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1

I N T RO D U C T I O N

Human body movements (poses) convey essential information in non-verbal commu-
nication. They show how we feel and convey messages such as happiness, excitement,
anger and support what we say. For example, people (e.g., Italians) may use their posture
and hands to accentuate what they say. “The body can’t lie.” said Traci Brown. Body
language shows your true emotion and plays an elementary role in our daily life.

According to Charles Robert Darwin, the evolution of the human posture has under-
gone a great process of change: a specific human posture corresponds to a particular
era. Human poses also represent what you are doing or going to do. By analyzing
humans poses, we can derive human behaviour and intention. Obviously, human poses
are the key in many activities such as diving, figure skating, and dancing. Amateurs or
athletes can imitate postures of top performers to perform their exercises, while doctors
can analyze humans to perform posture correction for children or young people and
injury prevention for athletes. In conclusion, human poses are essential to convey and
understand nonverbal signals by all of us.

Today, we can use cameras to record our daily activity and corresponding human body
movements (poses). With the recent success of deep learning techniques, the automation
of human-related tasks in computer vision has been achieved great improvement. Human
pose estimation (HPE) is applied in many applications such as healthcare, virtual reality,
and camera surveillance as shown in Figure 1. In the future, with the rise of Metaverse,
it will become a regular part of our everyday existence.

HPE can be categorized into 2D HPE and 3D HPE approaches. 2D HPE aims to
detect human joint locations in 2D planes. Due to the emergence of deep learning and
large-scale 2D pose datasets such as MPII [2], COCO [109], and LSP [70], 2D human
pose estimation [12, 95, 136, 196] has achieved superior performance on real-world
images. The goal of 3D HPE is to estimate human joint locations in 3D Cartesian space
derived from 2D images. In fact, 3D poses can better represent human postures than 2D
poses due to the inherent ambiguity in 2D. However, it is a challenge for computer vision
algorithms to understand 3D human poses from 2D planes.

A more challenging but active task is 3D HPE from a single image. The problem is
depth ambiguity. Furthermore, due to self-occlusion, different 2D poses may correspond
to the same 3D pose. Deep learning-based methods to deal with 3D HPE require large-
scale datasets to train the models. However, it is labor intensive and extremely difficult
to annotate 3D poses, especially for in-the-wild images. Therefore, public datasets of 3D
human poses are usually collected for indoor environments. Lack of 3D ground truth for
in-the-wild images may result in limited generalization of 3D HPE methods.

Current methods for single-person 3D HPE mainly aim to predict root-relative 3D
human joint locations in the camera coordinate system from perspective images. It is
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I N T RO D U C T I O N

Figure 1: Applications of human pose estimation.

common to use the pelvis joint as the root. Due to the large field of view (FoV), fisheye
cameras have been widely used in different applications such as augmented/virtual reality,
autonomous driving, photography. Generally, there are first-person view (egocentric)
and third-person view 3D HPE’s. For egocentric 3D HPE, the fisheye camera is usually
installed at the head [180] or the baseball cap [205]. However, image distortions and
strong perspective effects may negatively influence the results. A more general scenario
for third-person view 3D HPE is that images may include several humans, i.e., multi-
person 3D human pose estimation for fisheye cameras. The goal is to predict 3D human
joint locations with absolute depths in the camera coordinate system from a single image
captured by a fisheye camera. Humans in the images usually introduce different distortion
strengths, causing this task to be challenging.

3D human poses are useful for human motion transfer to deal with the self-occlusion
problem. Human motion transfer aims to animate a human in a source image based on
the driving poses of a human in target images/videos. It has many practical applications
including movie production, entertainment and education. The challenge is to build a
relationship between two humans in source and driving images. Generative adversarial
network (GAN)-based methods show promising performance on image generation. They
usually focus on global or style transformations but ignore the geometric relations. In-
stead, most existing methods utilize off-the-shelf models to estimate 2D or 3D human
poses followed by optical flow computation. Although superior performance has been
achieved, the problem to perform human motion transfer with pose consistency still
remains.

1.1 R E S E A R C H O U T L I N E A N D Q U E S T I O N S

3D human pose estimation from a single 2D image in the wild is an important computer
vision task. Although there are several large-scale datasets for 3D human poses including
Human3.6M [64] and MPI-INF-3DHP [127], they are collected for indoor environments.
Unlike images taken from indoor and well constrained environments, 2D outdoor (in-the-
wild) images are extremely complex because of varying imaging conditions. Furthermore,
2D images usually do not have corresponding 3D ground truth causing supervised
approaches to be ill-constrained. Existing methods [51, 185] attempt to regularize
the estimated 3D poses from in-the-wild images by minimizing the distance between
projected 3D estimations and 2D poses. However, the perspective re-projections based

2



1.1 R E S E A R C H O U T L I N E A N D Q U E S T I O N S

on a camera model may cause overfitting and can make the training process unstable.
Therefore, in this thesis, the first research question is:

How can we improve the generalization of 3D human pose estimation for
in-the-wild images?

In Chapter 2, we propose to associate 3D human pose, 2D human pose projection
and 2D image appearance through a new orthographic projection based linear regression
module. Unlike existing re-projection based approaches, our orthographic projection and
regression do not suffer from small angle problems, which usually lead to overfitting in
the depth dimension. The proposed orthographic projection based linear regression is
used to associate 3D predictions with 2D poses. In this way, the network properly adapts
to various datasets without fully retraining on them.

Hence, we propose a deep neural network which adopts 2D poses, 3D pose regression
and orthographic projection linear regression modules. The network uses a two-stage
scheme, where 2D poses using heatmap representations are detected first and followed
by a 2D-to-3D lifting module. The proposed method shows state-of-the-art performance
on the Human3.6M dataset and generalizes well to in-the-wild images.

With a large field of view, 3D human pose estimation from egocentric fisheye view-
points has many valuable applications. The problem of estimating egocentric 3D poses
for a fisheye camera is that images may be subject to strong image distortions, i.e., 2D
poses on the image plane that pass through the line of sight of the fisheye lens. Recent
works [180,205] focus on the self-occlusion problem of the lower-body estimation due to
the top-down viewpoint. The effect of image distortions on egocentric 3D pose estimation
still remains. Therefore, we pose the second research question:

How can we alleviate the negative influence caused by image distortions for egocentric
3D human pose estimation?

In Chapter 3, we propose a method for egocentric 3D human pose estimation from a
single image captured by a fisheye camera. We approach this problem by an automatic
calibration module. Given a single image, our network first estimates 3D joint locations
of a human in camera coordinates. To deal with the impact of image distortions on 3D
human pose estimation, we then use the automatic calibration with self-correction to
further regularize 3D predictions.

The proposed calibration module automatically estimates the intrinsic and distortion
camera parameters with self-correction instead of using a post-processing step [205] to
enforce the 3D predictions to be consistent with the corresponding distorted 2D poses.
In this way, the effect of distortions on 3D pose estimation is alleviated.

To assess the effectiveness of the proposed automatic calibration module, we modified
the xR-EgoPose dataset [180], a recent public dataset for 3D human pose estimation col-
lected by a fisheye camera, by adding different levels of image distortions. Experimental
results demonstrate that the proposed method achieves state-of-the-art performance.

Multi-person 3D pose estimation with absolute depths taken by a fisheye camera is a
challenging task with many interesting applications such as surveillance and monitoring.
However, to the best of our knowledge, such problem has not been explored so far.
Compared with 3D HPE from pinhole cameras, humans at different positions may cause

3



I N T RO D U C T I O N

different distortion strengths. In addition, different from egocentric 3D pose estimation,
this task is more complicated because the distance between humans and cameras is not
fixed. Finally, it is hard to predict 3D human joint locations with absolute depth as it is
more challenging than root-relative 3D pose estimation because of the inherent depth
and scale ambiguity. Therefore, the third research question is as follows:

How can we deal with the negative influence caused by image distortions for
multi-person 3D pose estimation?

In Chapter 4, we first propose a method for multi-person 3D pose estimation from a
single image taken by a fisheye camera. Our method consists of two branches to estimate
absolute 3D human poses: 1) a 2D-to-3D lifting module to predict root-relative 3D
human poses (HPoseNet); 2) a root regression module to estimate absolute root locations
in the camera coordinate (HRootNet). Finally, we propose a fisheye re-projection module
without using ground-truth camera parameters to connect two branches, alleviating the
impact of image distortions on 3D pose estimation and further regularizing prediction
absolute 3D poses.

Experimental results demonstrate that our method achieves the state-of-the-art perfor-
mance on two public multi-person 3D pose datasets with synthetic fisheye images and
our newly collected dataset with real fisheye images.

3D human pose estimation based on visual information aims to predict 3D poses of
humans in images and videos. The aim of human action recognition is to classify what
type of action a person takes. Both topics are widely studied in the field of computer
vision. A more challenging but valuable task is to apply the above two tasks using
fisheye images/videos. However, public datasets are mainly collected by pinhole cameras
and ignoring the widespread use of fisheye cameras for 3D human pose estimation and
skeleton-based action recognition. Therefore, the fourth research question is:

How can we evaluate models for 3D pose estimation and action recognition on
real-world images captured by a fisheye camera?

In Chapter 5, we propose a new dataset for multi-person 3D pose estimation (F-
M3DHPE), and skeleton-based HAR (F-HAR) captured by a fisheye camera. A com-
parison is conducted to analyze the performance of existing methods on the proposed
dataset. We also provide a comprehensive survey on the recent advances of 3D human
pose estimation and action recognition for both perspective and fisheye cameras.

Human motion transfer aims to animate the pose of a human in a source image driven
by the poses of a human in a target video. To warp (transfer) human poses, most of the
existing methods are based on optical flow or affine transformations as an intermediate
representation followed by a generator module to perform the motion transfer. Existing
methods perform well in terms of reconstruction quality. However, the quality of the
human pose transfer has received less attention although it is an important part of the
motion transfer process. Therefore, the fifth research question is as follows:

How can we perform human motion transfer with pose consistency?

4



1.2 O R I G I N S

In Chapter 6, we propose a method focusing on both the reconstruction quality as well
as pose consistency. In contrast to existing methods, performing warping procedures in
2D- or 3D-space, we introduce a strategy to combine the warped features in both 2D-
and 3D-space to alleviate the self-occlusion problem. In this way, our method benefits
from 2D (robustness) and 3D (steering) information to guide the generation process.
To reduce the pose error caused by inaccurate 3D estimation, a method is proposed to
maintain semantic consistency between predictions and target images at arm and leg
regions. Experiments conducted on large scale datasets show that the proposed method
outperforms existing methods. Ablation studies clarify the benefits of using feature
fusion and semantic consistency.

1.2 O R I G I N S

This thesis is based on the following publications:

• Chapter 2 is based on “Orthographic Projection Linear Regression for Single
Image 3D Human Pose Estimation”, published in International Conference on
Pattern Recognition, 2021, by Yahui Zhang, Shaodi You, and Theo Gevers [223].

Contribution of authors

Yahui Zhang: all aspects,
Shaodi You: conceptualization, supervision and writing,
Theo Gevers: conceptualization, supervision, insight and writing.

• Chapter 3 is based on “Automatic Calibration of the Fisheye Camera for Egocen-
tric 3d Human Pose Estimation from a Single Image”, published in IEEE/CVF
Winter Conference on Applications of Computer Vision, 2021, by Yahui Zhang,
Shaodi You, and Theo Gevers [222].

Contribution of authors

Yahui Zhang: all aspects,
Shaodi You: conceptualization, supervision and writing,
Theo Gevers: conceptualization, supervision, insight and writing.

• Chapter 4 is based on “Multi-person 3D Pose Estimation from a Single Im-
age Captured by a Fisheye Camera”, published in Computer Vision and Image
Understanding, 2022, by Yahui Zhang, Shaodi You, Sezer Karaoglu, and Theo
Gevers [225].

Contribution of authors

Yahui Zhang: all aspects,
Shaodi You: conceptualization, supervision and writing,
Sezer Karaoglu: conceptualization, supervision and writing,
Theo Gevers: conceptualization, supervision, insight and writing.

• Chapter 5 is based on “Monocular 3D Human Pose Estimation and Action Recog-
nition using Fisheye Cameras: A Survey and Benchmark”, under review in IEEE
Transactions on Multimedia, 2022, by Yahui Zhang, Shaodi You, Sezer Karaoglu,
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and Theo Gevers [224].

Contribution of authors

Yahui Zhang: all aspects,
Shaodi You: conceptualization, supervision and writing,
Sezer Karaoglu: conceptualization, supervision and writing,
Theo Gevers: conceptualization, supervision, insight and writing.

• Chapter 6 is based on “Pose Guided Human Motion Transfer by Exploiting 2D
and 3D Information”, published in International Conference on 3D Vision, 2022,
by Yahui Zhang, Shaodi You, Sezer Karaoglu, and Theo Gevers [226].

Contribution of authors

Yahui Zhang: all aspects,
Shaodi You: conceptualization, supervision and writing,
Sezer Karaoglu: conceptualization, supervision and writing,
Theo Gevers: conceptualization, supervision, insight and writing.

The author has further contributed to the following publication:

• Wei Wang, Shaodi You, Yahui Zhang, Sezer Karaoglu, and Theo Gevers. “Identity
Invariant Age Transfer for Kinship Verification of Child-Adult Images”, under
review in Computer Vision and Image Understanding, 2022.
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2

S C A L E D O RT H O G R A P H I C P RO J E C T I O N F O R 3 D H U M A N
P O S E E S T I M AT I O N

2.1 I N T RO D U C T I O N

Human pose estimation from a single image is an important computer vision task.
It enables different applications in motion capture, virtual reality, and human-robot
interaction. Noticeable achievements in two-dimensional (2D) human pose estimation
have been made recently using Convolutional Neural Networks (CNNs) [84] in a data-
driven fashion [2, 70, 109]. Recovering the 3D human pose is a challenging task because
of the varying imaging conditions changing the appearance and occluded body parts.
Moreover, it is an ill-posed problem because a single 2D image does not contain depth.
Early stage methods focused on laboratory settings where 3D ground truth is measured
using multi-view geometry or motion capture systems [18,183]. In recent years, methods
are focusing more on realistic and challenging tasks to estimate the 3D human pose in
the wild without 3D ground truth. Recent work [51, 185] proposes to use perspective
geometric constraints for 3D-2D poses. However, such constraints are point-wise and
do not incorporate the context between joints. Also, while it is geometrically correct to
constrain the depth from a perspective geometry, it is very unreliable because the angle
between the camera center and projection line is usually small generating large errors in
depth.

In this chapter, we propose an orthographic projection based linear regression method
to constrain the 3D pose, 2D pose and 2D appearance. The advantage is that the
orthographic constraint ensures not to generate strong changes in depth and avoids
overfitting. The constrained linear regression exploits contextual information to properly
constrain the 3D pose, 2D pose and 2D appearance.

We adopt a two-stage scheme to regress 3D human joint locations from a single RGB
image. The proposed network first estimates the 2D pose using a heatmap representation.
Then, the 2D heatmaps are used as inputs to a residual network followed by a series
of fully connected layers to regress the 3D human pose in camera coordinates. Finally,
the proposed orthographic projection based linear regression is used to associate the 3D
predictions with 2D poses. In this way, the network properly adapts to various datasets
without fully retraining on them. The network can be used to in-the-wild images without
depth ground truth.

Experiments on several datasets are conducted to assess the proposed method. Specifi-
cally, we evaluate our method on Human3.6M [64] and MPI-INF-3DHP [127] datasets
quantitatively and on in-the-wild MPII [2] and LSP [70] 2D human pose datasets qualita-
tively.
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Figure 2: Estimated 3D pose and 2D projection of our proposed method from an example
of in-the-wild image in LSP dataset [70].

The contributions of this work are summarized as follows:

• We propose a novel orthographic projection and linear regression to constrain the
3D and 2D poses.

• A network is proposed which is adaptive to various in-the-wild images without
retraining the 3D pose.

• Our network achieves state-of-the-art performance on the Human3.6M dataset and
generalizes well to in-the-wild datasets.

2.2 R E L AT E D W O R K

The proposed method estimates 3D human joint locations from a single RGB image. In
this section, we focus on recent approaches to 3D human pose estimation. We divide the
related work into one-stage methods, two-stage methods, adversarial learning methods
and re-projection methods.
One-Stage Methods. One-stage approaches regress 3D coordinates of human joints
directly from monocular images. Li and Chan et al. [98] apply a deep neural network
to obtain 3D human pose estimation from a single image. Tekin et al. [176] adopt
a pose auto-encoder for structure learning for human pose predictions. Pavlakos et
al. [143] extend 2D joint heatmaps into a discretized 3D space by embedding a coarse-
to-fine mechanism. To make the training process differentiable, Sun et al. [174] utilize
a soft-argmax operation to estimate the 2D/3D human pose. However, most of above
approaches rely on a large number of training data with 3D pose annotations.
Two-Stage Methods. For two-stage approaches, most of them use 2D pose estimators to
detect 2D keypoints [136, 196, 203] first and then regress the 3D human joint positions
from the estimated 2D keypoints [16, 42, 90, 126, 133, 199] or a combination of 2D
pose and some other information [47, 142, 190]. Martinez et al. [126] design a simple
fully connected residual network to regress 3D poses using estimated 2D keypoints.
Moreno-Noguer [133] estimates 3D pose by using a 2D-3D pairwise distance matrix.
Pavlakos et al. [142] use ordinal depth relations of each joint as auxiliary information
to estimate the 3D human joint coordinates. Fang et al. [42] design a learning pose
grammar to encode relations of human body for 3D human pose estimation. Dabral et
al. [33] introduce anatomical constraints including bone lengths, joint angle limits and
limb interpenetration, to ensure plausible 3D human poses. Zhou et al. [233] propose
a geometric constraint to supervise depth information from in-the-wild 2D images.
However, there is a limitation for these methods using geometric constraints to regularize
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the 3D pose: the global scale needs to be known to map the scale between the estimated
3D pose and 3D ground truth during the inference process.
Adversarial Learning Methods. There are a number of adversarial learning methods
for human pose estimation [17, 38, 72, 185, 209]. These methods use adversarial learning
to distinguish the estimated pose from the real human pose. Yang et al. [209] introduce
an adversarial network to determine whether the predicted 3D pose generated by a
3D regression network is plausible compared to the ground truth. Wandt et al. [185]
propose an adversarial re-projection network to relax the constraint of training with
2D-3D correspondences. Similarly, this method also uses adversarial learning to map the
distribution of the estimated 3D pose to the domain of the 3D ground truth. Instead of
learning human pose priors from 3D ground truth, Chen et al. [17] and Drover et al. [38]
employ adversarial learning to learn 3D priors for human pose based on 2D projections
by 3D human joint regression without 3D annotations. However, these methods need
augmented 2D projections from a dataset or visual cameras to augment the training set.
Besides, the 3D priors can only be learned from the 3D pose datasets from an indoor
environment, which means that the variety of 3D poses is limited.
Re-projection Methods. To keep the 3D predictions and intermediate 2D poses consis-
tent, a re-projection method is used to obtain geometric self-consistency to regularize 3D
pose regression. In general, there are two types of re-projection methods: projection from
1) 3D human keypoints [8, 51, 185] and 2) 3D human body (usually using a parametric
SMPL body model) [6, 72, 139, 144].

Bogo et al. [6] provide 3D human pose estimation by minimizing the error between
the detected 2D pose and 2D pose projections of the estimated statistical body model.
Kanazawa et al. [72] combine 2D pose re-projection losses of the parametric SMPL
model with several adversarial regularizers to constrain the SMPL model. Pavlakos et
al. [144] employ a differentiable renderer to project the parametric model to the image
and then minimize the detected 2D pose and silhouette error.

Instead of fitting a parametric human body model, recent methods attempt to minimize
the detected 2D pose and 2D projections of the estimated 3D human joint positions.
Habibie et al. [51] first regress root-relative 3D human joint positions using 2D heatmaps
and intermediate 3D representations. Then, the predicted camera parameters, i.e., focal
length and principal coordinate are used to project root-relative 3D positions into 2D
poses. The perspective re-projections based on a camera model may cause overfitting
and can make the training process unstable. In this chapter, we employ orthographic
projection linear regression to relate the estimated 3D pose in camera coordinates with
the 2D pose on the image plane.

2.3 O RT H O G R A P H I C P RO J E C T I O N L I N E A R R E G R E S S I O N

To avoid suffering from small angle problem resulting in overfitting in the depth dimen-
sion, we propose an orthographic projection linear regression method to constrain 3D
predictions, 2D poses and 2D appearance. In this section, we introduce the orthographic
projection as well as the perspective projection. Further, a method to estimate the 3D
human skeleton from a single 2D image is presented. Based on it, we introduce our
constrained linear regression model.
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Figure 3: Perspective projection from (a) 3D pose in the camera coordinate system
(OXYZ) to (b) 2D pose on image plane (ouv). (c) And the effect of depth (i.e., Z axis)
fluctuation on the coordinate on Y axis (the same as X axis). In small angle case, large
depth changes in the camera coordinate will be projected as small changes on Y axis of
the image plane.

2.3.1 3D Human Pose Projection from a Single Image

From 3D joints to 2D joints. As illustrated in Figure 3, human pose in 3D space
is presented by a set of joints. Without loss of generality, the representation in 3D
Euclidean space with camera coordinates is: a 4 by n matrix Pabs

3D = [Jabs
1 , Jabs

2 , ..., Jabs
n ]

from a single RGB image, where n denotes the number of human joints and Jabs
i =

[Xabs
i , Yabs

i , Zabs
i , 1]T in homogeneous coordinates which is the coordinate vector for

each joint. It is assumed that the camera projection matrix is known and consists of
intrinsic (K) and extrinsic (R and T) parameters. Since 3D pose locations are in camera
coordinates, 3D joints Pabs

3D are projected into 2D joints p2D by a 3 by n matrix with
jabs
i = [xabs

i , yabs
i , 1]T on the image plane:

p2D = K[R|T]Pabs
3D , (2.1)

where R and T are identical matrices. Or simply p2D = KPabs
3D .

In this way, the projected 2D joints overlay with the captured 2D image, as illustrated
in Figure 3(a) and (b).

However, given that the camera is usually far away from the human body, the 3D
joint points are usually presented by relative coordinates from the root joint (i.e., pelvis).
Therefore, the representation of human pose is defined by J3D = Jabs

3D − Jroot, which is
obtained by subtracting the root joint locations.
From 2D Image to 3D Joints. The goal of our method is to estimate the 3D human joint
positions from a 2D image. Given the complex appearance of 2D images in the wild, we
cannot assume a perfect projection between the 3D joints, 2D joints and the 2D image.
Therefore, we aim to apply a constrained orthographic projection linear regression to
robustly associate the estimated 3D joint points, 2D joint points and the appearance of
2D images.
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Figure 4: The general idea of matching 3D with 2D poses by the orthographic projection
linear regression method. Orthographic projection is used first to reduce the risk of
overfitting. Then, the predicted scale and translation parameters S and t are used to align
the 3D projections with 2D poses on the image plane. In this way, 2D pose annotations
implicitly regularize the estimated 3D pose.

2.3.2 Orthographic Projection Linear Regression

Here, we introduce the details of the proposed Orthographic Projection Linear Regres-
sion.
Orthographic Projection. We use orthographic projection and linear regression to
constrain the estimated 3D joints. This allows us to ignore the depth and constrain only
the 3D joints in the X − Y image plane. The depth variance of human joints is smaller
than the distance from camera to human body. Therefore, we approximate the perspective
projection by an orthographic projection. Such approximation is usually named as the
small angle problem. The projection, to extract X and Y value from the 3D coordinate, is
defined by:

p2D = ΠP3D,

Π =


1 0 0 0
0 1 0 0
0 0 0 1

 .
(2.2)

Existing methods exploit the projection constraint based on a perspective projection.
Later, we will discuss the limitation of a perspective projection for small-angle scenarios,
as shown in Figure 3(c).
Constrained Linear Regression. We use linear regression to align the projected 3D
joints with the 2D joints. A canonical 2D linear regression can be used to obtain an
affine transform, skew and rotation. However, for our problem, these transformations are
unnecessary. Therefore, we constrain the linear regression to only scaling and translation.

The constrained orthographic projection is

p2D = [S|t]ΠP3D, (2.3)

where S and t indicate scale and translation parameters, respectively.
Eq. (2.3) is as follows:
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u
v
1

=


sx 0 tx
0 sy ty
0 0 1

Π


X
Y
Z

=


sx 0 tx
0 sy ty
0 0 1




X
Y
1

, (2.4)

where (u, v) denotes the 2D pose on the image plane.
The linear regression computes the scaling and translation by minimizing the error

between the estimated 3D joints projection and 2D pose p2D:

arg min
S,t

∥∥∥[S|t]ΠP3D − p2D
∥∥∥2

2. (2.5)

Later, in Section 2.4, we will introduce the loss functions and training strategy based
on the proposed constrained linear regression method, where S, t and P3D are updated
simultaneously.

2.3.3 Limitation of Perspective Projection

Recent work [51,185] proposes to use a perspective projection to keep the 3D predictions
and intermediate 2D poses consistent. However, a perspective projection from 3D to 2D
poses may cause problems. As shown in Figure 3(c), to minimize the error between 2D
projections and 2D ground truth, the value of depth (i.e., z axis) will deviate to find the
optimal solution. This may lead to overfitting. Therefore, an orthographic projection is
employed in this work to solve this issue.

2.4 M E T H O D O L O G Y

The goal of our method is to regress the root-centered 3D locations of human joints in
a camera coordinate system from a single RGB image. To improve generalization to
in-the-wild images, we propose to associate the 3D human pose, the 2D human pose
projection and the appearance of 2D images through a new orthographic projection linear
regression method. The overview of our framework is depicted in Figure 5.

2.4.1 Network Design

2D Pose Module. ResNet [53] is widely adopted for the human pose detection task
[51, 203, 227]. In this work, ResNet-50 is applied as our backbone network followed by
deconvolution layers for pose geometry feature extraction and 2D pose estimation. The
estimated 2D poses are represented by heatmaps with a spatial dimension of 64 × 64.

We optimize the 2D pose module by minimizing the loss between 2D predictions and
2D ground-truth heatmaps. The loss function is defined as

LHeatmap =
H∑
h

W∑
w

∥∥∥∥hm(h,w) − hmGT
(h,w)

∥∥∥∥2

2
, (2.6)

where H and W denote the resolution of heatmaps, GT means the ground-truth, and hm
indicates the probability distribution of each joint.
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Figure 5: The overview of the proposed framework. We use Resnet as our backbone to
detect 2D pose with heatmap representations. The 2D heatmaps are fed into a residual
network with attention mechanism to further exploit the information in latent space.
Then, we employ a series of fully connected layers to estimate the 3D pose in camera
coordinates and re-projection parameters (i.e., scale S and translation t). Finally, the
estimated 3D pose is transformed into 2D pose on image plane using the predicted S and
t.

3D Pose Regression Module. A residual neural network is applied to extract the geo-
metric information from the 2D heatmaps. Specifically, the residual network consists of
eight residual layers and four max pooling layers. To infer the 3D pose from intermedi-
ate features, we employ a fully connected network to regress the 3D human pose P3D.
Specifically, we use m consecutive residual blocks for pose estimation, where each block
has two fully connected layers with a width of 1024 and ReLUs activation. To make a
trade-off between the accuracy and time cost, the value of m is set to two.

Our 3D pose regression module is optimized by minimizing errors between the esti-
mated 3D pose and 3D ground truth during the training process. The loss function is
defined as

L3D =
1
N

N∑
i=1

∥∥∥∥P3D(i) − PGT
3D (i)

∥∥∥∥2

2
, (2.7)

where i and N indicate the index of training samples and the total number of test samples,
respectively.

Orthographic Projection Linear Regression Module. We use the proposed ortho-
graphic projection linear regression to associate the estimated 3D human pose with the
2D pose p2D according to Eq. (2.3). Specifically, scale parameters (sx, sy) and translation
parameters (tx, ty) are predicted by a multi-layer perceptron. Given the 2D ground truth
pGT

2D , the loss of this linear regression is defined as

LOPLR =
1
N

N∑
i=1

∥∥∥∥[S|t]ΠP3D(i) − pGT
2D (i)

∥∥∥∥2

2
. (2.8)

The orthographic projection linear regression module predicts camera parameters
from different viewpoints, which are used to associate the 3D predictions with the 2D
poses. In this way, our method can be trained on 2D pose datasets including in-the-wild
images and more viewpoints than 3D pose datasets. Therefore, our method is expected
to generalize well to in-the-wild images.
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Attention Mechanism. We adopt an attention mechanism in the above residual network
to further exploit the information from the latent space. The reason behind this opera-
tion is that it is hard to determine which features contribute to the estimation process.
Intuitively, geometry-related features are expected to contribute to our goal of regress-
ing 3D human joint positions. However, it is difficult to separate this kind of features
from the others. Therefore, an attention mechanism is employed to enhance the role of
geometry-related features for estimating 3D human poses.

2.4.2 Training

According to Eqs. (2.6) - (2.8), the overall loss of our framework is summarized as

Lpose = λhmLHeatmap +L3D + λOPLRLOPLR, (2.9)

where λhm and λOPLR are loss weights to adjust the combination of 2D heatmap loss, 3D
pose loss and orthographic projection linear regression loss.

We divide our training procedure into two stages. Stage 1: initialize the 2D pose
module using the MPII dataset with 2D pose annotations. Stage 2: train the 3D pose
regression and orthographic projection linear regression modules and fine-tune the 2D
pose module on Human3.6M and MPII datasets. As our method with orthographic
projection linear regression can be trained on the MPII dataset containing in-the-wild
images with various appearances and viewpoints, our method is expected to generalize
well to in-the-wild images.

2.5 E X P E R I M E N T S

Datasets. The datasets — Human3.6M, MPI-INF-3DHP and MPII Human Pose and
LSP are used to validate our approach quantitatively/qualitatively.

Human3.6M [64] is the largest dataset for 3D human pose estimation and has been
widely used as a benchmark for evaluation. The dataset consists of 3.6 million various
3D human poses. This dataset was collected by a MoCap System in a constrained
environment from 11 actors covering 15 daily activities under 4 camera views, containing
2D/3D pose ground truth. MPI-INF-3DHP [127] is the recent dataset consisting of both
constrained indoor and challenging outdoor scenes with diverse human appearances. This
dataset is used to demonstrate the generalization capabilities of our approach. Particularly,
we evaluate the proposed method on this dataset without using the training set. MPII
Human Pose [2] and LSP [70] datasets provide a large number of in-the-wild images with
only 2D human pose annotations, covering diverse activities and appearances. Therefore,
MPII and LSP datasets are adopted here to qualitatively evaluate the cross-domain
generalization ability of our approach.
Evaluation Protocols. Following the widely used protocols on Human3.6M [173, 174],
we use six subjects (S1, S5, S6, S7, S8) for training and subjects S9 and S11 for testing.
Particularly, every 5th and 64th frame of subjects are used for training and testing
respectively. The evaluation metric is the Mean Per Joint Position Error (MPJPE), which
is calculated after the alignment between the predicted and ground-truth 3D pose with
the root joint and measured in millimeters. We refer to this as Protocol#1. Another
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evaluation metric is PA MPJPE for which the predictions and ground-truth 3D poses
are further aligned via a rigid transformation (Procrustes analysis [49], PA), which is
referred to as Protocol#2. In this chapter, both Protocol#1 and Protocol#2 are employed
for evaluation on Human3.6M dataset.
Implementation Details. We first pretrain our 2D pose module on MPII dataset in terms
of the heatmap regression task for 94k iterations with a batch size of 64 and an initial
learning rate of 5 × 10−4 with a decay over 70k iterations. In second stage, the network
is trained on a mixture of MPII and Human3.6M datasets for 181k iterations. The batch
size of this stage is 64. The initial learning rate is set as 5 × 10−4 with a decay over 111k
and 160k iterations. The hyperparameters of loss weights of λhm and λOPLR are set as
2 × 106 and 5, respectively. The whole training procedures are implemented with two
GTX 1080ti GPUs.
Method Comparisons. To evaluate the effectiveness of the proposed method, we conduct
experiments to compare with existing state-of-the-art 3D human pose estimation methods.
Note that only methods are selected which are related to our work, as there are many
different categories of deep learning based methods to estimate 3D human body joint
locations. [81,106,150,152] provide 3D human pose estimation using multi-view images
to reduce the ambiguity between 2D and 3D pose. [17, 38] propose an unsupervised
approach merely using 2D pose annotations to regress coordinates of 3D human pose.
These methods are not included in the comparison because of the specific task at hand.

2.5.1 Quantitative Evaluation

Human3.6M Dataset. We first evaluate the proposed method on the Human3.6M dataset
to verify its effectiveness. Following [51, 143, 233], the global scale is assumed to be
known. Table 1 lists the experimental results including the performance of each action in
Human3.6M dataset.

Compared to existing 3D human pose estimation methods, the proposed method
achieves state-of-the-art performance with an error of 56.2mm under Protocol#1. Partic-
ularly, our method provides the best performance for the five actions in the Human3.6M
dataset. For Protocol#2, a rigid transformation is employed to align the estimated 3D
pose with 3D ground truth. Our method also obtains a higher accuracy than most of
state-of-the-art methods, only lower than Yang et al. [209]. Specifically, our method
achieves the best performance for the actions Phoning, Posing and S moke.

Table 2 lists the experimental results on Human3.6M dataset compared with other
existing 3D human pose estimation methods using more information than ours, such
as the training dataset, ordinal depth information, intrinsic camera parameters or other
ground-truth information. It is shown in Table 2 that our method still achieves competitive
performance without using extra information.

From Tables 1 and 2, it can be seen that our method outperforms the existing re-
projection based methods [51, 185]. Because of our orthographic projection linear
regression method, our method avoids suffering from small angle problem and achieved
better performance.
MPI-INF-3DHP Dataset. To test the generalization of the proposed method, we evaluate
our model on another dataset with in-the-wild images, i.e., MPI-INF-3DHP dataset.
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I’18)[236]

47.9
48.8

52.7
55.0

56.8
65.5

49.0
45.5

60.8
81.1

53.7
51.6

54.8
50.4

55.9
55.3

O
urs

35.8
41.0

42.3
42.0

43.4
36.3

36.7
55.1

66.5
45.0

49.6
41.2

32.9
43.9

39.0
43.4

16



2.5 E X P E R I M E N T S

Table 2: Comparison with state-of-the-art methods using extra information or different
input types for the metrics MPJPE and PA MPJPE on Human3.6M dataset.

Methods Extra information MPJPE ↓ PA MPJPE ↓
Using extra information
Sun et al. (ECCV’18) [174] Camera parameters 49.6 -
Habibie et al. (CVPR’19) [51] Extra training set 65.7 49.2
Want et al. (CVPR’19) [185] Extra training set 89.9 65.1
Sharma et al. (ICCV’19) [158] Ordinal depth 58.0 40.9
Li et al. (CVPR’19) [90] Ground Truth 52.7 42.6
Different input types
Martinez et al. (ICCV’17) [126] 2D pose 62.9 47.7
Fang et al. (AAAI’18) [42] 2D pose 60.4 45.7
Ci et al. (ICCV’19) [30] 2D pose 52.7 42.2
Ours 56.2 43.4

Table 3: Comparison with state-of-the-art methods using PCK and AUC on MPI-INF-
3DHP without training on this dataset.

Methods Extra information PCK ↑ AUC ↑
Mehta et al. (3DV’17) [127] - 64.7 31.7
Zhou et al. (ICCV’17) [233] Post-processing 68.2 32.5
Yang et al. (CVPR’18) [209] - 69.0 32.0
Habibie et al. (CVPR’19) [51] Extra training set 70.4 36.0
Want et al. (CVPR’19) [185] Extra training set 81.8 54.8
Ci et al. (ICCV’19) [30] 2D Pose 74.0 34.7
Ours (w/o LOPLR) - 23.9 8.9
Ours (full) - 66.8 31.9

Using rigid transformation
Habibie et al. (CVPR’19) [51] Extra training set 82.9 45.4
Ours - 84.4 46.9

Particularly, our model is only pretrained on Human3.6M and MPII datasets. PCK and
AUC are used as evaluation metrics and the threshold of PCK is 150mm.

It should be noted that joint locations are defined differently between Human3.6M
and MPI-INF-3DHP dataset, especially at the hip and neck joints. The different joint
definitions affect our orthographic projection linear regression module which is used to
connect the estimated 3D pose in camera coordinates with the 2D pose on the image
plane, resulting in inaccurate 3D pose predictions.

Table 3 lists the experimental results compared with existing 3D human pose estima-
tion methods. It it shown that 1) our method without extra information still achieves
competitive results compared with existing 3D estimation methods and generalizes well
to in-the-wild images; 2) our method outperforms Habibie et al. [51] after using the rigid
transformation.
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Figure 6: Qualitative results of the proposed network on Human3.6M and MPI-INF-
3DHP datasets.

2.5.2 Ablation Study

In this section, we conduct an ablation study to measure the contribution of the proposed
orthographic projection linear regression module. Specifically, experiments are conducted
on the MPI-INF-3DHP dataset to evaluate the performance, where our model is only
trained on Human3.6M and MPII datasets.

Table 3 lists the experimental results of our method with/without the orthographic
projection linear regression module. It is shown that the method with all the components
significantly improves the performance from 23.9% to 66.8%. Therefore, the proposed
orthographic projection linear regression method greatly contributes to the generalization
capability of our method to in-the-wild images.
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Figure 7: Qualitative results of the proposed network on MPII and LSP datasets.

Figure 8: The failure cases generated by the proposed method.

2.5.3 Qualitative Evaluation

To further test the generalization, we provide qualitative results on MPII and LSP dataset
in Figure 7. Particularly, MPII and LSP datasets consist of in-the-wild images with
diverse human poses, backgrounds and appearances, which are hardly included in 3D
pose datasets. It is shown in Figure 7 that our method with the proposed orthographic
projection linear regression module generalizes well to in-the-wild images, where both
estimated 3D poses and 2D projections are accurate.

There are several failure cases of our method as shown in Figure 8. In failure cases,
the parts of human body are heavily occluded.

2.5.4 Discussion

Our method without LOPLR cannot predict reasonable 3D poses from in-the-wild images
even when the 2D pose module provides accurate 2D poses (with heatmap representa-
tions). Intuitively, the 3D pose estimations are expected to be accurate since the inputs
of our regression module are the processed 2D heatmaps. The argument is that the 2D
heatmap representations contain not only 2D pose information but also other misleading
information, such as background information and light conditions.

Recent work [209, 233] shows that using a mixture of the 2D pose dataset (i.e., MPII)
and 3D pose dataset (i.e., Human3.6M) increases the performance of the 2D pose module.
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A combined training set is the main reason for augmenting the generalization to in-the-
wild images.

2.6 C O N C L U S I O N S

In this Chapter 2, we proposed an orthographic projection linear regression module
to construct a relation between the 3D human pose, 2D human pose projection and
2D image appearance. The proposed method first employs orthographic projection to
reduce the impact of the depth part. Then, a linear regression is used to align the 3D
projections with the 2D ground truth. Our method avoids the small angle problem that
perspective projection usually suffers from. Experiments on several datasets validated
the effectiveness and generalization ability of the proposed method qualitatively and
quantitatively.
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E G O C E N T R I C 3 D H U M A N P O S E E S T I M AT I O N F RO M T H E
F I S H E Y E C A M E R A

3.1 I N T RO D U C T I O N

Egocentric fisheye camera is used for human pose estimation or action recognition in
different computer vision applications such as virtual reality (VR) or augmented reality
(AR). These applications generally use a head mounted display to transform the user
in a virtual world from a first-person viewpoint. Due to the large field of view, pose
estimation from the egocentric fisheye viewpoint has many other valuable applications,
such as robotics.

Current approaches focus on human pose estimation using pinhole cameras. These
methods show significant progress for different benchmarks, such as the Human3.6M [64]
and MPI-INF-3DHP [127] datasets. To reduce the ambiguity, many methods estimate
the root-relative 3D joint positions in camera coordinates. However, the problem of
estimating the egocentric 3D pose for a fisheye camera is to predict the 3D human
pose from a first-person viewpoint possibly subject to strong image distortions. These
distortions may negatively influence the 3D poses when the 2D poses on the image plane
pass through the line of sight of the fisheye lens. For example, as shown in Figure 2, two
different 2D poses which are subject to different levels of image distortions correspond
to the same 3D pose. Recent works [180, 205] propose methods for 3D human pose
estimation from images captured by a fisheye camera to alleviate the problem of self-
occlusion. However, their methods ignore the negative influence of the distortions on the
3D pose estimation.

To mitigate the effect of distortions on the 3D human pose estimation, we propose
an automatic calibration module with self-correction to regularize 3D predictions. The
proposed calibration module automatically estimates the intrinsic and distortion camera
parameters with self-correction instead of using a post-processing step [205] to enforce
the 3D predictions to be consistent with the corresponding distorted 2D poses. In this way,
the effect of distortions on 3D pose estimation is alleviated. To assess the effectiveness of
the proposed automatic calibration module, we modified the xR-EgoPose dataset [180],
a recent public dataset for 3D human pose estimation collected by a fisheye camera,
by adding different levels of image distortions. We show that our method outperforms
previous state-of-the-art methods and significantly improves the performance by using
the proposed automatic calibration.

The contributions of our approach are summarized as follows:
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Figure 9: 3D pose prediction from a single image captured by a fisheye camera and
2D projection generated by our method. Note that although image (i) and (ii) appear
different, they correspond to the same 3D pose. The proposed automatic calibration
module alleviates the negative impact of image distortions on the 3D human pose
estimation.

• We propose a method for egocentric 3D human pose estimation from a single
image captured by a fisheye camera.

• We introduce an automatic calibration module with self-correction to mitigate the
effect of image distortions for robust 3D human pose estimation.

• Our network shows state-of-the-art performance on the modified xR-EgoPose
dataset containing images with different levels of distortions.

3.2 R E L AT E D W O R K

In this section, we describe monocular 3D human pose estimation methods from a
third-person viewpoint, a first-person viewpoint and wearable motion sensors.

Third-person 3D Pose Estimation. Monocular 3D human pose estimation using
external cameras shows significant progress with the use of CNNs and with the availability
of large-scale 2D [2, 70, 109] and 3D [64, 127] human pose datasets. In general, existing
methods are categorised into two types: (i) Direct 3D human pose estimation from
images with full supervision [98, 143, 174, 176, 234] and (ii) 3D pose estimation from
intermediate 2D pose predictions [16, 42, 90, 126, 133, 133, 142, 190, 199, 227]. As
direct pose estimation methods rely on extensive training data with 3D annotations,
their generalization capability is limited. To mitigate the above problem, approaches
attempt to create synthetic datasets based on Motion Capture (MoCap) systems [18, 183].
Nonetheless, differences still exist between synthetic images and real images, such as
backgrounds, appearance and variety of details. On the other hand, using robust 2D pose
detectors, 3D pose estimation methods decouple the task into 2D pose prediction and 3D
pose lifting step. To reduce the requirement of 3D pose annotations, [173, 233] propose
geometric constraints to regularize the 3D estimations. The human pose dataset with
only 2D annotations is used to constrain the 3D predictions.

First-person 3D Pose Estimation. A number of methods based on egocentric cameras
focuses on hands, arms or torso detection [153, 210]. However, it is considerably more
challenging to estimate the full 3D human pose from egocentric cameras. Jiang et al. [67]
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propose a method for 3D pose estimation based on videos taken from chest-mounted
cameras by considering the motion of the surrounding scene. However, the predictions
are less accurate and have low confidence. Rhodin et al. [149] present an approach
for full human body reconstruction captured from a head-mounted camera pair. Only
recently, egocentric monocular 3D human pose estimation based on fisheye cameras is
proposed. Xu et al. [205] design a new head-mounted system, where a fisheye camera is
placed at the rig of a standard baseball cap. To reduce the error of the lower body, their
methods take two images — one original image and one 2 × zoomed central part of the
original image, as input to compute the 3D pose estimation. Tome et al. [180] propose
an auto-encoder with two branches for egocentric 3D human pose estimation based on a
fisheye camera. However, their methods assume images with the same distortion and
therefore ignoring the negative impact of different levels of distortions on 3D human
pose estimation.

3D Pose Estimation from Wearable Motion Sensors. Inertial Measurement Units
(IMUs) are used to perform 3D pose estimation from a first-person viewpoint. However, a
large number of sensors may cause the system to become intrusive and require more time
to calibrate. Using less sensors becomes more challenging to reconstruct the 3D human
pose in this configuration [184]. Shiratori et al. [161] introduce an alternative way to
estimate the 3D human pose by structure-from-motion (SfM), with 16 cameras mounted
at the human body joints. Nonetheless, this approach is difficult to use in real scenes due
to motion blur, self-occlusion of limbs and missing textures in the background.

3.3 AU T O M AT I C C A L I B R AT I O N O F FI S H E Y E C A M E R A S

The inherent problem of image distortions captured by fisheye cameras makes 3D human
pose estimation challenging. Two images may correspond to the same 3D pose when
2D different poses on the image plane pass through the line of sight of the fisheye
lens. Therefore, it is difficult to regress 3D human joint positions in camera coordinates
without the distortion parameters. To alleviate this problem, we propose an automatic
calibration module to enforce the 3D predictions to be consistent with the corresponding
distorted 2D poses.

3.3.1 Fisheye Camera Model

As shown in Figure 10.1, the human pose is represented by a set of joints J i =
[Xi, Yi, Zi, 1]T located in the camera coordinate system. For the fisheye lens, shown
in Figure 10.2, the angle of refraction from 3D locations J in Figure 10.1 is decreased
from θ to θd. Then, the joint location J is projected on the image plane by j = [x, y, 1]T

in Figure 10.3. Particularly, the projected joint jo = [xo, yo, 1]T represents the projection
based on the pinhole camera model. It is because of the distortion that positions j and jo
are different.
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Figure 10: The imagery model of 3D-to-2D projection. The object — human joints J i are
located in camera coordinates OXYZ; The projected 2D pose (hand joint as an example)
with the pinhole camera jo and the fisheye camera j is on the image plane oxy; opuv
representing pixel coordinates. θ and θd indicate the angle of incidence and refraction
with the fisheye lens respectively. φ represents the angle between the projected ray o⃗ j
and x axis on the image plane.

3.3.2 Egocentric 3D Pose Estimation under a Fisheye Camera

From a single 2D image to 3D pose. 3D human pose estimation from a single image is
an ill-posed geometric problem: there is no depth information. Previous methods attempt
to solve this problem by learning the relation between 2D and 3D poses in a data-driven
manner. However, with strong image distortions introduced by a fisheye camera, 3D
human pose estimation is more challenging.

To alleviate the above issues, we propose an automatic calibration module to regularize
3D predictions. Instead of using a post-processing method [205] or ground truth, the
proposed module automatically predicts the distortion camera parameters with self-
correction. This is the first attempt to perform egocentric 3D human pose estimation by
using automatic calibration of the fisheye camera.
From 3D pose to 2D pose. For a fisheye camera mounted on the head, the relative
depth of human joints is comparable to the distance between the camera and the human
joints. Therefore, weak perspective projection can not be used to approximate the 2D
projections [51, 72, 185]. The 3D-to-2D projection process for the fisheye camera is
illustrated in Figure 10.

Let P3D = [J1, J2, ..., Jn] denote the human joint locations in camera coordinates
OXYZ, where n is the number of human joints and J i = [Xi, Yi, Zi, 1]T . The projected
2D pose from the fisheye camera and pinhole camera is defined by p2D and po2D, a 3 by
n matrix with ji = [xi, yi, 1]T and joi = [xoi, yoi, 1]T respectively.
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Given the intrinsic (K) and extrinsic (R and T) camera parameters, the 2D projections
po2D under the pinhole camera model is as follows:

s · po2D = K[R|T]P3D. (3.1)

where the extrinsic camera parameters R and T are the identity matrix, s represents
the scale factor and is equal to the Z value of the corresponding 3D joints in camera
coordinates.

As the fisheye lens produces strong image distortions compared to a pinhole camera,
distortion matrix D needs to be considered to compute 2D projections from a fisheye
camera:

s · p2D = K D[R|T]P3D. (3.2)

In this chapter, D is defined by

D =


θd/l 0 0

0 θd/l 0
0 0 1

 , (3.3)

where l =
√

X2+Y2

Z , and θd indicates the angle of refraction. In this chapter, we refer
to [73, 182] to calculate the angle of refraction θd = θ(1 + k1θ

2 + k2θ
4), where the

angle of incidence θ = arctan(l), and the number of radial distortion parameters to be
estimated is set to two, i.e., k1, k2.

Visually, the 2D projection jo under the constraint of a pinhole camera is transformed
to j for a fisheye camera in Figure 11 using Eq. (3.2) for the distortion camera matrix.

3.3.3 Error Analysis of Estimated 3D Joints and 2D Projections

Different from other methods for 3D pose estimation from external viewpoints, i.e.,
outside-in approaches, in our task, the depth variance of human joints is comparable
to the distance between the human joints and the fisheye camera. Therefore, the depth
of 3D joint locations has an effect on the 2D re-projection error. Besides, the level of
distortions and the distance of 3D joint locations to the optical axis (Z axis) also influence
the 2D re-projection error.

Eq. (3.2) can be detailed as follows,

x = f
θd
l

X
Z
= f (θ+ k1θ

3 + k2θ
5)

X√
X2 + Y2

, (3.4)

y = f
θd
l

Y
Z
= f (θ+ k1θ

3 + k2θ
5)

Y√
X2 + Y2

. (3.5)
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Figure 11: The impact of value of X and Z on the re-projection error under the fisheye
camera with different distortion parameters k1 and k2. Due to the large range of hand
and elbow joints, we plot the curve setting Z to be 30mm as shown in Figure 11.1. Since
most joints such as shoulders, hips and knees have similar positions in the XY plane, we
plot this curve setting X = 25mm as shown in Figure 11.2.

Without loss of generality, we only study the influence of the level of distortions, the
depth Z, and the value of X (the same to Y) on the 2D re-projection error. Before
calculating the derivation of Eq. (3.4), we set Y to zero to simplify the formula, i.e.,

x = f
θd
l

X
Z
= f (arctan

X
Z
+ k1arctan3 X

Z
+ k2arctan5 X

Z
). (3.6)

The partial derivative of Eq. (3.6) is taken:

∂x
∂X

= f
Z

X2 + Z2 (1 + 3k1arctan2 X
Z
+ 5k2arctan4 X

Z
),

∂x
∂Z

= − f
X

X2 + Z2 (1 + 3k1arctan2 X
Z
+ 5k2arctan4 X

Z
).

(3.7)

Figure 11 shows the impact of distortion parameters, the value of X and Z on re-projection
error according to Eq. (3.7): 1) The value of X and Z have different influences on the
re-projection error with various distortion parameters. Specifically, the larger the image
distortions, the larger the influence of 3D locations on the 2D re-projection error. 2)
Under the same level of distortions, the 3D joint locations with larger distances to the
camera (such as ankles, toes and hips joints in lower body) or with larger X (such as
elbows and hands joints) are expected to cause smaller errors on the 2D projections. In
other words, the error of 3D poses is larger for joints with larger distances to the camera
in the depth or larger distances to the optical axis under the same error of 2D projections.

3.3.4 Self-correction for Calibrating the Fisheye Camera

An automatic calibration module is proposed to regularize the 3D predictions. Our
calibration module predicts the intrinsic camera parameters K and the distortion camera
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Figure 12: Overview of the proposed framework. We use ResNet-50 as our backbone to
detect 2D poses with heatmap representations. The 2D heatmaps are fed into a residual
network with attention mechanism to further exploit the information in latent space.
Then, we employ a series of fully connected layers to estimate the 3D pose in camera
coordinates and camera parameters (i.e., focal length f , principal coordinate u0 and v0
and distortion parameters k1 and k2). Finally, the estimated 3D pose are enforced to be
consistent with 2D poses on the image plane using the predicted camera parameters.

parameters D automatically. Specifically, K includes focal length ( f ) and principal
coordinates (u0, v0) while D contains the distortion parameters (k1, k2).

As discussed in Section 3.3.3, the re-projection error depends on the level of distortions,
the depth, and the distance to the optical axis of the estimated 3D joints. Therefore,
the commonly used L2 loss that constrains the camera parameters in the outside-in
approaches [51, 185] cannot be used to update our automatic calibration module. The
optimization process will focus on the upper body estimation, especially for neck and
arm joints, due to the larger re-projection error. This may result in inaccurate estimation
of hands, elbows and joints in lower body. We will verify this issue in Section 3.5.

To optimize our automatic calibration module, we minimize the absolute error between
the projected 3D pose and 2D pose annotations pGT

2D . This avoids the optimization process
to focus on the joints with larger re-projection errors:

arg min
f ,u0,v0,k1,k2

∥∥∥K D[R|T]P3D − pGT
2D

∥∥∥
1. (3.8)

Note that the camera parameters ( f , u0, v0, k1, k2) and P3D are updated simultaneously.

3.4 N E T W O R K A N D T R A I N I N G D E TA I L S

Given a single image captured by a fisheye camera, our method aims to regress 3D
human joint locations in camera coordinates. In this section, we introduce our network
design and training strategy of our network.
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Table 4: Comparison with existing methods on the modified xR-EgoPose dataset.

Approach Gaming Gesticulating Greeting
Lower

Stretching Patting Reacting Talking
Upper

Stretching Walking Average ↓

Martinez [126] 98.3 85.3 65.6 83.0 74.7 97.2 53.7 77.2 79.2 79.7

Ours (w/o Lac) 80.7 66.4 61.0 74.8 65.6 80.2 44.4 83.8 76.4 78.6
Ours 75.3 66.0 54.1 68.7 65.4 78.3 43.0 67.4 69.2 67.7

1 Ours (w/o Lac) indicates that our method is trained without using the proposed automatic calibration module.

3.4.1 Network Design

Our framework consists of three modules as shown in Figure 12. First, we employ a
2D pose module to detect 2D heatmaps of human joint positions on the image plane.
Second, a 3D pose regression module takes the fused features from 2D heatmaps as
input to estimate 3D joint locations in camera coordinates. Finally, we use the proposed
automatic calibration of the fisheye camera to enforce 3D predictions to be consistent
with the corresponding 2D poses under the distortions.
2D Pose Module. Considering the accuracy and computational costs, we adopt ResNet-
50 followed by three deconventional layers as our 2D pose module. Given a single
image with a resolution of 256 × 256, the 2D pose module infers 2D poses with heatmap
representations HM ∈ R16×64×64, where 16 indicates the number of human body joints
with the space dimension of 64 × 64.

To train the 2D pose detector, we use the mean square error (MSE) to calculate the loss
between the estimated HM and 2D ground-truth heatmaps HMGT. The loss function is
defined by:

LHeatmap =
H∑
h

W∑
w

∥∥∥∥HM(h,w) −HMGT
(h,w)

∥∥∥∥
2
, (3.9)

where H and W indicate the resolution of the heatmaps. Specifically, we generate ground-
truth heatmaps by using Gaussian distributions with kernel size of 13 × 13 and standard
deviation of 2 pixels on each joint locations on the image plane.
2D-to-3D Regression Module. To regress the 3D human pose P3D in camera coordi-
nates, we employ several residual blocks with fully connected layers followed by batch
normalization, ReLU non-linearity and Dropout. Considering the inference time and
prediction accuracy, we use two residual blocks for 2D-to-3D regression.

We optimize the 3D pose regression module by minimizing the MSE error between
3D predictions P3D and 3D pose ground truth PGT

3D . Given the dataset with the number of
N samples, the loss function is defined by:

L3Dpose =
1
N

N∑
i=1

∥∥∥∥P3D(i) − PGT
3D (i)

∥∥∥∥
2
, (3.10)

where i represents the index of the training set.
Automatic Calibration Module. As shown in Figure 12, there are two branches in the
regression module. The first branch is the lifting module regressing 3D locations of
human joints while a multi-layer perception is employed in the second branch to perform
automatic calibration of the fisheye camera. Specifically, the second branch estimates the
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Table 5: Average error for per joint performed by our method with L1 and L2 loss on the
modified xR-EgoPose dataset.

Joint
Error (/mm) ↓

Joint
Error (/mm) ↓

Ours Ours L2 Improvement Ours Ours L2 Improvement

Head 32.90 27.03 -5.87 Neck 20.53 17.20 -3.33
Left Arm 31.91 35.61 3.69 Right Arm 33.23 36.97 3.74
Left Elbow 47.69 51.82 4.13 Right Elbow 52.22 58.24 6.02
Left Hand 82.99 93.83 10.84 Right Hand 85.49 100.19 14.71
Left Hip 56.86 65.03 8.17 Right Hip 56.77 65.13 8.35
Left Knee 79.33 87.54 8.21 Right Knee 79.87 89.84 9.97
Left Foot 100.31 110.84 10.53 Right Foot 103.21 115.41 12.20
Left Toe 109.39 119.61 10.22 Right Toe 110.73 122.09 11.36

1 Ours L2 denotes our method use L2 loss to update the proposed automatic calibration
module.

intrinsic camera parameters consisting of focal length ( f ), principal coordinate (cx, cy)
and distortion parameters (k1, k2). Then we use Eq. (3.2) to obtain the 2D projections,
where 3D predictions are constrained by the 2D poses under the distortions. In this
way, the impact of image distortions on 3D human pose estimation is alleviated. In this
chapter, automatic calibration module is only applied during the training phase.

As discussed in Section 3.3.3, the level of distortions, the depth and distance to
the optical axis of estimated 3D joint locations have an influence on the errors of the
corresponding 2D projections. Therefore, we minimize the absolute error (i.e., L1 loss)
between the projected 3D pose and 2D ground truth avoiding the optimization to focus
on joints with large re-projection errors. The loss function is defined by:

Lac =
1
N

N∑
i=1

∥∥∥∥K D[R|T]P3D(i) − pGT
2D (i)

∥∥∥∥
1
, (3.11)

where R and T are the identity matrix.

3.4.2 Training

According to Eqs. (3.9) - (3.11), we train our full network by minimizing the following
cost function:

Lpose = λHMLHeatmap +L3Dpose + λacLac, (3.12)

where λHM and λrep are loss weights to adjust the combination of the 2D heatmap loss,
the 3D pose loss and the loss of automatic calibration module.

During training, we first pre-train the 2D pose module on the external perspective
MPII dataset, because we found pre-trained 2D pose module obtains higher accuracy of
2D pose estimations for images captured by a fisheye camera. Then, we fine-tune the
whole network on the modified xR-EgoPose dataset.
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Table 6: Experimental results of our network on the modified xR-EgoPose dataset under
less 3D ground truth.

Approach 3D ground truth MPJPE(/mm) ↓

Martinez et al. [126] 100% 79.7
Ours 100% 67.7

Ours 80% 76.9

Table 7: Comparison with existing methods on xR-EgoPose dataset.

Approach Gaming Gesticulating Greeting
Lower

Stretching Patting Reacting Talking
Upper

Stretching Walking Average ↓

Martinez [126] 109.6 105.4 119.3 125.8 93.0 119.7 111.1 124.5 130.5 122.1
Tome [180] 56.0 50.2 44.6 51.1 59.4 60.8 43.9 53.9 57.7 58.2

Ours 36.8 34.1 36.7 50.1 57.2 34.4 32.8 54.3 52.6 50.0

3.5 E X P E R I M E N T S

Datasets. Recently, two datasets for egocentric 3D human pose estimation for a fisheye
camera are released — xR-EgoPose [180] and Mo2Cap2 [205] datasets. Both datasets
consist of a large number of frames of daily activities for different environments and
lighting conditions. Considering images from current datasets with the same distortion,
we modified the xR-EgoPose dataset using Eq. (3.4) and Eq. (3.5) to randomly add
image distortions. For fast evaluation, the total number of images in the modified dataset
is one-fifth of the total size in original xR-EgoPose dataset.
Evaluation Metrics. We use the Mean Per Joint Position Error (MPJPE) as the evaluation
metric in the experiments. Note that we do not need to align the root joint for the
evaluation as in the outside-in approaches.
Implementation Details. The proposed network regresses 16 human body joints includ-
ing the head joint. The head joint is estimated based on the position of head-mounted
display from 2D images. We first pre-train our 2D pose module on the MPII dataset [2]
and then train our full network for 36 epochs on the modified xR-EgoPose dataset using
Adam [78] for optimization. The learning rate is set to 5 × 10−4. The model is trained on
two GTX 1080ti GPUs with a batch size of 64. The weights in the overall loss function
are set to λHM = 107 and λac = 50.
Method Comparisons. To assess the effectiveness of our method, we conduct experi-
ments on the modified xR-EgoPose dataset compared with Martinez et al. [126], a simple
but effective 3D pose estimation method from external camera viewpoints. Furthermore,
we evaluate our method on the xR-EgoPose and Mo2Cap2 datasets compared with cur-
rent state-of-the-art methods [180, 205] for egocentric 3D human pose estimation for
fisheye cameras.

3.5.1 Evaluation on Modified xR-EgoPose Dataset

Overall Performance. We first evaluate the proposed approach on the modified xR-
EgoPose dataset. Since the existing methods [180, 205] do not release their code, it is
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Table 8: Comparison with existing methods on indoor set of Mo2Cap2 dataset.

Approach Walking Sitting Crawling Crouching Boxing Dancing Stretching Waving Average ↓

3DV’17 [127] 48.76 101.22 118.96 94.93 57.34 60.96 111.36 64.50 76.28
VNect [130] 65.28 129.59 133.08 120.39 78.43 82.46 153.17 83.91 97.85
Xu∗ [205] 38.41 70.94 94.31 81.90 48.55 55.19 99.34 60.92 61.40
Tome∗ [180] 38.39 61.59 69.53 51.14 37.67 42.10 58.32 44.77 48.16
Ours 41.16 76.58 73.04 89.67 52.96 58.90 92.21 71.55 62.13

1 ∗ means the method uses extra information.

hard to make a fair comparison with them. Therefore, we compared our method with
a state-of-the-art method [126] for 3D human pose estimation from external camera
viewpoints.

Table 4 lists the experimental results showing that our method achieves the best
performance in all activities, leading to an improvement of 15.1% in overall performance.
Effectiveness of Automatic Calibration Module. We perform an ablation study on
the modified xR-EgoPose dataset to assess the influence of our proposed automatic
calibration module. The MPJPE of all activities are reported in Table 4, in which Ours
(w/o Lac) refers to the proposed method without automatic calibration module. Our
method obtained better performance than Ours (w/o Lac) with a 10.9mm improvement.
The results show the effectiveness of the proposed automatic calibration module.
Update Strategy of Automatic Calibration Module. As discussed in Section 3.3.3, the
level of distortions, the depth, and the distance to the optical axis of 3D joint locations
have an influence on the error of the 2D projections. Based on the error analysis, we
employ the L1 loss to train our automatic calibration module instead of the commonly
used in the outside-in approach — L2 loss. In this way, our update strategy avoids the
optimization process to focus on the estimated 3D joints with larger 2D re-projection
errors. Otherwise, an inappropriate update strategy of our automatic calibration module
may lead to overfitting of these joints and a decrease in overall performance.

We conduct a comparative experiment on the modified xR-EgoPose dataset to validate
this strategy. Particularly, we denote our method using L2 loss as Ours L2. Table 5
reports the average error for each estimated joint and the improvement by our method.
It is shown that the proposed method achieves better performance for each joint except
head and neck joints. Note that the error of joints in 1) lower body, such as knee, foot
and toes, and 2) joints with large distances to the optical axis, such as hands and elbows
in the 3D space are reduced significantly by our method, which validates our assumption.

3.5.2 Mixed 2D and 3D Ground Truth Datasets

Another advantage of the proposed method is that our network can be trained on a mixture
of 2D and 3D pose datasets. Due to our automatic calibration module, the estimated 3D
pose can be partially constrained by the 2D ground truth, alleviating the needs of 3D
ground-truth labels. We test our model on the modified xR-EgoPose dataset with 80%
of 3D annotations while the 2D ground truth labels are available in the training phase.

31



E G O C E N T R I C 3 D H U M A N P O S E E S T I M AT I O N F RO M T H E FI S H E Y E C A M E R A

Figure 13: The visual results on the modified xR-EgoPose dataset predicted by the
proposed method.

Figure 14: The visual results on Mo2Cap2 dataset predicted by the proposed method.

Table 6 lists the experimental results. Our method still outperforms Martinze et al. [126]
(79.7mm) with an error of 76.9mm.

3.5.3 Evaluation on Current Datasets

Evaluations on xR-EgoPose Dataset. We also validate our method on the original
xR-EgoPose dataset. Specifically, the proposed method is compared with Martinez et
al. [126] and Tome et al. [180] — the state-of-the-art egocentric pose estimation method.
Table 7 shows MPJPE on this dataset, including the error on each activity and the average
error. Our method shows the best performance with an average error of 50.0mm, leading
to an improvement of 14.1% on average compared to the state-of-the-art results.
Evaluations on Mo2Cap2 Dataset. We further compare our method with current
methods on the Mo2Cap2 dataset. Table 8 shows the experimental results, where
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3DV’17 [127] and VNect [130] focus on pose estimation from external camera viewpoint
while Xu et al. [205] and Tome et al. [180] are the current state-of-the-art egocentric
pose estimation methods. Note that Xu et al. (i) take two images — one original image
and one 2 × zoomed central part of the original image to regress 3D poses while we only
use a single image as input; (ii) need the toolbox for calibration of the fisheye camera
to obtain distortion camera parameters while we directly estimate the distortion camera
parameters with self-correction in our framework. On the other hand, Tome et al. uses
the estimated 2D heatmaps from Xu et al. to implement the evaluation. From Table
8, the proposed method achieves competitive results with an error of 62.13mm on the
indoor set of Mo2Cap2 dataset, even with only a single image as input.

3.6 C O N C L U S I O N S

We presented a novel method for egocentric 3D human pose estimation from a single
image captured by a fisheye camera. To alleviate the impact of image distortions on 3D
human pose estimation, we proposed an automatic calibration module to enforce the 3D
predictions to be consistent with the corresponding 2D projections under the distortions.
Experimental results showed that our method obtained state-of-the-art performance on
the modified xR-EgoPose and current datasets compared with existing methods.
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4

M U LT I - P E R S O N 3 D P O S E E S T I M AT I O N F RO M T H E
F I S H E Y E C A M E R A

4.1 I N T RO D U C T I O N

Due to the wide angle, fisheye cameras have been widely used in various practical
scenarios such as video surveillance [77], virtual reality [149] and automotive applications
[62]. Particularly, fisheye cameras will have larger field of view with larger distortion
parameters. Many of these applications require the inference of multi-person 3D poses
from fisheye images. However, this task has not been studied, and most existing methods
focus on 3D pose estimation from images captured by a perspective camera [28, 50, 131,
155].

To this end, we aim to compute multi-person 3D poses from a single image taken by
a fisheye camera. This is the first approach, to the best of our knowledge, to perform
this task. To achieve this, there are three major challenges: i) humans at different
distances from the center of images exhibit varying scales and distortions, due to image
distortions. Although different methods [30, 51, 72, 82] use a re-projection method to
establish a relationship between 2D and 3D poses with predicted scale and translation
parameters, they aim is to estimate root-relative 3D human poses, ignoring absolute
location information. Pelvises are usually defined as root joints. However, humans
at different positions suffer from varying distortion strengths in this task. Therefore,
such kind of methods are expected to fail to solve this challenge. ii) This task is
complicated because the distance between humans and cameras is not fixed. Recent
methods [179, 180, 187, 205] predict the egocentric 3D pose from images captured by a
fisheye camera installed on a human head/baseball cap. In their settings, the head/neck
joints are seen as the root located at the same position on the image. Therefore, the
negative impact of image distortions can be avoided by relative joint locations to the
root in a learning based manner with one level of image distortions. iii) We intend
to predict 3D human joint locations with absolute depths, which is more challenging
than root-relative 3D pose estimation because of the inherent depth and scale ambiguity.
Recently, some researchers [94, 107, 131, 230] focus on the estimation of absolute joint
locations from a single image taken by a perspective camera. However, we argue that it
is a strong prior to use ground-truth camera parameters for evaluation.

In this chapter, we propose a novel top-down approach to multi-person 3D pose
estimation from a single image captured by a fisheye camera. The proposed framework
consists of two branches, i.e., HPoseNet and HRootNet, to estimate root-relative 3D
poses and absolute depths of root joints, respectively. To alleviate the impact of human
scales changes caused by unknown distortions, a re-projection module is proposed
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Figure 15: 3D pose predictions using our approach. * indicates our method without full
components: 1) re-projection module and 2) global and local feature fusion. Given a
fisheye image shown in background, our method with full components generates more
reasonable 3D poses.

to connect the two branches to enforce projected absolute 3D poses consistent with
2D ground truths under image distortions. In this way, our approach takes image
distortions into account to estimate multi-person 3D poses and predicted absolute depths
are further regularized. Particularly, we adopt a learning based approach to estimate
camera parameters circumventing the requirement of ground-truth camera parameters.

We evaluate the proposed approach on two public datasets including CMU Panoptic
[71] and Shelf [5] datasets. Particularly, we synthetically add different levels of image
distortions to public datasets. To test the performance on real fisheye images, we collected
a dataset — 3DhUman recorded by two fisheye cameras with 3 persons performing three
commonly activities: posing, talking and walking. As ceiling cameras (e.g., video
surveillance) are commonly used, we focus on this scenario, i.e., the top-down viewpoint.
Our approach outperforms existing methods on both synthesized and real-world datasets.

In summary, the contributions of this work are:

• We propose a top-down method for multi-person 3D pose estimation from a single
image taken by a fisheye camera. To the best of our knowledge, this is the first
approach to perform this task.

• A re-projection module is proposed to alleviate the effect of image distortion on
multi-person 3D pose estimation. Particularly, camera parameters are predicted by
our framework instead of using the ground truth.

• Our method significantly outperforms existing state-of-the-art methods on public
datasets with synthetic fisheye images and our proposed dataset with real fisheye
images.

4.2 R E L AT E D W O R K

Multi-person 2D Pose Estimation. Existing work for multi-person 2D pose estimation
can be divided into bottom-up and top-down approaches. Bottom-up approaches [12,
55, 68, 80, 135, 138] simultaneously detect all human joints and then collect them for
each person. Top-down approaches [22, 41, 132, 140, 172, 203] first employ a detector to
predict bounding boxes of humans and then estimate a single 2D human pose from the
cropped images.
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Figure 16: The process of 3D-to-2D projection for the fisheye camera model. This figure
consists of a 3D human pose represented by a set of joints in camera coordinates OXYZ,
a fisheye camera, and 2D projections on the image plane o1uv. The angle of refraction θ
is decreased to θd.

Multi-person 3D Pose Estimation. There are many methods [32,129,154,155,212,213]
for multi-person 3D pose estimation. However, most of them require a post-processing
step, i.e., an optimization strategy by minimizing the error between projected 3D poses
and 2D poses [32,154,155] or correspondences between semantic representations [212] to
obtain absolute joint locations in real spaces. Recently, some methods [94, 107, 131, 230]
adopt the learning based manner to obtain absolute depths of root joints. [131] introduces
a novel depth measure combined with a correction factor to obtain the real depth. They
rely on the area of the bounding box of humans in image and real spaces. [107] considers
the depth regression problem as a classification problem to perform depth estimation and
localization of root joints. These methods follow the top-down pipeline in which pose
estimation is performed from cropped images, and hence ignoring the global information.

Note that recent methods [24, 50, 94, 107, 131, 230] compute 3D poses according to
2D poses in pixel coordinates and depths in camera coordinates. They assume that
intrinsic camera parameters are known both in training and testing procedure. On the
other hand, existing methods mainly focus on pose estimation from a perspective camera
or multi-view perspective images [36, 108, 200]. No research exits on multi-person 3D
pose estimation from a single image captured by a fisheye camera.

3D Pose Estimation from a Fisheye Camera. There are few works on 3D human pose
estimation under fisheye cameras placed on the chest [63, 67] or head [149, 180, 205].
Recently, [205] takes original and auxiliary images that focus on the lower body as inputs
to improve the performance of egocentric pose estimation. [180] and [179] propose a
method that includes two branches for 2D and 3D pose regression to estimate egocentric
3D poses. However, these methods are based on the root-relative single-person pose
estimation and the camera is placed fixedly on the human head. Further, [29] proposes an
optimization-based method for 3D human pose estimation from a third-person viewpoint
to deal with the image distortion problem without camera calibration. However, these
methods are based on the root-relative single-person 3D pose estimation where the
camera is placed fixedly on the human head for egocentric 3D pose estimation.
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4.3 M U LT I - P E R S O N 3 D P O S E E S T I M AT I O N F RO M FI S H E Y E C A M E R A S

The goal of our method is to estimate multi-person 3D joint locations with absolute
depths in camera coordinates from a single image captured by a fisheye camera. Here,
two issues need to be solved: the negative impact of images distortions and usage of
global information.

4.3.1 Issues on Image Distortions

Due to the existence of image distortions, persons at different locations on images may
cause varying distortion strengths. Therefore, even when persons express different 2D
poses, they may be originated from the same 3D pose (please see the appendix for more
analysis). This makes multi-person 3D human pose estimation more challenging when
camera parameters are not provided (known). In this chapter, we propose a re-projection
module based on the fisheye camera model to alleviate the effect of image distortions on
multi-person 3D pose estimation.
Fisheye Camera Model. Figure 16 shows the process of 3D-to-2D projection for the
fisheye camera model. Specifically, the 3D human pose is represented by a set of scatter
joints, a 4 by n matrix Jabs

i = [Xabs
i , Yabs

i , Zabs
i , 1]T , in camera coordinates OXYZ. After

going through the fisheye camera, the angle of refraction θ is decreased to θd, and the
2D projections jo = [xo, yo, 1]T are changed to j = [x, y, 1]T . Particularly, jo is the 2D
projection based on the perspective camera, i.e., without image distortions.
3D Pose Estimation from a Fisheye Camera. To reduce the negative impact of image
distortions, we first use a 2D-to-3D lifting module to obtain 3D human joint locations,
and then minimize the error between projected 3D predictions and 2D ground truths. This
enforces estimated 3D poses to be consistent with corresponding 2D poses under possible
distortions. Since the relative depth of human joints is comparable to the distance from
humans to cameras, we use perspective projection to calculate 2D projections. Therefore,
estimated depths can be regularized.

Let P3Dabs = [J1, J2, ..., Jn] represent human joint locations in camera coordinates
OXYZ, where n indicates the number of human joints and J i = [Xi, Yi, Zi, 1]T . Particu-
larly, P3Drel denotes the root-relative human joint locations. Pelvises are defined as the
root joint in this work. 2D projections p2D and po2D, a 3 by n matrix with ji = [xi, yi, 1]T

and joi = [xoi, yoi, 1]T , are based on the perspective and fisheye camera model, respec-
tively. With intrinsic and extrinsic camera parameters (K, R and T), 2D projections po2D
under the perspective camera are obtained by:

s · po2D = K[R|T]P3Dabs, (4.1)

where s is a scale factor and is equal to the value of Z in P3Dabs. Because P3Dabs are in
the camera coordinate, the extrinsic camera parameters R and T are the identity matrix.

In terms of fisheye cameras, there are distortion parameters to change the 3D-to-2D
projection in Eq. (4.1). Specifically, Eq. (4.1) is modified by adding a distortion matrix
D:

s · p2D = K DI3×4P3Dabs, (4.2)
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Figure 17: Overview of the proposed framework. There are two branches, i.e., HPoseNet
and HRootNet, to estimate root-relative 3D poses and absolute depths of root joints.
Finally, we use a re-projection module to connect the two branches, enforcing the
estimated 3D human poses to be consistent with the 2D poses under distortions by
minimizing the re-projection error.

where I3×4 is a 3 by 4 identity matrix, and D, in this chapter, is defined as:

D =


θd/l 0 0

0 θd/l 0
0 0 1

 , (4.3)

where l =
√

X2+Y2

Z . Following previous works [73, 182], the angle of refraction θd =
θ(1 + k1θ

2 + k2θ
4 + k3θ

6 + ...), where θ = arctan(l), and two of distortion parameters
(k1, k2) are used for simplification.

Automatic Calibration for a Fisheye Camera. To avoid the need of ground-truth
camera parameters, we adopt a learning based approach to estimate camera parameters
during training stages. Specifically, five camera parameters are predicted: focal length
( f ), principal coordinates (cx, cy) and distortion parameters (k1, k2). To optimize the
process of automatic calibration, we minimize the absolute error between absolute 3D
joint locations P3Dabs and 2D ground truths pGT

2D .

arg min
f ,cx,cy,k1,k2

∥∥∥K DI3×4P3Dabs − pGT
2D

∥∥∥
1. (4.4)

4.3.2 Issues on Global Information

Most existing top-down approaches estimate multi-person 3D poses from a cropped
image around humans, ignoring the global relation of each person. We propose to
aggregate features from cropped images around humans and the whole image in the
latent space to maintain the global information for the estimation of absolute depths and
camera parameters.
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Figure 18: The design of our HPoseNet. HPoseNet takes images cropped by human
bounding boxes as inputs to estimate root-relative 3D human poses.

Inspired by [107] and [227], features extracted from input images contributes to human
pose estimation. However, these features may also contain background, appearance or
other useless information to our task. To enhance the role of features contributing to the
performance, we employ an attention mechanism to facilitate the process of human pose
estimation.

4.4 N E T W O R K A N D T R A I N I N G D E TA I L S

We adopt a top-down pipeline to estimate multi-person 3D poses with absolute depths as
shown in Figure 17. Our framework consists of three components including HPoseNet,
HRootNet, and a re-projection module. In this section, we provide details of each
component and training details.

4.4.1 Network Design

HPoseNet. HPoseNet is to estimate root-relative joint locations for each person. Follow-
ing [222], the design of HPoseNet is shown in Figure 18. HPoseNet takes ResNet50 as
backbone followed by three deconvolutional layers to estimate 2D poses using heatmap
representations. Then, two residual fully connected layers are used to predict root-relative
3D joint locations. To optimize HPoseNet, we minimize the mean square error (MSE)
between 1) estimated 2D heatmaps HM and ground-truth heatmaps HMGT, which rep-
resents the 2D poses in fisheye images; 2) estimated root-relative 3D pose P3Drel and
ground-truth 3D pose PGT

3Drel:

LHM =
1
n

n∑
i=1

∥∥∥∥HM(i) −HMGT
(i)

∥∥∥∥
2
,

L3D =
1
n

n∑
i=1

∥∥∥∥P3Drel(i) − PGT
3Drel(i)

∥∥∥∥
2
,

(4.5)

where i denotes the joint index and n indicates the number of human joints.
HRootNet. We aim to regress absolute root joint locations in camera coordinates and
camera parameters. In this branch, ResNet50 is used as backbone to extract latent features
from input images. Then, we combine the features from i) the entire input image and ii)
the cropped image around the person to estimate the root joint locations. SENet [57] is
used to apply the attention mechanism to the extracted features from the cropped images
to exploit the meaningful representations in latent space. In addition, we use linear layers
to regress camera parameters instead of using the ground truth. To train HRootNet, we
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Figure 19: Example images in 3DhUman dataset. Actions from left to right: posing,
talking and walking with 2 persons (first 3 pictures) and 3 persons (last 3 pictures).

optimize the MSE error between estimated root joint locations Proot and the ground truth
PGT

root. The loss function is given by:

Lroot =
∥∥∥Proot − PGT

root

∥∥∥
2. (4.6)

Re-projection module. We propose a re-projection module to connect the two branches.
Combining P3Drel from HPoseNet and Proot from HRootNet, absolute 3D joint locations
are obtained by P3Dabs = P3Drel + Proot. To alleviate the negative influence of image
distortions and further regularize predicted 3D poses with absolute depths, we propose
a re-projection module to project estimated absolute 3D poses onto 2D poses using
predicted camera parameters. Then, projected absolute 3D poses P3Dabs are forced to be
consistent with 2D ground truths pGT

2D under distortions. In this way, our approach takes
image distortions into account to estimate multi-person 3D poses, reducing the impact of
human scale changes caused by unknown distortions. The loss function is as follows:

Lrep =
1
n

n∑
i=1

∥∥∥∥K DI3×4P3Dabs(i) − pGT
2D (i)

∥∥∥∥
1
. (4.7)

4.4.2 Training

According to Eqs. (4.5) - (4.7), the overall loss function is given by:

Lpose = λHMLHM +L3Drel + λrepLrep + λrootLroot, (4.8)

where λHM, λrep and λroot are loss weights to obtain a trade-off between each loss.

4.5 E X P E R I M E N T S

4.5.1 Experimental Setup

Current datasets. We use CMU Panoptic [71] and Shelf [5] datasets for evaluation.
Specifically, two views in CMU Panoptic dataset are chosen from HD camera 2 and
19, since these two cameras provide top-down viewpoints which are similar to video
surveillance in real world scenarios. For Shelf dataset, we use all views to train and test
our method. Since these datasets are created for perspective cameras, we synthetically
add image distortions according to Eq. (4.2). Specifically, distortion parameters k1 and
k2 are uniformly sampled, where k1 ∈ [−0.9600,−0.7000], k2 ∈ [−0.0500,−0.0100] in
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Table 9: The MPJPE of root-relative 3D poses and MRPE of absolute root joint locations
on modified CMU Panoptic (top) and Shelf (bottom) datasets.

Methods Haggling Mafia Ultimatum Pizza MPJPE ↓ MRPE ↓
Moon et al. [131] 100.26∗ 96.79∗ 99.88∗ 125.09∗ 102.83∗ 783.42
Lin et al. [107] 100.26∗ 96.79∗ 99.88∗ 125.09∗ 102.83∗ 367.47
Ours 79.98 55.26 79.12 80.26 66.76 182.94

Methods MPJPE ↓ MRPE ↓
Moon et al. [131] 300.18∗ 696.10
Lin et al. [107] 300.18∗ 793.11
Ours 132.45 589.19

* As [131] and [107] use the same architecture for root-relative 3D human estimation and [107]
does not release code for this part, the values of MPJPE are considered to be the same.

CMU Panoptic dataset and k1 ∈ [−1.500,−1.0000], k2 ∈ [-0.7000, -0.1000] in Shelf
dataset.
Proposed dataset. We collected a new multi-person 3D pose dataset — 3DhUman,
captured by two fisheye cameras with grayscale images in an indoor environment. Specif-
ically, images are captured by two fisheye cameras with different camera parameters from
two top-down viewpoints. Two LiDAR cameras are used to capture depth information.
The dataset contains 3 participants (2 males and 1 female) performing 3 activities: posing,
talking and walking, as shown in Figure 18. 2D/3D annotations and camera parameters
are given by this dataset. Following [71], 15 joints are included in the annotations.

The dataset consists of 217 fisheye images. Training and testing sets are split by
whether the images include the specific participant. Specifically, the images including
that participant are taken as the training set, while the remaining images are used as
the testing set. For training, we used the (cropped) images containing that participant
for root-relative 3D pose estimation, while the entire images are used for the camera
parameters and absolute depth estimation of that participant combined with cropped
images as inputs. Both training and testing sets include three activities. Since the
3DhUman dataset consists of three participants, we employed a 3-fold cross-validation
to evaluate the methods.
Metrics. The Mean Per Joint Position Error (MPJPE) is used as the metric for root-
relative 3D human poses, while the mean of the root position error (MRPE) [131] is used
to evaluate root joint locations.
Implementation Details. We first pre-train HPoseNet on the MPII 2D pose dataset, and
then the whole network is trained on the 3D pose dataset for 10 epochs with an initial
learning rate of 5× 10−4 with a decay over 8 epochs. Adam is used for optimization. The
batch size is set to 32. Loss weights are set to λHM = 107, λrep = 1 and λroot = 0.05.
Method Comparison. To evaluate the proposed method, a comparison is given between
two existing methods [107, 131]. For a fair comparison, we re-train two models on the
modified CMU Panoptic and Shelf datasets following their settings. Since the code has
not been released, we will not compare our approach with [180] and [205].

Following existing approaches [32, 94, 107, 131], we first attempt to use Mask R-
CNN [52] to detect each person in the input image. However, it fails to detect accurate
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Table 10: MPJPE and MRPE on the 3DhUman dataset.

Methods Posing Talking Walking MPJPE ↓ MRPE ↓
Moon et al. 79.44∗ 61.57∗ 70.63∗ 73.29∗ 1536.24
Lin et al. 79.44∗ 61.57∗ 70.63∗ 73.29∗ 1661.02
Ours 67.87 53.56 56.95 62.14 177.95

Table 11: MPJPE on the Human3.6m dataset [64].

Methods MPJPE ↓
Moon et al. 53.3∗

Lin et al. 53.3∗

Ours 54.1

bounding boxes for each person. To avoid the influence of the person detector, ground-
truth bounding boxes are used for evaluation.

4.5.2 Quantitative Evaluation

Modified CMU Panoptic Dataset. We first compare our approach with existing state-
of-the art methods [107, 131] on the modified CMU Panoptic dataset. Table 9 (bottom)
lists experimental results including the MPJPE of four activities and MRPE. It is shown
that our approach achieves the best performance and obtains an improvement of 35.08%
than existing methods with MPJPE. Particularly, our approach performs best over all
activities. For MRPE, our approach significantly outperforms compared methods with an
improvement of 50.22% than Lin et al. [107]. Moon et al. [131] estimate absolute root
joint locations based on the area of bounding boxes around humans in image and real
spaces under the perspective camera. However, image distortions in this topic change the
scale of each person on the image plane. Therefore, it is expected that Moon et al. [131]
fail to achieve desirable performance.
Modified Shelf Dataset. We then test all approaches on the modified Shelf dataset.
Table 9 (top) shows that our method outperforms existing methods with an improvement
of 55.88% for MPJPE. Further, the proposed method shows best performance on root
joint estimation compared to two existing methods. Since the Shelf dataset includes less
training data than the CMU Panoptic dataset, the performance of all three methods is
degraded.
3DhUman Dataset. We conduct experiments on real fisheye images, i.e., 3DhUman
dataset. All methods are first trained on modified CMU Panoptic dataset with grayscales
and then finetuned on 3DhUman dataset. Table 10 lists experimental results with metrics
of MPJPE and MRPE, and our method achieves the best performance on root-relative
3D human pose and absolute root joint estimation. Particularly, it seems that Moon et al.
and Lin et al. do not generalize well to real fisheye images for root joint estimation.
Perspective Images. We compare our HPoseNet with [131] and [107] for 3D human pose
estimation on perspective images. HPoseNet estimates root-relative 3D human poses.
Therefore, Human3.6m dataset, a large-scale dataset and a commonly used benchmark
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Figure 20: Analysis of the sensitivity of our method and our method without using
proposed re-projection module (Ours w/o rep) on a) image level defined by image
distortions and b) instance level defined by θd/θ for each human appeared in images on
the modified CMU Panoptic dataset.

Table 12: Ablation study on the modified CMU Panoptic and 3DhUman datasets.

Methods
Modified CMU Panoptic 3DhUman
MPJPE ↓ MRPE ↓ MPJPE ↓ MRPE ↓

Baseline (LHM + 3D loss) 84.75 272.23 69.10 230.51
+ Feature Fusion 82.02 245.10 67.61 222.95
+ Lrep 74.62 202.28 63.43 185.29
Ours (full components) 66.76 182.94 62.14 177.95

for 3D human pose estimation, is used to evaluate all methods. Following the same
setting as in [107, 131], we select subjects S1, S5, S6, S7, and S8 for training and S9 and
S11 for testing. During the training procedure, λrep = 0 and λroot = 0. Table 11 reports
the experimental results for MPJPE. Despite not using ground-truth camera parameters,
our method still achieves similar performance of root-relative 3D human poses.

4.5.3 Ablation Study

We perform an ablative study to validate the effectiveness of proposed contributions:
local and global feature fusion and re-projection module on the modified CMU Panoptic
dataset. Therefore, we take our method combining the 2D heatmap loss (LHM) and
3D loss (L3Drel and Lroot) as the baseline, which is the common setting in single/multi-
person 3D pose estimation [51, 107, 233]. The experimental results are listed in Table
12.

From Table 12, our method with full components achieves the best performance in
both metrics of MPJPE and MRPE on modified CMU Panoptic and 3DhUman datasets.
For modified CMU Panoptic dataset, the performance achieved by our method without
re-projection module drops by 22.86% and 33.98% in the metric of MPJPE and MRPE,
respectively. On the other hand, our full method improves the performance on MPJPE
and MRPE by 10.53% and 9.56% compared with our method without feature fusion. The
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Table 13: MPJPE and MRPE on the Pizza group from the modified CMU Panoptic
dataset with HD camera 2 and 19, 4, 6, and 13.

Methods Cam2&19 Cam4 Cam6 Cam13 MPJPE ↓ MRPE ↓
Moon et al. 125.09∗ 140.26∗ 145.87∗ 132.29∗ 133.72* 809.61
Lin et al. 125.09∗ 140.26∗ 145.87∗ 132.29∗ 133.72* 382.50
Ours 80.26 103.43 114.81 98.59 95.47 233.05

Table 14: MPJPE results on the 3DhUman dataset: D1 represents the images captured by
the first fisheye camera in the training set, while the testing set consists of images taken
by the second fisheye camera. D2 is the opposite of D1.

Methods D1 D2
Moon et al. 68.32∗ 71.44∗

Lin et al. 68.32∗ 71.44∗

Ours 61.93 67.72

results of our method on the 3DhUman dataset show a similar trend. Experimental results
demonstrate that both components of our method contribute to the overall improvement.

4.5.4 Sensitivity Analysis

We conduct experiments to study the sensitivity of our method with/without using
our re-projection module (Ours w/o rep) in two dimensions: image and instance level.
Experimental results on the modified CMU Panoptic dataset are shown in Figure 20.
Image Level. We first analyze the sensitivity of our method on each image for different
levels of image distortions shown in Figure 20 (a). Images in the testing set are divided
into three groups based on distortion parameter k1: [-0.96, -0.88), [-0.88, -0.79), [-
0.79, -0.70]. We then compare the relative change of the values of MPJPE and MRPE.
Specifically, the absolute relative changes of MPJPE and MRPE are 1) 0.60% and 5.60%
for our approach, 2) 1.48% and 7.32% for our approach without using the proposed
re-projection module, respectively.
Instance Level. We analyze the sensitivity of our method on each person with different
distortion strengths defined by θd/θ. θd/θ is categorized into [0.46, 0.8), [0.8, 0.9), [0.9,
1) for all humans appearing in the testing set. As the number of humans suffering from
strong distortions is small, θd/θ is not uniformly grouped. In this setting, the number of
humans in [0.9, 1) is still larger than the number of humans in the other two ranges. For
simplification, we use the value of θ/θd of the root joint locations to represent the value
of the full body. Therefore, the instance still suffers from image distortions even if the
value of θd/θ is equal to 1. The results are shown in Figure 20 (b).

It is shown in Figure 20 that the larger the distortion, the larger the value of the two
metrics in both dimensions. That is expected as large image distortions cause significant
changes of persons on the image plane. Experimental results demonstrate that our re-
projection module reduces the negative impact of image distortions on multi-person 3D
pose estimation, especially for absolute root joint estimation.
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4.5.5 Discussion

Performance for other fisheye camera settings. In this chapter, we synthesize images
captured by HD cameras 2 and 19 from the CMU panoptic dataset. To validate the
effectiveness of our method on images with different camera settings, images taken by
the HD cameras 4, 6, and 13 are synthesized with different levels of distortion parameters.
Particularly, the focal lengths and principal points are different. For simplification, we
only select images from the Pizza group as the testing set to evaluate the methods, while
the training set is the same as the setting in Section 4.5.1. The results are listed in Table
13. It is shown that: 1) changing the viewpoints and fisheye camera settings degrade
the performance of all methods; 2) our method outperforms other methods for the new
camera parameters.
Camera settings of the 3DhUman dataset. The 3DhUman dataset includes two sets of
camera parameters. To avoid the potential of over-fitting on our 3DhUman dataset, we
additionally define training and testing sets by whether the image is taken by the same
fisheye camera. Table 14 shows the results with the MPJPE metric. Our method provides
superior performance in both settings and exhibits the potential to mitigate the distortion
problem on real-world scenes.

4.6 C O N C L U S I O N S

In this chapter, we first presented a novel top-down approach for multi-person 3D pose
estimation from a single image captured by a fisheye camera. In contrast to existing
top-down approaches, our method maintains the global information to estimate absolute
root depths and camera parameters. We proposed a re-projection module to enforce
projected 3D predictions to be consistent with 2D ground truths under image distortions
by minimizing the re-projection error. In this way, the impact of image distortion
has been alleviated, and absolute depths of root joints have been further regularized.
Compared with existing work, our method showed the state-of-the-art performance on
both synthesized and real-world datasets.

4.7 A P P E N D I X

In this section, we provide additional experimental results and training details. Specifi-
cally, Section 4.7.1 gives training details on the modified CMU Panoptic and our newly
collected 3DhUman datasets. In Section 4.7.2, we conduct experiments to analyze the
effect of proposed re-projection module on sensitivity of different levels of image distor-
tions. Additional visual results of applying our approach on modified CMU Panoptic
and 3DhUman datasets are presented in Section 4.7.3.

4.7.1 Training Details

Please refer to Section 4.5.1 for the details of CMU Panoptic [71] and 3DhUman datasets.
Here, we provide additional training details on these two datasets.
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Modified CMU Panoptic. The training set in our experiments includes: 160224 mafia1,
160224 mafia2, 160224 ultimatum1, 160224 ultimatum2 and 160226 mafia2. The test
set contains: 160226 haggling1, 160422 haggling1, 160226 mafia1, 160422 mafia2,
160422 ultimatum1 and 160906 pizza1.
3DhUman. Following CMU Panoptic dataset, our dataset consists of three common
activities: posing, talking and walking. To avoid the negative impact of grayscales
on [131] and [107], all compared methods are first trained on modified CMU Panoptic
dataset with grayscales and then finetuned on 3DhUman dataset.

For joint annotations, we manually labeled 2D poses in perspective images captured
by pinhole cameras and converted them to 3D poses based on the corresponding depths
obtained by the LiDAR cameras. We then projected 3D poses by fisheye camera parame-
ters to obtain the distorted 2D poses. Particularly, images were captured simultaneously
by pinhole, fisheye and LiDAR cameras.

4.7.2 Analysis of Image Distortion

Due to the existence of image distortions, persons at different locations on images may
cause various distortion strengths. Therefore, even when the persons express different
2D poses, they may be originated from the same 3D pose. Here, we verify the robustness
of our approach on images with various image distortions. Specifically, Figure 21 shows
3D predictions performed by our method from the same image with two levels of image
distortions in modified CMU Panoptic dataset, where three paired examples are provided.
It can be seen that our method generates reasonable visual results and is not affected
by different levels of image distortions, even the person scale at the edge of the image
changes significantly.

4.7.3 Visual Results

In this section, we present additional visual results of applying our method on modified
CMU Panoptic and 3DhUman datasets shown in Figures 22 and 23.
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Figure 21: The visual results of applying our method on images with different levels
of image distortions, where Distortion 2 is larger than Distortion 1. Notice scales of
the same person with different levels of image distortions changed. Particularly, human
scales change the most at the border of the image.
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Figure 22: Visual results of applying our method on the modified CMU Panoptic dataset.
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Figure 23: Visual results of applying our method on the 3DhUman dataset.
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5

A B E N C H M A R K F O R 3 D H U M A N P O S E E S T I M AT I O N &
ACTION RECOGNITION

5.1 I N T RO D U C T I O N

3D human pose estimation (3D HPE) from a single image is an active research field in
computer vision with many applications such as augmented reality (AR) [229], virtual
reality (VR) [149], and human-robot interaction [195]. The goal is to infer 3D human
joint locations from a single image. With the emergence of deep learning and large scale
datasets, 2D human pose estimation made significant progress recently. However, 3D
human pose estimation from a single image is (still) an ill-posed problem due to the
inherent depth ambiguity and changing imaging conditions introducing variations in
(human) appearance and self-occlusions. It is labor-intensive and time-consuming to
annotate 3D labels to create 3D pose datasets. 3D pose datasets are usually collected in
constrained environments limited by a motion capture device. Considering the difference
between constrained and in-the-wild environments, it is still a challenge for existing
methods to generalize well to in-the-wild images and unseen poses.

Human action recognition (HAR) is also a very active research field in computer
vision with many applications such as medical diagnosis and security. The aim is to
recognize actions performed by persons in videos. In general, HAR methods exploit
(single) images, videos or skeletons as their input. In this chapter, we focus on skeleton-
based methods. As it is hard and time-consuming to annotate human poses, HPE is
beneficial for HAR. However, existing research mainly focuses on 3D HPE and HAR
from perspective cameras. Due to a wider field-of-view of fisheye cameras, they are
widely used in applications such as surveillance, photography, and sports. However, as
shown in Tables 15 and 16, there are only a few existing methods that use fisheye cameras.
Moreover, no datasets exist for fisheye-based 3D HPE and HAR. To this end, we propose
a new dataset for multi-person 3D pose estimation (F-M3DHPE), and skeleton-based
HAR (F-HAR) captured by a fisheye camera. There are several surveys on 3D HPE
and HAR [20, 37, 83, 206]. However, they all focus on perspective cameras and ignore
egocentric 3D HPE. To provide a complete picture of this important research area, our
aim is to provide a comprehensive survey on the recent advances of 3D HPE and HAR
for both perspective and fisheye cameras.

The remainder of this chapter is organized as follows. Camera models are given in
Section 5.2. Section 5.3 and Section 5.4 provide a survey on deep learning (DL)-based
single-/multi-person 3D pose estimation and human action recognition. In Section 5.5, a
comparative study is conducted with existing methods on public datasets (perspective
cameras) and on our newly collected dataset (fisheye cameras). Section 5.6 discusses
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Figure 24: The challenge of fisheye images for 3D HPE. Although cropped images
around the same human exhibit different appearances and 2D poses, they correspond to
the same 3D poses.

Table 15: Summary of methods for 3D HPE considering cameras, viewpoints and the
number of humans in the images.

Existence Camera Viewpoint The number of person
Method Dataset Pinhole Fisheye First-person (egocentric) view Third-person view Single person Multi persons

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✗ ✗ ✓ ✓ ✓

Table 16: Summary of skeleton-based methods for HAR considering cameras and view-
points.

Existence Camera Viewpoint
Method Dataset Pinhole Fisheye First-person (egocentric) view Third-person view

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✗ ✗ ✓ ✓

future perspectives on 3D human pose estimation and skeleton-based human action
recognition.

5.2 C A M E R A M O D E L S

In this section, we outline the details of perspective and fisheye camera models.

5.2.1 Definition

Figure. 25 shows the projection of a 3D human pose onto a 2D pose. The human pose is
represented by a set of discrete joints J i in the camera coordinate system OXYZ. The
middle part is a perspective or fisheye camera. Finally, the 2D projection of a joint is
denoted as jo for a perspective camera, otherwise it is represented by j where the angle
of refraction is reduced from θd to θ.
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Let P3D = [J1, J2, ..., Jn] denotes a 3D human pose in the camera coordinate system,
where n is the number of human joints. The human joints J i = [Xi, Yi, Zi, 1]T are
represented by a 4 by n matrix. po2D and p2D, denoted by a 3 by n matrix with jo =
[xo, yo, 1]T and j = [x, y, 1]T , are the 2D projections of human poses using a perspective
camera and fisheye camera model, respectively.

5.2.2 Perspective Camera Model

jo in Figure. 25 is the 2D projection using a perspective camera model. In this setting,
the angle of incidence and refraction is the same, i.e., θ. According to the triangular
similarity, the formulation is obtained by:

s · po2D = K[R|T]P3D, (5.1)

where R and T are extrinsic camera parameters representing rotation and translation
parameters, respectively, K denotes the intrinsic camera parameters, and s is a scale
factor and equals the depth in the camera coordinate system. As 3D joint locations P3D
are usually defined in the camera coordinate system, R and T are the identity matrices in
Eq. (5.1).

5.2.3 Fisheye Camera Model

In contrast to perspective cameras, fisheye cameras contain wide-angle lenses capturing
a wider field-of-view (FOV) i.e. capturing more of a scene, but cause image distortions.
As shown in Figure. 25, 2D projections are displayed for a fisheye camera. Particularly,
the farther the object is from the center of the image, the stronger the distortion will be.

For the fisheye camera model, the relationship between the angle of incidence and
refraction, i.e., θ and θd need to be considered to calculate the 2D predictions. Therefore,
the distortion matrix D, to compute 2D projections using Eq. (5.1), is given by:

s · p2D = K D[R|T]P3D. (5.2)

D is defined by:

D =


θd/l 0 0

0 θd/l 0
0 0 1

 , (5.3)

where l =
√

X2+Y2

Z .

Based on [182] and [73], the angle of refraction is calculated by:

θd = θ(1 + k1θ
2 + k2θ

4 + k3θ
6 + ...), (5.4)

where θ = arctan(l).
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Figure 25: Projection from 3D joint locations in camera coordinates OXYZ to 2D
keypoints in image plane o1uv [222]. This figure consists of 1) a human pose represented
by a series of discrete joints Ji; 2) a camera; 3) an image plane. θ denotes the angle of
incidence while θd represents the angle of refraction when there is a fisheye camera. j
and jo indicate 2D projections.

5.2.4 Discussion

The perspective camera model as defined by Eq. (5.1) depends on extrinsic and intrinsic
camera parameters. For simplicity, we only consider the common case that the 3D joint
locations are in the camera coordinate system. Hence, the projection only relies on the
intrinsic camera parameters, i.e., focal length and principal coordinates. The distortions
parameters (fisheye lens) are defined in Eq. (5.3). For 3D human pose estimation from
perspective cameras, existing methods [51] usually focus on cropped images to estimate
the focal length and principal coordinates. However, 2D joint locations of the entire 2D
image are needed when i) applying the fisheye projection and ii) estimating the distortion
parameters when the camera parameters are not provided.

5.3 S U RV E Y O N 3 D H U M A N P O S E E S T I M AT I O N

In this chapter, we focus on 3D human pose estimation from a single image. This task
is ill-posed due to challenging imaging conditions such as inherent depth ambiguities,
appearance changes and occlusions. Most of the existing methods perform 3D pose
estimation from perspective cameras. Fisheye cameras (wide-angle lenses) capture
a wider field-of-view (FOV) than perspective cameras. Therefore, fisheye cameras
are widely used in various applications. In this survey, we focus on the following
categories: single-person 3D pose estimation, multi-person 3D pose estimation, and 3D
pose estimation from fisheye cameras.
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Figure 26: Overview of single-person 3D human pose estimation. Part of the figure is
from [51] and [82].

5.3.1 Single-Person 3D Pose Estimation

Recently, single-person 3D pose estimation shows significant improvement with the
use of deep learning and large-scale 3D human pose datasets. 3D single-person pose
estimation can be divided into one-stage and two-stage approaches.

1) One-stage approaches
One stage approaches directly perform single-person 3D pose estimation from a single

input image to 3D joint locations without intermediate supervision (e.g. 2D keypoints).
Li and Chan [98] design a multi-task learning framework for 3D single-person pose
estimation, where pose regression and body part detectors are simultaneously trained.
Li et al. [101] propose a method taking 3D poses and images as input to compute the
score if the two inputs match well. This method can be used as a refinement module
for other methods. To alleviate the dependency on 3D poses and input images, Tekin et
al. [176] use an auto-encoder to learn structured pose representations in latent space. The
latent pose representations are beneficial for 3D human pose estimation. Sun et al. [173]
present a regression-based method for 3D pose estimation, where the loss is based on the
bone length and vector. Pavlakos et al. [143] propose to use volumetric representation
for 3D human poses. They estimate the likelihoods of each voxel in discretized space
around the subject. To reduce the computational cost, they adopt a coarse-to-fine scheme.
Pavlakos et al. [142] suggest ordinal depth as extra information to infer 3D human joint
locations. The method alleviates the restrictions that 3D pose annotations are prerequisite,
and utilizes 2D pose datasets with ordinal depth annotations during the training process
to improve the performance.

2) Two-stage approaches
Two-stage approaches first use off-the-self detectors to estimate 2D keypoints, and

then infer 3D human joint locations from 2D predictions with/without features extracted
from the input images.
Inference from 2D Poses to 3D Poses. Due to the robustness of 2D keypoint detectors,
many methods focus on 3D pose estimation directly from the estimated 2D poses. Chen
and Ramanan [16] propose a matching scheme to obtain 3D poses from a 3D pose
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library by estimating 2D poses and depths from a single image. Martinez et al. [126]
present a method by considering 2D keypoints followed by a series of fully connected
layers to obtain 3D human joint locations in camera coordinates. Moreno-Noguer [133]
formulates 3D human pose estimation from a single image as a regression problem of a
2D-to-3D distance matrix. Then, 3D poses are obtained by multidimensional scaling [7].
Tekin et al. [177] aggregate features extracted from original images and intermediate
2D poses with heatmap representations to infer 3D human joint locations. Sun et
al. [174] introduce an integral operation (also referred to as soft-argmax) to obtain 3D
human joint locations. Their framework is differentiable with the inference of image-2D
poses (heatmap representations)-3D poses, reducing the quantization error caused by
extracting keypoints from the heatmaps. Zhou et al. [232] utilize the representation
of three joint heatmaps to learn the local relations between human body parts based
on 2D keypoints and relative depth information. Jahangiri and Yuille [65], Sharma et
al. [158], and Li et al. [91] generate multiple 3D pose candidates to solve the inherent
depth ambiguity problem. Li et al. [93] present a regression-based method by exploring
maximum likelihood estimation to deal with the uncertainty of the distribution for 2D
and 3D human pose estimation. Chen et al. [24] propose an efficient method to search an
optimized architecture for 3D human pose estimation.
Graph Convolutional Network (GCN)-Based Methods. Recently, researchers focus
on GCN-based methods for 3D single-person pose estimation focusing on skeletons
to obtain pose representations. Ci et al. [30] introduce a locally connected network
combining GCN and a fully connect network for 3D human pose estimation. The
aim is to alleviate the limitations of GCN on learning pose representations caused
by a weight sharing scheme. Similarly, Zhao et al. [227] propose a semantic graph
convolutional network (SemGCN) to deal with the limitations of GCN for the regression
problem. SemGCN attempts to learn semantic relationships of nodes by combining 2D
keypoints with features extracted from input images at 2D keypoints. Liu et al. [113]
provide a comprehensive study on the impact of sharing weight schemes with feature
transformations. They show that pre-aggregation in GCN, i.e., applying transformations
to the 2D input and then aggregating them, is beneficial for 3D human pose estimation.
Xu et al. [204] propose a graph stacked hourglass network, aggregating multi-scale and
multi-level feature information and 2D keypoints.
Geometric Constraint-Based Methods. Since public datasets for 3D human pose
estimation are usually captured in an constrained environment, generalization is limited
to deal with in-the-wild images. To this end, different methods propose geometric
constraints to explicitly use information from 2D in-the-wild datasets. Zhou et al. [233]
propose a geometric constraint based on the ratio of upper and lower limbs. In this
way, the designed geometric loss is used to constrain 3D predictions when trained on
a 2D in-the-wild pose dataset even without 3D annotations. Yang et al. [209] present
an adversarial learning method for 3D human pose estimation. They adopt the network,
introduced by Zhou et al. [233], as the generator and then employ a discriminator to
enforce the 3D predictions to be plausible. A perspective camera model is an alternative
way to provide relationships between 2D and 3D poses [17, 51, 185]. Habibie et al.
[51] propose a method by explicitly using 2D and 3D features in latent space. They
add constraints to ensure consistency between projected 3D predictions following the
estimated camera parameters and 2D poses. Wandt et al. [185] propose a weakly
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Figure 27: Overview of multi-person 3D human pose estimation. Part of the figure is
from [230].

supervised method based on an adversarial re-projection network. Their method can be
trained with unpaired 2D-3D poses and generalizes well to in-the-wild images. Drover
et al. [38] and Chen et al. [17] attempt to regress 3D human joint locations from 2D
pose landmarks. They use a discriminator to assess the projected 3D projections by
minimizing the re-projection error. Zeng et al. [214] split the skeletons into local poses
and recombine them to learn the pose representations with the aim to improve the
generalization to unseen poses.

3) Comparison

The advantage of one-stage approaches is their efficiency. They directly estimate 3D
poses without extra intermediate supervision. However, one-stage approaches heavily
rely on fully annotated 3D pose datasets. In contrast, two-stage approaches can make
use of in-the-wild images even without 3D annotations increasing their generalization
capabilities. In general, two-stage approaches outperform one-stage approaches.

5.3.2 Multi-Person 3D Pose Estimation

A more general scenario is to estimate multi-person 3D poses. With development of
single-person 3D pose estimation and related deep learning techniques, researchers
recently pay more attention to multi-person 3D pose estimation. Generally, there are two
categories: bottom-up approaches and top-down approaches. Furthermore, methods can
be divided into optimization-based or learning-based methods depending on how the
absolute depths are obtained. Optimization-based methods attempt to obtain absolute
depths by minimizing the distance between projected 3D poses and 2D ground truths,
while learning-based methods exploit the extracted features and geometric constraints to
perform absolute depth estimation.

1) Bottom-up approaches
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Bottom-up approaches firstly estimate all human joint locations followed by grouping
all joints. Zanfir et al. [213] propose a bottom-up network (MubyNet) to perform 3D
multi-person pose estimation as well as 3D shape estimation. MubyNet groups the joints
and limbs based on 2D/3D information by limb scoring, transforming the grouping
problem into an integer program. Metha et al. [129] propose occlusion-robust pose-maps
to infer 3D poses by estimating 2D poses and Part Affinity Fields [12], even for strong
occlusions. Metha et al. [128] propose a real-time approach (XNect) first estimating 2D
and 3D pose features for all visible joints. Then, a fully connected neural work is used to
infer 3D poses from 2D and 3D pose features. Finally, they use a space-time skeletal
model to maintain temporal consistency. Zhen et al. [230] design a network aggregating
various information cues to perform 3D multi-person pose estimation. They first regress
2.5D representations, i.e., root depth map and part relative-depth maps. Then, 3D poses
are inferred based on 2.5D representations and 2D keypoints.

2) Top-down approaches

Top-down approaches start by detecting each person and then performing singe-person
3D pose estimation to localize human joint positions. Rogez et al. propose LCR-
Net [154] and LCR-Net++ [155] to estimate 2D/3D multi-person pose estimation. LCR-
Net and LCR-Net++ consist of localization, classification and regression branches. The
localization branch detects candidate regions for each person. The classification branch
determines the pose classes and divides the detected poses into several 2D-3D anchor-
poses. Finally, the 2D/3D poses are refined by the regression branch. Dabral et al. [32]
present a Mask-RCNN based network for 3D multi-person pose estimation. They first
detect 2D keypoints from each Region of Interest and then use a hourglass architecture
to perform single-person 3D pose estimation from 2D keypoints. Finally, the absolute
3D poses are obtained by minimizing the distance of the projected 3D predictions and
2D keypoints. Recent methods adopt a learning-based manner to compute the absolute
depths. Moon et al. [131] introduce a novel depth measure combined with a correction
factor to obtain the depth. [50] adopts a data augmentation scheme to deal with the
occlusion problem for depth estimation. Lin and Lee [107] use a similar architecture
for 3D single-person pose estimation as [131]. To obtain the absolute depths, they
consider the depth regression problem as a classification problem to perform depth
estimation and localization of root joints. Wang et al. [186] utilize hierarchical multi-
person ordinal relations (HMOR) to perform 3D multi-person pose estimation. HMOR
encodes three levels of information: joint, body part and human instances. Finally, a
coarse-to-fine strategy is adopted to infer the absolute depths. Cheng et al. [27] first
use graph convolutional networks to infer multi-person 3D joint locations with absolute
depths. Then, a temporal convolutional network is used to refine the 3D predictions by
using temporal constraints. Cucchiara and Fabbri [31] discuss different ways to deal
with the occlusion problem and perspective constraints caused by top-down viewpoint in
video surveillance.

3) Comparison

In terms of computational costs, bottom-up approaches are more efficient than top-
down approaches. The former makes a trade-off between computational cost and accu-
racy. The computational cost of top-down approaches depends on the detection module
and the number of humans. Regarding the estimation accuracy, top-down approaches per-
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form better than bottom-up approaches. The reason is that top-down approaches split the
task into two subtasks, i.e., human detection and 3D single-person pose estimation. The
3D pose estimator focuses on salient regions to predict 3D human poses. Recently, Cheng
et al. [28] combine top-down and bottom-up networks to perform 3D multi-person pose
estimation. They introduce an interaction-aware discriminator to integrate two kinds of
3D predictions from top-down and bottom-up network to obtain refined 3D predictions.

5.3.3 3D Human Pose Estimation from Fisheye Cameras

Fisheye cameras are widely used in various applications such as virtual reality, video
surveillance and automatic driving. Surprisingly, there are only a few methods focusing
on 3D human pose estimation from fisheye cameras. Based on the viewpoint of cameras,
the methods are categorized into first-person view (egocentric) 3D HPE and third-person
view 3D HPE.

1) Egocentric 3D HPE

Rogez et al. [153] and Yonemoto et al. [210] propose a method for hand, arm and
torso pose inference from RGB-D data. Jiang and Grauman [67] infer full body 3D joint
locations from cameras mounted on the chest with the aim to estimate unseen 3D poses.
Rhodin et al. [149] first propose a method for full body 3D human pose reconstruction
from a pair of fisheye cameras mounted on a helmet. Shiratori et al. [161] present an
approach based on structure-from-motion (SFM) for 3D pose estimation from wearable
devices, where 16 limb-mounted cameras are used.

To capture the 3D poses of full human body, Xu et al. [205] propose a disentangled
method for egocentric 3D pose estimation from a camera mounted on a baseball cap. To
improve the estimation performance of the lower body, occupying less area than the upper
body, their framework consists of two branches to perform 2D pose estimation from an
original image and an image of the central part. Finally, 3D poses are obtained by known
camera parameters and estimated 2D keypoints. Tome et al. [180] design a novel two-
stage method for egocentric 3D pose estimation from a camera mounted on user’s head.
They first detect 2D keypoints followed by an auto-encoder with two branches to obtain
3D human joint locations and 2D keypoints. To alleviate the requirement of ground-truth
camera parameters, Zhang et al. [222] propose an automatic calibration method for
egocentric 3D pose estimation. They introduce a re-projection module to predict the
camera parameters. The influence of image distortions is alleviated by minimizing the
error between projected 3D predictions and 2D keypoints. Wang et al. [187] perform a
spatio-temporal optimization to compute smooth 3D human poses.

2) Third-person view 3D HPE

No methods exist for 3D HPE from third-person view for fisheye cameras. In ego-
centric settings, the distance between the camera and human head joint is fixed. In
other words, the position of the head joint in the image is almost the same regard-
less of the human pose. Therefore, existing methods may fall short when applied to
single/multi-person 3D pose estimation from a fisheye camera using a third viewpoint.
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Figure 28: Overview of human action recognition based on skeletons. Part of the figure
is from [207].

5.4 S U RV E Y O N H U M A N AC T I O N R E C O G N I T I O N

Human action recognition generally consists of two elements: action representation and
classification. Action representation is provided by a feature extractor. The classifier is
used to predict an action label from the extracted features. Regarding feature extraction,
methods for human action recognition are divided into traditional and DL-based methods.
Due to the progress of deep learning techniques, DL-based methods for human action
recognition received more attention recently. In this chapter, we mainly focus on DL-
based methods. DL-based methods can be grouped into video-based and skeleton-based
methods. Video-based methods rely on the objects in the video. Skeleton-based methods
focus on the change of 2D/3D skeletons detected in the videos. In this section, we focus
on skeleton-based methods.

The input of skeleton-based methods is a sequence of 2D/3D human joint locations.
Generally, skeleton-based methods can be divided into three categories: CNN-based,
RNN-based, and GCN-based.
CNN-based Methods. 2D ConvNets achieve superior performance to extract features,
while skeleton-based methods take human joint locations as their input [10, 21, 39, 56,
59, 76, 87, 89, 102, 115, 116, 123, 148, 202, 237]. To bridge this gap, skeleton sequences
are converted into image formats by projecting 3D joint locations on three orthogonal
planes [39]. Then, 2D ConvNets are applied to extract features from the new repre-
sentation followed by a classifier for action recognition. Liu et al. [115] propose a
view-independent approach for action recognition mitigating the impact of skeleton
variations caused by different viewpoints. Ren et al. [148] present a multi-stream method
based on 2D ConvNets for human action recognition. They focus on action-relation joints
to reduce the impact of noise in converted images. Li et al. [87] transform 3D skeletons
into translation-scale invariant images for action recognition to deal with variations of
input skeletons. Ke et al. [76] transform skeleton sequences into cylindrical coordinates
followed by 2D ConvNets to extract temporal dynamics. Chen et al. [21] propose a
color-coding strategy to covert skeleton sequences into pseudo-color images, aiming to
learn discriminate features for human action recognition. Li et al. [102] design several
learning blocks of elastic units (Else-Net) to explore the relation between pose sequences.
RNN-based Methods. To exploit temporal information, RNNs are used to process
sequential data. There are different methods based on RNNs for human action recognition
[3,40,43,100,111,112,137,157,217,221,228]. Du et al. [40] and Shahroudy et al. [157]
group the skeleton into five body parts to model temporal dynamics. Liu et al. [111]
propose a LSTM-based method to extract features at both spatial and temporal domains,
named ST-LSTM, by analyzing hidden sources of contextual information. Zhang et
al. [221] design geometric features based on the relationships of all joints to learn
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spatial information for action recognition. Zhao et al. [228] present a Bayesian-based
LSTM method to learn spatial information from joints, temporal information from poses
and variation of subjects. To alleviate the variation of sequence skeletons caused by
various viewpoints, Zhang et al. [217] introduce a view adaptive module to transform
automatically input skeletons into representations under a new viewpoint for action
recognition.

GCN-based Methods. Since human skeletons can be seen as a graph structure, GCN-
based methods received most attention for human action recognition. There are several
types for GCN-based methods: modifications of GCNs, combination of GCNs and
LSTMs, and multi-streams-based GCNs.

Firstly, there are methods to directly use GCNs to learn spatio-temporal representations
for human action recognition [1, 46, 120, 141, 145, 193, 198, 208, 216]. [207] is the
pioneer work to apply graph convolution networks to human action recognition. They
propose a network named ST-GCN to model spatio-temporal relations from skeleton
sequences. Li et al. [96] present an encoder-decoder GCN network to learn action-related
representations named AS-GCN, where actional and structural links are used by the GCN
to extract spatial features. AS-GCN achieves promising performance on both human
action recognition and pose prediction. Ghosh et al. [48] extend the ST-GCN by applying
stacked hourglass networks for action segmentation to increase the generalization ability.

Secondly, Graph RNN frameworks are used for human action recognition [19, 25, 26,
60, 88, 121, 146, 162, 197, 215, 219]. Si et al. [162] propose an attention mechanism
using a LSTM architecture, named AGC-LSTM, to effectively extract spatio-temporal
features for HAR. Chen et al. [19] propose a pooling strategy and a point-wise attention
mechanism to learn action-related features from skeleton sequences. Instead of capturing
skeleton differences between sequential skeletons, Ding et al. [34] focus on inherent
differences in terms of spatio-temporal and context to determine the human actions.

Thirdly, multi-stream GCNs are proposed to fuse spatial and temporal features from
different streams for human action recognition. For two-stream GCN-based methods,
joints and bones are fed into GCNs to learn spatio-temporal representations [44, 45,
159, 160, 175, 181]. Multi-stream GCN, including more than two branches, use GCNs
dealing with different cues (e.g., joints, bones, motion and relative positions) to extract
temporal information. Then, the extracted features are aggregated to perform human
action recognition [23, 35, 92, 97, 103, 114, 169]. Chen et al. [23] exploits joints, bones,
and corresponding motion to learn typologies for skeleton-based HAR.

In addition, there are different unsupervised methods to perform human human action
recognition from skeleton sequences. Their common characteristic is to adopt an encoder-
decoder structure to learn temporal information. Zheng et al. [231] propose an adversarial
method based on an encoder-decoder structure to model temporal dynamics. Su et
al. [171] present a fully-unsupervised method for human action recognition without the
requirement of action labels. The aim is to weaken the role of decoders by enhancing the
encoder to learn discriminative information.
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5.5 DATA S E T S A N D B E N C H M A R K S

Many datasets are available for 3D human pose estimation and human action recognition.
In this section, we describe the publicly available datasets, our new dataset F-M3DHPE,
the evaluation metrics, and the performance of existing methods on the public and
proposed datasets.

5.5.1 Dataset and Benchmarks for 3D Human Pose Estimation

In this section, we provide a comparison of existing methods on public datasets. Particu-
larly, we focus on single-/multi-person 3D pose estimation from a single image.

1) Datasets for 3D human pose estimation

There are different 3D pose datasets for single-person 3D pose estimation for perspec-
tive cameras including HumanEva [168], Human3.6M [64], and MPI-INF-3DHP [127].
For 3D multi-person pose estimation, CMU Panoptic [71], the MuCo-3DHP, and
MuPoTS-3D [129] datasets are commonly used for quantitative evaluation. In addition,
the Mo2Cap2 [205] and xR-EgoPose [180] datasets are recently released for egocentric
3D human pose estimation captured by a fisheye camera. The details of the datasets are
listed in Table 17.
Human3.6M. Human3.6M is a large-scale 3D human pose dataset for single-person 3D
pose estimation. The dataset contains 3.6 million human poses captured by a marker-
based motion capture from 4 calibrated cameras at 50Hz in an indoor environment.
There are 11 participants, 6 males and 5 females, performing 17 daily activities such as
walking, posing, taking photo, sitting down, etc. The annotation includes 3D poses, body
part labels, 3D body surface, depth information and bounding boxes. Generally, three
protocols are used to train and test methods. Protocol#1 uses human subjects S1, S5, S6,
S7 and S8 for training and human subjects S9 and S11 for testing; Protocol#2 adopts
the same training and testing split as Protocol#1 but employs an alignment between
predictions and ground truths for evaluation; Protocol#3 uses human subjects S1, S5, S6,
S7, S8 and S9 for training and human subject S11 for testing with the alignment between
predictions and ground truths.
MPI-INF-3DHP. MPI-INF-3DHP is collected by a marker-less motion capture for
single-person pose estimation. The training set consists of more than 1.4M frames
captured by 13 cameras. 3D pose annotations and universal skeleton are provided in
this dataset. The test set includes both indoor and outdoor images with participants
performing various activities such as standing, siting, exercise, sports, etc. Due to the
existence of in-the-wild images and complexity, the test set is usually used to verify the
generalization of existing methods (normally without fine-tuning on the training set).
CMU Panoptic. CMU Panoptic is used for multi-person 3D pose estimation from single-
/multi-view image(s). It is captured by a multi-view system, where 480 synchronized
cameras at 25Hz are installed at the surface of a dome with a radius and height of
5.59m and 4.15m, respectively. Various games, that people are playing, are included in
this dataset such as haggling, ultimatum, mafia, playing musical instruments, etc. The
number of participants ranges from 1 to 8. 3D poses, 3D trajectory stream and camera
information are provided.
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Figure 29: Example images of our F-M3DHPE dataset for multi-person 3D pose estima-
tion. The actions from left to right are Conversation, Taking photo, Phoning, Walking
and Stretching. The first row and second row represent two viewpoints for the same pose.

MuCo-3DHP and MuPoTS-3D. MuCo-3DHP is a synthesised dataset build on the
MPI-INF-3DHP dataset. The number of subjects in the image ranges from 1 to 4. Since
3D poses are known in the MPI-INF-3DHP dataset, MuCo-3DHP provides overlapping
scenarios with correct depth ordering.

MuPoTS-3D is used for evaluation of multi-person 3D pose estimation captured by
a multi-view marker-less motion capture system. This dataset consists of more than
8000 frames and 8 participants wearing different clothes performing daily activities. The
dataset provides 3D pose annotations of up to 3 people collected for 20 scenes, where 5
indoor sequences are taken at 30fps and 15 outdoor sequences are captured at 60fps.
Mo2Cap2. Mo2Cap2 is an egocentric 3D human pose dataset with both indoor and
outdoor environments. In this dataset, a fisheye camera is mounted on a baseball cap. The
synthetic training set includes 530k images that are rendered from around 700 different
characters performing 3K actions. Different from the synthetic training set, the test set is
captured in both real indoor and outdoor environments. Participants dress general cloths
and perform 8 common actions such as sitting, crawling and boxing. The number of
images in the test set is 5591. 3D annotations are obtained by a multi-view marker-less
mocap system. 2D/3D poses with 15 joints and camera information are included in this
dataset.
xR-EgoPose. xR-EgoPose is a synthetic dataset for egocentric 3D human pose estimation.
It consists of 383K frames with a resolution of 1024 × 1024 pixels captured by a fisheye
camera mounted on a human head. There are 46 characters (23 males and 23 female)
performing 9 actions including gaming, lower/upper stretching and so on. In this dataset,
characters dress different clothes with various textures and colors. The rendered images
have superior quality. The character models are taken from real mocap data. 2D/3D
poses, human body parts, normal maps and camera pose are provided.
F-M3DHPE. The proposed F-M3DHPE dataset, for multi-person 3D pose estimation, is
captured in an indoor environment with two Insta360 cameras, and one LiDAR camera.
11 participants with different clothes perform 10 common activities such as posing,
discussion, walking, etc. Our dataset includes more than 2000 frames with a resolution of
1920× 1920 pixels. Example images are shown in Figure. 29. To obtain 3D ground-truth
poses, we manually label 2D poses for the images captured by a LiDAR camera. Then,
the 3D poses are obtained by labeling 2D poses and their corresponding depth values.

63



A B E N C H M A R K F O R 3 D H U M A N P O S E E S T I M AT I O N & ACTION RECOGNITION

Table
18:T

he
quantitative

results
on

M
uPoT

S-3D
datasetw

ith
the

m
etric

of3D
PC

K
forroot-relative

3D
poses.

M
ethods

S1
S2

S3
S4

S5
S6

S7
S8

S9
S10

S11
S12

S13
S14

S15
S16

S17
S18

S19
S20

A
vg
↓

B
ottom

-up
approaches

M
ehta

etal.[129]
81.0

59.9
64.4

62.8
68.0

30.3
65.0

59.2
64.1

83.9
67.2

68.3
60.6

56.5
69.9

79.4
79.6

66.1
66.3

63.5
65.0

M
ehta

etal.[128]
88.4

65.1
68.2

72.5
76.2

46.2
65.8

64.1
75.1

82.4
74.1

72.4
64.4

58.8
73.7

80.4
84.3

67.2
74.3

67.8
70.4

Z
hen

etal.[230]
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
80.5

Top-dow
n

approaches
R

ogez
etal.[154]

67.7
49.8

53.4
59.1

67.5
22.8

43.7
49.9

31.1
78.1

50.2
51.0

51.6
49.3

56.2
66.5

65.2
62.9

66.1
59.1

53.8
R

ogez
etal.[155]

87.3
61.9

67.9
74.6

78.8
48.9

58.3
59.7

78.1
89.5

69.2
73.8

66.2
56.0

74.1
82.1

78.1
72.6

73.1
61.0

70.6
D

abraletal.[32]
85.1

67.9
73.5

76.2
74.9

52.5
65.7

63.6
56.3

77.8
76.4

70.1
65.3

51.7
69.5

87.0
82.1

80.3
78.5

70.7
71.3

M
oon

etal.[131]
94.4

77.5
79.0

81.9
85.3

72.8
81.9

75.7
90.2

90.4
79.2

79.9
75.1

72.7
81.1

89.9
89.6

81.8
81.7

76.2
81.8

W
ang

etal.[186]
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
82.0

C
hen

etal.[27]
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
87.5

C
heng

etal.[28]
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
89.6

B
ottom

-up
approaches

M
ehta

etal.[129]
81.0

64.3
64.6

63.7
73.8

30.3
65.1

60.7
64.1

83.9
71.5

69.6
69.0

69.6
71.1

82.9
79.6

72.2
76.2

85.9
69.8

M
ehta

etal.[128]
88.4

70.4
68.3

73.6
82.4

46.4
66.1

83.4
75.1

82.4
76.5

73.0
72.4

73.8
74.0

83.6
84.3

73.9
85.7

90.6
75.8

Z
hen

etal.[230]
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
73.5

Top-dow
n

approaches
R

ogez
etal.[154]

69.1
67.3

54.6
61.7

74.5
25.2

48.4
63.3

69.0
78.1

53.8
52.2

60.5
60.9

59.1
70.5

76.0
70.0

77.1
81.4

62.4
R

ogez
etal.[155]

88.0
73.3

67.9
74.6

81.8
50.1

60.6
60.8

78.2
89.5

70.8
74.4

72.8
64.5

74.2
84.9

85.2
78.4

75.8
74.4

74.0
D

abraletal.[32]
85.8

73.6
61.1

55.7
77.9

53.3
75.1

65.5
54.2

81.3
82.2

71.0
70.1

67.7
69.9

90.5
85.7

86.3
85.0

91.4
74.2

M
oon

etal.[131]
94.4

78.6
79.0

82.1
86.6

72.8
81.9

75.8
90.2

90.4
79.4

79.9
75.3

81.0
81.0

90.7
89.6

83.1
81.7

77.3
82.5

L
in

and
L

ee
etal.[107]

94.4
79.6

79.2
82.4

86.7
73.0

81.6
76.3

90.1
90.5

77.9
79.2

78.3
85.5

81.1
91.0

88.5
85.1

83.4
90.5

83.7
*

T
he

top
row

reports
values

forallannotated
poses

(A
ll),w

hile
the

values
in

bottom
row

are
calculated

by
m

atched
poses

(M
atched).

64



5.5 DATA S E T S A N D B E N C H M A R K S

Table 19: Quantitative results of existing methods on the MuPoTS-3D dataset for absolute
multi-person 3D poses.

Methods Input 3DPCKMatched ↑ 3DPCKAll ↑

Optimization-based methods
- - - -
Learning-based methods
Moon et al. [131] A single image 31.8 31.5
Zhen et al. [230] A single image 38.7 35.4
Wang et al. [186] A single image - 43.8
Lin and Lee [107] A single image 35.2 -
Chen et al. [19] Videos 45.7 -
Cheng et al. [28] Videos 48.0 -

Finally, 3D poses for Insta360 cameras are acquired by the transformation matrix of
Insta360 camera and LiDAR camera. We provide 3D pose annotations for up to 3
subjects in this dataset.

The advantage of our proposed F-M3DHPE dataset is that our source frames provide
different views from one insta360 camera, for the participants, from the panorama
cameras, i.e., Insta360 cameras, during collection. Each Insta360 camera contains two
fisheye lenses. We provide images taken from one of the fisheye cameras in our dataset.
We can project the spherical panorama at any camera angle within a 360-degree field
of view to obtain fisheye images that looks like it is taken by a single fisheye camera
as shown in Figure. 31. In other words, our dataset can be extended to the multi-view
set-ups. In this chapter, we only analyze images captured by one fishsye lens from the
Insta360 camera.

2) Evaluation Metrics

Mean Per Joint Position Error (MPJPE). MPJPE is commonly used for the evaluation
of 3D human pose estimation. MPJPE is calculated by the Euclidean distance between
predicted 3D poses and the ground truth after aligning the root joint, as defined by:

MPJPE =
1
N

N∑
i=1

∥∥∥Jrel
i − Jrel∗

i

∥∥∥
2 , (5.5)

where N denotes the number of test frames, i represents the index of the samples, J and
J∗ indicate the predicted and ground-truth joint locations, rel means the joint locations
are root-relative. In general, MPJPE is measured in millimeters.
Procrustes Analysis Mean Per Joint Position Error (PA MPJPE). PA MPJPE is the
MPJEP after further alignment, i.e., the Procrustes transformation [49].
Mean of the Root Position Error (MRPE). MRPE is the metric proposed by Moon et
al. [131] for absolute root joint estimation. Given predicted and ground-truth root joint
locations in the camera coordinate R and R∗, MRPE is as follows:

MRPE =
1
N

N∑
i=1

∥∥∥Ri −R∗i
∥∥∥

2. (5.6)
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3D Percentage of Correct Keypoints (3DPCK). 3DPCK is used in the MPI-INF-3DHP
and MuPoTS-3D datasets as the evaluation metric. Specifically, the estimated 3D joint is
considered as correct if the distance between predictions and ground truths is within a
threshold. Following [127], the threshold is equal to 150mm.
Area Under the Curve (AUC). AUC is an another metric for MPI-INF-3DHP dataset.
AUC is defined as the area under the 3DPCK curve with different thresholds.

3) Evaluation on Public dataset
We summarize the performance of existing methods for multi-person 3D human pose

estimation on the MuPoTS-3D dataset. Particularly, the comparison for root-relative
multi-person 3D pose estimation is shown in Table 18. Table 19 provides the comparison
of absolute depth estimation for multi-person 3D poses.

In general, top-down approaches achieve better performance than bottom-up ap-
proaches. The reason is that top-down approaches divide the multi-person 3D pose
estimation into single-person 3D person estimation for each detected person making
the task simpler. However, absolute depth estimation is more challenging since the
input image is cropped and hence ignores the relation between each person. Bottom-up
approaches are faster than top-down approaches, because the former directly predicts 2D
keypoints and absolute depths of all humans. However, the main weakness of bottom-up
approaches is that the accuracy tends to be lower than top-down approaches.

Moon et al. [131] use MRPE on Human3.6M dataset to demonstrate that learning-
based methods perform better to estimate the absolute depth than optimization-based
methods.

4) Evaluation on our F-M3DHPE dataset
In contrast to existing datasets, our dataset is captured from Insta360 cameras consist-

ing of two fisheye lenses to capture 3D human poses. Depending on the availability of
code, we evaluate four methods for 3D multi-person pose estimation from perspective
cameras ( [131], [107] and [230]) and one method for egocentric 3D pose estimation
( [222]) from a fisheye camera on our dataset. We choose images containing six specific
subjects as the training set. The remaining images are used as the test set.

Table 20 lists the experimental results of the existing methods on the F-M3DHPE
dataset. It is shown that all methods perform similarly for root-relative 3D human
pose estimation. However, the method that considers distortion parameters outperforms
other methods. Note that the distortion parameters are not provided in the evaluation.
Therefore, taking image distortions into account contributes positively to the performance.
On the other hand, bottom-up methods provide worse performance compared to top-down
methods. The reason is that 2D-to-3D lifting module follows the same mapping relation
to obtain all 3D poses from the detected 2D keypoints for bottom-up methods. However,
2D keypoints located in different regions may suffer from different levels of distortions.

5.5.2 Dataset and Benchmarks for Action Recognition

In this section, we describe public datasets for human action recognition and our new
dataset F-HAR captured by a fisheye camera. Then, we analyze the performance of
existing methods on these datasets.

1) Datasets for human action recognition
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There are two types of datasets for human action recognition, i.e., with/without
skeletons and depths data. Datasets without skeletons are used for video-based methods.
Datasets with skeletons and or depth maps are used by skeleton-based methods. Existing
datasets are captured by perspective cameras. In this chapter, we propose a newly dataset
for human action recognition captured by a fisheye camera.
UCF101. UCF101 is a large-scale dataset for action recognition including 101 action
classes. The dataset is divided into 5 types such as Human-Object Interaction and Sports.
UCF101 consists of 13320 clips downloaded from YouTube at 25FPS with the resolution
of 320 × 320 pixels. The dataset contains diverse viewpoints, subject appearances,
dynamic backgrounds, etc.
Sports-1M. Sports-1M comprises of 1 million videos collected from YouTube. It
includes 487 sport categories annotated by using the metadata of videos. For each class,
this dataset includes 1000-3000 clips and there are 50K videos with more than one label
including aquatic sports, ball sports, etc.
YouTube-8M. YouTube-8M is one of the largest datasets for action recognition. YouTube-
8M consists of 8 million videos with the duration of 500K hours downloaded from
YouTube. This dataset includes 4716 classes and each video contains 1.8 classes (on
average).
Kinetics 400/600/700 and Kinetics-Skeleton. Kinetics dataset consists of 400/600/700
human action categories and more than 400 videos per class downloaded from YouTube.
This dataset covers different human actions including human-object interactions and
human-human interactions. Kinetics-Skeleton is an extension of Kinetics 400 dataset.
Due to no skeleton information in Kinetics dataset, [207] adopt a 2D pose detector
OpenPose [11] to obtain 2D skeletons for skeleton-based methods for human action
recognition.
NTU RGB+D and NTU RGB+D 120. NTU RGB+D and NTU RGB+D 120 are large
scale datasets with depth information for action recognition. They consists of 56,880
and 114,480 clips captured in an indoor environment, respectively. NTU RGB+D 120
includes 120 action classes, while NTU RGB+D comprises of 60 action classes. There
are three types, i.e., daily actions, health-related actions and mutual actions in the datasets.
Both datasets include RGB videos with the resolution of 1920 × 1080 pixels, depth map
with the resolution of 512 × 512, 3D skeletons with 25 body joints.
F-HAR. The proposed F-HAR dataset is captured by an Insta360 camera, consisting
of two fisheye lenses, capturing 10 scenes with both indoor and outdoor environments
as shown in Figure. 30. There are 13 participants (7 males and 6 females), and each
participant performs actions in five scenes of an indoor or outdoor environment. Further-
more, 7 participants are present in all indoor scenes while 6 participants are in all outdoor
scenes. There are 14 action categories consisting of taking off coat/backpack, wearing
coat/backpack, walking, talking, moving, phoning, drinking water, using a computer,
taking photos, waving hands, writing, reading, clapping, and eating. Our dataset consists
of 1000 clips. Each clip includes one action class lasting between 3 to 10 seconds. The
videos are taken at 30fps with the resolution of 1920 × 1920 pixels. Labels, camera
information and skeletons are provided. Skeletons are generated by an off-the-shelf
model [95].

Different from previous datasets, F-HAR dataset provides a fisheye view to perform
human action recognition. Moreover, F-HAR provides different viewpoints as shown
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Figure 30: Example images of the proposed F-HAR dataset for human action recognition.
13 participants perform 10 actions in 5 indoor scenes and 5 outdoor scenes.

Table 23: Quantitative results of existing methods on our F-HAR dataset for human
action recognition.

Methods F-HAR-CS↑ F-HAR-CP ↑
ST-GCN [207] 12.21% 23.31%
AS-GCN [96] 10.57% 6.42%
2s-AGCN [160] 19.14% 30.74%
MS-G3D [120] 53.16% 70.27%

in Figure. 31 because of the panorama cameras as described in Section 5.5. Therefore,
F-HAR is beneficial for 1) human action recognition from a single image captured by a
fisheye camera; 2) multi-view human action recognition; and 3) human action recognition
from a single panorama image. In this survey chapter, we only focus on videos captured
by one fisheye lens from the Insta360 camera.

2) Evaluation Metrics
The mean accuracy is used to evaluate the methods for human action recognition, i.e.,

the proportion of the number of correct predictions to all samples.

3) Evaluation on public datasets
We summarize the performance of existing skeleton-based methods on the commonly

used NTU, NTU120 and Kinetics-Skeleton datasets. For the NTU and NTU120 datasets,
existing methods use 3D information (2D poses with depth maps or 3D joint locations).
In terms of Kinetics-Skeleton dataset, the sequences of detected 2D skeletons are used
for action classification. The experimental results are shown in Table 22. GCN-based
methods tend to perform better than the other two kinds of methods. Instead of 3D
skeletons, GCN-based methods can also use 2D skeletons for human action recognition.
GCN-based methods have the advantage to exploit relationships between nodes presented
by the 2D keypoints in the skeleton-based methods for human action recognition.

4) Evaluation on our F-HAR dataset
Depending on the availability of code, four methods are used to compare the perfor-

mance on our dataset for human action recognition using a fisheye camera. Based on
whether the training set includes both indoor and outdoor environments, there are two
split protocols including F-HAR-CS and F-HAR-CP. Specifically, F-HAR-CS represents
the training set that only includes videos captured in indoor or outdoor environments.
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Figure 31: The frames in F-M3DHPE and F-HAR datasets can be viewed from different
angels in one Insta360 camera. It can be seen that the subject at the edge of the image
suffers from large distortions, causing 3D HPE and HAR more challenging.

F-HAR-CP indicates the training set consisting of both indoor and outdoor environments
using videos performed by half the number of subjects as the training set. The experimen-
tal results are shown in Table 20. Liu et al. [120] outperforms the other three methods on
both protocols. The reason is that this method alleviates the biased weighting problem in
GCNs and that it combines spatial-temporal connections.

5.6 D I S C U S S I O N

In this chapter, a survey is presented on 3D human pose estimation and human action
recognition. A new dataset is collected using a fisheye camera for multi-person 3D pose
estimation and human action recognition. Despite significant progress over the past few
years, there are still a number of challenges. In this section, we provide possible future
directions.
3D Human Pose Estimation. Existing methods for 3D pose estimation mainly focus
on perspective cameras, and there are only a few methods for multi-person 3D pose
estimation using fisheye cameras. Methods exploiting a fisheye camera model to alleviate
the negative influence caused by the fisheye lens [222] outperforms other methods. From
the experimental results of existing methods on our new dataset, the performance of multi-
person 3D pose estimation is still far from perfect. The main challenge is that humans,
located at different positions, suffer from different levels of distortions. Therefore,
combining human positions and distortion parameters to regularize root-relative 3D
poses and absolute depths is a promising direction for multi-person 3D pose estimation.
Human Action Recognition. Human poses are essential for human action recognition.
However, it is difficult to obtain 2D or 3D ground-truth skeletons especially for in-the-
wild images. A common strategy is to use off-the-shelf 2D/3D estimators to obtain
2D/3D skeletons. Although skeleton-based methods for human action recognition made
good progress, they only use 2D or 3D skeletons. In terms of skeletons, estimated 2D
poses are more robust but also more ambiguous. Estimated 3D poses provide depth
information and reduce ambiguity but are also less stable. Therefore, the combination
of 2D and 3D poses may be beneficial for human action recognition. Moreover, how to
combine skeletons with input images is also an interesting future research topic.
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6.1 I N T RO D U C T I O N

Animating a person, in an image or video, from its source pose to a novel (target) pose,
referred to as human motion transfer, is a topic receiving more and more attention. It has
many applications in computer vision including movie production, entertainment and
education. With the introduction of Generative Adversarial Networks (GANs), GAN-
based methods provide promising results for image synthesis in general. However, these
methods usually focus on global or style transformations and ignore geometric relations
[119, 191, 192]. Therefore, they may fall short to generate high quality synthesized
images of humans with novel (target) poses.

Recently, a number of methods uses extracted 2D human poses as a condition to guide
the animation process [15, 124]. A drawback is that this type of methods usually needs
large-scale training data for a certain person and therefore limiting its applicability. To
this end, researchers adopt off-the-shelf human pose and/or shape models [12, 72, 156] to
relate humans in source and target images. Particularly, the warping process exploiting
estimated 2D poses [4, 164–167], 3D poses [79], 3D human parametric models [117],
3D implicit volumetric representations [147], is an essential part for existing methods to
transfer human motion.

Existing methods perform well in terms of reconstruction quality. However, the chal-
lenge, to generate high quality synthesized images with accurate animated poses, still
remains. Specifically, i) existing methods, using a 3D human model as an intermediate
presentation to build the relation between source and target images, are based on (es-
timated) 3D human parametric models. This type of methods tends to provide higher
image quality than methods using 2D poses to compute the motion transfer. This is
because (projected) 3D human models are able to compute more accurate correspon-
dences than sparse 2D keypoints. However, the quality of the human pose transfer has
received less attention although it is an important part of the motion transfer process. ii)
articulated persons usually exhibit self-occluded poses in 2D images. Existing methods
attempt to use either the warped 2D or 3D features extracted from the source images to
perform this task. However, for 2D-based methods, it’s hard to solve the self-occlusion
problem. For 3D-based methods, the estimated 3D information is less robust and precise
than 2D information.

To alleviate the problem caused by inaccurate 3D human models, we propose to use
2D information for robustness. Our method uses human masks and 2D human keypoints
to regularize the animated persons in the synthesized images. Although the use of human
masks is able to constrain the pose of the animated person in a specific region, it may
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Figure 32: The proposed method generates realistic images of an animated person driven
by the person in the target image. Comparing with recent state-of-the-art methods, our
method shows improvements in both image quality and pose accuracy.

fail in case of self-occlusions exhibited by target poses. Therefore, in this chapter, 2D
keypoints are used to retain semantic consistency between the target and reconstructed
images.

To mitigate the self-occlusion problem, we introduce a novel strategy to exploit the
relation between 2D and 3D representations during the animation process. In contrast to
2D information, 3D models contain more information such as depth and 3D structure.
However, as opposed to 3D, 2D information is more robust. To this end, we propose
to use the best of the two worlds by combining 2D and 3D information to steer the
generation procedure. Specifically, we first calculate the 2D optical flow based on the
projected 3D human models and 3D flows based on estimated 3D poses. Then, warped
2D and 3D features are used by our generator module to synthesize images of animated
persons. As the warped 2D and 3D features are complementary, we design an attention
module to estimate an occlusion map to reduce the redundancy of the combination of
the warped 2D and 3D features. To the best of our knowledge, this is the first method to
exploit the relation of 2D and 3D information to perform human motion transfer.

Our contributions are summarized as follows:

• We propose a novel end-to-end method by i) regularizing generated animations of
humans based on 2D information, and ii) exploiting the relation between 2D and
3D information for human motion transfer.

• To reduce the dependency on the accuracy of the estimated 3D human models, we
propose to use 2D information to regularize synthesized humans by constraining
the generated regions and ensuring semantic consistency at arm/leg local regions
between synthesized and target images.

• A novel strategy is proposed to combine 2D (robust) and 3D (depth/structure)
features to alleviate the self-occlusion problem.

• Experiments demonstrate that the proposed method outperforms, both quantita-
tively and qualitatively, existing methods.
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6.2 R E L AT E D W O R K

Methods for human motion transfer can be categorised into 2D- and 3D-based methods.
Human motion transfer aims to animate a person in the source image with the pose of
the person detected in the target image. Both image quality and animated pose accuracy
are important factors to evaluate human motion transfer methods.

2D-based Methods. The three types of information, used to perform human motion
transfer for 2D space based methods, are: conditional animation, affine transformations,
and optical flow.

Conditional animation: the combination of a source image, a target image and the
target pose is taken as an input [15, 124]. The target pose is regarded as a condition to
guide the generation process followed by a discriminator to improve the image quality.

Affine transformation: a few methods [4, 166] compute the relation of source and
target images based on the extracted 2D poses by existing human pose estimators [12,95].
Then, the spatial transformation is computed to deform the source image and steer the
generation process.

Optical flow: Siarohin et al. [164,165,167] propose a series of work to perform human
motion transfer based on optical flow between source and target images. Keypoints are
detected in an unsupervised manner to estimate the optical flow by modeling the relation
of human co-parts. Other works [105,117] adopt the 3D human model as a representation
to estimate the optical flow. Specially, an off-the-shelf approach [72] is usually taken to
obtain the 3D human mesh followed by a neural render to model the relation between
source and target images.

3D-based Methods. Knoche et al. [79] propose to extend the affine transformation
approach from 2D to 3D spaces. The method first uses a 3D estimator to obtain 3D
poses followed by calculating the 3D affine transformation parameters and 3D masks.
Instead of using 3D poses, Ren et al. [147] adopt an implicit volumetric representation
to perform human motion transfer. The extracted representation is warped in 3D space.
A decoder is designed to generate the synthesized image.

Pose Consistency. Pose consistency assumes that the animated person and the person
in the target image have the same appearance including ratios of limbs and body sizes.
The approach is an un-/semi-supervised dense correspondence estimation. Keypoints
detection is used to improve robustness. Other methods [66, 125, 151, 178] apply a thin-
plate spline (TPS) transformation to force the detector to be equivalent on images with
different transformations. A few methods [86, 99, 134] retains semantic consistency at
keypoint regions from different frames, e.g., eyes, necks and hips, to ensure the detectors
to be invariant.

In general, there are two categories for human motion transfer based on Pose Consis-
tency. i) [4, 15, 124, 147, 164–167] perform human motion transfer by absolute poses
in target images. The scale of the animated human is the same as the human in the
target image. ii) [79, 105, 117] animate a human by the relative motion of the human in
the target image. The scale of the animated human is retained. The animated human
generated by the latter is more beneficial since the appearance information, including
body sizes and ratios of limbs, is preserved.
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6.3 P O S E G U I D E D G E N E R AT I O N

The goal of this work is to animate a human in the source image based on the pose
exhibited in the target image with high reconstruction quality as well as pose accuracy.
The main challenge for methods using 3D information is to maintain pose consistency
between synthesized images and target images, since estimated 3D information (3D
human poses or models) may not be accurate. For 2D-based methods, the ambiguity in
source poses makes it difficult to obtain superior quality of synthesised images due to
ambiguous human co-parts as shown in Figures 32 and 37. In this section, we present
details of our solution to solve the above challenges.

6.3.1 3D Human Model

Skinned Multi-Person Linear (SMPL) model is commonly used as the human prior
model. SMPL model decomposes the 3D human model into pose parameters θ ∈ R24×3

and shape parameters β ∈ R10. Pose parameters indicate 3D relative rotations of defined
23 joints and the orientation of the root joint. Shape parameters are PCA coefficients to
represent the human shape. The SMPL model can be defined as follows: M(θ, β) ∈ RN×3,
where N denotes vertices at the triangulated mesh and N = 6890.

Based on the above definitions, 3D human models of source and target images are
described as Ms(θs, βs) and Mt(θt, βt). Ideally, the 3D human model of an animated
person is M̂t(θt, βs). One of the limitations of SMPL models is that it is not able to model
hair and clothes. This may have a negative influence on the alignment of the rendered
3D models, especially near the body contours. Therefore, M̂t(θt, βs) needs to be refined
in the generation procedure.

6.3.2 Pose Consistency

As 2D poses lack depth information, for methods for human motion transfer with 2D
poses, it is hard to preserve the scale of the person in the source image. Instead, 3D
human parametric models or 3D poses contain the absolute scale information of humans.
The scale of an animated person can be retained by transferring the pose parameters
θ in SMPL models (i.e., M̂t(θt, βs)) or scaling skeletons based on ratios of 3D human
poses from source and target images. In this chapter, we utilize the 3D human parametric
model to guide the process of human motion transfer. However, there is no ground
truth available in public datasets. Therefore, following previous work [117], we use
an off-the-self model to obtain 3D human models as pseudo ground truth. One of the
limitations is that the accuracy of the 3D models can not be guaranteed. This may cause
existing methods to fail to synthesize the animated person with high pose accuracy. To
alleviate this problem, we propose to use 2D information including 2D human poses and
body masks to regularize the animation of a person. The aim of using body masks is to
constrain the position of these masks after the person has been animated when there are
no self-occlusions of target poses. Furthermore, inspired by methods for unsupervised
keypoint detection, we propose a strategy to maintain the semantic consistency at regions
(e.g., arms and legs) to deal with self-occlusions of target poses.
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6.3.3 Ambiguity

Existing methods either use warped 2D or 3D features extracted from source images to
perform human motion transfer. However, i) the former methods perform the warping
process in 2D space and therefore ignoring 3D structural information. Hence, ambiguous
human co-parts and the invisible parts of humans in images make it difficult to generate
plausible textures of synthesized humans; ii) the latter methods are not stable since
the estimated 3D information (3D poses, 3D human models, etc.) is less robust and
accurate than 2D information (human masks, 2D human poses, etc.). Besides, 3D human
parametric models do not include hair and clothes information, so it is challenging to
animate a human with high quality.

Therefore, we propose to combine the warped 2D and 3D features to steer the gener-
ation procedure. For this, there are two issues to be addressed: i) warped 2D features
may contain inaccurate pose information because the estimated 3D models may contain
imperfections to compute 2D warping flows; ii) warped 2D and 3D features share the
same parts of representation. Hence, naively concatenating warped 2D and 3D features
may increase the influence of the shared parts but ignoring other useful information. To
this end, we propose a feature fusion map to combine them. The aim is to reduce the
redundancy of concatenated features and enhance the impact of useful representation.
Finally, the weighed combination of 2D and 3D features is used by the decoder to
synthesize the animated person. In this way, the combination exploits the robustness of
2D features together with enriched (such as 3D depth, pose and structure) 3D features to
guide the image synthesis.

6.4 N E T W O R K A N D T R A I N I N G D E TA I L S

Our human motion transfer framework consists of four steps as shown in Figures 33
and 34: optical flow calculation, feature fusion, generation and discrimination. In this
section, we present the details of our framework and training strategy.

6.4.1 Network Design

Optical Flow Calculation. Two branches are used to compute the 2D and 3D warping
flows, respectively. Specifically, an off-the-shelf model HMR [72] is used to estimate the
3D parametric model in the first branch. Following [117], the 3D models (Ms and Mt)
are then projected onto the 2D images to compute the 2D optical flow T2d ∈ RH×W×2

based on projected vertex indexing. In the second branch, we follow [79] to obtain the
3D flows T3d ∈ RH×W×D×3 by extending affine transformations from 2D to 3D spaces.
3D human poses (Ps and Pt) are estimated by the off-the-self 3D estimator [156]. Finally,
we warp the extracted 2D and 3D features based on 2D and 3D warping flows. In this
work, H = W = D = 64.
Feature Fusion. To benefit from both robust 2D and structural 3D information, we
propose to combine them to perform the generation procedure. Particularly, both 2D and
3D features are extracted from the warped images and projected 3D human models. Then,
a fusion map mF ∈ RH×W is estimated by the fusion module, similar to the hourglass
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Figure 33: Geometric information and 2D/3D feature extraction. Given a pair of source
and target images, 2D and 3D feature extraction is used to obtain their representation in
2D- and 3D-space. 2D/3D pose and human model estimation is then adopted to compute
geometric details with 2D heatmaps, 3D poses, and 3D human mesh representation. With
pairs of 3D human models and 3D poses, 2D and 3D warping flows are computed. Note
that the source mask is used during the feature extraction procedure.

network, to concatenate the warped 2D and 3D features to reduce the redundancy between
them. The fusion module takes the warped source image Isyn by 2D optical flow and the
difference between heatmaps ∆HM of source poses ps and target poses pt.

mF = Gmap (Isyn, ∆HM) ,

Isyn = w2D(It, T ′2d),

∆HM(p) = exp
(
−
(p − pt)2

2σ2

)
− exp

(
−
(p − ps)2

2σ2

)
,

(6.1)

where Gmap denotes the fusion module, w2D is the 2D warping procedure, and T ′2d
represents the resized 2D optical flow and T ′2d ∈ R256×256×2. σ is set to 2 pixels.

Generation. Based on the 2D and 3D flows and feature fusion map, we adopt the
hourglass network to generated synthesized images. Specifically, we first extract 2D and
3D appearance features by networks G2D and G3D followed by being warped in 2D and
3D spaces. Then, we concatenate the warped 2D and 3D features based on the fusion
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Figure 34: Overview of our generation module and discriminator. The extracted 2D and
3D features are warped by computing 2D and 3D warping flows. Then, a feature fusion
map is computed to concatenate warped 2D and 3D features. The aim is to reduce (1) the
redundancy between the 2D and 3D features and (2) inaccurate pose information. The
input is the warped source image and the difference between the source and target poses.
Finally, a generator converts the combination of weighted warped 2D and 3D features
to an animated image. To maintain semantic consistency between outputs and target
images, discriminators are used with arm/leg regions to ensure the animated person is
located at the same positions as the target pose.

map mF . Finally, the concatenated features are used by the decoder to generate images
of animated humans Ît.

Ît = Gsyn
(
[Fw2d ⊙mF ⊙mt, F′w3d ⊙ (1 −mF) ⊙mt]

)
,

F2D = G2D (Is, HMs) , F3D = G3D (Is, HMs) ,

Fw2d = w2D(F2D, T2D), Fw3d = w3D(F3D, T3D),

F′w3d = pro j(Fw3d),

(6.2)

where HMs represents the source pose with heatmap representation, w(·) denotes warp-
ing operation, pro j(·) indicates warped 3D features are reshaped then followed by 2D
convolutional operations, and mt is the mask of the target image.

Discrimination. We follow [117] to design our discriminators. To regularize the
animated pose, we propose to enforce the semantic consistency between Ît and It at
arms/legs. To this end, we combine the generated image Ît with regions into the specified
discriminator determining whether it is an arm/leg region in Ît. Specifically, consecutive
joints are used to represent the regions, i.e., shoulders, elbows, and wrists for arm
regions; hips, knees, and ankles for leg regions which are denoted by HMArm and
HMLeg respectively. Ît is separately taken as input to the discriminator. Therefore, our
discriminator consists of three components: DArm for arm regions, DLeg for leg regions,
and DHuman for human body.
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Figure 35: Visualization of the feature fusion map mF . mF is used to balance the warped
2D and 3D features to reduce (1) feature redundancy and (2) inaccurate pose information.
It is shown that the inaccurate regions and edges in Isyn have smaller weights.

6.4.2 Training

Image Loss. A perceptual loss [69] is adopted to enforce the reconstructed Ît and target
It images to be similar for both image and feature levels extracted by VGG19.

Limage =
∥∥∥∥VGG19

(
Ît
)
− VGG19 (It)

∥∥∥∥
1

. (6.3)

Face Identity Loss. Following previous works [15,117], we apply a face loss to preserve
the face identity information during the generation process. SphereFaceNet (SFN) [118]
is used to extract face identity information between reconstructed and target images:

L f ace =
∥∥∥∥S FN

(
Ît
)
− S FN (It)

∥∥∥∥
1

. (6.4)

Semantic Loss. A discriminator is used to retain semantic consistency at arm or leg
locations between reconstructed and target images. Specifically, the reconstructed image
is taken Ît with arm and leg regions with heatmap representations (HMarm and HMleg)
as inputs to the discriminator to enhance pose consistency. To preserve image quality, Ît
is separately fed into the discriminator.

For the generator, the loss is:

LG
adv =

∑
DHuman

(
Ît
)2
+

∑
DArm

(
Ît, HMarm

)2

+
∑

DLeg
(
Ît, HMleg

)2
.

(6.5)

For the discriminator, the loss is:

LD
adv =

∑[
DHuman

(
Ît
)
+ 1

]2
+

∑
[DHuman (It) − 1]2

+
∑[

DArm
(
Ît, HMarm

)
+ 1

]2
+

∑
[DArm (It, HMarm) − 1]2

+
∑[

DLeg
(
Ît, HMleg

)
+ 1

]2
+

∑
[DLeg (It, HMleg) − 1]2 .

(6.6)

Full Objectives. From Eqs. (6.3) - (6.6), the overall loss function of our framework is
given by:

L = λimageLimage + λ f aceL f ace + LG
adv + LD

adv, (6.7)

where λ aims to balance the weights of each loss term.
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Table 24: Comparison with existing methods on iPER dataset.

Approach SSIM ↑ LPIPS↑ Pose Error↓ FID↓

PG2* [124] 0.854 0.865 - -
SHUP* [4] 0.832 0.901 - -
DSC* [166] 0.829 0.871 - -
LWG** [117] 0.840 0.907 10.912 54.291
MRAA** [167] 0.862 0.911 5.049 107.443
Ours 0.861 0.933 6.010 52.615
1 ∗ indicates the values are from [117].
2 ∗∗ denotes the compared models are re-trained from scratch for compar-

ison.

Table 25: Comparison with existing methods on the FashionVideo dataset.

Approach SSIM ↑ LPIPS↑ Pose Error↓ FID↓

LWG [117] 0.882 0.930 3.310 18.164
MRAA [167] 0.932 0.931 2.386 29.971
Ours 0.916 0.949 2.298 17.735
1 LWG and MRAA are re-trained from scratch for comparison.

6.5 E X P E R I M E N T S

Datasets. The iPER [117] and FashionVideo [211] datasets are adopted for evaluation.
The iPER dataset contains 30 subjects with different types of cloth and background.
There are 164 training video sequences and 42 test video sequences with a resolution
of 512 × 512. The FashionVideo dataset consists of 600 video sequences, where 500
videos are defined as training samples and the remaining videos serve as the test set.
Each sequence contains around 300∼350 frames with different resolutions. People wear
different clothes against a white background.
Implementation Details. We normalize the images between the range of [-1, 1] with
a resolution of 256 × 256. We adopt HMR [72] and Metrabs [156] to compute the 3D
human parametric models and human poses, respectively. Adam optimizer is adopted
with a batch size of 12. The weights of the loss term is set to: λimage = 10 and λ f ace = 5.
The model is trained with 30 epochs, where Ladv is only applied in the last 25 epochs to
stabilize the training.
Metrics. Commonly used metrics are: Structural Similarity (SSIM) [194] and Learned
Perceptual Similarity (LPIPS) [220] for cases of self-imitation, where the source and
target images are from the same video; Fréchet Inception Distance (FID) [54] is adopted
for cases of cross-imitation, where source and target images are from different videos.
As the focus is on both the reconstruction quality as well as pose accuracy, an additional
metric is used — Pose Error to evaluate the accuracy of the human pose transfer, i.e., the
pose accuracy between animated humans and humans in the target images. Specifically,
the Pose Error is calculated by the Euclidean distance of the estimated 2D poses from
AlphaPose [95] in image space. Appearance information (e.g., limbs ratios and body
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Table 26: Ablation study on iPER dataset.

Type Approach SSIM ↑ LPIPS↑ Pose Error↓ FID↓

Feature Fusion
Ours w/o 2D 0.850 0.920 7.086 59.654
Ours w/o 3D 0.855 0.928 6.256 53.120
Ours w/o fusion map 0.849 0.921 7.425 52.629

Pose Constraint
Ours w/o mask+sem 0.825 0.898 9.368 55.796
Ours w/o mask 0.826 0.899 9.016 55.818
Ours w/o sem 0.859 0.931 6.323 53.171
Ours (Full) 0.861 0.933 6.010 52.615

sizes) needs to be preserved during the animation process. Therefore, the Pose Error is
used for cases of self-imitation instead of cross-imitation [61].

Comparative Methods. For comparison, based on the availability of the code, five state-
of-the-art methods are selected including methods with 2D human poses [4,124,166,167]
as well as 3D human parametric models [117]. For a fair comparison, we re-train [117]
and [167] from scratch following the same train-test split. Because the task here is
human motion transfer instead of in-painting, we adopt the same model as LWG [117] to
perform the in-painting task for the background during the evaluation to eliminate the
possible negative impact caused by the in-painting process.

6.5.1 Comparative Study

iPER Dataset. We quantitatively compare our method with five state-of-the-art methods
on iPER dataset as shown in Table 24. Our method outperforms all other methods for
both self- and cross-imitation except for 2D-based method MRAA. Although MRAA
shows good results for self-imitation, it falls short in the case of cross-imitation. The
reason can be that MRAA is over-fitting on this dataset. Compared with LWG, a method
which is similar to our method as it also uses 3D human models as an intermediate
representation, our method clearly outperforms LWG in terms of Pose Error metric.
Qualitative comparison is shown in Figures 37 and 38 for self- and cross-imitations
respectively. It can be seen in Figure 37 that our method can alleviate the self-occlusion
problem, while MRAA suffers from pose ambiguities and self-occlusion problems. On
the other hand, our method preserves scale information of the source person to synthesize
images, which is ignored by MRAA as shown in Figure 38.

FashionVideo Dataset. Another comparison is conducted on the FashionVideo dataset.
We use the available code from LWG and MRAA to re-train from scratch and compute
the metrics. Compared with LWG and MRAA, our method provides competitive results.
Since the type of gestures in FashionVideo dataset is limited, there is no significant
discrepancy between the performance of the three methods regarding the Pose Error
metric.
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Figure 36: Qualitative comparison of ablation study. Our method obtains superior
performance on pose accuracy of animated person and alleviates the self-occlusion
problem when source and target poses are self-occluded.

6.5.2 Ablation Study

The ablation study is conducted on the iPER dataset because it contains more subjects,
body movements and backgrounds than the FashionVideo dataset. The results are shown
in Table 26.

Feature Fusion. As discussed in Section 6.3.3, a weighted combination of 2D and 3D
features may benefit from both 2D (robustness) and 3D (structure/pose) information.
To verify this, a comparative study is done with our method considering (1) without
using 2D features (Ours w/o 2D), (2) without using 3D features (Ours w/o 3D), and
(3) without using feature fusion map (Ours w/o fusion map). In Table 26, it is shown
that: i) our method with a weighted combination of 2D and 3D features outperforms
other model versions for both self- and cross-imitation; ii) our method without using a
feature fusion map drops in performance in the case of self-imitation especially for the
Pose Error metric. The reason is that the warped 2D features include inaccurate pose
information due to the imperfections induced by estimated 3D human models; iii) our
method without 2D features falls short in the case of cross-imitation. Hence, 2D features
are more robust to synthesize the images.
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Figure 37: Qualitative comparison of self-imitation with existing methods on iPER
dataset.

Pose Consistency. The aim is to use 2D information including human masks and 2D
keypoints to constrain the synthesised poses. Specifically, 2D keypoints are used to
maintain pose consistency between the animation and the person in the target image. To
validate pose consistency, experiments are conducted with our method focusing on (1)
without using human masks (Ours w/o mask) or/and (2) semantic loss (Ours w/o sem).
In Table 26, it is shown that i) human masks considerably improve the accuracy of the
animated poses as they regularize the animated poses in non-overlapping regions of the
target poses; ii) our method with semantic loss, aiming to deal better with self-occluded
target poses, further increases the pose accuracy. On the other hand, synthesized images
with inaccurate animated humans tend to exhibit inferior performance in the metrics of
SSIM, LPIPS and FID.

A qualitative comparison of ablation study is shown in Figure 36, where the persons
in source images exhibit self-occluded poses. Our method i) performs better on pose
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Figure 38: Qualitative comparison of cross-imitation with existing methods on iPER
dataset.

accuracy by our pose constraints; ii) alleviates the self-occlusion problems compared
with our method without using informative 3D information (Ours w/o 3D).

In conclusion, the proposed feature fusion strategy and pose constraints positively
contribute to the overall performance for both image quality and pose accuracy.

6.5.3 Discussion

The main limitation of our method is that it assumes that images contain a full human
body. In fact, this is a limitation for existing methods for 3D human body reconstruction.
However, our approach uses 3D human poses in the second branch to enable 3D warping
and to steer the animation process. Consequently, we can only apply the second branch
to deal with images containing parts of human bodies to perform human motion transfer.
On the other hand, another reason to use 3D human poses from 3D pose estimators
instead of from 3D human models is that the former tends to be more accurate.
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6.6 C O N C L U S I O N S

A novel method is presented for human motion transfer focusing on both the recon-
struction quality as well as pose accuracy. Our method combines the warped features in
both 2D- and 3D-space to guide the generation process. To maintain pose consistency,
a strategy is proposed to retain semantic consistency at arm/leg local regions between
synthesized and target images. Experiments and an ablation study demonstrated the
effectiveness of our method in terms of the quality of synthesized images and pose
accuracy.

6.7 A P P E N D I X

In this section, we provide additional details on our framework in Section 6.7.1 and
qualitative comparison on FashionVideo [211] and iPER [117] datasets in Section 6.7.2.

6.7.1 Additional Framework Details

Our framework consists of four components: optical flow calculation, feature fusion,
generation and discrimination. As described in Section 6.4.1 of the main manuscript, the
fusion module uses the warped source image Isyn, and the difference between heatmaps
∆HM of source poses ps and target poses pt, as inputs to estimate feature fusion map
mF :

mF = Gmap (Isyn, ∆HM) ,

Isyn = w2D(It, T ′2d),

∆HM(p) = exp
(
−
(p − pt)2

2σ2

)
− exp

(
−
(p − ps)2

2σ2

)
.

(6.8)

Note that pt is detected from the target images when source and target images are from
the same video, while pt needs to be scaled and translated when humans in the source
and target images are different. Specifically, the scale and translation parameters are
calculated by the ratios of body sizes between projected M̂t(θt, βs) and Mt(θt, βt) and
the difference of the root (hip) joints proot in the source and target poses:

p′t =
ŝbody

t

sbody
t

× (pt − proot
t ) + p̂root

t , (6.9)

where human body sizes sbody are represented by the distances between neck and hip
joints, and ˆ indicates the information extracted from M̂t(θt, βs). Therefore, ∆HM is
defined by:

∆HM(p) = exp
(
−
(p − p′t)2

2σ2

)
− exp

(
−
(p − ps)2

2σ2

)
. (6.10)

The reason why we use the modified 2D target poses p′t, instead of the 2D poses
extracted from M̂t(θt, βs), is that the former tends to be more precise. In this way, the
dependency on the errors is reduced which may be caused by erroneous 3D estimations.
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6.7.2 Additional Qualitative Comparison

Besides the iPER dataset [117], we also evaluate our methods on the FashionVideo
dataset [211]. Figure 39 shows a qualitative comparison of existing methods on the
FashionVideo dataset; Figures 40 - 41 illustrate additional qualitative results on the iPER
dataset.

From Figures 39 - 41, it is shown that: i) compared with the 2D-based method
MRAA [167], our method generates more realistic animated humans in terms of image
quality and the preservation of facial information; ii) the animated poses generated
by our method are more accurate than MRAA and LWG [117] (e.g., animated arm
positions), a method which is similar to our method as it also uses 3D human models as
an intermediate representation.
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Figure 39: Qualitative comparison of existing methods on FashionVideo dataset.
Red/blue/green rectangles focus on face, clothing and pose synthesis respectively.
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Figure 40: Additional qualitative comparison of existing methods on iPER dataset.
Rectangles focus on pose accuracy.
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Figure 41: Additional qualitative comparison of existing methods on iPER dataset.
Rectangles focus on pose accuracy.
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S U M M A RY A N D C O N C L U S I O N S

7.1 S U M M A RY

This thesis explores geometric modeling for 3D human pose estimation and motion
transfer. The focus of thesis is how to i) utilize the geometric modeling to deal with
3D human pose estimation for both pinhole and fisheye cameras and ii) perform human
motion transfer with pose consistency by means of 2D and 3D information of humans.
We first aim to improve the generalization of single-person 3D HPE for in-the-wild
images. Due to the widespread use of fisheye cameras, we then focus on egocentric 3D
HPE from a single image captured by a fisheye camera. Then, the 3D HPE problem is
addressed in a more general setting, i.e., multi-person 3D pose estimation from a single
image captured by a fisheye camera. After that, we propose a benchmark for multi-person
3D pose estimation and action recognition for a fisheye camera. Finally, we combine
robust 2D and structural 3D human information to steer and guide the animation process
for human motion transfer with pose consistency.

A brief summary of each chapter is as follows:

Chapter 2: Scaled Orthographic Projection for 3D Human Pose Estimation. This
chapter aims to improve the generalization of methods for 3D human pose estimation
from a single image. Public datasets for 3D human poses are collected in indoor environ-
ments due to the limitations of motion capture systems. In contrast to indoor datasets, 2D
in-the-wild images may include strongly varying image conditions. Therefore, models
trained on such datasets may have limiting generalization capabilities to in-the-wild
images. To this end, we propose a re-projection based method to connect 3D poses
and 2D poses. To avoid suffering from a small angle problem resulting in overfitting in
the depth dimension, we propose an orthographic projection linear regression method
to constrain 3D predictions, 2D poses and 2D appearances. Experiments demonstrate
the effectiveness and generalization ability of the proposed method qualitatively and
quantitatively.

Chapter 3: Egocentric 3D Human Pose Estimation from the Fisheye Camera.
The goal of this chapter is to estimate egocentric 3D human poses from a single image
captured by a fisheye camera. Due to the fisheye lens, image distortions may negatively
influence 3D poses when 2D poses on the image plane pass through the line of sight of
the fisheye lens. To mitigate the effect of distortions on the 3D human pose estimation,
we propose an automatic calibration module with self-correction to regularize 3D pre-
dictions. In contrast to existing methods, the proposed calibration module automatically
estimates the intrinsic and distortion camera parameters to perform the estimation pro-
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cess. Experimental results show that our method obtains state-of-the-art performance on
the modified xR-EgoPose containing different levels of image distortions compared to
existing methods.

Chapter 4: Multi-person 3D Pose Estimation from the Fisheye Camera. In this
chapter, we propose a novel top-down approach for multi-person 3D pose estimation
from a single image taken by a fisheye camera. With the wide angle, fisheye cameras have
been widely used in practical applications, especially video surveillance. In this chapter,
we focus on this scenario i.e., the top-down viewpoint. There are three challenges: i)
humans at different positions may suffer from varying distortion strengths; ii) the distance
between humans and cameras is not fixed; iii) predicting 3D human joint locations with
absolute depths.

To this end, the proposed framework consists of two branches: HPoseNet for root-
relative 3D human pose estimation and HRootNet for absolute depth estimation. Finally,
we propose a re-projection module to connect the two branches, enforcing the estimated
3D human poses to be consistent with the 2D poses under distortions by minimizing the
re-projection error. In this way, the impact of image distortion is alleviated, and absolute
depths of root joints are regularized. The proposed method achieves state-of-the-art
performance on both synthesized and real-world datasets.

Chapter 5: A Benchmark for 3D Human Pose Estimation & Action Recognition.
This chapter aims to provide a real-world dataset collected by a fisheye camera for 3D
human pose estimation and skeleton-based action recognition. Experimental results
on the proposed dataset demonstrate that the current methods for pinhole cameras
cannot achieve superior performance with respect to fisheye cameras. But, the method
considering image distortions shows to be promising and outperforms other methods.
Further, to present a complete picture of the above two tasks, a comprehensive survey is
provided on the recent advances of 3D human pose estimation and action recognition for
both perspective and fisheye cameras.

Chapter 6: Human Motion Transfer with Pose Consistency. The goal of this
chapter is to animate a human in the source image based on the pose exhibited in the
target images with high reconstruction quality as well as pose consistency. Existing
methods either use extracted 2D or 3D information to build the relation of humans in
source and target images. The main challenge for methods using 3D information is
to maintain pose consistency between synthesized images and target images, since the
estimated 3D information (3D human poses or models) may not be accurate. On the other
hand, for 2D-based methods, the ambiguity in source poses makes it difficult to obtain
high quality of synthesised images due to ambiguous human co-parts. Therefore, we
propose a novel method for human motion transfer focusing on both the reconstruction
quality as well as pose consistency. Our method combines the warped features in both
2D- and 3D-space using the proposed fusion map to alleviate the self-occlusion problem.
In this way, our method benefits from 2D (robustness) and 3D (steering) information
to guide the generation process. To maintain pose consistency, a strategy is proposed
to retain semantic consistency at arm/leg local regions between synthesized and target
images. Experiments and an ablation study demonstrate the effectiveness of our method
in terms of the quality of synthesized images and pose consistency.
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7.2 C O N C L U S I O N S

This thesis has studied the effect of geometric modelling on 3D human pose estimation
from both pinhole and fisheye cameras. Also, the benefit of robust 2D and structural
3D human information on human motion transfer with pose consistency have been
demonstrated. We hope that our research can contribute to the development of the more
advanced computer vision algorithms.

An interesting direction is how to deal with the influence of strong perspective effects
caused by fisheye lenses on 3D HPE. It is expected that the absolute depth estimation of
humans from a singe image captured by a fisheye camera will be more challenging, but
at the same time more valuable for practical applications. Another promising direction is
how to obtain and use prior information to perform motion transfer on arbitrary objects.
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7.3 S A M E N VAT T I N G

Dit proefschrift onderzoekt geometrische modellering voor menselijke 3D-houdingsschatting
en bewegingsoverdracht. De focus van het proefschrift is (i) hoe de geometrische modellering
gebruikt zou kunnen worden voor menselijke 3D-houdingsschatting voor zowel pinhole- als
fisheye-camera’s en (ii) hoe menselijke bewegingsoverdracht uitgevoerd kan worden door middel
van 2D en 3D houdingsconsistente informatie van mensen. We willen eerst de veralgemening
van enkel-persoons 3D HPE (Engels: Human Pose Estimation, Nederlands: Menselijke Houd-
ingsschatting) voor in-het-wild afbeeldingen verbeteren. Vanwege het wijdverbreide gebruik
van fisheye-camera’s, richten we ons vervolgens op egocentrische 3D HPE van een enkel beeld
dat is vastgelegd met een fisheye-camera. Vervolgens wordt het 3D HPE-probleem aangepakt
in een meer algemene setting, d.w.z. 3D-houdingschatting voor meerdere personen op basis
van een enkel beeld vastgelegd door een fisheye-camera. Daarna stellen we een benchmark
voor voor het schatten van 3D-houdingen voor meerdere personen en actieherkenning voor een
fisheye-camera. Ten slotte combineren we robuuste 2D- en structurele 3D-menselijke informatie
om het animatieproces voor menselijke bewegingsoverdracht met houdingsconsistentie te sturen
en te begeleiden.

Een korte samenvatting van elk hoofdstuk is als volgt:

Hoofdstuk 2: Geschaalde Orthografische Projectie voor 3D Menselijke Houdingsschat-
ting. Dit hoofdstuk heeft tot doel de veralgemening van methoden voor het schatten van menseli-
jke poses in 3D op basis van een enkel beeld te verbeteren. Openbare datasets voor 3D-menselijke
poses worden verzameld in binnenomgevingen vanwege de beperkingen van motion capture-
systemen. In tegenstelling tot indoor datasets kunnen 2D in-het-wild beelden sterk wisselende
beeldomstandigheden bevatten. Daarom kunnen modellen die op dergelijke datasets zijn getraind,
beperkende generalisatiemogelijkheden hebben voor in-het-wild afbeeldingen. Hiertoe stellen we
een op herprojectie gebaseerde methode voor om 3D-houdingen en 2D-houdingen met elkaar te
verbinden. Om het probleem van een te-kleine-hoek te voorkomen – wat zou resulteren in over-
fitting in de dieptedimensie – stellen we een orthografische projectie lineaire regressiemethode
voor om 3D-voorspellingen, 2D-poses en 2D-verschijningen te beperken. Experimenten tonen de
effectiviteit en het generalisatievermogen van de voorgestelde methode kwalitatief en kwantitatief
aan.

Hoofdstuk 3: Egocentrische 3D Menselijke Houdingsschatting met een Fisheye Camera.
Het doel van dit hoofdstuk is om egocentrische 3D-menselijke houdingen te schatten op basis
van een enkel beeld dat is vastgelegd met een fisheye-camera. Vanwege de fisheye-lens kunnen
beeldvervormingen een negatieve invloed hebben op 3D-houdingen wanneer 2D-houdingen
op het beeldvlak door de zichtlijn van de fisheye-lens gaan. Om het effect van vervormingen
op de schatting van de menselijke pose in 3D te verminderen, stellen we een automatische
kalibratiemodule voor met zelfcorrectie om 3D-voorspellingen te regulariseren. In tegenstelling
tot bestaande methoden schat de voorgestelde kalibratiemodule automatisch de intrinsieke en
vervormingscameraparameters om het schattingsproces uit te voeren. Experimentele resultaten
laten zien dat onze methode state-of-the-art prestaties verkrijgt op de gewijzigde xR-EgoPose die
verschillende niveaus van beeldvervormingen bevat in vergelijking met bestaande methoden.
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Hoofdstuk 4: Meer-persoons 3D Houdingsschatting met een Fisheye Camera. In dit
hoofdstuk stellen we een nieuwe top-down benadering voor voor het schatten van 3D-poses
van meerdere personen op basis van een enkel beeld gemaakt met een fisheye-camera. Door
het grote waarneembare beeld worden fisheye-camera’s op grote schaal gebruikt in praktische
toepassingen, met name videobewaking. In dit hoofdstuk concentreren we ons op dit scenario
d.w.z. het top-down gezichtspunt. Er zijn drie uitdagingen: (i) Mensen op verschillende posities
kunnen last hebben van verschillende vervormingssterkten; (ii) de afstand tussen mens en camera
staat niet vast; (iii) voorspellen van de 3D menselijke gewrichtslocaties en absolute diepten is
lastig.

Hiertoe bestaat het voorgestelde raamwerk uit twee takken: HPoseNet voor wortel-relatieve
3D menselijke houdingsschatting en HRootNet voor absolute diepte-schatting. Ten slotte stellen
we een herprojectiemodule voor om de twee takken te verbinden, waardoor de geschatte 3D-
menselijke houdingen consistent zijn met de 2D-houdingen onder vervormingen door de herpro-
jectiefout te minimaliseren. Op deze manier wordt de impact van beeldvervorming verminderd en
worden de absolute diepten van wortelvoegen geregulariseerd. De voorgestelde methode bereikt
state-of-the-art prestaties op zowel gesynthetiseerde als real-world datasets.

Hoofdstuk 5: Een Benchmark voor 3D Menselijke Houdingsschatting & Actie Herken-
ning. Dit hoofdstuk is bedoeld om een real-world dataset aan te bieden die is verzameld door een
fisheye-camera voor 3D-schatting van menselijke houdingen en skeletgebaseerde actieherkenning.
Experimentele resultaten op de voorgestelde dataset tonen aan dat de huidige methoden voor
pinhole-camera’s geen superieure prestaties kunnen bereiken met betrekking tot fisheye-camera’s.
Maar een methode die rekening houdt met beeldvervormingen, blijkt veelbelovend te zijn en
presteert beter dan andere methoden. Om een compleet beeld van de bovenstaande twee taken
te geven, wordt verder een uitgebreid overzicht gegeven van de recente ontwikkelingen op het
gebied van 3D-schatting van menselijke poses en actieherkenning voor zowel perspectief- als
fisheye-camera’s.

Hoofdstuk 6: Menselijke Bewegingsoverdracht met Houding Consistentie. Het doel
van dit hoofdstuk is om een mens in de bronafbeelding te animeren op basis van de pose
die wordt vertoond in de doelafbeeldingen met een hoge reconstructiekwaliteit en consistentie
van de houding. Bestaande methoden gebruiken ofwel geëxtraheerde 2D- of 3D-informatie
om de relatie van mens in bron- en doelbeelden op te bouwen. De belangrijkste uitdaging voor
methoden die 3D-informatie gebruiken, is om de poseconsistentie tussen gesynthetiseerde beelden
en doelbeelden te behouden, aangezien de geschatte 3D-informatie (3D menselijke poses of
modellen) mogelijk niet nauwkeurig is. Aan de andere kant – voor op 2D gebaseerde methoden
– maakt de ambiguı̈teit in bronhoudingen het moeilijk om gesynthetiseerde afbeeldingen van
hoge kwaliteit te verkrijgen vanwege dubbelzinnige menselijke co-parts. Daarom stellen we een
nieuwe methode voor die de overdracht van menselijke bewegingen mogelijk maakt, waarbij op
zowel de kwaliteit van de reconstructie als op de consistentie van de houding de nadruk ligt. Onze
methode combineert de kromgetrokken functies in zowel 2D- als 3D-ruimte met behulp van de
voorgestelde fusiekaart om het zelfocclusieprobleem te verlichten. Op deze manier profiteert onze
methode van 2D (robuustheid) en 3D (stuur) informatie om het generatieproces te begeleiden. Om
de poseconsistentie te behouden, wordt een strategie voorgesteld om de semantische consistentie
te behouden in lokale arm/beenregio’s tussen gesynthetiseerde en doelbeelden. Experimenten
en een ablatiestudie tonen de effectiviteit van onze methode aan in termen van de kwaliteit van
gesynthetiseerde beelden en poseconsistentie.

108



7.4 C O N C L U S I E

7.4 C O N C L U S I E

Dit proefschrift heeft het effect bestudeerd van geometrische modellering op 3D-schatting van
menselijke houdingen van zowel pinhole- als fisheye-camera’s. Ook is het voordeel aangetoond
van robuuste 2D en structurele 3D menselijke informatie over menselijke bewegingsoverdracht
met houdingsconsistentie. We hopen dat ons onderzoek kan bijdragen aan de ontwikkeling van
de meer geavanceerde computer vision-algoritmen.

Een interessante richting is hoe om te gaan met de invloed van sterke perspectiefeffecten
veroorzaakt door fisheye-lenzen op 3D HPE. Verwacht wordt dat het schatten van de absolute
diepte van mensen op basis van een enkel beeld vastgelegd door een fisheye-camera uitdagender
zal zijn, maar tegelijkertijd waardevoller voor praktische toepassingen. Een andere veelbelovende
richting is het verkrijgen en gebruiken van voorafgaande informatie om bewegingsoverdracht op
willekeurige objecten uit te voeren.
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