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Abstract
Ly and Wagenmakers (Computational Brain & Behavior:1–8, in press) critiqued the Full Bayesian Significance Test (FBST) 
and the associated statistic FBST ev: similar to the frequentist p-value, FBST ev cannot quantify evidence for the null 
hypothesis, allows sampling to a foregone conclusion, and suffers from the Jeffreys-Lindley paradox. In response, Kelter 
(Computational Brain & Behavior:1–11, 2022) suggested that the critique is based on a measure-theoretic premise that is 
often inappropriate in practice, namely the assignment of non-zero prior mass to a point-null hypothesis. Here we argue that 
the key aspects of our initial critique remain intact when the point-null hypothesis is replaced either by a peri-null hypoth-
esis or by an interval-null hypothesis; hence, the discussion on the validity of a point-null hypothesis is a red herring. We 
suggest that it is tempting yet fallacious to test a hypothesis by estimating a parameter that is part of a different model. By 
rejecting any null hypothesis before it is tested, FBST is begging the question. Although FBST may be useful as a measure 
of surprise under a single model, we believe that the concept of evidence is inherently relative; consequently, evidence for 
competing hypotheses ought to be quantified by examining the relative adequacy of their predictions. This philosophy is 
fundamentally at odds with the FBST.

Keywords  Full Bayesian significance test · Evidence · Optional stopping · Predictive irrelevance · Jeffreys-Lindley paradox

Introduction

In our original article we elaborated on how FBST ev vio-
lates several desiderata for scientific evidence (Ly & Wagen-
makers, in press). Specifically, a proper measure of evidence 
should at least (i) be able to quantify support for both the 
null and the alternative hypothesis; (ii) increase in favor of 
the null as data accumulate that are (exactly) consistent with 
the null; (iii) allow practitioners to consult it at any moment 
in time without this practice predetermining the conclusions; 
and (iv) be exactly balanced when the data are evidentially 
irrelevant, that is, equally likely under both models.

In response, Kelter agrees with our assessment that FBST 
ev violates these desiderata, but counters that the FBST ev 
does not need to adhere to these natural rules: 

“The identified problems hold only under a specific 
class of prior distributions which are required only 
when adopting a Bayes factor test. However, the FBST 
explicitly avoids this premise, which resolves the prob-
lems in practical data analysis.”

Kelter argues that the Bayes factor involves the assignment 
of non-zero mass to a point-null hypothesis, in many practi-
cal applications supposedly a dubious act that the FBST ev 
avoids. If the point-null hypothesis is never true, as FBST 
assumes, then it may not be relevant what ought to happen 
whenever the point-null hypothesis is true. We are grate-
ful for Kelter’s comment on our paper: the central issue has 
been debated for decades, and Kelter’s main argument—the 
point-null hypothesis is never true, and this is a blow against 
Bayes factors—has been made many times before (see the 
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references in the Kelter article). We appreciate the oppor-
tunity to explain why we believe our conclusion stands, and 
the discussion on the validity on a point-null hypothesis is 
(and has always been) a red herring. Below we first examine 
Kelter’s main claim, and then discuss several issues that we 
believe require clarification and sometimes rectification.

The Point‑Null Hypotheses Is Not 
the Problem

Kelter agrees that FBST ev performs poorly whenever the 
null hypothesis holds true, but disputes the relevance of this 
fact. Indeed, Kelter surmises that point-null hypotheses are 
almost never realistic and can therefore be ignored.

There exist multiple counterarguments to this philosophi-
cal position. First, the very fact that the null hypothesis is 
being tested is an indication of it being possibly true. And if 
the null holds true, then the statistical method should be able 
to accumulate evidence in its favor. If a person can never be 
acquitted, then why the charade of taking them to court? We 
reiterate our position that even in FBST ev the null value is 
of special interest—one tests the hypothesis H0 ∶ � = 0 , and 
not, say, H�

0
∶ � = 0.00177567 . In many statistical applica-

tions, the hypothesis H0 ∶ � = 0 corresponds to the exclu-
sion of a parameter, such as the effect of a covariate.

Second, the rejection of point-null hypotheses is an 
implicit rejection of all models. As detailed below, any 
model can be extended to a larger model, for instance, by 
adding a covariate or an across-trial parameter. Hence, every 
model can eventually be identified with a point-null hypothe-
sis. Discarding all point-null hypotheses out of hand implies 
that researchers would always be forced to use the most com-
plex model, and add a variable for every new data point. This 
would make impossible any ability for generalization and 
in fact prohibit any kind of scientific progress (e.g., Poin-
caré, 1913, pp. 119–120). Thus, tests against a point-null 
constitute an epistemic firewall against needless complexity. 
They protect against the whimsical adoption of vague mod-
els that overfit the data and generalize poorly (e.g., Myung 
et al., 2000; Roberts & Pashler, 2000). Point-null tests allow 
researchers to develop generalizable models in a controllable 
fashion (e.g., Haaf et al., 2019; Ioannidis, 2019).

Third, and crucially, the problems for FBST ev that we 
identified do not vanish when the point-null is abandoned. 
Suppose we accept, for the sake of argument, the common 
complaint that point-null hypotheses are never true exactly. 
Also suppose we also accept, again for the sake of the argu-
ment, that this realization would invalidate the usual Bayes 
factor of a point-null hypothesis H0 versus H1 . This knowl-
edge should not cause any researcher to abandon the entire 
Bayes factor testing framework and embrace the FBST ev 
estimation framework instead; when a roofer examines their 

work and finds a broken tile, they generally do not propose 
to remove the entire roof and declare the problem solved. 
Rather, in order to incorporate the advance knowledge that 
the point-null hypothesis is implausible we may replaced it by 
a peri-null hypothesis.1 For instance, the point-null hypothesis 
H0 ∶ � = 0 may be replaced with the peri-null hypothesis 
H

0̃
∶ � ∼ N(0, �) , where 𝜖 accommodates the notion that H0 

is used only as a mathematically convenient approximation. 
Importantly, such a change from point-null to peri-null leaves 
most of our critiques against FBST ev conceptually intact.

Specifically, a Bayes factor test with a peri-null still 
allows evidence to be collected in favor of the peri-null, and 
this evidence would increase as data accumulate that are 
more consistent with the peri-null than with the alternative. 
The evidence would not increase indefinitely, but be subject 
to an upper bound—such inconsistency is the price that is 
paid for adopting a peri-null rather than a point-null (Ly & 
Wagenmakers, 2022). Similarly, the Jeffreys-Lindley para-
dox also holds in the case of a peri-null hypothesis, albeit 
in a less extreme form—as sample size increases and the 
p-value remains fixed, the evidence will eventually support 
the peri-null hypothesis over the alternative hypothesis, but 
the extent of this support is bounded (see Eq. 3 and Fig. 2 in 
Wagenmakers & Ly, in press). This is a key observation, as 
it is a common misperception in the statistical literature that 
the Jeffreys-Lindley paradox is caused by the presence of a 
point-null hypothesis. It also remains the case that the Bayes 
factor with a peri-null hypothesis will indicate perfect indif-
ference when confronted with data that are equally likely 
under the peri-null hypothesis and the alternative hypothesis.

Hence, we believe Kelter’s main thesis is incorrect—our cri-
tique against FBST ev as a measure of evidence does not require 
the assignment of prior mass to a point. We wish to stress that 
our critique does not concern FBST ev wholesale; in fact, FBST 
ev may be used as a method to quantify surprise (e.g., Good, 
1981, 1983). But when the quantification of evidence is in order, 
it is important not just to consider the surprise under a single 
model, but also the surprise under a competing model; specifi-
cally, the data provide evidence for model A over model B if 
and only if model A predicted those data better than model B.

We now turn to a more detailed analysis of Kelter’s argu-
ments, which demands that we also clarify some of our own 
assumptions.

The Nature of Testing

Kelter’s arguments are motivated from an alternative-model 
only perspective. In contrast, we believe that a test, in its 
simplest form, involves at least two models: The null model 

1  See also https://​tinyu​rl.​com/​perin​ull.
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M0 corresponding to the null hypothesis H0 , and the alter-
native model M1 corresponding to the alternative hypothesis 
H1 . By hypotheses we mean assertions regarding (unob-
servable) parameters of interest, and by a (psychological) 
model we mean a (proposed) mathematical description of 
the underlying processes with which these parameters gen-
erate the (behavioral) data (e.g., Ly et al., 2017). Provided 
with data, a test can then be used to distinguish the compet-
ing models.

For instance, for speeded decision-making tasks both Rat-
cliff’s drift diffusion model (DDM, e.g., Boehm et al., 2018; 
Ratcliff, 1978), or Brown and Heathcote’s linear ballistic 
accumulator model (LBA, e.g., Brown & Heathcote, 2008) 
can be used to describe the distribution of response times. 
Similarly, to describe the relationship between physical 
dimensions, such as light intensity, and their psychological 
counterpart, such as brightness, Steven’s model or Fechner’s 
model can be used (Myung et al., 2000). Analogously, to 
describe normally distributed data Y, a Gaussian distribution 
with a mean fixed at zero, or, alternatively, a Gaussian dis-
tribution where the mean is free to vary can be used, that is,

respectively. In the last example the models are easily seen 
to be nested. For the model comparison Eq. (1) the test 
addresses the question of whether or not the mean should be 
estimated, or—equivalently—whether the observed sample 
mean x̄ should either be regarded as random noise (i.e., when 
M0 holds true) or as a reliable indication of μ (i.e., when M1 
holds true). In contrast, an estimation problem addresses 
the “how much” question, by providing a best guess of the 
magnitude of the population mean given that it is not zero, 
i.e., when M1 holds true.

Regardless of whether or not the models are nested, the 
Bayesian assessment of the uncertainty between models is 
the same. This procedure requires prior model probabili-
ties 0 < P(M0),P(M1) < 1 with P(M0) + P(M1) = 1 if 
only these two models are believed to be viable for the data. 
After observing outcomes y, these prior model probabilities 
are then updated using Bayes’ rule to yield posterior model 
probabilities, as follows:

where BF10(y) is the Bayes factor indicating the evidence 
in the outcomes y for M1 over M0.2 The prior model prob-
abilities P(M0),P(M1) represent the researcher’s subjective 
beliefs, or uncertainty, regarding the models and associ-
ated hypotheses. For instance, before data observation, a 

(1)M0 ∶ Y ∼ N(0, �2), andM1 ∶ Y ∼ N(�, �2)

(2)P(M1|y) =
BF10(y)P(M1)

BF10(y)P(M1)+P(M0)
and P(M0|y) = 1 − P(M1|y),

researcher might believe that the LBA and DDM provide 
equally viable descriptions of response time distributions, 
and accordingly set P(M0) = P(M1) = 1∕2 . Note that these 
prior model probabilities are not derived from the prior 
densities that describe the uncertainty within each model. 
In particular, P(M0) is not derived from the prior density 
regarding the free parameters within M1 . The parameters of 
the LBA and DDM are interpreted within their own contexts 
(e.g., Osth et al., 2017).

Kelter’s Representations of the Bayes Factor

We believe that Kelter’s representation of the Bayes fac-
tor conflates the null hypothesis, the statement regard-
ing the parameter of a, say, Gaussian model such as 
H0 ∶ � = �∕� = 0 , and the null value 0. Specifically, Kelter 
argues that P(M0) has to be zero, once a continuous prior 
density �(�|M1) is selected, because such a prior density 
gives zero prior probability to {0}, where {0} is the set 
which only contains the null value. However, we dispute 
the idea that the prior density �(�|M1) defined on the param-
eters within the alternative model should dictate the prior 
model probability of the null model P(M0).

In his analysis, Kelter takes the alternative model as a 
point of departure, and from this perspective it should not 
come as a surprise that the null model is argued to be false. 
This alternative-only perspective is also apparent when 
Kelter discusses the Bayes factor as a ratio of marginal like-
lihoods. For concreteness, we consider again the model com-
parison Eq. (1), that is, the Bayesian t-test. The alternative 
model allows both the effect size � ∈ (−∞,∞) , and standard 
deviation � ∈ (0,∞) to vary freely, whereas the null model 
has only one free parameter � ∈ (0,∞) . The specification 
of the Bayes factor now requires a pair of priors resulting in

Kelter’s presumption that only the alternative model matters 
translates to the claim that the marginal likelihood (i.e., the 
denominator in Eq. (3)) has to be zero.3

This claim neglects the fact that the priors densities 
�(�, �|M1) and �(�|M0) are conditional on their respective 
models that provide contexts to the parameters. In fact, direct 
computations with �(�|M0) ∝ �−1 show that the marginal 
likelihood is not zero (for details, see, e.g., Ly et al., 2016a, b).

(3)BF10(y) =
∫ ∞

−∞
∫ ∞

0
f (y|�,�,M1)�(�,�|M1)d�d�

∫ ∞

0
f (y|�=0,�,M0)�(�|M0)d�

.

2  Equation (2) assumes that the marginal likelihood of the null model 
p(y|M

0
) is non-zero, which is typical in theory and practice. No mix-

ture prior is needed to define a Bayes factor.

3  Kelter (in press) writes “Now, from (A) in Eq. (5), it is immediate 
that whenever Θ0 is a P𝜗-null-set, the Bayes factor BF01 will be zero 
because ∫

�
0

f�dP� = 0 then.”
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The marginal likelihood in fact is a predictive score, one 
that does not depend on either of the candidate models being 
“true” (e.g., O’Hagan and Forster, 2004, pp. 166-167; Kass 
& Raftery, 1995, p. 777). This can be appreciated by writing 
the marginal likelihood as a sum of one-step-ahead predic-
tion errors (e.g., Wagenmakers et al., 2006), by interpreting 
the Bayes factor as a specific case of cross-validation (e.g., 
Gneiting & Raftery, 2007), or by noting the close relation 
with model comparison methods that obey the Minimum 
Description Length principle (e.g., Grünwald et al., 2005; 
Grünwald, 2007; Ly et al., 2017).

Suppose that researchers wish to compare Fechner’s law 
of psychophysics (which can account only for negatively 
accelerating curves) against Steven’s law of psychophys-
ics (which can account for negatively and positively accel-
erating curves). The researchers view both accounts as 
sequential forecasting systems (e.g., Dawid, 1984) and use 
the Bayes factor to quantify the models’ relative predictive 
performance. They then consult the statistical literature and 
read, to their surprise, that Fechner’s law is nested under 
Stevens’ law (Kvålseth, 1992). Does the realization that the 
models are nested invalidate the conclusion that Fechner’s 
model has outpredicted Steven’s model? Should we resign 
ourselves to the position that it is impossible to collect posi-
tive evidence for Fechner’s law over Stevens’ law? We don’t 
think so. In fact we believe that if the data had consistently 
showed negatively accelerating curves, Stevens’ law would 
not even have been proposed.

Null Sets

Kelter’s assertion that in practical applications the denomi-
nator in Eq. (3) is zero is argued based on the notion of null 
sets. A null set is a relative concept defined with respect to a 
certain (probability) measure and the space it works on. For 
instance, the natural measure on two-dimensional (Euclid-
ean) space ℝ2 is the so-called two-dimensional Lebesgue 
measure λ2, which gives the rectangle [− 6,− 2] × [0.5,2.5], 
see Fig. 1, an area of 4 × 2 = 8 in, say, square meters m2. 
A lower dimensional object such as the bottom edge of the 
aforementioned rectangle (i.e., the line segment [− 6,− 2] 
×{0.5}) has λ2-measure zero. This just means that this line 
segment has no area. It does not mean that the line itself 
has no intrinsic worth, nor that it is uninteresting. When we 
take into account the intrinsic dimension of the line we get 
the natural measure in one-dimensional Euclidean space ℝ
.4 This natural measure is known as the one-dimensional 

Lebesgue measure λ and assigns to the line segment a length 
of 4 in, say, meters m, as one might expect.

Kelter’s claim that the marginal likelihood of M0 is zero 
follows from him letting the two-dimensional prior density 
�(�, �|M1) abuse its null sets onto the one-dimensional prior 
density �(�|M0) . Note again that the null sets of �(�, �|M1) 
defined for M1 are made to intrude on �(�|M0) , which is 
defined on the different context given by M0 . Similarly, the 
within-model uncertainty of the LBA model should not dictate 
the priors on the parameters of the DDM model. The param-
eters in each of these models affect the data differently, even if 
they are given similar interpretations (e.g., Osth et al., 2017).

As mentioned above, Kelter’s argument of having the 
prior density �(�|M0) be violated by the higher-dimensional 
prior density �(�, �|M1) leads to an infinite regress. Con-
cretely, suppose that in addition to the models in Eq. (1), we 
also entertain the model

or equivalently

where β1 is the effect of x1 on Y, where x1, for instance, could 
represent age, or a factor on which the data could be strati-
fied, such as gender.

By taking β1 = 0 in M2 , we retrieve M1 , and note that 
M2 is three-dimensional with free parameters μ,β1,σ. 
Kelter’s argument leads to �(�, �1, �|M2) forcing its null 
sets onto �(�, �|M1) making the marginal likelihood of M1 
zero. Because the marginal likelihood of M1 is the normal-
izing constant of the posterior on μ,σ, Kelter would then 
have to conclude that the posterior density �(�, �|y,M1) 
does not exist. This implies that also no FBST ev can be 
computed. Observe that the whole argument is reasoned 

(4)M2 ∶ Y|x1 ∼ N(� + �1x1, �
2),

(5)M2 ∶ Y = � + �1x1 + �, where � ∼ N(0, �2),

−7 −6 −5 −4 −3 −2 −1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 1   The two-dimensional Lebesgue measure is the natural measure 
that gives rectangles with width w and height h an area of w × h in, 
say, square meters m2

4  This is in general known as disintegration (e.g., Chang & Pollard, 
1997; Kallenberg, 2021) and forms the basis of conditional inference 
such as Bayesian statistics.
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from the perspective of M2 in which both M1 and M0 are 
false to begin with. Every model can be further extended 
by including a possibly not relevant covariate, resulting in a 
higher-dimensional model. This argument can be repeated 
indefinitely, resulting in posteriors that are always ill-defined 
from a certain perspective. The way out is to give intrinsic 
value to each model, and have each their own prior densities 
in their own rights.

The FBST ev Behaves as a p‑Value

In Ly and Wagenmakers (in press) we elaborated on a theo-
rem derived by, amongst others, the advocates of FBST ev 
(Diniz et al., 2012). The clarification we added was the mode 
of convergence which is “in distribution” resulting in

see the discussion surrounding Equation 3 in Ly and Wagen-
makers (in press) for further details. Equation (6) implies 
that the sampling distribution of FBST ev can be accu-
rately approximated by the distribution of a (transformed) 
p-value. It shows that for general priors, FBST ev behaves 
as a p-value. This qualitative statement provides sufficient 
insights to why FBST ev does not act as a proper meas-
ure of evidence. Furthermore, Kelter’s claim that Eq. (6) 
cannot hold for discrete models is unfortunately incorrect. 
Converge in distribution does not depend on the underly-
ing probability spaces (e.g., van der Vaart, 1998, p. 5). This 
mode of convergence formalizes exactly what it means for 
the intuitive clear idea of a discrete uniform distribution on 
the interval (0,1) with n bins each occurring with chance 
1/n to converge to the continuous uniform distribution on 
the interval (0,1). Another example is given by a Galton 
board, which demonstrates how a binomial distribution can 
be well approximated by a normal distribution Galton (p. 63, 
1889). It is in this sense that the distribution of FBST ev can 
be well approximated by the distribution of a p-value based 
on the likelihood ratio statistic. In Ly and Wagenmakers (in 
press) we elaborated on how this relationship between FBST 
ev and the p-value causes FBST ev to not act as a proper 
measure of scientific evidence.

Concluding Comments

Kelter’s main counterargument to our critique on FBST 
ev as a measure of evidence is that in scientific practice, 
the point-null hypothesis is never true exactly. Hence, the 
epistemic defects of FBST ev are judged to be practically 
irrelevant. Presumably it does not matter that FBST ev can-
not quantify evidence in favor of the point-null, because the 

(6)ev
d
→ 1 − Fdim(�1)

[F−1
dim(�1)−dim(�0)

(1 − p)],

point-null is never true anyway. According to Kelter, the 
problem lies instead with methodologies such as the Bayes 
factor, that do assign credence to a point-null hypothesis. 
Kelter’s line of argumentation is relatively well-known in 
the field of statistics. For statisticians, it would be good news 
if the Kelter line of argumentation were correct, because 
hypotheses could then be evaluated using a methodology 
that is straightforward—much more straightforward than 
Bayes factors, which depend critically on the specification 
of prior distributions (e.g., Bayarri et al., 2012; Grünwald 
et al., 2020; Jeffreys, 1961; Ly et al., 2016b, 2016a, 2020).

In this rejoinder we have stressed the following points that 
are underappreciated in the statistical literature:

1.	 Bayes factors compare predictive performance between 
any two models, nested or non-nested. Researchers 
who abhor the point-null hypothesis may still prefer the 
Bayes factor as a method for model comparison.

2.	 Researchers allergic to the point-null may replace it with 
a peri-null. Crucially, this does not affect the key aspects 
of our critique on FBST ev (Ly & Wagenmakers, 2022). 
In particular, it does not change the fact that FBST ev 
suffers from the Jeffreys-Lindley paradox (Wagenmakers 
& Ly, in press).

3.	 The Bayes factor quantifies relative predictive perfor-
mance and does not depend on any of the two models 
under consideration or the prior densities being “true”.5

4.	 The prior distribution for the test-relevant parameter in 
the alternative model does not dictate the prior model 
probability for the null hypothesis, nor the prior den-
sity within the null model. Doing so leads to an infinite 
regress.

Therefore we maintain that the epistemic defects of FBST 
ev are more than just a theoretical possibility. In practice, a 
skeptic who is confronted with compelling FBST ev support 
against the null has every right to remain doubtful; after all, 
the skeptic’s model—whether instantiated as a point-null 
or a peri-null hypothesis—may predict the data as well or 
better than the alternative model. This does not mean that 
the FBST ev is useless or inherently flawed; in fact, it may 
serve well as a measure of surprise (Good, 1981), attending 
the researcher to the fact that a single hypothesized model 
may be in need of reappraisal or adjustment. Thus, FBST 
ev may be particularly useful in an early stage of model-
development, where clearly articulated alternative models 
are still lacking. However, in a later stage researchers will 
want to use the developed models to quantify evidence (e.g., 

5  The use of a Bayes factor also does not require any “specific meas-
ure-theoretic premise” and no restrictions are imposed on priors or 
any data generating model.
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for a treatment effect in medical clinical trials). In this stage, 
a between-model perspective appears to be essential. In sum, 
we remain convinced that even though FBST ev may be use-
ful as a within-model measure of surprise, it is not a genuine 
measure of evidence.
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