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Abstract

Publication bias is a ubiquitous threat to the validity of meta-analysis and the

accumulation of scientific evidence. In order to estimate and counteract the

impact of publication bias, multiple methods have been developed; however,

recent simulation studies have shown the methods' performance to depend on

the true data generating process, and no method consistently outperforms the

others across a wide range of conditions. Unfortunately, when different

methods lead to contradicting conclusions, researchers can choose those

methods that lead to a desired outcome. To avoid the condition-dependent, all-

or-none choice between competing methods and conflicting results, we extend

robust Bayesian meta-analysis and model-average across two prominent

approaches of adjusting for publication bias: (1) selection models of p-values

and (2) models adjusting for small-study effects. The resulting model ensemble

weights the estimates and the evidence for the absence/presence of the effect

from the competing approaches with the support they receive from the data.

Applications, simulations, and comparisons to preregistered, multi-lab replica-

tions demonstrate the benefits of Bayesian model-averaging of complementary

publication bias adjustment methods.
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1 | INTRODUCTION

Meta-analysis is essential to cumulative science.1 However,
a common concern to meta-analysis is the overestimation
of effect size due to publication bias, the preferential pub-
lishing of statistically significant studies.2–6 In addition, this
effect size exaggeration can be further increased by ques-
tionable research practices, that is, researchers' tendency to
manipulate their data in a way that increases the effect size
and the evidence for an effect.7,8 Indeed, descriptive surveys

find that both problems are remarkably common. For
example, John and colleagues9 estimate that about 78% of
researchers failed to disclose all dependent measures and
around 36% stopped data collection after achieving a signifi-
cant result* (but see Fiedler & Schwarz10 who argued that
the survey by John and colleagues9 overestimated QRPs
prevalence).

The results of the publication bias and questionable
research practices are often viewed as a missing data
problem; where some studies are missing from the
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published research record because they did not reach a
statistical significance criterion while other estimates are
observed after being “massaged” by researchers. Unfortu-
nately, a perfect solution to the problem of missing data
is impossible since we cannot know the unreported
results nor the precise mechanism of omission. Multiple
methods have been offered to adjust for likely publication
bias from observable patterns contained in the reported
research record.11–24 All of these methods have been
shown to thrive under different assumptions and simula-
tion designs.13,25–27

Because different methods can lead to different con-
clusions, some meta-analysts suggest that we should not
search for the “best” bias-adjusted effect size estimate.
Instead, they suggest that multitude bias-adjusted effect
size estimates should be offered as a sensitivity analysis
for the original unadjusted value.28–30 The new method
proposed here is another useful tool to accommodate
publication bias, and researchers are free to supplement
it with other methods.

Researchers interested in obtaining better bias-
adjusted effect size estimates or selecting the most suit-
able set of methods for sensitivity analysis increasingly
emphasize the importance of selecting an appropriate
estimator conditional on the situation at hand. For
instance, Hong & Reed27 argue:

What is missing is something akin to a
flow-chart that would map observable char-
acteristics to experimental results which the
meta-analyst could then use to select the best
estimator for their situation. (p. 22)

And Carter and colleagues25 write:

Therefore, we recommend that meta-analysts
in psychology focus on sensitivity analyses—
that is, report on a variety of methods, consider
the conditions under which these methods fail
(as indicated by simulation studies such as
ours), and then report how conclusions might
change depending on which conditions are
most plausible. (p. 115)

In practice, researchers seldom have knowledge about
the data-generating process nor do they have sufficient
information to choose with confidence among the wide
variety of proposed methods that aim to adjust for publi-
cation bias. Furthermore, this wide range of proposed
methods often leads to contradictory conclusions.25 The
combination of uncertainty about the data-generating
process and the presence of conflicting conclusions can
create a “breeding ground” for confirmation bias31:

researchers may unintentionally select those methods
that support the desired outcome. This freedom to choose
can greatly inflate the rate of false positives, which can
be a serious problem for conventional meta-analysis
methods.

An alternative approach is to integrate the different
approaches, explicitly, and let the data determine the
contribution of each model based on its relative predic-
tive accuracy for the observed data. To implement this
approach we extend the robust Bayesian meta-analysis
(RoBMA) framework outlined in Maier and colleagues.13

The original RoBMA framework included selection
models (operating on p-values) that have been shown to
work well even under high heterogeneity25,32 (see also
Guan and colleagues for earlier work33). The extended
RoBMA framework also includes PET-PEESE, a method
that adjusts for small-study effects by modeling the rela-
tionship between the effect sizes and standard errors.16

PET-PEESE generally has low bias and performs well in
applications.25,34 By including both p-value selection
models as well as PET-PEESE, the extended version of
RoBMA can apply both models simultaneously and opti-
mally, relative to the observed research record.

Below we first provide a brief introduction to the
RoBMA framework. We use an example on precogni-
tion35 to illustrate both the general model-averaging
methodology, RoBMA-PSMA (PSMA: publication selec-
tion model-averaging), and the way RoBMA-PSMA com-
bines multiple weight functions including PET-PEESE.
Second, we evaluate RoBMA-PSMA on comparisons with
findings from preregistered multi-lab replications,34 and
across more than a thousand simulation environments
employed by four different simulation studies.27

2 | ROBUST BAYESIAN
META-ANALYSIS: GENERAL
BACKGROUND

Because the true data generating process is unknown
(effect present vs. effect absent; fixed-effect vs. random-
effects; no publication bias vs. publication bias; and how
publication bias expresses itself), many different models
can be specified. RoBMA-PSMA accepts this multitude of
models and uses Bayesian model-averaging to combine
the estimates from individual models based on how well
each model predicts the data.36–38 Consequently, the pos-
terior plausibility for each individual model determines
its contribution to the model-averaged posterior
distributions.13,39,40

In this section, we provide a brief overview of Bayes-
ian model-averaging, the work horse of RoBMA (for an
in-depth treatment see38,40,41). First, the researcher needs

100 BARTOŠ ET AL.
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to specify (1) the models H� under consideration, that is,
the probability of data under the different parameter
values that H� allows, p datajθ,H�ð Þ (i.e., the likelihood),
and (2) prior distributions for the model parameters θ,
that is, the relative plausibility of the parameter values
before observing the data, p θjH �ð Þ. In the case of meta-
analyses, the data are usually represented by the observed
effect sizes (yk) and their standard errors (sek) from
k¼ 1,…,K individual studies. For example, a fixed-effect
meta-analytic model H0 assuming absence of the mean
effect (i.e., μ = 0) and no across-study heterogeneity
(i.e., τ = 0), can be defined as:

H0 : μ¼ 0, τ¼ 0

p data θ0,H0j Þ : yk �Normal 0, sekð Þ,ð ð1Þ

where θ0 denotes vector of parameters (μ and τ) belong-
ing to the model H0.

In contrast, a fixed-effect meta-analytic model H1

assuming the presence of the mean effect (i.e., μ≠ 0)
needs to also specify a prior distribution for μ, f(.):

H1 : μ� f :ð Þ, τ¼ 0

p data θ1,H1j Þ : yk �Normal μ, sekð Þ:ð ð2Þ

Once the models have been specified, Bayes' rule dic-
tates how the observed data update the prior distributions
to posterior distributions, for each model separately:

p θ0jH0,datað Þ¼ p θ0jH0ð Þp datajθ0,H0ð Þ
p datajH0ð Þ ,

p θ1jH1,datað Þ¼ p θ1jH1ð Þp datajθ1,H1ð Þ
p datajH1ð Þ ,

ð3Þ

where the denominators denote the marginal likelihood,
that is, the average probability of the data under a partic-
ular model. Specifically, marginal likelihoods are
obtained by integrating the likelihood over the prior dis-
tribution for the model parameters:

pðdatajH0Þ¼
Z

p datajθ0,H0ð Þp θ0 H0j Þdθ0,ð

p datajH1ð Þ¼
Z

p datajθ1,H1ð Þp θ1jH1ð Þdθ1: ð4Þ

Together with the likelihood, the prior parameter dis-
tribution determines the model's predictions. The mar-
ginal likelihood therefore quantifies a model's predictive
performance in light of the observed data. Consequently,
the marginal likelihood plays a pivotal role in model

comparison and hypothesis testing.42 The ratio of two
marginal likelihoods is known as the Bayes factor
(BF),43–46 and it indicates the extent to which one model
outpredicts another; in other words, it grades the relative
support that the models receive from the data. For exam-
ple, the Bayes factor that assesses the relative predictive
performance of the fixed-effect meta-analytic model
H0 : μ¼ 0 to that of the fixed-effect model H1 : μ≠ 0 is

BF10 ¼ p datajH1ð Þ
p datajH0ð Þ : ð5Þ

The resulting BF10 represents the outcome of a Bayes-
ian hypothesis test for the presence versus absence of an
effect for the fixed-effect meta-analytic models. Unlike
the p-value in Neyman-Pearson hypothesis testing, the
BF value can be interpreted as a continuous measure of
evidence. A BF10 value larger than 1 indicates support for
the alternative hypothesis (in the nominator) and a value
lower than 1 indicates support for the null hypothesis
(in the denominator). As a general rule of thumb, Bayes
factors between 1 and 3 (between 1 and 1/3) are regarded
as anecdotal evidence, Bayes factors between 3 and
10 (between 1/3 and 1/10) are regarded as moderate evi-
dence, and Bayes factors larger than 10 (smaller than
1/10) are regarded as strong evidence in favor of (against)
a hypothesis (e.g., appendix I of Jeffreys47 and Lee &
Wagenmakers48 p. 105). While this rule of thumb can aid
interpretation, Bayes factors are inherently continuous
measures of the strength of evidence and any attempt at
discretization inevitably involves a loss of information.

Next, we incorporate the prior model probabilities
that later allow us to weight the posterior model esti-
mates by posterior probability of the considered models.
It is common practice to divide the prior model probabil-
ity equally across the different model types, that is,
p H0ð Þ¼ p H1ð Þ¼ 1=2.36,40,49,50 To obtain the posterior
model probabilities, we apply Bayes' rule one more time,
now on the level of models instead of parameters:

pðH0jdataÞ¼ p H0ð Þp datajH0ð Þ
p datað Þ ,

pðH1jdataÞ¼ p H1ð Þp datajH1ð Þ
p datað Þ : ð6Þ

The common denominator,

p datað Þ¼ p datajH0ð Þp H0ð Þþp datajH1ð Þp H1ð Þ, ð7Þ

ensures that the posterior model probabilities sum
to one.

BARTOŠ ET AL. 101
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The relative predictive performance of the rival
models determines the update from prior to posterior
model probabilities; in other words, models that pre-
dict the data well receive a boost in posterior probabil-
ity, and models that predict the data poorly suffer a
decline.45,51 Thus, the Bayes factor quantifies the
degree to which the data change the prior model odds
to posterior model odds:

p datajH1ð Þ
p datajH0ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Bayes factor

¼ p H1jdatað Þ
p H0jdatað Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Posterior odds

�
p H1ð Þ
p H0ð Þ|fflffl{zfflffl}
Prior odds

: ð8Þ

We can combine the posterior parameter distributions
from the two fixed-effect meta-analytic models by weight-
ing the distributions according to the posterior model
probabilities (e.g., Wrinch & Jeffreys,46 p. 387 and
Jeffreys,52 p. 222). The resulting model-averaged posterior
distribution can be defined as a mixture distribution,

p θjdatað Þ¼ p θ0jH0, datað Þp H0jdatað Þ
þp θ1jH1, datað Þp H1jdatað Þ: ð9Þ

In RoBMA, the overall model ensemble is constructed
from eight model types that represent the combination of
the presence/absence of the effect, heterogeneity, and
publication bias (modeled with two types of selection
models in the original version of RoBMA13). With more
than two models in play, Equations (5) and (9) can be
expanded to accommodate the additional models. Specifi-
cally, the inclusion Bayes factor can be defined as a com-
parison between sets of models. For example, BF10
quantifies the evidence for presence versus absence of the
effect by the change from prior to posterior odds for the
set of models that include the effect versus the set of
models that exclude the effect:

where i � I refers to models that include the effect and j �
J refers to models that exclude the effect.38,40† In the same
way, we can also assess the relative predictive performance
of any model compared to the rest of the ensemble.

Finally, the model-averaged posterior distribution of
θ is defined as a mixture distribution of the posterior dis-
tributions of θ from each model Hn weighted by the pos-
terior model probabilities,

p θjdatað Þ¼
XN
n¼1

p θnjHn, datað Þp Hnjdatað Þ: ð11Þ

To complete the model-averaged ensemble with
multiple models corresponding to each component
(e.g., two weight functions as a way of adjusting for
publication bias in the original RoBMA), we maintain
our prior indifference towards each of the hypotheses
(e.g., presence/absence of the effect) by setting the prior
model probabilities of all models that compose one of
these two components to sum to 1/2. Often, the data
contain enough information to assign posterior model
probabilities to a class of similar models, largely wash-
ing out the effect of prior model probabilities on the
model-averaged posterior distribution. If the data do
not contain enough information, the model-averaged
posterior distribution will be more affected by the
choice of prior model probabilities. If researchers have
diverging views on plausibility of different models, they
can modify these prior model probabilities (e.g., by
decreasing the prior model probabilities of fixed-effect
models, but see50).

In contrast to classical meta-analytic statistics, the
advantages of the Bayesian approach outlined above are
that RoBMA can: (1) provide evidence for the absence of
an effect (and therefore distinguish between “absence
of evidence” and “evidence of absence”)53,54; (2) update
meta-analytic knowledge sequentially, thus addressing
recent concern about accumulation bias55; (3) incorpo-
rate expert knowledge; (4) retain and incorporate all
uncertainty about parameters and models, without the

need to make all-or-none choices; (5) emphasize the
model outcomes that are most supported by the data,
allowing it to flexibly adapt to scenarios with high het-
erogeneity and small sample sizes.

BF10|ffl{zffl}
Inclusion Bayes factor

for effect

¼
P

i � Ip Hijdatað ÞP
j � Jp Hjjdata

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Posterior inclusion odds

for models assuming effect

, P
i � Ip Hið ÞP
j � Jp Hj

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Prior inclusion odds

for models assuming effect

, ð10Þ
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3 | PUBLICATION BIAS
ADJUSTMENT METHOD 1:
SELECTION MODELS

One class of publication bias correction methods are selec-
tion models.11,12,32,56,57‡ In general, selection models esti-
mate the relative probability that studies with p-values
within pre-specified intervals were published as well as the
corrected meta-analytic effect size. In other words, they are
directly accounting for the missing data, based on the mod-
eled relation between statistical significance and probability
of publication. Selection models differ mostly in the speci-
fied weight function (such as 3PSM and 4PSM11 and AK1
and AK220), or are fit only to the statistically significant
results (e.g., p-curve18 and p-uniform19).

Selection models based on p-values are attractive for
several reasons. First, the models provide a plausible
account of the data generating process—statistically non-
significant studies are less likely to be published than sta-
tistically significant studies.2,4,6 Second, in recent simula-
tion studies the unrestricted versions of selection models
performed relatively well.25,27

Selection models can be specified flexibly according
to the assumed publication process. For example, we can
distinguish between two-sided selection (i.e., significant
studies are published regardless of the direction of the
effect) and one-sided selection (only significant studies in
the “correct” direction are preferentially reported). In the
previous implementation of RoBMA, the selection
models assumed two-sided selection, either at a p-value
cutoff of 0.05 or also at a marginally significant cutoff of
0.10.13 In this paper, we extend RoBMA by adding
4 weight functions that encompass more ways in which
the selection process might operate. The added weight
functions assume one-sided selection for positive effect
sizes with cutoffs on significant, marginally significant,
and/or p-values corresponding to the expected effect size
direction. Overall the six included weight functions are:

1. Two-sided (already included in RoBMA)
a. p-value cutoffs = 0.05;
b. p-value cutoffs = 0.05 & 0.10.

2. One-sided (new in RoBMA-PSMA)
a. p-value cutoffs = 0.05;
b. p-value cutoffs = 0.025 & 0.05;
c. p-value cutoffs = 0.05 & 0.50;
d. p-value cutoffs = 0.025 & 0.05 & 0.50.

3.1 | Example—Feeling the future

We illustrate this extended version of RoBMA on studies
from the infamous 2011 article “Feeling the future:

Experimental evidence for anomalous retroactive influ-
ences on cognition and affect.”35 Across a series of nine
experiments, Bem35 attempted to show that participants
are capable of predicting the future through the anomalous
process of precognition. In response to a methodological cri-
tique, Bem and colleagues60 later conducted a meta-analysis
on the nine reported experiments in order to demonstrate
that the experiments jointly contained strong support for
existence of the effect. Publication of such an implausible
result in the flagship journal of social psychology ignited an
intense debate about replicability, publication bias, and
questionable research practices in psychology.7

We analyze the data as described by Bem and col-
leagues60 in Table 1 with the updated version of RoBMA
R package.61 For illustration, we specify the publication
bias adjustment part with the six weight functions out-
lined above. We use the default prior distributions for the
effect size and heterogeneity (standard normal and
inverse-gamma, respectively, as in the original version of
RoBMA, see Appendix B (Data S1) for details). Internally,
the package transforms the priors, the supplied Cohen's
d, and their standard errors to the Fisher's z scale.§ The
estimates are transformed back to Cohen's d scale for
ease of interpretation. R code and data for reproducibility
are available on OSF https://osf.io/fgqpc/.

Our results do not provide notable evidence either for
or against the presence of the anomalous effect of precog-
nition: the model-averaged Bayes factor equals
BF10 = 1.91 and the posterior model-averaged mean esti-
mate of μ = 0.097, 95% CI [0.000, 0.232].** Figure 1 shows
posterior model-averaged estimated weights with a re-
scaled x-axis for easier readability. Because the meta-
analysis is based on only nine estimates, the uncertainty
in the estimated weights is relatively high.

These results are an improvement from the original
RoBMA implementation (with only 2 two-sided weight
functions) that showed strong support for the effect:

0.0

0.2

0.4

0.6

0.8

1.0

0 0.025 0.05 0.5 0.95 0.975 1

p−value

P
ro

b
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b
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FIGURE 1 The model-averaged weight function with 95% CI

for Bem.35 Results are model-averaged across the whole model

ensemble, including models assuming no publication bias (ω = 1)

BARTOŠ ET AL. 103

 17592887, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1594 by U
va U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [26/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://osf.io/fgqpc/


BF10 = 97.89, μ = 0.149, 95% CI [0.053, 0.240]. The substan-
tial difference in conclusions between the original RoBMA
and the RoBMA with four additional weight functions is
due to the inclusion of one-sided selection models that
seems to provide a better description for the Bem studies.
More importantly, with the additional four weight functions
RoBMA provides only moderate evidence for the effect even
when adopting the N(0, 0.3042) prior distribution for effect
size recommended by Bem and colleagues60: BF10 = 5.59,
μ = 0.122, 95% CI [0.000, 0.234].

3.2 | Limitations of selection models

While selection models have been shown to perform well
in comparison to other methods in simulation
studies,25,32 they often insufficiently adjust for publica-
tion bias when applied to actual meta-analytic data.34,64

This discrepancy arises because the simulation studies
assume that the selection model is an accurate reflection
of the true data-generating process; that is, the synthetic
data obey a selection process that stipulates publication
probability is (a) based solely on p-values rather than on
effect sizes; (b) based solely on a discretized p-value inter-
val, within which the probability of publication is con-
stant. The simulation studies largely ignore the
possibility of model misspecification and therefore pro-
vide an upper bound on model performance.25 A key
strength of the Bayesian model-averaging approach is
that it can incorporate any number of models, increasing
robustness and decreasing the potentially distorting
effects of model misspecification. Therefore, we extend
RoBMA with another method that adjusts for publication
bias in an entirely different way—PET-PEESE.16

4 | PUBLICATION BIAS
ADJUSTMENT METHOD 2:
PET-PEESE

A prominent class of alternative approaches to the selec-
tion models outlined above are methods that adjust for
publication bias by adjusting for small-study effects by
estimating the relationship between effect sizes and their
standard errors.14 The most well-known approaches
include trim and fill17 and PET-PEESE.16 Here, we focus
only on PET-PEESE since its regression-based frame-
work, which fits the model to all observed studies, allows
us to compare the model fit directly to the selection
model-based approaches.

PET-PEESE method is an attractive addition to the
RoBMA methodology since it often performs better than
selection models in meta-analytic applications34 (for

applications in the field of ego depletion and antidepressant
effectiveness see Carter and colleagues65 and Moreno and
colleagues,66 respectively). PET-PEESE is a conditional (two-
step) estimator composed of two models, PET model
(i.e., Precision Effect Test) that is correctly specified when the
effect is absent and PEESE model (i.e., Precision Effect Esti-
mate with Standard Error) that provides a better approxima-
tion when the effect is present.16 The individual PET and
PEESE models are the linear and the quadratic meta-
regression approximations, respectively, to the incidentally
truncated selection model16 The choice between the PET
and the PEESE model proceeds as follows: the test for the
effect size coefficient based on PET (with α = 0.10 for model
selection only) is used to decide whether the PET (p > α) or
the PEESE (p < α) effect size estimator is employed.67

In order to add PET and PEESE models as a way of
adjusting for publication bias with RoBMA, we modify
them in the following way. Instead of following PET-
PEESE conditional selection of either PET or PEESE as
proposed by Stanley & Doucouliagos,16 we include both
PET and PEESE models, separately, in the RoBMA
ensemble (alongside the weight functions model) and
model-average over the entire ensemble. Furthermore,
instead of using an unrestricted weighted least squares
estimator,16 we specify both fixed-effects and random-
effects versions of these models, for consistency with the
remaining RoBMA models. Consequently, the PET and
PEESE models implemented in RoBMA correspond to
meta-regressions of effect size on either the standard
errors or the variances with conventional fixed-effects
and random-effect flavors (see Equation (2) in Appendix
A (Data S1)).

In sum, we created a new RoBMA ensemble adjusting
for publication bias using PET and PEESE models.
Instead of using the model estimates conditionally, we
model-average across the fixed- and random-effects PET
and PEESE models assuming either absence or presence
of the effect and the corresponding fixed- and random-
effects models without publication bias adjustment.

4.1 | Example—Feeling the future

We revisit the Bem35 example. For illustration, we now
specify only the PET and PEESE models as the publica-
tion bias adjustment part of the RoBMA ensemble
(we include the six weight functions specified above in
the next subsection). Again, we use the RoBMA package
with the same default priors for effect size and heteroge-
neity; we assign Cauchy(0, 1) and Cauchy (0, 5) priors
restricted to the positive range to the regression coeffi-
cients on standard errors and variances, respectively (see
Appendix B (Data S1) for details).
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RoBMA version model-averaging across the PET and
PEESE models provides moderate evidence for the
absence of an effect, BF10 = 0.226 (the reciprocal quanti-
fying the evidence for the null hypothesis, BF01 = 4.42),
with the posterior model-averaged mean estimate
μ = 0.013, 95% CI [�0.078, 0.197]. Figure 2 shows the
estimated relationship between standard errors and effect
sizes, where the effect size at standard error 0 corresponds
to the posterior model-averaged bias-corrected estimate.

In this application, these results seem to provide an
even better adjustment than the RoBMA version of selec-
tion models discussed previously. Furthermore, the RoBMA
ensemble with PET-PEESE models resolves a seeming
inconsistency in the original conditional PET-PEESE esti-
mator. The frequentist PET model resulted in a significant
negative effect size, μ = �0.182, t(7) = �3.65, p = 0.008,
indicating that the effect size estimate from PEESE should
be used, μ = 0.024, t(7) = 0.86, p = 0.418, which however is
not notably different from zero. In addition, the RoBMA
ensemble with PET-PEESE does not provide evidence for
precognition even under the more informed N(0, 0.3042)
prior distribution for effect size recommended in Bem and
colleagues60: BF10 = 0.670, μ = 0.028, 95% CI [�0.160,
0.215]. However, under this more informed prior, the data
no longer provide moderate evidence against precognition.

4.2 | Limitations of PET-PEESE

While PET-PEESE shows less bias and overestimation
compared to other bias correction methods34 its key limi-
tation is that the estimates can have very high variability.
In simulation studies, PET-PEESE can have high RMSE
(root mean square error).13,25,27 Therefore, when PET-
PEESE based models are applied to an area of research

for which they are ill-suited, the resulting estimates may
be inaccurate and unreliable. Stanley67 shows how the
performance of PET-PEESE can be especially problem-
atic at very high levels of heterogeneity (τ ≥ 0.5), with
low number of studies (i.e., k ≤ 10), and under uni-
formly low power.

5 | COMBINING SELECTION
MODELS AND PET-PEESE

In order to obtain the best of both PET-PEESE and selec-
tion models, we combine them into an overarching
model: RoBMA-PSMA. Specifically, RoBMA-PSMA
includes the 6 weight functions outlined in the
section “Publication Bias Adjustment Methods 1: Selec-
tion Models” (assuming either presence or absence of the
effect and heterogeneity, this yields 24 models) as well as
the two PET and PEESE regression models outlined in
the section “Publication Bias Adjustment Methods 2:
PET-PEESE” section (assuming either presence or
absence of the effect and heterogeneity, this yields
8 models). We set the prior probability for the publication
bias-adjusted models to 0.513 and divide this 0.5 probabil-
ity equally across selection models and PET-PEESE
models (p. 47).68 Finally, adding models assuming
absence of the publication bias (assuming either presence
or absence of the effect and heterogeneity, this yields
4 models) results in a total of 24 + 8 + 4 = 36 models
that together comprise RoBMA-PSMA. The entire model
ensemble is summarized in Table 1.

As mentioned above, RoBMA-PSMA draws inference
about the data by considering all models simultaneously.
Specific inferences can be obtained by interrogating the
model ensemble and focusing on different model classes.
Concretely, the evidence for presence versus absence of
the effect is quantified by the inclusion Bayes factor BF10
(Equation (10)) obtained by comparing the predictive
performance of models assuming the effect is present
(i¼ 19,…, 36 in Table 1) to that of models assuming the
effect is absent (j¼ 1,…, 18 in Table 1). In the Bem exam-
ple, substituting the prior and posterior model probabili-
ties from Table 1 yields BF10 = 0.479. This Bayes factor
indicates that the posterior inclusion odds for the models
assuming the effect is present are slightly lower than the
prior inclusion odds. In other words, models assuming
that the effect is absent predicted the data about
1/0.479≈ 2.09 times better than models assuming the
effect is present. This result aligns with the common sci-
entific understanding of nature, which the presence of
precognition would effectively overturn.

The remaining Bayes factors are calculated similarly.
The Bayes factor for the presence versus absence of het-
erogeneity, BFrf, compares the predictive accuracy of
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FIGURE 2 The relationship between the standard errors and

model-averaged effect size estimate with 95% CI for Bem.35 Results

are model-averaged across the entire model ensemble. Models

assuming no publication bias have both PET and PEESE

coefficients set to 0. Black diamonds correspond to the individual

study estimates and standard errors

BARTOŠ ET AL. 105

 17592887, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1594 by U
va U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [26/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



models assuming heterogeneity (i¼ 10,…, 18 and 28,…36
in Table 1) with models assuming homogeneity
(j¼ 1,…, 9 and 19,…27 in Table 1). With BFrf = 0.144, the

data disfavor the models assuming heterogeneity; that is,
the data are BFfr = 1/0.144≈ 6.94 times more likely to
occur under homogeneity than under heterogeneity.

TABLE 1 RoBMA-PSMA model ensemble together with prior parameter distributions (columns 1–3), prior model probabilities, (column

4), and posterior model probabilities (column 5) based on an application to the data from Bem35

i Effect size Heterogeneity Publication bias Prior prob.
Posterior
prob.

1 μ = 0 τ = 0 None 0.125 0.000

2 μ = 0 τ = 0 ωTwo-sided(0.05) � CumDirichlet(1, 1) 0.010 0.000

3 μ = 0 τ = 0 ωTwo-sided(0.1,0.05) � CumDirichlet(1, 1, 1) 0.010 0.000

4 μ = 0 τ = 0 ωOne-sided(0.05) � CumDirichlet(1, 1) 0.010 0.012

5 μ = 0 τ = 0 ωOne-sided(0.05,0.025) � CumDirichlet(1, 1, 1) 0.010 0.034

6 μ = 0 τ = 0 ωOne-sided(0.5,0.05) � CumDirichlet(1, 1, 1) 0.010 0.001

7 μ = 0 τ = 0 ωOne-sided(0.5,0.05,0.025) � CumDirichlet(1, 1, 1, 1) 0.010 0.004

8 μ = 0 τ = 0 PET�Cauchy 0, 1ð Þ 0,∞½ � 0.031 0.281

9 μ = 0 τ = 0 PEESE�Cauchy 0, 5ð Þ 0,∞½ � 0.031 0.254

10 μ = 0 τ � InvGamma(1, 0.15) None 0.125 0.000

11 μ = 0 τ � InvGamma(1, 0.15) ωTwo-sided(0.05) � CumDirichlet(1, 1) 0.010 0.000

12 μ = 0 τ � InvGamma(1, 0.15) ωTwo-sided(0.1,0.05) � CumDirichlet(1, 1, 1) 0.010 0.000

13 μ = 0 τ � InvGamma(1, 0.15) ωOne-sided(0.05) � CumDirichlet(1, 1) 0.010 0.014

14 μ = 0 τ � InvGamma(1, 0.15) ωOne-sided(0.05,0.025) � CumDirichlet(1, 1, 1) 0.010 0.020

15 μ = 0 τ � InvGamma(1, 0.15) ωOne-sided(0.5,0.05) � CumDirichlet(1, 1, 1) 0.010 0.006

16 μ = 0 τ � InvGamma(1, 0.15) ωOne-sided(0.5,0.05,0.025) � CumDirichlet(1, 1, 1, 1) 0.010 0.010

17 μ = 0 τ � InvGamma(1, 0.15) PET�Cauchy 0, 1ð Þ 0,∞½ � 0.031 0.021

18 μ = 0 τ � InvGamma(1, 0.15) PEESE�Cauchy 0, 5ð Þ 0,∞½ � 0.031 0.017

19 μ � Normal(0, 1) τ = 0 None 0.125 0.051

20 μ � Normal(0, 1) τ = 0 ωTwo-sided(0.05) � CumDirichlet(1, 1) 0.010 0.007

21 μ � Normal(0, 1) τ = 0 ωTwo-sided(0.1,0.05) � CumDirichlet(1, 1, 1) 0.010 0.031

22 μ � Normal(0, 1) τ = 0 ωOne-sided(0.05) � CumDirichlet(1, 1) 0.010 0.030

23 μ � Normal(0, 1) τ = 0 ωOne-sided(0.05,0.025) � CumDirichlet(1, 1, 1) 0.010 0.035

24 μ � Normal(0, 1) τ = 0 ωOne-sided(0.5,0.05) � CumDirichlet(1, 1, 1) 0.010 0.018

25 μ � Normal(0, 1) τ = 0 ωOne-sided(0.5,0.05,0.025) � CumDirichlet(1, 1, 1, 1) 0.010 0.022

26 μ � Normal(0, 1) τ = 0 PET�Cauchy 0, 1ð Þ 0,∞½ � 0.031 0.047

27 μ � Normal(0, 1) τ = 0 PEESE�Cauchy 0, 5ð Þ 0,∞½ � 0.031 0.046

28 μ � Normal(0, 1) τ � InvGamma(1, 0.15) None 0.125 0.007

29 μ � Normal(0, 1) τ � InvGamma(1, 0.15) ωTwo-sided(0.05) � CumDirichlet(1, 1) 0.010 0.001

30 μ � Normal(0, 1) τ � InvGamma(1, 0.15) ωTwo-sided(0.1,0.05) � CumDirichlet(1, 1, 1) 0.010 0.003

31 μ � Normal(0, 1) τ � InvGamma(1, 0.15) ωOne-sided(0.05) � CumDirichlet(1, 1) 0.010 0.005

32 μ � Normal(0, 1) τ � InvGamma(1, 0.15) ωOne-sided(0.05,0.025) � CumDirichlet(1, 1, 1) 0.010 0.005

33 μ � Normal(0, 1) τ � InvGamma(1, 0.15) ωOne-sided(0.5,0.05) � CumDirichlet(1, 1, 1) 0.010 0.003

34 μ � Normal(0, 1) τ � InvGamma(1, 0.15) ωOne-sided(0.5,0.05,0.025) � CumDirichlet(1, 1, 1, 1) 0.010 0.004

35 μ � Normal(0, 1) τ � InvGamma(1, 0.15) PET�Cauchy 0, 1ð Þ 0,∞½ � 0.031 0.004

36 μ � Normal(0, 1) τ � InvGamma(1, 0.15) PEESE�Cauchy 0, 5ð Þ 0,∞½ � 0.031 0.004

Note: μ corresponds to the effect size parameter, τ to the heterogeneity parameter, ω to the weight parameters with an appropriate selection process (either one
or two-sided with given cutoffs), PET to the regression coefficient on the standard errors, and PEESE to the regression coefficient on variances. All prior

distributions are specified on the Cohen's d scale.
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Analogously, the Bayes factor for the presence versus
absence of publication bias, BFpb, compares predictive
performance of models assuming publication bias is pre-
sent (i¼ 2,…, 9, 11,…18, 20…27, and 29,…36 in Table 1) to
that of models assuming publication bias is absent ( j �
1, 10, 19, and 28 in Table 1). Here, the results show
strong support in favor of the models assuming publica-
tion bias is present, BFpb = 16.31.

Model-averaging can also be used to compare the dif-
ferent types of publication bias adjustment methods. Spe-
cifically, the predictive performance of the selection
models (i = 2, …, 7, 11, …, 16, 20, …, 25, and 29, …, 34)
may be contrasted to that of the PET-PEESE models
( j = 8, 9, 17, 18, 26, 27, 35, and 36), yielding BF = 0.397
(cf. Equation (10)); this result indicates that the posterior
probability increases more for the PET-PEESE models
(0.25 ! 0.675) than it does for the selection models
(0.25 ! 0.268), especially selection model assuming one-
sided selection that were better supported by the data
(0.166 ! 0.225) than the two-sided selection models
(0.083 ! 0.043). However, this Bayes factor only mod-
estly favors the PET-PEESE models, and consequently
the results from the selection models also contribute sub-
stantially towards the final posterior model-averaged
estimate.

Predictive performance of individual models may be
contrasted to that of the rest of the ensemble
(cf. Equation (10)). For Bem,35 the data most strongly
supported the PET and PEESE models assuming no effect
and no heterogeneity, BF = 12.13 and BF = 10.57,
respectively—the corresponding model probabilities
increased from 0.031 to 0.280 and 0.255.

The posterior model-averaged effect size estimate μ is
obtained by combining the 36 estimates across all models
in the ensemble, weighted according to their posterior
model probabilities. Some of the models assume the effect
is absent, and concentrate all prior probability mass on
μ = 0; therefore, the model-averaged posterior distribution
is a combination of a “spike” at 0 and a mixture of continu-
ous probability densities that correspond to the alternative
models. When the alternative models are strongly sup-
ported by the data, the impact of the spike is minimal and
the model-averaged posterior distribution reduces to a mix-
ture of continuous densities. In the Bem35 example,
RoBMA-PSMA gives a posterior model-averaged mean esti-
mate μ = 0.038, 95% CI [�0.034, 0.214] (cf. Equation (9)).
The posterior model-averaged estimates for the remaining
parameters, for example, the heterogeneity estimate τ or
the publication weights ω, are obtained similarly.

The overall results would, again, remain similar even
when using the Bem and colleagues'60 more informed
prior distribution for effect size, N(0, 0.3042): BF10 = 1.41,
μ = 0.067, 95% CI [�0.111, 0.226]. These results are in

line with failed replication studies,69–72 evidence of
QRPs,73–75 and common sense76; see also.60,77–80

6 | EVALUATING ROBMA
THROUGH REGISTERED
REPLICATION REPORTS

Kvarven and colleagues34 compared the effect size esti-
mates from 15 meta-analyses of psychological experi-
ments to the corresponding effect size estimates from
Registered Replication Reports (RRR) of the same experi-
ment.†† RRRs are accepted for publication independently
of the results and should be unaffected by publication
bias. The original meta-analyses reveal considerable het-
erogeneity; thus, any single RRR is unlike to directly cor-
respond to the true mean meta-analytic effect size. As a
result, the comparison of meta-analysis results to RRRs
will inflate RMSE and can be considered a highly conser-
vative way of evaluating bias detection methods. How-
ever, when averaged over 15 RRRs, we would expect
little systematic net heterogeneity and a notable reduc-
tion in aggregate bias. In this way, average bias adjusted
estimates should randomly cluster around the average of
the RRR estimates. In other words, we would expect little
overall bias, relative to RRRs. Hence, the comparison to
RRRs can be used to gauge the performance of publication
bias adjustment methods, while keeping in mind that the
studies are heterogeneous and limited in number. Kvarven
and colleagues34 found that conventional meta-analysis
methods resulted in substantial overestimation of effect size.
In addition, Kvarven and colleagues34 examined three popu-
lar bias detection methods: trim and fill (TF),17 PET-
PEESE,16 and 3PSM.11,56 The best performing method was
PET-PEESE; however, its estimates still have notable RMSE.

Here we use the data analyzed by Kvarven and col-
leagues34 as one way of comparing the performance of
RoBMA-PSMA in relation to a series of alternative publi-
cation bias correction methods. These methods include
those examined by Kvarven and colleagues34—PET-
PEESE, 3PSM, and TF—as well as a set of seven other
methods27: 4PSM,11 AK1 and AK2,20 p-curve,18 p-uni-
form19 WAAP-WLS,22 and endogenous kink (EK).21 For
completeness, we also show results for the original imple-
mentation of RoBMA-old.13 The RoBMA-old, 3PSM,
4PSM, AK1, AK2, p-curve, and p-uniform can be viewed
as selection models operating on p-values that mostly dif-
fer in thresholds of the weight function and estimation
algorithm. The PET-PEESE, TF, and EK can be viewed as
methods correcting for publication bias based on rela-
tionship between effect sizes and standard errors. Finally,
RoBMA-PSMA is a method that combines both types of
publication bias corrections.
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Following Kvarven and colleagues,34 we report all
meta-analytic estimates on the Cohen's d scale, with one
exception for a meta-analysis that used Cohen's q scale.
As in the Bem example, RoBMA internally transforms
effect sizes from the Cohen's d scale to the Fisher
z scale.‡‡ Each method is evaluated on the following five
metrics (cf.34): (1) false positive rate (FPR), that is, the
proportion of cases where the RRR fails to reject the null
hypothesis (i.e., p > 0.05) whereas the meta-analytic
method concludes that the data offer support for the pres-
ence of the effect (i.e., p < 0.05 or BF10 > 10); (2) false
negative rate (FNR), that is, the proportion of cases
where the RRR rejects the null hypothesis (i.e., p < 0.05)
whereas the meta-analytic method fails to reject the null/
finds evidence for the absence of the effect (i.e., p > 0.05
or BF10 < 1/10)§§; (3) overestimation factor (OF), that is,
the meta-analytic mean effect size divided by the RRR
mean effect size; (4) bias, that is, the mean difference
between the meta-analytic and RRR effect size estimates;
and (5) root mean square error (RMSE), that is, the
square root of the mean of squared differences between
the meta-analytic and RRR effect size estimates. Note
that when evaluating the methods' qualitative decisions
(i.e., FPR and FNR), the RoBMA methods do not neces-
sarily lead to a strong claim about the presence or
absence of the effect; in the Bayesian framework, there is
no need to make an all-or-none decision based on weak
evidence, and here we have defined an in-between cate-
gory of evidence that does not allow a confident

conclusion (i.e., Undecided, 1/10 < BF10 < 10; for a dis-
cussion on the importance of this in-between category
see Robinson53). Furthermore, selecting a different signif-
icance level or Bayes factor thresholds would lead to dif-
ferent false positive and false negative rates.

The main results are summarized in Table 2. Evalu-
ated across all metrics simultaneously, RoBMA-PSMA
generally outperforms the other methods. RoBMA-PSMA
has the lowest bias, the second-lowest RMSE, and the
second lowest overestimation factor. The only methods
that perform better in one of the categories (i.e., AK2
with the lowest overestimation factor; PET-PEESE and
EK with the second and third lowest bias, respectively),
showed considerably larger RMSE, and AK2 converged
in only 5 out of 15 cases. Furthermore, RoBMA-PSMA
resulted in conclusions that are qualitatively similar to
those from the RRR studies. Specifically, for cases where
the RRR was statistically significant, RoBMA-PSMA
never showed evidence for the absence of the effect
(i.e., FNR = 0/8 = 25%) but often did not find compelling
evidence for the presence of the effect either (i.e., Unde-
cided = 6/8 = 75%). Furthermore, for cases where the RRR
was not statistically significant, RoBMA-PSMA showed evi-
dence for the presence of the effect only once
(i.e., FPR = 1/7 ≈ 14.3%) and did not find compelling evi-
dence for the absence of the effect in the remaining meta-
analyses (i.e., Undecided = 6/7 ≈ 85.7%). After adjusting for
publication selection bias with RoBMA, the original meta-
analyses often did not contain sufficient evidence for firm

TABLE 2 Performance of 13 publication bias correction methods for the Kvarven and colleagues34 test set comprised of 15 meta-

analyses and 15 corresponding “Gold Standard” registered replication reports (RRR)

Method FPR/Undecided FNR/Undecided OF Bias RMSE

RoBMA-PSMA 0.143/0.857 0.000/0.750 1.160 0.026 0.164

AK2 0.000/— 0.250/— 1.043 �0.070 0.268

PET-PEESE 0.143/— 0.500/— 1.307 0.050 0.256

EK 0.143/— 0.500/— 1.399 0.065 0.283

RoBMA-old 0.714/0.286 0.000/0.000 2.049 0.171 0.218

4PSM 0.714/— 0.500/— 1.778 0.127 0.268

3PSM 0.714/— 0.125/— 2.193 0.195 0.245

TF 0.833/— 0.000/— 2.315 0.206 0.259

AK1 0.857/— 0.000/— 2.352 0.221 0.264

p-uniform 0.500/— 0.429/— 2.375 0.225 0.288

p-curve 2.367 0.223 0.289

WAAP-WLS 0.857/— 0.125/— 2.463 0.239 0.295

Random Effects (DL) 1.000/— 0.000/— 2.586 0.259 0.310

Note: The results in italic are conditional on convergence: trim and fill did not converge in one case and AK2 did not converge in 10 cases. The rows are
ordered based on combined log scores performance of the abs(log(OF)), abs(Bias), and RMSE (not shown).
Abbreviations: FNR/Undecided, false negative rate/undecided evidence under an effect; FPR/Undecided, false positive rate/undecided evidence under no

effect; OF, overestimation factor; RMSE, root mean square error.
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 17592887, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1594 by U
va U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [26/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



conclusions about the presence versus absence of the
effect.*** This highlights the oft-hidden reality that the data at
hand do not necessarily warrant strong conclusions about
the phenomena under study; consequently, a final judgment
needs to be postponed until more data accumulates.

Figure 3 shows the effect size estimates from the
RRRs for each of the 15 cases, together with the estimates
from a random effects meta-analysis and the posterior
model-averaged estimates from RoBMA and RoBMA-
PSMA (figures comparing all methods for each RRR are
available in the “Kvarven et al/estimates figures” folder
in the online supplementary materials at https://osf.io/
fgqpc/files/). Because RoBMA-PSMA corrects for publica-
tion bias, its estimates are shrunken towards zero. In
addition, the estimates from RoBMA-PSMA also come
with wider credible intervals (reflecting the additional
uncertainty about the publication bias process) and are
generally closer to the RRR results. The most anomalous
case concerns the Graham and colleagues85 study, where
all four methods yield similar intervals, but the RRR
shows an effect size that is twice as small. This result
may be due to cultural differences and the choice of the

social or economic dimension that all contributed to het-
erogeneity in the original meta-analysis.86

Appendix C (Data S1) demonstrates robustness of our
findings by estimating RoBMA under different parameter
prior distributions. Appendix D (Data S1) presents a non-
parametric bootstrap analysis of the RRR comparison,
showing high uncertainty in the FPR and FNR, but quali-
tatively robust conclusions about the overestimation fac-
tor, bias, and RMSE. Appendix E (Data S1) demonstrates
that our findings are not a result of a systematic underes-
timation of effect sizes by estimating RoBMA on 28 sets
of Registered Replication Reports from Many Labs 2.87

7 | EVALUATING ROBMA
THROUGH SIMULATION STUDIES

We evaluate the performance of the newly developed
RoBMA methods using simulation studies.27 As in Hong &
Reed,27 we tested the methods in four simulation environ-
ments, namely those developed by Stanley and colleagues22

(SD&I), Alinaghi & Reed88 (A&R), Bom & Rachinger21

Oppenheimer et al. (2009)

Tversky & Kahneman (1981)

Husnu & Crisp (2010)

Schwarz et al. (1991)

Hauser et al. (2007)

Critcher & Gilovich (2008)

Graham et al. (2009)

Jostmann et al. (2009)

Monin & Miller (2001)

                              Schooler
& Engstler−Schooler (1990)

Sripada et al. (2014)

Rand et al. (2012)

Strack et al. (1988)

Srull & Wyer (1979)

Mazar et al. (2008)

−0.5 0.0 0.5 1.0 1.5

Effect Size

RE RoBMA−old RoBMA−PSMA RRR

FIGURE 3 Effect size estimates

with 95% CIs from a random-effects

meta-analysis, three RoBMA models,

and the RRR for the 15 experiments

included in Kvarven et al.34 Estimates

are reported on the Cohen's d scale

[Colour figure can be viewed at

wileyonlinelibrary.com]
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(B&R), and Carter and colleagues25 (CSG&H). These envi-
ronments differ in terms of assumptions concerning effect
sizes, heterogeneity, sample sizes, and publication bias;
moreover, CSG&H include questionable research practices
(QRP).9 Briefly, the SD&I environment relates to the set-
tings usually found in medicine where a difference between
two groups is assessed with either continuous or dichoto-
mous outcomes. The A&R environment is similar to the set-
tings encountered in economics and business and consists
of relationships between two continuous variables with
multiple estimates originating from a single study. The
B&R environment considers situations where regression
coefficients are routinely affected by an omitted-variables
bias. The CSG&H environment is most typical for psychol-
ogy with effect sizes quantifying differences in a continuous
measure between groups. For each condition from each of
the four simulation environments, Hong & Reed27 gener-
ated 3000 synthetic data sets that were then analyzed by all
of the competing methods.

Here we used the code, data, and results publicly
shared by Hong & Reed.27 Because our Bayesian methods
require computationally intensive Markov chain Monte
Carlo estimation, we used only 300 synthetic data sets
per condition (10% of the original replications).††† Never-
theless, our simulations still required �25 CPU years to
complete. A detailed description of the simulation envi-
ronments (consisting of a total of 1620 conditions) and
the remaining methods can be found in Hong & Reed27

and the corresponding original simulation publications.
We compared the performance of RoBMA-PSMA to all

methods used in the previous section. See Supplementary
Materials at https://osf.io/bd9xp/ for comparison of
methods after removing 5% of the most extreme estimates
from each method, as done by Hong & Reed,27 with the
main difference being an improved performance of AK1
and AK2.

Tables 3 and 4 summarize the aggregated results for
mean square error (MSE) and bias, respectively, separately
for each simulation environment. Although no single estima-
tor dominates across all simulation environments and cri-
teria, RoBMA-PSMA is at or near the top in most cases. The
exception is that RoBMA-PSMA produces below-
average performance in the CSG&H environment.
Tables S7 and S8 in Appendix F (Data S1) show that
RoBMA-PSMA overcorrects the effect size estimates
and performs relatively poorly only in conditions with
p-hacking strong enough to introduce significant skew
in the distributions of effect sizes.‡‡‡

Following Hong & Reed,27 Table 5 averages perfor-
mance across all four simulation environments. While
the results confirm that RoBMA-PSMA performs the best
with regard to type I error rates and coverage, it is impor-
tant to note that both the coverage and error rate were
far above the nominal levels. The results also appear
favorable to AK2, as it has the lowest bias in SD&I envi-
ronment and the second lowest biases in the A&R and
B&R environments. However, AK2 failed to converge in
over 10% of these simulated meta-analyses. Even when
AK2 converges, its MSE in the B&R and CSG&H envi-
ronments is relatively large.

TABLE 3 Ordered performance of the methods according to MSE for each simulation environment. Rank 1 has the lowest MSE. See

text for details

Rank SD&I MSE A&R MSE B&R MSE CSG&H MSE

1 RoBMA-PSMA 0.009 RoBMA-PSMA 0.222 RoBMA-PSMA 0.098 RoBMA-old 0.012

2 AK2a 0.013 TF 0.273 p-uniform 0.185 WAAP-WLS 0.018

3 RoBMA-old 0.017 AK2a 0.277 WAAP-WLS 0.193 TF 0.022

4 TF 0.025 RoBMA-old 0.327 RoBMA-old 0.221 3PSM 0.023

5 WAAP-WLS 0.025 4PSM 0.365 TF 0.321 PET-PEESE 0.027

6 PET-PEESE 0.028 AK1a 0.389 EK 0.375 p-uniform 0.028

7 EK 0.031 Random Effects (DL) 0.511 PET-PEESE 0.378 4PSM 0.031

8 Random Effects (DL) 0.034 3PSM 0.511 4PSM 0.492 EK 0.033

9 p-uniform 0.050 WAAP-WLS 0.546 3PSM 0.493 RoBMA-PSMA 0.036

10 3PSM 0.238 PET-PEESE 0.605 Random Effects (DL) 0.526 Random Effects (DL) 0.046

11 p-curve 1.228 EK 0.760 p-curve 0.850 p-curve 0.075

12 4PSM 3.375 p-curve 3.514 AK1a 2.806 AK1a 0.280

13 AK1a 6.231 p-uniform 3.621 AK2a 5.816 AK2a 2.849

Note: Methods in italic converged in fewer than 90% repetitions in a given simulation environment.
aThe performance difference in terms of MSE for AK1 and AK2 between our implementation and that of Hong & Reed27 is due to the fact that we did not omit

the 5% most extreme estimates.
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It should be noted that the averaging operation is
valid only for coverage and type I error rates, as these are
fully comparable across the different simulation environ-
ments. In contrast, bias and MSE cannot be directly aver-
aged or aggregated, as these are based on very different
effect-size metrics27; for instance, the best method in
A&R environment has five times the bias as the best
method in SD&I environment. In order to make the met-
rics commensurate, we employ a relative order-

preserving logarithmic transformation to obtain an aver-
age ranking across these four different simulation envi-
ronments89 (1 corresponds to the best relative
performance, 0 to the worst relative performance).§§§

Table 6 displays the average relative ranks of bias and
MSE for these alternative methods across all simulation
environments. RoBMA-PSMA is ranked highest accord-
ing to MSE and type I error rates, and is the second best
according to both bias and confidence interval coverage.

TABLE 4 Ordered performance of the methods according to bias for each simulation environment. Rank 1 has the lowest bias. See text

for details

Rank SD&I Bias A&R Bias B&R Bias CSG&H Bias

1 AK2 0.029 RoBMA-PSMA 0.159 EK 0.095 PET-PEESE 0.059

2 RoBMA-PSMA 0.034 AK2 0.207 AK2 0.105 WAAP-WLS 0.062

3 3PSM 0.040 EK 0.221 4PSM 0.108 RoBMA-old 0.064

4 PET-PEESE 0.049 PET-PEESE 0.259 RoBMA-PSMA 0.121 AK1 0.067

5 EK 0.053 WAAP-WLS 0.266 PET-PEESE 0.129 EK 0.072

6 RoBMA-old 0.062 TF 0.288 3PSM 0.156 3PSM 0.081

7 AK1 0.082 4PSM 0.302 WAAP-WLS 0.189 TF 0.091

8 WAAP-WLS 0.083 RoBMA-old 0.354 RoBMA-old 0.228 4PSM 0.096

9 TF 0.088 AK1 0.397 TF 0.240 p-uniform 0.106

10 4PSM 0.088 3PSM 0.475 AK1 0.277 RoBMA-PSMA 0.110

11 Random effects (DL) 0.108 Random effects (DL) 0.556 Random effects (DL) 0.363 AK2 0.117

12 p-uniform 0.147 p-curve 1.530 p-uniform 0.374 p-curve 0.118

13 p-curve 0.422 p-uniform 1.555 p-curve 0.522 Random effects (DL) 0.150

Note: Methods in italic converged in fewer than 90% repetitions in a given simulation environment.

TABLE 5 Aggregated results over all simulation conditions from Hong & Reed27

Rank Rank (Bias) Bias Rank (MSE) MSE Rank ( Coverage�0:95j j) Coverage�0:95j j Rank (ERR) ERR

1 EK 0.079 RoBMA-PSMA 0.054 AK2a 0.167 RoBMA-PSMA 0.093

2 PET-PEESE 0.083 RoBMA-old 0.085 RoBMA-PSMA 0.172 AK2a 0.129

3 AK2a 0.099 WAAP-WLS 0.085 3PSM 0.213 EK 0.257

4 RoBMA-PSMA 0.099 TF 0.121 4PSM 0.265 3PSM 0.259

5 4PSM 0.103 PET-PEESE 0.149 PET-PEESE 0.306 PET-PEESE 0.286

6 3PSM 0.105 EK 0.155 EK 0.307 4PSM 0.290

7 WAAP-WLS 0.110 p-uniform 0.161 RoBMA-old 0.317 RoBMA-old 0.485

8 RoBMA-old 0.121 Random Effects (DL) 0.203 WAAP-WLS 0.319 WAAP-WLS 0.525

9 TF 0.141 3PSM 0.223 AK1a 0.341 AK1a 0.573

10 AK1a 0.143 p-curve 0.623 TF 0.407 p-uniform 0.585

11 Random Effects (DL) 0.217 4PSM 0.851 Random Effects (DL) 0.510 TF 0.597

12 p-uniform 0.230 AK1a 2.258 p-uniform 0.576 Random Effects (DL) 0.649

13 p-curve 0.336 AK2 3.316 p-curve p-curve

Note: Ranking and values of aggregated bias, mean square error (MSE), absolute difference from 0.95 CI coverage ( Coverage�0:95j j), and type I error rate
(ERR) averaged across all simulation environments in (27; the type I error rate for RoBMA methods is based on BF>10). Methods in italic converged in fewer
than 90% repetitions in a given simulation environment.
aThe performance difference in terms of MSE for AK1 and AK2 between our implementation and that of Hong & Reed27 is due to the fact that we did not omit
the 5% most extreme estimates.
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Again, the closest competition appears to come from
AK2, but AK2 often does not converge and may yield
high MSEs—see Table 3. Table 5 also shows that
RoBMA-PSMA does well when bias and MSE are simply
averaged across these simulations, but those comparisons
need to be interpreted with caution.

8 | CONCLUDING COMMENTS

We have extended the robust Bayesian meta-analytic
framework with one-sided weight functions and PET-
PEESE regression models. This extension allows
researchers to draw inferences using a multitude of oth-
erwise competing approaches (i.e., selection models
based on p-values and models estimating the relationship
between effect sizes and standard errors). Consequently,
researchers interested in obtaining the best possible
adjusted meta-analytic effect size estimate do not need to
speculate about the type of publication bias in order to
select the best method for their setting. Instead, RoBMA
weights its inference in proportion to how well each
method accounts for the data.

The extended version of RoBMA resolves the tension
between the selection models and PET-PEESE. Further-
more, we demonstrated that RoBMA-PSMA outperforms
previous methods when applied to actual meta-analyses
for which a gold standard is available.34 Finally, the new
RoBMA methods performed well in simulation studies.
However, it is important to note that RoBMA-PSMA did
not perform well in simulation settings of Carter and col-
leagues25 with prominent p-hacking where it overcor-
rected the effect sizes.

The RoBMA framework can be further extended in
multiple ways: to account for multilevel structures, to
estimate within study clusters, to deal with multivariate
outcomes, and to include of explanatory variables. Many
of those extensions will, however, increase computational
complexity, making them practically unfeasible for selec-
tion models. Therefore, further research is need in devel-
oping efficient algorithms or approximations that will
allow the further extensions, currently unachievable
under the RoBMA-PSMA framework.

Out of the remaining methods, p-curve, p-uniform,
and random effects meta-analysis were dominated by the
other estimators, and AK2 failed to converge in many
cases. Overall, Bayesian model-averaging greatly
improved both PET-PEESE and selection models:
RoBMA-PSMA reduces PET-PEESE's MSE and bias as
well as the selection models' MSE. Importantly, RoBMA-
PSMA takes uncertainty about the type of publication
bias into account and combines the best of the two
worlds. Even though RoBMA outperforms other methods
in many cases in both the simulation study and the com-
parison of meta-analyses and registered replication
reports, it should be considered merely a new tool in the
toolbox of publication selection bias detection.

In cases where the data generating process is known
and depending on the metric that researchers want to
optimize (e.g., bias vs. RMSE) an appropriate method can
be selected via the results from our simulation study or
the meta-showdown explorer https://tellmi.psy.lmu.de/
felix/metaExplorer/. If there is considerable uncertainty
about the data generating process, we believe that
RoBMA is a sensible default. Nevertheless, researchers
may wish to check the conclusions of RoBMA against

TABLE 6 Ordered performance of the methods across simulation environments according to log scoring rule

Rank Bias Log score (Bias) MSE Log score (MSE)

1 AK2 0.801 RoBMA-PSMA 0.831

2 RoBMA-PSMA 0.801 RoBMA-old 0.682

3 EK 0.778 TF 0.519

4 PET-PEESE 0.746 WAAP-WLS 0.504

5 WAAP-WLS 0.616 AK2 0.392

6 3PSM 0.615 PET-PEESE 0.369

7 4PSM 0.602 EK 0.327

8 RoBMA-old 0.579 p-uniform 0.324

9 AK1 0.515 3PSM 0.316

10 TF 0.500 4PSM 0.315

11 Random effects (DL) 0.329 Random effects (DL) 0.310

12 p-uniform 0.304 AK1 0.183

13 p-curve 0.242 p-curve 0.114

Note: Methods in italic converged in less than 90% repetitions.
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methods that are not part of the RoBMA ensemble, such as
WAAP-WLS. As there is no principled way of averaging
these methods with RoBMA,**** researchers should view
these comparisons as sensitivity analyses. If alternative
methods come to the same conclusions as RoBMA, this sug-
gests that the results are robust; If alternative methods come
to a qualitatively different conclusion, this suggests that the
results are fragile; in this case, we recommend a more in-
depth consideration of the data-model relationship, and a
transparent report that the conclusions vary based on the
selected meta-analytic technique.

We believe that the extended version of RoBMA with
the outlined default prior distributions presents a reason-
able setup for anyone interested in performing a meta-
analysis. However, the RoBMA framework is flexible and
allows researchers to specify different prior distributions
for any of the model parameters or include/exclude addi-
tional models (see “Appendix B: Specifying Different
Priors” in,90 or many of the R package vignettes). Conse-
quently, researchers with substantial prior knowledge
can test more specific hypotheses than those specified
with the default model ensemble39,50,91 or incorporate
prior knowledge about the research environment. For
instance, when prior research has established that the
effect of interest shows considerable between-study het-
erogeneity, researchers may decide to trim the default
RoBMA ensemble by assigning prior probability zero to
the fixed effects models, and consequently drawing con-
clusions from only the random effects models.

We have implemented RoBMA-PSMA in a new ver-
sion of the RoBMA R package.61 Also, for researchers
with little programming expertise we will implement the
methodology in the open-source statistical software pack-
age JASP.92,93 We hope that these publicly-shared statisti-
cal packages will encourage researchers across different
disciplines to adopt these new methods for accommodat-
ing potential publication bias and draw conclusions that
are rich, robust, and reliable.
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ENDNOTES

* As measured by the geometric mean over researchers' self-
admission rate, prevalence estimate (the estimate for the percent
of other researchers who had engaged in a behavior), and an
admission estimate. For the admission estimates the number of
people reporting to have engaged in a given QRP was divided by
researchers estimate for the proportion of other researchers that
would admit that they engaged in this QRP.

† Both simple and inclusion Bayes factors are commonly denoted
as BF since they are still Bayes factors and the same rules and
interpretations apply to them.

‡ See23,58,59 for selection models based on effect sizes and standard
errors.

§ We use the Fisher's z scale for model fitting because it makes
standard errors and effect sizes independent under the model
without publication bias. This is an important prerequisite to
test for the presence/absence of publication bias with the PET-
PEESE models introduced later. The effect sizes and standard
errors are transformed using the popular formulas for effect size
transformations. See the appendix in Haaf and colleagues62 for
proof that Fisher's z is a variance stabilizing transformation for
Cohen's d. Prior distributions are linearly re-scaled from
Cohen's d to Fisher's z, in the same manner as in metaBMA R
package.63

** The reported lower bound of the credible interval of 0.000 is not
a coincidence and will be encountered more often than in con-
ventional frequentist methods. The 0.000 lower bound is a conse-
quence of averaging posterior estimates across all models,
including models that specify μ = 0 (see Equation (9)). When a
notable proportion of the posterior model probabilities is accu-
mulated by models assuming the absence of the effect, the
model-averaged posterior distribution for effect size will include
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a sizeable point mass at μ = 0. Consequently, the lower credible
internal bound is then “shrunk” to 0.

†† This RRR category includes “replications published according to
the ‘registered replication report’ format in the journals ‘Per-
spectives on Psychological Science’ and ‘Advances in Methods
and Practices in Psychological Science’; and (2) The ‘Many Labs’
projects in psychology” (p. 424).34

‡‡ We also tried to estimate the remaining methods on the Fisher
z scale; however, doing so reduced the performance of some of
the other methods.

§§ This corresponds to the definition of the FPR and FNR indices
from Kvarven and colleagues.34 However, it is important to note
that a statistically non-significant result is not generally a valid
reason to “accept” the null hypothesis.81,82

*** Note that this is not a general pattern and RoBMA often results
in compelling evidence, either in favor of the absence or in favor
of the presence of an effect.83,84

††† For the methods used in Hong & Reed,27 we recalculated the
result based on a sample matching the 300 replications per con-
ditions used for the RoBMA methods, using the per-replication
estimates shared by the authors.

‡‡‡ The QRPs simulated by Carter and colleagues25 results in a
strongly positively skewed distribution of effect sizes. While
RoBMA-PSMA contains selection models with weight func-
tions that well adjusts for publication bias simulated by Car-
ter and colleagues,25 the additional skew generated by these
QRPs results in misspecification of the best fitting models
and consequent overcorrection of the meta-analytic effect
size. The simpler original RoBMA does not contain the appro-
priate one-sided weight function. The skewed distribution of
effect sizes does not introduce a strong systematic bias and it,
as other methods, ironically result in better performance in
the QRP environment of Carter and colleagues25 due to more
layers of specific model misspecification. The remaining sim-
ulation environments produce bias in a more diverse manner
and do not lead to such strongly skewed distributions of effect
sizes. As a result, RoBMA-PSMA does not generally suffer
from systematic bias.

§§§ This transformation has been used to compare and rank top sci-
entists across different criteria of scientific impact.89

**** Many of these methods either remove data (WAAP-WLS) or
impute data (trim-and-fill), which makes a comparison via mar-
ginal likelihood impossible.
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