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INTRODUCTION

1.1 ROBUSTNESS

In Pakistan it is a right-hand drive, while in the Netherlands it is a left-hand drive. More
importantly, the traffic and weather conditions are significantly different. In Pakistan,
a driver encounters congested traffic consisting of pedestrians, cars, buses, motorbikes,
rikshaws, horse carts, and trucks. On the other hand, although a driver has to be careful
about bicycles driving on the same road as cars, traffic is organized in the Netherlands,
and rules are strictly followed, as illustrated in Figure 1. Moreover, the central part of
Pakistan is medium to warm weather, while in the Netherlands one needs to drive in rain,
wind, and snow in the winter. Despite these visually differing circumstances, a person
who learns to drive in the Netherlands can quickly adapt to driving in Pakistan. Humans
have a remarkable capability when it comes to generalization to unseen visual situations.
They easily apply what they have learned from previous experiences to new situations.
Although neural networks show human-level perceptual capabilities [3,14, 35,81, 89,
140] under ideal circumstances, they do not show such capabilities for the circumstances
they have not encountered in the learning phase. Currently, they require a large amount
of data to learn all these different scenarios, otherwise they fail. In one such example in
2018, a self-driving car caused an accident by mistaking a person with an object [10]
as in the training of the network of the car jaywalking was never considered. For such

Traffic in Amsterdam, Netherlands Traffic in Lahore, Pakistan

Figure 1: The image on the left [1] shows a view from Amsterdam, where heavy traffic is
organized, while the image on the right [2] shows an example of congested, unorganized
traffic in Lahore, Pakistan. Someone who learns to drive in the Netherlands easily adapts
to driving in Pakistan. It is the purpose of this thesis to make neural networks robust
against such circumstances, at least make them explain why they can not.
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Style: Garden at Giverny, Monet Style: The Spring Oil, Francis Picabia Style: Calligraphy, Ismail Gulgee

Figure 2: An original image and five differently transformed versions. They are generated
using neural style transfer [47] by applying a different style of perturbations for each
of the five generated images. Humans can still recognize objects of different styles, but
neural networks fail to do so unless trained on such transforms.

reasons, it is important to enhance the robustness of neural networks before deploying
them in real-world applications.

Another example in Figure 2 shows the Alsmeerderdijk: the original image and its
artificially transformed versions in different painting styles. It is straightforward for a
person to recognize the road, the canal, parked cars, boats, trees, clouds, and houses
in both the original and the transformed images. Humans easily recognize objects
in the presence of perturbations. However, it is challenging for a neural network to
recognize objects in perturbed images unless the network is specifically trained on such
transformations. Similarly, a self-driving car network exclusively trained on the data
collected on a sunny day will fail in the snow or at night, see Figure 3. Hence, in order to
make networks intelligent, it is of the utmost importance to robustify them against unseen
perturbations. In this thesis, instead of only focusing on seen perturbations, specific
robustness, we aim to enhance general robustness, robustness against perturbations not
seen during the training of the network.

Robustness in artificial intelligence is defined as the ability of a system to maintain
its performance under the circumstances different from the exact model it was designed
for [95]. In this thesis, we do not consider global robustness of a task, where the
performance of the entire system, say a car with inputs from diverse sensors copes with
perturbations. Our focus is local visual robustness, the robustness of visual perception.

In this thesis, perturbations are divided into two categories: natural perturbations
(blur, snow, and alike), see Figure 3 and reference [63], and human-crafted adversarial
perturbations, see Figure 4, and references [50, 122]. Small, imperceptible, carefully
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Night
Figure 3: View from a car’s windscreen in different scenarios. Daytime (normal weather),
snow, rain and nighttime respectively. A person who learns to drive in one setting can

quickly adapt to other scenarios. However, a neural network will likely perform worse,
as we will demonstrate in our experiments.

crafted perturbations, used to alter the inputs for fooling deep neural networks, are
known as adversarial examples, see Figure 4. These adversarial examples push the
classifier to the wrong class [122]. Such methods of directed perturbations include the
iterative fast gradient sign method [82], the Jacobian-based saliency map attacks [98],
one pixel attacks [121], Carlini and Wagner attacks [19] and universal attacks [97]. An
example of adversarial perturbations is shown in Figure 4, where the authors showed
that for a clean image, the network detects traffic signs correctly. In contrast, for an
adversarially perturbed image it fails to detect them, which can cause serious accidents
when incorporated into autonomous driving. We make our neural networks robust against
natural and adversarial perturbations.

1.2 EXPLAINABLE ROBUSTNESS

Influenced by the interaction of a human with an Al system, [101] defined four properties
of explainable Al. 1) Explanation: the reasoning behind the decision. In this thesis,
our explanations provide the reasoning and counter-reasoning behind decisions. 2)
Meaningful: understandable to the user. We use human-understandable attributes to
provide meaningful explanations. 3) Accuracy: accurately reflects the output of the
system. We evaluate our explanations qualitatively and quantitatively. 4) Knowledge
limits: system only operates under certain conditions and at a certain confidence level.
Our explanations, when operated in the perfect scenario of clean images, justify the
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Clean Adversarial Clean Adversarial

Figure 4: Traffic light detection for clean and adversarially perturbed inputs [125]. For
humans both images still look the same however a neural network fails to detect traffic
signs, which can lead to serious consequences. Therefore, we focus on making our
classification systems robust against adversarial perturbations.

correct decisions; when operated in imperfect scenarios, provide reasoning behind the
failure of the system.

Humans can provide reasons behind their decisions. When in ideal circumstances,
decisions are correct, the reasoning supports their decisions. When facing non-ideal
circumstances causing incorrect decisions, explanations are used to justify the wrong
decision or to understand and correct mistakes. For example, a person drives at the
average speed on a clear road, and justifies the speed by saying that the road is clear.
However, when a person reduces speed on a snowy road, the reason is that it is slippery.
If a person does not reduce speed in the presence of snow, leading to an accident,
the next time, the person will know how to act in such a situation, see Figure 5. We
provide explanations firstly when the situations are not perfect, i.e., in the presence
of perturbations, secondly we make networks robust against perturbations and provide
explanations for them, finally we utilize explanations to enhance the robustness i.e.,
explainably robust.

The most commonly used explainability techniques in recent literature are saliency-
based methods [45, 110, 115, 153]. Another group focuses on text-based explana-
tions [59,99], text-based interpretation with semantic information [33] and generating
counterfactual explanations with natural language [60]. Prototype-based explanations
have also recently gained attention [22, 34, 108]. However, the techniques mentioned
above work 1in ideal circumstances, they tend to fail in the presence of perturbations. In
this thesis, we start from the observation that the explanations are needed more when
circumstances deviate from the ideal model. In other words, explainability should come
with explainable robustness.

1.3 RESEARCH QUESTIONS

Explainability and robustness, and specifically explainable robustness are essential
features required by any neural network before deploying them in real-world applications.
Both robustness and explainability are crucial for building trust, providing transparency,
and persuading users. They are equally crucial for debugging and analysis on the
development side. Therefore, in this thesis, we ask

10
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Why are you
driving slowly ?

becavse there ic

[1s]

enow’ on the road,
and [t i 'f'//},bery’.'

T wilf drive ‘f'a.r'ﬂ' va
there ic ‘ho snow”and it
/e ‘aot slppery’’

Figure 5: Humans provide explanations and counter explanations for their decisions. If
a person asks why are you driving slow?, then the response given by the other person
is because there is “snow” on the road, and it is “slippery”. I will drive “fast”, if there
is “no snow” and it is “not slippery”. Such explanations and counter explanations when
introduced in the neural networks help to understand the decisions, and build trust of
users.

How to make neural network classifiers explainably robust?

To answer this main research question, we dive further into sub questions in each
chapter, and begin by asking:

Can an explainability model provide factual (in perfect scenarios) and counterfactual
(in imperfect scenarios) explanations?

The question is considered in Chapter 2. Considering our earlier example, when a
person “slows down” the car, a perfectly understandable reason would be: that there
is “smow” on the road, and it is “slippery”. Humans tend to support their decisions by
providing counterexamples and counterattributes, such as the speed will be “high” if
there will be “no snow” on the road, and it will “not be slippery”. Inspired by this style
of human explanations, we employ human-understandable visual attributes to provide
factual and counterfactual explanations in this chapter.

Factual explanations are provided in the perfect scenarios when the inputs are clean,
while counterfactual explanations are provided for imperfect situations, when inputs are
perturbed. In order to provide counterexplanations, we use directed perturbations to arrive
at the counterclass attribute values. In doing so, we explain what is present and what is
absent in the original image. We conduct experiments on both fine-grained and coarse-
grained datasets. We verify our attribute-based explanation method quantitatively and
qualitatively, and show that attributes provide discriminating and human-understandable
explanations for both standard and robust networks.

We demonstrate our attribute-based explanations by providing causal reasoning “be-
cause the image contains these attributes, therefore it is classified into this class”. Hence,
we conclude that attributes provide intuitive factual and in the presence of perturba-
tions counterfactual human understandable explanations, especially for fine-grained
classification.

11
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Although perturbations can be utilized to provide counterexplanations, they lead to
performance degradation. Therefore, it is essential to make networks robust against
perturbations, especially against natural perturbations, which we encounter in real-life
scenarios like Gaussian noise, occlusion, blur. After providing human-understandable
explanations by utilizing adversarial perturbations, we focus on robustifying networks
against adversarial and naturally occurring perturbations and ask

How to integrate natural perturbations in convolutional neural networks for
enhancing their general robustness?

The question is considered in Chapter 3. The performance of neural networks is
heavily impacted by Gaussian noise or blur in the image [9], [30], [102]. Occlusion or
color saturation will also have a similar effect on the network’s performance. To counter
the effect of these perturbations, we integrate natural perturbations in the network for
the purpose of enhancing the robustness of neural networks against perturbations both
natural and adversarial, seen and unseen (during the training).

Previously, [109] trained the network with perturbed images rather than with clean
images, or with images perturbed by a learned noise generator [106] to enhance the
robustness. [105] proposed to train the network with images from a generative model. In
the same category of approaches, it remains an undecided question whether adversarial
training [51] is capable of providing robustness to a broad class of natural perturbations
[147], [38], [55]. We aim to provide an alternative approach that does not focus on
data modification to implement robustness. Instead, we modify a given network by
considering transformations to the image filters. We wiggle the weights to implement
robustness.

Compared to data augmentation, apart from delivering better results on general robust-
ness, we also have the advantage of providing built-in robustness, where there will be no
need to change the data. Our method transforms the network’s weights by four different
stochastic instantiations of a local elastic transform to cover the local neighborhood by
Taylor expansion in the functional space of all classifiers.

Our results show that integrating natural perturbations into the network enhances
general robustness. To understand the reasoning behind why wiggling weights with
perturbations help against other unseen perturbations, we train a convolutional network
on the similarly perturbed images and analyze the results; hence we ask

How to train convolutional neural networks on natural perturbations for enhancing
their general robustness?

The research is considered in Chapter 4. We focus on a similar goal as in chapter 3,
that is, enhancing the robustness of classifiers against perturbations. Here we propose a
training procedure to enhance the robustness, while using similar perturbations as the
ones in chapter 3 to understand why integrating perturbations in the network enhances
robustness. These tactics of data augmentation are commonly used to enhance the
generalization of deep neural networks. [28] showed an improvement in the generalization
by randomly occluding parts of images. [148] trained networks on convex combinations
of pairs of images and their labels, which led to an improvement in generalization

12
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and robustness against adversarial examples. Similarly, [146] trained on images with
regions superimposed from other images. [65] used linear combinations of different data
augmentations to enhance generalization. While the methods enhance the generalization
of neural networks indeed, most of these methods train networks on non-realistic images,
e.g., superimposing parts of two different images. We aim to understand the working of
the wiggled weight convolutional network. Therefore, we introduce a training procedure
using images with perturbed transforms most similar to the built-in transformations of
wiggled weight convolutional networks as possible.

We demonstrate the effectiveness of our natural perturbed training for clean, adversar-
ial, and natural perturbations, both seen and unseen during the training.

Besides robustness, explainability is the key to deploying computer vision models
in the real world. Robustness is needed to build trust in the classifier’s outcome. Ex-
plainability is needed when the circumstances are deviating, so the user can build an
understanding of why and when the classifier went off track. Hence, we assert that it
is natural to combine robustness and explainability, even at the expense of losing a few
percent of the classification accuracy, as one gains trust in return. Therefore, we ask

Can localized visual attributes enhance the general robustness of neural networks,
besides providing explanations?

The research question is considered in Chapter 5. Similar to chapter 2, we are
inspired by the way humans explain their decisions. Humans discriminate birds by the
color of their beak, stripes on their wings, and other attributes, present or absent. In
microscopical pathology and radiology, medical students point to visual abnormalities
named by their texture. Similarly, here, we explain visual classification by pointing out
localized attributes. We propose to learn localized attributes, providing robustness and
visual explanation against perturbations in the input. Hence, the aim is to achieve a gain
in trust at an acceptable, slight loss in classification accuracy.

We begin by defining attributes as localized and identifying characteristics of an
object class. Different from the method in chapter 2 the localized attributes are directly
translated into the components of a new transformer architecture. One version of our
architecture implements the human-specified class-level attributes as queries to the
transformer. The alternative version of our architecture does not use human-specified
descriptions, but rather generates localized and identifying attributes itself for our main
purpose of providing visually explained robust classification. In contrast, in chapter 2
our model requires human annotated class level attributes for generating explanations.
Furthermore, in chapter 2, the purpose of attributes is only to provide explanations for
both standard and robust classifiers however here attributes are used to enhance the
robustness.

Our attribute-based visual explanations provide us the reasoning behind why a clean
input without inflicted perturbations get classified correctly and why the perturbed input
get classified into the wrong class.

To summarize, this thesis aims at studying explainable robustness for image classifica-
tion. We start with providing explanations for a standard neural network-based classifier
in ideal (clean input) and non-ideal (perturbed input) situations. Our explanations are also

13
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valid for networks robust against perturbations. Next, we enhance the general robustness
of classifiers by integrating the perturbations into the network. Finally, besides providing
explanations, we use explanations to enhance explainable robustness. We hope our jour-
ney will be able to stimulate more research in the domain of explainability and robustness,
and essentially for explainable robustness, as that are the essential components of an
intelligent system.

1.4 CO-AUTHORSHIP AND ROLES
For each chapter of the thesis, here we declare the author’s contributions

Chapter 2

Gulshad, S. & Smeulders, A.W.M., Counterfactual attribute-based visual explanations
for classification. International Conference for Multimedia Retrieval (ICMR), 2021 [53],
International Journal of Multimedia Information Retrieval (IJMR), 2021 [54]. Best paper
session at ICMR.

* S. Gulshad All aspects

* A.W.M. Smeulders Insight, and supervision

Chapter 3

Gulshad, S., Sosnovik, I. & Smeulders, A.W.M., Wiggling Weights to Improve the
Robustness of Classifiers. Under submission to ECCV, 2022 [56]

* S. Gulshad All aspects
* 1. Sosnovik Theoretical and technical implementation

* AWM. Smeulders Insight, and supervision

Chapter 4

Gulshad, S. & Smeulders, A.W.M., Natural Perturbed Training for General Robustness of
Neural Network Classifiers. To be submitted to IJCV, 2022 as a combination of chapter
3 and 4 [55]

* S. Gulshad All aspects

* AWM. Smeulders  Insight, and supervision

Chapter 5

Gulshad, S., Zhao, J., & Smeulders, A.W.M., Learning Localized Attributes for Explain-
able Robustness of Visual Classifiers. Under submission to ECCV, 2022.

* S. Gulshad All aspects
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COUNTERFACTUAL ATTRIBUTE-BASED EXPLANATIONS

2.1 INTRODUCTION

When deploying machine learning and computer vision models in the real world, it is
of utmost importance that we explain the decisions made by these models in a human
understandable and intuitive way. The preferable procedure to provide such explanations
would be as humans explain their decisions. For example, when a person classifies a bird
into the “Cardinal” class, the reason provided by the person is: because it has a “Crested
head” and a “Red beak”. Humans also tend to support their decisions by providing
counterexamples and counterattributes such as, this bird would be classified into the class
“Pine Grosbeak” if it will have a “Plain head” and a “Black beak” as shown in Figure 6.
Inspired by human explanations, in this paper we employ human understandable visual
attributes for providing factual and counterfactual explanations.

A large body of work in explainable Al focuses on explaining the decisions of neural
network-based classifiers using saliency maps [115,153]. Saliency maps highlight the part
of the image which supports the classification however, the support to the classification
might be distributed across the whole image, or might lie in the color or texture of
the object. Hence, it becomes difficult to localize the part of the image responsible
for the classification, especially for fine-grained datasets. Furthermore, saliency maps
tell us about what is present in the image and do not provide any information about
what is absent, i.e. counterfactual information. Therefore, in this work, we focus on
human nameable attributes for providing the reasoning behind specific decisions and
perturbations to arrive at attributes belonging to counterclasses to provide counterfactual
explanations.

In a closely related work [52], the authors provided counterfactual explanations for
classification decisions by replacing the part of the original image with the similar
part from the distractor image belonging to the counterclass, such that the class of
the image changes. However, their method is pixel-based, hence requires matching
imaging conditions such as pose and illumination. In contrast, in this work, we introduce
perturbations in the images so that the attribute values change to the counterclass attribute
values.

In a recent work for the different purpose of enhancing the generalization power of
visual question answering systems [4] authors utilized counterfactuals and trained the
network with counterexamples. Similarly, in our work, we improve the generalization
and robustness of the neural network-based classifier by training it with counterexamples.
However, we go a step further and provide counterfactual explanations for this network.

17
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Perturbed Image Counter Example

%

o C(Crested Head
e Red Beak

Class *

( Cardinal |

[ e Plain Head }

e Black Beak

Class +

[ Pine Grosbeak ]

Figure 6: We use attributes to explain why an image on the left is classified into the
Cardinal class rather than the Pine Grosbeak class on the right. And we use attributes
with examples to explain when it will be classified as a Pine Grosbeak by exploiting
perturbed examples and their attribute values. We show that when the predicted attributes
for the image change from “Crested Head” and “Red Beak” to “Plain Head” and “Black
Beak”, the image will be classified as Pine Grosbeak.

We define the closeness of classes in the embedding space based on the attribute
similarity and evaluate our method when images get misclassified into the closer coun-
terclass [122] as well as when we force them to be misclassified into a distant counter-
class [20]. We complement our attribute-based explanations with counterexample-based
explanations by selecting the examples containing counterattributes.

Our main contributions are given as follows:

* We provide novel explanations for classification decisions by utilizing intuitive
factual and counterfactual attributes and examples.

* We study the change in attribute values when images are perturbed to provide
counterfactual explanations from any alternative counterclass as well as when
images are perturbed to provide counterfactual explanations from our desired
counterclass.

* We propose a novel method to assist our attribute-based explanations with coun-
terexamples, selected based on these counterattributes.

We evaluate our attribute-based explanations quantitatively and qualitatively for a stan-
dard as well a robust network. Our results on three different datasets of varying sizes and
granularity show that attributes provide effective factual and counterfactual explanations
for classifier decisions. This paper is an extended version of our conference paper [53].

2.2 RELATED WORK

Explaining the output of a decision maker is commonly motivated by the need to build
user trust before deploying them into a real world environment [37,57,90].

18



2.2 RELATED WORK

2.2.1 Explainability

Previous work for visual classification explanation is broadly grouped into two types: 1)
rationalization, that is, justifying the network’s behavior and 2) introspective explanation,
that is, showing the causal relationship between input and the specific output [36]. The
first group has the benefit of being human understandable, but it lacks a causal relationship
between input and output. The second group incorporates the internal behavior of the
network, but lacks human understandability. In this work, we explain the decisions of
neural networks in the human style of explanations by singling out specific attributes
for positive evidence when the image is classified correctly and by following specific
attributes for negative evidence when the image is directed for misclassification in a
counterclass.

An important group of work on understandibility focuses on text-based class discrim-
inative explanations [59,99], text-based interpretation with semantic information [33]
and generating counterfactual explanations with natural language [60], they all fall in the
rationalization category. Text-based explanations are orthogonal to our attribute-based
explanations, as attributes tend to deliver the key-words in the sentence and carry the
quintessence for the semantic distinction. Especially for fine-grained classification, all
sentences for all classes tend to display the same structure hence, the core of the semantic
distinction between classes lies in attributes where we put our emphasis. Generating
sentences is valuable, but largely orthogonal to our approach.

To tackle the similar task of explaining visual decisions, there is the large body of work
on activation maximization [115, 153], learning the perturbation mask [45], learning
a model locally around its prediction, and finding important features by propagating
activation differences [104, 112]. They all fall in the group of introspective explanations.
All these approaches use saliency maps for explanation. We observe that saliency
maps [110] are frequently weak in justifying classification decisions, especially for fine-
grained images. For instance, in Figure 7 the saliency map of a clean image classified into
the ground truth class, “red-winged blackbird”, and the saliency map of a misclassified
perturbed image, look quite similar. Instead, by grounding the predicted attributes, one
may infer that the “orange wing” is important for “red-winged blackbird” while the “red
head” is important for “red-faced cormorant”. Indeed, when the attribute value for orange
wing decreases and for red head increases, the image gets misclassified. Therefore, we
propose to predict and ground attributes for both clean and perturbed images to provide
visual as well as attribute-based interpretations.

Counterfactual Explanations. Explanations which consider counterdecisions or coun-
teroutcomes are known as counterfactual explanations [87]. An interesting approach
in a recent paper [52] proposes to generate counterfactual explanations by selecting a
distractor image from a counterclass and replacing the region in the input image with
a region from the distractor image, such that the class of the input image changes into
the class of the distractor image. Pixel-based replacements pose high restrictions on
the similarity of viewpoint, pose and scene between the two images, which makes the
selection and replacement of the patches difficult. We follow the same inspiration of
human-motivated counterexamples. However, our approach focuses on attributes for
generating explanations, as they contain the semantic core of the distinction between
two competing classes and, attributes can naturally incorporate large changes in imaging
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Figure 7: Fine-grained images are difficult to explain with saliency maps: when the
answer is wrong, often saliency-based methods (left) fail to detect what went wrong.
Instead, attributes (right) provide intuitive and effective visual and textual explanations.

conditions of size, illumination and viewpoint. Additionally, we use perturbations to
change the class of the input image, we analyze which attributes lead to the change in
class.

Another closely related work, [75], focuses on the multimodal complementarity of text
and image for explanations. They maximize the interaction information between class
predictor and explanation generator by simultaneously training them using variational
lower bound. However, by the nature of their method their example-based explanations
will be visually completely different from the input image. In our work, by using
the method of directed perturbations and discriminating attributes, we are capable of
selecting the most critical counterexamples as the most effective explanations.

In [4], authors utilized counterfactuals for enhancing the generalization and appli-
cability of visual question answering systems. However, in our work for providing
explanations, we increase the generalization and robustness of neural network classifier
by training it on counterfactuals. After robustification we verify our method on the
robustified network by studying the change in attributes for it.

2.2.2 Adversarial Examples

Untargeted Methods. Small, carefully crafted perturbations, called adversarial per-
turbations, have been used to alter the inputs of deep neural networks, which results
in adversarial examples. These adversarial examples drive the classifiers to the wrong
class [122]. Such methods of directed perturbations include iterative fast gradient
sign method (IFGSM) [82], the Jacobian-based saliency map attacks [98], one pixel
attacks [121], Carlini and Wagner attacks [19] and universal attacks [97]. Here, our
aim is to utilize the directed noise from adversarial examples to study the change in
attribute values. Therefore, we select the IFGSM-method which is fast and strong for our
experiments to lead images into counterclasses.

Targeted Methods. When small adversarial perturbations are introduced in the images
to misclassify them into the desired counter classes, are called rargeted attacks [21].
Targeted attacks are stronger and more difficult to achieve than untargeted attacks because
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the algorithm needs to find the perturbations, which will misclassify the image into the
desired class instead of misclassification into any alternative class [20] i.e. untargeted
attacks. Besides studying the change in attribute values for untargeted attacks, here we
also study the change in the attribute values when images are directed into desired classes.
For this purpose, we utilize the targeted version of IFGSM method and compare the
results for untargeted and targeted attacks to verify whether our proposed attribute-based
counterfactual explanations also function for targeted attacks.

2.2.3 Adversarial Examples for Explainability.

Adversarial examples have been used for understanding neural networks. [68] aims at
utilizing adversarial examples for understanding deep neural networks by extracting the
features which provide the support for classification into the target class. In this paper,
instead of providing feature based visualizations, we focus on human understandable
attributes for providing explanations for decisions. In [72], the authors proposed a
data-path visualization module consisting of the layer level, the feature level, and the
neuronal level visualizations of the network for clean as well as for adversarial images.
In contrast, we focus on exploiting adversarial examples to generate intuitive factual and
counterfactual human understandable explanations with attributes and visual examples.

In [150], the authors investigated adversarially trained robust convolutional neural

networks by constructing input images with different textual transformations while at
the same time preserving the shape information. They do this to verify the shape bias
in adversarially trained networks compared with standard networks. Similarly, in [126],
the authors showed that saliency maps from adversarially trained robust networks align
well with human perception. In our work, we also provide explanations when an image
is correctly classified with an adversarially trained robust network and verify that the
attributes predicted by our method with a robust network still retain their discriminative
power for explanations.
Adversarial Examples and Counterfactual Explanations In a closely related work [69]
authors reveal the duality relationship between adversarial examples and explanations.
They argue that adversarial examples could be generated from counterexamples, and
counterexamples could be generated from adversarial examples. We follow a similar
idea, but instead propose to utilize adversarial examples for explanations in the presence
of human understandable attributes.

Similarly, [16] tries to solve the paradox that previous research [129] shows that
adversarial examples and counterfactual explanations are equivalent, then where lies
the difference between them? They argue that this paradox could be solved by properly
studying the semantics (i.e. neuronal activations) of counterfactuals for providing expla-
nations. In this paper, instead of focusing on solving the paradox between adversarial
examples and counterfactual explanations, we make use of adversarial examples with
attributes to provide counterfactual explanations.
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Figure 8: Interpretable attribute prediction-grounding model. After an adversarial
training step, image features of both clean 6(x,) and adversarial images 6(%) are
extracted using Resnet and mapped into attribute space ¢(y) by learning the compatibility
function F (xp, yn; W) between image features and class attributes. Attributes predicted by
attribute-based classifier Azn’}% are grounded by matching them with attributes predicted
by Faster-RCNN Afcn for clean and adversarial images. Examples are selected based on
attribute similarity between adversarial image and adversarial class images for visual
explanations. Hence, clean image attributes lead to complemental explanations while,
adversarial image attributes lead to counterfactual explanations.

2.3 METHOD
2.3.1 Adversarial Perturbations

Given n-th image x, and its respective ground truth class y, predicted by a classifier
f(xn), an image £, is generated by adding adversarial perturbations to it such that the
classifier f(&,) predicts y, where y, # y, and x, and %, are close according to some
distance metric. Next, we present the method for generating adversarial examples through
untargeted attacks [20] and targeted attacks [20] [21].

Untargeted Attacks. We leverage IFGSM method [82] to generate adversarial pertur-
bations. The mechanism for generating adversarial examples through basic iterative
method is given by:

Al

X, = Xn
£, = Clip A%}, + aSign(v L(%,,ya))) 2.1)
where, %0 is the input image at step i = 0, V 5 L 1s the derivative of the loss function w.r.t

to the current input image, « is the step size taken at step 7 in the direction of sign of the
gradient, and finally the result is clipped by Clip,.
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Targeted Attacks. For targeted attacks, we target our input image to be misclassified into
a specific class y;. The following equations are used to create adversarial perturbations
for misclassification in the target class.

A0
X, = Xn

#,7! = Clip A%}, — aSign(v 4 L(&), 1))} 22

In the targeted attacks, we maximize the loss against ground truth class y, and minimize
the loss against target class y;.

2.3.2  Adversarial Robustness

Adversarial Training. Adversarial training [122] is one of the state-of-the-art method
for robustness against adversarial perturbations. In adversarial training, the model f"(%,)
finds the worst case adversarial examples and trains the network on these adversarial
examples besides training it on clean images to make it robust against adversarial
perturbations. Hence, this leads to an improvement in performance against adversarial
perturbations. The following objective function is minimized in adversarial training:

Ladv(xn’)’n) = VL(xn»yn) + (1 _')/)L()Acn’y) (2.3)

where, L(x,,yn) is the classification loss for clean images, £(%,,y) is the loss for
adversarial images and y regulates the loss to be minimized.

2.3.3 Attribute Prediction

We use class attributes available with the dataset to predict per image attributes and
provide explanations for classification. The model is shown in the Figure 8. At training
time, our network learns to map image features closer to their ground truth class attributes
and farther from other classes in the embedding space. During test time when clean
image features are projected in the learned embedding space the image gets mapped
closer to the ground truth class attributes e.g. “Crested head” and “Red beak” associated
with the ground truth class “Cardinal”, see Figure 8. However, an adversarially perturbed
image gets mapped closer to the wrong class attributes e.g. “Plain head” and “Black
beak” belonging to the counterclass ‘Pine Grosbeak™, Figure 8.

Given the n-th input image features 6(x,) € X and output class attributes ¢(y,) € Y
from the sample set, S = {0(x,),#(yn),n = 1...N} we employ SJE [6] to predict
attributes in an image. SJE learns to map : X — Y by minimizing the empirical risk
of the form & YN | A(y,, (x,)), where A : ¥ x Y/ — R estimates the cost of predicting
(x,) when the ground truth label is y,,.

A compatibility function F : X x Y — R is defined between input X and output Y
space:

F(Xn, Yns W) = 9(xn>TW¢(yn) (2.4)

23



COUNTERFACTUAL ATTRIBUTE-BASED EXPLANATIONS

Pairwise ranking loss IL(x,, y,, y) is used to learn the parameters (W):

A(yny) 4 0(xa) T W (yn) = 0(xa)" Wop(y) (2.5)

At test time, attributes are predicted for clean images by projecting image features on to
the learned embedding space. It is given by:

Any, = 0(x,)W (2.6)

and for adversarial images, by:
Any = 0(3,)W (2.7)

The image is assigned the label of the nearest output class attributes ¢(y;).

2.3.4 Attribute Grounding

Thereafter, we ground the predicted attributes on the images for better visual explanations
using a pre-trained Faster-RCNN as in [8]. The pre-trained Faster-RCNN # (x,,) model
predicts bounding boxes bJ. For each bounding box j in each image, x,, it predicts a class
Y/ and an attribute A}, [7].

bl AL YL = F(x,) (2.8)

where j is the bounding box index.

Attribute Selection for Grounding. As all the attributes predicted for an image can
not be visualized due to visual constraints. Therefore, we select the most discriminative
attributes for grounding on the images. Attributes are selected based on the criterion that
they change the most when the image is perturbed with the adversarial noise. For clean
images we use:

g = argmax (A}, - ¢(')) (2.9)
l
and for adversarial images we use:

p = argmax(A;, , - ¢(},)). (2.10)

where i is the attribute index, Ail,yn apd A;y are attributes predicted by SJE for clean and
adversarial images respectively. ¢(y'), ¢(",) indicate the counterclass and ground truth
class attributes, respectively. g and p are indexes of the most discriminative attributes
selected based on our criterion.

After selecting the most discriminative attributes predicted by SJE using equation 2.9
and 2.10, we search for the selected attributes A7 Aifmy in the attributes predicted

Xn>Yn?
by RCNN for each bounding box A AJ When the attributes predicted by SJE and
Faster-RCNN are matched, that is Aq = AJ Ap = A] we ground them on their

respective clean and adversarial i 1mages As shown in the Flgure 8, the attributes “Crested
head” and “Red beak” are grounded on the image, while “Plain head” and “Black beak”
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could not be grounded because there is no visual evidence present in the image for these
attributes.

2.3.5 Example-based Explanations

Besides providing attribute-based explanations, we propose to provide counterexample-
based explanations, as shown in the Figure 8. We compare the results for example-based
explanations by selecting examples randomly from the counterclass with examples
selected based on attributes Figure 18.

Example Selection through Attributes. The procedure for example-based explanations
using attributes is detailed in the Algorithm 1 and the results are shown in Figure 17 and
Figure 18. Given clean images classified correctly, and adversarial images misclassified
and their predicted attributes, we search for attributes in the adversarial class which
are most similar to the attributes of the adversarial image and select these images as
counterexamples i.e. a “Pine Grosbeak™ image with the attributes “Plain head” and
“Black beak™ is selected as a counterexample Figure 8.

Algorithm 1 Example Selection through Attributes

1: Given adversarial images £,,,, clean images x,,,, adversarial image attributes An,y,
clean image attributes A, ,, , adversarial classes y

: for each adversarial image £, , do

Select all the images from adversarial class x;,,

for each image in adversarial class x,, do

s = argmin || &}, - Al Il
1

A

6:  end for
: end for
: return Selected examples from adversarial class x;

[C N

5y

2.3.6 Attribute Analysis Method

Finally, in this section, we introduce our techniques for quantitative analysis on the
predicted attributes.
Predicted Attribute Analysis: Standard Network. In order to perform analysis on
attributes in embedding space, we consider the images which are correctly classified
without perturbations and misclassified with perturbations. Our aim is to analyze the
change in attributes in embedding space to verify that attributes change with the change
in the class.
We contrast the Euclidean distance between predicted attributes of clean and adversar-
ial samples:
di = d{Any, Any) =I Any, = Apy 12 (2.11)

with the Euclidean distance between the ground truth attribute vector of the correct and
adversarial classes:

dy = d{¢(yn), o(¥)} =ll ¢(vn) = (¥)) ll2 (2.12)
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where, A,,,, denotes the predicted attributes for the clean images classified correctly,
and An,y denotes the predicted attributes for the adversarial images misclassified with a
standard network. The correct ground truth class attribute are referred to as ¢(y,) and
adversarial class attributes are referred to as ¢(y).

Predicted Attribute Analysis: Robust Network. We compare the distances between
predicted attributes of only adversarial images that are classified correctly with the help of
an adversarially robust network AZ,yn and classified incorrectly with a standard network

A

Apy: X X A A
dy = d{A;,,, Anyt =l ALy — Ay 2 (2.13)

n,yn’

with the distances between the ground truth class attributes ¢(y,) and ground truth
adversarial class attributes ¢(y):

dy = d{p(yn), o(¥)} =l ¢(vn) = 0(¥)) ll2 (2.14)

2.3.7 Implementation Details

Image Features and Adversarial Examples. We extract image features and generate
adversarial images using the fine-tuned Resnet-152. Adversarial attacks are performed
using the basic iterative method with epsilon € values 0.01, 0.06 and 0.12. The /., norm is
used as a similarity measure between clean input and the generated adversarial example.
In order to generate adversarial examples for untargeted attacks, the algorithm perturbs
the images such that they get misclassified into any alternative counter class. In order to
generate adversarial examples for targeted attacks, we direct adversarial examples to be
misclassified into randomly selected classes.

Adversarial Training. As for adversarial training, we repeatedly computed the ad-
versarial examples while training the fine-tuned Resnet-152 to minimize the loss on
these examples. We generated adversarial examples using the projected gradient descent
method. This is a multistep variant of FGSM with epsilon € values 0.01, 0.06 and 0.12
respectively for adversarial training as in [91].

Attribute Prediction and Grounding. At test time, the image features are projected
onto the learned attribute space and attributes per image are predicted. The image is
assigned with the label of the nearest ground truth attribute vector. Since we do not have
ground truth part bounding boxes for any of the attribute datasets, the predicted attributes
are grounded by using Faster-RCNN pre-trained on the Visual Genome Dataset [79].

2.4 EXPERIMENTS AND RESULTS
2.4.1 Datasets

We experiment on three datasets, Animals with Attributes 2 (AwA) [83], Large attribute
(LAD) [151] and Caltech UCSD Birds (CUB) [103]. AwWA contains, 37322 images
(22206 training / 5599 validation / 9517 test) with 50 classes and 85 attributes per
class. LAD has, 78017 images (40957 training / 13653 validation / 23407 test) with 230
classes and 359 attributes per class. CUB consists of 11,788 images (5395 training / 599
validation / 5794 test) assigned to 200 fine-grained categories of birds with 312 attributes
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Figure 9: Untargeted Attacks: Comparing the accuracy of the general classifier and the
attribute-based classifier for adversarial examples generated with untargeted attacks
to investigate the change in attributes. We evaluate both classifiers by extracting fea-
tures from a standard network and the adversarially robust network. The drop in the
performance with the increase in the level of perturbations shows that the attributes start
pointing towards the counter classes (blue curves). The improvement in the performance
with robustification shows that with an adversarially robustified network, the attributes
again start pointing towards the ground truth class (purple curves).

per class. All three datasets contain real-valued class attributes representing the degree
of presence of an attribute in a class. For the qualitative analysis with grounding, we
select 50 attributes that change their value most for the CUB, 50 attributes for AWA, and
100 attributes for the LAD dataset. They are selected by equation 2.9 and 2.10, since it is
difficult for humans to understand all the attributes grounded on the images.

The Visual Genome Dataset [79] is used to train the Faster-RCNN model, which
extracts the bounding boxes using 1600 object and 400 attribute annotations. Each
bounding box is associated with an attribute and the class, e.g. a brown bird.

2.4.2  Comparing General and Attribute-based Classifiers

In the first experiment, we compare the general classifier f(x,) and the attribute-based
classifier (x,) in terms of the classification accuracy on clean images to see whether the
attribute-based classifier performs equally well.

We find that, the attribute-based and general classifier accuracies are comparable for
AWA (general: 93.53, attribute-based: 93.83). The attribute-based classifier accuracy
is slightly higher for LAD (general: 80.00, attribute-based: 82.77), and lower for CUB
(general: 81.19, attribute-based: 76.90) dataset. The overall impression is that both
general and attribute-based classifiers perform equally well.

2.4.3 Attribute-based Explanations: Standard Network

In the second experiment we study the change in attributes with a standard network to
demonstrate that by introducing perturbations in the images the attribute values change
such that the class of the image changes to the counterclass and hence provide intuitive
counterexplanations. We study the change in attribute values both when the counterclass
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Figure 10: Targeted Attacks: Comparing the accuracy of the general classifier and the
attribute-based classifier for adversarial examples generated with targeted attacks to
investigate the change in attributes. We evaluate both classifiers by extracting features
Jfrom a standard network and the adversarially robust network. The drop in the per-
formance with the increase in the level of perturbations shows that the attributes start
pointing towards the counter classes (blue curves). However, the drop is not significant
when compared to untargeted attacks. Similarly, with the adversarial robustness the
performance improves, and the attributes start pointing towards the ground truth class,
however the improvement is also not as significant as for the untargeted attacks (purple
curves).

is any other class i.e. untargeted, and when we direct the image into a specific class i.e.
targeted.

By Performing Classification based on Attributes

Untargeted Attacks. With untargeted adversarial attacks, the accuracy of both the
general and attribute-based classifiers drops with the increase in perturbations, see
Figure 9 (blue curves). The drop in accuracy of the general classifier for the fine-grained
CUB-dataset is higher than the coarse-grained AWA dataset. For example, at € = 0.01
for the CUB dataset the general classifier’s accuracy drops from 81% to 31% , while
for the AWA dataset it drops from 93% to 70% and for the LAD dataset it drops from
80% to 50%. However, compared to the general classifier, the drop in accuracy with
the attribute-based classifier for CUB dataset is less ~ 20%. For the coarse-grained
datasets AWA and LAD, the drop is almost the same for both attribute-based and general
classifiers. The limited drop in accuracy for the CUB dataset with the attribute-based
classifier when compared to the general classifier, is attributed to the fact that for fine-
grained datasets there are many attributes common among classes. Therefore, in order
to misclassify an image, a significant number of attributes need to change their values.
For a coarse-grained dataset, changing a few attributes is sufficient for misclassification.
Overall, the drop in the accuracy due to the perturbation demonstrates that the attribute
values change towards those that belong to the new class. Hence, attributes explain the
misclassifications into the counterclasses well. This also concludes that attributes contain
the crucial characteristics for discrimination between classes.

Targeted Attacks. In the untargeted attacks, the algorithm misclassifies the image
into any alternative class which could be a closer class, i.e. a class with the majority
of attribute values same as the ones from the ground truth class. In contrast, targeted
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adversarial attacks force the image to be misclassified into a randomly selected desired
class which could be far away from the ground truth class i.e. the attribute values between
both classes differ significantly, hence making the targeting into this class difficult. We
evaluate our method for misclassification into a closer class as well as for a distant class.

The accuracy of both general and attribute-based classifiers drop with the increase in
perturbations, see Figure 10 (blue curves). However, compared to the drop in performance
with untargeted attacks the drop with targeted attacks is lower, see Figure 9 and Figure 10
(blue curves). This is due to the fact that in untargeted attacks the images are misclassified
into closer classes, while with the targeted attacks images get misclassified into distant
classes.

By contrasting the drop in the accuracy of the general classifier between three datasets
using targeted attacks we observe that the fine-grained CUB-dataset leads to a higher
drop in the performance as compared to the AWA, and LAD datasets Figure 10 (blue
solid curves). Although the drop with targeted attacks is lower than untargeted attacks,
but the overall behavior in the drop is the same for both untargeted and targeted attacks.
For instance, at € = 0.06 the accuracy drops from 81% to 39% for CUB-dataset, while
for AWA dataset it drops from 93% to 72% and for LAD dataset it drops from 80% to
58%. While the drop in the accuracy with the attribute-based classifier for CUB-dataset
reduced to almost half i.e. ~ 23% and increased for AWA and LAD dataset i.e. ~ 25%
and = 29% respectively. Similar to the general classifier, attribute based classifier for
targeted attacks also shows the same behavior as attribute based-classifier for untargeted
attacks. Hence, this further supports our argument that for fine-grained datasets as there
are numerous attributes common among the classes therefore we need to change many
of them in order to change the class and provide explanations based on the attributes.
While, for the coarse grained datasets, only by changing a few attributes we can cause
misclassification and explain it.

Overall, the lack in the drop of performance for an attribute based classifier with the
targeted attacks as compared to untargeted attacks shows that the change in attribute
values towards the counterclass is less significant with the targeted attacks. Hence,
attribute values with untargeted attacks provide better counterexplanations than attribute
values with the targeted attacks.

By Computing Distances in the Embedding Space

We contrast the Euclidean distance between predicted attributes of clean and adversarial
samples using equation 2.11 and 2.12. The results are shown in Figure 11. We observe
that for the AWA dataset, the distances between the predicted attributes for adversarial
and clean images d; are smaller than the distances between the ground truth attributes of
the respective classes d»>. The closeness in predicted attributes for clean and adversarial
images as compared to their ground truths shows that attribute values change towards
the wrong class but not completely. This is due to the fact that for coarse classes, only a
small change in attribute values is sufficient to change the class.

The fine-grained CUB-dataset behaves differently. The overlap between d; and d»
distributions demonstrates that attributes of images belonging to fine-grained classes
change significantly as compared to images from coarse categories. As the fine-grained
classes are closer to one another and many attributes are common among fine-grained
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Figure 11: Attribute value distance plots for clean and adversarial images with a standard
network. The complete overlap for the CUB-dataset shows that fine-grained datasets
require change in significant no of attribute to change the class. While the small overlap
for the coarse-grained AWA dataset shows that the change in a few attributes is sufficient
to change the class.

classes. Thus, it requires changing the attributes significantly to cause misclassification.
Hence, for the coarse-grained dataset, the attributes change minimally, while for the
fine-grained dataset they change significantly.

Qualitative Analysis

Untargeted Attacks. We observe in Figure 13 that the most discriminative attributes
for the clean images are coherent with the ground truth class however, for adversarial
images they are coherent with the wrong class, thus explaining the wrong class. For
example “red head, black wing, black eye” attributes are responsible for the classification
of clean image into correct class and when the value of “red head” attribute decreases and
“grey beak, white underparts” increases the image gets misclassified into wrong class.
Figure 12 reveals the results for the groundings on perturbed images. The attributes
which are not related to the correct class, the ones that are related to the counterclass
can not get grounded or get grounded at the wrong spots in the image as there is no
visual evidence that supports the presence of these attributes. For example, “black tail” is
related to the counterclass and is not present in the adversarial image. Hence, black tail”
got wrongly grounded. This indicates that attributes for the clean images correspond
to the ground truth class and for adversarial images correspond to the counterclass.
Additionally, only those attributes common among both the counterand the ground truth
classes get grounded on adversarial images.

Hence, our method provides explanations for both fine and coarse-grained classifica-
tions when the images get misclassified into similar classes or dissimilar classes.
Targeted Attacks. Figure 14 reveals the results for grounding the attributes when the
images are misclassified with targeted attacks. As in the targeted attacks we direct
images into random classes, we observe that images get misclassified into visually
dissimilar classes. The attributes predicted for perturbed images also correspond to
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Perturbed Perturbed

Rosebreasted Grosbea Wolf |
Black Tail (Wrong grounding) -Have claws (No grounding)
Is Grey

Figure 12: Explanation of a wrong classification due to wrong or missing attribute
grounding. For perturbed images, attributes either get grounded on wrong spots or are
missing because their visual evidence is absent in the image. (Perturbations magnified).

Example from Correct Class Example from Correct Class
(Correctly Clas: Example from Counter Class  (Correctly Classified) Perturbed Example from Counter Class

--------------------------- 2

~

Redheaded Woodpecker al Rosebreasted Grosbeak

Red Head Head Color None T -H-e;d-(;QTO; ]:1(:"; T

"No White No White

Is Big

I I
Underparts Color None : White Underparts White Underparts : Is Grazing : Have c]a\Ys Have claws :
Beak Longer than Head | Black Wing Black Wing : Is white i Is domestic Is domestic :
Black Wing : Grey Beak Grey Beak I Is black : Is Grey Is Grey I
Black Eye 1 Black Tail Black Tail ; Isblack Is black :

Figure 13: Untargeted: Qualitative analysis of change in attributes due to directed
perturbations with a standard network. The attributes are ranked by importance for
classification. Most discriminative attributes for clean images correspond to the ground
truth class while, those for the perturbed image they compatible with the counter class
thus explaining the misclassification. (Perturbations magnified for better visibility).

visually dissimilar counterclasses. Hence, it becomes difficult to ground predicted
attributes on perturbed images because there is no visual evidence present for those
attributes in the images. For instance in figure 14 first example, “White Throat”, “Bill
length same as head” and “Solid Back” were responsible for misclassification into the
“White breasted kingfisher” class, but as there is no visual evidence available for these
attributes in the image originally belonging to “Black billed Cuckoo” class therefore,
none of the attributes could be grounded on the perturbed image. Hence, our results show
that the visual explanations provided by untargeted perturbations are much more useful
for human understanding as compared to targeted perturbations.

2.4.4  Attribute-based Explanations: Robust Network

We perform the same experiments with a robust network to study the change in attribute
values such that the class of the perturbed image changes back to the ground truth class.
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Example from Correct Class Example from Example from Correct Class Example from
Perturbed

(Correctly Classified) (Correctly Classified) Perturbed Counter Class

Counter Class

g : AR , XS d
Black Billed Cuckoo White Breasted Kingfisher White Breasted Kingfisher Red Headed Woodpecker  Pileated Woodpecker Pileated Woodpecker

Brown Beak -White Throat White Throat Red Head Black Tail Black Tail
Black Eye -Bill length same as head  Bill length same as head Black Wing -Black Wing Black Wing
Brown Wing _Solid Back White underparts Black Tail -White upper Tail

Brown Tail -Brown Back -Solid Back

Brown Head -White underparts -Black Back

Figure 14: Targeted: Qualitative analysis of change in attributes due to directed perturba-
tions with a standard network. The attributes are ranked by importance for classification.
Grounded attributes are color coded for the visibility. Those in gray color could not be
grounded. Those attributes common among ground truth and counter class are grounded
while those for which no visual evidence is found in the image could not be grounded on
the perturbed image, hence, indicating the change in the class. (Perturbations magnified
for better visibility.)

By Performing Classification based on Attributes

Untargeted Attacks. Our evaluation on the standard and adversarially robust networks
shows that the classification accuracy improves for the adversarial images when adver-
sarial training is used to robustify the network, Figure 9 (purple curves). For example,
in Figure 9 for AWA the accuracy of the general classifier improved from 70% to 92%
and for LAD it improved from 50% to 78% for adversarial attack with € = 0.01. As
expected for the fine-grained CUB-dataset, the improvement is = 31% higher than the
AWA and LAD datasets. However, for the attribute-based classifier, the improvement in
accuracy for AWA (= 18%) is almost double and for LAD (= 22%) almost triple that of
the CUB-dataset (= 7%). This demonstrates that, attributes retain their discriminative
power for explanations with the standard as well as robust networks.

Targeted Attacks. Results for the performance of standard and adversarially robust
networks against targeted attacks show that the performance of the network improves for
adversarial images when tested on an adversarially robust network, Figure 10 (purple
curves). Different from untargeted attacks for targeted attacks, the improvement in the
performance is not significant. For example, in Figure 10 at € = 0.06 for AWA dataset
the accuracy improved to = 12%, for CUB it improved to = 14% and for LAD dataset
it improved to ~ 16% while with untargeted attacks the improvement in the accuracy
at € = 0.06 is more than double of that with targeted attacks. This shows that when
images are misclassified into visually dissimilar classes, it becomes difficult to correctly
classify them with robustification as compared to images misclassified into visually
similar classes.

Similarly, for attribute-based classifier the improvement in the accuracy is less for
targeted attacks as compared to the untargeted attacks, Figure 10 (purple dotted curves).
The overall behavior in the improvement of performance for each dataset with targeted
attacks is similar to that of untargeted attacks. For instance, at, € = 0.06 the improvement
in the accuracy for the CUB-dataset is the least ® 11% following AWA ~ 16% and
LAD = 21% datasets. This supports our argument that in order to change the class of
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Figure 15: Attribute value distance plots for only adversarial images with and without
a robust network. The similarity with the plots in the Figure 11 shows that adversarial
image attributes in the presence of a robust network indicate to the ground truth class.

fine-grained images, more number of attributes need to be changed. Overall, our results
reveal that even for an adversarially robustified network, untargeted attacks provide better
explanations as compared to targeted attacks.

By Computing Distances in the Embedding Space

We also compare the euclidean distance between predicted attributes for only adversarial
images in the presence of a standard network and a robust network, as shown in Figure 15.
The results reveal that with only adversarial images on robust and standard networks,
we observe the same distance distribution as in Figure 11. Thus, attributes explain the
correct classification of adversarial images in the presence of the robust network.

Qualitative Analysis

Finally, our analysis with correctly classified images by the adversarially robust network
shows that, adversarial images and their predicted attributes with the robust network
behave like clean images and their predicted attributes as shown in Figure 16. This also
demonstrates that the attributes for adversarial images classified correctly with the robust
network still retain their discriminative power and provide complementary explanations.

2.4.5 Example-based Explanations

In the final experiment, we demonstrate our visual example and counterexample-based
explanations when the attribute values change with directed perturbations. For instance
in Figure 17 when an image is classified correctly, besides explaining the classification
decision with attributes we enhance our explanations with the complemental example
retrieved based on these attributes. Similarly, when an image is misclassified into a
counter class, we also enhance our attribute-based explanations by retrieving an image
from the counter class.
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Example from Correct Class Perturbed (correctly classified Perturbed Example from Counter Class
(Correctly Classified)

robust networ

__________________________________

______________________________________________

\I Blue Head \.I Black Head Color None Y
! Black Wing ! Black Wing \ Black Wing H -Blue Undertail Black Wing H
1 Brown Underparts f : Brown Underparts : —Pm‘med ta¥l Yell'ow Underparts :
'\ Black Beak l\ ) Striped Wing n -Striped Wing White Beak '

_____________________________ e g

Figure 16: Qualitative analysis for change in attributes due to directed perturbations
with a robust network. The attributes are ranked by importance for the classification
decision, the grounded attributes are color coded for visibility (the ones in gray could
not be grounded). The overlap between the attributes of an adversarial image with a
robust network and a clean image with a standard network shows that with a robust
network, attributes change back to the ground truth class. (Perturbations magnified for
better visibility).

is classified as

Green Violetear

| because of attributes

e Green Eyes

e Iridescent Undertail
e Needle Shaped Bill
e Blue Throat

and looks like

will be classified as

5 Cape Glossy Starling
.| because of attributes

5 e Olive Eyes

L]
e Dagger Bill
e Blue Throat
and will look like

Figure 17: Qualitative analysis for Example-based explanations. Note that when “green
eyes, needle shaped bill” changes to “olive eyes, dagger bill” the class of the image
changes. These attributes are also complemented with the image-based examples re-
trieved with these attributes. (Perturbations magnified for better visibility).

Figure 18 reveals the importance of counterexample selection through attributes. In
this example both the clean images in first and second row belong to the same class,
the “Mallard”. However, the clean image in the first row is male Mallard and in the
second row is female Mallard, they differ visually. Similarly, the male and female birds
of the counterclass “Redbreasted Merganser” also differ visually. The results for the
example retrieval for both male and female mallard show that, when images are retrieved
through attributes for the male Mallard the retrieved images are male Redbreasted
Merganser, while for the female Mallard the retrieved images through attributes are
female Redbreasted Merganser. However, when we retrieve the images randomly from
the counterclass then the visual similarity can not be ensured. Hence, our attribute-based
example selection method selects the visually similar examples to provide the distinction
between a clean image and a counter image from the counter class under the presence of
intra-class variation.
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Selected examples (based on attributes) Perturbed

Selected examples (randomly from counter class)

Redbreasted Mergensar (Female) Mallard (Female) Redbreasted Mergensa Redbreasted Mergensar (Male)

Figure 18: Qualitative analysis for Example-based explanations. Note that both “Mallard”
and “Redbreasted Mergensar” classes have intra-class variability, as the male and

female birds in both classes look visually different. When we use attributes for retrieving

image examples, male Mallard retrieves male Redbrested Mergensar and female Mallard

retrieves female Redbrested Merganser, thus incorporating the intra-class variability.

(Perturbations magnified for better visibility).

2.5 DISCUSSION AND CONCLUSION

In this work we focused on providing the understanding of neural networks decisions by
exploiting counterattributes as well as counterexamples which lead to the misclassifica-
tion in the counterclass.

Firstly, we showed that attribute-based classifiers perform equally well as direct
classifiers. We also showed that the importance of attributes for providing explanations
is higher for the fine-grained classification as compared to coarse-grained classification
because the distinction between two coarse-grained classes can be made through a single
attribute as compared to the fine-grained classes which require numerous attributes for
distinction between them.

Secondly, we demonstrated that by introducing adversarial perturbations in the images
we were able to change the attribute values to those of counterclass attributes and hence
provided counterattribute-based explanations. Our results showed that these attributes
contain crucial characteristics for the discrimination between classes.

Thirdly, we repeated all the experiments for the images with perturbations introduced
through targeted attacks. Our results showed that, our attribute-based explanations work
better with untargeted attacks as compared to the targeted attacks.

We also showed that when a network is robustified against adversarial perturbations,
the predicted attribute values for the perturbed images start indicating back towards the
correct class, which further confirmed our attribute-based explanations.

Finally, we demonstrated our attribute-based explanations by providing causal reason-
ing “because the image contains these attributes, therefore it is classified into this class”.
We also assisted our counterattribute-based explanations with counterexamples selected
based on predicted attributes, and showed that our method selected the most precise and
illustrative examples even in the presence of intra-class variations.
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Hence, we conclude that attributes provide intuitive factual and in the presence of
perturbations counterfactual human understandable explanations, especially for fine-
grained classification. These explanations could also be enhanced by retrieving visual
examples through them. Attributes retain their best disriminative power in the presence
of untargeted attacks with standard as well as robustified networks.
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WIGGLING WEIGHTS TO IMPROVE ROBUSTNESS

3.1 INTRODUCTION

As robustness is essential for building trust in new technology, we consider a technique
to robustify networks against unwanted perturbations.

The accuracy of neural networks is heavily affected by Gaussian noise or blur in the
image [9], [30], [102]. Occlusion or color saturation will have a similar effect on the
network’s performance. To achieve robustness, some train the network with perturbed
images rather than with clean images [109], or with images perturbed by a learned
noise generator [106]. Others [105] propose to train the network with images from a
generative model, while [143] show that training with noised perturbations helps against
high-frequency. In the same category of approaches, it remains an undecided question
whether adversarial training [51] is capable of providing robustness to a broad class of
natural perturbations [147], [38], [55].

This work aims to provide an alternative to all these data-side approaches to implement
robustness. Instead, we modify a given network by considering transformations to the
image filters. We wiggle the weights, see Figure 20, to implement robustness. Compared
to data augmentation, apart from delivering better results on general robustness, we also
have the advantage of providing built-in robustness, where there is no need to change the
data. And, we demonstrate that data augmentation is complementary to our approach,
providing a small further improvement in robustness.

For the actual transformations of weights, we are inspired by [71], [42], [26], [25].
Their goal is to build-in transformations to achieve geometrical equivariance. These
transformations are robust against global perturbations like rotation and scaling. For our

Wiggled-weight CNN

Standard CNN :
V H

% i Hummingbird; 5 B
i :
i x :

i Standard Kernel Cardinal

L ’/l Hummingbird
/u_\ “
Hummingbird

Perturbed

Perturbed

Transformed Kernel

Figure 19: A standard neural network (left) and our wiggled-weight network (right) at
test time for classification. The wiggled-weight network has integrated perturbation
transforms, which allow for better robustness against perturbations in the input without
specialized training.
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purpose, we apply multiple stochastic versions of an elastic transformation to make the
network more robust in general. We evaluate the resulting wiggled-weight networks on
both seen perturbations (rotation-scaling and elastic), as well as unseen perturbations
(occlusion, snow, Gaussian noise, Gaussian blur) as presented in [63]. Of the list in the
reference, we select six as a good sample of realistic, real-world perturbations, see Figure
23.

Following [106], [63], we select the Resnet architecture [58] as the model to test our
approach. To permit a fair comparison, we tune all perturbations such that the decay in
the original classification performance is equal for all.

* We propose wiggled-weight convolutions to integrate local perturbations in net-
works for the purpose of enhancing their general robustness.

* We demonstrate a substantial general robustness of our method on perturbations
seen during training and, more importantly, also on perturbations unseen during
training. This includes both natural and adversarial perturbations.

» The general, unseen, robustness is demonstrated to be significantly better than
methods based on data augmentation. In fact, the new method can be improved a
little further by combining it with data augmentation. And, we improve the classi-
fication performance on clean images, leading to the state-of-the-art performance
on the STL-10 dataset, 95.45%, and CIFAR-10, 94.97%.

3.2 RELATED WORK

Vulnerability of Classifiers to Natural Perturbations. In [40], [74] the authors show
that neural networks are not robust to translations and rotations. [48] deduce that the
performance of neural networks drops significantly as compared to humans when the
signal-to-noise ratio of images increases. [31] also concluded that, although neural
networks are on par in performance with humans, they fail to perform well in the
presence of Gaussian noise or blur, which humans easily handle. Therefore, it is crucial
to build robusstness against such perturbations into the classification without degrading
the performance of clean images, especially in applications like autonomous driving and
health.

Benchmarking Natural Perturbations. To promote the study of robustness against
naturally occurring perturbations, a few benchmarks have been proposed [63], [61],
[48]. In [63], the authors have introduced an impressively large benchmark for natural
perturbations. As some of these may be correlated [86], we select six natural perturbations
covering the breadth of styles, see Figure 23. In the reference, the authors have defined
five levels of severity for each type of perturbation. These levels are based on the visual
effect but not standardized on their effect on the classification accuracy. In this work, we
first quantitatively standardize the comparison among different perturbations.

Table 1 shows the significance of our standardization method for fair comparison
of robustness. When using the mean square error (MSE) between clean and perturbed
images for standardization of perturbations, we see that the MSE shows a large variation
in classification performance among different types of perturbations. Especially, the
MSE for adversarial perturbations tends to be very small, where natural perturbations
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Perturbation Standardized drop in classification accuracy MSE
Adversarial 10.22 0.02
Elastic 10.60 54.31
Occlusion 10.24 199.73
Gaussian Noise 10.10 11.79
Wave 10.18 602.61
Saturation 10.40 269.71
Blur 10.51 18.20

Table 1: Significance of standardization on CIFAR-10. To permit fair comparison, pertur-
bation’s parameters are tuned in such a way as to standardize the drop in classification
performance to approximately 10%. Standardizing on the basis of the mean square error
(MSE) between clean and perturbed images gives a large difference in classification
performance, and hence is considered not adequate for fairly assessing robustness.

tend to need a large deviation to show a similar drop in classification accuracy. This is
because adversarial perturbations are generated to misclassify an image while keeping
the optical difference between clean and adversarial images to a minimum.

The standardization is done by tuning the inflicted perturbation such that the drop of
the accuracy of the network is the same regardless of the type of perturbation, Table
1. This enables a fair comparison among different perturbations and the robustness of
classifiers.

Robustness to Natural Perturbations. To improve the robustness against natural
perturbations, [109] propose to use batch normalization performed on perturbed images
instead of clean ones. Similarly, [123] introduces two different normalization techniques,
Selfnorm and Crossnorm, to enhance the robustness against perturbations. [11] also
utilized perturbed samples and proposed to rectify batch normalization statistics for
enhancing the robustness of neural networks against perturbations. Simultaneously, [107]
introduces a noise generator that learns uncorrelated noise distributions, demonstrating
that training on noisy images enhances the performance against natural perturbations. [55]
trained on images with natural perturbations like occlusions or elastic deformations,
while achieving good generalization for many of the unseen perturbations, including
adversarial ones. [105] and [136] argue that it is impossible to capture all possible natural
perturbations mathematically. Therefore, they use generative models to generate images
with perturbations to train the network. Instead of training with perturbed inputs, in this
work, we integrate local elastic perturbations into the network as a local approximation
to the effect of many perturbations aiming for better general robustness.

Robustness to Adversarial Perturbations. In [122], the authors show that by adding
small amounts of crafted noise, adversarial perturbations, to images, it is possible to
change the prediction of the classifier. Since then, many different forms of adversarial
perturbations have been studied [82], [98], [121], [19], [97], as well as the robustification
against them [51], [82], [51], [19], [32]. When evaluating our model against adversarial
perturbations, we select the strong, undefended attack, the basic iterative attack [82] for
generating the adversarial perturbations. Experimentally, similar to our work, [106] fo-
cused on robustification against adversarial and natural perturbations by tuning Gaussian
and Speckle noise. Instead of generating tuned noise and then training the network, we
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Figure 20: Wiggled-weight Architecture. Top: A standard CNN with three convolutional
layers. Bottom: Its wiggled-weight (WWConv) variant. By multiplying the fixed basis
with the trainable weights, a single network is transformed into a network with multiple
paths, each path with a slightly different basis. At the end, the maximum is selected. This
is aimed to provide more robustness against local variations in the input of any kind.

first built-in robustness in the weights of the network and then evaluate on both natural
and adversarial perturbations.
Built-in Image Transforms. One of the first methods, suggesting transformations as
small units in the network that locally transform their inputs for estimating geometric
changes, is in the capsule network architecture [66]. In contrast, in [114] the network
is not modified, but rather the update rule of the gradient descent is adapted to learn
transformation-invariant weights. Later, both directions evolved [26], [138], [25], [134],
[139], [119], [117], [17], where neural networks are equipped with a rotation or scale
transformation when they are essential to the task. In [71], [84], [73] neural network
modifications are proposed to make them invariant under input transformations.

While these methods consider specific geometric transformations, we focus on local,
stochastic elastic perturbations. We demonstrate how they can be incorporated into a
CNN for improved robustness.

3.3 METHOD

3.3.1 Image Transformations

An image f can be reshaped as a vector f. A wide range of image transformations
can be parametrized by a linear operator: scaling, in-plane rotations, shearing. Other

transformations, such as out-of-plane rotations, can not be parametrized in an image-
agnostic way. However, for small deviation from the original image Taylor expansions
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Figure 21: Anillustration of how a set of transformed kernels is represented as a trainable
linear combination of wiggled-weight fixed basis functions.

can be used, which gives a linear approximation for many image transformations of
practical use. Indeed,

T[f](e) ~ T[f](0) + € (agiﬂ) ., (3.1)

=f+elyrxf=(I+elLy)xf=Txf

where 7T is a transformation, € is the parameter of the transformation and T is a linear
approximation of 7" for small values of the parameter. For scaling the parameter is the
logarithm of the scaling factor, for rotations it is the angle, and so on. Lz is a matrix
representation of an infinitesimal generator of 7. An image f can also be viewed as a
real-value function of its coordinates f : x — f(x). We focus here on transformations
which can be represented by a smooth field of displacements 7 in the space of coordinates.
Equation 3.1 can then be rewritten as follows:

T[f(x)](e) = f(x+er(x)) (32)

We will refer to such transformations as elastic transformations. We will consider them
as a linear approximation of a wide range of complex (camera) transformations. All
other perturbations can be derived similarly, up to an additive noise.

3.3.2 Wiggled-weight Convolutions

Let us consider a convolutional layer ® parameterized by a filter «. It takes input image
f. The output is:
D(f,k) = fxk=Kxf (3.3)

where K is a matrix representation of the filter.
O(T[f].x) = T[f] x«

= Kx (T xf) (3.4)
= (KxT)xf =®(f,T’[x])

In the most general case, KT is a matrix representation of a zero padding, followed
by a convolution with a kernel and a cropping afterwards. The size of the kernel 7”[«]
depends on the nature of the transformation 7'. If the transformation is global, the kernel
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can be of a size bigger than the input image. We will consider only the cases when 77 [«]
is of the same or of a slightly bigger size than the original one.
We propose Wiggled-weight convolutions, shortly WWConv, as follows:

BoP(f.«)

B1@(f, T1[«])

WWConv = max 3.5)

(1. Toli])

where g; are trainable coefficients. We initialize them such that Sy = 1, and the rest
are zeros. The maximum is calculated per pixel among different transformations of
the kernel. At the beginning of training, the operation is thus identical to the original
convolution with the same filter. If it is required during training, the other coefficients
will activate the corresponding transformations.

3.3.3 Transformations of a Complete Basis

In order to apply transformations to filters, we parametrize each filter as a linear combi-
nation of basis functions:

K= wits (3.6)

where i; are functions of a complete fixed basis and w; are trainable parameters. The
approach is illustrated in Figure 21. We follow [70] and choose a basis of 2-dimensional
Gaussian derivatives.

The transformations when applied to the basis form a transformed basis. Thus, for
every transformation from the set, there is a corresponding transform basis. Weights w;
are shared among all bases. We propose a global transformation (rotations-scaling) and a
local transformation (elastic) here, and test them on global rotation, global scaling, local
occlusions, local snow, Gaussian noise, and Gaussian blur, visual samples of which are
shown in Figure 23.

Let us assume that the center of a filter is a point with coordinates (0,0). For every

function from the basis, we first generate a grid of coordinates (x,y). Then we evaluate
the value of the function in the coordinates when projected on the pixel grid.
Global Reotation-scaling. In order to transform the functions, we add a small dis-
placement to the coordinates, which leaves the center untransformed. Given a grid of
coordinates (x,y), a the deformation intensity and o be the scaling factor, we define
rotation-scaling (See Figure 22, Row top and Row 2) displacements as follows:

x" = x+ a(xcos(0) + ysin(6)) (3.7
Yy =y + a(-xsin(0) + ycos(0)) (3.8)
where x’,y’ are the displaced coordinates. And 6 is the scale-rotation parameter. When
cos(6) is equal to O the whole transformation parametrizes rotation. When sin(6) is equal

to O then it performs scaling. For all other cases, the transformation is a combination of
both. The elasticity coefficient controls the severity of the transformations. Thus, for the
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Figure 22: Row top: smooth perturbations for the global rotation-scaling transforms.
Row 2: an original filter and its transformed versions. Row 3: smooth perturbations for
the local elastic transforms. Bottom row: an original filter and its transformed versions.

case of rotation, it is a linear approximation of the sin of the rotation angle. For the case
of scaling, « is the scaling coefficient.

Local Elastic Transform. Given a grid of coordinates (x,y), @ the elasticity coefficient
and o be the scaling factor we define the elastically transformed filter as following (See
Figure 22, Row 3, and Row bottom), i) we take a 2D-affine transform Ay and map the
coordinates (x,y) to the target coordinates (x', y"):

x! 011 012 O13] (+*

Ag|y' | = |021 622 O3]]Y (3.9)
1 031 623 633]\ 1

In order to find § parameters we select three points in the input grid (x,y) and map
them to the output (x' = x+ U(-a, @),y = y+ U(-a,@)). Where, U is the uniform
distribution. ii) We get another set of displaced coordinates (x’,y’) by mapping the
coordinates of the kernel as follows:

X =x+a e 27) (3.10)
2702
’ + of ! ‘y_22) (3.11)
y =yra e 2o .
V2ro?

iii) Finally, we map the target coordinates (x’,y") to (x’,y’) using bilinear interpolation.
We follow [119] and use a basis of 2 dimensional Hermite polynomials with the
Gaussian envelope for all transforms:

1 ’ ’ 7”2 72
Vo (oy) = Am=H, () Hy () exp | -2 (3.12)
o2 o o 202

where, A is the normalization constant, H,, is the Hermite polynomial of n—th order and
o is the scaling factor. We iterate over n, m-pairs to generate functions.
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Figure 23: Sample image from STL-10 dataset showing clean and six different natural
perturbations used in our experiments.

3.3.4 Wiggled-weight Residual blocks

In order to transform residual networks, we propose a straightforward generalization of
the proposed convolution. The standard residual block can be formulated as follows:

ResBlock = f + G(f,«1,k2,...) (3.13)

The block is formulated as follows:

IBOG(f,Kl,Kz,...)
BiG(f. Ti[x1], Th[ka],...)

WWResBlock = f + max (3.14)

ZG(fs Tulk1], Tulkz], .. .)

Transformed kernels in the network architecture are shown in the Figure 20.

3.3.5 Weights Transfer

To train neural networks successfully, initializing neural networks with Imagenet pre-
trained model weights is common. In our case, it is not straight forward to transfer
the weights of a standard network to our WWConv network because the network is
composed of fixed bases and trainable weights, i.e. multiple parallel networks connected
to one another, see Figure 20. Inspired by [118] we assume that in WWConv there is a
subnetwork which is identical to the standard network, permitting the transfer of weights
from the standard to the WWConv subnetwork. We initialize all weights responsible for
inter correlations to zero. Now, the WWConv network until the WWConv max pooling
layer (equation 3.14) consists of several parallel networks disconnected to one another.
As the filter sizes of the convolutional layers of WWConv match with the sizes of the
standard network, we can initialize them with the corresponding Imagenet weights in
the standard network. 1 X 1 convolutions of the standard network and the WWConv
network are identical, and therefore, we copy the weights from the standard network to
the WWConv one.

3.4 EXPERIMENTS AND RESULTS
Data. Two datasets, CIFAR-10 32 x 32 pixels and STL-10 96 x 96 pixels are used in

our experiments. CIFAR-10 consists of ten classes with 50000 training and 10000 test
images [80]. STL-10 contains 5000 training and 8000 test images in ten categories [24].

44



3.4 EXPERIMENTS AND RESULTS

Rotation-scaling Elastic

Network . PR
Test Input Standard wiggling wiggling
CIFAR-10 Clean 92.53 94.50 94.97
STL-10 Clean 84.40 94.12 95.45

Table 2: Classification accuracy on clean images. WWConv networks achieve an improve-
ment in the performance on clean data for CIFAR-10, and a significant improvement of
~ 11% for clean STL-10 data. The new WWConv network contributes even in the clean
image accuracy.

Apart from the data augmentation experiment, the only data augmentation while training
is a randomized horizontal flip.

Implementation Details. We use Resnet-152 as the baseline network, SGD optimizer
with the cyclic learning rate scheduler at a rate of 0.05 is used for training. For both
datasets, we experimented by wiggling the weights of multiple blocks in the Resnet ar-
chitecture with elastic and rotation-scaling convolutions one-at-a-time. When restricting
the wiggling to the first block consisting of multiple non-linear layers [58], we found it
to be sufficient to achieve good results.

Evaluating the Standard Network We begin training standard networks for each dataset
on clean images. We fine tune the Resnet networks pre-trained on Imagenet and achieve
92.53% and 84.40% for CIFAR-10 and STL-10 clean test set respectively, see Table 2.
Standardizing Network Robustness While considering standard networks as the base-
line, we standardize the comparison among robustness of different networks by setting
the desired drop at 10% for each dataset, shown in Table 3. We succeed in reaching
a standardized drop within a maximum standard deviation of 0.44. Hence, our stan-
dardization enables fair comparison among robustified networks on different types of
perturbations.

3.4.1 Evaluating Wiggled-weight Convolutional Network

We train each classifier network with wiggled-weight convolutions. For both datasets,
we initialize the weights of WWConv Resnet-152 with Imagenet weights and fine-tune
it. We evaluated our method by adding WWConv with four stocahstic versions of the
transform, as shown in Figure 20.

Evaluating Robustified Networks on Clean Images

On clean CIFAR-10 test set, elastically transformed convolutions showed the best perfor-
mance with an improvement of 2.44%, rotation-scaling following it with an improvement
of 1.94%, see Table 2.

For STL-10, the improvement in the performance with elastically transformed convolu-
tions is significant, leading to an improvement of 11.05% and rotation-scaling following
it with an improvement of 9.72%, see Table 2. We contend that the reason behind the
significant improvement in the performance for STL-10 dataset is that STL-10 is a small
dataset, and our wiggled convolutions provide variations in the network, which leads to
an improvement in the performance especially for small datasets.
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WIGGLING WEIGHTS TO IMPROVE ROBUSTNESS

Network Rotation-scaling  Elastic

Pertubed Tnput Standard wiggling wiggling
CIFAR-10
Rotation-scaling 82.81 82.73 86.59
Elastic 82.61 85.62 87.12
Object Occlusion 81.90 78.35 80.18
Gaussian Blur 82.60 87.96 90.03
Gaussian Noise 81.47 88.96 89.38
Snow Occlusion 82.81 83.86 85.23
STL-10
Rotation-scaling 73.98 89.48 92.29
Elastic 73.88 87.96 90.94
Object Occlusion 73.28 74.56 81.90
Gaussian Blur 73.86 87.41 91.01
Gaussian Noise 73.60 90.70 92.60
Snow Occlusion 73.49 90.49 85.63

Table 3: Classification accuracy on perturbed images. WWConv for seen rotation-scaling
and elastic, and for four unseen naturally perturbed image styles. For a standard network,
we drop the performance to a standardized level by tuning the perturbations. WWConv
recovers the drop in the performance for all the perturbations on CIFAR-10 except
Occlusion. For STL-10, we recover the classification accuracy on all perturbations.
Hence, WWConvy significantly enhances the robustness against natural perturbations.
Bold shows row-wise best.

Evaluating Robustified Networks on Seen Naturally Perturbed Images.

Table 3 compares the performance of the standard versus the wiggled-weight networks on
naturally perturbed images. It uses the same deformation model in the WWConv network
as the perturbation applied to the input images, of which sample test perturbations are
shown in Figure 23.

We observe on the first two rows in the Table 3 under rotation-scaling and elastic
perturbations, that for CIFAR-10, our elastically wiggled convolutions recover the drop
on both elastic and rotation-scaling perturbations. On the other hand, on STL-10, our
modified convolutions recover the drop for the two seen perturbations, with elastically
transformed convolutions showing the best performance when tested on elastic perturba-
tions. Hence, our proposed wiggled-weight convolutions are generally robust against
natural perturbations based on the same transformation in the network as the one applied
to the image, “seen” perturbations.

Evaluating Robustified Networks on Unseen Naturally Perturbed Images.

We consider the occlusion, Gaussian blur, Gaussian noise, and snow perturbations not
explicitly covered by an elastic transformation, hence “unseen during training”, for
evaluating our new model.

On the CIFAR-10, we observe that both wiggled-weight networks recover the drop
in the performance for all the perturbed unseen inputs except occlusions, see Table 3.
Elastic transform convolutions show a better recovery in the drop on unseen perturbations,
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3.4 EXPERIMENTS AND RESULTS

Rotation-scaling  Elastic

Perturbed Tnput Network Standard wiggling wiggling
CIFAR-10
Adversarial (standardized) 82.13 86.42 86.49
Adversarial (e = 2) 28.48 28.27 28.48
STL-10
Adversarial (standardized) 7191 88.12 91.72
Adversarial (€ = 2) 27.04 40.35 50.06

Table 4: Classification accuracy on adversarially perturbed images. As before, for a
standard network, we drop the performance by adding adversarial perturbations to cause
~ 10% drop and a higher drop with € = 2. For CIFAR-10, the elastic WWConv recovers
the drop in performance. For STL-10, also elastic WWConv recovers best at ~ 23%.
WWConv enhances robustness against adversarial perturbations.

Network Elastic Elastic Elastic Wiggling+
Perturbed Tnput Standard Wiggling augmentation Elastic augmentation
Clean 92.53 94.97 90.54 93.65
Rotation-scaling 82.81 86.59 81.61 88.04
Elastic 82.61 87.12 90.79 89.68
Object Occlusion 81.91 80.18 83.62 75.32
Gaussian Blur 82.60 90.03 90.10 91.61
Gaussian Noise 81.47 89.38 72.51 85.74
Snow Occlusion 82.81 85.23 82.51 83.41

Table 5: Comparing classification accuracy with data augmentation. Comparing the
standard, our WWConv, data augmented combined with WWConv networks on naturally
perturbed CIFAR-10, we observe that combining WWConv with the data augmentation
further enhances network robustness for seen perturbations while the accuracy of elastic
WWConv alone is the best one for unseen perturbations.

e.g., for Gaussian Blur it recovers the drop of 9.43%, for Gaussian noise 7.91% and
for snow occlusions 2.24%. Thus, the proposed wiggled-weight convolutions show
robustness against unseen natural perturbations, with the one exception for occlusions for
the CIFAR-10 dataset. The lack in the recovery due to occlusions are ascribed to the size
of the CIFAR-10 images, making it difficult for the networks to recover the information
lost in occlusion.

On the STL-10, in Table 3 we also test our wiggled-weight networks on five different
natural unseen perturbations. We observe that both the wiggled-weight networks recover
the induced drop in the performance on unseen perturbations. Similar to CIFAR-10,
the elastic WWConv network shows a better recovery on unseen occlusions (8.62%),
Gaussian blur (17.15%) and Gaussian noise (19.00%) perturbations. The rotation-scaling
WWConv network performs best on the unseen snow perturbations, as well as on the
seen global transforms. In contrast with CIFAR-10, on STL-10 the proposed model
shows significant recovery in the drop for occlusion perturbations. We conclude that
wiggled-weight convolutions show a much better general robustness on unseen naturally
perturbed images.
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WIGGLING WEIGHTS TO IMPROVE ROBUSTNESS

WW_Conv Elastic WWConv Elastic
Test Input Network Resnet (1-pert) (4-pert)
Clean 92.53 94.87 94.97
Rotation-scaling 82.81 82.81 86.81
Elastic 82.61 84.86 87.12
Object Occlusion 81.91 79.90 80.19
Gaussian Blur 82.60 87.82 90.03
Gaussian Noise 81.47 90.01 90.51
Snow Occlusion 82.81 84.88 85.23

Table 6: Comparing classification accuracy for network variations. Comparing on
CIFAR-10, WWConv Elastic (1-pert) with WWConv Elastic (4-pert). Where 1-pert
uses one style of elastic filter, while 4-pert uses four different styles of elastic filters in
the network. We observe that varying filter transforms enhances the robustness of the
network.

Evaluating Robustified Networks on Adversarially Perturbed Images.

In Table 4, we contrast the performance of a standard network with our WWConv for
adversarial images. We test the performance for a standard 10% drop and for high drop
with high intensity adversarial perturbations, i.e., € = 2.

On the CIFAR-10, we observe that the wiggled-weight networks are capable of
counteracting modest adversarial perturbations, causing a standard drop of 10%. While
for adversarial perturbations with the € = 2, causing a drop of ~ 64%, both networks
do not add very much anymore, attributed to the size of CIFAR-10 images. Hence,
we conclude that the proposed robustified networks help against common adversarial
perturbations on CIFAR-10.

For STL-10 dataset, our wiggled-weight network with both perturbation types show
resistance against adversarial perturbations. On adversarial perturbations which cause a
drop of 10% elastic augmented convolutions show the best resistance with an improve-
ment of 19.81%. Similarly, for a drop of * 57% with the e = 2 elastic augmented
convolutions show the best recovery of ~ 23%, with rotation scaling following it with
a recovery of = 13%. Thus, our wiggled-weight networks also defend adversarial
perturbations for both low and high drops.

3.4.2 Ablation Studies

Combining with Data Augmentation. To evaluate the effectiveness of WWConv when
combined with the data augmentation, we train a WWConv elastic Resnet-152 with
elastic data augmentation. Table 5 compares WWConv, data augmentation and the two
combined. We observe that our WWConv shows the best performance on clean images,
WWConv with data augmentation being the second best. For the naturally perturbed
test set, WWConv when combined with the data augmentation further enhances the
robustness of the network, while data augmentation alone fails to generalize to unseen
perturbations.
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Network Training Time GPU Usage Network Size
ResNet-152 0.14 s 1.9 Gb 221.9 Mb
WWConv-ResNet-152 0.32s 9.1 Gb 221.9 Mb

Table 7: Comparing resources on an Nvidia 1080Ti. Our network requires the same disk
space as the baseline network and only double the time to train.

Evaluating the Effectiveness of Varying Filter Transforms. To show the effectiveness
of integrating a stochastic variety of filter transforms in the network, we train our
WWConv with one type of elastic filter transform (denoted as 1-pert) across all the
parallel networks and compare it with a network trained using stochastically differing
elastic filter transform across each parallel network (denoted as 4-pert) in Figure 20.

In Table 6 we compare the results for WWConv elastic 1-pert with 4-pert. We
observe that although both networks consist of an equal number of four filter transforms,
variation of the transform helps. The same transform repeated four times gives a worse
performance compared to varying transforms.

Comparing Computational Resources.

In Table 7 we compare the computational complexity of our WWConv network with a
standard network. While delivering a much better robustness, our network requires no
processing of the data for augmentation, the same disk space as the baseline network,
only double the time to train, and GPU memory proportional to the number of transforms.

3.5 CONCLUSION

We formulate a method to enhance the robustness of networks for classification against
common perturbations such as occlusion, Gaussian noise, Gaussian blur, and snow. The
method transforms the network’s weights by four different stochastic instantiations of
a local elastic transform to cover the local neighborhood by Taylor expansion in the
functional space of all classifiers.

To permit a fair comparison in the performance of perturbed images, we first tune the
perturbation parameters to the same drop in classification performance.

In this standardized setting, we demonstrate the effectiveness of our method by im-
proving the performance against natural and adversarial perturbations over standard
networks. Local elastic convolutions corresponding to viewpoint change deformation
generally perform the best. The results show improved network robustness for four
common perturbations, not explicitly modeled in the wiggling, hence “unseen” during
training. The improvement in robustness is usually by a large margin, even compared
to training with data augmentation by the same transform, “seen’ perturbations. Our
WWConv can be further improved by exposing it to data augmentation.

In the evaluation, we note that our method unexpectedly enhances the network classi-
fication accuracy on clean, CIFAR-10, and STL-10 datasets, where a small loss would
also have been acceptable.
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We conclude that our wiggled weights approach induces good general robustness for
the class of such natural perturbations. At the same time, the costs of implementing into
the network and the additional computational resources are modest.
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NATURAL PERTURBED TRAINING FOR GENERAL
ROBUSTNESS

4.1 INTRODUCTION

Recent research in machine learning and computer vision shows that changes in the
inputs of convolutional neural networks like blur or noise can drastically change the
class predictions in the real world [9,31, 102]. Considering the importance of robustness
against natural perturbations, [63] proposed a benchmark consisting of a subset of Image
net [27] with corruptions applied to them. Although they introduced five severity levels
for each type of perturbation, they do not standardize the effect of the perturbations for a
fair, quantitative comparison among the different perturbations. Therefore, in chapter 3,
instead of qualitative evaluation, we introduced a standardization procedure to permit a
quantitative assessment of robustness among alternative types of perturbations to train a
network. We will use this standardization to evaluate our training procedure in this work.

Several methods for the robustness of neural networks against natural perturbations
have been proposed in the literature [64,106,143]. [143] hypothesized that Gaussian noise
and adversarial training helps against perturbations in the high-frequency domain. [106]
showed that by generating properly tuned Gaussian or speckle noise, it is possible to
generalize a network to unseen perturbations. To systematically enhance and study the
robustness for neural networks against perturbations in this paper, we introduce a simple
yet effective training procedure natural perturbed training. The network is first trained
for ny epochs on clean images followed by n, epochs on naturally perturbed versions
of the same training images. Unlike previous methods, this training method does not
require architectural changes, and it is not computationally expensive, while any natural
perturbation could be used with it. Moreover, we map filter transforms, proposed in
Chapter 3, to input images to explain the effectiveness of integrating natural perturbations
in the network, see Figure 35.

Concurrently, training methods have been introduced to achieve robustness against
adversarial perturbations [51,96,116]. To date, it is an open problem whether adver-
sarial perturbations help make networks robust against natural perturbations and vice
versa [38, 150]. [150] showed that adversarial training helps to reduce the texture bias in
neural networks. However, [38] showed that adversarial perturbations do not generalize
to natural transformations like translations and rotations. Therefore, in this work, after
standardization permits a fair comparison between differently trained networks for robust-
ness, we evaluate whether adversarial perturbations generalize to natural perturbations
and the other way around.
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Figure 24: (24a): A CNN with standard kernels leads to misclassification when tested
on perturbed input. (24b): Wiggled weight convolution (WWConv), with transformed
kernels, classifies perturbed input correctly. (24c): Similarly, A CNN with a standard
kernel but with natural perturbed training classifies perturbed input correctly.
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4.2 RELATED WORK

There is also an open debate in literature [120, 126, 149] about the trade-off between
robustness and accuracy of clean image classifiers when networks are robustified with
adversarial training. We found that our natural perturbed training procedure does not
significantly drop the performance on clean images as adversarial training does. For
Cifar-10 and STL-10 natural perturbation even helps to improve the accuracy to reach the
state of the art performance [119], without the high computational costs of adversarial
training.

Standardization is also useful in the evaluation of robustified networks for unseen
perturbations. In contrast to [63, 85, 106], we learn the quantitative effect of the type of
training for robustness also against unseen perturbations.

Our contributions are: (1) We introduce natural perturbed training, which is computa-
tionally fast and shows better performance than adversarial training on clean, adversarial
as well as natural perturbations. (2) We train neural networks on naturally perturbed
images to justify why incorporating natural perturbations in the network enhances ro-
bustness, see Figure 35 (3) Natural perturbed training is demonstrated to improve the
quantitative robustness of perturbations both seen and unseen during the training. (4)
Natural perturbed training even improves the performance of classifiers in the absence of
perturbations (without using more data and at almost no costs).

4.2 RELATED WORK
4.2.1 Natural Perturbations and Robustness

In [40,74] authors showed that neural networks are not robust to translations and rotations.
[48] deduced that the performance of neural networks significantly drops as compared to
humans with the increase of the signal-to-noise ratio of images. [31] also concluded that
although neural networks are on par in performance with humans, they fail to perform
well in the presence of perturbations like Gaussian noise or blur, which humans easily
handle. Therefore, it is crucial to building robustness against such perturbations into
the classification without degrading the performance of clean images, especially in
applications like autonomous driving and health.

To promote the study of robustness against naturally occurring perturbations, a few
benchmarks have been proposed [48, 61, 63]. Closely related to our work, in [63] the
authors have introduced a large benchmark for natural perturbations, quite a few of which
will be correlated [86]. In our work, we selected six more or less independent types of
natural perturbations covering the breadth of styles, see Figure 26. In the reference, the
authors have defined five levels of severity for each type of perturbation. These levels are
based on the visual effect, but not standardized on the classification. As robustness is
primarily aimed at the loss of classification performance, in this work, as proposed in
chapter 3 at first, we quantitatively standardize the comparison among differently trained
networks to analyze the effect on their robustness.

Simultaneously, to improve the robustness against natural perturbations [106] per-
formed data augmentation by carefully tuning Gaussian or speckle noise. [123] introduced
two normalization techniques, SelfNorm and CrossNorm, to enhance the generalization
for out-of-distribution data. [109] proposed to use batch normalization statistics calcu-
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Figure 25: Comparing data augmentation with natural perturbed training on clean
images for Cifar-10. A is the change in accuracy, positive values show improvement,
while negative values depict a drop in accuracy. We observe that natural perturbed
training shows a better performance on clean images than data augmentation would.

lated on corrupted images instead of clean images to improve the robustness against
perturbations. However, all the aforementioned approaches, either require an extra net-
work to find the suitable perturbation or a modification in the network. In contrast, in
this paper, we introduce a training procedure in which, after training on clean images,
we continue on perturbed versions of the clean inputs and minimize the loss for both of
them. This leads to an improvement in the performance on robustness against perturbed
images without requiring any architectural changes.

Data augmentation is commonly used to enhance the generalization of deep neural
networks. [28] showed an improvement in the generalization by randomly occluding
parts of images. [148] trained networks on convex combinations of pairs of images
and their labels, which led to an improvement in generalization and robustness against
adversarial examples. Similarly, [146] trained on images with regions superimposed
from other images. [65] used linear combinations of different data augmentations to
enhance generalization.

While these methods enhance the generalization of neural networks, most of these
methods train networks on non-realistic images, e.g., superimposing parts of two dif-
ferent images. Furthermore, here we aim to understand the working of the transform
augmented convolutional network; we introduce a training procedure using images with
perturbed transforms most similar to the built-in transformations of transform augmented
convolutional networks as possible.

Note that our natural perturbed training is different from standard data augmentation.
Figure 25 contrasts the performance of clean images when the network is trained with the
data augmentation versus when it is trained with natural perturbed training. For Cifar-10,
we see that natural perturbed training improves clean image classification accuracy for all
styles of perturbation. However, data augmentation either leads to a small improvement
or even a drop in the performance with elastic, Gaussian, and wave perturbations.
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4.2.2 Adversarial Perturbations and Robustness

In [122], the authors explored the robustness of neural networks. They showed that by
adding small amounts of carefully crafted noise, i.e., adversarial perturbations to the
images, it is possible to change the prediction of the classifier. Since then, plenty of
research [19,82,97,98,121] has been conducted on finding different types of adversarial
perturbations and studying the robustification against them [19,32,51,51, 82]. In this
work, we utilize a strong yet undefended attack, i.e., basic iterative method [82] for
generating adversarial perturbations. We employ one of the state-of-the-art defense
methods, i.e., projected gradient descent [91] in adversarial training, for the comparison
with natural perturbed training.

Although adversarial training helps to enhance the performance against adversarial
perturbations, [126, 149] showed that with increased robustness of adversarially trained
neural networks in classification, simultaneously the network’s clean image classification
accuracy decreases. This behavior deviates from our natural perturbed training. Apart
from increasing the robustness for perturbed image classification, the network retains its
accuracy for clean images for most datasets; and even enhances its performance on CUB,
StanfordCars, Cifar-10 and STL-10 datasets.

[46] established connections between adversarial and natural perturbation robustness,
suggesting that neural networks should be robustified against both of them. [106] focused
on robustification against adversarial as well as natural perturbations by using properly
tuned Gaussian and Speckle noise. In this work, instead of generating tuned noise and
then training the network, we refrain from tuning noise during training. We show that
our natural perturbed training offers better performance with occlusion, elastic, and wave
than with Gaussian noise as a perturbation.

4.3 METHODS

Given the n™ input image x, and its respective output y,, a classifier f predicts the class
f(x4) = y,. Here we consider the problem of robust classification against artificially
created adversarial & A and natural /" perturbations as noise, motion blur, difference in
viewing angle, color saturation, and occlusion.

4.3.1 Quantitative Standardization

As the evaluation metric for classification is accuracy, we add perturbations in the input
images such that the performance drop p in classification accuracy is equal for all
perturbations under consideration, as shown in the Table 1. It is given as:

1 1Y
;ZMﬂm=ﬁﬂ—

- 2 M () = ) (“.1)
n=1

where 1 is the indicator function. Hence, we set the parameters of each ¢ under
consideration such that the drop p is constant for each type of perturbation.
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Figure 26: Randomly selected sample images for the six natural perturbations under
consideration in our experiments.

4.3.2 Perturbations

Natural Perturbations

We consider a set of natural perturbations £” with the least correlations among them, where
te{E,O0,N,W,S, B} represents the type of perturbation operator. We create perturbed
images by selecting a perturbation from ¢ and applying it on the image ¢’(x,). This
leads to a drop in the performance of the classifier f(’(x,)). To understand the working
of the transform augmented convolutional network; we use perturbed transforms most
similar to the built-in transformations of transform augmented convolutional networks
as possible. Samples for the six natural perturbations under consideration are shown in
Figure 26.

Elastic Transform (F. Elastic deformation usually appears in small variations in the
viewing angle of the recording. Given an input image x,,, @ the elasticity coefficient and
o be the scaling factor we first generate its coordinates (i, j) and apply the transform
as following: i) we take a 2D affine transform Ay and map the coordinates (i, j) to the
target coordinates (i, j'):

i’ 011 612 O13| ('
Ag| ' = [621 022 O3] ] 4.2)
1 031 623 O33[\ 1

In order to find @ parameters we select three points in the input grid (i, j) and map
them to the output (i = i + U(-a, @), j' = j+ U(-a,a)). Where, U is the uniform
distribution. ii) We get another set of displaced coordinates (i’, j/) by mapping the
coordinates of the image as follows:
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1 a2
' =i+a e 27) (4.3)
202
1 o
7 =Jj+a e 27) 4.4)

iii) Finally, we map the target coordinates (i, j') to (#/, j/) using bilinear interpolation,
where (7, j/) are the displaced coordinates of the image.

Occlusion Transform (©. We apply occlusion transforms by creating a circular mask
on the image, M, ; with the center being ¢; and c;. The values for ¢; and c; are selected
randomly from the discrete uniform distribution U[low, high). The radius of the circular
mask is a hyperparameter. All the values in the M are set to zero.

Gaussian Noise V. The Gaussian noise is implemented as follows:

(7. 7)) = (i.7) + N7 (i, )) (4.5)
ol 1 —i2 + 2
N9 (i, j) = 2ﬂo_zexp[ 52 ] (4.6)

Where (i, j) are the perturbed coordinates of the image.
Wave Transform . A be the amplitude, B be the frequency and S be the horizontal or
vertical shift, we define sinusoidal displacements for a wave transform as follows:

i’ = Shift(ASin(2xS;B)) 4.7)
J = Shift(ASin(2xS ;B)) (4.8)

Where i’, j’ are the displaced coordinates.

Saturation Transform (5. Saturation is introduced in the images by converting the
RGB image to HSV then increasing the saturation factor, and finally, converting it back
to the RGB image.

Gaussian Blur ¢Z. Gaussian blur is introduced by convolving a two-dimensional
Gaussian function to the image:

(", ) = (xn x NO)(i, j) 4.9)
ooy —+ )
N9 (i, j) = 2jm_zexp[ 553 ] (4.10)

Where * is the convolution operator. The size of the local neighborhood is determined
by the scale (o) of the Gaussian function.

The natural perturbations are class agnostic in a stochastic sense. However, they are
made image specific by selecting different perturbations for different images. For elastic
deformation, we vary the intensity of elasticity for each image such that it leads to a
specific drop p. For occlusion, the position of occlusion is randomly selected for each
image, the intensity of Gaussian noise is also randomly uniformly varied. Per image,
the wave is scaled uniformly at random, as are the saturation factor and variance of the
Gaussian blur filter.
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Adversarial Perturbations

Adversarial examples are generated while satisfying two properties, 1) the class of
the adversarial image is different from the class predicted for the clean image i.e.
F(Z%(x4)) # f(xa), 2). Perturbed and original images are visually similar, and their
similarity is determined by the /,-norm. While fulfilling these two properties, we use
a basic iterative method [82] for generating adversarial examples ¢ (x,). We find the
perturbation &, with a small norm /., bounded by € such that f(x,) # f(4(x,)), where
A(x) = x, +6pand §, < €

A =x,+0 4.11)
AT = Clip (¢ () + €S ign (v (LA (), ynu )} (4.12)

where £2(£4(x%), y,, w) represents the gradient of cost function w.r.t the perturbed image
A (xﬁ) at step k, €; determines the step size taken in the direction of sign of the gradient
and the result is clipped by e.

4.3.3 Robustness

The neural network classifier is trained by minimizing the loss function:

£, = min — D L)) (4.13)

R P

where S = {(xy, yu)|xn € X, yn € Y} is the training set, w the network parameters and £
the cross-entropy loss. Usually, the data augmentation is performed by adding perturbed
versions of the input images. The network is trained by replacing the clean input image
xn with its perturbed version ¢’ (x,) in Equation 4.13.

Natural Perturbation Robustness

In order to learn better loss surfaces for clean image classification and robustification
against perturbed inputs, in this work we introduce natural perturbed training as shown
in Figure 27. We start training the classifier with clean images x,, for n; epochs while
optimizing the loss L. Then we add their perturbed versions ¢’ (x, ) besides the clean for
the subsequent n, epochs while minimizing the loss for both of them, i.e. Lf = L‘+ﬁ
where £¢ is the loss for perturbed samples. The procedure for natural perturbed training

is given in the box 2.

2
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Figure 27: Our natural perturbed training procedure. We train a network f on clean
samples x, for first ny epochs. In subsequent ny epochs we add perturbed versions of
input images {' (x,) in the training while optimizing the loss for both clean and perturbed
samples for the rest of epochs.

Adversarial Robustness

For adversarial robustness, we consider adversarial training as described in [51]. The
network is trained on adversarial samples besides clean images, while the loss function
is optimized for both clean and adversarial samples given by:

1
L0 = min — Z L(f(Z(xn))syn) (4.14)
wo IS
({ (xn),y,,)GS

where L, is the loss for clean images and £° is the loss for adversarial images.

Algorithm 2 Natural Perturbed Training for Robustification.

1: Given S = {(xn, yn)lxn € X, y, € Y}, learning rate n and a set of natural perturbations
g

2: Initialize w randomly

3: for epoch = 1to n; + ny do

4:  for minibatch B C |S| do

5 Ly = L(f(xn)syn, W)

6: if epoch > n; then

7: L= L(f(& () ynsw)
s L=tgt

9 end if
10: Update w with SGD.
11: w=w-nV, Lf
12:  end for
13: end for
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4.3.4 Implementation Details

Evaluation Metric. We use change in the accuracy A as the evaluation metric for the
robustness of classifiers. The change is calculated between a standard classifier for clean
inputs f(x,) and a robustified classifier for clean f,(x,) or perturbed f,(£(x,)) inputs.
The change in the accuracy is given by:

= > WAL () = ) (4.16)

where 1 is the indicator function.

Standard Network Training and Testing. We perform classification using Resnet-152.
For Cifar-10, we train the networks from scratch. For other datasets, networks are
pre-trained on Image-net and fine-tuned on the respective datasets. The networks are
tested for both clean and perturbed inputs. Natural perturbations are generated using
the method described in section 4.3.2 while keeping the drop p from equation 4.1 the
same for all perturbations to ensure standardization. To make the perturbations diverse
across each image, we select the parameters of perturbations randomly. Adversarial
perturbations are created using the basic iterative method, with the number of steps K
taken as 10 and € values such that the drop p is the same as for other perturbations. The
metric of similarity between clean and adversarial samples is /., norm.

Robust Network Training and Testing. Networks are robustified with natural perturbed
training, see the box 2. Each network is robustified with one type of perturbation and
the parameters for perturbations are tuned such that they lead to a constant drop p, see
Equation 4.1. Adversarial training is performed using projected gradient descent (PGD)
with K = 10 and € tuned such that it leads to the same drop p as the drop of other
perturbations. The parameters for the optimizer, learning rate scheduler, and number of
epochs are constant across adversarial training and natural perturbed training within a
dataset. PGD adversarial training makes O(KS ) computational gradient steps in one
epoch, where K is the number of steps and S is the dataset size. This procedure is K
times slower than the standard training O(S ) [137] hence, our perturbed natural training
is equally faster than adversarial training.

4.4 EXPERIMENTS AND RESULTS

We compare natural perturbed training with adversarial training on clean, natural per-
turbed and adversarial inputs. In all plots, a symbol represents one run on a trained
network with one specifically (perturbed or clean) test set: the symbol represents the test
perturbation type, while the color represents the training perturbation type.

Datasets. Six datasets of varying granularity and size are used in our experiments. Cifar-
10 [80] consists of ten coarse-grained classes with 50000 training and 10000 test images.
STL-10 [24] contains 5000 training and 8000 test images belonging to ten coarse-grained
categories. Different from Cifar-10, the image size is 96 X 96 pixels. The Large attribute
dataset (LAD) [151] contains, 78017 images with 230 fine-grained classes. We use
11702 training, 9947 validation and 9284 test images for our experiments. Animals with
attributes (AwA) [140] consists of 37322 images with 50 fine-grained classes. We use
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Figure 28: Standardization by calibrating the drop p. The cross symbol at zero shows
the normalized accuracy of a standard network for clean images. Each of the symbols
on —10 shows the standardization by dropping the performance of a standard network
when a perturbation is introduced. Hence, the overlap of symbols at —10 for all the
perturbations show the degree to which the standardization is uniform.

10450 of them for training, 7524 for validation, and 9674 for testing. StanfordCars [78]
contains 8144 train and 8041 test images with 196 fine-grained categories of cars. The
CUB-birds dataset [135] consists of 11788 1images with 5395 for training, 599 for
validation and 5794 for testing, divided over 200 fine-grained categories of birds. The
input size for all fine-grained datasets is taken as 224 x 224 pixels.

4.4.1 Standardizing Network Robustness

Normalizing Accuracy. We begin by evaluating the performance of a standard neural
network classifier for clean images. A standard classifier shows the test accuracy of 93.18
for Cifar-10, 88.60 for STL-10, 87.86 for LAD, 84.79 for AwA, 86.48 for StanfordCars,
and 81.20 for CUB dataset. The performance of the standard classifiers for clean images
is the reference value of zero, as indicated by the cross symbol, see Figure 28.
Standardization by Calibrating the Drop p. While considering the standard networks
as the baseline, we standardize the comparison among robustness of different networks
by setting the desired drop p in Equation 4.1 at 10% for each dataset, shown in Figure
28 at —10%. We succeed in reaching a standardized drop with a maximum deviation of
0.26%. Hence, our standardization enables fair comparison among robustified networks
on different types of perturbations.

4.4.2  Evaluating Robustified Networks on Clean Images

We contrast the performance of adversarial training with natural perturbed training on
the clean test set. Figure 29a shows the performance of a network trained with natural
perturbed training and tested on clean inputs. Except for Gaussian blur on LAD and
Gaussian noise on AWA and CUB, natural perturbed training retains the performance of
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Figure 29: Comparing the performance of natural perturbed training with adversarial
training for clean images, where the cross symbol represents a clean test set and the color
of the symbol represents the type of training perturbation. Adversarial training degrades
the accuracy in the classification of clean images, but natural perturbed training does
not degrade the performance on clean images. It even improves the classifier accuracy
for four in six datasets.

the classifier on clean images. For CUB, StanfordCars, Cifar-10 and STL-10 datasets,
training with the perturbed natural images even leads to an improvement in performance
as compared to a standard network trained only on clean images. We achieve a maximum
of 95.04 for Cifar-10 and 91.81 for STL-10 with our natural perturbed training. Figure
29b shows the performance of adversarially robustified networks on clean images. We
see that robustifying networks against adversarial perturbations leads to the drop in
the performance on clean images for all datasets except STL-10. Hence, adversarial
training shows a trade-off between robustness on adversarial perturbations and clean
image accuracy. In contrast, our natural perturbed training does not degrade clean image
accuracy but leads to an improvement in the performance.

4.4.3  Evaluating Robustified Networks on Seen Perturbations

We evaluate the robustness of natural perturbed training on the same type of perturbation
e.g. a network trained with elastic perturbed training tested on elastic (seen perturbations)
as shown in Figure 30a. Results show that natural perturbed training helps to recover the
performance when tested on seen perturbations for both coarse and fine-grained datasets.
The recovery is highest for STL-10 and least for Cifar-10. Where Cifar-10 and STL-10
are both coarse-grained, the input size in Cifar-10 is around three times smaller than
STL-10. Hence we argue that after introducing natural perturbations, the damage in
Cifar-10 is too much to recover from. In general, all datasets show significant recovery in
the performance with the natural perturbed training in the presence of seen perturbations.

Figure 30b shows the results for adversarial images tested on adversarially robustified
networks. We observe that adversarial training helps against adversarial perturbations.
However, the recovery in the performance of natural perturbations with the natural
perturbed training is higher for all datasets except Cifar-10. Hence, our natural perturbed
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Figure 30: Comparing the performance of natural perturbed training with adversarial
training on seen perturbations. Where the type of the symbol represents the test per-
turbation type and the color of the symbol represents the type of training perturbation.
Adversarial training recovers the performance on adversarial images, but the recovery
for natural perturbations with natural perturbed training is higher.

training shows better generalization on perturbation in images seen during training as
compared to adversarial training on seen adversarial perturbations.

4.4.4  General Robustness of Elastic and Occlusion Perturbations

In Figure 31 we contrast the general robustness of natural perturbed training with
adversarial training by testing them for unseen perturbations, i.e. perturbations not seen
during the training.

Effectiveness of Natural Perturbed Training on Unseen Perturbations. Figure
31a, 31b shows the performance of elastic perturbed training and occlusion perturbed
training tested on unseen adversarial and natural perturbations respectively. Results
show that robustification with both elastic and occlusion perturbations recover the drop
due to adversarial perturbations (plus symbol). We observe that natural perturbed
training generalizes to other natural perturbations, except for elastic perturbed training
on Gaussian noise for StanfordCars, AWA and LAD (red star symbol). Coarse grained
Cifar-10 and STL-10 show the highest recovery on unseen natural perturbations. Hence,
our natural perturbed training shows general robustness over adversarial as well as natural
perturbations, while being even remarkable for coarse-grained datasets.

Ineffectiveness of Adversarial Training on Unseen Perturbations. Figure 31c shows
the results for an adversarially trained network (depicted by yellow symbols) and tested
on unseen natural perturbations elastic (circle symbol) and occlusion (square symbol).
Adpversarial training does not generalize to unseen natural perturbations for fine grained
datasets. It even leads to a further drop in the performance for them. For CUB and LAD,
the drop almost doubles. For the coarse grained Cifar-10 dataset it helps against occlusion
perturbation and for STL-10 it helps for all perturbations. However, the recovery is
smaller than with the natural perturbed training. Hence, natural perturbed training shows
better generalization than adversarial training for unseen perturbations.
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Figure 31: Comparing the performance of Natural perturbed training with Adversarial
training on unseen perturbations. The type of symbol represents test perturbation and
color of the symbol represents the type of training perturbation. Adversarial training
shows some general robustness on coarse-grained datasets but for fine-grained datasets
it fails to generalize. Natural perturbed training generalizes to adversarial perturbations
and other natural perturbations.

4.4.5 General Robustness of Wave and Gaussian Perturbations

In Figure 32 we contrast the general robustness of natural perturbed training with
adversarial training by testing them for unseen perturbations i.e. perturbations not seen
during the training. Here, we present the results for wave and Gaussian noise.

Effectiveness of Natural Perturbed Training on Unseen Perturbations. Figure
32a, 32b shows the performance of wave perturbed training and Gaussian perturbed
training tested on unseen adversarial and natural perturbations respectively. Results
show that robustification with both wave and Gaussian perturbations recover the drop
due to adversarial perturbations (plus symbol). We observe that natural perturbed
training especially wave perturbed training generalizes to other natural perturbations too.
Gaussian perturbed training also generalizes to other natural perturbations except for
CUB, AwA and LAD datasets. Coarse grained Cifar-10 and STL-10 show the highest
recovery on unseen natural perturbations. The recovery for coarse grained datasets
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Figure 32: Comparing the performance of Natural perturbed (wave, Gaussian) training
with Adversarial training on unseen perturbations. The type of symbol represents
test perturbation and color of the symbol represents the type of training perturbation.
Adversarial training shows some general robustness on coarse-grained datasets but for
fine-grained datasets it fails to generalize. Natural perturbed training generalizes to
adversarial perturbations (plus symbol) and other natural perturbations.

with wave perturbations is better than the Gaussian noise. Hence, our natural perturbed
training shows general robustness over adversarial as well as natural perturbations, while
being even remarkable for coarse-grained datasets.

Ineffectiveness of Adversarial Training on Unseen Wave and Gaussian Perturba-
tions. Figure 32c shows the results for an adversarially trained network (depicted
by yellow symbols) and tested on unseen natural perturbations wave (triangle symbol)
and Gaussian (star symbol). Adversarial training does not generalize to unseen natural
perturbations for fine grained datasets. It even leads to a further drop in the performance
for them. For CUB and LAD, the drop almost triples. For the coarse grained Cifar-10
dataset it helps against Gaussian perturbation and for STL-10 it helps for both perturba-
tions. However, the recovery is smaller than with the natural perturbed training. Hence,
natural perturbed training shows better generalization than adversarial training for unseen
perturbations.
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Figure 33: Comparing the performance of Natural perturbed (saturation, Gaussian blur)
training with Adversarial training on unseen perturbations. The type of symbol represents
test perturbation and color of the symbol represents the type of training perturbation.
Adversarial training shows some general robustness on coarse-grained datasets but for
fine-grained datasets it fails to generalize. Natural perturbed training generalizes to
adversarial perturbations (plus symbol) and other natural perturbations.

4.4.6 General Robustness of Saturation and Gaussian Blur Perturbations

In Figure 33 we compare the general robustness of natural perturbed training with
adversarial training by testing them for unseen perturbations i.e. perturbations not seen
during the training. Here, we present results for saturation and Gaussian blur.

Effectiveness of Natural Perturbed Training on Unseen Perturbations. Figure 33a,
33b shows the performance of saturation perturbed training and Gaussian blur perturbed
training tested on unseen adversarial and natural perturbations respectively. Results show
that robustification with both saturation and Gaussian blur perturbations recover the
drop due to adversarial perturbations (plus symbol). We observe that natural perturbed
training generalizes to other natural perturbations too. Except for saturation perturbed on
AwA and LAD datasets. Coarse grained Cifar-10 and STL-10 show the highest recovery
on unseen natural perturbations. Hence, our natural perturbed training shows general
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Figure 34: Ablation on Cifar-10 clean: Figure 34a shows training with perturbed images
for a small number of epochs performs better than training with clean for a large number
of epochs. Figure 34b shows perturbed training with an average number of epochs
performs best. Figure 34c shows a moderate drop of 10% leads to the best performance
on clean images.

robustness over adversarial as well as natural perturbations, while being even noteworthy
for coarse-grained datasets.

Ineffectiveness of Adversarial Training on Unseen wave and Gaussian Perturbations.
Figure 33c shows the results for an adversarially trained network (depicted by yellow
symbols) and tested on unseen natural perturbations saturation (five pointed star symbol)
and Gaussian blur (triangle down symbol). Adversarial training does not generalize to
unseen natural perturbations for fine grained datasets. It even leads to a further drop in
the performance for them. For CUB, LAD and Cifar-10 Gaussian blur test set the drop
almost doubles. For coarse grained Cifar-10 saturation test it neither helps nor degrades
the performance. For STL-10 it helps for both perturbations. However, the recovery is
smaller than with the natural perturbed training. Hence, natural perturbed training shows
better generalization than adversarial training for unseen perturbations.
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Input Clean Adversarial Elastic Occlusion Gaussian Noise Wave Saturation Blur
A 1.63 1.38 -3.14 -0.62 -1.67 -5.12 -0.17 -3.59

Table 8: Multiple perturbations training. A shows the change in the accuracy between
a standard network and robustified one. Numbers in positive show an improvement in
performance, negative show the drop not recovered from the initial 10% drop. In contrast
with the Cifar-10 results in Figure 30a, 31a and 31b we observe a better generalization
with multiple perturbations training.

4.4.7 Ablation Studies

We perform ablation studies in Figure 34 on Cifar-10 by varying the parameters of the
natural perturbed training. In Figure 34a we compare a standard network trained for 200
epochs on clean images with natural perturbed training by 100 clean and 50 perturbed
epochs. Results show that natural perturbed training with a smaller number of epochs
achieves better performance for clean images than a standard network with a larger
number of epochs.

In Figure 34b we vary the number of perturbed epochs n, and test the performance of
networks for clean images. Results depict that perturbed training with an average number
of 50 epochs performs best. Figure 34c compares the performance of networks trained
with different perturbation levels leading to drops of 5%, 10% and 20%. Results show
that a moderate drop of 10% leads to the best performance on clean images.

Finally, in Table 8 we evaluate the robustness of a network trained with multiple
perturbations applied to the same image during subsequent n, epochs. The perturbations
are elastic, occlusion, Gaussian noise and saturation. Compared to the results in Figure
30a, 31a and 31b we observe an improvement in the recovery. Hence, training with
multiple perturbations helps to enhance the overall robustness of the network.

4.5 CONCLUSIONS

While using, standardization procedure based on the effect of perturbations on the accu-
racy of the network, a connection between input image perturbations and corresponding
transformations of the convolutional filters of a network is established. We introduced
a new training procedure for enhancing the robustness of classifiers against perturba-
tions. We provide a rationale behind the modification of the network for enhancing
its robustness by training the standard network with similarly transformed images. We
demonstrated the effectiveness of our natural perturbed training for clean, adversar-
ial and natural perturbations, both seen and unseen during the training. Our results
showed that natural perturbed training, while being computationally fast, also shows
better generalization on adversarial and natural perturbations than adversarial training.
Moreover, it improves the classifier accuracy on clean images for the fine-grained CUB
and StanfordCars, while for coarse-grained Cifar-10 and STL-10 improving the state of
the art. [119]. Elastic augmented convolutions (Chapter 3) and elastic natural perturbed
training generally perform the best among various natural perturbations.
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5.1 INTRODUCTION

Explainability and robustness are key to the deployment of computer vision in the real
world. In current practice, the presence of noise, occlusion, and blur easily derails a
machine classifier [76], [30], [31]. Humans can generalize in the presence of perturba-
tions; therefore, they also expect classifiers to perform well when the image is less than
perfect. In other words, robustness is needed to build trust in the classifier’s outcome.
Furthermore, explainability is needed when the circumstances are deviating, so the user
can build an understanding of why and when the classifier went off track. We conclude it
is natural to combine robustness and explainability, even at the expense of losing a few
percent of the classification accuracy, as one gets trust in return [29].

To achieve explainable robustness, we take inspiration from the way humans discuss
visual classification. Birds are discriminated by the color of their beak, stripes on their
wings, and other assorted attributes, present or absent. In microscopical pathology and
radiology, trainees are pointed at visual abnormalities named by their texture. Visual
classification is explained by pointing out localized attributes. A New-England house
with a classic pillar front style classification depends on localized attributes. In the
search for a missing person, white hair and a thorn t-shirt makes clear where and what
to look for. In this paper, we propose to learn localized attributes, providing robustness
and visual explanation against perturbations in the input. Hence, we aim to achieve a
gain in trust at an acceptable, small loss in classification accuracy.

Attributes can be defined at the image-level [88, 100], as class-level descriptions [152],
[130], or be found automatically [124]. Attributes have been used as a concise high-level
descriptive or discriminative summary of an image [53], [54], [39], [44], [43]. And, they
facilitate the transfer of knowledge in zero-shot classification [5], [6], [5], [141]. More
than the above definitions we aim to focus on localized attributes, making it easy to use
in visual explanations. We propose a new network architecture while defining attributes
as localizable and persistent visual properties shared among the members of the same
class. Not all attributes will be unique, as we expect some of them to be out of view
or not detected, but the ensemble will deliver the classification. In learning attributes,
we avoid image-level annotation of attributes [88] as it is very, very costly. Rather we
either employ the same human-defined class-level attributes applied to all members of the
class, or we use no human knowledge on attributes at all and perform machine-learned
attributes.

Early work on robustness focused on adversarial perturbations to fool classifiers [51],
[122], [91] with minimum impact on the image. However, later it became clear that this
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Figure 35: A standard neural network (left) and our attribute based transformer (right)
at test time for classification. The attribute transformer has integrated attributes, which
allow for better robustness against perturbations along with human understandable
explanations.

approach does not guarantee general robustness [147], [38], [55]. As a consequence,
extensive work was done on perturbation benchmarks, opening up the possibility of
evaluating networks against more natural perturbations [63]. We will use this benchmark
test, while focusing on the hard case of general robustness where perturbations are not
seen during training.

Vision transformers [127], [35], [145] have improved computer vision classification
considerably [127], as well as object detection [18], image segmentation [132], and video
segmentation [133]. The key to success is the build-in self-attention mechanism, which
models long-range dependencies of input image patches [142], while it is less good at
capturing local dependencies [145]. In our definition of attributes, we need to cover all
localized aspects, whether long-range or short-range relations, so we modify the design
of transformers to cover both of them.

We make the following contributions:

* We propose a new attribute-based transformer architecture to incorporate concise
attribute descriptors.

* We provide built-in visual and verbal explanations of classification decisions
aligned with human visual instruction.

» We evaluate the effectiveness of human-specified attributes by class-annotation
against query-specified attributes requiring no further annotation.

* We demonstrate a considerable gain in general robustness on natural perturbations
not seen during training, while also providing visual explanations.

5.2 RELATED WORK

Attributes. Attributes have been used for classification [44], [39], [131], [92], for
instance search [124], [77], [41], [113], for object description [39], facial recognition [23],
and for inter-category transfer and zero-shot learning [83], [6], [5], [141]. In our previous
work, we have used them to provide counterfactual explanations [53], [54]. Among
these works, there is little consensus on the definition of attributes. The common way
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to define attributes is as a human-nameable properties [35]. We prefer to use a more
precise definition of attributes as visually localized and identifying properties of an object.
Localization may refer to a part of the object, has wing, or to the object as a whole, glossy
surface, that is to a bounded region. Identifying refers to contribution of the attribute to
the class membership by shape, texture or color, spotted wing, stripe-like headlights, red
beak. 1t allows the description to be discriminating against other classes like has spotted
wing.

Attributes have been learned by using expert annotations [39], [44] per image. This
requires enormous efforts of annotation, exceeding the usual class label per image by a
factor 10 to 100 as every attribute has to be checked on visual presence in this particular
image. The effort obstructs the use of large sets of attributes or large data sets. In our
work, we feed a class-level attribute descriptions into the self-attention mechanism of the
transformer architecture [127], [35], [145]; that is we use the same attribute descriptions
for all members of the class. As an alternative, inspired by the work on self-selecting
attributes [144], [124], we introduce attribute queries in the transformer architecture to
learn attributes automatically. We compare the effectiveness of the two approaches.
Robustness to Natural Perturbations. Besides the susceptibility of neural networks to
adversarial perturbations [93] [111], they have been shown to be vulnerable to natural
perturbations such as noise or blur [31], low quality image formation [76], [29], [30], or
small translations and rotations [38]. To gain public confidence, our long-term plan is to
provide for near-human robustness against common perturbations.

In the literature, there are two types of robustness: specific robustness where the
perturbations are known during the training of the classifier,and general robustness where
the perturbations are not specifically known during the training. When training systems
for robustness the result between the two types can be considerable [106]. We focus
on the harder and more broader applicable case of general robustness. In [63], [62] a
set of fifteen computer-generated, natural perturbations like Gaussian noise, glass blur,
and elastic deformation have been collected, each with five levels of severity. These
perturbations can be applied to any dataset. In this work, we use this benchmark to assess
robustness while none of these disturbances was modeled explicitly.

[106] trained neural networks with tuned Gaussian and speckle noise. Similarly, [55]

compared the robustness of networks trained on a variety of natural perturbations after
standardizing their impact on classification. In [123], [109] normalization techniques
were introduced to improve the generalization of neural networks. Rather than modifying
the training of networks on internal or external perturbations, or the normalization thereof,
we focus on the role of attributes to enhance robustness while being able to explain the
decision when it goes wrong.
Attributes for Robustness to Natural Perturbations. In, [67] and [12], attributes are
used to generate perturbed samples. And attributes are used in [53] for explaining the
cause of the network’s misclassification by using counterfactual explanations. In this
work, we focus on utilizing attributes for enhancing the robustness of the network while
providing explanations which qualitatively focus better on the location of the attribute in
the image.

In [49], the authors propose an adversarial training technique that learns to generate
novel images from attributes. The images are used to learn a better robustness. While the
reference creates a defense against adversarial perturbations, we aim to provide general
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robustness ideally applicable to all perturbations, or at least as broadly applicable as the
range of fifteen different perturbations in the benchmark [63].

Vision Transformers for Robustness. A recent paper [13] studies the robustness
of transformers against natural perturbations. They conclude that, when trained on
sufficiently many data, transformers are as robust as their Resnet counterparts. We also
compare the robustness of Resnet and transformers on natural perturbations and find that
our transformer-based model has a significantly better robustness than Resnet.

Most similar to our work is [94], who analyzed the effect of each component of the
transformer on robustness, combining those, which improve the score. They concluded
that low-level patch embedding and reducing the spatial resolution while going up the
layers, both enhance robustness. In this work, we also adopt low-level patch embeddings
in the form of tokens, and we introduce localized attributes effectively reducing the
spatial resolution in the higher layers to improve robustness. Our architecture differs
from theirs primarily in the use of attributes, an approach which permits the use of
class-level descriptions needed to provide visual explanations. This choice has large
consequences for the network design.

5.3 METHODS

Robust classification tackles the problem of classifying images correctly in the presence
of perturbations, which we aim to extend into explainable robustness. The training set
consists of images x and their respective ground truth classes y.

We present two types of attribute transformer networks. In the first scenario, we use
class-level K different human-descriptions specifying the possible presence of multiple
attributes ¢(y) € RX and design attribute-guided and attribute-embedded networks, see
Figure 36. After incorporating human-descriptions of class attributes in the network,
we arrive at an alternative scenario, where we learn attributes automatically in an aufo-
attribute network.

In both cases, our network consists of three modules, the tokens-to-tokens module, an
encoder, and a decoder module that learns attribute embeddings.

5.3.1 Tokens-to-Tokens Module

The tokens-to-tokens [145] module models the local structure, edges, and lines repre-
sented by surrounding tokens. Given an input, x the module models the local structure
while reducing the length of tokens iteratively:

Restructuring. Tokens from the previous transformer layer are passed through the
self-attention, normalization and multi-layer perceptron modules.

T = MLP(MSA(T)) (5.1)
T is then reshaped as an image in the spatial dimension.
x = reshape(7) (5.2)

where, T € R™¢ and x € R>wxe,
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Soft Splits. To reduce the length of the tokens while preserving the local structure, a soft
split [145] is applied on the restructured image. For k X k split with s overlapping and p
padding, the stride is k — s. Each split patch has a size, k X k X ¢, and the output of the
soft split is given to the next tokens-to-tokens process. For the input image, at first soft
split is performed 71 = SS (xo).

The procedure for the tokens-to-tokens module is summarized in Figure 36 in the blue
block. It is specified as:

T; = MLP(MSA(T;)) (5.3)

(
(

N

7)) (5.4)
xi) (5.5)

x; = reshape

Xiy1 =SS

The fixed-length output 7'y from the tokens-to-tokens module is given to the transformer
encoder f.

5.3.2 Transformer Encoder

The encoder f receives the fixed-length output 7y from the tokens-to-tokens module
along with the position embedding.

We complement encoder input with the classification token and position embedding
for attribute-guided and attribute-embedded models. The encoder layers have a standard
transformer architecture with each block consisting of normalization, self-attention, nor-
malization, and multi-layer feed-forward network. As for attribute-guided and attribute-
embedded models, we use human-annotated class attributes and learn attribute queries;
therefore, to extract features efficiently, we use a deep encoder with 14 blocks.

As an alternative, when one wants to avoid human-specified attribute descriptions all
together, we propose automated attribute learning. There are two main differences be-
tween automated attribute learning encoder, and attribute-guided and attribute-embedded
encoders that are, the number of blocks used in automated attribute learning are small,
1.e., 6, and it uses single headed attention SAttention

5.3.3  The Transformer Decoder

We modify the tokens-to-tokens architecture and introduce a decoder g module. It takes
the features extracted by the encoder f(7's) and attribute queries a as input. The archi-
tecture for attribute-guided and attribute-embedded decoders consists of normalization,
self-attention, normalization, encoder-decoder attention, and finally, the multi-layer
module. Unlike a standard transformer decoder in our network, to learn attributes for
enhancing the robustness of the neural network, we introduce attribute queries and learn
them. As for attribute-guided and attribute-embedded networks, the deep encoder archi-
tecture have already learned global and local features through class-attribute supervision
therefore, we introduce a single block decoder.

For the auto-attribute learning network, we introduce a 14 block decoder because
auto-attribute do not have any human annotated attribute supervision to learn attribute

73



LEARNING ATTRIBUTES FOR EXPLAINABLE ROBUSTNESS

Fixed Tokens + AT =1
Position
Embedding

Tokens-to-Tokens Module

Attribute
Transformer
Network

1(Ty)

IoULIOJSURI[ =171

Image &

Ty
224x224

Soft splits
T,

Class-attribute Annotations Class-attribute Annotations
Attribute Queries ‘Attribute Queries

7.t »

oot . &(y) il :
Visual-semantic layer ¥ Visual-semantic layer Vmual semantic layer
w w
: '
—~B— Attribute @' -0 AnnPJu.le a *." Attribute a
— B Predictions B Predictions ».—» Predictions
P 11y) o )
o(T") o) * Class ¥/ ! o(T’ s
B ~B Prediction
Class-prediction layer Class predlcnon layer
Vv Class y' 4._, Class l/

Prediction y Prediction ]

Class Annotations Class Annotations Class Annotations
Attribute-guided Network Attribute-embedded Network Auto-attribute Network

Altnbule Quenes

£(Ty)

Figure 36: Our explainable attribute transformer network learns attribute queries to
perform explainable robust classification. Attribute-guided network: the decoder takes
features f(Ty) from the encoder and learns attribute queries a to predict attributes
a’. Classes are predicted using features through class-prediction layer V. Attribute-
embedded network: the decoder takes features from the encoder and learns attribute
queries to predict per-image attributes, and perform class predictions. Classes are
predicted using predicted attributes a’. Auto-attribute network: the decoder takes
features from the encoder and learns attribute queries to predict per-image attributes,
and perform class predictions. Classes are predicted using predicted attributes. It does
not use any class-attribute annotations, but learns attribute queries on its own.

queries. Similar to auto-attribute encoder, auto-attribute decoder also uses single headed
attention SAttention instead of self-attention.

5.3.4 The Visual Semantic Layer

Visual semantic layer takes the visual features extracted by the decoder g(f(7Tf),a) and
predicts per image attributes. These attributes are further used to perform classification
and provide explanations.

Attribute-guided Network. For the attribute-guided network, we give visual features
g(f(Ty),a) extracted from the decoder to the visual-semantic layer W to predict K
per-image attributes. We also map visual features extracted from the encoder f(7y)
directly to the class predictions y” in the class-prediction layer V.

d =g(f(Ty),a)W = g(T',a)W (5.6)
Y =f(Tp)V=TV (5.7)

Attribute-embedded Network. For the attribute-embedded network, instead of pre-
dicting classes directly, to enhance the expressiveness of the extracted features, we first
map visual features g(f(7s), a) to the attribute space and predict K attributes. Then, we
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perform the dot product between the projected features and the attributes to predict the
classes.

a =g(f(Tr),a)W =g(T',a)W (5.8)
Y =d¢(y)" (5.9)
Auto-attribute Network. For the auto-attribute network, the network learns attribute

embeddings on its own. To that end, we map our visual features to two different
embeddings and take a dot product between the two to predict the classes.

a = g(f(Ty).a)W = g(T’",a)W (5.10)

7 =g(f(Ty),a)V =g(T",a)U (5.11)
N\T 7

y = () a (5.12)

VN

where N is the total number of classes.
Loss. We consider attribute predictions as a regression task and minimize the mean
square error between class-attributes ¢(y) and the predicted attributes:

Lawr = lla’ = ()13 (5.13)

For the class prediction we use a cross-entropy loss enforcing the most probable class to
have the highest probability:

—exp(;)
-Ecls — N , (514)
The total loss to train the network is given as:
L= -!:cls + Lattr (515)

5.4 EXPERIMENTS AND RESULTS

In this section, we perform experiments on three datasets of different size and granularity.
On all datasets, we analyze the performance on clean and perturbed images. And, we
present qualitative evaluations of our method for both clean and perturbed inputs.
Generating Natural Perturbations. We use the extensive benchmark generator for
natural perturbations [63]. These perturbations consist of 18 computer-generated patterns,
each with five severity levels, leading to 90 perturbations in total. We apply these
corruptions to all the three datasets to generate perturbed samples for our evaluation.
Datasets. We experiment on three datasets, Caltech-UCSD-birds dataset (CUB) [130],
animals with attributes (AWA) [83] and Large attribute dataset (LAD) [152]. The CUB
dataset consists of 11,788 images: 5994 training and 5794 test, belonging to 200 fine-
grained birds classes and 312 class-level attributes. The AwA contains, 37322: training
27805, test 9517 images with 50 classes and 85 attributes per class. The LAD dataset

75



LEARNING ATTRIBUTES FOR EXPLAINABLE ROBUSTNESS

Network  p esnet-50 T2T-ViT
Input
Clean-CUB 76.67 79.46
Clean-AWA 93.10 93.93
Clean-LAD 89.60 90.12

Table 9: Classification accuracy on clean images. In comparison with Resnet, T2T-ViT
show better performance on clean inputs for CUB and LAD datasets, for AWA the
accuracy both networks perform equally well.

Network Resnet-50 Resnet-50 T2T-ViT T2T-ViT Attribute T2T-ViT
Input attribute-guided attribute-embedded attribute-guided Embedded Auto-attribute
Clean-CUB 74.64 69.20 79.51 71.29 76.06
Clean-AWA 93.32 92.19 92.35 91.19 93.74
Clean-LAD 87.20 84.78 90.65 88.09 89.02

Table 10: Classification accuracy on clean images. In comparison with Resnet-attribute
guided and Resnet-attribute embedded T2T-ViT attribute variats show better performance
on clean inputs for CUB and LAD datasets, for AWA the accuracy both networks perform
equally well.

contains 78017 images with 54610 training and 23407 test images belonging to 230
classes and 359 attributes per class. LAD is a fine-grained dataset with five coarse-grained
super categories that are further split into fine-grained classes.

Implementation Details. We take an Imagenet pre-trained Tokens-to-tokens-14 (T2T-
ViT-14) transformer [145] as our baseline and fine-tune it for each dataset. We also adopt
the Tokens-to-tokens architecture and pre-train it on Imagenet, and then train it on our
respective datasets. We use an SGD optimizer with a learning rate of 1e-3, momentum
0.9, and weight decay 0.0005. We use the cosine annealing learning rate scheduler with
a minimum learning set at Se-5.

We employ Resnet-50 based architectures for comparison. We select Resnet-50
because it is comparable with Tokens-to-tokens-14 transformer in terms of number
parameters, i.e., 25.5M, while the Tokens-to-tokens-14 transformer has 25.5M parameters.
The Resnet-50 is also pre-trained on Imagenet and fine-tuned on the respective datasets.
We use an SGD optimizer with a learning rate of 1e-3, momentum 0.9, and weight decay
0. We use the step learning rate scheduler with gamma set at 0.1 and step size 20. For
both the Resnet and transformer networks, we use an image input size of, 224x224. The
only data augmentation used during training is a random horizontal flip.

5.4.1 Baseline Network Evaluation

Evaluating on Clean Images

We begin by training the baseline, Imagenet pre-trained, Tokens-to-tokens transformer
on each dataset. We achieve an accuracy of 79.46%, 93.93% and 90.12% on the clean
images of the CUB, AWA and LAD datasets, respectively. We also train the Imagenet
pre-trained Resnet-50 network on each dataset of clean images. It gains 76.67%, 93.10%
and 89.60% on CUB, AWA and LAD datasets, respectively, see Table 9.
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Network . Resnet-50 . Resnet-50 T2T-ViT  T2T-ViT T2T-ViT
Input Resnet-50 T2T-ViT | attribute-guided attrib bedded attrit guided attribute-embedded | Auto-attribute
Gaussian Noise 57.38 67.89 56.08 51.65 70.17 61.35 63.23
Shot Noise 55.29 67.60 54.28 49.93 70.03 61.29 63.20
Impulse Noise 32.36 60.41 31.46 26.83 62.72 53.38 54.84
Defocus Blur 73.87 76.82 74.05 65.87 77.45 68.68 72.94
Glass Blur 50.86 63.38 51.20 42.78 63.10 58.19 56.35
Motion Blur 64.17 69.89 64.12 55.81 69.88 60.91 64.63
Zoom Blur 55.07 60.22 54.87 47.30 57.45 51.36 52.40
Snow 73.18 77.47 72.63 64.30 717.05 68.85 74.05
Frost 66.44 72.11 66.53 57.93 72.33 63.19 67.18
Fog 71.61 78.16 71.51 62.43 78.20 70.13 75.00
Brightness 74.80 77.19 74.14 65.13 77.47 69.15 74.49
Contrast 61.46 75.56 60.80 51.17 77.09 66.63 70.92
Elastic Transform 74.67 77.00 74.34 66.03 77.37 69.35 73.26
Pixelate 70.56 74.35 70.76 62.59 73.88 67.07 70.11
Jpeg Compression 71.34 73.12 71.12 62.60 69.20 65.70 67.60
Speckle Noise 53.87 66.71 52.77 47.80 69.44 60.42 63.80
Gaussian Blur 72.75 75.76 72.99 64.71 76.48 67.54 71.43
Saturate 57.03 63.15 54.11 47.30 69.90 54.09 63.92
Average 63.15 70.93 62.65 55.12 71.62 63.18 66.63

Table 11: Classification accuracy on perturbed images for CUB dataset. In comparison
with Resnet T2T-ViT and its variations show better robustness against perturbed inputs
with the T2T-ViT attribute guided being the best.

Evaluating on Perturbed Images

To evaluate the robustness of our Resnet and T2T-ViT baseline networks, on the bench-
mark [63], we average the results of the five severity levels. They are shown in Table 11,
12 and 13 (column 2 and column 3) for the CUB, AWA and LAD datasets, respectively.

From the Tables 11,12 and 13 it is clear that both baselines are far from being robust
against the natural perturbations. The performance over clean image tests in Table10 drop
by 13.52%, 8.82% and 11.95% respectively for Resnet. However, T2T-ViT is more robust
for all datasets, than the Resnet-50 model, but still its performance decreases by 8.53%,
5.73% and 8.14%. The attention mechanism in T2T-ViT, which connects each pixel of the
image to every other pixel, shows more inherent robustness against perturbations. This
motivates us to proceed with this model to further enhance its robustness by introducing
attributes in the network for explainability, even when it would have a modest negative
impact on the classification performance.

5.4.2  Evaluating Attribute Networks

Evaluation on Clean Images

We incorporate class attributes in both the Resnet-based and transformer-based networks.
We consider two Resnet-based networks and three transformer-based networks. The
results for clean images are presented in Table 10.

We observe that by introducing human-described class attributes into the network
through attribute-guided training, the performance for the Resnet-50 drops compared
to the baseline network without attributes. The same is true for the attribute-embedded
training of Resnet. This reduction is because attributes restrict the focus for the network,
i.e., with localized attributes the network focuses on the salient parts of the object rather
than the whole scene. The information in the background is removed, which will, in
general, assist to improve the classification. For T2T-ViT-based models, we observe
that the networks, especially the attribute-guided network, keeps up very well with the
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Network . Resnet-50 . Resnet-50 T2T-ViT . T2T-ViT T2T-ViT
Input Resnet-50 T2T-ViT | attribute-guided attril bedded attrik guided attril bedded | Auto-attribute
Gaussian Noise 84.13 86.73 83.54 81.03 79.41 77.27 87.5
Shot Noise 84.86 86.73 84.41 82.07 80.41 78.21 87.72
Impulse Noise 64.46 82.43 64.22 59.85 69.78 67.77 83.02
Defocus Blur 91.7 93.03 91.77 90.58 90.11 88.82 92.74
Glass Blur 73.29 78.56 74.35 71.58 76.74 74.95 80.26
Motion Blur 80.06 88.36 80.37 77.86 81.81 81.94 85.27
Zoom Blur 57.51 62.51 56.44 56.65 60.40 62.14 60.45
Snow 91.3 93.56 91.25 90.15 91.40 90.19 93.02
Frost 85.64 89.27 85.43 83.57 85.30 83.16 88.61
Fog 90.38 93.24 90.05 89.19 91.52 90.28 93.13
Brightness 92.08 93.42 92.01 91.03 91.48 90.18 93.02
Contrast 84.08 92.61 83.67 82.76 87.96 86.17 92.18
Elastic Transform 91.63 93.21 91.60 90.58 90.27 89.05 92.52
Pixelate 89.41 90.65 89.29 87.41 88.58 88.10 90.15
Jpeg Compression 90.77 91.53 90.81 89.50 90.05 88.34 90.17
Speckle Noise 84.64 86.94 84.03 82.00 81.04 78.87 88.08
Gaussian Blur 91.17 92.6 91.16 89.92 88.96 87.67 92.24
Saturate 89.89 92.29 89.69 88.37 87.59 86.17 91.88
Average 84.28 88.20 84.12 82.45 84.05 82.74 87.89

Table 12: Classification accuracy on perturbed images for AWA dataset. In comparison
with Resnet T2T-ViT and its variations show better robustness against perturbed inputs
with the T2T-ViT and T2T-ViT auto-attribute guided being the best.

accuracy, i.e., 79.51 %, 92.35 % and 90.65 % for the clean CUB, AWA and LAD datasets,
respectively. This is considerable as the attributes are a restriction in the optimization
of the network which delivers a visual explanation, but a constraint in the optimization
nevertheless.

Evaluation on Perturbed Images

After incorporating human-described class attributes in the network, we also test them
on perturbed inputs at five levels of severity.

The results for the CUB-dataset are shown in Table 11. We observe that the Resnet-
50 attribute-guided network maintains the robustness against perturbations, while the
attribute-embedding network drops in performance from 63.15% to 55.12 %. On the
other hand, incorporating attributes in the network leads to a small improvement in the
performance against perturbations for the CUB birds dataset from 70.93% to 71.62%.
Our auto-attribute network maintains its performance and performs equally well as the
original T2T-ViT transformer network.

AWA dataset results in Table 12 shows that auto-attribute and original T2T-ViT
transformer perform the best. Different from CUB dataset where incorporating attributes
through attribute-guided network enhanced robustness, here auto-attribute performs
better. We attribute this behavior to the number of human annotated attributes available
with the datasets. As in AWA dataset the number of attributes are only 85 attributes per
class therefore it does not enhance the robustness.

For the LAD dataset, Table 13 with class-attribute information in the network, Resnet-
50 shows a robustness similar to the standard network without attributes. However,
T2T-ViT demonstrates a significant improvement in the robustness against perturbations
from 81.98% to 84.45 %. Hence, by incorporating class attributes in the network, the
robustness of the transformer network against perturbations improves.
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Network Resnet-50 Resnet-50 T2T-ViT T2T-ViT T2T-ViT
Tnput Resnet-50 T2T-ViT | attrik guided  attril bedded attribute-guided attribute-embedded | Auto-attribute
Gaussian Noise 74.25 78.24 74.21 70.96 82.83 73.94 75.61
Shot Noise 72.15 77.84 71.89 68.98 81.76 73.33 75.35
Impulse Noise 53.52 73.72 51.78 47.88 79.61 66.00 69.70
Defocus Blur 88.04 88.30 87.63 85.38 89.59 86.08 87.24
Glass Blur 49.54 63.39 48.82 44.59 74.29 60.98 61.10
Motion Blur 78.05 80.13 77.23 73.95 82.51 78.49 77.92
Zoom Blur 63.21 64.27 62.31 57.70 66.11 61.70 59.51
Snow 86.54 89.19 86.42 83.57 89.63 86.56 87.95
Frost 76.75 82.37 76.29 72.67 83.62 78.86 79.14
Fog 86.76 89.29 86.55 84.18 90.05 87.61 88.19
Brightness 88.00 89.06 87.58 85.13 89.58 86.65 87.87
Contrast 81.22 88.01 80.35 77.79 89.16 84.67 86.40
Elastic Transform 87.52 88.34 87.25 84.86 89.17 86.26 87.27
Pixelate 84.62 85.96 84.15 81.19 87.23 84.99 85.42
Jpeg Compression 86.89 87.00 86.40 84.23 87.96 85.78 85.76
Speckle Noise 70.26 77.01 69.67 66.77 80.50 72.22 74.77
Gaussian Blur 87.32 87.45 86.94 84.59 88.99 85.06 86.26
Saturate 83.13 86.05 82.85 80.09 87.45 82.28 84.19
Average 77.65 81.98 77.13 74.14 84.45 78.97 79.98

Table 13: Classification accuracy on perturbed images for LAD dataset. In comparison
with Resnet T2T-ViT and its variations show better robustness against perturbed inputs
with the T2T-ViT attribute guided being the best.

5.4.3 Explanations using Attributes

We select our T2T-ViT attribute guided network, generally showing the best clean
and perturbed accuracy, to generate explanations for the classification decisions of the
network.

Explanation for correct classification

Figure 37 shows some qualitative examples for explanations provided by our T2T-ViT
attribute guided network. We observe that when a clean input is correctly classified into
its respective class, the predicted attributes for that image align with the correct class. For
example, the second image in the figure is classified into “Glaucous winged Gull” and
the attributes predicted for this image tell us why it is classified into Glaucous winged
Gull class because it has Grey back, Grey upper tail and Grey under tail clearly visible in
the image. Similarly, the fifth image is classified into ‘“Painted bunting class” because
of the attributes orange belly, multicolored wings, multicolored breast etc. Hence, our
attribute predictions provide human understandable reasoning behind the classification
decisions.

Explanation for misclassification

In Figure 38 we show some qualitative examples of explanations provided by our T2T-
ViT attribute guided network for correct classification of clean input and misclassification
of the perturbed input. The first row shows shot noise perturbed inputs and the second
row shows zoom blurred inputs.

We see that, when a clean input is classified into the correct class, its attributes align
with the respective class. While, when the perturbed version of the same image gets
misclassified into the wrong class, its attributes start indicating towards the wrong class
providing the reasoning behind why it got misclassified. For instance, in the figure, first
image in the second row when it is classified correctly to the “Black footed albatross” its
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Figure 37: Qualitative examples of our attribute-based explanations for clean images
from the CUB Dataset. We observe that our human understandable predicted attributes
align with the class predictions and tell us why a specific image got classified into a
particular class.

attributes are hooked seabird bill, buff color belly clearly visible in the image. However,
when perturbed it got misclassified into “Elegant tern” class the attributes values for
hooked seabird bill and buff color belly decreased and multicolored wings value increased
which lead to misclassification. Likewise, for the second image in the second row
when the predicted attributes were buff color belly, multicolor belly and striped back
it got classified as “Rufous humming bird” however when their values decreased it
got misclassified into “Rubythroated humming bird” class. Hence, our attribute based
explanations provide the reasoning behind when a clean image gets classified correctly
and when a perturbed image gets misclassified.

5.5 CONCLUSION

We have defined attributes as localized and identifying characteristics of an object class.
The localized and identifying components in the definition of attributes, are directly
translated into the components of a new transformer architecture to incorporate these
attribute descriptors.

One version of our architecture implements the human-specified class-level attributes
as queries to the transformer. The alternative version of our architecture does not use
human-specified description, but rather generates localized and identifying attributes
itself for our main purpose of providing visually explained robust classification. We
compare these two architectures with a Resnet architecture. We conclude that our
transformer-based architectures are much, much more robust against perturbations than
the Resnet architecture, while also the visual explanation they provide is substantially
better than resulting from the alternative architecture. The comparison between two
transformer networks indicates that the proposed network with human-specified class-
attributes performs slightly to moderately better as expected as more a priori knowledge
is used, but it has surprised us how well the auto-learning capacity of the attribute-
transformer network was capable of keeping up in robustness.

Our attribute-based visual explanations provide us the reasoning behind why a clean
input without inflicted perturbations get classified correctly and why the perturbed input
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Figure 38:

Qualitative examples of our attribute-based explanations for perturbed (Row 1
shot noise,

Row 2 zoom blur) images from the CUB Dataset. Our human understandable
predicted attributes tell us why a specific image got misclassified into a particular class.
Highlighted attributes for the clean images are related to correct classes, while those for

perturbed images align with the incorrect class. Those non highlighted ones are common
among both classes.

get classified into the wrong class. Where it is hard to ascribe the definitive proof to
qualitative examples, the failure cases highlighted in Figure 38 all clearly indicate the
detected presence of false attributes, that is attributes which are not identifying for the

true class. In that sense, our attribute-transformer network provides visual explanations
of correct and incorrect classification.
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6.1 SUMMARY

In this thesis, we explored the explainable robustness of neural networks for visual
classification. It began with enabling black-box neural networks to justify their rea-
soning by leveraging attributes, i.e., visually discriminative properties of objects, and
perturbations, to provide counterfactual explanations. The two chapters that followed
focused on enhancing the robustness of neural networks against natural and adversarial
perturbations. We did so by integrating perturbations in the network architecture and
provided a rationale behind the modification of the network for enhancing its robustness
by training the standard network with similarly transformed images. The last chapter
utilized attributes to improve robustness against perturbations and provided explanations
as a byproduct.

In Chapter 2, we aimed to explain the decisions of neural networks by utilizing mul-
timodal information. That is counter-intuitive attributes and counter visual examples
which appear when perturbed samples are introduced. Unlike previous work on in-
terpreting decisions using saliency maps, text, or visual patches, we proposed using
attributes and counter-attributes, examples, and counterexamples as part of the visual
explanations. When humans explain visual decisions, they tend to do so by providing
attributes and examples. Hence, inspired by human explanations, in this chapter, we
provided attribute-based and example-based explanations. Moreover, humans also tend
to explain their visual decisions by adding counter-attributes and counterexamples to
explain what is not seen. We introduce directed perturbations in the examples to observe
which attribute values change when classifying the samples into the counter classes.
This delivers intuitive counter-attributes and counterexamples. Our experiments with
both coarse and fine-grained datasets showed that attributes provide discriminating and
human-understandable intuitive and counter-intuitive explanations.

Chapter 3 emphasized the importance of robustness against unwanted perturbations.
Robustness against perturbations like noise, blur, saturation, and occlusion is essential
before deploying neural network classifiers in the real world. While many approaches for
robustness train the network by providing augmented data to the network, we aimed to
integrate perturbations in the network to achieve improved and more general robustness.
To that end, we proposed a new well-founded method to deform weights by four-
fold stochastic elastic deformations on the basis functions as an approximation to the
effect of local perturbations. In an extensive experimental evaluation, we compared
the effectiveness of locally transformed weights with globally transformed weights and
found that the local ones are more robust. Then we evaluated our method on unseen
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perturbations (occlusion, snow, Gaussian noise, Gaussian blur). On perturbed CIFAR-10
images, the modified network delivered better performance than the original network.
For the much smaller STL-10 dataset, in addition to delivering better general robustness,
wiggling even substantially improved the classification of unperturbed, clean images.
We found that the robustness of the new network is further improved when combined
with data augmentation. The robustification of the network comes at only limited
computational costs. We conclude that locally wiggled-weight networks acquire good
robustness even for perturbations not seen during training.

In Chapter 4, we proposed natural perturbed training to enhance robustness besides
providing the reasoning behind the effectiveness of integrating natural perturbations in
the network, proposed in Chapter 3. To develop a relationship between input image trans-
forms and their respective filter transforms, natural perturbed training was introduced, in
which we trained the network on perturbed inputs. Natural perturbations are encountered
in practice: the difference of two images of the same object may be approximated by an
elastic deformation (when they have slightly different viewing angles), by occlusions
(when they hide differently behind objects) or by saturation, Gaussian noise, etc. Training
some fraction of the epochs on random versions of such variations will help the classifier
to learn better. We conducted extensive experiments on six datasets of varying sizes
and granularity. Natural perturbed training showed better and much faster performance
than adversarial training on clean, adversarial as well as natural perturbed images. It
even improved general robustness on perturbations not seen during the training. For
CIFAR-10 and STL-10, natural perturbed training even improved the accuracy for clean
data and reached state-of-the-art performance. Ablation studies verified the effectiveness
of natural perturbed training. Among various natural perturbations, elastic perturbed
training performed the best. This can be understood from the fact that an elastic trans-
formation corresponds to small deviations in viewpoint, hence filling in one of the main
sources of variance in the network architecture. From the experiments, we conclude that
our natural perturbed training obtains a good level of general robustness.

Explainability and robustness are key to the employment of computer vision in the
real world. In chapter 5, we proposed the use of integrated localized attributes against
perturbations in the input. A novel transformer network learned discriminative local
attributes to enhance the robustness and provide explanations for classification. While
we did not need attribute annotations per image, we considered two efficient levels of
attribute knowledge: incorporating class-level descriptions, like “seagulls have yellow
beaks” to all class members. Furthermore, the other was to use no human description, but
rather let the system learn the attributes by asking queries. Both provided explanations
similar to the way humans would use to relate visual classification decisions. We
demonstrated that the new architecture improves the robustness of classification systems
and provides visual explanations at the expense of some loss in accuracy.

6.2 CONCLUSIONS
In this thesis, we study an essential question for making neural networks deployable in

real-world applications: how to make neural networks explainably robust? We start by
making neural networks explainable. In order to provide human-understandable explana-
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tions in perfect scenarios (clean inputs) and for imperfect scenarios (perturbed inputs), we
utilize attributes and ask: can an explainability model provide factual and counterfactual
explanations? Our results show that attributes provide human-understandable explana-
tions, and they are crucial for the discrimination between classes. We also show that for
adversarially perturbed images (images with deliberate distortions causing a minimal
change in the appearance but a maximal change in the classification), attributes indicate
to the class in which the image is misclassified, and when a network is robustified against
such adversarial perturbations, the predicted attribute values for the perturbed images
start indicating back towards the correct class, which further confirm our attribute-based
explanations. Hence, we conclude that attributes provide intuitive factual and, in the
presence of perturbations counterfactual human-understandable explanations. These
explanations could also be enhanced by retrieving visual examples through them. At-
tributes retain their best discriminative power in the presence of perturbed inputs with
standard and robustified networks.

Although perturbations could be utilized to generate counterfactual explanations, it is
equally important to make networks robust against perturbations, therefore in chapter 3
we ask: how to integrate perturbations into the network to enhance its general robustness?
We formulate a method to enhance the robustness of networks for classification against
common perturbations. Our results demonstrate the effectiveness of our method by
improving the performance against natural and adversarial perturbations over standard
networks. Local elastic convolutions corresponding to viewpoint change deformation
generally perform the best. We conclude that our wiggled weights approach induces
good general robustness for the class of such natural perturbations.

After achieving general robustness through integrating perturbations in the network
in chapter 4 we build a connection between builtin transformations and input image
transformations and ask: how to train a neural network on perturbations to enhance its
general robustness? We provide a rationale behind the modification of the network for
enhancing its robustness by training the standard network with similarly transformed
images. Our results show that natural perturbed training, while being computationally
fast, also shows better generalization on adversarial and natural perturbations (Gaussian
noise, blur, snow) than adversarial training. Moreover, it improves the classifier accuracy
on clean images. Elastic augmented convolutions (chapter 3) and elastic natural perturbed
training (chapter 4) generally perform the best among various natural perturbations.

Our results from chapter 2 till 4 show the importance and effectiveness of explainability,
robustness, and explainable robustness. Therefore, in the final chapter of the thesis, we
focus on utilizing explanations for enhancing the robustness and ask: can attributes
enhance the robustness of neural networks besides providing explanations? We begin by
defining attributes as localized and identifying characteristics of an object class. Next, we
translate these attributes directly into the components of a new transformer architecture.
We conclude that our transformer-based architectures are much more robust against
perturbations than the Resnet architecture, while also providing the visual explanation.
With human-specified attributes we would expect a small loss in the performance as
by providing attributes we constrain the network’s optimization however, the proposed
performed slightly to moderately better. For the network without human-specified
attributes, results surprised us how well the auto-learning capacity of the attribute-
transformer network was capable of keeping up in robustness. Our attribute-based
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visual explanations provided the reasoning behind why a clean input without inflicted
perturbations got classified correctly, and why the perturbed input got classified into the
wrong class.

In this thesis, we provide explanations both in perfect scenarios (clean inputs) as well
as in imperfect scenarios (perturbed inputs). The common way to improve robustness is
by feeding the network with perturbed data, either natural or adversarial [51, 65, 107].
We show a substantial improvement in the robustness of classifiers without any data
augmentation.

General robustness, i.e., robustness against perturbations not seen during the training
of the network is important, but difficult to achieve as the network needs to be robust
against a wide range of unseen natural perturbations. We show a significant enhancement
in general robustness by training on one type of perturbation and testing on several
unseen perturbations. Different from previous works [38, 150] where authors show that
enhancing the robustness of neural networks against perturbations leads to a degradation
in the clean accuracy, our methods besides improving robustness against perturbations
also lead to an improvement in the clean image accuracy. Furthermore, we note that
although adversarial perturbations and adversarial training are intriguing, however, they
do not accomplish robustness against natural perturbations, while our built-in natural
perturbations as well as natural perturbed training improve robustness against adversarial
perturbations. Finally, we integrated human-specified attributes in the network to provide
human-understandable explanations. As integrating attributes act as a constraint for the
optimization of the system, therefore, it leads to a small loss in the performance.

This thesis contributes in constructing explainably robust models. Both explanations
and robustness stand alone and in conjunction find their significance in intelligent systems.
To generate explanations like humans or to be robust like human visual system requires
a lot of work. For example, although perturbations considered in this thesis are called
natural perturbations, they only mimic natural perturbations as in fact they are generated
using a computer program. The next step in this research should be making networks
robust against more realistic natural perturbations, e.g., snow as in the real world. We
believe that the work in this thesis will hold against those natural perturbations too.

Furthermore, we focus on automatically generating human-understandable attributes
for providing explanations. This topic also requires further research to better learn
human-understandable automatic attributes.

Our results showed that incorporating viewpoint changes in the neural networks in the
form of elastic deformations enhances robustness. Introducing elastic deformations for
video datasets is a straightforward extension of this work because in videos angles or
viewpoints change between frames.

We close this thesis by noting that explainable robustness is essential for making
neural networks more practical in nature, and this thesis is a small step towards it.
Automatically generated human-understandable explanations, robustness against more
natural perturbations, and extension to other data formats are just a few examples of
making neural networks more practical.
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In deze thesis hebben wij uitlegbare robuustheid van neurale netwerken voor visuele
classificatie onderzocht. In het eerste hoofdstuk laten wij zien dat de werking van black
box modellen uitgelegd kan worden door eigenschappen te gebruiken zoals visueel
kenmerkende objecten of verstoringen als een tegen-feitelijke uitleg. In de twee volgende
hoofdstukken focussen wij op verbetering van de robuustheid van neurale netwerken
tegen natuurlijke en gecre€erde verstoringen. Dit hebben wij gedaan door verstoringen
te integreren in de netwerk architectuur. Daarnaast gaven wij een redenering achter de
wijziging van het netwerk om de robuustheid ervan te vergroten door het standaard-
netwerk te trainen met vergelijkbaar getransformeerde beelden. In het laatste hoofdstuk
gebruiken wij eigenschappen om robuustheid te verbeteren tegen verstoringen en geven
uitleg hierover als een bijproduct.

In hoofdstuk 2 richten wij ons op het uitleggen van beslissingen van neurale netwerken
door het gebruik van multimodale informatie. Meer specifiek contra-intuitive eigenschap-
pen en contra-visuele voorbeelden die verschijnen wanneer verstoorde data geintro-
duceerd wordt. Eerdere onderzoeken leggen beslissingen uit met tekst of visuele
regio’s. In tegenstelling tot dat introduceren wij het gebruik van eigenschappen en
tegen-eigenschappen, en voorbeelden en tegen-voorbeelden om visuele uitleg te bewerk-
stelligen. Als mensen visuele beslissingen uitleggen doen zij dat vaak door voorbeelden
te geven, en specifieke eigenschappen te benoemen. In deze op menselijke handelen
gebaseerde methode introduceren wij eigenschap- en voorbeeld-gebaseerde uitleg. Verder
legt men visuele beslissingen ook vaak uit door een tegen-voorbeeld, of tegen-eigenschap
te benoemen om uit te leggen wat er niet te zien is. Daarom introduceren wij gerichte
verstoringen om te zien welke eigenschappen veranderen wanneer data in een andere
klasse wordt geclassificeerd. hiermee creéren wij intuitive tegen-voorbeelden en tegen-
eigenschappen. Onze experimenten met zowel grove als fijnkorrelige data sets geven
onderscheidende en voor mensen begrijpelijke intuitive en contra-intuitive uitleg.

Hoofdstuk 3 benadrukte het belang van robuustheid tegen ongewenste verstoringen.
Robuustheid tegen verstoringen zoals ruis, verzadiging en occlusie is essentieel voordat
classificatie modellen gebaseerd op neurale netwerken in de echte wereld kunnen worden
ingezet. Terwijl veel methodes voor robuustheid het netwerk trainen door het netwerk te
voorzien van meer data, streefden wij ernaar verstoringen in het netwerk te integreren
om een verbeterde en meer algemene robuustheid te bereiken. Daarom hebben wij een
nieuwe methode voorgesteld om parameters te vervormen door middel van viervoudige
stochastische elastische vervormingen van de basisfuncties als benadering van het ef-
fect van lokale verstoringen. In een uitgebreide experimentele evaluatie hebben wij
de doeltreffendheid van lokaal getransformeerde parameters vergeleken met globaal
getransformeerde parameters en vastgesteld dat de lokale robuuster zijn. Vervolgens
hebben wij onze methode ge€valueerd op ongeziene verstoringen (occlusie, (Gaussische)
ruis en onscherpte). Op verstoorde CIFAR-10 beelden leverde het gewijzigde netwerk
betere prestaties dan het oorspronkelijke netwerk. Voor de veel kleinere STL-10 dataset
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leverde onze methode naast een betere algemene robuustheid, zelfs een aanzienlijke
verbetering op van de classificatie van onverstoorde oorspronkelijke beelden. Wij hebben
vastgesteld dat de robuustheid van het nieuwe netwerk verder verbetert wanneer het meer
data wordt toegevoegd. Deze stap naar extra robuustheid van het netwerk gaat slechts
gepaard met beperkte computationele rekenkosten. Wij concluderen dat lokaal gewogen
netwerken een goede robuustheid bereiken, zelfs voor verstoringen die tijdens de training
niet zijn waargenomen.

In hoofdstuk 4 hebben wij een natuurlijke verstorings-training voorgesteld om de
robuustheid te verbeteren, naast de redenering achter de effectiviteit van de integratie
van natuurlijke verstoringen in het netwerk, zoals voorgesteld in hoofdstuk 3. Om een
verband te leggen tussen de input beeld transformaties en hun respectievelijke filter
transformaties, introduceren wij natuurlijke verstoorde training, waarbij wij het netwerk
trainden op verstoorde inputs. Natuurlijke verstoringen komen in de praktijk voor:
het verschil tussen twee beelden van hetzelfde object kan worden benaderd door een
elastische vervorming (wanneer zij enigszins verschillende kijkhoeken hebben), door
occlusies (wanneer zij zich verbergen achter objecten) of door verzadiging, Gaussiaanse
ruis, enz. Door een deel van de epochs te trainen op willekeurige versies van dergelijke
variaties kan het classificatie model beter leren. Wij hebben uitgebreide experimenten
uitgevoerd op zes data sets van uiteenlopende omvang en granulariteit. Natuurlijke
verstoorde training leverde betere en veel snellere prestaties dan adversariéle training op
zowel schone, adversari€le als natuurlijke verstoorde beelden. Het verbeterde zelfs de
algemene robuustheid bij verstoringen die tijdens de training niet werden waargenomen.
Voor CIFAR-10 en STL-10 verbeterde de training met natuurlijke verstoringen zelfs de
nauwkeurigheid voor oorspronkelijke schone data en werden state-of-the-art prestaties
bereikt. Ablatie studies hebben de doeltreffendheid van natuurlijke verstorings-training
geverifieerd. Van de verschillende natuurlijke verstoringen presteerde de elastische
verstoorde training het best. Dit kan worden begrepen uit het feit dat een elastische
transformatie overeenkomt met kleine afwijkingen in het gezichtspunt, waardoor een van
de belangrijkste bronnen van variantie in de netwerkarchitectuur wordt verklaard. Uit de
experimenten concluderen wij dat onze natuurlijke verstoorde training een goed niveau
van algemene robuustheid bereikt.

Uitlegbaarheid en robuustheid zijn de sleutel tot het gebruik van visuele neurale
netwerken in de echte wereld. In hoofdstuk 5 laten wij zien dat geintegreerde lokale
eigenschappen gebruikt kunnen worden tegen verstoringen in model input. Een trans-
former netwerk was getraind om onderscheidende lokale eigenschappen en robuustheid
te verbeteren en om uitleg te geven over classificaties. Ondanks dat wij geen eigenschap
annotatie nodig hadden per beeld, bekeken wij twee efficiénte niveaus van eigenschap
kennis: ten eerste de integratie van klasse-niveau beschrijvingen, zoals ”zeemeeuwen
hebben gele snavels” voor alle klasse-leden. Ten tweede door het model geen menselijk
interpreteerbare beschrijving te laten leren, maar door het model de eigenschappen te
laten leren door vragen te beantwoorden. Beide gaven uitleg die lijkt op de manier
waarop mensen visuele classificatie beslissingen zouden nemen. wij laten zien dat deze
nieuwe model architectuur de robuustheid en visuele uitleg van classificatie systemen
kan verbeteren ten koste van slechts een kleine vermindering van de nauwkeurigheid.
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