈ S

(8.43)

123

A P P E N D I C E S

Since the left side term is satisfied for all states, we can naturally have the following
equation.

(1 − γ)max
s′
|V M
π (s′) − V M̂

π (s′)| ≤ 2
(
Rmax + γ

(
max

s′
V M
π (s′)

))
DTV[pM̂

π (·|s), pM
π (·|s)]

(8.44)

Then by imposing EM∼p(M) over both sides in Eq. (8.44) and with the meta dynamics
model approximated error E M∼p(M)

(s,a)∼ν(s,a)

[
DTV[P̂M(·|s, a), PM(·|s, a)]

]
≤ ϵ, we can give the

regret bound as follows.

EM∼p(M)

[
max

s′
|V M
π (s′) − V M̂

π (s′)|
]
≤

2ϵRmax

(1 − γ)2 , ∀π (8.45)

Finally, the performance gap can be measured with Eq. (8.46), and Lemma (1) is proved.

EM∼p(M)

[
|JM̂(π) −JM(π)|

]
≤

2ϵRmax

(1 − γ)2 , ∀π (8.46)

C.3 Proof of Model Discrepancy

Here let us refer to optimal policies in an arbitrary MDPM and its approximation M̂ as
πM and πM̂ respectively. With the induction in Lemma (1), we reuse Eq. (8.44) and it is
trivial to verify the following equations.

|JM̂(π) −JM(π)| ≤
2RmaxDTV[pM̂

π (·|s), pM
π (·|s)]

(1 − γ)2 , ∀π (8.47)

Hence, we can have the inequality based on the truth that πM̂ is optimal in M̂ and
reuse Eq. (8.44).

JM(πM) ≤ JM̂(πM) +
2RmaxDTV[pM̂

π (·|s), pM
π (·|s)]

(1 − γ)2

≤ JM̂(πM̂) +
2RmaxDTV[pM̂

π (·|s), pM
π (·|s)]

(1 − γ)2

≤ JM(πM̂) +
4RmaxDTV[pM̂

π (·|s), pM
π (·|s)]

(1 − γ)2

(8.48)

With the help of expectation over the distribution of MDPs, the final equation of a
lower bound can be drawn as that in Theorem (2).

EM∼p(M)

[
JM(πM̂)

]
≥ EM∼p(M)

[
JM(πM)

]
−

4ϵRmax

(1 − γ)2 (8.49)

124

C S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 5

C.4 GSSM Modules in PyTorch

Our work GSSM is built upon structures of GNNs (Kipf and Welling, 2016; Satorras and
Estrach, 2018; Wang et al., 2018). However, unlike vanilla GNNs, we try to learn the
normalized graph Laplacian in modeling. Also, GSSMs make use of message passing in
GNN modules and transform the learned node representations into target transition latent
variable zt and the prior global latent variable zc for an MDP.

Here we rewrite the graph convolutional operation in the form of a node feature matrix
VC, which is easier to implement in programming. The graph convolution operator ◦
over any data point xt can be defined,

f (VC) = σ
(
D−1L[VCW]

)
(8.50a)

G(xt) ◦ f =
∑
i∈Ot

f (vi)sim(xt, xi) (8.50b)

whereVC is the feature matrix of the context points, andW denotes a trainable layer
matrix. The weight parameter is sim(xt, xi) and f (vi) is the embedding of a node in the
graph G after message passing processes from its neighbors Ot. The graph Laplacian
matrix L reveals the connection relationship, where D is a diagonal matrix to normalize
the row elements in Eq. (8.50). These correspond to the left side of Fig. (16). The
equivalent element-wise graph operation can be found in Eq. (5.4). We refer the reader
to our GitHub code for more information about graph convolution operations and the
induced meta dynamics model.

C.5 Evidence Lower Bound for GSSM

Here P(D) denotes the distribution of state action pairs in meta-training processes,
and each data point is attached with a context set [xc, yc] (a batch of transition data
points) to imply the statistics information from a task. With a Jessen’s inequality and an
approximate posterior qϕ(zt|xt, xc, yc), we can have evidence lower bound as follows.

Ep(D) ln p(yt|xt, xc, yc) = Ep(D) ln Eqϕ

[p(z∗)
qϕ(zt|xt, xc, yc)

pθ(yt|xt, zt)
]

≥ Ep(D)

[
Eqϕ ln

[
pθ(yt|xt, zt)

]
−Eqϕ ln

[qϕ(zt|xt, xc, yc)

p(zt)

]] (8.51)

By replacing the zero information prior distribution p(zt) with q(zt|xc, yc), we can
derive the formerly mentioned ELBO.

125

A P P E N D I C E S

Ep(D)

[
ln p(yt|xt, xc, yc)︸ ︷︷ ︸

intractable data likelihood

]
≥ Ep(D)

[
Eqϕ1

[ln pθ(yt|xt, zt)]

−DKL[qϕ1(zt|xt, xc, yc)︸ ︷︷ ︸
approximate posterior

∥ qϕ2(zc|xc, yc)︸ ︷︷ ︸
approximate prior

]
] (8.52)

Note that both the approximate prior and the posterior are learnable with a partially
shared neural network in meta learning scenarios, which is similar in work (Denton
and Fergus, 2018; Pertsch et al., 2020; Garnelo et al., 2018b). And the learned prior
qϕ2(zc|xc, yc) can be viewed as a summary of context points, which is further used to
help induce amortized policies πφ(a|s, zc). For more details on the encoding relationship
between these context points and target points, refer to Fig. (16).

Besides, the number of context points is random smaller than the batch size in meta
training dynamics models, which shares the same setting as Neural Processes. As
mentioned in the Main Paper, a fully connected graph is built among context points,
and the graph Laplacian matrix is learned based on Eq. (5.4.a). Here we treat all the
context points as the neighborhood Ot of a target point xt. The way of constructing fully
connected graphs is a limitation for GSSMs, and future work can be the discovery of
optimal graph structures to improve performance further.

(a) Computational Graph in Meta-training
Dynamics Models

Interactions

Dynamics Model

Policy Network

(b) Meta-training Amortized Policies

Figure 36: Computational Graphs of GSSM in Meta-training Processes. Note that
amortized policy search is used here. On the Left side of the Figure: it describes the
connections of variables in neural networks for meta dynamics models. On the Right
side of the Figure: it illustrates the process in meta model-based policy search (Note
that the reparameterization trick is used here and sampled latent variables zt and zc are
deterministic, denoted by squares).

C.6 Computational Graphs and Detailed Descriptions

Here we add more explanations about our developed GSSM and amortized policy search.
This section corresponds to Fig. (16). Especially, computational processes are displayed
in Fig. (36).

126

C S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 5

On the Left of Fig. (36), the GNNϕ2 module is used to summarize the task using
qϕ2(zc) from the context points C, while the GNNϕ1 module is used to learn state-action
pair xt dependent latent variables qϕ1(zt). As mentioned in the Main paper, these two
modules share part of the parameters. The concatenation of xt and sampled zt is input
into the Decoderθ module to predict the transited state st+1 or state difference ∆st.

On the Right of Fig. (36), this depicts the process in learning amortized policies
(Mainly refer to the loop iterations step (6)-(10) in Algorithm (6)). Given a batch
of MDPs, context points C are sampled using a uniform random policy and input into
GNNϕ2 to formulate task-specific latent variables. Note that the reparameterization trick
is used in this process, which means we sample ϵ ∼ N(0, I) during the loop of iterations

to formulate zt = µt + Σ−
1
2

t ϵ for state-action pairs xt = [st, at]. This operation can be
interpreted as sampling MDPs from the posterior in posterior sampling (Osband et al.,

2013). Similarly, we sample ϵ ∼ N(0, I) to formulate zc = µc + Σ−
1
2

c ϵ and get this
sample value retained in the loop iterations (In Actor-Critic cases, the sampled value
also takes part in value function approximators). During the process, these task-specific
policies interact with a collection of sampled MDPs to seek optimal results like that in
BOSS (Asmuth et al., 2009), which corresponds to finding optimal policies w.r.t sampled
MDPs in posterior sampling. In the next loop of iterations, new transitions are collected
using the amortized policy, and the dynamics model is retrained to update the posterior.

C.7 Policy Gradient Estimates in Amortized Policy Search

Due to page limits, we provide more details in actor critic cases. As revealed in Fig. (16),
the right one is to show amortized policy search in a collection of approximate dynamics
models. Estimates of policy gradients are formulated, and these details will tell readers
how our amortized policies are learned in MBMRL. All of these correspond to step
(10) in Algorithm (6).

Note that parameters φ in our amortized policies πφ(a|[s, zc]) are optimized in de-
veloped dynamics models. Dynamics models as GSSMs consist of parameters θ and
ϕ = [ϕ1, ϕ2], and we denote a sampled approximate dynamics model for one task as M̂.
As for a distribution of synthetic trajectories τ from a learned dynamics model M̂, we
use p(τ|M̂;φ, ϕ) to define, where qϕ2 encodes contextual information from [xc, yc] for
different tasks. Given a sampled trajectory τ from an approximate dynamics model M̂,
we can decompose it according to the Markov property.

p(τ|M̂;φ, ϕ) = p(s0)
T−1∏
t=0

[p(st+1|st, at, zt)πφ(at|[st, zc])] (8.53)

Besides, the proposed amortized policy search strategy can be combined with any
other dynamics model with contextual latent variables, not limited to Graph Structured
Surrogate Models in our paper (e.g., NP (Garnelo et al., 2018b; Galashov et al., 2019), it
is also available to combine with our developed policy search strategy).

127

A P P E N D I C E S

We consider actor-critic frameworks, where a value function is also conditioned on
the latent variable (Refer to the right side of Fig. (16). Hence, two objectives, namely
value function approximation and policy optimization, are involved in this setting.

LC(φ̂) = E
M̂∼p(M̂;θ,ϕ)E (s,a,s′,r)∼B(M̂)

zc∼qϕ(zc |[xc,yc])

[Qφ̂([s, zc], a) − (r + γVφ̃([s′, zc]))]
2

(8.54)

The value function approximation objective is Eq. (8.54), where B(M̂) is a batch of
synthetic transition samples from M̂ and φ̂ is the parameter of value function approx-
imators. The critic optimization process is inside policy search during meta-training
processes via gradient updates. The actor optimization objective can be found in the
main paper.

To optimize policy functions as that in Eq. (5.12), we can utilize a likelihood ratio
trick (Williams, 1992) and compute the derivative in transitions as follows.

ln p(τ|M̂;φ, ϕ) = ln p(s0) +
T−1∑
t=0

[ln p(st+1|st, at, zt)) + ln πφ(at|[st, zc])] (8.55)

∇φ ln p(τ|M̂;φ, ϕ) = ∇φ ln���p(s0) +
T−1∑
t=0

∇φ [ln((((((((p(st+1|st, at, zt) + ln πφ(at|[st, zc])]

(8.56)

Based on Eq. (8.56), we formulate the estimated policy gradient in Eq. (8.57), and
a modified PPO (Schulman et al., 2017) is used as an instantiation to implement in our
settings.

∇φJ(φ) = E
M̂∼p(M;θ,ϕ)

[∫
∇φp(τ|M̂;φ, ϕ)R(τ)dτ

]
= E

M̂∼p(M;θ,ϕ)Eτ∼p(τ|M̂;φ,ϕ)

[
∇φ ln p(τ|M̂;φ, ϕ)R(τ)

]
= E

M̂∼p(M;θ,ϕ)Eτ∼p(τ|M̂;φ,ϕ)

T−1∑
t=0

∇φ ln π(at|[st, zc])

 ·
T−1∑

t=0

r(st, at, st+1)

(8.57)

Meanwhile, the policy gradient in the form of advantage functions is derived in Eq.
(8.58),

∇φJ(φ) = E M̂∼p(M̂;θ,ϕ)
τ∼p(τ|M̂;φ,ϕ)

[
T−1∑
t=0

∇φ ln π(at|[st, zc]) · At([st, zc], at)] (8.58)

where At([st, zc], at) is an advantage function, mostly written as the difference between
a cumulative reward term and a baseline term At([st, zc], at) =

∑T−1
t′=t+1 r([st′ , zc], at′) −

bt([st, zc]).

128

C S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 5

Similar to the term on the right side of Eq. (5.12), the corresponding Monte Carlo
estimate of the policy gradient can be easily obtained from Eq. (8.58), and we skip this
step in this section.

C.8 Experimental Settings and Training Details

In this section, we provide information about environments and give more details in
meta training/testing processes. Especially, the updated code file can be found in
(https://github.com/hhq123gogogo/GSSM APS). Only one layer graph con-
volution is used in general settings.

Environmental Details

MBMRL Tasks. Here we describe meta reinforcement learning tasks in this paper. The
Cart-Pole environment can be found in the link12 here. The Acrobot is based on open-ai
gym13: with continuous states [θ1, θ′1, θ2, θ′2] as angles and instant angle velocities, the
goal is to sequentially select an action from {−1, 0,+1} (respectively Right Torque, No
Torque, Left Torque) to reach the height above the top of the pendulum as early as
possible. Half-Cheetah/Slim-Humanoid are from a Mujoco package14 and both are to
conduct locomotion tasks. Generations of diverse Cart-Pole/Acrobot environments have
been introduced in the main paper. As for Cart-Pole tasks, 50 unseen tasks are sampled
from simulators for meta testing, and each task is with 50 episodes in evaluation (refer
to Fig. (17)). As for Acrobot tasks, 33 unseen tasks are sampled from simulators for
meta testing and each task is with 50 episodes in evaluation (refer to Table (9)/(25)).
As for configurations of Half-Cheetah/Slim-Humanoid environments, we generate the
Meta-training MDPs via the combination of the mass re-scaled coefficient in the list
{0.8, 0.9, 1.0, 1.1, 1.2} and the damping coefficient in the list {0.8, 0.9, 1.0, 1.1, 1.2}, while
those hyper-parameters for Meta-testing phases are {0.85, 0.95, 1.05, 1.15} for both mass-
rescaled and damping coefficients. As a result, totally 16 unseen MDPs are generated by
the Cartesian of mass coefficients and damping coefficients for meta-testing processes
(refer to Table (25) and Table (9)/(25)).

Goal

(a) Cart-Pole (b) Acrobot (c) Half-Cheetah (d) Slim-Humanoid

Figure 37: Fundamental Environments used in Meta Model-based Reinforcement Learn-
ing Experiments.

12 https://github.com/BrunoKM/deep-pilco-torch
13 https://gym.openai.com/
14 http://www.mujoco.org/

129

A P P E N D I C E S

Table 26: Reward Functions in Related Environments.

Env Reward Functions Horizon Control

Cart-Pole 1 − exp
{
(− ∥d

2∥

σ2
c
)
}

25 Continuous

Acrobot bool(−l1 cos (θ1) − l2 cos (θ1 + θ2) − l1) 200 Discrete

H-Cheetah xt+1−xt
∇t − 0.1 ∗ ∥at∥

2
2 1000 Continuous

S-Humanoid 50(xt+1−xt)
3∇t − 0.1 ∗ ∥at∥

2
2 + 5.0 ∗ bool(1.0 ≤ xt,h ≤ 2.0) 1000 Continuous

Reward Descriptions. Besides, reward functions are listed here (refer to Table (26)).
More details are as follows. In Cart-Pole environments, d in a reward function measures
the square of the distance between the pole’s endpoint and its goal, and hyper-parameter
σc = 0.25. In Acrobot environments, the list of parameters {l1, l2, θ1, θ2} corresponds to
Fig. (37) in terms of meanings in a reward function. In Half-Cheetah environments, xt is
the notation of the x-coordinate in the Half-Cheetah agent at time slot index t, ∇t is the
time difference in dynamics (the resulted ratio is the speed of agent.), and at is the action
performed instantly. In Slim-Humanoid environments, notations are similar to those in
Half-Cheetah and xt,h in reward functions refer to the instant torso’s height. Horizons of
trajectories, as well as types of action spaces, can also be found in Table (26).

Learning Parameterized Policies in the Background of MBMRL

Dynamics ModelsMDPs

......

Dynamics ModelsMDPs

...... ...

Policy Networks

Adaptation

(a) In GSSM Cases (Using Amortized Policies) (b) In NonLV-GSSM/Other Baseline Cases

Fine-t
uning

Figure 38: Meta Model-based Policy Search used in Models. Note that reducing adapta-
tion time in policies is the first priority in this work. On the Left, amortized policies are
used and latent variables are to specify different tasks. On the Right, the meta-trained
policy is not conditioned on latent variables and needs to be adapted to respective tasks,
which consumes additional time.

Training Details

Data Preprocessing. In Acrobot tasks, the output of dynamics models is the next or
transited state (x = [s, a], y = s′). In other tasks, the output of dynamics models is
the difference between the next state and the current state (x = [s, a], y = ∆s). For
the input of dynamics models, it is the state-action pair in all environments. For Half-

130

C S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 5

Cheetah/Slim-Humanoid environments, standardization is required for both the input
and the output of dynamics models in meta training processes.

More Details in Policy Search. In Cart-Pole Swing-Up environments, Back-Propagation
Through Time (BPTT) is used in model-based policy search and the policy network
parametrized with a radial basis function follows that in (Gal et al., 2016), for GSSM+APS,
a latent variable is concatenated with the state variable as the input. In Acrobot/Half-
Cheetah/Slim-Humanoid, we combine PPO with the learned dynamics model (We also
perform additional trials in BPTT strategies but this kind of model-based policy search
suffers from gradient exploding in practice), and a direct combination of model-based
and model-free RL algorithms in meta-learning leads to stable training.

Besides, meta-trained policies in MLSM-v0/MLSM-v1/M-DPILCO require additional
policy gradient updates in separate dynamics models of tasks, and these are up to tasks
based on our trials. For Cart-Pole/Acrobot, five trajectories are enough to fine-tune these
policies, and for Half-Cheetah/Slim-Humanoid one trajectory is enough to fine-tune
these policies. Such adaptation in MLSM-v0, MLSM-v1, and M-DPILCO consumes
additional time when the learned policy is implemented in unseen environments.

The pipeline is reflected in Fig. (38). Traditional model predictive control strategies are
prohibitively expensive in implementation, costing much more time with lower efficiency
in high dimensional action space. Since related work employing parameterized policies
in MBMRL remains limited, our proposed method can be deemed as a preliminary
exploration.

Further Descriptions in Fig.s/Tables. Here we add more descriptions on Cart-Pole,
where authors can follow the implementations in the work15, and the state-of-art perfor-
mance using Deep-PILCO is about -0.6 in episodes for a single task. We also try DR-PPO
and PE-PPO in Cart-Pole tasks with more than 10x required time steps in training, but
the resulted performance in testing is far worse than MBMRL ones, and we guess the
PPO algorithm here cannot well handle planning with short horizons (Other referred
model-free results can be found in (Lillicrap et al., 2016). In addition, the estimated
required samples of all MBMRL baselines for Cart-Pole are even 2x less than model-free
ones (Lillicrap et al., 2016; Gal et al., 2016) to train in one single MDP.).

In Fig. (17.(a)/(b)/(d)), each iter in x-axis indicates that a new trajectory is sampled
to update the dynamics buffer, the batch size of samples in dynamics memory buffer is
100, the default epoch in training dynamics models is 5 in each iter, and the Cart-Pole
environment changes every every 10 iter. Meanwhile, for each iter, 25 trajectories
are sampled using the updated policy to average results for evaluating the performance
in the trained task (this process results in learning curves).

Fig. (19) keeps track of meta-training performance using MBMRL algorithms in
Acrobot/H-Cheetah/S-Humanoid, and dynamics of MDPs change with iterations (the
batch numbers of tasks are 1 for Acrobot/H-Cheetah and 3 for S-Humanoid). In Acrobot,
the batch size of samples in the dynamics memory buffer is 100, the default epoch
in training dynamics models is 20 in each iter, and 15 trajectories are sampled for
evaluation to show performance on learning curves. In H-Cheetah, the batch size of

15 https://github.com/BrunoKM/deep-pilco-torch

131

A P P E N D I C E S

samples in the dynamics memory buffer is 1000, the default epoch in training dynamics
models is 20 in each iter, and 15 trajectories are sampled for evaluation to show
performance on learning curves. In S-Humanoid, the batch size of samples in dynamics
memory buffer is 1000, the default epoch in training dynamics models is 10 in each
iter, and 15 trajectories are sampled for evaluation to show performance on learning
curves. And every fixed number of iterations, MDPs in meta-training are resampled
(for Acrobot, every 3 iters; for H-Cheetah, every 3 iters; for S-Humanoid, every 1
iter).

Table (25) and Table (8)/(9) summarize the meta-testing results over unseen MDPs. We
collect the rewards in each task using these models to obtain the average results in each
task and then report average rewards over meta testing tasks in the table. Some additional
explanations are as follows. In meta-testing tasks of Cart-Pole, contextual latent variables
in GSSM/MLSM-v0/MLSM-v1 are computed after transitions of two trajectories (50
transition steps) are aggregated. In meta-testing tasks of Acrobot, contextual latent
variables in GSSM/MLSM-v0/MLSM-v1 are computed after transitions of a one-sixth
trajectory (50 transition steps) are aggregated. In meta-testing tasks of Half-Cheetah/Slim-
Humanoid, contextual latent variables in GSSM/MLSM-v0/MLSM-v1 are computed
after transitions of a half trajectory (500 transition steps) are aggregated.

Meanwhile, meta-training processes in model-free meta reinforcement learning are
recorded in Fig. (19). All these are trained with Adam optimizers, and learning rates are
5e-4 in default.

C.9 Neural Architectures and Parameter Settings

Here neural architectures in meta dynamics models are listed in Table (27). These
architectures are shared across all implemented tasks in the paper. And one layer graph
encoding is enough to guarantee performance in our GSSM implementations for all
experiments. For Meta-DPILCO, neural architectures resemble that in the table except
that encoders for latent variables are removed, and dropout modules are integrated in
each layer. In Cart-Pole environments, parameters in Table (27) are {n = 2, dim latxy =
32, dim lat = 16, m = 2, dim h = 200}. In Acrobot environments, parameters in
Appendix Table (27) are {n = 2, dim latxy = 32, dim lat = 16, m = 5, dim h = 400}.
In Mujoco environments, parameters in Appendix Table (27) are {n = 2, dim latxy =
32, dim lat = 16, m = 5, dim h = 400}. Also, note that in our implementations, we
set dim lat = 8 for GSSM in Cart-Pole/Acrobot/H-Cheetah because lower dimensional
information bottlenecks are more compact and help amortized policy search, while for
models using non-latent variable conditioned policies better results are achieved with
information bottleneck dim lat = 16.

As for meta policy networks or latent variable conditioned policy networks (used
in GSSM), we adopt the ordinary ones, and these are listed in Table (28). In Cart-
Pole environments, parameters in Table (28) are {np = 1, dim ph = 50}. In Acrobot
environments, parameters in Appendix Table (28) are {npa = 1, dim ph = 128, npc =
1}. In Half-Cheetah environments, parameters in Table (28) are {npa = 1, dim ph =
128, npc = 1}. In model-free meta reinforcement learning scenarios, the contextual
encoder is permutation invariant, the same as that used in MLSM-v0, and the optimization

132

C S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 5

Table 27: Neural Network Structure of MBMRL Models. The transformations in the
table are linear, followed with ReLU activation mostly. As for MLSM-v1, the encoder
network is doubled in the table since there exists a local variable for prediction.

NP Models Encoder Decoder

[dim x, dim y] 7→ dim latxy 7→ dim latxy︸ ︷︷ ︸
n times

[dim x, (2∗)dim lat] 7→ dim h 7→ dim h︸ ︷︷ ︸
m times

MLSM-v0/v1 dim latxy 7→ dim lat. dim h 7→ dim y

[dim x, dim y] 7→ dim latxy 7→ dim latxy︸ ︷︷ ︸
n times

[dim x, dim lat] 7→ dim h 7→ dim h︸ ︷︷ ︸
m times

GSSM dim x 7→ dim latx;
[dim latx, dim laty] 7→ dim lat. dim h 7→ dim y

Table 28: Neural Network Structure in Meta Policy Networks. For Back-propagation
Through Time (BPTT) and Actor-Critic Policy Gradient Algorithms, neural architectures
are different. ReLU is used as an activation function. Soft-max is used in the output of
Actor Networks in the discrete control.

Policy Search Neural Architectures

[dim obs]/[dim obs, dim lat] 7→ dim ph 7→ dim ph︸ ︷︷ ︸
np times

BPTT dim ph 7→ dim act.

[dim obs]/[dim obs, dim lat] 7→ dim ph 7→ dim ph︸ ︷︷ ︸
npc times

7→ dim act (Actor Network)

AC-PG (PPO) [dim obs]/[dim obs, dim lat] 7→ dim ph 7→ dim ph︸ ︷︷ ︸
npa times

7→ 1 (Critic Network).

objectives follow those in PEARL (Rakelly et al., 2019). Besides, we implement the
vanilla version of PEARL with the same training sample volume as that in MBMRL but
find the results are inferior to mentioned model-free baselines.

133

A P P E N D I C E S

D S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 6

D.1 Probabilistic Generative Process in NPs

Here we can translate the generative process of NPs in the following mathematical way.

τ ∼ p(T), z ∼ N(z; µϑ(DC
τ), Σϑ(D

C
τ))

xi ∼ p(x), yi ∼ p(y|[xi, z];ϑ) ∀i ∈ {1, 2, . . . , n + m}
(8.59)

D.2 Run-time Complexity of Predictive Distributions in GPs & NPs

Take one-dimensional deep Gaussian processes (Dai et al., 2016) as an example. With
context points DC = {(xi, yi)}ni=1 and target points DT = {(xi, yi)}

n+m
i=1 , the key to

applications is the predictive distribution p(f (xT)|DC , xT) = N(yT ; µT , ΣT). The
conditional mean µT and covariance ΣT functions in Eq. (8.60) are permutation invariant
to the order of context points.

µT = mθ(xT) + ΣT ,CΣ−1
C,C

(
yC −mθ(xC)

)
ΣT = ΣT ,T − ΣT ,CΣ−1

C,CΣC,T
(8.60)

Here the covariance matrix denoted by Σ is computed with the context input xC =
(x1, . . . , xn) ∈ Rn×d, the target input xT = (x1, . . . , xn+m) ∈ R(n+m)×d, and a kernel
function ψ, e.g. [ΣC,C]i, j = ψ(xi, x j), mθ is the mean function mθ, and the context output
is yC = (y1, . . . , yn) ∈ Rn. Nevertheless, the computation of matrix inversion in Eq.
(8.60) makes the runtime complexity as expensive as O((n + m)3). As comparison, the
runtime complexity in NPs is O(n + m) since NPs enable predictions by running the
stochastic forward pass with one Monte Carlo sample.

D.3 NPs Formulation & Structural Inductive Biases

Prior, Posterior & Proposal Distributions

Since fast adaptation is achieved in an amortized way, which reduces the gradient updates
w.r.t. model parameters to learning function specific latent variables with amortized
networks. The context points are treated as a set and the amortized network should be
permutation invariant w.r.t. the order of data points.

• Approximate Posterior Distribution. This is denoted by qϕ(z|DT
τ) in this chapter.

Usually, the approximate posterior is used in NPs (Garnelo et al., 2018b; Kim
et al., 2019) and works as a proxy for the non-analytical real posterior p(z|DT

τ ;ϑ).

• Prior Distribution. This is denoted by p(z|DC
τ ;ϑ) in this chapter. Unlike the

approximate prior qϕ(z|DC
τ) used in NPs, we use an exact functional prior in

SI-NPs.

• Proposal Distribution. This is denoted by qη(z|DT
τ) in this chapter. The role of

the proposal distribution resembles that of the approximate posterior in NPs. It

134

D S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 6

is used to sample latent variables and enable the computation of the importance
weights in NPs.

Since the latent variable z is inferred from a set of data points, the distributions qϕ(z)
and qϕ(z|DC

τ) should be permutation invariant to the order of data points. An example
module to parameterize qϕ(z|DC

τ) = N(z; µτ, Στ) can be Eq. (8.61) with
⊕

a mean
pooling operator and {hϕ, gϕ} encoder networks.

ri = hϕ([xi, yi]) ∀(xi, yi) ∈ D
C
τ , rC =

N⊕
i=1

ri, [µτ, Στ] = gϕ(rC) (8.61)

The same with that in traditional stochastic processes, a realisation corresponds to a sam-
pled function f (X) generated in a sequential way: z ∼ qϕ(z|DC

τ), f (X) ∼ p(Y |X, z;ϑ).

Approximate ELBOs in NPs

ln p(DT
τ |D

C
τ ;ϑ) = ln

∫
p(DT

τ |z;ϑ)p(z|DC
τ ;ϑ)dz

(8.62a)

≥ Eqϕ(z|DT
τ)

[
ln p(DT

τ |z;ϑ)
]
− DKL

 qϕ(z|DT
τ)︸ ︷︷ ︸

Approximate Posterior

∥ p(z|DC
τ ;ϑ)︸ ︷︷ ︸

Intractable Prior

 = LELBO(ϑ, ϕ)

(8.62b)

≈ Eqϕ(z|DT
τ)

[
ln p(DT

τ |z;ϑ)
]
− DKL

 qϕ(z|DT
τ ;ϑ)︸ ︷︷ ︸

Approximate Posterior

∥ qϕ(z|DC
τ)︸ ︷︷ ︸

Approximate Prior

 = LNP(ϑ, ϕ) □

(8.62c)

For Eq. (8.62.b), remember that w.r.t. these VAE-like methods, there is no improve-
ment guarantee of the evidence in each iteration when optimizing ELBO due to the
existence of posterior approximation gap. Importantly, the form of the functional prior is
unknown.

Vanilla NPs directly replace the real functional prior by the approximate one qϕ(z|DC
τ)

and introduce the consistent regularizer in Eq. (6.5). We further introduce the prior
approximation gap in Eq. (8.63), in which the sign is undetermined.

LNP(ϑ, ϕ) = LELBO(ϑ, ϕ) + Eqϕ(z)

ln qϕ(z|DC
τ)

p(z|DC
τ ;ϑ)

︸ ︷︷ ︸
Prior Approximation Gap

(8.63)

135

A P P E N D I C E S

Based on decomposition in Eq. (6.4)/(8.63), we can find there exists no consistent
monotonic relationship between L(ϑ) and LNP(ϑ, ϕ). The invalid ELBO makes the
optimization w.r.t. LNP(ϑ, ϕ) not always improve log-likelihood L(ϑ).

L(ϑ) ≥ LELBO(ϑ, ϕ), L(ϑ) ≱ LNP(ϑ, ϕ) ∀ϑ ∈ Θ and ϕ ∈ Φ (8.64)

Also, the right side of Eq. (8.64) indicates the previous commonly-used strategies, e.g.
normalizing flows for richer variational posterior distributions (Rezende and Mohamed,
2015), auxiliary variables for augmented variational posterior distributions (Maaløe et al.,
2016) and more flexible prior distributions (Tomczak and Welling, 2018), to close VAEs
inference gaps (Cremer et al., 2018) will not guarantee the performance improvement in
a theoretical sense. In other words, the consistent regularizer in NPs is problematic for
optimization.

Inference Gaps

In this section, we apply the trick of inference gap decomposition (Cremer et al., 2018)
to understand vanilla NPs. Here we denote the approximate inference gap by DAI

KL and
the posterior approximation gap by DPA

KL.

Table 29: Inference Gaps in vanilla NPs. The ↓ indicates the minimization to obtain the
optimal inference solution. The sign − − means not applicable in deriving equivalent
KL divergence form. The sign ∗ indicates the optimal posterior approximation in the
family of variational distributions ϕ∗ = arg minϕ∈Φ DKL

[
qϕ(z) ∥ p(z|DT

τ ;ϑ∗)
]
. Here ϑ∗

consists of the optimal parameters in priors p(z|DC
τ ;ϑ∗) and the conditional distribution

p(DT
τ |z;ϑ∗).

Terms Optimization Objective KL Divergence
or Gaps

Approximate Inference L(ϑ∗) −LELBO(ϑ
∗, ϕ) ↓ DKL

[
qϕ(z) ∥ p(z∗|DT

τ ;ϑ)
]

Posterior Approximation L(ϑ∗) −LELBO(ϑ
∗, ϕ∗) ↓ DKL

[
qϕ∗(z) ∥ p(z|DT

τ ;ϑ∗)
]

Amortization LELBO(ϑ
∗, ϕ∗) −LELBO(ϑ

∗, ϕ) ↓ DAI
KL − DPA

KL

NP Prior Approximation |LELBO(ϑ
∗, ϕ∗) −LNP(ϑ∗, ϕ∗)| −

Surrogate Likelihood L(ϑ∗) −L(ϑ;ϑk) ↓ L(ϑ∗) −L(ϑH)

D.4 Neural Architectures in Implementations

D.5 Formulation of Variational Expectation Maximization Method

In this section, we at first present the optimization objective in VAE-like methods.
The concept of meta learning surrogate functions is introduced and NPs are verified.
Meanwhile, the improvement guarantee as well as other concerning technical points are
included to better understand our method.

136

D S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 6

Proof of Meta Learning Surrogate Functions

The proof is directly based on Definition (3). When an objective function f (ϑ) to
maximize is complicated, e.g. multi-modal likelihood functions, a surrogate function
g(ϑ;ϑk) enables an easier proxy implementation with convergence guarantee to at least
the local optimal. To see this point, recall the properties of the surrogate function
g(ϑk;ϑk) = f (ϑk). The update rule for the surrogate function follows that ϑk+1 =
arg maxϑ g(ϑ;ϑk). And this results in f (ϑk+1) ≥ g(ϑk+1;ϑk) ≥ f (ϑk).

Recall the following function L(ϑ;ϑk) in the main paper.

L(ϑ;ϑk) =
∑
τ∈T

Ep(z|DT
τ ;ϑk)

[
ln p(DT

τ , z|DC
τ ;ϑ) − ln p(z|DT

τ ;ϑk)
]

(8.65)

The expectation operation in the k-th iteration step corresponds to E-step : qϕ(z|DC
τ) =

pϑk(z|D
C
τ), while the maximization operation in the k-th iteration step updates the pa-

rameter as M-step : ϑk+1 = arg maxϑL(ϑ;ϑk).

ln p(DT
τ |D

C
τ ;ϑk)︸ ︷︷ ︸

Model Evidence

=
E-step

L(ϑk;ϑk) ≤
M-step

L(ϑk+1;ϑk)

(8.66a)

≤ L(ϑk+1;ϑk) + DKL[p(z|DT
τ ;ϑk) ∥ p(z|DT

τ ;ϑk+1)] = ln p(DT
τ |D

C
τ ;ϑk+1)︸ ︷︷ ︸

Model Evidence

□

(8.66b)

Proof of Improvement Guarantee using Variational EM

As illustrated in Eq.s (8.66), the surrogate function L(ϑ;ϑk) is bounded by two log-
likelihoods. Over the process of iterations, the log-likelihood is gradually increased to
the final convergence.

ln p(DT
τ |D

C
τ ;ϑ1) ≤ L(ϑ2;ϑ1) ≤ ln p(DT

τ |D
C
τ ;ϑ2) ≤ · · ·

≤ L(ϑH;ϑH−1) ≤ ln p(DT
τ |D

C
τ ;ϑH)

(8.67)

This indicates that the finally updated parameters of the surrogate function are exactly
optimal ones for the evidence. Based on these rules, directly optimizing the surrogate
function step by step can guarantee the finding of optimal parameters in a theoretical
sense.

Importance Sampling in a Variational EM Algorithm

Though the conditional marginal distribution p(DT
τ |D

C
τ ;ϑk) is not analytical, the im-

portance sampling trick with help of a proposal distribution qη(z|DT
τ) can be used to

estimate the result.

137

A P P E N D I C E S

p(DT
τ |D

C
τ ;ϑk) ≈

1
B

B∑
b=1

ω(b),

with z(b) ∼ qη(z|DT
τ) and ω(b) =

p(DT
τ , z(b)|DC

τ ;ϑk)

qη(z(b)|DT
τ)

(8.68)

Especially, the joint distribution is computed via the decomposition that p(DT
τ , z(b)|DC

τ ;ϑk) =
p(z(b)|DC

τ ;ϑk)p(DT
τ |z

(b);ϑk) with p(DT
τ |z

(b);ϑk) =
∏n+m

i=1 p(yi|[xi, z(b)];ϑk).

With the above equation, the intractable optimization objective is transformed into a
feasible one.

LEM(ϑ;ϑk) = Ep(z|DT
τ ;ϑk)

ln p(DT
τ , z|DC

τ ;ϑ) (8.69a)

=

∫
p(DT

τ , z|DC
τ ;ϑk)

p(DT
τ |D

C
τ ;ϑk)

ln p(DT
τ , z|DC

τ ;ϑ)dz (8.69b)

=

∫
qη(z|DT

τ)
p(DT

τ , z|DC
τ ;ϑk)

qη(z|DT
τ)p(DT

τ |D
C
τ ;ϑk)

ln p(DT
τ , z|DC

τ ;ϑ)dz (8.69c)

≈
1
B

B∑
b=1

ω(b)

p(DT
τ |D

C
τ ;ϑk)

ln p(DT
τ , z(b)|DC

τ ;ϑ) (8.69d)

=
B∑

b=1

ω(b)∑B
b′=1 ω

(b′)
ln p(DT

τ , z(b)|DC
τ ;ϑ) (8.69e)

=
B∑

b=1

ω̂(b) ln p(DT
τ , z(b)|DC

τ ;ϑ) (8.69f)

= LSI-NP(ϑ, η;ϑk) (8.69g)

We can expand the term inside the expectation in Eq (8.69.a) as follows.

p(DT
τ , z(b)|DC

τ ;ϑ) = p(z(b)|DC
τ ;ϑ)p(DT

τ |z
(b);ϑ) (8.70)

As for the posterior p(z|DT
τ ;ϑk), we can get the following expansion.

p(z|DT
τ ;ϑk) =

p(z,DT
τ ;ϑk)∫

p(z,DT
τ ;ϑk)dz

=
p(z|DC

τ ;ϑk)p(DT
τ |z;ϑk)∫

p(z|DC
τ ;ϑk)p(DT

τ |z;ϑk)dz
(8.71)

The distribution is with the complicated denominator and this makes it infeasible to
directly sample from the conditional distribution.

138

D S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 6

Optimization Objective with Proposal Distributions

It is trivial to see the following equation.

arg min
η

DKL[p(z|DT
τ ;ϑk) ∥ qη(z|DT

τ)]

⇔ arg min
η
−Ep(z|DT

τ ;ϑk)
[ln qη(z|DT

τ)]
(8.72)

Once again, we apply self-normalized importance sampling to the right side of Eq.
(8.72). With the same set of sampled latent variables, the reweighted objective w.r.t. the
proposal distribution can be derived.

arg min
η
−Ep(z|DT

τ ;ϑk)
[ln qη(z|DT

τ)]

≈ −

B∑
b=1

ω̂(b) ln qη(z(b)|DT
τ) = LKL(η; ηk−1,ϑk)

(8.73)

To include the inequality to show the bias in importance sampling and the decrease of
the bias with more samples and morel updates.

Gradient Estimates in Variational EM

In the E-step #2, note that the model parameter is fixed as ϑk, we can estimate the
gradient of η w.r.t. LKL(η; ηk−1,ϑk) in the following way.

∂LKL(η; ηk−1,ϑk)

∂η
=

B∑
b=1

ω̂(b)

∂ ln qη(z(b)|DT
τ)

∂η

 (8.74)

In the M-step, note that the normalized importance weights are constant, the proposal
distribution is fixed, and the gradient w.r.t. LSI-NP(ϑ; ηk,ϑk) can be estimated in a
straightforward way as follows.

∂LSI-NP(ϑ; ηk,ϑk)

∂ϑ
=

B∑
b=1

ω̂(b)

∂ ln p(z(b)|DC
τ ;ϑ)

∂ϑ
+
∂ ln p(DT

τ |z
(b);ϑ)

∂ϑ

 (8.75)

D.6 Proof of SI-NPs Equivalence with CNPs

Prior Collapse in SI-NPs with One Monte Carlo Sample

Theorem 6 (L’Hôpital’s Rule (Hospital, 1696)) Let f (x) and g(x) be two functions
differentiable on an open interval I except possibly at a point c contained in I. If

139

A P P E N D I C E S

limx→c f (x) = limx→c g(x) = ∞, and
(

1
g(x) f (x)

)′
, 0 with ∀x ∈ I and x , c, we can

have the following limit equation.

lim
x→c

f (x) − g(x) = lim
x→c

1
g(x) −

1
f (x)

1
g(x) f (x)

= lim
x→c

(
1

g(x) −
1

f (x)

)′
(

1
g(x) f (x)

)′ (8.76)

Proof 2 (Proposition 3) Let z ∈ Rd be the latent variable for a diagonal Gaussian
conditional prior p(z|DC

τ ;ϑ) = N(z; µϑ(DC
τ), Σϑ(DC

τ)). Here the learned mean and
the covariance matrix are simply denoted by µϑ = [µ1, . . . , µd]T ∈ Rd and Σϑ =
diag

[
σ2

1, . . . ,σ2
d

]
.

With one Monte Carlo sample ẑ = [ẑ1, . . . , ẑd]T from the conditional prior, it can be

written as ẑ = µϑ + ϵ̂Σ
1
2
ϑ

, ϵ̂ ∼ N(0,Id) with help of a reparameterization trick (Kingma
and Welling, 2013).

Ep(z|DC
τ ;ϑk)

[
ln p(z|DC

τ ;ϑ)
]
≈ ln p(z|DC

τ ;ϑ) = −
1
2

ln(2π) +
d∑

i=1

− lnσi −
(µi − ẑi)2

2σ2
i

(8.77)

Eq. (8.77) is the result of one Monte Carlo estimate, termed as the collapse term in the
main paper. Built up on these, we rewrite the SI-NP optimization objective to maximize
as Eq. (8.78).

LSI-NP = Ep(z|DC
τ ;ϑ)

[
ln p(DT

τ |z;ϑ)
]
+ Ep(z|DC

τ ;ϑk)

[
ln p(z|DC

τ ;ϑ)
]

≈

n+m∑
i=1

ln p(yi|[xi, µϑ + ϵ̂Σ
1
2
ϑ

;ϑ]) −

1
2

ln(2π) +
d∑

i=1

lnσi +
(µi − ẑi)2

2σ2
i

 (8.78)

Now we prove that when the learned variance parameter {σi}
d
i=1 collapse into the

value zero, the optimization objective in Eq. (8.77) and Eq. (8.78) can be maximized.
To simplify the notation, we put the mean variable µϑ aside, focus more on the variance
variable Σϑ and let the value µi−ẑi

2 denoted by κi.

lim
σi→0

− lnσi −
κi

σ2
i

= lim
σi→0

σ2
i
κi
+ 1

lnσi

−
σ2

i
κi lnσi

= lim
σi→0

σ2
i lnσi + κi

−σ2
i

= lim
σi→0

(
σ2

i lnσi + κi
)′(

−σ2
i

)′ = lim
σi→0

2σi lnσi + σi

−2σi
= lim

σi→0
− lnσi −

1
2
= +∞

(8.79)

Putting them together, the Gaussian latent variable will finally collapse into a Dirac
delta distribution and this demonstrates the equivalence between SI-NP with one Monte
Carlo sample and CNP.

140

D S U P P L E M E N TA RY M AT E R I A L S I N C H A P T E R 6

Remark 2 Either increasing the number of Monte Carlo samples or lower the weight of
the collapse term can effectively avoid the prior collapse.

With increase of Monte Carlo samples, we can see the scale of the generative term
outweights that of the collapse term, which indicates more weights are put in the gradient
w.r.t. the variance parameters to maximize the generative log-likelihood. In this way, it
can naturally avoid the prior collapse caused by the second term.

D.7 Experimental Setup & Implementation Details

In all experiments, we use Adam (Kingma and Welling, 2013) as the default optimizer
for all experiments. Pytorch works as the toolkit to program and run experiments.

Meta Learning Datasets

Gaussian Process Simulator. The generator of Gaussian process dataset is the same
with that in (Lee et al., 2020a). Three types of kernels are used to formulate diverse
Gaussian processes.

• Matern −5
2 kernel:

k(x, x′) =
(
1 + 4

√
5d +

5
3

d2
)

exp
(
−
√

5d
)

with d = 4|x − x′|;

• RBF kernel:

k(x, x′) = s2 exp
(
−
(x − x′)2

2l2

)
with s ∼ U[0.1, 1.0] and l ∼ U[0.1, 0.6]

• Periodic kernel:

k(x, x′) = s2 exp

−2 sin2(π||x−x′||2
p)

l2

with s ∼ U[0.1, 1.0], l ∼ U[0.1, 0.6] and p ∼ U[0.1, 0.5]

Image Datasets. Benchmark image datasets include MNIST (Bottou et al., 1994),
FMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2009) and SVHN (Sermanet
et al., 2012). For pixel values, they are transformed to normalized Tensors via pytorch
package.

Neural Architectures & Optimizations

Synthetic Regression. In terms of neural architectures, we use the same setup as that
in (Gordon et al., 2020; Lee et al., 2020a) for all baselines. The dimension of latent

141

A P P E N D I C E S

variables is 128. The Encoder is a two hidden layer neural network with 128 neuron
units for each layer. The Decoder is a one hidden layer neural network with 128 neuron
units. The optimizer’s learning rate is 5e− 4. For ML-NPs and SI-NPs, we use 16 Monte
Carlo samples for latent variables in meta training, which is the default setting in (Foong
et al., 2020).

Image Completion. The setup is the same with that in (Garnelo et al., 2018a) and works
for all NPs variants. As default, we set the dimension of latent variables z as 128 for all
baselines. For all baselines, the Encoder is constituted with three hidden layers (128
neuron units each). The Decoder has five hidden layers (128 neuron units each) as
well. The learning rate for the optimizer is 5e − 4. The training batch size for all images
is 4 and we meta train the model until convergence (the maximum epoch number for
MNIST/FMNIST is 100, and that for CIFAR10/SVHN is 200, and early stop is used
when necessary). For ML-NPs, we use 16 Monte Carlo samples for latent variables in
meta training, which is the default setting in (Foong et al., 2020). For SI-NPs, we find
that 8 Monte Carlo samples are sufficient in implementations.

142

B I B L I O G R A P H Y

Allen, K., Shelhamer, E., Shin, H., and Tenenbaum, J. (2019). Infinite mixture prototypes for few-shot
learning. In International Conference on Machine Learning, pages 232–241. PMLR.

Amos, B., Dinh, L., Cabi, S., Rothörl, T., Colmenarejo, S. G., Muldal, A., Erez, T., Tassa, Y., de Freitas,
N., and Denil, M. (2018). Learning awareness models. arXiv preprint arXiv:1804.06318.

Asmuth, J., Li, L., Littman, M. L., Nouri, A., and Wingate, D. (2009). A bayesian sampling approach to
exploration in reinforcement learning. In Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, pages 19–26.

Bhattacharya, R. N. and Waymire, E. C. (2009). Stochastic processes with applications. SIAM.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and machine learning, volume 4. Springer.

Bonilla, E. V., Chai, K. M., and Williams, C. (2008). Multi-task gaussian process prediction. In Advances
in Neural Information Processing Systems, pages 153–160.

Bornschein, J. and Bengio, Y. (2014). Reweighted wake-sleep. arXiv preprint arXiv:1406.2751.

Bottou, L., Cortes, C., Denker, J. S., Drucker, H., Guyon, I., Jackel, L. D., LeCun, Y., Muller, U. A.,
Sackinger, E., Simard, P., et al. (1994). Comparison of classifier methods: a case study in handwritten
digit recognition. In Proceedings of the 12th IAPR International Conference on Pattern Recognition,
Vol. 3-Conference C: Signal Processing (Cat. No. 94CH3440-5), volume 2, pages 77–82. IEEE.

Burt, D., Rasmussen, C. E., and Van Der Wilk, M. (2019). Rates of convergence for sparse variational
gaussian process regression. In International Conference on Machine Learning, pages 862–871.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pages 1597–1607. PMLR.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems,
pages 4754–4765.

Clavera, I., Nagabandi, A., Fearing, R. S., Abbeel, P., Levine, S., and Finn, C. (2019). Learning to adapt:
Meta-learning for model-based control. arXiv preprint arXiv:1803.11347, 3.

Cremer, C., Li, X., and Duvenaud, D. (2018). Inference suboptimality in variational autoencoders. In
International Conference on Machine Learning, pages 1078–1086. PMLR.

Dai, Z., Damianou, A. C., González, J., and Lawrence, N. D. (2016). Variational auto-encoded deep
gaussian processes. In International Conference on Learning Representations.

Daumé III, H. (2009). Bayesian multitask learning with latent hierarchies. In Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, pages 135–142.

De Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. In Annales de l’institut
Henri Poincaré, volume 7, pages 1–68.

Deisenroth, M. and Rasmussen, C. E. (2011). Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
465–472.

143

Bibliography

Denton, E. and Fergus, R. (2018). Stochastic video generation with a learned prior. In International
Conference on Machine Learning, pages 1174–1183.

Depeweg, S., Hernandez-Lobato, J.-M., Doshi-Velez, F., and Udluft, S. (2018). Decomposition of uncer-
tainty in bayesian deep learning for efficient and risk-sensitive learning. In International Conference on
Machine Learning, pages 1184–1193.

Dezfouli, A. and Bonilla, E. V. (2015). Scalable inference for gaussian process models with black-box
likelihoods. In Advances in Neural Information Processing Systems, pages 1414–1422.

Dilokthanakul, N., Mediano, P. A., Garnelo, M., Lee, M. C., Salimbeni, H., Arulkumaran, K., and
Shanahan, M. (2016). Deep unsupervised clustering with gaussian mixture variational autoencoders.
arXiv preprint arXiv:1611.02648.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P. (2016). Rl 2̂: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779.

Džeroski, S., Demšar, D., and Grbović, J. (2000). Predicting chemical parameters of river water quality
from bioindicator data. Applied Intelligence, 13(1):7–17.

Edwards, H. and Storkey, A. (2017). Towards a neural statistician. International Conference on Learning
Representations.

Eslami, S., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Hinton, G. E., et al. (2016). Attend, infer,
repeat: Fast scene understanding with generative models. Advances in Neural Information Processing
Systems, 29.

Eslami, S. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu,
A. A., Danihelka, I., Gregor, K., et al. (2018). Neural scene representation and rendering. Science,
360(6394):1204–1210.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pages 1126–1135. PMLR.

Finn, C., Xu, K., and Levine, S. (2018). Probabilistic model-agnostic meta-learning. In Advances in
Neural Information Processing Systems.

Finzi, M., Welling, M., and Wilson, A. G. (2021). A practical method for constructing equivariant
multilayer perceptrons for arbitrary matrix groups. International Conference on Machine Learning.

Flennerhag, S., Rusu, A. A., Pascanu, R., Yin, H., and Hadsell, R. (2019). Meta-learning with warped
gradient descent. arXiv preprint arXiv:1909.00025.

Foong, A. Y., Bruinsma, W., Gordon, J., Dubois, Y., Requeima, J., and Turner, R. E. (2020). Meta-learning
stationary stochastic process prediction with convolutional neural processes. In Advances in Neural
Information Processing Systems.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pages 1050–1059. PMLR.

Gal, Y., McAllister, R., and Rasmussen, C. E. (2016). Improving pilco with bayesian neural network
dynamics models. In Data-Efficient Machine Learning workshop, ICML, volume 4, page 34.

Galashov, A., Schwarz, J., Kim, H., Garnelo, M., Saxton, D., Kohli, P., Eslami, S., and Teh, Y. W. (2019).
Meta-learning surrogate models for sequential decision making. arXiv preprint arXiv:1903.11907.

Gao, A., Castellanos, J., Yue, Y., Ross, Z., and Bouman, K. (2021). Deepgem: Generalized expectation-
maximization for blind inversion. Advances in Neural Information Processing Systems, 34:11592–
11603.

144

Bibliography

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D., Shanahan, M., Teh, Y. W., Rezende,
D., and Eslami, S. A. (2018a). Conditional neural processes. In International Conference on Machine
Learning, pages 1704–1713.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Eslami, S., and Teh, Y. W. (2018b).
Neural processes. arXiv preprint arXiv:1807.01622.

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553):452–
459.

Ghojogh, B., Ghodsi, A., Karray, F., and Crowley, M. (2021). Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and survey. arXiv
preprint arXiv:2101.00734.

Gondal, M. W., Joshi, S., Rahaman, N., Bauer, S., Wuthrich, M., and Schölkopf, B. (2021). Function
contrastive learning of transferable meta-representations. In International Conference on Machine
Learning, pages 3755–3765. PMLR.

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., and Turner, R. (2018). Meta-learning probabilistic
inference for prediction. In International Conference on Learning Representations.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J., Dubois, Y., and Turner, R. E. (2020). Convolu-
tional conditional neural processes. In International Conference on Learning Representations.

Gumbel, E. J. (1954). Statistical theory of extreme values and some practical applications: a series of
lectures, volume 33. US Government Printing Office.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine, S. (2018). Meta-reinforcement learning
of structured exploration strategies. In Advances in Neural Information Processing Systems, pages
5302–5311.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine learning,
pages 1861–1870. PMLR.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and Davidson, J. (2018). Learning latent
dynamics for planning from pixels. arXiv preprint arXiv:1811.04551.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N., and Riedmiller, M. (2018). Learning an embedding
space for transferable robot skills. In International Conference on Learning Representations.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Hensman, J., Matthews, A., and Ghahramani, Z. (2015). Scalable variational gaussian process classification.
In Artificial Intelligence and Statistics, pages 351–360.

Hernández-Lobato, J. M. and Adams, R. (2015). Probabilistic backpropagation for scalable learning of
bayesian neural networks. In International Conference on Machine Learning, pages 1861–1869.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner, A.
(2017). beta-vae: Learning basic visual concepts with a constrained variational framework. International
Conference on Learning Representations, 2(5):6.

Hiraoka, T., Imagawa, T., Tangkaratt, V., Osa, T., Onishi, T., and Tsuruoka, Y. (2020). Meta-model-based
meta-policy optimization. arXiv preprint arXiv:2006.02608.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780.

145

Bibliography

Hofer, E., Kloos, M., Krzykacz-Hausmann, B., Peschke, J., and Woltereck, M. (2002). An approxi-
mate epistemic uncertainty analysis approach in the presence of epistemic and aleatory uncertainties.
Reliability Engineering & System Safety, 77(3):229–238.

Holderrieth, P., Hutchinson, M. J., and Teh, Y. W. (2021). Equivariant learning of stochastic fields:
Gaussian processes and steerable conditional neural processes. In International Conference on Machine
Learning, pages 4297–4307. PMLR.

Hospedales, T. M., Antoniou, A., Micaelli, P., and Storkey, A. J. (2020). Meta-learning in neural networks:
A survey. IEEE transactions on pattern analysis and machine intelligence.

Hospital, L. (1696). Analyse des infiniment petits.

Humplik, J., Galashov, A., Hasenclever, L., Ortega, P. A., Teh, Y. W., and Heess, N. (2019). Meta
reinforcement learning as task inference. arXiv preprint arXiv:1905.06424.

Hunter, D. R. and Lange, K. (2004). A tutorial on mm algorithms. The American Statistician, 58(1):30–37.

Iakovleva, E., Verbeek, J., and Alahari, K. (2020). Meta-learning with shared amortized variational
inference. In International Conference on Machine Learning, pages 4572–4582. PMLR.

Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with gumbel-softmax. International
Conference on Learning Representations.

Jha, S., Gong, D., Wang, X., Turner, R. E., and Yao, L. (2022). The neural process family: Survey,
applications and perspectives. arXiv preprint arXiv:2209.00517.

Jing, M., Ma, X., Sun, F., and Liu, H. (2018). Learning and inferring movement with deep generative
model. arXiv preprint arXiv:1805.07252.

Kamthe, S. and Deisenroth, M. P. (2017). Data-efficient reinforcement learning with probabilistic model
predictive control. arXiv preprint arXiv:1706.06491.

Kawano, M., Kumagai, W., Sannai, A., Iwasawa, Y., and Matsuo, Y. (2020). Group equivariant conditional
neural processes. In International Conference on Learning Representations.

Kégl, B., Hurtado, G., and Thomas, A. (2021). Model-based micro-data reinforcement learning: what are
the crucial model properties and which model to choose? arXiv preprint arXiv:2107.11587.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. (2020). Neural controlled differential equations for irregular
time series. Advances in Neural Information Processing Systems, 33:6696–6707.

Killian, T. W., Daulton, S., Konidaris, G., and Doshi-Velez, F. (2017). Robust and efficient transfer learning
with hidden parameter markov decision processes. Advances in Neural Information Processing Systems,
30.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O., and Teh, Y. W.
(2019). Attentive neural processes. In International Conference on Learning Representations.

Kim, M., Go, K. R., and Yun, S.-Y. (2021). Neural processes with stochastic attention: Paying more
attention to the context dataset. In International Conference on Learning Representations.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. International Conference on
Learning Representations.

Kingma, D. P. and Welling, M. (2014). Stochastic gradient vb and the variational auto-encoder. In Second
International Conference on Learning Representations, ICLR, volume 19.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations.

146

Bibliography

Kohl, S., Romera-Paredes, B., Meyer, C., De Fauw, J., Ledsam, J. R., Maier-Hein, K., Eslami, S. A.,
Rezende, D. J., and Ronneberger, O. (2018). A probabilistic u-net for segmentation of ambiguous
images. In Advances in Neural Information Processing Systems, pages 6965–6975.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems, 25.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predictive uncertainty
estimation using deep ensembles. In Advances in Neural Information Processing Systems, pages
6402–6413.

Lawrence, N. D. and Platt, J. C. (2004). Learning to learn with the informative vector machine. In
Proceedings of the twenty-first international conference on Machine learning, page 65.

Le, T. A., Kim, H., Garnelo, M., Rosenbaum, D., Schwarz, J., and Teh, Y. W. (2018). Empirical evaluation
of neural process objectives. In NeurIPS workshop on Bayesian Deep Learning, page 71.

Le, T. A., Kosiorek, A. R., Siddharth, N., Teh, Y. W., and Wood, F. (2020). Revisiting reweighted
wake-sleep for models with stochastic control flow. In Uncertainty in Artificial Intelligence, pages
1039–1049. PMLR.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–444.

Lee, J., Lee, Y., Kim, J., Yang, E., Hwang, S. J., and Teh, Y. W. (2020a). Bootstrapping neural processes.
Advances in Neural Information Processing Systems, 33:6606–6615.

Lee, K., Seo, Y., Lee, S., Lee, H., and Shin, J. (2020b). Context-aware dynamics model for generalization
in model-based reinforcement learning. International conference on machine learning.

Lee, Y. and Choi, S. (2018). Gradient-based meta-learning with learned layerwise metric and subspace. In
International Conference on Machine Learning, pages 2927–2936.

Leibfried, F., Kushman, N., and Hofmann, K. (2016). A deep learning approach for joint video frame and
reward prediction in atari games. arXiv preprint arXiv:1611.07078.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer, N., and Chen, Z. (2020).
Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Li, J., Vuong, Q., Liu, S., Liu, M., Ciosek, K., Ross, K., Christensen, H. I., and Su, H. (2019). Multi-task
batch reinforcement learning with metric learning. arXiv preprint arXiv:1909.11373.

Li, L., Yang, R., and Luo, D. (2020). Focal: Efficient fully-offline meta-reinforcement learning via distance
metric learning and behavior regularization. International Conference on Learning Representations.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learning. In International Conference on Learning
Representations.

Lin, Z., Thomas, G., Yang, G., and Ma, T. (2020). Model-based adversarial meta-reinforcement learning.
Advances in Neural Information Processing Systems, 33.

Louizos, C., Shi, X., Schutte, K., and Welling, M. (2019). The functional neural process. In Advances in
Neural Information Processing Systems, pages 8743–8754.

147

Bibliography

Louizos, C., Ullrich, K., and Welling, M. (2017). Bayesian compression for deep learning. In Advances in
Neural Information Processing Systems, pages 3288–3298.

Ma, C., Li, Y., and Hernandez-Lobato, J. M. (2019). Variational implicit processes. In International
Conference on Machine Learning, pages 4222–4233.

Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther, O. (2016). Auxiliary deep generative models.
In International Conference on Machine Learning, pages 1445–1453.

Mathieu, E., Foster, A., and Teh, Y. W. (2021). On contrastive representations of stochastic processes.
arXiv preprint arXiv:2106.10052.

Mendonca, R., Geng, X., Finn, C., and Levine, S. (2020). Meta-reinforcement learning robust to
distributional shift via model identification and experience relabeling. arXiv preprint arXiv:2006.07178.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement
learning. Nature, 518(7540):529.

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal processing magazine,
13(6):47–60.

Moreno-Muñoz, P., Artés, A., and Álvarez, M. (2018). Heterogeneous multi-output gaussian process
prediction. In Advances in Neural Information Processing Systems, pages 6711–6720.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel, P., Levine, S., and Finn, C. (2019). Learning
to adapt in dynamic, real-world environments through meta-reinforcement learning. In International
Conference on Learning Representations.

Nagabandi, A., Yang, G., Asmar, T., Kahn, G., Levine, S., and Fearing, R. S. (2017). Neural network
dynamics models for control of under-actuated legged millirobots. arXiv preprint arXiv:1711.05253.

Nalisnick, E. T., Matsukawa, A., Teh, Y. W., Görür, D., and Lakshminarayanan, B. (2019). Do deep genera-
tive models know what they don’t know? In 7th International Conference on Learning Representations,
ICLR 2019.

Oksendal, B. (2013). Stochastic differential equations: an introduction with applications. Springer Science
& Business Media.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016a). Deep exploration via bootstrapped dqn. In
Advances in Neural Information Processing Systems, pages 4026–4034.

Osband, I., Russo, D., and Van Roy, B. (2013). (more) efficient reinforcement learning via posterior
sampling. In Advances in Neural Information Processing Systems.

Osband, I., Van Roy, B., and Wen, Z. (2016b). Generalization and exploration via randomized value
functions. In International Conference on Machine Learning, pages 2377–2386. PMLR.

Parmas, P., Rasmussen, C. E., Peters, J., and Doya, K. (2018). Pipps: Flexible model-based policy search
robust to the curse of chaos. In International Conference on Machine Learning, pages 4065–4074.
PMLR.

Pei, J., Ren, P., Monz, C., and de Rijke, M. (2020). Retrospective and prospective mixture-of-generators
for task-oriented dialogue response generation. In ECAI 2020, pages 2148–2155. IOS Press.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). Sim-to-real transfer of robotic control
with dynamics randomization. In 2018 IEEE international conference on robotics and automation
(ICRA), pages 1–8. IEEE.

148

Bibliography

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532–1543.

Pertsch, K., Lee, Y., and Lim, J. J. (2020). Accelerating reinforcement learning with learned skill priors.
Conference on Robot Learning.

Rajbhandari, S., Li, C., Yao, Z., Zhang, M., Aminabadi, R. Y., Awan, A. A., Rasley, J., and He, Y. (2022).
Deepspeed-moe: Advancing mixture-of-experts inference and training to power next-generation ai
scale. arXiv preprint arXiv:2201.05596.

Rajeswaran, A., Finn, C., Kakade, S., and Levine, S. (2019). Meta-learning with implicit gradients.
Advances in Neural Information Processing Systems.

Rajeswaran, A., Mordatch, I., and Kumar, V. (2020). A game theoretic framework for model based
reinforcement learning. International conference on machine learning.

Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D. (2019). Efficient off-policy meta-reinforcement
learning via probabilistic context variables. In International conference on machine learning, pages
5331–5340. PMLR.

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer School on Machine
Learning, pages 63–71. Springer.

Rasmussen, C. E. and Ghahramani, Z. (2002). Infinite mixtures of gaussian process experts. Advances in
Neural Information Processing Systems, 2:881–888.

Ray, K. (2013). Bayesian inverse problems with non-conjugate priors. Electronic Journal of Statistics,
7:2516–2549.

Ren, H., Garg, A., and Anandkumar, A. (2019). Contextbased meta-reinforcement learning with structured
latent space. In Skills Workshop NeurIPS.

Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., and Turner, R. E. (2019). Fast and flexible multi-task
classification using conditional neural adaptive processes. Advances in Neural Information Processing
Systems, 32.

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In International
conference on machine learning, pages 1530–1538. PMLR.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning, pages 1278–1286.
PMLR.

Ritchie, D., Horsfall, P., and Goodman, N. D. (2016). Deep amortized inference for probabilistic programs.
arXiv preprint arXiv:1610.05735.

Ross, S. M., Kelly, J. J., Sullivan, R. J., Perry, W. J., Mercer, D., Davis, R. M., Washburn, T. D., Sager,
E. V., Boyce, J. B., and Bristow, V. L. (1996). Stochastic processes, volume 2. Wiley New York.

Rudner, T. G., Fortuin, V., Teh, Y. W., and Gal, Y. (2018). On the connection between neural processes
and gaussian processes with deep kernels. In Workshop on Bayesian Deep Learning, NeurIPS.

Russo, D. and Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of Operations
Research, 39(4):1221–1243.

Sæmundsson, S., Hofmann, K., and Deisenroth, M. P. (2018). Meta reinforcement learning with latent
variable gaussian processes. arXiv preprint arXiv:1803.07551.

149

Bibliography

Salimbeni, H. and Deisenroth, M. (2017). Doubly stochastic variational inference for deep gaussian
processes. In Advances in Neural Information Processing Systems, pages 4588–4599.

Salimbeni, H., Dutordoir, V., Hensman, J., and Deisenroth, M. (2019). Deep gaussian processes with
importance-weighted variational inference. In International Conference on Machine Learning, pages
5589–5598.

Satorras, V. G. and Estrach, J. B. (2018). Few-shot learning with graph neural networks. In International
Conference on Learning Representations.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function approximators. In
International conference on machine learning, pages 1312–1320. PMLR.

Schirmer, M., Eltayeb, M., Lessmann, S., and Rudolph, M. (2022). Modeling irregular time series with
continuous recurrent units. In International Conference on Machine Learning, pages 19388–19405.
PMLR.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy optimization.
In International conference on machine learning, pages 1889–1897. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

Sermanet, P., Chintala, S., and LeCun, Y. (2012). Convolutional neural networks applied to house
numbers digit classification. In Proceedings of the 21st international conference on pattern recognition
(ICPR2012), pages 3288–3291. IEEE.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. (2016). Outrageously
large neural networks: The sparsely-gated mixture-of-experts layer.

Shi, Y., Paige, B., Torr, P., et al. (2019). Variational mixture-of-experts autoencoders for multi-modal deep
generative models. Advances in Neural Information Processing Systems, 32.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L.,
Lai, M., Bolton, A., et al. (2017). Mastering the game of go without human knowledge. nature,
550(7676):354–359.

Singh, G., Yoon, J., Son, Y., and Ahn, S. (2019). Sequential neural processes. In Advances in Neural
Information Processing Systems, pages 10254–10264.

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot learning. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, pages 4080–4090.

Snelson, E. and Ghahramani, Z. (2006). Sparse gaussian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems, pages 1257–1264.

Snelson, E., Ghahramani, Z., and Rasmussen, C. E. (2004). Warped gaussian processes. In Advances in
Neural Information Processing Systems, pages 337–344.

Sohn, K., Lee, H., and Yan, X. (2015). Learning structured output representation using deep conditional
generative models. In Advances in Neural Information Processing Systems, pages 3483–3491.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and Winther, O. (2016). How to train deep
variational autoencoders and probabilistic ladder networks. In 33rd International Conference on
Machine Learning (ICML 2016).

Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., and Vlahavas, I. (2016). Multi-target regression via
input space expansion: treating targets as inputs. Machine Learning, 104(1):55–98.

150

Bibliography

Sun, S., Zhang, G., Shi, J., and Grosse, R. B. (2019). Functional variational bayesian neural networks. In
7th International Conference on Learning Representations, ICLR 2019.

Sun, Z., Wu, J., Li, X., Yang, W., and Xue, J.-H. (2021). Amortized bayesian prototype meta-learning: A
new probabilistic meta-learning approach to few-shot image classification. In International Conference
on Artificial Intelligence and Statistics, pages 1414–1422. PMLR.

Sutton, R. (2019). The bitter lesson. Incomplete Ideas (blog), 13:12.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical dirichlet processes. Journal of
the american statistical association, 101(476):1566–1581.

Thakur, S., van Hoof, H., Higuera, J. C. G., Precup, D., and Meger, D. (2019). Uncertainty aware learning
from demonstrations in multiple contexts using bayesian neural networks. In 2019 International
Conference on Robotics and Automation (ICRA), pages 768–774. IEEE.

Titsias, M. (2009). Variational learning of inducing variables in sparse gaussian processes. In Artificial
Intelligence and Statistics, pages 567–574.

Titsias, M. and Lawrence, N. D. (2010). Bayesian gaussian process latent variable model. In Proceedings
of the thirteenth international conference on artificial intelligence and statistics, pages 844–851. JMLR
Workshop and Conference Proceedings.

Titsias, M. and Lázaro-Gredilla, M. (2014). Doubly stochastic variational bayes for non-conjugate
inference. In International Conference on Machine Learning, pages 1971–1979.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE.

Tokdar, S. T. and Kass, R. E. (2010). Importance sampling: a review. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(1):54–60.

Tomczak, J. and Welling, M. (2018). Vae with a vampprior. In International Conference on Artificial
Intelligence and Statistics, pages 1214–1223. PMLR.

Tran, D., Ranganath, R., and Blei, D. (2017). Hierarchical implicit models and likelihood-free variational
inference. In Advances in Neural Information Processing Systems, pages 5523–5533.

Tran, D., Ranganath, R., and Blei, D. M. (2016). Variational gaussian process. In Bengio, Y. and LeCun,
Y., editors, 4th International Conference on Learning Representations, ICLR 2016.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning
research, 9(11).

van der Pol, E., Kipf, T., Oliehoek, F. A., and Welling, M. (2020). Plannable approximations to mdp
homomorphisms: Equivariance under actions. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, pages 1431–1439.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.

Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg, M., Czarnecki, W. M., Dudzik, A., Huang,
A., Georgiev, P., Powell, R., et al. (2019). Alphastar: Mastering the real-time strategy game starcraft ii.
DeepMind Blog.

Volpp, M., Flürenbrock, F., Grossberger, L., Daniel, C., and Neumann, G. (2020). Bayesian context
aggregation for neural processes. In International Conference on Learning Representations.

151

Bibliography

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C., Kumaran,
D., and Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint arXiv:1611.05763.

Wang, Q., Federici, M., and Van Hoof, H. (2022). Bridge the inference gaps of neural processes via
expectation maximization. In Preparation for International Conference on Learning Representations.

Wang, Q. and Van Hoof, H. (2020). Doubly stochastic variational inference for neural processes with
hierarchical latent variables. In International Conference on Machine Learning, pages 10018–10028.
PMLR.

Wang, Q. and Van Hoof, H. (2022a). Learning expressive meta-representations with mixture of expert
neural processes. Advances in Neural Information Processing Systems.

Wang, Q. and Van Hoof, H. (2022b). Model-based meta reinforcement learning using graph structured
surrogate models and amortized policy search. In International Conference on Machine Learning,
pages 23055–23077. PMLR.

Wang, T. and Ba, J. (2019). Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649.

Wang, T., Liao, R., Ba, J., and Fidler, S. (2018). Nervenet: Learning structured policy with graph neural
networks. In International Conference on Learning Representations.

Waterhouse, S., MacKay, D., Robinson, T., et al. (1996). Bayesian methods for mixtures of experts.
Advances in Neural Information Processing Systems, pages 351–357.

Welling, M. (2019). Do we still need models or just more data and compute?

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2016a). Deep kernel learning. In Artificial
Intelligence and Statistics, pages 370–378.

Wilson, A. G., Hu, Z., Salakhutdinov, R. R., and Xing, E. P. (2016b). Stochastic variational deep kernel
learning. In Advances in Neural Information Processing Systems, pages 2586–2594.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xu, L., Jordan, M. I., and Hinton, G. E. (1995). An alternative model for mixtures of experts. Advances in
Neural Information Processing Systems, pages 633–640.

Yaqoob, I., Khan, L. U., Kazmi, S. A., Imran, M., Guizani, N., and Hong, C. S. (2019). Autonomous driving
cars in smart cities: Recent advances, requirements, and challenges. IEEE Network, 34(1):174–181.

Yoon, J., Singh, G., and Ahn, S. (2020). Robustifying sequential neural processes. In International
Conference on Machine Learning, pages 10861–10870. PMLR.

Yuksel, S. E., Wilson, J. N., and Gader, P. D. (2012). Twenty years of mixture of experts. IEEE transactions
on neural networks and learning systems, 23(8):1177–1193.

Zhang, C., Bütepage, J., Kjellström, H., and Mandt, S. (2018). Advances in variational inference. IEEE
transactions on pattern analysis and machine intelligence, 41(8):2008–2026.

Zhao, J. and Sun, S. (2016). Variational dependent multi-output gaussian process dynamical systems. The
Journal of Machine Learning Research, 17(1):4134–4169.

Zimmermann, H., Wu, H., Esmaeili, B., and van de Meent, J.-W. (2021). Nested variational inference.
Advances in Neural Information Processing Systems, 34.

152

Bibliography

Zintgraf, L., Shiarli, K., Kurin, V., Hofmann, K., and Whiteson, S. (2019). Fast context adaptation via
meta-learning. In International Conference on Machine Learning, pages 7693–7702. PMLR.

153

S A M E N VAT T I N G

Dit proefschrift richt zich op het leren van functie representaties voor het kwantificeren van
onzekerheid & de snelle overdracht van vaardigheden in diepe neurale netwerken (DNNs).
Om DNNs te gebruiken in realistische, praktische toepassingen, zijn vooralsnog complexe
eigenschappen nodig. Dit project richt zich op twee van deze eigenschappen, namelijk het
kwantificeren van onzekerheid en snelle overdracht van vaardigheden in DNNs. De eerste
eigenschap maakt het mogelijk om risico-gevoelige beslissingen te kunnen nemen met behulp
van DNNs, en kan mogelijk zorgen dat er efficiënter geleerd kan worden met minder datapunten.
De tweede eigenschap voorkomt dat diepe netwerken zonder enige voorkennis getraind moeten
worden, en kan er daarnaast voor zorgen dat DNNs zich makkelijker kunnen aanpassen aan
nieuwe taken.

Mijn stelling is dat het gebruik van functie representaties een tastbare oplossing kan bieden
voor het implementeren van de bovengenoemde eigenschappen. In plaats van elk datapunt
te representeren met variational autoencoders (Kingma and Welling, 2013), kan een gehele
verzameling datapunten gerepresenteerd worden door middel van een functie. In deze thesis
wordt een functie representatie gedefinieerd als een samenvatting van context datapuntenDC =

{(xi, yi)}ni=1 voor het representeren van hun onderliggende functie y = f (x).
Een typisch voorbeeld is een standaard neuraal proces (NP) (Garnelo et al., 2018b), waarin

door middel van een benaderende a-priori-functie qϕ(z|DC) de voorspellende kansverdeling
Eqϕ(z|DC) [p(y|z, x)] wordt geı̈nduceerd. Op vergelijkbare wijze zal in dit proefschrift de standaard
NP worden gebruikt als functie representatie model, waarop de algoritmen in dit proefschrift
zullen voortbouwen. Een groot deel van dit proefschrift beschrijft hoe structurele inductieve
biases kunnen worden meegenomen in functie representaties. Daarnaast zal een analyse worden
gegeven van huidige methoden voor het optimaliseren van standaard NPs, en nieuwe manieren
worden voorgesteld die het probleem van de inference gap hierin aanpakken.

De wetenschappelijke bijdragen van dit proefschrift zijn de volgende:

• In hoofdstuk (3) wordt een Doubly Stochastic Variational Neural Process (DSVNP) (Wang
and Van Hoof, 2020) beschreven voor multi-output regressie en onzekerheidskwantificatie
in beeldclassificatie. DSNVP is een hiërarchisch Bayesiaans model dat zowel functies
representeerd als correlaties tussen invoer- en uitvoerdata meet. Experimentele resultaten
laten zien dat DSVNP competitief presteert tegenover huidige SOTA modellen als het gaat
om het modelleren van hoog-dimensionale realistische datasets en het kwantificeren van
onzekerheid in de beeldclassificatie voorspellingen.

• In hoofdstuk (4) wordt een Mixture-of-Expert Neural Process (MoE-NP) (Wang and
Van Hoof, 2022a) voor few-shot regressie en meta reinforcement learning problemen
beschreven. MoE-NP is een Bayesiaans mixture model dat gebruik maakt van zowel con-
tinue latente variabelen als categorische latente variabelen, die het samen mogelijk maken
om te werken met mixes van diverse componenten en taken in multi-modale kansverdelin-
gen. Experimentele resultaten laten zien dat MoE-NP onderscheid kan maken tussen
verschillende van deze functie componenten door middel van latente variabelen, en be-
haald daarnaast SOTA prestaties op CIFAR-10 beeldvoltooiing en continue sturingstaken.

154

Samenvatting

• Hoofdstuk (5) stelt het Graph Structured Surrogate Model (GSSM) in combinatie met
Amortized Policy Search (APS) (Wang and Van Hoof, 2022b) voor, welke van toepassing
is voor Model-based meta reinforcement learning. Deze methode leert tegelijkertijd de
dynamiekmodellen als optimale policies in model-based meta reinforcement learning
taken. Zelfs wanneer het aantal training episodes gelimiteerd is, kunnen de geleerde
dynamiekmodellen, welke gebruik maken van latente variabelen met graafstrukturen,
goed generaliseren naar nieuwe MDPs, terwijl de geleerde globale latente variabele taak-
specifieke value functions en policies induceert. Deze methoden leveren hoge prestaties
op de Cartpole/Acrobot en Mujoco environments.

• Hoofdstuk (6) geeft een analyse van de huidige optimalisatiedoelen van NPs, analyseert
hun suboptimale inferentie, en stelt hiervoor oplossingen voor die gebruik maken van
variational expectation maximization (Wang et al., 2022). Het voorgestelde model, dat we
het Self-normalized Importance weighted Neural Process (SI-NP) noemen, kan direct de
effectieve a-priori functie aanleren zonder dat daarbij variational inference aan te pas hoeft
te komen, en kan tevens garanties bieden dat de geleerde log-likelihood beter wordt over
de functie dataset. Tegelijkertijd wordt gedemonstreerd dat het conditional neural process
(CNP) (Garnelo et al., 2018a) equivalent is aan SI-NPs waarbij Monte-Carlo op basis van
een enkele trekking wordt gebruikt. Deze claims worden geverifieerd op Gaussian process
en beeldvoltooiing datasets.

155

AC K N OW L E D G M E N T S

The boldest decision I ever made was to go abroad, live alone and pursue my Ph.D. in the
Netherlands. Admittedly, doing the Ph.D. was not smooth, and it is more like an adventure,
an unforgettable experience throughout my life. Life is not easy for everyone. Lonesome,
disencouragements, illness, bankruptcy, and other failures never stop my exploration of research
and life. Until now, I still cannot believe I have accomplished my Ph.D. project in time after
suffering more than two years during the pandemic.

First, I am so grateful to my supervisors, Prof. Max Welling and Dr. Herke van Hoof, for
taking me on this long journey. Max is a well-known machine learning scholar with a lot of
wisdom and passion, and his developed generative modeling framework essentially inspires my
research outputs. Herke is a reinforcement learning expert with whom I worked and developed
friendships for a long time. As a man without programming experience, I must learn and
implement reinforcement learning and meta-learning from scratch. Fortunately, Herke paid a lot
of patience, left me enough freedom in research investigations, and provided helpful discussions
in paper writing and academic presentations. I also express special thanks to the complex system
Prof. Peter Sloot, who was tolerant of me and supported me with other kind staff at the beginning
of my life in Amsterdam.

It is my lifelong honor that Prof. Maarten de Rijke, Prof. Aske Plaat, Prof. Cees Snoek, dr.
Efstratios Gavves, dr. Sara Magliacane and dr. Xiantong Zhen accepted the invitation to become
my Ph.D. committee member. Besides, I need to thank Prof. Maarten de Rijke and Prof. Christof
Monz for evaluating my early-term academic performance and providing helpful feedback on this
Ph.D. project. I cannot imagine how to defend my thesis in time without your sincere support.
Your kindness will always be kept in my mind.

Meanwhile, I need to thank the brilliant research staff in AMLab. To Jan-Willem, it is joyful
to discuss some philosophy with you from Physics. Maybe my life has gotten into a trap of
Laplace’s demon, and I am destined to make a move instead of escaping. To Patrick, we have
similar educational backgrounds and introverted personalities. I felt lucky to meet you and
learned much from you at work. To Erik, you are an incredible skateboarder, geometric expert,
and gentle guy. I will memorize each greeting and smile when we meet each other. To Christian,
you impressed me when someday you fluently talked to me in Chinese. It is always good to
have more skills, and your talent touches me and closes the culture gap. To Eric, our sunny and
friendly Bayesian expert, I will remember the wonderful slice in our limited socialization and
follow your Bayesian updates in the following time. To Sarah, your warm heart and open mind
bring me a lot of encouragement in research and life. Our causal conversations make me feel the
world less pessimistic. The experience of working with all of you is a great fortune in my life.

In AMLab, I took three years’ teaching assistance for the Reinforcement Learning course,
supervised master students, and accomplished planned publication goals. But the achievement I
feel most proud of in my Ph.D. is developing friendships with AMLabers. I will cherish having
fun in many academic or casual conversations with Elise, Maurice, Marco, and Changyong. I will
cherish the time studying in the same office room with Tim, Tineke, Dharmesh, Babak, and Heiko.
I will cherish the time getting along with Christos, Thomas, Karen, Wouter, Andy, Emiel, Victor,
Zeynep, Stephan, Sindy, Mona, Putri, Matthew, Putra, Ben, Rob, Gabriele, Natasha, Gabriele,
Niklas, David, Rob, Teodora, David, Masoud, Evgenii, Shi, David, James, Javier, Sharvaree,
Katlin, Fiona, and many other friends. Special thanks to Putri and Herke for translating my

156

Acknowledgments

abstract into Dutch. I also express many thanks to Nicole, Jacqueline, Mirjam, Felice, and other
support staff at UvA.

Particularly, thanks to Sihang Qiu, Hai Zhu, Jiahuan Pei, Yunlu Chen, Zenglin Shi, Wei Wang,
Xiaotian Guo, Yufei Shan, Zhengge Zhou, and Evangelous for companying or helping me during
the difficult time. I would also like to thank Hanqing Liu, Zhihao Luo, Haowen Zhan, Huan
Zhou, Yang Hu, Jiayun Fan, Yuge Shi, Shaodi You, Tao Hu, Pengwan Yang, Shuo Chen, David
Zhang, Wenjia Xu, Zehao Xiao, Jiayi Shen, Jiaojiao Zhao, Yangjun Zhang, Dan Li, Wanyu Chen,
Yifan Chen, Jiuya Qin, Jin Huang, Zeshun Shi, Hongyun Liu, Yahui Zhang, Ruihong Yin, Qi Bi,
Yixian Shen, Xue Li, Dongwei Ye and other friends for having fun together in life. Thank you for
getting a social phobia guy’s life stuffed and fantastic.

Last but not least, I must show great respect to my former supervisors, Jincai Huang, Yanghe
Feng, and Zhong Liu. Your previous supervision provides me with a key to open my Ph.D. life. I
need to thank my parents and brother for their selfless support over the past four years. I owe you
a lot as a family member, and this thesis is dedicated to you.

Personally, I am lucky to receive sponsorship from thousands of millions of Chinese taxpayers.
In the past year, I tried to get myself exhausted in academics and publications because the research
opportunity is too precious, and the chance to continue is minor for me in the future. With great
power comes great responsibility; I feel obliged to commit responsibilities and do something
helpful for general kind Chinese since a strong belief is always kept in my mind “All for One
and One for All”. Living a life for me is like solving a multi-objective optimization problem. My
Pareto frontier is always entangled with personal ambition, family responsibilities, national duties,
and great missions for a better world. Sometimes I feel tired from balancing these, but I never
regret previous decisions. The skill I learned from the past is to carefully design the optimizer,
find the plausible momentum, get rid of the local optimum, and keep moving. Fortunately, my life
in the Netherlands is blessed by colleagues and friends worldwide in words and actions. Finally,
thank you, Amsterdam. Tonight I am intoxicated with you.

Qi Wang (王琦)

November 13th, 2022
Amsterdam, the Netherlands

157

	thessis_cover_final
	PhD_thesis
	1 Introduction
	1.1 Probabilistic Deep Learning & Meta Learning
	1.1.1 Uncertainty Quantification
	1.1.2 Fast Skill Transfer

	1.2 Notations
	1.3 Background & Preliminaries
	1.3.1 Deep Latent Variable Models
	1.3.2 Functional Representations
	1.3.3 Variational Inference & ELBO

	1.4 Research Questions & Technical Contributions
	1.5 The Layout of this Thesis

	2 Publications & Contributions
	2.1 List of Publications
	2.2 Software & Repositories

	3 Bayesian Hierarchical Framework for Functional Representation
	3.1 Introduction
	3.2 Related Work
	3.3 Preliminaries
	3.3.1 Gaussian Processes in the Implicit LVM
	3.3.2 Neural Processes in the Implicit LVM
	3.3.3 Connection to Other Models

	3.4 Methods
	3.4.1 Neural Process with Hierarchical Latent Variables
	3.4.2 Approximate Inference and ELBO
	3.4.3 Scalable Training and Uncertainty-aware Prediction
	3.4.4 More Insights and Implementation Tricks

	3.5 Experiments
	3.5.1 Synthetic Experiments
	3.5.2 System Identification on Physics Engines
	3.5.3 Multi-Output Regression on Real-world Dataset
	3.5.4 Classification with Uncertainty Quantification

	3.6 Conclusion & Discussion

	4 Mixture of Experts Structures for Functional Representation
	4.1 Introduction
	4.2 Related Work
	4.3 Preliminaries
	4.3.1 Few-Shot Supervised Learning
	4.3.2 Meta Reinforcement Learning

	4.4 Methods
	4.4.1 Mixture of Expert Neural Processes
	4.4.2 Scalable Training & Prediction
	4.4.3 Module Details for Meta Learning

	4.5 Experiments
	4.5.1 General Setup
	4.5.2 Illustration in Toy Regression
	4.5.3 Few-Shot Supervised Learning
	4.5.4 Meta Reinforcement Learning
	4.5.5 Ablation Studies

	4.6 Conclusion & Discussion

	5 Graph Structured Functional Representation for Data Efficient Control
	5.1 Introduction
	5.2 Related Work
	5.3 Preliminaries
	5.3.1 Optimization Objective in MBMRL
	5.3.2 MBMRL with Latent Variables
	5.3.3 Influence of Model Discrepancy

	5.4 Methods
	5.4.1 Graph Structured Latent Variables
	5.4.2 Approximate Inference & Scalable Training in GSSM
	5.4.3 Amortized Policy Search

	5.5 Experiments
	5.5.1 General Settings
	5.5.2 Cart-Pole Systems
	5.5.3 Other Simulation Systems

	5.6 Conclusion & Discussion

	6 Bridging the Inference Gaps in NPs with Expectation Maximization
	6.1 Introduction
	6.2 Related Work
	6.3 Preliminaries
	6.4 Inference Gaps and Statistical Traits
	6.4.1 Inference Suboptimality in vanilla NPs
	6.4.2 Evaluation Criteria & Asymptotic Performance

	6.5 Tractable Optimization via Expectation Maximization
	6.5.1 Variational Expectation Maximization for NPs
	6.5.2 Scalable Training and Testing

	6.6 Experiments
	6.6.1 Synthetic Regression
	6.6.2 Image Completion

	6.7 Conclusion & Discussion

	7 Conclusion
	8 Appendices
	A Supplementary Materials in Chapter 3
	A.1 Some Basic Concepts
	A.2 Proof of Proposition 1
	A.3 Proof of DSVNP as Exchangeable Stochastic Process
	A.4 Derivation of Evidence Lower Bound for DSVNP
	A.5 Implementation Details in Experiments

	B Supplementary Materials in Chapter 4
	B.1 Frequently Asked Questions
	B.2 Probabilistic Graphs in Meta Training/Testing
	B.3 More Descriptions of NP Family Models and Meta RL
	B.4 MoE-NPs as Exchangeable SPs
	B.5 Summary of Existing NP Related Models
	B.6 Formulation of Evidence Lower Bounds
	B.7 Experimental Settings and Neural Architectures
	B.8 Additional Experimental Results

	C Supplementary Materials in Chapter 5
	C.1 Frequently Asked Questions
	C.2 Proof of Lemma 1
	C.3 Proof of Model Discrepancy
	C.4 GSSM Modules in PyTorch
	C.5 Evidence Lower Bound for GSSM
	C.6 Computational Graphs and Detailed Descriptions
	C.7 Policy Gradient Estimates in Amortized Policy Search
	C.8 Experimental Settings and Training Details
	C.9 Neural Architectures and Parameter Settings

	D Supplementary Materials in Chapter 6
	D.1 Probabilistic Generative Process in NPs
	D.2 Run-time Complexity of Predictive Distributions in GPs & NPs
	D.3 NPs Formulation & Structural Inductive Biases
	D.4 Neural Architectures in Implementations
	D.5 Formulation of Variational Expectation Maximization Method
	D.6 Proof of SI-NPs Equivalence with CNPs
	D.7 Experimental Setup & Implementation Details

	Bibliography
	Samenvatting
	Acknowledgments

