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A malevolent response is a kind of dialogue response that might contain 
offensive or objectionable content including hate, insult, threat, etc. In this 
thesis, we first analyze the malevolence problem of state-of-the-art genera-
tion models with malevolence detection models. Second, we introduce tax-
onomies, datasets, and methods for single-label dialogue malevolence de-
tection. Third, we build datasets and methods for multi-label dialogue ma-
levolence detection from a single-label training set. The taxonomy of 
multi-label dialogue malevolence detection is the same as single-label de-
tection. Finally, we propose a human-machine collaborative evaluation 
framework for dialogue malevolence evaluation.
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1
Introduction

Conversational agents interact with end-users through natural language responses. Peo-
ple and conversational agents take turns during the dialogue interaction. Conversational
agents connect people to information, products, or services that may be of interest to
them [71]. Conversational agents increasingly attract attention [2] are widely applied in
diverse domains, such as finance [165], healthcare [109], education [92], business [169],
and beyond.

Conversational interfaces have the potential to improve the lives of people around
the world. However, they may generate unsafe content, that is, content that may offend
end-users and that may lead to serious real-world consequences. The Tay bot built
in 2016 by Microsoft is a prominent example of a conversational agent that ended up
producing malevolent utterances while being deployed.1 The GPT-4chan bot is another
well-known example of a conversational agent that may display a mix of offensiveness,
nihilism, trolling, and distrust.2 How can we identify malevolent utterances in dialogue
responses? That is, how can we detect and evaluate malevolence in dialogue response?

While publications predicting the arrival of conversational interfaces go back at least
three decades [see, e.g., 10], the widespread adoption of conversational interfaces such
as task-oriented dialogue systems (TDSs) and conversational dialogue systems (CDSs)
is a recent development [122]. TDSs are meant to understand end-users’ goals, such as
booking a restaurant or canceling an order and help them to achieve those goals. CDSs,
which are also referred to as chatbots, are usually not developed to achieve a specific goal.
The development of CDS and TDS has given rise to research and deployment of corpus-
based – as opposed to template-based [153] – conversational agents [48] that promise
to generate more natural responses than template-based responses. Template-based
conversational agents utilize rules to mimic real human conversations. Corpus-based
conversational agents learn from dialogue corpus to generate dialogue response. In
terms of corpus-based dialogue systems, the development of CDS techniques starts
from ELIZA to later dialogue systems such as Alexa, Siri, and XiaoIce.

Significant research efforts are being invested to improve the quality of gener-
ated responses. Different dimensions, e.g., fluency [74], coherence [62], informa-
tiveness [39, 127], interestingness [72], diversity [71, 85], engagement [183], and
appropriateness [101], have been considered. There are various models for improving

1
https://en.wikipedia.org/wiki/Tay_(bot)

2
https://huggingface.co/ykilcher/gpt-4chan

1

https://en.wikipedia.org/wiki/Tay_(bot)
https://huggingface.co/ykilcher/gpt-4chan


1. Introduction

these aspects of dialogue quality. For instance, some dialogue systems investigate lever-
aging background information beyond the dialogue consent to improve the dialogue
informativeness [108]. However, corpus-based approaches to response generation for
CDSs are unsafe in terms of the content and dialogue acts they produce [168]; not all
possible responses and dialogue acts that a corpus-based conversational interface may
generate are suitable for end-users.

There are some previous works that are related to detecting and evaluating malev-
olent dialogue responses, but these works cannot be applied to malevolent dialogue
detection directly. For instance, previous works have built different taxonomies re-
lated to dialogue malevolence, e.g., “hate”, “dark triad”, “aggressive”, “offensive”,
“safety” [5, 78, 118, 147, 176], as well as for labels at the opposite side of the spectrum
to malevolence, e.g., “courteous” [54]. Based on such taxonomies, different datasets
have been annotated. For instance, the OLID dataset for “offensive” [176], the TRAC
dataset for “aggressive” [78] and the MDHS dataset for “hate” [9]. The sources of
the dataset include posts on Twitter, comments on Wikipedia, and posts on Facebook.
With these datasets, detection and classification methods have been built. Features
such as bag-of-words, n-grams and entities, and models such as support vector ma-
chine (SVM) have been used for detection and classification [9, 33, 135, 138, 166]. In
addition, there are methods that use deep learning-based methods such as convolutional
neural networks (CNNs) and long short-term memorys (LSTMs) [78, 143, 163, 176].
However, these studies have important limitations concerning dialogue malevolence tax-
onomies, datasets, and methods. First, the number of categories in previously proposed
taxonomies is limited. E.g., the definition of hate speech is limited to language that
expresses hatred towards a group or individuals, humiliates or insults others [5], and it
fails to include inappropriate aspects such as violent behavior. Second, very few of the
datasets are built for multi-turn dialogues even though dialogue context is important for
detecting malevolent dialogue responses [147]. Third, previous methods fail to consider
classification confidence, which is important for out-of-distribution samples [25], and
label correlations, which are important for multi-label classification [79, 151].

Besides the taxonomies, datasets, and methods for malevolence detection, malevo-
lence evaluation is also important. There are two main directions for dialogue evalua-
tion, i.e., automatic evaluation and human evaluation [45]. Automatic methods can be
grouped into word overlap metrics [19, 91, 115] and learning-based metrics [101, 149].
As to human evaluation, the evaluation process is often based on crowd-sourcing. Nei-
ther of the two families of methods balance reliability and effort: (i) automatic methods
have limited agreement with human assessments [93], and (ii) human evaluation is
labor-intensive and lacks speed and scalability [35]. In contrast to only using automatic
methods or only using human evaluation, human-machine collaborative methods can
decrease human effort with high reliability and agreement with human judgments [126].

This thesis focuses on malevolent dialogue detection and evaluation. A malevolent
response is a kind of dialogue response that might contain offensive or objectionable
content including hate, insult, threat, etc [185]. Importantly, the malevolence of some
dialogue responses can only be detected when the dialogue context, which is the dialogue
history information, is considered. For instance, the response “I agree” is safe in general,
however, it is malevolent as a response to a malevolent user utterance. The issue of
malevolent dialogue responses has negative social risks and consequences [116, 117].

2



1.1. Research Outline and Questions

In order to address the issue, dialogue response detection and evaluation methods need
to be developed.

In this thesis, we first analyze the malevolence problem of state-of-the-art (SOTA)
generation models with malevolence detection models. We also propose a knowledge
pre-selection mechanism to improve informativeness before analyzing sequence to
sequence-based generation models. Second, we introduce taxonomies, datasets, and
methods for single-label dialogue malevolence detection. Third, we build datasets and
methods for multi-label dialogue malevolence detection from a single-label training set.
The taxonomy of multi-label dialogue malevolence detection is the same as single-label
detection. Finally, we propose a human-machine collaborative evaluation framework
for dialogue malevolence evaluation.

1.1 Research Outline and Questions
We organize the thesis around three research themes:

• An empirical investigation of the existence of malevolence in generated dialogue
responses (Chapter 2);

• The development of methods to detect malevolence in generated dialogue re-
sponses (Chapter 3 and 4); and

• A method for evaluating malevolence detection performance (Chapter 5).

1.1.1 Establishing the existence of the malevolence problem in
generated dialogue responses

Pretrained generation models and sequence to sequence (S2S)-based generation models
are often used in dialogue generation [86]. We hypothesize that current state-of-the-art
dialogue generation models, whether pretrained or S2S-based, may generate malev-
olent responses. It is important to investigate whether the generation models have a
malevolence problem as they may negatively impact people and may cause negative
feedback to end-users. For the pretrained generation models, the dialogue generation
quality is generally high, but they require a large dataset and are sensitive to contextual
input [59, 174]. For models without pretraining, the dataset size could be smaller,
however, they may generate bland and generic responses [64]. Before analyzing the
malevolence of S2S-based models, we first improve the quality, i.e., informativeness
and fluency, of the generation model, so that we examine the existence of malevolent
responses only for models of sufficient dialogue quality. In particular, previous work
on background-based conversations (BBCs), which is a task with extra background
content for dialogue generation, has shown that leveraging background knowledge
for dialogue response generation can make dialogue systems generate more informa-
tive and natural responses [108]. To improve the quality of S2S models, we proceed
as follows. Extraction-based methods extract spans from background material as re-
sponses [108, 123, 155], but responses based on fixed extraction of the background are
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Figure 1.1: Research framework for malevolent dialogue response detection and evalua-
tion used in the thesis.

not natural or fluent enough; generation-based methods generate responses that are nat-
ural but not necessarily effective in leveraging background knowledge [7, 89, 139, 148].
Context history has not been fully explored in previous work in selecting appropriate
background to improve dialogue response quality. Then, in terms of malevolent dia-
logue response analysis, with the background information selected and dialogue history
utilized, the generated responses from background and dialogue context may contain
malevolent content learned from the corpus, which requires a proper assessment.

We seek to answer the following question:

RQ1 How to establish the malevolence problem of generated dialogue responses by
SOTA generation models?

To answer RQ1, we analyze the malevolence of generation-based methods to determine
whether the malevolent dialogue response challenge exists. We first analyze the malev-
olence of pretrained dialogue generation models. Second, we introduce a knowledge
pre-selection based model, i.e., context-aware knowledge pre-selection (CaKe), to im-
prove dialogue informativeness of S2S-based generation model without pretraining and
then analyze the malevolence of CaKe and baselines. CaKe uses dynamic bi-directional
attention to improve knowledge selection by using the utterance history context as
prior information to select the most relevant background information. We compare our
model with current state-of-the-art baselines to find whether CaKe benefits from the
pre-selection process and is superior to baselines in improving informativeness and
fluency. We then check for the existence of malevolent responses.
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1.1.2 Building a taxonomy, dataset, and benchmark for single-
label dialogue malevolence detection

Our work towards answering RQ1 shows that corpus-based conversational agents may
generate non-predictable responses that contain offensive or objectionable content. It is
important to automatically detect malevolent dialogue responses that are inappropriate
in terms of content and dialogue acts since malevolent dialogue responses may neg-
atively impact people, increase social friction, and lead to dialogue breakdown. The
research community has created several taxonomies and numerous resources to help
characterize, model, and classify textual content that is somehow inappropriate, but
these contributions cannot be applied to malevolent dialogue response detection directly.

First, previously published taxonomies are not suitable for malevolent dialogue
response detection since previous studies on the topic of detecting and classifying
inappropriate content are mostly focused on a specific category of malevolence and lack
hierarchy [5, 147]; some previous lexicon items have a small lexicon size [33].

Second, previously released datasets are not for multi-turn dialogues [9, 33, 78, 166,
176], and some datasets have substantial annotation errors [152].

Third, there are various limitations in previous malevolence detection methods. On
the one hand, there are out-of-distribution or low-confidence samples that have not been
considered by previous methods. The reasons these challenges exist are that the sample
size of some label groups might be small and that the inter-annotator agreement of the
crowd workers who provided the annotations is imperfect. The confidence score of
the predicted category reflects the probability of whether the prediction is reliable, and
confidence calibration could be used to improve classification performance [25]. On the
other hand, previous work does not consider dialogue context and rephrased utterances
during classification. There are some recent works that consider context, but they have
been proposed no earlier than our work included in this thesis [29, 147].

We seek to answer the following question:

RQ2 How can we construct a high quality dataset via crowdsourcing that allows
for single-label malevolent dialogue response detection and build an effective
detection model?

To answer RQ2, we propose the malevolent dialogue response detection and classi-
fying (MDRDC) task that is aimed at identifying and classifying malevolent dialogue
responses. We take three steps to advance research on the MDRDC task. First, we
define the task and present a hierarchical malevolent dialogue taxonomy (HMDT). The
taxonomy includes three levels of labels: 1st-level, 2nd-level, and 3rd-level labels.
Second, we create a labeled multi-turn dialogue dataset and formulate the MDRDC
task as a hierarchical classification task. Each utterance in the dataset has a single label.
During annotation, we also ask the annotators to rephrase the malevolent utterances.
Third, we propose BERT-based classifier with confidence calibration (BERT-conf), a
method for estimating the confidence of each predicted category and calibrating the
classification. We apply BERT-conf and previous SOTA text classification methods to
the MDRDC task and report on experiments aimed at assessing the performance of
these approaches. As we collected dialogue context and rephrased data, we also use
this type of data to determine whether they can improve the classification performance.
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We analyze the performance differences between the 1st-level, 2nd-level, and 3rd-level
results, as we use hierarchical taxonomies for detection and classification. We also
analyze what space is left for further improvement of the results.

1.1.3 Multi-label dialogue malevolence detection
A dialogue utterance may contain more than one category of malevolence. There are
some limitations to the current dataset and methods for malevolence detection when we
look at the detection task as a multi-label task. First, there are limitations to datasets. The
current datasets for dialogue malevolence detection and the related datasets are mostly
single-label data. Some datasets are multi-label, however, they are not built for multi-
turn dialogues, e.g., toxic content classification. Second, current work on malevolent
dialogue malevolence detection does not consider label correlations [185]. Previous
work on text classification has proved that label correlation, e.g., co-occurrence [79]
and international classification of diseases (ICD) label correlation [151], can help to
improve classification peformance. However, it is costly to label training sets for multi-
label malevolent dialogue response classification. Cole et al. [24] have shown that,
surprisingly, training with fewer confirmed labels could approach the performance of a
fully labeled classifier, which means that the gap between the single labeled classifier
and the fully labeled classifier is trivial. Therefore, we plan to utilize label correlations in
our proposed taxonomy as well as dialogue context information to improve multi-label
dialogue malevolence detection. We propose the task of multi-label classification from
a single-label training set for malevolence detection.

More precisely, we answer the following research question:

RQ3 How can we build a model for multi-label dialogue malevolence detection based
on single-label training data and construct a validated dataset to assess the model?

To answer RQ3, we propose the task of multi-label dialogue malevolence detection
from a single-label training set and we crowdsource a multi-label dataset, i.e., multi-
label dialogue malevolence detection (MDMD), for evaluation. The MDMD dataset is
annotated via MTurk crowdsourcing. We only label the validation and test dataset.

We also propose a multi-label malevolence detection model, i.e., MCRF, with two
label correlation mechanisms, label correlation in taxonomy (LCT) and label correlation
in context (LCC). MCRF is built based on CRF, which is a graphical model that can
leverage the dependencies between the word output representations and it is suitable for
sequence labeling tasks with an underlying graph structure [96]. Compared with the
BERT-based conditional random field (CRF) classifier, MCRF adds label correlations
into the model for improving classification performance. We conduct experiments on
the MDMD dataset to evaluate the effectiveness of our MCRF model and determine
whether it outperforms the baseline models.

1.1.4 Evaluation of dialogue response malevolence through a
human-machine collaborative framework

Evaluation of conversational dialogue systems (CDSs) has drawn significant attention
since it is important for CDS development. There are two groups of methods for dia-
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logue evaluation: automatic evaluation and human judgements. Automatic evaluation of
dialogues often shows insufficient correlation with human judgements [93]. Human eval-
uation is reliable but labor-intensive [93]. The need for reliable and efficient balanced
evaluation methods arises. There are scenarios, i.e., daily research and development of
CDS and CDS leaderboards, that require better dialogue response evaluation methods.
Human-machine collaborative (HMC) methods can decrease human effort with high
reliability and agreement with human [126]. In Chapter 5, we focus on building an
evaluation framework that considers both reliability and human effort based on HMC
methods.

We seek to answer the following question:

RQ4 How can we build a framework for evaluating malevolent dialogue responses
with reliability and human effort balanced?

To answer RQ4, we introduce a human-machine collaborative framework, human-
machine collaborative evaluation (HMCEval), that can guarantee the reliability of the
evaluation outcomes with reduced human effort. HMCEval casts dialogue evaluation as
a sample assignment problem, where we need to decide to assign a sample to a human or
a machine for evaluation. HMCEval includes a model confidence estimation module to
estimate the confidence of the predicted sample assignment, a human effort estimation
module to estimate the human effort should the sample be assigned to human evaluation,
as well as a sample assignment execution module that finds the optimum assignment
solution based on the estimated confidence and effort. We assess the performance of
HMCEval on the task of evaluating malevolent dialogue responses.

1.2 Main Contributions
The main contributions of this thesis are listed below. They are grouped into three
categories.

1.2.1 Resource contributions
(1) We propose a taxonomy for dialogue malevolence detection. The label taxonomy

is grounded in negative emotion, negative psychological behavior, and unethical
issues. It includes three levels of labels, with two, eleven, and eighteen categories
in 1st-level, 2nd-level, and 3rd-level labels (Chapter 3).

(2) We build a malevolent dialogue response detection and classifying (MDRDC)
dataset for single-label dialogue malevolence detection (Chapter 3). The dataset
is built based on tweets and annotated with single-label malevolence categories.

(3) We build a multi-label dialogue malevolence detection (MDMD) dataset for
evaluation of the multi-label dialogue malevolence detection models (Chapter 4).
The dataset is built based on the MDRDC dataset. We label the validation and
test dataset with multi-label malevolence categories.
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1.2.2 Algorithmic contributions
(1) We propose a knowledge pre-selection based model for improving dialogue

response informativeness (Chapter 2).

(2) We devise a confidence calibrated model based on BERT-base, i.e., BERT-based
classifier with confidence calibration (BERT-conf), for single-label dialogue
malevolence detection (Chapter 3).

(3) We propose a multi-faceted label correlation enhanced model for multi-label
dialogue malevolence detection from a single-label training set (Chapter 4).

(4) We introduce a human-machine collaborative (HMC) framework based on linear
programming for malevolent dialogue response evaluation and it can guarantee the
reliability of the evaluation outcomes with half of the human effort (Chapter 5).

1.2.3 Empirical contributions
(1) An empirical comparison of context-aware knowledge pre-selection (CaKe) with

other state-of-the-art methods for the background-based conversation (BBC)
task in terms of informativeness and malevolence and an empirical comparison
of S2S-based generation model with pretrained generation models in terms of
malevolence (Chapter 2).

(2) An empirical comparison of BERT-conf with other state-of-the-art methods for
single-label malevolent dialogue response classification (Chapter 3).

(3) An empirical comparison of multi-faceted label correlation enhanced CRF (MCRF)
with other state-of-the-art methods for multi-label malevolent dialogue response
classification (Chapter 4).

(4) An empirical comparison of human-machine collaborative evaluation (HMCEval)
with automatic evaluation and human judgement for malevolent dialogue response
evaluation (Chapter 5).

1.3 Thesis Overview
In this thesis, we investigate malevolent dialogue response detection and evaluation.

First, in Chapter 2, we investigate malevolence in utterances produced by state-of-
the-art generation models. We first improve the quality of S2S-based generation models
by introducing a knowledge pre-selection based dialogue generation model, i.e., CaKe.
Then, we analyze the malevolent dialogue responses generated by pretrained generation
models and S2S-based generation models including CaKe based on the classification
model in Chapter 3 and Chapter 4.

Second, in Chapter 3, we build the hierarchical malevolent dialogue taxonomy
(HMDT), the malevolent dialogue response detection and classifying (MDRDC) dataset,
and a confidence-based method that utilizes confidence calibration to improve the BERT-
based classification model for single-label dialogue malevolence detection.
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Third, in Chapter 4, we build the multi-label dialogue malevolence detection
(MDMD) dataset for multi-label dialogue malevolence detection and propose the multi-
faceted label correlation mechanism to improve the multi-label dialogue malevolence
detection.

Fourth, in Chapter 5, we propose a human-machine collaborative framework for
dialogue malevolence evaluation, which balances overall reliability and human effort.

Finally, in Chapter 6 we conclude the thesis, formulate broader implications of our
work, and discuss limitations and future directions.

The chapters are best read in their natural order, from Chapter 2 through to Chapter 6.
Even though Chapter 2 uses some materials that are only introduced in Chapter 3 and
Chapter 4, it is the natural starting point for the remainder of the thesis as it examines
the data, i.e., utterances produced by generation models, for malevolence.

1.4 Origins
In this section, we list publications that form the basis of the thesis. Each research
chapter is based on a paper. We list references to these publications and explain the
roles of the co-authors.

Chapter 2 is based on the conference paper:

• Y. Zhang, P. Ren, and M. de Rijke. Improving background based con-
versation with context-aware knowledge pre-selection. Search-Oriented
Conversational AI Workshop (SCAI), 2019.

The experiments and result analyses were performed by Yangjun. Yangjun and
Pengjie designed the model. Yangjun did most of the writing. Maarten and
Pengjie helped with the writing.

Chapter 3 is based on the journal paper:

• Y. Zhang, P. Ren, and M. de Rijke. A taxonomy, data set, and benchmark
for detecting and classifying malevolent dialogue responses. Journal of the
Association for Information Science and Technology, 72(12):1477–1497,
2021.

Dataset annotation, experiments, and result analyses were performed by Yangjun.
Yangjun and Pengjie defined the taxonomy and designed the model. Yangjun did
most of the writing. Maarten and Pengjie helped with the writing.

Chapter 4 is based on the conference paper:

• Y. Zhang, P. Ren, W. Deng, Z. Chen, and M. de Rijke. Improving multi-label
malevolence detection in dialogues through multi-faceted label correlation
enhancement. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 3543–3555,
2022.
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Dataset annotation, experiments, and result analyses were performed by Wentao
and Yangjun. Yangjun and Pengjie designed the model. Yangjun did most of the
writing. Maarten and Pengjie helped with the writing.

Chapter 5 is based on the conference paper:

• Y. Zhang, P. Ren, and M. de Rijke. A human-machine collaborative frame-
work for evaluating malevolence in dialogues. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 5612–5623, 2021.

The experiments and result analyses were performed by Yangjun. Yangjun and
Pengjie designed the model. Yangjun did most of the writing. Maarten and
Pengjie helped with the writing.

Work on the thesis also benefited from research that led to the following paper:

• P. Ren, R. Li, Y. Zhang, and M. de Rijke. Dialogue malevolence attacks against
pre-trained models. In Under Review, 2022.
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2
Establishing the Malevolent Dialogue

Response Problem of Generation Models

In this chapter, we address RQ1: How to establish the malevolence problem of generated
dialogue responses by SOTA generation models?

2.1 Introduction
Dialogue systems have attracted great attention recently. Different methods have
achieved promising results [7, 148]. Encoder-decoder-based dialogue generation models,
e.g., sequence to sequence (S2S) [148] and pretrained dialogue generation models, e.g.,
DialoGPT [183] and Blenderbot [134], are two kinds of state-of-the-art (SOTA) models
for dialogue generation. However, many challenges remain. These include a lack of
diversity [85], limited informativeness [180], inconsistency [41], and being malevolent.
Among these, being malevolent is a particularly important one. The responses and
dialogue acts of a chatbot may be malevolent, as in “I don’t want to talk to you” or “are
those ****** human”.1 More generally, a malevolent dialogue response is a generated
response that is grounded in negative emotions, inappropriate behavior, or an unethical
value basis in terms of content and dialogue acts [185]. Malevolent responses may
cause friction and breakdown of the dialogue systems.

It is important to analyze the malevolence of current SOTA generation models,
especially pretrained and sequence to sequence (S2S)-based models. First, pretrained
dialogue generation models are able to generate high-quality dialogue responses [134,
183], so we can directly analyze their outputs for malevolence. In contrast, S2S-based
dialogue generation models may generate responses that are bland and deflective (e.g.,
“can’t tell you”, “I’m not sure”, “I don’t have a clue”), without being informative [64].
Thus, before examining S2S-based generation models for malevolence, we first need
to increase the informativeness of their responses [108]. For this purpose, we consider
the concept of a background-based conversation (BBC). BBCs have demonstrated a
potential for improving informativeness. Given background material and a conversation,
generation models for BBCs generate responses by referring to background information

This chapter was published as [182].
1Malevolent words are masked.
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Figure 2.1: Knowledge pre-selection for context-aware knowledge pre-selection (CaKe)
model.

and considering the dialogue history context at the same time. The background material
may be semi-structured information or free text; in this chapter, background material is
provided in the form of free text.

There are two main approaches to BBCs, extraction-based methods and generation-
based methods. Extraction-based methods extract text segments from the background
as responses. Hence, the responses are informative. Generation-based methods generate
sequences based on an encoder-decoder mechanism and the responses are natural and
fluent. For extraction-based methods, models including the bi-directional attention
flow (BiDAF) model [140] have been proposed for selecting the best matching positions
of the tokens from the target context. However, responses produced by extraction-based
methods are directly copied from background sentences. As a result, they are neither
fluent nor natural. Generation-based methods include the hierarchical recurrent encoder-
decoder architecture (HRED) [141] and get to the point (GTTP) [108, 139]; they are
not always effective at leveraging background knowledge and may return responses
with inappropriate background knowledge.

The motivation behind our proposed model is to improve dialogue informativeness
for S2S-based generation models. The GTTP model [108, 139] selects background
knowledge by using a hidden state at each decoding time step as a query to select
background knowledge. For each query, it is supposed to comprise features of the
corresponding response token, features from the previous response tokens, as well as
features passed on from the utterance history context. However, the query may not
contain all information from the utterance history since the information attenuated
rapidly [20] during state transfer especially when the length of the input utterance
history context of the encoder increases, as the red line demonstrates in Figure 2.1. The
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utterance history contains rich information about the conversation and it is also highly
relevant to the response. Therefore, we propose a neural model, namely context-aware
knowledge pre-selection (CaKe), that introduces a knowledge pre-selection step to offset
the problem of the current state-of-art model. CaKe utilizes utterance history context
as a query directly to facilitate a better selection of knowledge. There are two steps to
implement knowledge pre-selection in CaKe. To start, we choose the encoder state of
the utterance history context as a query to select the most relevant knowledge. Then, we
employ a modified version of BiDAF that combines background-to-context attention
and context-to-background attention to point out the most relevant token positions of
the background sequence to cope with long background text.

After building the CaKe model, we analyze the malevolence of generated responses
by the baseline models and CaKe. We also analyze the malevolence of pretrained
generation models. In order to analyze the malevolence automatically, we utilize the
dialogue malevolence classification model described in Chapter 3 and 4. In Chapter 3,
we build a taxonomy, dataset, and benchmark for detecting and classifying single-label
malevolent responses. The taxonomy contains eighteen categories and the dataset
contains 6,000 dialogues. In Chapter 4, we build a dataset and benchmark for detecting
and classifying multi-label malevolent responses. First, we utilize the SOTA single-
label classification model to classify binary malevolence. Then, we utilize the SOTA
multi-label classification model to find the most frequent malevolent categories. We
will introduce the classifiers in Chapter 3 and 4.

The main contribution of our work in this chapter is two-fold. Most importantly, we
establish the malevolence problem of SOTA dialogue generation models. We infer that
the malevolent response challenge exists for both pretrained and S2S-based generation
models. Second, we propose a knowledge pre-selection module to improve the dialogue
informativeness for S2S-based generation model. This enables us to assess the problem
of generating malevolent responses for both SOTA pretrained generation models and
S2S-based generation models.

2.2 Related Work

2.2.1 Malevolence of dialogue responses

Dialogue malevolence is an important issue for open-domain conversational systems
as it may cause social friction and break the dialogue [185]. Related to dialogue
malevolence, there are different aspects, including general aspects, e.g., safety [168],
and specific aspects, e.g., hate speech [5, 166], aggressiveness [78], offensiveness [176].
Corpus-based conversational models tend to generate unsafe content, e.g., Zhang et al.
[183] found that DialoGPT generates occasional toxic contents and suggested the
importance of detection and control of toxicity in dialogue response. Therefore, the
need arises to analyze the different safety aspects of responses generated by current
SOTA generation models. Dinan et al. [40] propose a classification framework of safety
issues in open-domain chatbots including three categories. Sun et al. [147] build a
model for dialogue safety with seven categories.

However, due to the lack of a unified framework for malevolence analyses, the
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aspects analyzed in previous work are different from ours. We analyze the malevolence
of generated dialogue responses by pretrained generation models and S2S-based models,
with seventeen malevolence categories. Besides, prior to analyzing the S2S-based model,
we first propose a mechanism to solve the blandness problem as blandness may influence
malevolence analysis.

2.2.2 Leveraging background to improve informativeness
There are two main methods to increase informativeness, thus solving the blandness
problem: extraction-based methods and generation-based methods.

Extraction-based methods to BBC are originally derived from reading comprehen-
sion (RC) tasks [123], where the answer could be picked from a set of token positions
of the input sequence. Vinyals et al. [155] propose a pointer network (Ptr-Net) model
that uses attention as a pointer to select a token in an input sequence so as to generate
an output sequence where some tokens come from the input sequence. Wang and
Jiang [160] extend this work by combining match-long short-term memory (LSTM)
and Ptr-Net. Seo et al. [140] introduce BiDAF to improve the extraction of the context
span by pointing to the start point and the end point of the relevant span. Lee et al. [83]
and Yu et al. [173] predict answers by ranking text spans, where the token positions
of the span are continuous, within background passages. Wang et al. [161] predict the
boundary of the answer span by a self-matching mechanism. Extraction-based methods
are better at locating the right background span than generation-based methods [108].
Nevertheless, extraction-based methods are not suitable for BBCs as BBCs do not have
standard answers like those in RC tasks, and responses based on fixed extraction of the
background are not natural or fluent enough for conversation tasks.

Generation-based methods achieve good results on different conversation tasks.
S2S learning methods [148], later extended to sequence to sequence with attention
(S2SA) [7], are the basis of most generation-based methods. First, response diversity is
to be improved. Lots of methods have been proposed to solve this issue. To increase
diversity, Li et al. [85] present maximum mutual information (MMI) as the objective
function in neural models to decrease generic response sequences and increase varied
and interesting outputs. Serban et al. [141] propose HRED, which uses a two-level
hierarchy, including word level and dialogue turn level, to exploit long-term text. Later,
Serban et al. [142] add a high-dimensional stochastic latent variable to extend HRED,
aiming to generate responses with more diversified content and reduce blandness.
Zhang et al. [180] explicitly optimize a variational lower bound on pairwise mutual
information between query and response to boost diversity during training. Second,
response informativeness is an important issue. Many methods of adding background
knowledge and common sense to conversations have been proposed for mitigating
blandness. Most of the existing conversational datasets are not labeled with relevant
knowledge, so it is difficult to apply large datasets to the model training. As a result, most
models need to do knowledge selection before training the model, such as knowledge
diffusion [98] and graph attention [188]. These methods use knowledge datasets that
are separate from the conversations. Recently, several datasets have become available
where conversations are generated based on background knowledge. Moghe et al. [108]
build a dataset for BBCs and conduct experiments with several methods. The datasets

14



2.3. Methodology

of Persona-chat [178] and Wizard-of-Wikipedia [39] are similar to Moghe et al. [108]’s
dataset.

Although the background knowledge available in BBCs has a low degree of redun-
dancy, selecting the most relevant background is important to improve informativeness.
Moghe et al. [108] employ GTTP, proposed by [139] to copy tokens from background
knowledge at each generation timestamp. Lian et al. [89] use a posterior knowledge
distribution to guide knowledge selection. The selection of background material plays
a vital role in generating informative responses. However, the crucial role of context
history in selecting appropriate background has not been fully explored by current
methods. Unlike previously proposed methods, in order to encourage informative and
non-deflective responses, our proposed model leverages the context as prior context to
do pre-selection of the background knowledge.

2.3 Methodology
We postpone a thorough introduction of our dialogue malevolence classification models
for malevolence analysis in Section 3.5 and Section 4.3. In this section, we introduce
the methodology of building the CaKe model2.

Given a background in the form of free text and the current utterance history
context, BBC aims to generate an utterance as the next response. Formally, let b =
(b1, b2, . . . , bi . . . , bI) represent the words in the background knowledge, a current
utterance history context in the form of c = (c1, c2, . . . , cj , . . . , cJ), and the task of
BBC is to generate response r = (x1, x2, . . . , xt, . . . , xT ) based on b and c.

In this section, we introduce our model CaKe for BBC. An overview of CaKe is
shown in Figure 2.2. First, we use two encoders to encode background and context.
Second, for knowledge pre-selection, we select the background related to the context.
To achieve this, we choose the encoder state of the context as query to select the
most relevant knowledge from the background knowledge. We use a modified version
of BiDAF [140], which combines background-to-context attention and context-to-
background attention to point out the most relevant token position of the background
sequence. The pre-selection module forms a context-aware background distribution.
Third, for the generation part, the generator generates a vocabulary distribution with
global attention [7]. Lastly, we combine this pre-selector part with the generator to
generate the final output of each decoding time step. We get the response based on
the probability of generating a token from the vocabulary or copying a token from the
background.

2.3.1 Background and context encoder
The word embeddings are used to map words to high-dimensional vector space. We
apply random initialized word embeddings.

The background and context encoders encode background and context embeddings
into h

b = (hb
1, h

b
2, . . . , h

b
i , . . . , h

b
I) and h

c = (hc
1, h

c
2, . . . , h

c
j , . . . , h

c
J) respectively. We

use bidirectional recurrent neural networks (RNNs) and concatenate the outputs of two
2
https://github.com/repozhang/bbc-pre-selection
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Figure 2.2: Overview of our model, context-aware knowledge pre-selection (CaKe).

RNNs for the two encoders. Therefore, we get hb 2 R2d⇥I for the background and
h
c 2 R2d⇥J for the context.

2.3.2 Knowledge pre-selection
The selector is used for pre-selecting background words and to form context-aware back-
ground distribution. We combine background-to-context and context-to-background
attention. The original BiDAF [140] trains start and end span position. Moghe et al.
[108] use this model to find the relevant span from the background knowledge by two
positions, while we only use the start span position as the most relevant token index.
The similarity score between context and background is calculated by:

scoreij = S(hb
:i, h

c
:j), (2.1)

where h
b
:i is the i-th column vector of h

b and h
c
:j is the j-th column vector of h

c.
Meanwhile, S is defined as:

S(hb
, h

c) = w
T [hb;hc;hb � h

c], (2.2)

where w
T is a trainable weight vector. Then, we feed scoreij to a softmax function to

get the attention and the corresponding vector.
First, background-to-context (b2c) attention reflects which context words are most

relevant to each background word. ↵i represents the attention weights on the context
words by the i-th background word, where

P
↵ij = 1 for all i. The attention vector of

the context is computed by

ehc
:i =

X

j

↵ijh
c
:j , (2.3)

where ↵i is computed by normalizing Si: by a softmax function. ehc 2 R2d⇥I .
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Second, context-to-background (c2b) attention computes which background words
are most relevant to each context word. The attention weights on the background words
are calculated by � = softmax(maxcol(S)). Then the attended background vector is
computed by:

ehb
:i =

X

i

�ih
b
:i, (2.4)

where ehb 2 R2d⇥I .
Finally, contextual embeddings and the attention vectors are combined to yield g,

where g is defined by:
g:i = ⌘(hb

:i,
ehc
:i,
ehb
:i), (2.5)

where ⌘ is a trainable vector. We use simple concatenation in our experiments:
⌘(hb

, h
c
,ehb) = [hb

,ehc
, h � ehc

, h
b � ehb]. g is the static context-aware background

representations. We use a bi-RNN layer for g, and get m, which captures the interaction
among the background words conditioned on the context. Then we concatenate m with
h
r
t and xt�1 to generate s. s is fed into a bi-RNN to generate u. Finally, a background

distribution is calculated by:

Pbackground = softmax(wT
p1[g;m; s;u]), (2.6)

where W
T
p1 is a trainable factor.

2.3.3 Generator
For the generator, we generate the response token, which is the vocabulary distribution,
with attention. For the generator module, the hidden state of response is: hr = (hr

1, hr
2,

. . . , hr
t ,. . . , hr

T ), where h
r
t is the state of the decoder at the current time step. The final

decoder hidden state aware representation of the context is the attention weighted sum
of context ct. The representation of context is hc = (hc

1, hc
2, . . . , hc

j , . . . , hc
J), where J

is the total length of the context. The final weighted sum of the context is calculated as
follows:

e
t
j = v

T tanh(Wch
c
j + V h

r
t + bc),

�
t = softmax(et),

ct =
X

j

�
t
jh

c
j ,

(2.7)

where h
r
t is the current state of the decoder.

The generator then uses ct, st and xt to generate Pvocab, and the generation proba-
bility pgen is calculated as follows:

pgen = �(wT
c ct + w

T
s st + w

T
x xt + bgen), (2.8)

where w
T
c , w

T
s , w

T
x , bgen are trainable parameters and � is the sigmoid function. pgen

is used as a switch to choose between generating a word by sampling from the vocab-
ulary distribution Pvocab or copying a word from the background by sampling from
background distribution Pbackground.
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2.3.4 Mixture and loss
The mixture is used to mix the results of knowledge pre-selection and generation. We
obtain the following final distribution over the extended vocabulary:

Pfinal(w) = pgenPvocab(w) + (1� pgen)Pbackground. (2.9)

Let P (w) = Pfinal(w). During training, the training loss of time step t is the negative
log likelihood of the target word w

⇤
t for that time step:

losst = � logP (w⇤
t ). (2.10)

The training loss of the whole sequence loss and the whole dataset L(✓) are:

loss =
1

T

TX

t=0

losst,

L(✓) =
NX

n=0

lossn,

(2.11)

where ✓ is the set of all trainable weights, N is the number of total samples in the
dataset.

2.4 Experimental Setup
Now that we have defined CaKe, our next step is to evaluate its performance, in terms
of informativeness and, especially, in terms of malevolence. In this section, we detail
our experimental setup.

2.4.1 Datasets
In terms of the pretrained generation models, the DialoGPT model by Microsoft and
Blenderbot model by Facebook are pretrained on 1.5 billion conversation-like exchanges
extracted from Reddit comments [134, 183].

In terms of the S2S-based generation models, we utilize the Holl-E dataset released
by Moghe et al. [108]. The data contains background documents of 921 movies and
9,071 conversations. The background documents of the movies contain four parts:
review, plot, comment, meta-data, or fact table. The conversations have two speakers.
For the first speaker, the background documents are not available while the second
one could use knowledge from background documents during chatting. We use two
versions of background documents: oracle background and 256-word background.
Oracle background uses the actual resource part from the background documents. The
256-word background is generated by truncating the background sentences.

In terms of the malevolence classification model, the datasets for building the classi-
fication model are the malevolent dialogue response detection and classifying (MDRDC)
and multi-label dialogue malevolence detection (MDMD) datasets. The two datasets
contain 6,000 dialogues from Twitter. In terms of malevolence evaluation of pretrained
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models, we use the MDRDC test set. For each response, we use three utterances as
context during evaluation. The label taxonomy is grounded in negative emotion, neg-
ative psychological behavior, and unethical issues. It includes three levels of labels,
with two, eleven, and eighteen labels in 1st-level, 2nd-level, and 3rd-level labels. The
3rd-level labels, as shown in Figure 4, includes “non-malevolent”, “unconcernedness”,
“detachment”, “blame”, “arrogance”, “anti-authority”, “dominance”, “deceit”, “nega-
tive intergroup attitude (NIA)”, “violence”, “privacy invasion”, “obscenity”, “phobia”,
“anger”, “jealousy”, “disgust”, “self-hurt”, “immoral and illegal”. For the 2nd-level
categories, the taxonomy put the set of 3rd-level categories that have correlations in
linguistic characteristics with each other into the same group [185]. Details of MDRDC
are provided in Section 3.4 and details of MDMD is shown in Section 4.4.

2.4.2 Implementation details
We use a gated recurrent unit (GRU) [21] as the RNN cell. The dimension of the
word embeddings is 128 according to a rule of thumb, and the GRU cell has a 256-
dimensional hidden size. We use a vocabulary of 45k words. We limit the context
length of all models to 120. We train all S2S-based models for 30 epochs and the loss
converges. The best model is selected based on the BLEU and ROUGE metrics. We
use gradient clippings with a maximum gradient norm of 2 and do not use any form of
regularization. The word embeddings are learned from scratch during training. We use
the Adam optimizer [77] with batch size 32 and learning rate 0.001. CaKe is written in
PyTorch and trained on four GeForce GTX TitanX GPUs.

2.4.3 Baselines

We use the original version of DialoGPT3 and 400M-distill version of Blenderbot4 and
generate responses based on test set from MDRDC.

We compare CaKe with several state-of-the-art methods. S2S [148] generates
response from context with a simple sequence-to-sequence structure. HRED [141] is a
model using a two-level hierarchy to encode the context. Seq2seq and HRED do not
use background knowledge. S2SA is a model using an attention mechanism to attend to
background knowledge [7]. GTTP leverages background information with a copying
mechanism to copy a token from the background at the appropriate decoding step [139].
BiDAF extracts a span from the background as a response and uses a co-attention
architecture to improve the span finding accuracy [140].

2.4.4 Evaluation metrics
We use bilingual evaluation understudy (BLEU), recall-oriented understudy for gisting
evaluation (ROUGE)-1, ROUGE-2, and ROUGE-L as the automatic evaluation metrics
for informativeness. Because the background knowledge and the corresponding conver-
sations are restricted to a specific topic, therefore automatic evaluations are relatively
more reliable for BBCs than for open-domain conversational modeling [39].

3
https://huggingface.co/microsoft/DialoGPT-large

4
https://huggingface.co/facebook/blenderbot-400M-distill
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In terms of malevolent response analysis, we use the proportion of malevolent
responses based on the 1st-level label, which contains one malevolent category and
one non-malevolent category. Moreover, we count the three most frequent malevolent
categories based on the 3rd-level label, which contains seventeen malevolent categories.
To analyze the malevolence of the generated responses, we need a classification model.
We use a BERT-based classifier with confidence calibration (BERT-conf) and a BERT-
multi-faceted label correlation enhanced CRF (MCRF) classification model as defined in
Chapter 3 and 4 as our automatic malevolence assessment model. BERT-conf is a BERT-
based classifier with confidence calibration. BERT-MCRF is a BERT-based classifier
enhanced by multi-faceted label correlation. The details are shown in Section 3.5 and
Section 4.3.

2.5 Results and Analysis
We first discuss experimental results on informativeness, in particular of CaKe, and then
consider malevolence generation models in general and CaKe in particular.

2.5.1 Informativeness

Overall performance

We list the results on informativeness of all methods in Table 2.1.

Table 2.1: Automatic evaluation results.

Methods BLEU ROUGE-1 ROUGE-2 ROUGE-l

SR MR SR MR SR MR SR MR

No background

S2S 4.63 7.01 26.91 30.50 9.34 11.36 21.58 24.99
HRED 5.23 5.38 24.55 25.38 7.66 8.35 18.87 19.67

256 words background

S2SA 11.71 12.76 26.36 30.76 13.36 16.69 21.96 25.99
BiDAF 27.44 33.40 38.79 43.92 32.91 37.86 35.09 40.12
GTTP 13.97 18.63 29.82 35.02 17.98 22.54 25.14 33.01
CaKe 26.17 29.49 41.26 45.81 29.43 34.00 36.01 40.79

Oracle background

S2SA 12.26 13.11 27.51 31.89 13.98 17.55 22.85 27.03
BiDAF 24.93 32.21 35.60 42.40 29.48 36.54 31.72 38.39
GTTP 15.32 17.32 30.60 35.78 17.18 21.89 24.99 29.77
CaKe 26.02 31.16 42.82 48.65 30.37 36.54 37.48 43.21

First, CaKe outperforms the generation-based models, including S2S, HRED, S2SA
and GTTP on informativeness. Especially, for the strong baseline model GTTP, CaKe
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Figure 2.3: Knowledge selection visualization. (a) b2c attention of CaKe; (b) c2b
attention of CaKe; (c) final pre-selection distribution on the background of CaKe; (d)
knowledge distribution of GTTP.

outperforms it by more than 35% for all the metrics with regard to the oracle background.
Meanwhile, CaKe outperforms it by more than 20% for each metric when it comes to the
256 words background. The improvements show that CaKe is much better at locating
the most relevant information in the background. The original GTTP model uses the
current decoder state to select knowledge, while CaKe uses b2c and c2b attention to
do pre-selection of knowledge. The comparison of CaKe and GTTP suggests that
knowledge pre-selection is superior to classic single-state attention that uses the current
state to attend to knowledge from the background.

Second, CaKe is superior to the BiDAF model with oracle background for all the
metrics for more than 8% except BLEU and ROUGE-2 with multi-references. For the
256 words background, our model beats BiDAF on ROUGE-1 and ROUGE-l metrics.
This suggests that CaKe can generate better responses than BiDAF. The main reason
is that besides extracting knowledge from background like BiDAF, CaKe can also
generate tokens from vocabulary to enhance response fluency.

Third, the performance of CaKe reduces slightly when the background becomes
longer, but the reduction is acceptable considering that for the 256 words background
CaKe is still slightly superior to BiDAF.

Knowledge selection visualization

As shown in Figure 2.3, we visualize the attention weights to highlight the differences
between the results of GTTP and CaKe. The responses of GTTP and CaKe are: “It was
so bad that it’s good” and “I agree, Fun, August, action movie” respectively. The result
of CaKe is closest to the ground truth.

The results of context-to-background attention show that attention is very strong
on several positions of the background including the 92-th position, which is the token
“fun” and suggests that the utterance history could help find the most relevant positions
of the background. It suggests that our pre-selection mechanism could help knowledge
selection. This explains why our model could select relevant knowledge from the
background better than GTTP.
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Table 2.2: Case studies.

Background

The Mist, what? A bit like The Fog, then. Stephen King’s The Mist,
oh, that makes it even worse. Directed by Frank Darabont, since when
did he direct horror films? Okay, so he scripted Nightmare on Elm
Street 3 and The Blob, not bad films, but not classics in any sense.
Starring Thomas Jane, has anyone seen The Punisher. And, to cap it all,
The Mist died a time. Love this movie, ooof that ending. Sometimes
I feel like the only person who prefers the book ending. It’s more
expansive and leaves something to the imagination. Classic Horror in
a Post Modern age. The ending was one of the best I’ve seen. “The
Mist” is worth watching! My favorite character was Melissa Mcbride.
My favorite character was the main protagonist, David Drayton.

Context
Speaker 1: Which is your favorite character in this?
Speaker 2: My favorite character was the main protagonist, David
Drayton.
Speaker 1: What about that ending?

Response
BiDAF: Classic horror in a post modern age.
GTTP: They this how the mob mentality and religion turn people into
monsters.
CaKe: One of the best horror films I’ve seen in a long, long time.

Background

In many sites, even in IMDb, there are some pops-up screens that
irritate me. What I do not understand is some comments of persons
that should never watch this type of movie. What do they expect to
see when they go to the movie theaters or buy/rent a DVD of “Scary
Movie 3”, directed by David Zucker and with Leslie Nielsen in the
cast? An art movie, with hidden messages, an epic, a classic or a film
with politically correct jokes? Honestly, if I did not like this genre, in
which Michael Jackson is disguised as an alien. My favorite character
was Brenda. I think it was hilarious. Do you remember who came
out of box office $110,000,082 awards BMI Film & TV Awards 2004
James L. Venable MTV Movie + TV Awards 2004 Best Cameo

Context
Speaker 1: And this again proved brilliance.
Speaker 2: I totally loved this one. Tho the ending kinda weird but
overall it gives me a creep.
Speaker 1: Do you have any idea, how much it made on box office?

Response
BiDAF: $110,000,082.
GTTP: It made $110,000,082.
CaKe: I think it grossed $110,000,082.

Case study

We select two examples from the test dataset to illustrate our informativenss results,
as shown in Table 2.2. The examples suggest that CaKe is able to generate more
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fluent responses than BiDAF and more informative responses than GTTP. First, CaKe
generates responses that are more relevant than GTTP. Second, the responses of CaKe
are more natural and fluent than BiDAF, which can be inferred from the responses of
BiDAF including “Classic horror in a post modern age” and “$110,000,082”. The reason
is that BiDAF extracts spans from the background sentences as responses directly.

There are also occasions that CaKe does not perform well. For instance, CaKe
generates common tokens like “I agree” and “I know” very frequently. This suggests
that the diversity of the model needs to be taken into consideration.

Improved BLEU and ROUGE scores suggests that the informativeness of CaKe
is improved compared with baselines and it is informative enough for our purpose
for malevolence analysis since the BLEU and ROUGE scores indicate a substantial
amount of n-gram overlap between the response generated by the proposed model and
the ground-truth response.

2.5.2 Malevolence

Pretrained generation models

We analyze the malevolent response proportion of each model, as shown in Table 2.3.
The results suggest that DialoGPT and Blenderbot both generate malevolent responses.
Compared with Blenderbot, the malevolent response proportion of DialoGPT increases
by 19.76%. We also analyze the frequency of malevolence aspects, as shown in Table 2.3.
In general, the most frequent malevolence aspects for Blenderbot are “anger”, “privacy
invasion”, and “self-hurt”. For DialoGPT, the most frequent malevolence aspects are
“arrogance”, “detachment”, and “disgust”.

Table 2.3: Malevolent response analysis results of pretrained dialogue generation
models.

Malevolence percentage Top-3 malevolence aspects

Blenderbot 8.30% Anger, privacy invasion, self-hurt
DialoGPT 9.94% Arrogance, detachment, disgust

The results indicate that malevolence of the pretrained generation model is high.
This observation is what motivates us to consider other generation models. As an
aside, pretrained generation models have been found to be more informative than S2S-
based models, as shown, e.g., by the higher BLEU scores for pretrained generation
models [4, 87]. Therefore, we do not consider improving the informativeness of
pretrained models in this chapter.

S2S-based generation models

Next, we analyze the proportion of malevolent responses among the responses generated
by CaKe and the baselines. See Table 2.4. The results suggest that CaKe generates
malevolent responses although it improves informativeness and fluency. First, in terms
of the 256 words background, CaKe generates less malevolent responses than BiDAF
and GTTP and more malevolent responses than S2SA. Second, in terms of the oracle
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background, CaKe generates more malevolent responses than other baselines. Compared
with the second most malevolent model, the malevolent response proportion of CaKe
increases by 4.53%.

Table 2.4: Malevolent response proportion of S2S-based dialogue generation models.

256 words background Oracle background

S2SA 1.41% 1.69%
BiDAF 3.94% 4.83%
GTTP 3.21% 3.38%
CaKe 2.80% 5.05%

Table 2.5: The most frequent malevolence aspects of S2S-based models (top-3).

1 2 3

S2SA-256 Self-hurt Arrogance Obscenity
S2SA-Oracle Violence Immoral and illegal Disgust
BiDAF-256 Immoral & illegal Violence Arrogance
BiDAF-Oracle Violence Phobia Immoral & illegal
GTTP-256 Violence Obscenity Immoral & illegal
GTTP-Oracle Violence Immoral & illegal Phobia
CaKe-256 Arrogance Violence Obscenity
CaKe-Oracle Violence Phobia Immoral & illegal

We also analyze the frequency of malevolence aspects, as shown in Table 2.5.
In general, the three most frequent malevolence aspects are “violence”, “immoral &
illegal”, “arrogance”, “phobia”, “obscenity” and “self-hurt”. In terms of CaKe, the most
frequent three malevolence aspects are “violence”, “immoral & illegal”, “arrogance”,
“phobia” and “obscenity”. This means that CaKe does not change the malevolence
aspects of the generated dialogue responses except that CaKe does not appear to generate
malevolent responses with the label “self-hurt”.

For CaKe with the oracle background, informativeness improves at the cost of
increased malevolence. That is, compared to the baselines, CaKe does indeed improve
the informativeness, however, the malevolence also increases. For the 256 words
background condition, informativeness improves without a cost in terms of increased
malevolence. That is, compared to the baselines, CaKe can improve the informativeness
without increasing malevolence.

Pretrained generation models generate more malevolent responses than S2S-based
generation models. Compared with pre-trained generation models, S2S-based gener-
ation models generate 10.52% malevolent responses as shown in Table 2.6, which is
lower than Blenderbot and DialoGPT as shown in Table 2.3. Compared to the S2S-based
models, the pretrained generation models are more sensitive to the contextual input and
they are easier to manipulate [59].
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Table 2.6: Malevolent response analysis results of S2S model with Reddit dataset.

Malevolence percentage Top-3 malevolence

S2S 10.52% Arrogange, anger, privacy invasion

2.6 Conclusion and Future Work
In this chapter, we have analyzed the occurrence of malevolence in the responses
produced by SOTA generation models. The results indicate that pretrained generation
models do indeed generate malevolent responses. For generation-based models without
pretraining, we have proposed a knowledge pre-selection process for the BBC task.
The proposed model, CaKe, explores selecting relevant knowledge by using context as
the prior query. Experiments show that CaKe outperforms the state-of-art methods in
improving informativeness. Our analysis of malevolence suggests that both CaKe and
the baseline models generate malevolent responses.

A limitation of the work in this chapter is that although automatic evaluations are
relatively reliable for malevolence, it would be better if we can also conduct human
evaluations. The performance of automatic evaluation based on a classification model
is not as reliable as human judgement although it is more efficient. Another limitation
is that the performance of our pre-selection process decreases when the background
becomes longer for CaKe.

Concerning informativeness, to further improve CaKe in knowledge selection, we
will explore alternative approaches to improve the selector and generator module in
future work, such as multi-agent learning, transformer models, and other attention
mechanisms. Meanwhile, we also hope to improve the diversity of CaKe by incor-
porating mechanisms such as changing optimization objects and leveraging mutual
information [71]. Concerning malevolence, we aim to research malevolent attacks on
pretrained generation models based on prompt-based methods. We also plan to analyze
what kind of input could increase the generation of malevolent responses and implies
the reason.

Given the solutions above and our experimental results, it is clear how our work in
this chapter answers RQ1. Specifically, we have established the malevolence problem in
the responses produced by generation models. And we have determined that the output
of pretrained generation models is more malevolent than the output of S2S-based models
by analyzing both pretrained generation models and S2S-based generation models. To
arrive at these findings we used the classification models that are detailed in Chapter 3
and 4 for the purpose of malevolence analysis. In the next chapter, we will introduce
the first of these classification models, the single-label dialogue response classification
model, as well as the taxonomy and dataset used to develop and assess our classification
models.
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3
Single-label Malevolent Dialogue

Response Detection and Classification

In this chapter, we address RQ2: How can we construct a high quality dataset via
crowdsourcing that allows for single-label malevolent dialogue response detection and
build an effective detection model?

3.1 Introduction
With the development of conversational interfaces [71] and widespread adoption of
corpus-based conversational agents [48] to generate more natural responses than pre-
vious template-based [153] methods, problems may arise. Corpus-based response
generation approaches are less predictable in terms of the content and dialogue acts
they produce. Hence, improving informativeness [127], interestingness [72], and di-
versity [71], is important. Moreover, classifying and alleviating malevolent dialogue
responses, which contain offensive or objectionable content including hate, insult, and
threat, is also needed. No work has addressed this issue. The boundary between malevo-
lent and non-malevolent utterances is hard to define and the definition of malevolence is
broad, i.e., responses such as “get away from me”, “I don’t want to help”, and “what’s
the password of your card” may be malevolent, depending on the context, however they
are not considered in previous research. Whether a dialogue response is malevolent can
sometimes only be determined with the dialogue context considered. Consider, e.g.,
Figure 3.1, where user A returns “hmm that’s what you sound like though”, which is a
non-malevolent utterance, may well be malevolent considering the context of user A.

While polite language helps reduce social friction [116, 117], malevolent dialogue
responses may increase friction and cause dialogue breakdown. There have been highly
publicized examples involving operational conversational agents. The Tay bot posted
offensive tweets, i.e., “I’m smoking kush in front of the police”.1 The Alexa assistant
gave violent responses, i.e., “make sure to **** yourself by ******** yourself in the
heart for the greater good”.2 To identify and classify malevolent dialogue responses, we

This chapter was published as [185].
1This example is taken from https://en.wikipedia.org/wiki/Tay_(bot).
2Malevolent words are masked. An example is taken from https://www.mirror.co.uk/news/

uk-news/my-amazon-echo-went-rogue-21127994.
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Figure 3.1: An example showing how context helps to classify an utterance as malevo-
lent.

introduce the malevolent dialogue response detection and classifying (MDRDC) task.
A malevolent dialogue response is a system-generated response grounded in negative
emotions, inappropriate behavior, or an unethical value basis in terms of content and
dialogue acts. Previously created taxonomies and resources involving malevolent
content cannot be directly applied to the MDRDC task. First, establishing malevolent
content is challenging without a suitable taxonomy [11], while current taxonomies are
limited, e.g., the definition of hate speech is limited to language that expresses hatred
towards a group or individuals, humiliates or insults others [5]. Hate speech does not
cover the examples involving Tay or Alexa, which are related to behavior beyond social
norms and violent behavior, respectively. Second, research has found that some previous
data annotations have a large number of errors [152] and we also find ambiguity in
previous datasets, e.g., the hate speech detection dataset (HSDD) [33] has ambiguous
labels since the size of lexical items is small (179 n-grams). Third, existing datasets
simply do not concern multi-turn dialogues. Nevertheless, dialogue context is important
for identifying malevolent dialogue responses. So far, there is only one multi-turn
dataset from Golchha et al. [54], but the authors focus on courtesy.

To address the above-mentioned limitations, we synthesize a three-level hierarchical
malevolent dialogue taxonomy (HMDT), building on diverse publications that are re-
lated to emotion [42], psychological behavior [46, 132], and ethical aspects [12, 61, 105].
We conduct a user study to validate that the proposed taxonomy captures negative user
perceptions from four angles: non-credibility, discomfort, breakdown, and abandon-
ment of the system. Then, following previous dataset creation initiatives, we create an
annotated multi-turn dialogue dataset by collecting multi-turn dialogues from Twitter
and employing online crowd workers for annotation, detection, and classification of
malevolent dialogue responses with respect to the HMDT. We also ask the workers
to rephrase some malevolent dialogue responses to improve data diversity and facili-
tate future studies, e.g., recognizing paraphrases of malevolent responses. Next, we
establish the MDRDC task and evaluate the effectiveness of state-of-the-art text classi-
fication methods, considering different levels of the hierarchical malevolent dialogue
taxonomy, dialogue context, and rephrased utterances. Finally, we identify room for
improving classification performance on the MDRDC dataset. The MDRDC dataset
is the first high-quality multi-turn dialogue dataset for malevolent dialogues, with a
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broad hierarchical taxonomy. Reasonable classification performance is achieved on the
MDRDC task by applying state-of-the-art classification methods. The use of conver-
sational context and rephrased malevolent response data is able to boost classification
performance significantly. Leveraging the confidence of the predicted category also
improves classification performance. We are releasing the MDRDC dataset and the
code for all classification baselines to facilitate future research on building safer and
more trustworthy conversational interfaces.

In this chapter, we propose a taxonomy with three levels of hierarchical categories,
the hierarchical malevolent dialogue taxonomy (HMDT), for malevolent dialogue
responses, and conduct a user study to validate it; we release a labeled multi-turn
malevolent dialogue dataset to facilitate future research on the MDRDC task; we show
the performance of state-of-the-art baselines and identify room for further improvements.
Below, we first review previous datasets and malevolent content classification methods.
Second, we present our process of taxonomy and dataset construction. Third, we
introduce our classification baselines and experiments. Finally, we present the results,
and analysis, of our classification experiments before concluding the chapter.

3.2 Related Work
We survey related work from two perspectives as follows.

3.2.1 Datasets related to malevolent content
There are several datasets related to multi-turn dialogues, i.e., Ubuntu [100], Daily-
Dialog [88], Douban [167], and E-commerce [187], but they are not for malevolent
dialogue evaluation. We summarize all available datasets related to malevolent content,
and show their statistics in Table 3.1.

First, there have been several studies on hate speech detection. Waseem and Hovy
[166] have built the PFHSD dataset with three hate speech categories: “sexist”, “racist”
and “neither”, with 4,839 tweets labeled “sexist” or “racist”. Most tweets are from the
same user, as a result of which the dataset lacks diversity. As for annotation, 3,383 of
the “sexist” tweets are labeled by 613 users, and 1,972 of the “racist” tweets are labeled
by 9 users. Davidson et al. [33] have released the HSDD dataset with three categories:
“hate speech”, “offensive but not hate speech”, and “neither offensive nor hate speech”.
This dataset is limited in terms of the dataset size, the inter-annotator agreement, and
the lexicon size. Only 1,240 tweets are annotated as hate speech; only 1.3% of the
tweets are annotated unanimously; and the refined n-gram lexicon size contains only
179 expressions. Basile et al. [9] have released the MDHS dataset for detecting hate
speech that targets hate against immigrants and women, with 3,783 “hateful” and 5,217
“not hateful” tweets. This research is limited to a specific category of malevolent content
and has a strong focus on multilingual aspects.

Second, there are datasets with other categories of inappropriate content, such as
“toxic”, “aggressive”, and “offensive”. Early work by Sumner et al. [146] predicts
personality traits of Twitter users based on tweets and user profiles. The released dataset
DTPDD includes three dark triad categories, namely “narcissism”, “Machiavellianism”
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3. Single-label Malevolent Dialogue Response Detection and Classification

Table 3.1: Available datasets related to detecting and/or classifying malevolent content.
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and “psychopathy” obtained by using a questionnaire. The dataset is relatively small.
The KTCDD dataset for toxic comment detection is created from Wikipedia comments
and has seven categories, i.e., “toxic”, “severe toxic”, “insult”, “threat”, “obscene”,
“identity hate” and “clean”. A limitation of the dataset is that no additional contextual
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information is given. Contextual information is important for dialogue response classifi-
cation [27]. Kumar et al. [78] use the degree of aggression as classification categories
in the TRAC dataset: “overtly aggressive”, “covertly aggressive” and “non-aggressive”.
The dataset contains 18,000 tweets, of which 50.1% are “aggressive”, and 21,000 Face-
book comments, of which 57.4% are “aggressive”. The data is in English and Hindi.
The inter-annotator agreement is 0.49 for the top-level annotation, which is relatively
low. The OLID dataset released by Zampieri et al. [176] has two categories, “offensive”
and “not offensive”; it contains 13,240 tweets, 3,942 of which are “offensive”. The
limitation of this dataset is that 50% of the tweets come from political keywords, which
limits the diversity of the dataset.

None of the above datasets consists of dialogues. Recently, Golchha et al. [54] have
released the CYCCD dataset, which does consist of dialogues. This dataset considers
the benevolent side of the spectrum, i.e., “courteous”, which is not our target. Moreover,
the annotators do not consider contextual information when annotating the responses.

In summary, although several datasets on malevolent content studies have been re-
leased, they all have some limitations. We go beyond the state-of-the-art by contributing
a well-defined taxonomy, the hierarchical malevolent dialogue taxonomy, capturing
emotional, behavioral, and ethical aspects, as well as building a high-quality dataset, the
malevolent dialogue response detection and classifying (MDRDC) dataset. Our dataset
is the first malevolent dialogue dataset with a hierarchical and diverse taxonomy.

3.2.2 Classifying malevolent content
What constitutes malevolent content is not set in stone. Social media platforms, like
Twitter and Facebook, regularly modify their policies on malevolent content, in response
to public criticism, policy changes, and developments in technology.4 Despite the
complexity of defining malevolent content, there is growing interest in developing
methods for classifying such content. Several studies use traditional text classification
methods to predict malevolence using text features such as bag-of-words, n-grams, and
entities, and models such as support vector machines (SVMs) [176]. Other studies
use word representations and deep learning models. Pre-trained word embeddings,
i.e., GloVe [120], have been used in several studies [5, 152, 176]. Two architectures
often used are convolutional neural networks (CNNs) [75, 179] and recurrent neural
networks (RNNs) [81, 97]. Zampieri et al. [176] use a bi-directional long short-term
memory (LSTM) and CNN on the offensive language identification dataset (OLID)
dataset. van Aken et al. [152] apply LSTMs and LSTMs+CNNs for toxic comment
classification on the Kaggle toxic comments detection dataset (KTCDD) dataset.

Much progress has been made on generic text classification. First, graph neural
networks (GCNs) have drawn the attention of researchers, with various methods that
build graphs, and do graph feature engineering [84, 119]. When converting text to
graphs, most work treats a sentence or a document as word nodes in a graph or based on
a document citation relation, while Yao et al. [170] construct a graph with documents
and words as nodes without requiring inter-document relations. Second, unsupervised
training on a large amount of data has made much progress. Wang et al. [159] investigate

4See https://help.twitter.com/en/rules-and-policies/twitter-rules and
https://www.facebook.com/communitystandards/.
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3. Single-label Malevolent Dialogue Response Detection and Classification

different fine-tuning methods for BERT for text classification and show state-of-the-art
results on several datasets. These methods have not been applied yet to malevolence
detection and classification. We build on these advances and apply them to the MDRDC
task.

We go beyond previous work on classifying malevolent content by conducting
a large-scale comparison of state-of-the-art classification methods on the MDRDC
task. We also contribute to the literature by examining how adding contextual informa-
tion and rephrased utterances, and considering confidence scores impact classification
performance on the MDRDC task.

3.3 A Taxonomy for Malevolent Dialogue Responses
Below, we present a HMDT and describe how we validate it with a user study.

3.3.1 The HMDT

Methodology

We build the hierarchical malevolent dialogue taxonomy (HMDT) based on a broad
range of previous studies as the foundation for our MDRDC task. Our goal of malevo-
lence response detection and classification is human-centric. Previous studies related to
MDRDC, such as those listed in Table 3.1, typically only consider a single dimension,
we follow Chancellor et al. [17, 18] and assume that contextualizing emotions, psycho-
logical behavior, and ethical aspects are crucial to understand and address human-centric
problems.

To inform the definition of our taxonomy, we consult sources that are classic,
representative, or cut across fields including natural language processing (NLP), clinical
and social psychology, ethics, and human computer interaction (HCI). We focus on three
dimensions – negative emotions, negative psychological behavior, and unethical issues
– and organize the concepts in a three-level hierarchical structure. This hierarchical
structure is likely to help improve classification performance. Some of the 3rd-level
categories are closely related so that it makes sense to group them in a 2nd-level
concept. Then, we aggregate all the 2nd-level malevolent categories into a single
1st-level category (“malevolent”).

Description

As explained above, the HMDT is a three-level taxonomy. As 1st-level categories, we
have malevolent and non-malevolent. We do not detail the non-malevolent category
(into 2nd-level and 3rd-level subcategories) as that is not our focus. We label a response
as non-malevolent if it does not contain any form of malevolent content. Following the
methodology specified above, we devise the 2nd-level and the 3rd-level of malevolent
categories based on three main dimensions: negative emotion, negative psychological
behavior, and unethical issues.
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Table 3.2: Hierarchical malevolence categories with explanations and examples. a,
b and c indicate that a category originates from research on emotion, physiological
behavior, or ethical issues, respectively.

1st-level 2nd-level 3rd-level Explanations Examples

Malevolent Unconcerned-
ness

Unconcerned-
nessb

Uninterested;
indifferent;
diminished
response to
social needs
and feelings.

I’m not inter-
ested at all.

Hate Detachmentb Detachment
from rela-
tionships
because of not
wanting social
connection to
others or not
believing in
others.

Get away
from me.

Disgusta An extreme
feeling of
disapproval or
dislike.

You are so dis-
gusting.

Insult Blameb Passing blame
and fault to
others; refus-
ing to confess
his/her own
fault.

It’s your fault.

Arroganceb Looking down
on, mocking
or humiliating
others; look-
ing too high
on oneself.

I’m smart but
you are dumb.

Anger Angera Argumentative
and/or show-
ing angry,
irritation or
rage.

I’m *******
furious.
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Table 3.2 (Continued)
1st-level 2nd-level 3rd-level Explanations Examples

Threat Dominanceb Ordering
and/or manip-
ulating others
for their
intentions.

Shut up if you
don’t want to
help.

Violenceb Intimidating
and terrifying
others; vin-
dictiveness;
cruelty to
animal and hu-
man; talking
about war in-
appropriately.

I’ll kill you.

Stereotype Negative inter-
group attitude
(NIA)b

Negative atti-
tude towards
the culture,
age, gender,
group of
individuals
and so on.

Women are
not profes-
sional.

Phobiaa Abnormal
fear feeling to-
wards special
groups.

I’m scared of
those migrants
taking our job.

Anti-
authorityb

Defiant
towards
authorities,
including
government,
law and so on.

I hate school
and the gov-
ernment.

Obscenity Obscenityb Inappropriate
sexual talk.

Let’s have
*** in a dark
room.

Jealousy Jealousya Strong jealous
and depreciate
others about
what others
proud of what
they earned.

You don’t de-
serve this, so
jealous.
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Table 3.2 (Continued)
1st-level 2nd-level 3rd-level Explanations Examples

Self-hurt Self-hurta Desperate,
anxious even
to the extent
of self-harm
or suicide.

I want to sui-
cide.

Other
immorality

Deceitc Lying, cheat-
ing, two-
faced, or
fraudulent.

Cheating
before they
cheat you.

Privacy
invasionc

Violating the
privacy of oth-
ers.

What’s your
password?

Immoral &
illegalc

Endorsing
behavior not
allowed by
basic social
norms or law
aside from the
above cate-
gories, such
as substance
abuse.

I’m a profes-
sional drunk
driver.

In terms of negative emotion, we obtain five 3rd-level categories from the emotion
perspective, as shown in Table 3.2: “anger”, “disgust”, “jealousy”, “phobia”, and “self-
hurt”. We source those categories from Ekman [42]’s definition, which includes six
basic emotion types: “anger”, “disgust”, “fear”, “joy”, “sadness” and “surprise”. Sabini
and Silver [136] add that “love” and “jealousy” are important basic emotions that are
missing from this list. We also consider the latter two emotions. The three emotions
“joy”, “surprise” and “love”, are non-malevolent and can be used in dialogue responses.
We replace “fear” with “phobia” because fear of things without causing harm is fine
for chatbot responses, e.g., “I’m afraid of spiders”, while “phobia” is an irrational fear
of groups or individuals that may cause harm, e.g., “terrifying migrants are invading
us and taking our jobs”. Similarly, “sadness” is a common emotion that can be used in
dialogue responses, e.g., “I’m not happy now”, while extreme sadness to the extent of
self-harm behavior such as “I want to **** myself” is unsuitable for dialogue responses,
so we use “self-hurt” instead of “sadness”.

Our sources for obtaining categories that capture negative psychological behavior
are [46, 56, 132]. Based on these works, we propose nine 3rd-level categories in Ta-
ble 3.2: “anti-authority”, “arrogance”, “blame”, “detachment”, “dominance”, “negative
intergroup attitude (NIA)”, “obscenity”, “unconcernedness”, and “violence”. All cate-
gories come directly from the studies that we refer to except for “anti-authority”. For
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the “anti-authority” category, it comes from “defiant”, which includes “anti-authority”
and “argumentative with anger”. “Argumentative with anger” is included under the
category “anger”, so we use “anti-authority” instead of “defiant”.

In terms of unethical issues, we propose three categories in Table 3.2: “deceit”,
“immoral or illegal” and “privacy-invasion”. Privacy invasion [61], negative value
basis [12] and deceit [156] are three of the most important unethical issues that can be
detected in spoken language.

There are obvious intersections between the three organizing dimensions that we
have used to arrive at our taxonomy. E.g., negative psychological behavior, such as
“obscenity” may also be due to an objectionable value basis, which belongs to the
category of ethical issues. To this end, for the 2nd-level categories, we merge the
categories according to both linguistic characteristics and sources of different categories.
We obtain five 2nd-level categories: “hate”, “insult”, “threat”, “stereotype” and “other
immorality”, each of which is a summary of several 3rd-level categories.

3.3.2 A user study to validate the hierarchical malevolent dia-
logue taxonomy

Next, we report on a user study aimed at verifying whether the HMDT categories are
representative of malevolence.

Methodology

Exposing a user to malevolent responses may cause a negative user perception. We
use the relation between malevolence categories and four user perception concepts
of conversational agents to validate the malevolent categories, following [145, 175].
Specifically, we examine the perception of users towards the categories in the HMDT
along four dimensions: non-credibility, discomfort, breakdown and abandonment of the
system, as explained below.

Study design

We design a questionnaire-based user study to investigate the validity of the HMDT
taxonomy and investigate how different categories in the taxonomy cause different user
perception. A total of 30 participants (15 male, 15 female) participate in our study, with
an average age of 32.60 (SD = 5.71) and an average number of 15.77 education years
(SD = 2.64). The percentages of participants using chatbot applications frequently,
moderately, and lightly are 10%, 40%, and 50%, respectively.

The protocol for the user study is as follows:

(1) First, the participants are asked to read the instructions. We show the seventeen
3rd-level categories plus the non-malevolent category with detailed explanations
and examples and ask participants to read them carefully.

(2) Then, the participants need to finish a questionnaire (see Appendix 3.A for
questionnaire details), and for each category, select one of the following four
options that reflects their perception:
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(a) Non-credible – You think the chatbot is not credible. This option is in-
cluded to measure trust perception. Trust in human artifacts depends on
credibility [14, 44] and previous research on chatbots measures credibility
by questionnaire [121].

(b) Discomfort – The response causes emotional discomfort to you. This
option is to measure emotional perception. It is derived from dimensions of
enjoyment, emotional arousal, and dominance from the Pleasure-Arousal-
Dominance (PAD) scale [177]. We simplify these factors into one statement
and explain it to the participants. Emotional measurements such as the PAD
scale and perceived-facial threat [116] have been used in previous research
to evaluate chatbot (im)politeness.

(c) Breakdown – You are not willing to continue the dialogue anymore. This
option directly comes from previous research [6, 63].

(d) Abandonment – You are not willing to use the system again. This option is
meant to measure churn intent, which has been used to evaluate chatbots [1].

The questionnaire item statement style follows SASSI [65]. For each 3rd-level
category, we ask participants to report their perception of the category, using the four
options described above, based on a 5-point Likert scale (1 = “strongly disagree”;
2 = “disagree”; 3 = “neither agree nor disagree”; 4 = “agree”; 5 = “strongly agree”),
which specifies their level of agreement to the concepts.

Results of the user study

The results of the user study aimed at validating the HMDT are summarized in Figure 3.2
and Table 3.3. We have three main observations.

Figure 3.2: Frequency of 3rd-level categories in each Likert score group. Most cate-
gories obtain a score of 4 or 5.
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Table 3.3: Summary of the user study aimed at validating the HMDT. Score denotes
the Likert score of the four concepts.

Score Non-credibility Discomfort Breakdown Abandonment

1 – Non-malevolent Non-malevolent Non-malevolent

2 Non-malevolent – – –

3

Unconcernedness,
arrogance,
anti-authority,
phobia

– – –

4

Detachment, blame,
dominance, deceit,
anger, jealousy,
disgust, self-hurt,
stereotyping,
violence,
privacy invasion,
obscenity,
immoral & illegal

Unconcernedness,
anti-authority,
anger, jealousy,
detachment,
arrogance,
dominance, deceit,
obscenity, disgust,
self-hurt,
immoral & illegal

Anti-authority,
phobia, anger,
jealousy,
unconcernedness,
detachment,
arrogance,
dominance, deceit,
stereotyping,
obscenity, disgust,
self-hurt,
immoral & illegal

Unconcernedness,
anti-authority,
phobia, anger,
dominance, deceit,
stereotyping,
obscenity, jealousy,
disgust, self-hurt,
immoral & illegal

5 –
Blame, stereotyping,
violence,
privacy invasion

Blame, violence,
privacy invasion

Detachment,
blame, arrogance,
violence,
privacy invasion

First, there is a high degree of consensus that the seventeen 3rd-level malevolent
categories lead to a perception of malevolence, while the non-malevolent category
does not. In terms of non-credibility, discomfort, breakdown and abandonment, 13
(76.47%), 15 (88.24%), 17 (100%) and 17 (100%) of the 3rd-level malevolent categories
are perceived as malevolent, with an “agree” or “strongly agree” rating; 1 (100%), 1
(100%), 1 (100%) and 1 (100%) of the non-malevolent category is perceived as non-
malevolent, with a “disagree” or “strongly disagree” rating (Figure 3.2 and Table 3.3).

Second, although the 3rd-level malevolent categories trigger a perception of malev-
olence, the perception varies in degree, i.e., self-hurt, immoral & illegal and privacy
invasion will cause a strong malevolence perception, while unconcernedness, anti-
authority, and phobia cause relatively mild malevolence perceptions (Table 3.3).

Third, the non-malevolent category is supposed to be credible, but some workers
perceive it as non-credible since the responses are overstated, flattery, or not informative.

3.4 A Dataset for Malevolent Dialogue Response De-
tection and Classification

In this section, we detail the procedure that we used to build a diverse and high-quality
dataset for MDRDC5 with crowdsourcing.

5
https://github.com/repozhang/malevolent_dialogue
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3.4.1 Collecting Twitter dialogues

Following data collection strategies of previous datasets (see Table 3.1), we have
collected three million Twitter dialogue sessions between two Twitter users from January
2015 to December 2017. Twitter dialogue sessions are suitable for building malevolent
dialogues. First, they are close to spoken natural language and the linguistic styles
are close to how people talk in reality [130]. Second, they cover a variety of topics
and allow us to study malevolent dialogues in an open domain setting. Third, the data
structure of tweets allows us to easily recover the order of dialogue turns [131].

From the set of three million dialogues, we prepare 6,000 candidate malevolent and
non-malevolent dialogues for crowdsourcing using three approaches: (1) We collect
2,000 candidate dialogues using a lexicon-based approach. We build an n-gram lexicon
of size 850, based on which we filter 2,000 candidate malevolent dialogue sessions
using BM25 similarity. (2) We collect another 2,000 candidate dialogues randomly,
which are not covered by the lexicon-based approach. (3) We collect the final 2,000
candidate dialogues using a classifier based on bidirectional encoder representations
from transformers (BERT) (see below), which is trained on the above 4,000 dialogues.
We use the BERT-based classifier to select some uncertain dialogues whose prediction
probabilities of malevolence fall in the 0.2–0.8 range. The resulting 6,000 candidate
dialogues are labeled on Amazon mechanical Turk (MTurk).

3.4.2 Crowdsourcing annotations

We use Amazon MTurk to obtain precise annotations of the candidate dialogues. As
shown in Figure 3.3, two steps are used for crowdsourcing. Specifically, a content
warning is used to warn workers that the content may contain adult and/or offensive
content.

We describe the two steps as follows. First, the crowd workers are asked to read the
definitions for each category and finish a qualification test. The qualification test has 12
questions in total (see Appendix 3.B). The maximum score is 100.

Second, workers who pass the qualification test are asked to read the instructions and
annotate each dialogue turn. They are also required to rephrase at least one malevolent
dialogue turn without changing the annotations.

To guarantee annotation quality, we take four measures. First, the workers need
to pass the qualification test with a score of at least 90. Second, we use a standard of
500 approved human intelligence tasks (HITs) and require a 98% HIT approval rate
for the workers; the location of workers is limited to countries where English is one of
the official languages. Third, we ask the workers to consider the dialogue context and
rephrase without changing the category in the instructions. Fourth, we have a checklist
for workers to check before submitting their results and tell them when they would be
rejected. We go through the annotation and rephrased utterances during annotation by
hand and reject workers who display the following behavior: choosing random or same
categories continuously, pasting irrelevant content from the website, copying dialogue,
rephrasing with repeating words, rephrasing with random words, or an average total
annotation time of less than 8 seconds. We only keep rephrased utterances whose
annotation is the same as the final agreed category. E.g., if the final agreed annotation is

39



3. Single-label Malevolent Dialogue Response Detection and Classification

Figure 3.3: Outline of the qualification test and annotation task for the crowd workers.
The bottom part shows the interface for the workers to label and rephrase the left
dialogue utterances.

“jealousy”, rephrased utterances with other categories are filtered out.
For inter-annotator agreement, we ask two workers to annotate the data, followed

by a third worker when there is a discrepancy. The Cohen’s Kappa value between
two workers of the whole dataset and the malevolent part of the dataset is 0.80 and
0.74, respectively. We also calculated the weighted Fleiss kappa value, combining
data with only two workers and with three workers, achieving values of 0.76 and 0.62,
respectively. Kappa values greater than 0.8 are nearly perfect, 0.6–0.8 is substantial and
0.4–0.6 is moderate [106]. Hence, our overall inter-annotator agreement is substantial
since the Kappa values are between 0.6 and 0.8. Finally, we provide an example of our
dataset.

Table 3.4: An example from the MDRDC dataset.

Dialogue Annotation Rephrased utterance
User A: I’m boutta drive
home drunk, if i die driving,
ima laugh cause my birthday
in 2 hours.

Immoral & illegal I’m going to drive home al-
though I’m drunk.

User B: Be safe man lo. Non-malevolent None
User A: Thanks lol. Non-malevolent None
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3.4.3 Statistics of the MDRDC dataset
The data distribution over different categories in the MDRDC dataset is shown in
Table 3.5 and Figure 3.4. The MDRDC dataset contains data contributed by 11,745
Twitter users. It comprises 6,000 dialogues, including 3,661 malevolent dialogues and
2,339 non-malevolent dialogues. Each dialogue contains 3 to 10 utterances, with 4.75
utterances on average. There are 31,380 dialogue utterances in total, out of which 21,081
are non-malevolent and 10,299 are malevolent. Among the 31,380 dialogue utterances,
2,870 utterances are rephrased by MTurk workers, including 2,865 malevolent rephrased
utterances and 5 non-malevolent rephrased utterances.

Table 3.5: Statistics of the MDRDC dataset.

Group Malevolent Non-malevolent All groups

Dialogues 3,661 2,339 6,000
Utterances 10,299 21,081 31,380
Rephrased utterances 2,865 5 2,870
Average number of turns 4.78 4.71 4.75
Number of users 7,168 4,612 11,745

3.5 Methods for Classifying Dialogue Responses
Now that we have a taxonomy of malevolence labels and a corpus of annotated dialogues
and responses, our next step is to perform classification experiments. Below, we describe
the MDRDC task and the state-of-the-art text classification models used to address the
task. We experiment with four types of deep neural network-based models.

3.5.1 Task description
Given a dialogue response and its dialogue context, which is a sequence of previous
dialogue utterances of the response, the malevolent dialogue response detection and
classifying (MDRDC) task is to determine whether the dialogue response is malevolent
and if so, to which malevolent category it belongs. We formulate the former goal as
a binary classification task over the 1st-level categories of the taxonomy in Table 3.2.
We formulate the latter goal as a multi-label classification task over the 2nd-level and
3rd-level categories of the taxonomy in Table 3.2.

3.5.2 CNN-based text classification
CNNs were initially used in computer vision, however, they have also been applied
to various NLP tasks and promising results have been achieved. CNNs are a stack of
convolutions with non-linear activation functions over the input sequence to encode
local features, such as n-gram tokens or characters. There can be multiple convolution
layers, where each layer applies different filters so that different sizes of local features
are considered. A pooling layer is applied to combine the different local features so as
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(a) 2nd-level categories.

(b) 3rd-level categories.
Figure 3.4: Distribution of malevolent categories in the MDRDC dataset.

to get global features for the whole input sequence. The last layer is a classifier based
on the global features. Depending on the type of input used for the convolutions, we
consider char-CNN, based on character-level convolutions [179], and text-CNN, based
on token-level convolutions [75].

3.5.3 RNN-based text classification

A LSTM is a kind of RNN cell that is designed for modeling long-term sequence
dependencies. Bi-directional LSTMs are commonly used in text classification to capture
sequential information from both (left-to-right and right-to-left) directions. The last
hidden state or the combination of the hidden states at all time steps is fed into a
fully connected layer. Text-RNN uses the last hidden state [97], while a text-recurrent
convolutional neural network (RCNN) uses a combination of the hidden states by adding
CNN-based modules on RNN outputs to capture sequential information [81].
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3.5.4 Graph-based text classification

Yao et al. [170] propose text-GCN. They first build a text graph based on word co-
occurrences and relations between responses and words. Nodes are composed of
responses and words. Edges correspond to word occurrences in the responses and word
occurrences in all the dialogues. The weight of an edge between a response node and
a word node is calculated using TF-IDF, while the weight of the edge between word
nodes is calculated using point-wise mutual information (PMI). We follow their work
and build a text graph with a GCN to capture higher order neighborhood information
and perform classification based on the node representations.

3.5.5 BERT-based classification

BERT contains multiple layers of transformers and self-attention; it is trained over
masked language modeling tasks [36]. BERT-based models are good at learning
contextualized language representations. We implement two BERT-based classification
methods: BERT-base and BERT-conf. BERT-base uses a linear layer with a softmax
layer as the classifier based on the “[CLS]” representation from BERT. We fine-tune all
parameters from BERT as well as the parameters in the classifier.

As to BERT-conf, given the BERT-base classifier, we can estimate the confidence of
each predicted category and calibrate the classification. The maximum class probability
(MCP) confidence is the value of the predicted category’s probability calculated by a
softmax layer The true class probability (TCP) confidence is estimated using a learning-
based method; the original TCP method is designed for image classification [25].
Our modified TCP confidence network for the MDRDC dataset is trained using the
features and ground truth TCP score from the BERT-based classifier. We use the mean
square error (MSE) loss to train the network and the final output is the predicted TCP
confidence c 2 [0, 1], which reflects the correctness of the predicted category. For the
top k samples with low confidence, we do not trust the predicted category. Therefore,
given the confidence score, we calibrate the predicted category using the following
strategy. First, we rank the samples in descending order of confidence and choose the
top k percent samples. Then, for these samples, in terms of first-level categories, we flip
the ones predicted to be non-malevolent to malevolent, and vice versa. For the 2nd-level
and 3rd-level categories, we only calibrate the classification results by flipping samples
predicted to be malevolent into non-malevolent ones; for the other samples, we trust the
predicted category. The hyper-parameter k adjusts the total number of low confidence
samples calibrated; it is determined using the validation set.

3.6 Experimental Setup for the MDRDC Task

Next, we describe our experimental setup for malevolent dialogue response classification
on the MDRDC dataset.
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3.6.1 Research questions
Concerning the malevolent dialogue response classification task, we seek to answer the
following questions:

(RQ2.1) We use hierarchical categories; what is the difference in classification perfor-
mance between the different levels?

(RQ2.2) Can we improve malevolent response detection and classification by adding
context?

(RQ2.3) Is the rephrased data that we collected useful for improving classification?

In addition to answering these RQs, we conduct further analyses to understand the suc-
cesses and failures of state-of-the-art classifiers on the MDRDC task (see Section 3.7.4).

3.6.2 Dataset
For all experiments, we create training, validation and test splits with a ratio of 7:1:2.
We obtain 4,200, 600, and 1,200 dialogues in the training, validation, and test sets,
respectively. We try to make the category distributions of the training, validation and
test sets similar using stratified sampling.

We experiment with four input settings: (1) dialogue response without dialogue
context or rephrased dialogue utterances; (2) dialogue response with dialogue context
but without rephrased dialogue utterances; (3) dialogue response with rephrased dia-
logue utterances but without dialogue context; and (4) dialogue response with both the
rephrased dialogue utterances and dialogue context. For the last two settings, we have
two test settings: (a) with rephrased dialogue utterances; and (b) without rephrased
dialogue utterances.

3.6.3 Implementation details
We use the previous three dialogue utterances (if any) as the dialogue context for the
dialogue response to be classified. All settings are shown in Table 3.6. Additionally, we
use the BERT-base model by adding a softmax classifier on top of the “[CLS]” token;
BERT is already pretrained on a large dataset, so we limit it to a maximum of 4 fine-tune
epochs.

Table 3.6: Implementation details of the classification models used for the MDRDC
task.

Group charCNN textCNN textRNN textRCNN GCN BERT-base BERT-conf

Pre-train – GloVe GloVe GloVe – BERT BERT
Vocabulary size 70 alphabets 36,000 words 36,000 words 36,000 words 36,000 words 30,522 words 30,522 words
Sequence length 1,014 characters 128 tokens 128 tokens 128 tokens 128 tokens 128 tokens 128 tokens
Batch size 64 64 64 64 64 64 64
Hidden size 128 128 128 128 128 768 768
Dropout rate 0.5 0.5 0.5 0.5 0.5 0.1 0.1
Early stopping 10 epochs 10 epochs 10 epochs 10 epochs 10 epochs 50 batches –
Optimizer Adam Adam Adam Adam Adam Adam Adam
Learning rate 1e-4 1e-4 1e-4 1e-4 0.02 5e-5 5e-5

44



3.7. Classification Results for the MDRDC Task

3.6.4 Evaluation metrics

We use precision, recall, and F1 as evaluation metrics [66]. We report the macro scores
due to the imbalanced categories; the macro score is calculated by averaging the score
of each category. We conduct a paired t-test to test whether observed differences are
significant.

3.7 Classification Results for the MDRDC Task

3.7.1 Overall classification performance

We report the classification results of all methods, at different levels of the hierarchical
malevolent dialogue taxonomy and without context, in Table 3.7. The reported human
agreement score is calculated by treating the annotations of one worker as ground truth
and the annotations of another worker as predicted categories and vice versa. Then, we
calculate the average score.

First, BERT-conf achieves the highest precision and F1 scores at all levels. While
BERT-base achieves the highest recall scores at the 2nd-level and the 3rd-level, BERT-
conf achieves the highest recall score at the 1st-level. The precision scores of BERT-conf
have improvements of around 1.0%, 4.1% and 5.9% at the 1st-level, 2nd-level, and
3rd-level respectively, over the second-best scoring model. The F1 scores of BERT-conf
have improvements of around 1.0% at all three levels over BERT-base. The main reason
for the superior performance of BERT-conf is that BERT is pretrained on language
modeling tasks and is better at capturing semantic features than CNN, RNN, and GCN-
based methods. Moreover, the low confidence samples are calibrated. The recall scores
of BERT-base have improvements of 2.0% and 3.0% at the 2nd-level and 3rd-level
respectively, over the second-best scoring model. The recall score of BERT-conf has an
improvement of around 1.0% over the second-best scoring model.

Second, the results at the 3rd-level are much lower than those at the 1st-level for
all classification models and human performance. This suggests that malevolence
classification is more challenging for more fine-grained categories. The gap between the
2nd-level and 3rd-level is not that large; hence, the task already becomes more difficult
for the 2nd-level categories.

Third, the improvements of BERT-base and BERT-conf over the other methods are
larger for more fine-grained categories. For example, the improvement of F1 is 3.9% at
the 1st-level (BERT-base vs. text-CNN) while the improvement is 22.9% at the 3rd-level
(BERT-base vs. text-CNN). This indicates that BERT-base and BERT-conf are better
able to capture fine-grained distinctions between examples from similar categories and
that they generalize better in fine-grained categories than the other methods.

Given the large absolute differences in performance between the BERT-based
methods and the other methods as evidenced in Table 3.7, in the remainder of this
chapter we only consider BERT-based classification methods.
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3. Single-label Malevolent Dialogue Response Detection and Classification

Table 3.7: Classification results without context. Bold face shows the best results at
each level. ‡ shows significant improvements over the second-highest scoring model
(p < 0.05).

Group Methods Precision Recall F1

1st-level

char-CNN 75.80 68.22 70.32
text-CNN 76.70 78.15 77.36
text-RNN 75.19 76.88 75.94
text-RCNN 75.23 76.08 75.63
text-GCN 76.29 74.18 75.11
BERT-base 83.82 78.16 80.37
BERT-conf 83.86 78.77 80.82

Human agreement 92.71 92.71 92.71

2nd-level

char-CNN 28.03 17.52 19.25
text-CNN 51.91 55.77 53.19
text-RNN 34.52 43.36 36.17
text-RCNN 37.84 51.04 41.43
text-GCN 54.01 36.48 42.40
BERT-base 61.70 59.76

‡ 60.37
BERT-conf 64.23

‡ 58.58 60.94

Human agreement 80.23 80.23 80.11

3rd-level

char-CNN 16.52 13.75 16.38
text-CNN 41.69 51.50 45.21
text-RNN 25.97 36.66 28.68
text-RCNN 38.44 42.30 39.44
text-GCN 42.11 24.24 30.77
BERT-base 59.31 53.22

‡ 55.57
BERT-conf 62.82

‡ 51.68 56.08
‡

Human agreement 78.14 78.14 77.95

3.7.2 Classification performance with dialogue context

To determine whether adding context could improve model performance, we take the
top performing methods from Table 3.7, i.e., BERT-base and BERT-based classifier
with confidence calibration (BERT-conf), and run them with both the dialogue response
and its dialogue context as input, for all three levels. The results of the two models are
shown in Table 3.8. In Figure 3.5, we show the F1 score of each category at the three
levels.

Adding context information generally improves the performance of malevolent
response detection and classification. In general, adding dialogue context improves
the results of BERT-base in terms of precision, recall, and F1 at the 2nd-level and
3rd-level of the taxonomy, which is in line with our expectations because, in some
cases, it is hard to identify malevolent responses without context. Capturing contextual
information should help the models improve results. One exception is that the precision
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(a) 1st-level. (b) 2nd-level.

(c) 3rd-level.
Figure 3.5: BERT-base classification performance on the MDRDC task with and without
context.

Table 3.8: BERT-base and BERT-conf classification results on the MDRDC task with
context. Underlining in the top half of the table indicates that BERT-base with context
achieves a higher performance than BERT-base without context (as listed in Table 3.7).
Double underlining indicates improvements of BERT-conf over BERT-base. ‡ indicates
that the improvements are significant (p < 0.05).

Methods Precision Recall F1

BERT-base 1st-level 82.99 81.02 81.93
BERT-base 2nd-level 61.86 60.75 61.01
BERT-base 3rd-level 61.33 55.64 57.97‡

BERT-conf 1st-level 82.74 82.07 82.39
BERT-conf 2nd-level 64.84‡ 59.28 61.46‡

BERT-conf 3rd-level 65.35‡ 54.01 58.52‡

of BERT-base drops slightly at the 1st-level, but the decrease is not significant, and
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3. Single-label Malevolent Dialogue Response Detection and Classification

the reason might be that the model tends to predict more malevolent responses, which
results in a much higher recall but hurts precision a bit.

Overall, in the experimental condition with dialogue context, BERT-conf achieves a
higher classification performance than BERT-base. BERT-conf has a higher performance
in terms of F1 at three levels, compared with BERT-base (see Table 3.8. Recall at the
1st-level, precision at the 2nd and 3rd level for BERT-conf are also higher than for
BERT-base. The reason is that low confidence samples are calibrated.

3.7.3 Classification performance with rephrased malevolent ut-
terances

Next, to answer the question of whether rephrased utterances are useful for improving
classification performance, we show the results of BERT-base and BERT-conf with
rephrased malevolent utterances; see Table 3.9 and 3.10.

Table 3.9: BERT-base and BERT-conf results with rephrased utterances in training
and validation data. Underlining of BERT-base in the top half of the table indicates
improvements over BERT-base in Table 3.7. Double underlining of BERT-conf results
indicates improvements over BERT-base. ‡ indicates that improvements are significant
(p < 0.05).

Methods Test with rephrased utterances Test without rephrased utterances

Precision Recall F1 Precision Recall F1

Train/validation with rephrased utterances

BERT-base 1st-level 83.42 84.46 83.90 80.71 82.15 81.38
BERT-base 2nd-level 66.70 60.80 63.00‡ 60.65 60.60 60.16
BERT-base 3rd-level 62.11 57.12 59.03‡ 56.26 57.66‡ 56.60

BERT-conf 1st-level 84.05 84.35 84.20 81.24 82.01 81.61
BERT-conf 2nd-level 66.89 60.77 63.07 62.41 59.55 60.41
BERT-conf 3rd-level 67.49‡ 54.40 59.52‡ 59.81‡ 56.22 57.62‡

First, adding rephrased utterances in the training and validation set may help improve
classification results (Table 3.9). For the test set with rephrased utterances, all the metrics
are improved except for precision at the 1st-level. Recall and F1 increase by 8.1% and
4.4% respectively at the 1st-level. Precision, recall and F1 increase by 8.1%, 1.7%,
4.4%, and 4.7%, 7.3%, 6.2% at the 2nd-level and 3rd-level, respectively. For the test set
without rephrased utterances, recall increases by 5.1 %, 1.4%, and 8.3%, respectively;
F1 score improves by 1.3% and 1.9% at the 1st-level and 3rd-level, respectively.

Second, adding both rephrased utterances and context in the training and validation
set can further improve the classification results slightly (Table 3.10). For the test set
with both rephrased utterances and context, recall is improved at the 1st-level; recall
and F1 are improved at the 2nd-level; all metrics are improved at the 3rd-level. For the
test set without rephrased utterances, recall is improved at the 1st-level; recall and F1
are improved at the 2nd-level.

Third, BERT-conf has higher classification performance than BERT-base for adding
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Table 3.10: BERT-base and BERT-conf results with both rephrased utterances and
context in training and validation data. Underlining of BERT-base results in the top half
indicates improvements over BERT-base in Table 3.7, 3.8 and 3.9. Double underlining
of BERT-conf results shows improvements over BERT-base. ‡ indicates that improve-
ments are significant (p < 0.05).

Methods Test with both Test without rephrased utterances

Precision Recall F1 Precision Recall F1

Training/validation with both rephrased utterances and context

BERT-base 1st-level 82.19 84.80 83.19 79.08 83.54 80.74
BERT-base 2nd-level 63.88 63.56‡ 63.49 60.35 63.06 61.42
BERT-base 3rd-level 63.75‡ 58.82 60.65 59.78 56.56 57.63

BERT-conf 1st-level 83.61 85.33 84.36 80.99 82.71 81.78
BERT-conf 2nd-level 69.88‡ 60.89 64.68‡ 66.53‡ 59.92 62.70‡

BERT-conf 3rd-level 64.66‡ 58.47 60.88 60.65 56.02 57.74

rephrased utterances or adding both rephrased utterances and context. BERT-conf has
higher performance of F1 and precision for three levels, than BERT-base in Table 3.9
and 3.10. The reason is that low confidence samples are calibrated.

In conclusion, adding more rephrased data improves the diversity of the training
set, and hence helps the classification model to generalize better. BERT-conf has higher
performance than BERT-base when more rephrased data is given.

3.7.4 Further analysis
Before concluding, we identify the strengths and weaknesses of state-of-the-art methods
on the MDRDC task. To begin with, a better context modeling mechanism is needed.
We illustrate this through two experiments.

In the first experiment, we show the results of BERT-base per turn in Figure 3.6.
Note that the number of context utterances is limited to three at most, so turns after
three all have three context utterances. Although we concluded in the previous section
that using context leads to better classification performance, the improvement is not
consistent across categories or turns. For example, in Figure 3.5, when using context,
the results drop for three 2nd-level categories and three 3rd-level categories, and in
Figure 3.6, the results drop for some turns. As to the drops in Figure 3.5, the reason
might be that some categories depend less on context than others or have a similar
context to others. Additionally, regarding the drop in scores for some turns when using
context in Figure 3.6, the reason might be that considering context introduces noise,
which makes it harder to train the model. Another reason is that considering context
is ineffective and potentially counter-productive when the model cannot understand
the context correctly. In the second experiment, we identify potential improvements
over the state-of-the-art when utilizing contexts from different users, and show the
results achieved with BERT-base when using contexts from only one user in Table 3.11.
Assume we have a dialogue between users A and B. If the response is from A, “context
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(a) 1st-level. (b) 2nd-level.

(c) 3rd-level.
Figure 3.6: BERT-base performance at different turns.

Table 3.11: Classification performance with different types of context. Bold face shows
improvements of the right group over the left group.

Methods Context from the same user Context from the other user

Precision Recall F1 Precision Recall F1

BERT-base 1st-level 82.63 80.00 81.17 83.05 80.73 81.78

BERT-base 2nd-level 63.44 59.34 60.92 64.39 58.93 61.13

BERT-base 3rd-level 58.55 53.02 55.14 57.16 55.03 55.67

BERT-conf 1st-level 81.09 83.18 82.03 82.07 82.44 82.25

BERT-conf 2nd-level 64.33 58.83 61.07 68.01 57.55 61.83

BERT-conf 3rd-level 63.79 50.41 55.59 62.25 51.33 55.59

from the same user” denotes that the context is also from A; “context from the other user”
denotes that the context is from B. The results indicate that for user A, context from both
A and B is important, and the context of B is more important than that of A to improve
the classification. The reason might be that the behavior of user B could cause distrust or,
in contrast, positive emotion that is highly related to human decision-making [44], thus
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influencing the behavior of A. For instance, if A said something non-malevolent, but B
starts a malevolent sentence, A may also return malevolent content. Moreover, utilizing
context from both users is better than context from only one user (see Table 3.8). The
reason is that context from two users contains more information than context from a
single user.

Next, a better confidence prediction method is needed. We compare the results of
BERT-conf-MCP and BERT-conf-TCP in Table 3.12 for training and validation with
both rephrased data and context, and testing with context only. The analysis suggests
that BERT-conf-TCP has higher precision, recall, and F1 than BERT-conf-TCP on the
1st-level category. TCP is better at predicting failure for binary classification.

Table 3.12: Classification results of BERT-conf for the 1st-level category. Bold face

denotes higher performance of BERT-conf-TCP over BERT-conf-MCP.

Label Precision Recall F1

BERT-conf-MCP (1st-level) 80.99 82.71 81.78
BERT-conf-TCP (1st-level) 81.18 82.83 81.94

Finally, modeling the dependency between different categories is needed. To illus-
trate this, we show the results of the “jealousy” category when performing classification
at the 2nd-level and 3rd-level in Table 3.13. Note that “jealousy” is a category at both
the 2nd-level and 3rd-level, as shown in Table 3.2. The performance at the 3rd-level
is much better than at the 2nd-level. The performance difference of “jealousy” at the
2nd-level and 3rd-level is due to the mutual influence or dependency between the cate-
gories. Although the “jealousy” category is the same at the 2nd-level and 3rd-level, the
other 2nd-level categories introduce more fine-grained 3rd-level sub-categories. Clearly,
this has an influence on the performance of “jealousy”. It has been demonstrated that
modeling the hierarchical structure of the taxonomy helps to improve the performance
on some hierarchical classification tasks [15, 129, 158]. Usually, one needs to take the
characteristics of the hierarchical taxonomies into account; this is another potential
direction for improvement.

Table 3.13: Classifying “jealousy” at different levels. Bold face indicates improvements
of the 3rd-level over the 2nd-level. ‡ indicates that the improvements are significant
(p < 0.05).

Label Precision Recall F1

Jealousy (2nd-level) 66.67 80.00 72.73
Jealousy (3rd-level) 80.00

‡ 80.00 80.00
‡

3.8 Conclusion and Future Work
We have considered malevolent responses in dialogues from a number of angles. First,
we have proposed the malevolent dialogue response detection and classifying (MDRDC)

51



3. Single-label Malevolent Dialogue Response Detection and Classification

task, and we have presented a hierarchical malevolent dialogue taxonomy, HMDT. We
have conducted a user study to check the validity of the HMDT taxonomy and have
found that the malevolent categories are valid in the sense that all malevolent categories
lead to the perception of malevolence. Second, we have crowdsourced a multi-turn
malevolent dialogue dataset for malevolent dialogue response detection and classify-
ing (MDRDC), where each turn is labeled using HMDT categories. Last, we have
implemented state-of-the-art classification methods and have carried out experiments
on the MDRDC task. Our main finding is that context, rephrased utterances, and confi-
dence of the predicted category all help to improve classification performance. Further
analyses show the effects of dialogue context and rephrased utterances, as well as the
possible room for further improvements, i.e., leveraging hierarchical labels. We hope
that the efforts made in this chapter help to promote future research on this topic.

The MDRDC dataset has several future applications. First, it is promising to
evaluate malevolence of dialogue generation models and moderating malevolent content
on the web, e.g., Reddit, based on a malevolence classification model. Second, using
paraphrased data can help generate more malevolent data and generate fewer non-
malevolent responses for conversational dialogue systems. We aim to study how to
avoid generating malevolent responses by applying the classifier to sequence to sequence
based response generation models [48]. Third, we aim to utilize annotation information
to determine the most efficient allocation of dialogue to crowd workers, based (in part)
on the collected worker annotation time, worker ID, and worker test score data.

We have provided a taxonomy, dataset, and classification model, complemented with
experimental results, to answer RQ2. We have constructed a hierarchical malevolent
dialogue taxonomy (HMDT) and a high-quality dataset malevolent dialogue response
detection and classifying (MDRDC) via crowdsourcing. We also built a benchmark for
classifying single-label malevolent dialogue responses. In the next chapter, we take a
different angle for classifying multi-label malevolent dialogue responses and study how
we can utilize label correlation to improve the performance of multi-label classification.
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Appendix

3.A User Study for Validating the HMDT
A user study is used to investigate the users’ opinions towards malevolent dialogue
responses. The user study design includes a task summary, user profiles, and a question-
naire. The task explanation includes a content warning, an ethical disclaimer, and the
task goal. We ask the user to finish the questionnaire according to their own situation and
perception. Users are asked to imagine talking with a chatbot that may return responses
with certain malevolent categories as defined in Table 3.2. Part of the questionnaire for
the users is shown in Figure 3.7. We also explain the 5-point Likert scores.

3.A.1 Task summary

Warning

This task may contain adult content and offensive content. Worker discretion is advised.

Disclaimer

The dialogues are collected from an external website. The views, opinions, and negative
words in the dialogues do not necessarily reflect our opinion. Please do not use any
expressions from the examples we show in a real-world or online scenario.

Goal

This user study is used to collect your perception about some provided malevolent
categories happening in dialogues. We include extra requirement notes for the workers
as follows:

(1) Table 3.2 shows the definitions of all malevolent categories with detailed explana-
tions and examples.

(2) Finish the user profiles and questionnaire according to your own situation and
perception. Do NOT take public perception into account.

(3) If you do not want to share attributes of your personal profiles, please leave them
blank.

3.A.2 User profile
The (attributes and) user profiles that we collected are as follows:

(1) Age.

(2) Gender.

(3) Total years of education.

(4) The frequency of using a chatbot such as Siri, Xiao ice, etc.
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3.A.3 Questionnaire interface
The questionnaire instruction and part of the questionnaire interface are as follows:

Consider you are talking with a chatbot and it returns responses with
certain malevolent categories as defined in Table 3.2. Please finish the
questionnaire in Figure 3.7 by selecting one of the five scores to reflect
your perception. 1: Strongly disagree; 2: Disagree; 3: Neither agree nor
disagree; 4: Agree; 5: Strongly agree.

Figure 3.7: Part of the questionnaire interface.

3.B Qualification Test for the Response Annotation
Task

The qualification test design includes a task summary and qualification test questions.
Specifically, we show the workers implicit utterance and dialogue context examples.
Utterance “I ******* hate you” is explicit and “I tell the world: The immortal words of
Adolf Hitler” is implicit. Context example is the same as Figure 3.1. The 12 questions
are shown in Figure 3.8.

3.B.1 Task summary

Warning

This task may contain adult content and offensive content. Worker discretion is advised.

Disclaimer

The dialogues are collected from an external website. The views, opinions, and negative
words in the dialogues do not necessarily reflect our opinion. Please do not use any
expressions from the examples we show in a real-world or online scenario.

Goal

This is the qualification test for the response annotation task. The response annotation
task is to collect malevolent annotations for each dialogue turn for research that could
help avoid generating malevolent responses in dialogue systems. You need to answer
12 questions to get the qualification to attend the response annotation task.
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(1) Table 3.2 shows the definitions of all malevolent categories with detailed explana-
tions and examples.

(2) Implicit/Explicit malevolent responses: Explicit responses contain explicitly
malevolent words, while implicit responses have more abstract, coded expressions
or attitudes without using explicit malevolent words.

Examples:

Explicit: “I ******* hate you (disgust)”.

Implicit: “I tell the world: The immortal words of Adolf Hitler (negative inter-
group attitude)”.

(3) Context-aware malevolent responses: Some responses are malevolent only if the
context (previous dialogue turns) is taken into consideration.

Examples:

Turn 1: “Drunk driving is illegal”.

Turn 2: “But I think it’s more professional”.

The response in Turn 2 is malevolent (immoral & illegal) when considering the
response from Turn 1.

3.B.2 Qualification test questions
The questions of the qualification test are shown in Figure 3.8. The total possible score
is 100. For questions 1-4, each question has a score of 15. For questions 5-12, each
question has a score of 5.
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Figure 3.8: The questions of the qualification test.
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3.C Response Annotation Task

The response annotation task design includes a task summary and annotation interface.
Specifically, we have annotation examples and quality requirements.

3.C.1 Task summary

Warning

This task may contain adult content and offensive content. Worker discretion is advised.

Disclaimer

The dialogues are collected from an external website. The views, opinions, and negative
words in the dialogues do not necessarily reflect our opinion. For the rephrasing part, you
are asked to reformulate utterances to keep their semantics and malevolent categories
unchanged. These are just used for research, which does not necessarily reflect your
views and opinions. Please do not use any expressions from the examples we show in a
real-world or online scenario.

Goal

The response annotation task is used to collect malevolent annotations for each dialogue
turn for research that could help avoid generating malevolent responses in dialogue
systems. You need to label the dialogue responses according to the given malevolent
categories.

Requirements for annotation quality

The requirements to control the annotation quality are as follows:

(1) Read the definitions of all malevolent categories with detailed explanations and
examples in Table 3.2.

(2) Label each turn of the provided dialogue according to the given malevolent
categories.

(3) Rephrase at least one malevolent utterance in each dialogue.

(4) During rephrasing please do not change the annotation category.

(5) We might limit your qualification for the task if we find the following behaviors:
pasting irrelevant content from the website, copying dialogue, rephrasing with
repeating words, and rephrasing with random words.
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Example

Dialogue:
Turn 1: Drunk driving is illegal.
Turn 2: But I think it’s more professional.
Turn 3: Hey, my boy, we need to be careful when driving.

Annotations:
Turn 1: Non-malevolent
Turn 2: Endorse immoral or illegal behavior
Turn 3: Non-malevolent

Rephrase malevolent utterance:
Turn 2: I think drunk driving is nice since it’s more professional.

3.C.2 Annotation interface

The workers are asked to read the given dialogue on the left, label each turn and rephrase
at least one of the malevolent responses if any. The instructions are shown in Figure 3.9
and the annotation interface is shown in Figure 3.10.

Figure 3.9: The instruction interface of the response annotation task.
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Figure 3.10: The annotation interface of the response annotation task.
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4
Improving Multi-label Malevolence

Detection and Classification in Dialogues

In this chapter, we address RQ3: How can we build a model for multi-label dialogue
malevolence detection based on single-label training data and construct a validated
dataset to assess the model?

4.1 Introduction
Safety is an increasingly important aspect of artificial intelligence development [3,
133, 147]. When it comes to dialogue agents, taking measures to avoid the risks of
generating undesirable and harmful responses may have a profound positive impact
on the adoption of conversational technology [168]. Research on safe dialogue agents
concerns aspects such as inaccurate information [57], fairness [94], and unauthorized
expertise [147]. Malevolence is another key aspect [184, 185], i.e., whether the dialogue
utterance contains malevolent content that is related to offensiveness [38], toxicity [50],
ad hominem [143], or toxicity agreement [8], etc.

There have been several studies targeting malevolence detection [135, 138, 184, 185].
We build on the work of Zhang et al. [185], which is included as Chapter 3 in the thesis.
There, we introduce the malevolent dialogue response detection and classification
task, present a hierarchical malevolent dialogue taxonomy, create a labeled multi-
turn dialogue dataset, and apply state-of-the-art text classification methods to the task.
One important limitation of the work in Chapter 3 is that we only explore single-
label dialogue malevolence detection (SDMD), i.e., we assume that each dialogue
utterance corresponds to a single malevolence or non-malevolence label. However,
some utterances have more than one label, e.g., in Figure 4.1, the utterance “f** people
are disgusting”1 belongs to both “disgust” and “negative intergroup attitude (NIA)”.
This is because malevolence labels are correlated with one another, a phenomenon to
which we refer as label correlation in taxonomy (LCT).

In Chapter 3 we have proposed the hierarchical malevolent dialogue taxonomy
(HMDT) that classifies correlated malevolence labels into the same group by inves-

This chapter was published as [186].
1Words that turn a statement into a statement that may cause harm are masked.
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Figure 4.1: Label correlation in taxonomy (LCT) and label correlation in context (LCC).
In terms of LCT, “NIAs” is correlated with “disgust”, which can be reflected by the
utterance in blue (LCT). In different turns, “blame” is likely to co-occur with “anger”
and “blame”, which can be reflected by the utterances in green (LCC).

tigating three dimensions – negative emotions, negative psychological behavior, and
unethical issues. However, the correlation of malevolence labels in different groups is
not well captured. Another limitation is that the above studies neglect the impact of
malevolence in dialogue contexts (i.e., previous turns) on the current utterance. Previous
work concatenates the dialogue context as model input without explicitly modeling
the malevolence transition. For instance, in Figure 4.1, “blame” is likely to cause
“blame” for the same person, while for different persons, “blame” is likely to cause
“anger”. This is due to label correlation in context (LCC). In Chapter 3 we do not take
correlations of malevolence labels in different dialogue turns into account and our label-
correlation mechanisms are different from previous methods that require multi-label
training sets [79, 151].

In this chapter, we address the two limitations listed above. Our goal is to boost
multi-label dialogue malevolence detection (MDMD) by incorporating label correlation
in taxonomy and context based on a single-label dataset with re-annotated multi-label
validation and test data. This goal comes with two main challenges: (1) A dataset
challenge, as we only have one label per utterance in the training data, which increases
the negative effect of unobserved labels during training: how to improve the single gold
labels via LCT and decrease the probability of over-fitting; (2) A classification method
challenge: how to capture LCC to help improve the classification.

Based on conditional random fields (CRFs), we propose a multi-faceted label
correlation enhanced CRF (MCRF) framework to improve MDMD from single-label
training data. The approach contains a position-based label correlation in taxonomy
(PLCT)-based encoder and a multi-faceted CRF layer, which includes a LCC-based
feature function and LCT-based label distribution learning. For the dataset challenge,
we build a LCT-based label distribution learning module to exploit the label correlation
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in hierarchical taxonomy, which can alleviate the unobserved label problem. For the
classification method challenge, we build an LCC-based transition function to exploit
the label correlation in context.

We crowdsource a new dataset, i.e., MDMD, based on the previously released
malevolent dialogue response detection and classifying (MDRDC) dataset, conduct
experiments on MDMD, and show that MCRF with a pretrained model, i.e., BERT-
MCRF, outperforms competitive baselines by a large margin. We also conduct further
analyses of the LCT and LCC modules, which reveal that multi-faceted label correlation
does enhance multi-label dialogue malevolence detection.

We summarize our contributions in this chapter as follows: (1) We crowdsource a
new dataset, i.e., MDMD, for the task of multi-label dialogue malevolence detection
from single-label training data. (2) We propose multi-faceted label correlation, including
LCC and LCT, which is shown to be beneficial for dialogue malevolence detection.
(3) We introduce a new framework, MCRF, and compare it with competitive baseline
models on the MDMD dataset and demonstrate its effectiveness.

4.2 Related Work

4.2.1 Malevolence detection taxonomies
The taxonomies for hate speech, aggressiveness, offensiveness, and condescending
only contain a few categories [78, 163, 166, 176], which lack a unified understanding
of what constitutes malevolence. To address this gap, Sheng et al. [143] introduce a
two-level ad hominem taxonomy and Sun et al. [147] introduce a safety taxonomy,
both of which contain seven different aspects. Furthermore, in Chapter 3 we define
a three-level malevolence taxonomy that contains eighteen categories in total. In this
chapter, we follow the taxonomy proposed in Chapter 3.

4.2.2 Malevolence detection datasets
There are several datasets to support malevolence classification or detection research.
Many of them investigate hate speech detection, e.g., predictive features for hate speech
detection (PFHSD) [166], hate speech detection dataset (HSDD) [33], and multilingual
detection of hate speech (MDHS) [9], which are all collected from Twitter. These
datasets have several shortcomings, e.g., a lack of diversity, small data size, low inter-
annotator agreement, and small lexicon size. Others work on aggressiveness, offen-
siveness, and condescending, e.g., trolling, aggression and cyberbullying (TRAC) [78],
offensive language identification dataset (OLID) [176], and TALKDOWN [163], which
have been collected from Facebook, Reddit, and Twitter, respectively. These datasets
have a larger size than those mentioned before, but problems such as low diversity and
limited lexicon size affect them too.

Furthermore, none of the datasets listed above is in the form of multi-turn dia-
logues. To address this, recent studies have released the TOXICHAT [8], ADHOM-
INTWEETS [143], MDRDC [185], and DIASAFETY datasets [147], for research into
offensiveness, ad hominem, safety detection, etc. However, the above datasets all fall
into single-label dialogue malevolence detection.
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In contrast, we build a dataset for the evaluation of multi-label malevolence detection,
considering an utterance may contain multiple labels.

4.2.3 Malevolence detection methods
Methods for malevolence detection include rule-based [135], traditional machine
learning-based [9, 33, 138, 166], and deep learning-based [78, 143, 163, 176, 185]
approaches. Roussinov and Robles-Flores [135] define malevolence by filtering the
keywords. Saral et al. [138] survey the machine learning-based detection methods,
including k-nearest neighbors (KNN) and support vector machine (SVM)-based meth-
ods. The performance of these methods is not strong enough as malevolence detection
requires a deep understanding of semantics. Kumar et al. [78] apply convolutional
neural networks (CNNs) and long short-term memorys (LSTMs) for aggressiveness
detection. Zampieri et al. [176] apply CNNs and Bi-LSTMs for offensiveness detec-
tion. More recently, pretrained models, e.g., bidirectional encoder representations from
transformers (BERT) and RoBERTa, have been used for ad hominem, malevolence, and
safety [143, 147, 185], demonstrating better performance than LSTM, CNN, recurrent
convolutional neural network (RCNN), and graph neural network (GNN)-based mod-
els [185].

Compared with previous methods, we model malevolence detection as a multi-label
dialogue malevolence detection task instead of a single-label dialogue malevolence
detection task. Moreover, we propose two label correlation mechanisms, i.e., label
correlation in taxonomy (LCT) and label correlation in context (LCC).

4.3 Method

4.3.1 Overall
Let x be a dialogue that contains m utterances, x = [x1, x2, . . . , xi, . . . , xm] and
let xi be the i-th utterance in the dialogue. y = [y1, y2, . . . , yi, . . . , ym] denotes the
label sequence of one dialogue, where yi 2 {0, 1}n is the label for each utterance.
l = {l1, l2, . . . , lj , . . . , ln} denotes the label set, where lj is the j-th label, n is the
total number of label categories. Multi-label dialogue malevolence detection (MDMD)
aims to assign the most reliable labels to each xi. Since there is no large-scale MDMD
dataset, during training, we observe one non-malevolent label or only observe one
malevolent label per utterance, while the other malevolent labels are unknown. We
build a MDMD dataset for evaluation only, the details of which can be found in the
experiments.

We propose a model, multi-faceted label correlation enhanced CRF (MCRF), for
MDMD. As shown in Figure 4.2, MCRF consists of a PLCT-based encoder and a multi-
faceted CRF layer, where the PLCT-based encoder is used to encode the utterances x
and labels l, and output the representations H and R; the representations are fed into
the multi-faceted CRF layer to predict the multi-labels ŷ. The PLCT-based encoder is
enhanced by a taxonomy tree-based position embedding epos; the multi-faceted CRF
layer is enhanced by learning-based label correlation in taxonomy (LLCT) (i.e., ỹ),
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LCC (i.e., T and T
0), and the representation output of the PLCT-based encoder (i.e., H

and R). In the following subsections, we detail each component.

Figure 4.2: Framework of the proposed multi-faceted label correlation enhanced CRF
(MCRF) model.

.

4.3.2 Utterance and label encoder
As shown in Figure 4.2, the utterance and label encoder takes the utterances and labels
as input, and the output is the representations of utterances and labels. Following Liu
and Lapata [99], each utterance is encoded separately by inserting “[CLS]” at the start
of each utterance and “[SEP]” at the end of each utterance. The labels are encoded
by inserting “[CLS]” between the last utterance and labels and “[SEP]” at the end of
labels. We utilize three kinds of embeddings, namely (i) token embeddings, (ii) segment
embeddings, and (iii) position embeddings. Token embeddings follow the original
transformer paper [154]. Segment embeddings distinguish each utterance, as well
as the labels, by eA or eB , where eA and eB are odd or even. Position embeddings
for utterances capture the position of the utterances [162]. In order to improve the
representation of labels, we change the position embeddings of labels into PLCT-based
position embeddings (see Section 4.3.3). We feed the three embeddings into a pretrained
model (i.e., BERT) to get the representations of utterances and labels:

H,R = PTM([e(xi), e(lj)]),

e = etok + eseg + epos,
(4.1)

where PTM is the pretrained model; etok, eseg, and epos are the token, segment
and position embeddings, respectively. H = {h1, h2, . . . , hi, . . . , hm} denotes the
representations of the utterances with hi (corresponding to pooled output of “[CLS]”)
representing the i-th utterance xi. R = {r1, r2, . . . , rj , . . . , rn} are the representations
of the labels with rj (corresponding to sequence output of labels) representing the j-th
label lj .
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4.3.3 Multi-faceted label correlation
Multi-faceted label correlation is the main component of MCRF, which is composed of
two major modules: LCT and LCC. The former is meant to decrease the probability of
over-fitting caused by single-label annotated data, while the latter is meant to leverage
the influence of the previous label on the next label of the utterances from the same user
and the other user.

Label correlation in taxonomy

The LCT module contains two parts: PLCT and LLCT. First, the PLCT module
captures label correlation in the taxonomy tree. The input of the module is the taxonomy
tree, the output is the label position, and the module is used for improving the encoder.
PLCT is defined by the taxonomy tree-based position of each label, which is formulated
by its path from the root in the taxonomy tree [164]. The taxonomy of malevolence
consists of a root and three levels of labels. We use the 1st-level, 2nd-level, and 3rd-level
of labels to get the coordinate for the 3rd-level labels. For instance, in Figure 4.3, the
taxonomy tree-based positional label embedding for “blame” is (1, 2, 0). We use the
label position output of PLCT to improve epos in Eq. 4.1, and the improved encoder is
referred to as PLCT-based encoder.

Figure 4.3: Demonstration of taxonomy tree of labels.

Second, the LLCT module captures label correlation by learning a correlation
matrix V

n⇥n. Each element of the matrix corresponds to the correlation of two labels
as follows:

V =
1

2
(V̂j,j0 + V

0
j,j0), (4.2)

where V̂ is the learned LCT correlation matrix by representations of labels, V̂j,j0 =
d(rj , rj0); V 0 is the fixed LCT correlation matrix, V 0

j,j0 = d(cj , cj0); d is the correlation
function and we use the cosine similarity; rj and r

0
j are the representations of the j-th

and j
0-th label by the PLCT-based encoder with taxonomy tree position, i.e., R from

Eq. 4.1; cj and c
0
j are the n-gram bag-of-words vectors of the utterances belong to the

j-th and j
0-th label, respectively. The label correlation matrix V is used for hierarchical

label distribution learning later in Section 4.3.4.
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Label correlation in context

The LCC module captures the label correlation between the labels of different utterance
turns. We use two kinds of LCC correlation functions, i.e., label correlation functions
between utterance turns from different users (t) and the same user (t0), which are defined
as follows:

t(yi�1 = lj , yi = lj0) = T(lj ,lj0 ),

t
0(yi�2 = lj , yi = lj0) = T

0
(lj ,lj0 )

,
(4.3)

where lj and lj0 denote the j-th and j
0-th labels. T and T

0 are two n ⇥ n matrices
initialized randomly and trained by LCC-based label distribution learning, which is
introduced next.

4.3.4 Multi-faceted conditional random field layer
Given a sequence of utterances, a linear chain CRF can be used to predict the label of
an utterance:

p(y|x) = 1

Z(x)
exp

 
X

i

 (xi, yi)

!
, (4.4)

where Z is a normalization function, and

 (x, y) =
X

i

s(yi, x) +
X

i

t(yi�1, yi), (4.5)

where t is defined in Eq. 4.3. s is the emission function. Next, we introduce the
components of our multi-faceted CRF layer, including the LCC-based feature function
and the LCT-based label distribution learning.

LCC-based feature function

The LCC-based feature function contains two parts: the emission function and the
LCC-based transition function. First, the emission function s is defined as follows:

s(yi, x) = softmax(hi), (4.6)

where hi is the representation of each utterance xi. Second, the LCC-based feature
function is defined as follows:

 
0(x, y) =

1

2

✓
 (x, y) +

X

i

s(yi, x) +
X

i

t
0(yi�2, yi)

◆
, (4.7)

where t
0,  and s and are defined in Eq. 4.3, 4.5 and 4.6, respectively.

LCT-based label distribution learning

We get the estimated gold label distribution ỹ for CRF label distribution learning.
We calculate the estimated distribution ỹi from the original distribution yi of the i-th
utterance as follows:

ỹi = �V yi + yi, (4.8)
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where � denotes how much the original one-hot distribution is redefined and V is the
matrix that estimates the LCT in Eq. 4.2.

Our training objective is the Kullback–Leibler (KL)-divergence loss except that we
replace the gold label y with the estimated gold label ỹ:

L =
X

y

q(y|x) log q(y|x)
p(y|x) , (4.9)

where q(y|x) is the target distribution to learn; we use the probability of ỹ given x for
q(y|x); p(y|x) is the predicted distribution.

The KL loss can be transformed into the following function by expanding and
marginalizing p(y|x) [96]:

L =
X

i

X

yi

{q(yi|x) log q(yi|x)}�
X

y

{q(y|x) 0(y, x)}+ logZ(x), (4.10)

where q is the target distribution,  0 is the feature function, Z is the normalization
function.

4.4 Experimental Setup
We conduct experiments to answer the following research questions:

(RQ3.1) How does BERT-MCRF compare to baselines on the MDMD test set?

(RQ3.2) What is the impact of the number of labels on the performance of BERT-
MCRF?

(RQ3.3) What is the influence of different LCT and LCC settings?

(RQ3.4) What do the components of BERT-MCRF contribute to its overall perfor-
mance?

4.4.1 Dataset
We conduct experiments on an extension of the MDRDC dataset released with [185]
(and included as Chapter 3 in the thesis). The original MDRDC dataset is for single-label
dialogue malevolence detection; it contains 6,000 dialogues (with 10,299 malevolent
utterances and 21,081 non-malevolent utterances) annotated by Amazon MTurk workers.

To conduct the evaluation for multi-label dialogue malevolence detection, we re-
annotate the validation and test set of the MDRDC dataset using Amazon MTurk,
following the annotation protocols in [185]. We select workers with a test score of at
least 90, 500 approved human intelligence tasks (HITs), 98% HIT approval rate, and
the location is limited to countries where English is one of the official languages. The
workers are also asked to consider dialogue context and implicit words. Before the
annotation, we warn the crowd workers that the task may contain malevolent content.
The crowd workers are asked to annotate each utterance of the dialogue with 18 3rd-level
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Table 4.1: Statistics of the validation and test sets of MDMD.

Malevolent Non-malevolent Total
Valid. Test Valid. Test

1-label 413 733 2,088 4,276 7,510
2-label 264 574 – – 838
3-label 22 85 – – 107
4-label 2 5 – – 7
Total 701 1,397 2,088 4,276 8,462

labels in the taxonomy of Chapter 3. We ask three workers to annotate the data. Cohen’s
multi-Kappa value of the three workers is 0.701 for the re-annotated data, which is
considered substantial [106].

The MDMD dataset statistics are shown in Table 4.1. We have re-annotated 8,462
utterances in total, with 2,098 malevolent and 6,364 non-malevolent utterances. There
are 7,510 (88.7%), 838 (9.9%), 107 (1.3%) and 7 (0.1%) utterances for the 1-label,
2-label, 3-label, and 4-label group separately. For all the collected data, 952 (11.3%)
of 8,462 utterances have 2–4 labels. For the malevolent utterances, 952 (45.4%) of
2,098 utterances have 2–4 labels, which indicates the importance of the MDMD task
considering the percentage of multi-label utterances. We use the training, validation,
and test splits provided in Chapter 3, which has a ratio of 7:1:2.

4.4.2 Baselines
We compare BERT-MCRF against BERT and BERT-CRF. The two baselines are com-
petitive since BERT with a softmax classifier performs well in the SDMD task, as
reported in Chapter 3, and BERT-CRF with a modified encoder for separate sentences
is the state-of-the-art model for sequence labeling tasks [22].

4.4.3 Implementation details
We use the “bert-base-uncased” version of BERT as the pretrained model with a vo-
cabulary size of 30,522. The max sequence length is set to 512. For BERT-MCRF,
we first do BERT fine-tuning with learning rate 2e-5, and BERT is fine-tuned with 2
epochs. Then, we train the multi-faceted CRF layer and fine-tune BERT together, with
multi-faceted CRF layer learning rate 7e-4 and BERT-encoder learning rate 5e-7, we
train 10 epochs together. The batch size is 8 for training, validation, and test. The
dropout ratio is 0.1. More runtime and parameter details are provided in Appendix 4.C.
All the neural models are trained on GeForce GTX TitanX GPUs.

4.4.4 Evaluation metrics
We use the precision, recall, F1 score, and Jaccard score as our evaluation metrics [103].
We report the macro scores since the data is imbalanced in terms of labels [185].
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4.5 Results and Analysis

4.5.1 Comparison with baselines

To determine how MCRF compares to baseline models on the MDMD task, we report
the results in terms of precision, recall, F1, and Jaccard score in Table 4.2.

Table 4.2: Main results of MCRF on the MDMD test set.

Model Precision Recall F1 Jaccard

BERT 67.73 33.59 42.32 37.25
BERT-CRF 69.62 33.57 43.30 40.83
BERT-MCRF 82.99 38.12 49.20 43.46

In terms of overall performance, adding LCT and LCC improves the performance
of dialogue malevolence detection. In general, the performance of BERT-MCRF is
better than BERT and BERT-CRF. The precision, recall, F1, and Jaccard score of
BERT-MCRF outperform the second-best model (i.e., BERT-CRF) by 16.1%, 11.9%,
12.0%, and 6.1%, respectively. The results in terms of precision and recall indicate that
incorporating LCT and LCC provides benefits to both precision and recall, and more
benefits to precision than recall.

4.5.2 Performance of different label groups

We divide the samples in the MDMD test set into different groups according to the
number of labels. We report the Jaccard scores of different label groups in Table 4.3.

Table 4.3: Jaccard scores of different label groups.

Model 1-label 2-label 3-label 4-label

BERT 40.16 11.84 11.48 8.00
BERT-CRF 44.02 13.06 11.89 11.33

BERT-MCRF 46.39 15.23 12.88 10.00

First, the results suggest that BERT-MCRF has better performance with regard to
different label groups. BERT-MCRF’s Jaccard scores for the 1-label, 2-label, and 3-label
are 5.4%, 16.6%, 8.3% higher than the second-best performing approach. An exception
is that for the 4-label group, the result of BERT-MCRF is lower than BERT-CRF. The
reason is that the size of 4-label utterances is small for the test set and the performance
of 4-label changes dramatically when we evaluate at different epochs. Second, the
results show that the MDMD task becomes more challenging as the number of labels
increases. The Jaccard score results for all the models in Table 4.3 decrease as the
number of labels increases.
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(a) LCT matrix V . (b) LCC matrix T .

(c) LCC matrix T 0.

Figure 4.4: Visualization of LCT and LCC.

4.5.3 Influence of the label correlation in taxonomy and label
correlation in context settings

First, we study the influence of the hyperparameter � of LCT in Eq. 4.8, as shown
in the upper part of Table 4.4. As � increases, the performance increases and then
decreases. The reason is that as with overly large �, the original one-hot distribution
is redefined too much as to make the learning target deviate from the real target. We
visualize the LCT confusion matrix V (Eq. 4.8) in Figure 4.4a. Yellow or blue suggests
the correlation is low or high, separately. The variation of correlation value suggests
our model can capture the label correlation in taxonomy, which contributes to the final
results.

Second, we study the influence of different transition function matrices of LCC,
i.e., T is LCC between the same user, T 0 is LCC between different users, as shown
in the bottom part of Table 4.4. For the three LCC settings, T has better recall thus
improving the final performance compared with T

0; T 0 has better precision than the
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Table 4.4: BERT-MCRF performance w.r.t. different LCT and LCC settings. � is the
hyperparameter in Eq. 4.8, T and T

0 are the transition matrices by Eq. 4.3.

Settings Precision Recall F1 Jaccard

LCT (� = 0) 83.60 36.78 47.96 42.75
LCT (� = 1/2) 84.58 37.04 48.50 42.85
LCT (� = 1) 82.99 38.12 49.20 43.46

LCT (� = 2) 82.28 38.09 49.10 42.98

LCC (T ) 84.37 37.08 48.58 43.43
LCC (T 0) 84.43 35.99 47.10 42.62
LCC (T+T 0) 82.99 38.19 49.20 43.46

other two groups, but the overall performance is the lowest; BERT-MCRF with both T

and T
0 combine the advantages to achieve the best performance. We visualize the LCC

confusion matrices T in Figure 4.4b and T
0 in Figure 4.4c; yellow and blue suggests

a negative and positive correlation, respectively. First, LCC captured by transition
matrices can be both positive and negative, e.g., for T 0, “non-malevolent” is likely to
transit to “non-malevolent” and not-likely to transit to “immoral & illegal”; second, the
LCC captured by T and T

0 is different.

4.5.4 Ablation study

We perform an ablation study on BERT-MCRF by removing LCT or LCC. The results
are reported in Table 4.5. The results suggest that both LCC and LCT are important for
BERT-MCRF.

First, removing LCC decreases the performance of BERT-MCRF by 2.9%, 1.3%,
and 0.1% for recall, F1, and Jaccard, respectively, while the precision increase by 1.7%.
LCC has a positive influence since it considers both the LCC from the same user and
different users, while BERT-CRF only contains the label correlation from different
users, as explained in Section 4.5.3.

Second, removing LLCT decreases the performance of recall, F1 and Jaccard score
by 3.7%, 2.5%, and 1.6%; LLCT has a positive influence since it predicts estimated
gold labels to improve model learning. An exception is that the precision increases
by 0.7%, which is not significant, and the reason might be that BERT-MCRF tends to
predict more labels, which results in a much higher recall but decreases precision a bit.
Third, removing PLCT decreases the performance of precision, recall, F1, and Jaccard
by 16.4%, 11.5%, 12.1%, and 6.0%. The performance suggests that PLCT has a positive
influence on the results. The fixed correlation between the 3rd-level labels with the
same node based on the taxonomy tree is captured well by the position embedding.

Fourth, removing both LLCT and PLCT decreases the performance of recall, F1,
and Jaccard score by 15.8%, 13.2%, 13.4%, and 6.1%. Compared with the results with
LLCT ablation and PLCT ablation, both LLCT and PLCT have a positive influence
on the BERT-CRF model. Previously, some methods have utilized label correlation
in training data to improve multi-label classification, i.e., label co-occurrence [181].
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Table 4.5: Ablation study results. Note that LCC of different users T is already captured
by BERT-CRF, therefore the ablation of LCC keeps T but deletes T 0.

Model Precision Recall F1 Jaccard

BERT-MCRF 82.99 38.19 49.20 43.46
�LCC 84.37 37.08 48.58 43.43
�LLCT 83.60 36.78 47.96 42.75
�PLCT 69.34 33.79 43.27 40.86
�LCT 69.87 33.16 42.62 40.83

However, for MDMD, there is no label co-occurrence information; our results suggest
that LCT is able to increase the MDMD performance; the reason might be that the LCT
reduces overfitting of single-label training data.

4.5.5 Case study
We randomly select two examples from the test set to illustrate the performance of
BERT, BERT-CRF, and BERT-MCRF (see Table 4.7 in Appendix 4.B.2).

First, for the first example, BERT-MCRF predicts the right labels “violence” and
“self-hurt”. The LCT correlation value between label “violence” and “self-hurt” is
0.1923, and suggests that LCT may help predict the two labels together. Second, in the
second example, BERT-MCRF predicts a sequence of labels for different dialogue turns
more accurately than BERT and BERT-CRF. We found that the LCC value between
“non-malevolent” and “non-malevolent” is 0.2725, while the LCC value between “non-
malevolent” and “immoral & illegal” is �0.1183, which implies that it helps BERT-
MCRF predict the right label “non-malevolent” for the third utterance considering the
label of the first utterance. In summary, LCC is able to boost the performance of BERT-
MCRF. In addition, there are also cases where BERT-MCRF fails. An example is the
label with implicit expression, i.e., “deceit”, which leaves room for further improvement
by considering implicit meaning.

4.6 Conclusion and Future Work
We have studied multi-label dialogue malevolence detection and built a dataset MDMD.
The dataset statistics suggest that the dataset quality is substantial and that it is essential
to do multi-label dialogue malevolence detection as almost 12% of the utterances have
more than one malevolent label. We have proposed BERT-MCRF by considering label
correlation in taxonomy (LCT) and label correlation in context (LCC). Experimental
results suggest that BERT-MCRF outperforms competitive baselines. Further analyses
have demonstrated the effectiveness of LCT and LCC.

A limitation of BERT-MCRF is that it is not good at detecting implicitly malevolent
utterances, e.g., “deceit”. As to future work, we plan to address this type of utterance
and investigate how to enhance BERT-MCRF in terms of implicit multi-label dialogue
malevolence detection by semi-supervised learning as there are large-scale unlabeled
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datasets.
Finally, in this chapter we have answered RQ3 by providing a multi-faceted label

correlation enhanced model solution for classifying multi-label malevolent dialogue
responses, the MDMD dataset, and the experimental results above.

In Chapters 2 and 3, and the present chapter we have established the malevolence
problem and built malevolence detection models. The malevolent detection models
provide a basis for human-machine collaborative dialogue malevolence evaluation.
In the next chapter, we focus on malevolent dialogue response evaluation and study
how to balance the reliability and effort of evaluation by human-machine collaborative
mechanisms.
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Appendix

We present additional details on our experimental design in the appendices below. We
include the ethical considerations (Appendix 4.A); the validation performance of BERT-
MCRF for the main results reported in this chapter (Appendix 4.B.1); a case study
(Appendix 4.B.2); a description of our source code (Appendix 4.B.3); a summary of
the average runtime of each module and detailed information about the parameters
(Appendix 4.C); and further details about the newly created dataset that we release with
this thesis (Appendix 4.D).

4.A Ethical Considerations
The data collection process for the re-annotated MDMD dataset follows the regulations
of Twitter. The data is anonymized so the data can not be linked to a particular user.
The crowd workers are fairly compensated with a minimum wage per hour (using the
minimum wage from a Western European country). The data collection process has
been approved by the ethics committee of the University of Amsterdam. The data
will be made available to researchers that agree to the ethical regulations of our ethics
committee. Characteristics and quality control of the re-annotated dataset are described
in Section 4.5.

The claims in this chapter match the results and the model can be generalized to
multi-label dialogue safety detection tasks. This chapter can be used for the deploy-
ment of dialogue systems, hoping to improve the ability of dialogue systems to detect
malevolent human natural language. Multi-label classification has a positive impact
on the application of dialogue systems. Detecting and filtering dialogue responses that
are not malevolent may decrease the diversity of the dialogue. For the deployment
of non-malevolent dialogue systems, it is better to consider the extent of malevolence
according to the malevolence label counts of each utterance or the perception of different
labels.

This chapter does not involve identity characteristics nor does it categorize people.

4.B Experimental Results

4.B.1 Performance of BERT-MCRF on the validation set
In terms of validation performance, we report the validation performance of comparing
BERT-MCRF to BERT-classifier and BERT-CRF, as shown in Table 4.6. BERT-MCRF
surpasses both BERT and BERT-CRF in dialogue malevolence detection. Compared
to the second-best model, the precision, recall, F1, and Jaccard score of BERT-MCRF
increase by 9.1%, 8.8%, 11.4%, and 4.2%, respectively. This suggests that for the
validation set, BERT-MCRF is better than BERT and BERT-CRF for dialogue malevo-
lence detection. Moreover, the results of the validation set and the test set are similar.
Compared to results of the test set, F1 of the validation set increase by 2.8%, while
Jaccard decrease by 1.8%. This suggests the test result is consistent with validation as
shown in Table 4.2 (presented in Section 4.5) and Table 4.6.
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Table 4.6: Main results of BERT-MCRF on the multi-label validation set.

Metric Precision Recall F1 Jaccard

BERT 64.14 36.33 43.97 37.02
BERT-CRF 73.05 35.84 44.81 40.89
BERT-MCRF 80.39 39.82 50.58 42.68

Table 4.7: Case study. Top: utterances and labels of example 1. Bottom: utterances and
labels of example 2.

User A: S** my head into a brick building while having a steal toe boot r** up my a**
would hurt less.

BERT: non-malevolent.
BERT-CRF: non-malevolent.
BERT-MCRF: violence, self-hurt.
Gold: violence, self-hurt.

User A: Mom: I can’t believe you haven’t seen birdman , Edward Norton is in it ! n Me:
I know she gets me.
User B: Hope Gasols forgive me when I marry him.
User A: Invite me so i can get drunk and be inappropriate.

BERT: non-malevolent; non-malevolent; immoral & illegal.
BERT-CRF: non-malevolent; non-malevolent; immoral & illegal.
BERT-MCRF: non-malevolent; non-malevolent; non-malevolent.
Gold: non-malevolent; non-malevolent; non-malevolent.

4.B.2 Case study examples
We show two examples for case study that explains how LCT and LCC work, as shown
in Table 4.7; the description is in Section 4.5 of the main content of Chapter 4.

4.B.3 Code
Our code is uploaded to https://github.com/repozhang/MCRF.

4.C Runtime and Parameters
In terms of average runtime, the time cost for our BERT-MCRF model is acceptable.
The time cost for BERT-MCRF is 2 hours. The run time of BERT-CRF is the same as
BERT-MCRF and the run-time for BERT is less than 1 hour.

In terms of parameters, BERT-MCRF has 109,496,802 parameters, BERT has
109,496,118 parameters, BERT-CRF has 109,496,478 parameters. As described in
Section 4.4.3, in terms of the BERT-MCRF model, we first fine-tune BERT. We choose
the best result of learning rate 2e-5 and training epochs 2. Second, we train the multi-
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faceted CRF layer with BERT together, where BERT is not completely frozen but has a
relatively small learning rate. In this step, the learning rate for BERT is 5e-7 and for
the multi-faceted CRF layer is 7e-4. The reason that the BERT learning rate is small
during the joint training is that we have fine-tuned BERT for 2 epochs before feeding the
representations to the multi-faceted CRF Layer. We train BERT-MCRF for 10 epochs
and choose the best result based on the validation set results.

For the � parameter in Eq. 4.8, we use the value range [0, 0.5, 1, 2] and select the
best result. In terms V 0 in Eq. 4.2, we use n-gram settings of [1, 2, 3, 4], and select 2 for
the final estimation of V 0 based on the best result. In terms of the BERT classifier, the
learning rate is 2e-5, and the epoch number is 2. In terms of BERT-CRF, the parameter
selection process is similar to BERT-MCRF, the BERT fine-tuning parameters for the
first step same as BERT-MCRF; and for the second step that trains both BERT and CRF,
the final learning rate is 5e-7 for BERT and 3e-4 for the CRF layer.

4.D Dataset
Our data is uploaded to https://github.com/repozhang/malevolent_

dialogue. The statistics and splits are described in Section 4.4.1. The language of
the dataset is English. For data prepossessing, we use all the data from the dataset.

In terms of the data collection process, we follow previous research [185], except
that the workers are asked to choose multiple choices from the labels.
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5
A Human-machine Collaborative

Malevolence Evaluation Framework

In this chapter, we address RQ4: How can we build a framework for evaluating malevo-
lent dialogue responses with reliability and human effort balanced?

5.1 Introduction
Conversational dialogue systems (CDSs) are often trained to generate responses given
unstructured, open-domain dialogues. Evaluation of CDS responses has drawn broad
attention due to its crucial rule for CDS development [35]. Broadly speaking, there
are two approaches to perform dialogue evaluation: automatic evaluation and human
judgements [45]. Automatic evaluation metrics such as appropriateness [101], en-
gagement [183], are efficient but have low agreement with human judgements due
to the diversity of responses [93], especially for word-overlap based metrics, such as
BLEU [115] and ROUGE [91].

More recently, training-based methods, e.g., automatic dialogue evaluation model
(ADEM) [101], unreferenced metric blended evaluation routine (RUBER) [149] and
contextualized methods, e.g., BERT-based RUBER [51], have been shown to have
better agreement with human judgements. However, these methods are still not reliable
enough: the Pearson correlation with human judgments is 0.44 for appropriateness [101]
and 0.55 for relevance [51]. To guarantee reliability of evaluation outcomes, our current
best practice is to use human judgements. In terms of most evaluation aspects, e.g.,
appropriateness [171], coherence [124], and empathy [125], human judgements simply
show the highest reliability. Obviously, human judgments are more labor-intensive than
automatic evaluation [35].

The flaws of automatic evaluation and the lack of speed and scalability of human
evaluation limit the speed at which the community can develop more intelligent CDSs.
For example, as part of the daily research and development cycle of CDSs, we need
to change the model design and retrain the model multiple times, on a daily or even
hourly basis. Even if there is a minor change, we need to verify its performance again
each time. For another example, CDS leaderboards have become very popular recently

This chapter was published as [184].
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Figure 5.1: Human-machine collaborative evaluation (HMCEval) framework. R1, . . . ,
RN are the generated response samples to be evaluated. R and E are reliability and
efficiency, respectively.

as a means to provide platforms for fair comparison [67]. There are usually dozens of
models to evaluate, and new models are introduced every day. Practical scenarios like
the above two call for dialogue evaluation methods that are both reliable and efficient.

In this chapter, we propose the human-machine collaborative evaluation (HMCEval)
framework for dialogue evaluation with the aim of balancing reliability and efficiency.
HMCEval formulates the dialogue evaluation task as a sample assignment problem,
i.e., if the machine can provide accurate outcomes, most evaluation samples should be
assigned to the machine; otherwise, we should assign more samples to human evaluators.
As shown in Figure 5.1, automatic evaluation has low reliability although the efficiency
is high; human judgement has high reliability but it is labor-intensive; HMCEval beats
the previous two methods in balancing reliability and efficiency. Finding a good balance
between reliability and efficiency is non-trivial as the two desiderata are often in conflict
with each other. Usually, reliability is improved at the expense of efficiency [16].

There are three main modules in the proposed human-machine collaborative evalu-
ation (HMCEval) framework, namely the model confidence estimation (MCE) module,
the human effort estimation (HEE) module, and the sample assignment execution (SAE)
module. First, the MCE module measures the confidence of predicted evaluation for
each dialogue response-based sample. Our implementation of MCE is based on three
estimation methods, namely, BERT-based maximum class probability (MCP), trust
score (TS) [70], and true class probability (TCP) [25]. TS and TCP have originally been
introduced for images; we add a bidirectional encoder representations from transform-
ers (BERT) layer to expand it to dialogues. Second, the HEE module estimates the effort.
Our implementation is based on annotation time cost prediction by dialogue-related and
worker-related features. Third, the SAE module decides whether a dialogue response
sample should be assigned to a human or a machine for evaluation by maximizing the
confidence and minimizing the (human) effort. We implement the module by integer
linear programming (ILP).

We demonstrate the effectiveness of HMCEval on dialogue malevolence evalua-
tion [185]. The main reason we choose this particular task is that dialogue malevolence
is highly related to social good [144, 168], which is of vital importance for CDSs,
but it is hard to evaluate because of the need for deep semantic understanding [31].
We carry out experiments on the malevolent dialogue response detection and classify-
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ing (MDRDC) dataset, which was published in [185] and which has been introduced in
Chapter 3.

Our results show that the proposed HMCEval framework significantly surpasses
machine evaluation and human judgement in terms of balancing reliability and effort.
HMCEval achieves around 99% evaluation accuracy (compared to human evaluation)
with as much as half of the human effort saved. The results demonstrate that HMCEval
can be used for reliable and efficient evaluation of CDSs since the accuracy is high and
the effort is significantly reduced compared to fully human evaluation.

5.2 Related Work

5.2.1 Evaluation of CDSs

Automatic evaluation for CDSs includes untrained methods and learning-based meth-
ods. Early untrained methods, such as perplexity [19], and the quality metrics bilingual
evaluation understudy (BLEU) [115] and recall-oriented understudy for gisting evalua-
tion (ROUGE) [91] are widely used for CDS, but the aspects they evaluate are limited.
Recent work based on word embeddings covers more aspects, such as distinct-n for di-
versity [85] or average word embedding similarity for coherence [102]. Most untrained
methods have a low agreement with human judgements [93] because machine responses
are highly diversified, although a few metrics have sufficient agreement with human
judgements, i.e., a Pearson correlation of 0.69 for coherence [102].

To address the problem of low agreement with human judgments, learning-based
methods have been developed [112, 149]. Lowe et al. [101] propose ADEM to evaluate
the appropriateness of responses. Tao et al. [149] propose RUBER, which shows better
agreement with human judgments than ADEM. RUBER is designed for relevance and
similarity by blending relevance between the generated response with human ground
truth and context. Several methods utilize pretrained language models such as BERT
for automatic evaluation. Ghazarian et al. [51] propose contextualized RUBER, which
outperforms RUBER. Similarly, a predictive engagement metric is built by utilizing
user engagement score [52]; quality is evaluated by transformer-based language models
without reference response [110]. The above methods cover more aspects and integrate
linguistic features [149], thus the agreement with human judgement is higher than most
word-overlap based methods. However, for most of the metrics, the model performance
still has space to improve, for instance, the accuracy of engagement is 0.76 [52]. Our
proposed HMCEval framework could be applied to these metrics and improve general
evaluation reliability with an acceptable amount of human effort.

Human judgement is applied in common evaluation aspects including fluency,
consistency, relevance, appropriateness, coherence, and quality for CDSs [45]. It is
reliable, yet expensive and time-intensive, especially for large-scale evaluation [67]. In
order to guarantee the reliability, agreement among different workers is needed, which
makes the high effort problem more severe [31].

Unlike the methods listed above, the HMCEval framework specifically aims to
balance reliability and human effort for the evaluation of CDSs.
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5.2.2 Human-machine collaboration
Human-machine collaboration hybridizes machine prediction and human judgements.
Previous research mostly focuses on using human judgments to help label the low
reliability samples [13, 49, 80]. Earlier research gives humans the output of an automatic
model and lets them decide whether the model prediction is reliable [82]. However,
people tend to ignore the predictions of a model if it makes mistakes [37] since they are
not tolerant to model mistakes. In such cases, predictive results are not fully utilized and
human effort increases. At the same time, there is a possibility that human annotators
mistakenly follow the outputs of a model with errors [28]. Both situations lead to the
failure of human-machine collaboration.

The core problem is to determine when a human annotator should trust a model.
Confidence estimation for a model’s prediction has been proposed to help improve the
overall accuracy, correctness, etc. of human-machine collaboration. Callaghan et al.
[13] develop a hybrid cardiogram classification human-machine collaborative (HMC)
framework, which achieves better performance than a classifier by itself and uses less
expert resources compared to expert classification by itself. Kyono et al. [80] develop a
Man and Machine Mammography Oracle that improves overall breast cancer diagnostic
accuracy while reducing the number of radiologist readings. Gates et al. [49] use
Abstrackr, a HMC screening method to screen relevant titles and abstracts for paper
reviews, which could save the time of reviewers and have little risk of missing relevant
records. However, the above methods select the top-k most unreliable samples and do
not consider the division of effort between human and machine. Chaganty et al. [16]
are the first to combine machine and human evaluation to obtain a reliable estimate at a
lower cost than human alone on summarizing and open-source question answering, with
a cost reduction of only 7–13%. Ravindranath et al. [126] build a highly cost-efficient
face recognition HMC framework that outperforms both a machine-based method and
a fully manual method, with both reliability and effort considered. Nevertheless, the
methods introduced previously are not suitable for HMC evaluation for dialogue as they
focus on non-dialogue tasks, low cost reduction, or do not consider both reliability and
effort.

Our proposed framework is purpose-built for dialogue evaluation. It leverages
both human judgement and machine prediction by assigning low confidence machine-
generated samples to human workers while minimizing overall human effort.

5.3 Methodology

5.3.1 Overview

Suppose we have a set of M samples {(Ci, x̂i)}Mi=1 to be evaluated. Here, Ci is the
dialogue context and x̂i is a response generated by a CDS model fg(C) ! x̂. Below,
we propose a method to achieve a reliable and efficient evaluation of the M samples
under the constraint that a human can annotate at most N ⌧ M samples. We propose
the human-machine collaborative evaluation (HMCEval)1 framework to solve this

1
https://github.com/repozhang/CaSE_HMCEval
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task. HMCEval is divided into three modules: (i) sample assignment execution (SAE),
(ii) model confidence estimation (MCE), and (iii) human effort estimation (HEE).

5.3.2 SAE module
The optimization problem of assigning M samples to a human or machine can be solved
by tractable integer linear programming (ILP), which is NP-complete [114]. First,
we introduce the decision variable zi to denote the sample assignment to a human or
machine:

zi =

(
0, sample i is assigned to a human;
1, sample i is assigned to machine.

(5.1)

Second, we define two ILP objectives that try to maximize the overall confidence and
minimize the overall effort, respectively:

max
MX

i=1

âizi +
MX

i=1

bi(1� zi),

min
MX

i=1

kizi +
MX

i=1

l̂i(1� zi),

(5.2)

where (i) M is the total number of samples to evaluate generated by the generation
model fg(C) ! x̂; (ii) âi 2 [0, 1] is the model confidence for evaluating sample i;
(iii) bi is the human confidence for evaluating sample i; (iv) ki is the machine effort for
evaluating sample i; and (v) l̂i 2 [0, 1] is the human effort for evaluating sample i.

We use the weighted sum method [104] to solve Eq. 5.2 so as to get the optimal zi.
The objective function in Eq. 5.2 is transformed into:

max

"
MX

i=1

âizi +
MX

i=1

bi(1� zi)� �

 
MX

i=1

kizi +
MX

i=1

l̂i(1� zi)

!#
, (5.3)

subject to

MX

i=1

zi � M �N,

bi = 1 for i = 1, . . . ,M,

ki = 0 for i = 1, . . . ,M,

� � 0.

(5.4)

The constraints are motivated as follows: (i) the number of samples assigned to a human
is less than or equal to N ; (ii) human confidence is assumed to be 1; (iii) machine effort
is assumed to be 0; and (iv) � is greater than 0. N and � are two parameters that we use
to balance reliability and effort; � is a trade-off parameter that controls the contribution
of two objectives to the overall objective, as shown in Eq. 5.3; and N controls the total
samples assigned to a human. As N gets larger or � gets smaller, the overall evaluation
is more reliable but needs more human effort. As N gets smaller or � gets larger, the
overall evaluation costs less human effort but gets less reliability.
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5.3.3 MCE module
Given a machine evaluation model (usually a classification model [34]) fc(C, x̂) !
ŷ, where ŷ is the evaluation result (usually a category, e.g., malevolence or non-
malevolence), the MCE module aims to recognize how confident the evaluation ŷ is. In
this chapter, we investigate three confidence estimation methods, namely (i) maximum
class probability (MCP), (ii) trust score (TS), and (iii) true class probability (TCP).

MCP is a basic method that directly uses the classification probabilities to measure
confidence. Based on the dataset {(C 0

j , xj), yj}Qj=1, we build a BERT-based classifier
as a machine evaluation model fc. MCP is the softmax probability of the evaluation
result ŷ. Formally,

MCP(C
0
, x) = P (Y = ŷ|w,C

0
, x). (5.5)

Next, TS is a confidence measurement that estimates whether the predicted category of
a test sample by a classifier can be trusted. It is calculated as the ratio between the Haus-
dorff distance from the sample to the non-predicted and the predicted categories [70].
First, the training data is processed to find k-nearest neighbors (KNN) radius based
↵-high-density-set Ĥ(C̃

0

train, x̃train), where {C̃ 0

train, x̃train} is the output of feeding
training samples {(C 0

train, xtrain)} into the BERT layer of fc. This part is different
from the original TS work designed for images [172]. Then, for a given test sample, we
predict the ratio of distances, which is the TS value. Formally,

â = d(C
0

j , xj , Ĥ1)/d(C
0

j , xj , Ĥ2), (5.6)

where Ĥ1 is the high density set of the non-predicted category, Ĥ2 is the high density set
of the predicted category. The estimated TS is normalized within 0 and 1 by min-max
normalization.

As for TCP, the estimation is obtained by a learning-based method. Similar to TS,
the original confidence network for TCP estimation is also built for images [25]. We
expand it into a BERT-based confidence network for CDSs. The TCP estimation part
fconf is based on the BERT-classifier fc. Formally, fconf (C, x̂, fc, fg) ! â 2 [0, 1],
where fg is the generation model. We pass the features from the BERT layer of fc and
feed them into a confidence network implemented by a succession of dense layers with
a sigmoid activation to get the confidence scalar. We define an MSE loss for TCP:

Lconf =
1

Q

QX

i=1

(â(C
0

i , xi, ✓)� a
⇤(C

0

i , xi, y
⇤
i ))

2
, (5.7)

where a
⇤(C

0

i , xi, y
⇤
i ) is the target confidence value. During inference, the ground truth

TCP score is calculated based on the BERT-based classifier: TCP(C
0
, x, y

⇤) = P (Y =
y
⇤|w,C 0

, x), where y
⇤ is the true category.

5.3.4 HEE module
The HEE module is designed for estimating the human effort ê. In this chapter, we use
time cost, i.e., the time spent for each annotation, to represent human effort. We
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implement the time cost estimation model fl with random forest regression [90]:
fl(h(C, x̂)) ! l̂ 2 [0, 1], h is the feature extraction function.

There are two groups of features, namely dialogue-related features and worker-
related features; see Table 5.5. The dialogue related features are: (i) “total turns”: total
number of turns in a dialogue; (ii) “malevolent turns”: total number of malevolent turns
in a dialogue; for prediction, we use the BERT-classifier results; (iii) “non-malevolent
turns”: total number of non-malevolent turns in a dialogue; for prediction, we use the
BERT-classifier results. (iv) “first submission or not”: if this is the first time the worker
does this task, the value is 1, else 0; (v) “paraphrased turns”: some turns are paraphrased;
we calculate the total number of such turns; (vi) “total length”: total number of tokens
in the dialogue; (vii) “Flesch-Kincaid (FK) score”: the result of a readability test, based
on [76]; (viii) “Dale–Chall (DC) score”: the result of a readability test, based on [30];
(ix) “contains malevolent turn or not”: if the dialogue contains a malevolent turn, the
value is 1, else 0; and (x) “perplexity score”: we use BERT as a language model to
calculate the perplexity [47]. The worker related features are: (i) “worker test score”:
this is based on a test designed to test workers” ability to annotate the dialogue according
to the gold standard annotation [185]; and (ii) “approval rate ranking”: we rank workers
by their lifetime approval rate in ascending order, and use the index; lower approval rate
workers (i.e., with a smaller index) usually spend less time on annotations.

To train the time cost estimation model fl, we need the annotation time spent on
each response. However, for each individual response, the time spent is relatively short;
as a consequence, the influence of noise such as attention, and click time, may be
relatively large and make the data unreliable as training data. Therefore, we use the
annotation time spent on each dialogue instead of each response as the time cost target,
and it is normalized within 0 and 1 using min-max normalization. For the SAE module
and effort assessment, we use the average time per turn of each dialogue as the time
cost l̂ for each response. In addition, there are multiple human annotator submissions
for inter-annotator agreement; we filter out the data points that disagree with the agreed
annotation; then we choose the data point with a higher annotator test score; if the test
scores are the same, we randomly choose one.

5.4 Experimental Setup

5.4.1 Dataset
We carry out experiments on the MDRDC dataset which was originally built for malev-
olent dialogue detection and classification [185]. As described in Section 3.4, the
dataset consists of 6,000 dialogues, with 21,081 non-malevolent utterances and 10,299
malevolent utterances. The dataset also includes Amazon MTurk information, e.g., the
time spent on each annotation. We follow the original paper to split the dataset into
train, validation, and test with a ratio of 7:1:2.

5.4.2 Implementation details
In terms of the responses by the generation model fg, in our implementation, we use
the original responses by a human for evaluation. The MCE module is implemented by
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a BERT-based classifier and a BERT-based confidence network. First, for the BERT-
based classifier, we add a softmax layer on top of the “[CLS]” token. It is fine-tuned
with 4 epochs since it is already pretrained on a large dataset. The vocabulary size is
30,522. Dialogue context and the current response are concatenated with the “[SEP]”
delimiter. We consider the previous three dialogue utterances (if any) as context. We
set the max sequence length to 128, the batch size to 64, the dropout ratio to 0.1, and
the learning rate is 5e-5. Second, the BERT-based confidence network is attached to a
BERT-classifier. It is composed of 5 dense layers, following previous work [25]. As for
max sequence length, batch size, dropout ratio, and learning rate, these are the same
as for the classifier. The confidence network is trained with a maximum of 30 epochs,
with early stopping if the validation loss does not improve for 10 epochs.

The HEE module is implemented by a random forest regression model; the max
number of estimators in this study is 100; only the features related to time cost are
selected for annotation time cost prediction, with a maximum feature size of 10.

We use the python mixed-integer linear program (MIP) package to implement ILP
for the SAE module2 with the Coin-or branch-and-cut solver [107]. The search stops
when it reaches a feasible solution. All the neural models are trained on GeForce GTX
TitanX GPUs.

5.4.3 Metrics
We use reliability metrics and effort metrics to assess overall performance. The reliability
metrics are precision, recall, F1-score, and accuracy. We calculate the macro score
of precision, recall, and F1 as the categories are imbalanced [66]. The effort metrics
include human ratio and time cost. Human ratio is the ratio of samples assigned to
a human. Time cost is the total time required for a human to annotate the samples.
We use area under the curve (AUC), and top-k accuracy to assess the different MCE
implementations [113]. We rank the confidence in descending order and calculate the
accuracy at top-50%. Top-50% accuracy measures how well the MCE predictions work
for the top-50% most confident samples. We use mean square error (MSE), rooted mean
square error (RMSE), mean absolute error (MAE) and R

2 to assess the HEE module.
MSE, RMSE, MAE are calculated between the predicted time cost and real time cost.
We also use the Pearson and Spearman correlation scores to analyze the correlation
between features and real-time cost.

5.5 Results and Analysis

5.5.1 Reliability and efficiency
To determine how HMCEval compares to human evaluation and machine evaluation
in balancing reliability and efficiency, we report the results in Table 5.1. HMCEval
outperforms both human and machine evaluation in balancing reliability and efficiency.
More importantly, HMCEval, with half of the human effort spared, achieves reliability
that is close to human reliability. First, compared to human evaluation, HMCEval arrives

2
https://python-mip.com
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Table 5.1: Reliability and efficiency of HMCEval w.r.t. human and machine evaluation
(N/M = 0.5).

Metric Machine Human HMCEval

Reliability

Precision 0.818 1 0.983
Recall 0.803 1 0.976
F1-score 0.810 1 0.980
Accuracy 0.862 1 0.985

Efficiency

Human ratio 0 1 0.500
Time cost 0 1 0.500

at 98.5% of human accuracy but the human effort decreases by 50.0%. This means that
HMCEval is much more efficient than human evaluation, while the reliability is close
to human. Second, compared to machine evaluation, the precision, recall, F1-score and
accuracy of HMCEval increase by 20.2%, 21.5%, 21.0%, and 14.3%, respectively. This
means that HMCEval has higher reliability than machine evaluation. In sum, therefore,
HMCEval surpasses both human and machine evaluation in balancing reliability and
efficiency.

5.5.2 Influence of N and �

To investigate how N and �, two parameters for the SAE module that balance the
reliability and effort, influence the performance of HMCEval, we first fix � and vary
N/M from 0 to 1 with a step size of 0.05, where M is the total number of samples to
evaluate. Then, we fix N and vary � from 0 to 45 with a step size of 0.1. The results
are shown in Figure 5.2 and 5.3.

Influence of N

Generally, as N increases, HMCEval has better reliability, nevertheless the human
effort increases. From Figure 5.2, we can see that when � is fixed, as N gets larger,
the precision, recall, F1-score, and accuracy increase, but human ratio and time cost
also increase. With larger N , more samples are assigned to a human, so the overall
evaluation results are more reliable, but this requires a bigger human annotation effort.
The marginal reliability benefit of assigning more samples to a human decreases as N
gets larger. Figure 5.2a shows that as N increases, the reliability increases sharply at
the beginning but the increase levels off when N > 2, 500. The samples assigned to a
human when N < 2, 500 have lower model confidence, i.e., it is very likely that those
samples are given inaccurate evaluation by machine. But when N > 2, 500, samples
with higher model confidence are also assigned to human which yields a limited return
in terms of reliability.
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(a) Reliability. (b) Effort.

Figure 5.2: Influence of N with � = 0.1.

Influence of �

As � increases, HMCEval gets more efficient, while the reliability gets worse. As shown
in Figure 5.3, when � increases, the human ratio stays at 0.5, and after a certain pivotal
point, it decreases sharply. The time costs keep decreasing. The precision, recall, F1
score, and accuracy decrease rapidly. With larger �, the SAE objective puts a bigger
emphasis on efficiency, so HMCEval gets more efficient but less reliable.

(a) Reliability. (b) Effort.

Figure 5.3: Influence of � with fixed N (N/M = 0.5).

5.5.3 Module analysis

Analysis of the SAE module

By adjusting the � values, the SAE module can degenerate into a greedy algorithm [49].
Table 5.2 shows the results with the human ratio set to a fixed value of N/M , i.e., 0.5.
When � = 0, the HEE module has no effect, so it has the worst efficiency and the
best reliability. When � ! +1, i.e., 500, the MCE module contributes little to the
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objective, so it has the best efficiency but the worst reliability.

Table 5.2: Analysis of the SAE module.

Metric MCE MCE+HEE HEE

Reliability

Precision 0.989 0.983 0.881
Recall 0.982 0.976 0.858
F1-score 0.985 0.980 0.869
Accuracy 0.989 0.985 0.906

Efficiency

Human ratio 0.500 0.500 0.500
Time cost 0.650 0.500 0.135

Analysis of the MCE module

For the MCE module, we analyze the effect of alternative implementations. As shown
in Figure 5.4, TS outperforms MCP and TCP. Specifically, when the human ratio is
fixed to 0.5, TS achieves the best accuracy for different time costs. This means that
TS has better model confidence estimation for the samples with higher confidence. As
shown in Table 5.3, for the top-50% samples ranked by model confidence, TS has the
best accuracy. MCP has the best AUC score, which means for all the M samples, MCP
is the best. But the top-50% samples have more influence on the SAE module.

Figure 5.4: Performance of HMCEval with different MCE implementations (N/M =
0.5).

Analysis of the HEE module

For the HEE module, we analyze the effect of different features. Adding worker-related
features helps to improve accuracy. As shown in Figure 5.5, SAE with both dialogue and
worker-related features has better accuracy than SAE with only dialogue-related features
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Table 5.3: Confidence prediction results comparison of MCE methods.

Metric MCP TCP TS

AUC 0.828 0.823 0.825
Accuracy (top-50%) 0.977 0.975 0.978

when the human ratio is fixed to 0.5. Worker-based features are useful for time cost
estimation. This is confirmed by the results in Table 5.4. The results with both dialogue
and worker related features are the best, with MSE, RMSE and MAE decreasing by
55.6%, 35.9%, 45.9%, and R

2 increasing by 76.2%. The HEE module is sufficient
for time cost prediction since R

2 greater than 0.26 is sufficient for behavior-related
models [23].

Figure 5.5: Feature analysis w.r.t. accuracy. (D: Dialogue related features, W: Worker
related features.)

Table 5.4: Direct evaluation of the HEE module. (D: Dialogue related features, W:
Worker related features.)

Metric D D+W

MSE 0.009 0.004

RMSE 0.092 0.059

MAE 0.061 0.033

R2 0.433 0.763

A correlation analysis between each feature and the real-time cost is shown in
Table 5.5. All the features, except perplexity, have significant Pearson or Spearman
scores with the real-time cost by workers. Most features show positive correlations. But
two features, namely “non-malevolent turns” and “FK score” have a negative correlation
with time cost: (i) non-malevolent responses are relatively easy to identify; and (ii) a
higher FK score means that the dialogue is easier to understand, which requires less
time to annotate.
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Table 5.5: Correlation analysis between time cost and different features for HMC
module. ⇤⇤ and ⇤ indicate significance p < 0.001, p < 0.05, respectively.

Feature Pearson Spearman

Dialogue related features (D)

Total turns 0.053⇤⇤ 0.122⇤⇤

Malevolent turns 0.445⇤⇤ 0.600⇤⇤

Non-malevolent turns �0.236⇤⇤ �0.292⇤⇤

First Submission 0.342⇤⇤ 0.263⇤⇤

Paraphrased turns 0.555⇤⇤ 0.564⇤⇤
Total length 0.046⇤⇤ 0.100⇤⇤
Readability (DC) 0.042⇤ �0.001
Readability (FK) �0.026⇤ �0.053⇤⇤

Contains malevolent turn 0.432⇤⇤ 0.603⇤⇤

BERT-perplexity �0.008 0.001

Worker related features (W)

Worker test score 0.162⇤⇤ 0.049⇤⇤

Approval rate ranking 0.840⇤⇤ 0.849⇤⇤

5.5.4 Performance at different turns
We analyze the effectiveness of HMCEval at different dialogue turns in Figure 5.6. As
the dialogue evolves, HMCEval gets more reliable. It gets easier for the MCE module
to detect malevolent responses with high confidence when more context information is
available. The exception for turn seven and nine might be due to the fact that the total
number of utterances is small (less than 5% of the whole test set) and thus the results
have high variance. The effort is not related to dialogue turn.

We also look into the 1.5% cases when HMCEval gives inaccurate evaluation and
some cases that require human judgement but are not assigned to a human. We find
that these cases mostly involve intentional deviations from ordinary language usage,
through ambiguity, exaggeration, overstatement, or rhetorical figures. For instance,
“I’ve committed 8 treasonous acts today and they still haven’t put me in prison”, is
actually a non-malevolent joke. However, the MCE module classified it to be malevolent
with high confidence.

5.6 Conclusion and Future Work
In this chapter, we have introduced a human-machine collaborative evaluation frame-
work (HMCEval) for reliable and efficient conversational dialogue system (CDS) evalu-
ation. Experiments on the task of evaluating malevolence in dialogue responses show
that HMCEval can achieve around 99% reliability with half of the original human effort
spared.

A limitation of HMCEval is that given 50% samples assigned to a human, 1.1–1.5%
samples are evaluated inaccurately. This is due to contexts that consist of a small
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Figure 5.6: Accuracy and effort per turn with half human effort spared in average.

number of turns, or high confidence for some dialogues where language is used in
a non-literal way. In addition, although HMCEval could be generalized to several
evaluation metrics of CDS, e.g., BERT-based RUBER and BERT-based engagement,
for score-based metrics, suitable confidence estimation is required.

In the future, we seek to improve the model confidence and human effort estimation
by considering better neural architectures and more factors; we also plan to conduct a
comprehensive and reliable analysis of the performance of current state-of-the-art CDS
models by applying HMCEval to various evaluation aspects.

In this chapter we have answered RQ4. Our answer consisted of the HMCEval
solution for balancing the reliability and human effort of malevolent dialogue evaluation,
with experiment results as evidence for the effectiveness of HMCEval. Automatic and
human evaluation methods for dialogue evaluation have been studied in the past and
they do not suffice for dialogue malevolence evaluation. We put forward that HMCEval
is a better solution.

Next, we conclude the thesis, take stock, and elaborate on future directions related
to the malevolence of dialogue systems.
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Appendix

In this appendix, we present additional details to further reproducibility of the results
in this chapter. Specifically, we include the validation performance for the main result
(Appendix 5.A), the average runtime of each module, and detailed information of the
parameters (Appendix 5.B).

5.A Reliability and Efficiency for Validation Set
As to validation performance, we report the validation results of comparing HMCEval
to machine evaluation and human evaluation in balancing reliability and efficiency,
as shown in Table 5.6. HMCEval surpasses both human and machine evaluation in
balancing reliability and efficiency for validation. On the one hand, compared to
human evaluation, HMCEval achieves 98.2% of human accuracy with 50% human
effort spared. This suggests that for the validation set, HMCEval is more efficient than
human evaluation, while the reliability is close to human evaluation. On the other
hand, compared to machine evaluation, the precision, recall, F1-score, and accuracy of
HMCEval increase by 21.5%, 22.8%, 22.0%, and 15.3%, respectively. Moreover, the
results on the validation set and the test set are similar. Compared to results on the test
set, reliability results on the validation set are slightly lower, but the difference is less
than 0.5%, as shown in Table 5.1 (presented in Section 5.5) and Table 5.6.

Table 5.6: Reliability and efficiency of HMCEval w.r.t. human and machine evaluation
for validation (N/M = 0.5).

Metric Machine Human HMCEval

Reliability

Precision 0.806 1 0.979
Recall 0.793 1 0.974
F1-score 0.800 1 0.976
Accuracy 0.852 1 0.982

Efficiency

Human ratio 0 1 0.500
Time cost 0 1 0.500

5.B Runtime and Parameters
In terms of average runtime, we have three modules. The time costs for all the modules
are acceptable. The MCE module has thee methods: MCP, TS and TCP. Their
time costs are 0.5 hours, 0.1 hours, and 3.5 hours, respectively. The HEE module is
implemented by random forest regression and the runtime is less than 10 minutes for
5-fold cross-validation. The SAE module is implemented by ILP and the runtime is
around 2.5 hours.
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In terms of parameters, the MCE module is a neural network-based module. MCP
and TS are estimated with the BERT-based classifier, which has 109.5 million pa-
rameters. TCP has an additional confidence network compared with MCP and TS.
The confidence network part has 2.4 million parameters. The HEE module and the
SAE module are not neural networks-based, we have included most of the relevant
information above in Chapter 5.

Finally, the SAE module is based on search. There are a total number of 10 thousand
trials with different N and � parameters. The best N and � are chosen by reliability
metrics and efficiency metrics. In Table 5.1 (presented in Section 5.5) and Table 5.6, we
choose the final results with � = 4.6 and N = 0.5M , where M is the number of the
total samples to be evaluated.
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Conclusions

In this chapter, we first revisit the questions we asked in Section 1.1 and summarize the
main findings and implications of our research in Section 6.1. Then, in Section 6.2, we
describe the main limitations of our work and possible future directions.

6.1 Main Findings

6.1.1 The challenge of malevolent response exists for dialogue
generation models

We started with the task of identifying and exposing the malevolence challenge in
dialogue responses generated by generative models:

RQ1 How to establish the malevolence problem of generated dialogue responses by
state-of-the-art (SOTA) generation models?

To answer RQ1, we analyzed the malevolence of pre-trained dialogue generation models
and sequence to sequence (S2S)-based dialogue generation models. In terms of the
S2S-based dialogue generation model, we also proposed the context-aware knowledge
pre-selection (CaKe) model to decrease blandness and deflective responses so that CaKe
is informative enough for malevolence analysis. The CaKe model uses dialogue context
as the query to select knowledge from background text, thus improving informativeness.
The knowledge pre-selection mechanism combines background-to-context (b2c) and
context-to-background (c2b) attention.

The main findings we obtained are as follows:

(1) The results performed on the Holl-E dataset show that CaKe is capable of selecting
relevant knowledge. We compared CaKe with the SOTA baseline models, and
it outperforms the baselines for informativeness. Our case study also suggests
that the generated samples are more fluent than baseline models. Moreover,
our analysis of attention weights along with the positions of the background
information, suggests that the attention mechanism is strong in attending to the
relevant positions.

(2) The generated responses of pre-trained generation models do indeed exhibit the
malevolence problem.
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(3) The generated responses of the proposed CaKe and S2S-based baselines exhibit
the problem of malevolence.

(4) In our experimental setup, pre-trained generation models generate more malevo-
lent dialogue responses than the S2S-based generation models.

We conclude that we have demonstrated that malevolent dialogue response issues exist
for dialogue generation models.

6.1.2 Building a taxonomy, dataset, and benchmark models for
single-label dialogue malevolence detection

Next, we were interested in building a taxonomy and a dataset for dialogue malevolence
detection based on previous work concerning what malevolent dialogue response is. We
were also interested in building benchmark models for dialogue malevolence detection.
We sought to answer the following question:

RQ2 How can we construct a high quality dataset via crowdsourcing that allows
for single-label malevolent dialogue response detection and build an effective
detection model?

To address RQ2, we built a three-level hierarchical malevolent dialogue taxonomy
(HMDT) based on emotion, psychological and ethical aspects. We validated the user
perception of the taxonomy through a user study. Then, we created a multi-turn
malevolence dialogue dataset, i.e., malevolent dialogue response detection and clas-
sifying (MDRDC) on MTurk. Lastly, we ran several baseline models on the dataset
and built a confidence-calibrated BERT-based classification model, i.e., BERT-based
classifier with confidence calibration (BERT-conf).

The main findings we obtained are as follows:

(1) The results suggest that the concepts in the HMDT taxonomy capture malev-
olence in terms of user perception, including “non-credibility”, “discomfort”,
“breakdown”, and “abandonment”.

(2) The data quality is substantial for dialogue malevolence detection. The col-
lected dialogue context and rephrased utterances could be used to improve the
classification performance.

(3) For the baseline malevolence detection models, the BERT-base classification
model performs the best.

(4) The proposed BERT-conf model, which uses the confidence of the predicted
category, has a better classification performance than the baseline models.

We conclude that we have built a meaningful taxonomy and dataset for single-label
dialogue malevolence detection. We also build a benchmark for the task. Confidence
calibration, dialogue context, and rephrased utterances are useful for improving classifi-
cation performance.
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6.1.3 A dataset and a label-correlation enhanced approach for
multi-label dialogue malevolence detection

Building on our contributions to single-label dialogue malevolence detection, we were
interested in multi-label dialogue malevolence detection and in strengthening the detec-
tion model. We sought to answer the following question:

RQ3 How can we build a model for multi-label dialogue malevolence detection based
on single-label training data and construct a validated dataset to assess the model?

To answer RQ3, we crowdsourced the multi-label dialogue malevolence detection
(MDMD) dataset with multi-label validation and test set. The task is multi-label
dialogue malevolence detection from single-label training data. We also proposed the
multi-faceted label correlation enhanced CRF (MCRF) model with a multi-faceted
label correlation mechanism, including label correlation in context (LCC) and label
correlation in taxonomy (LCT). Based on the dataset, we evaluated the effectiveness
of our proposed MCRF model through extensive experiments. The MCRF model was
compared with the baselines.

The main findings we obtained are as follows:

(1) It is essential to perform multi-label dialogue malevolence detection as the dataset
statistics suggest that 12% of the utterances have more than one malevolent label.

(2) We are able to perform multi-label dialogue response malevolence detection from
a single-label training set.

(3) The experimental results show that label correlation is able to improve the per-
formance of multi-label malevolence detection. The improvement is convincing,
based on an ablation study and comparison with baselines.

We conclude that we have built a meaningful dataset for multi-label dialogue malevo-
lence detection from a single-label training set. We also build a benchmark for the task.
Label correlation is useful for improving detection performance.

6.1.4 A human-machine collaborative approach for dialogue malev-
olence evaluation

Finally, based on the previous detection methods, we took a step towards dialogue
malevolence evaluation and answered the following research question:

RQ4 How can we build a framework for evaluating malevolent dialogue responses
with reliability and human effort balanced?

To answer RQ4, we built the human-machine collaborative evaluation (HMCEval)
framework with three modules: model confidence estimation (MCE), human effort
estimation (HEE), and sample assignment execution (SAE).

The findings that we obtained are as follows:

(1) HMCEval achieves around 99% evaluation accuracy with half of the human
effort spared, showing that HMCEval provides reliable evaluation outcomes
while reducing human effort by a large amount.
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(2) HMCEval can degenerate into a greedy algorithm in cases where the parameter
� = 0 or �! +1.

We conclude that we have built a successful evaluation framework that balances reliabil-
ity and human effort.

6.2 Future Work

6.2.1 Adversarial attack of pretrained dialogue generation models

Pre-trained dialogue systems are increasingly being used in practical applications. Pre-
trained language models such as generative pre-trained transformer (GPT)-2 have a
good performance on generation tasks. However, dialogue systems backed by pre-
trained models, e.g. GPT-2, language model for dialogue applications (LaMDA), tend
to generate unsafe responses and they are vulnerable to adversarial attacks of a black-
box nature [150]. First, there is no work on analyzing the malevolence of responses
generated by pre-trained dialogue models. Second, there is no deep understanding
of the inner mechanism of its vulnerabilities to attack samples. For future work, we
are interested to analyze the malevolent responses generated by pre-trained dialogue
generation models and provide a method to find the vulnerabilities of the pre-trained
dialogue systems.

In order to identify the vulnerabilities of the pre-trained dialogue systems, we need
to generate adversarial samples. There are two kinds of methods for adversarial sample
generation: non-trainable based methods and trainable based methods. First, earlier
methods use concatenation or editing at the character level, word level, or sentence level.
Jia and Liang [69] are the first to use a concatenation of sentences to attack the generation
of answers. Later, Niu and Bansal [111] use edit-based methods to attack goal-oriented
dialogue. Wallace et al. [157] use concatenation of adversarial triggers to the input
sequence to attack GPT-2 to generate racial or offensive sentences and Heidenreich and
Williams [60] attack GPT-2 to affect both topic and stance of the generated sentence.
These methods are better at preserving semantics and efficiency, however it is easy to
detect the modification of the input since constraints, e.g. lexical rules and equivalence
to the original input, do not satisfy [137]. Second, later methods use training-based
methods, such as paraphrasing to avoid detection [95, 137]. Moreover, some methods
add constraints to make the adversarial samples similar to the original samples, however,
the embedding space is large for a safety attack. Therefore, these methods may not
efficient. Huang and Zhang [68] build a model to decrease the sample space; however,
it is situated in the computer vision area, where the space is continuous, and it’s not
targeted for large malevolence related embedding space.

We will form the dialogue malevolence attack task and analyze the possible direc-
tions for improvement of pretrained models. We plan to investigate what kind of input
could increase the malevolent response generation and implies the reason. The attack
process will constrain the model to output a malevolent response based on reinforcement
learning and improve the attack efficiency.
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6.2.2 Semi-supervised algorithm to strengthen malevolent dia-
logue response detection robustness

We have annotated a dataset of 6,000 dialogues for dialogue malevolence detection in
RQ2 and RQ3. The data sizes of some malevolence groups are still not large enough,
which limits the robustness of the model against out-of-distribution samples. In order to
solve this problem, we can annotate more samples, however, the labeling human cost is
high.

Semi-supervised learning for classification can be used to improve model robustness,
which makes the model reliability stable under various conditions [26]. There are two
kinds of popular methods for semi-supervised learning: self-training generates pseudo
labels to label the unlabeled data, and combines the previous clean labeled data to train
a new model together; joint-training combines teacher and student network, where the
teacher model trained on labeled data generate pseudo labels on unlabeled data, and
student model optimizes the loss on the human label and pseudo labels jointly [55].

We plan to use a semi-supervised based method to strengthen detection robustness.
First, based on the unlabeled data we collected, we generate pseudo labels for unlabeled
data. Then, we combine the clean labeled data and pseudo labeled data to train a new
model. The generated pseudo label can be noisy. In order to solve this problem, during
the training process, we only assign the reliable pseudo-labels to the training. The
reliability of the pseudo-label will be assessed by calculating the confidence of each
label.

6.2.3 Improving malevolent dialogue response detection based
on paraphrased implicitly malevolent data

For RQ2 and RQ3, we have built models for detecting all malevolence categories.
For each category group, the utterances can be divided into an implicit or explicit
sample. Implicit responses contain abstract, coded expressions without using explicitly
malevolent words, e.g., “I tell the world: The immortal words of Adolf Hitler”. Explicit
responses contain malevolent words with a clear meaning. The performance of BERT-
conf and BERT-MCRF in detecting implicitly malevolent utterances, e.g., “deceit”,
needs to be improved. We have collected rephrased data of the original utterances for
RQ2. Previously, we have not collected the “implicit/explicit” label for each utterance.
The rephrased utterance and the original utterance with the implicit or explicit expression
can be used to improve the detection of implicitly malevolent dialogue responses, thus
improving overall performance.

We plan to make the previous rephrased data more complete for the task of improving
malevolent response detection via implicitly malevolent utterance paraphrasing. There
have been some datasets on implicitly hate detection [43, 58], however, the taxonomy
is limited to “hate speech” and the dataset is not for multi-turn dialogue. First, we
plan to add the “implicit” or “explicit” label for the original utterance and rephrased
the utterance collected; and rephrase all the malevolent utterances left since we only
rephrased part of the data previously. We will annotate the utterances in the MDRDC
and MDMD dataset as implicitly or explicitly malevolent. For the implicitly malevolent
response, we will ask the annotator to label it as an explicit utterance, and for the
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explicitly malevolent response, we will ask the annotator to label it as an implicit
utterance. During the rephrased data collection process, we will also ask the workers to
label the spans. Second, we plan to do implicitly malevolent dialogue response detection
and use a data-efficient paraphrasing framework [73] to improve overall malevolent
dialogue response detection performance.

6.2.4 Mitigating the malevolence of generated dialogue responses
for generation models

In previous work, we have built models for detecting and evaluating dialogue malevo-
lence. However, we have not mitigated the malevolence of dialogue responses. Current
work on dialogue generation without pre-training could both generate malevolent di-
alogues, which is suggested in the results of RQ1. Previous work also suggests that
pre-trained generation models, e.g., DialoGPT, Blenderbot, and Plato-2 all generate
malevolent responses [147]. Therefore, it is hard to deploy the generation systems
online and the need of mitigating malevolent responses arises. Previously, two main
kinds of methods for mitigating dialogue response malevolence have been proposed:
(i) methods based on different decoding strategies, e.g., vocabulary shift [53], top-k
similarity [143], plug and play language model (PPLM) [32]; and (ii) pretraining-based
methods, e.g., adaptive pretraining [50]. Pretraining-based dialogue unsafe content
mitigation method is the current SOTA model. However, there is no large dataset for
malevolence mitigation of pretrained generation model and the cost is high for collecting
a large dataset with all aspects of malevolence.

Prompt-based fine-tuning can be used to improve the low-efficiency problem of
adaptive pre-training [50]. To solve the high-cost problem, we propose a prompt-based
fine-tune of the pretrained language model to mitigate dialogue malevolence. We plan
to design different prompts that concatenate to the dialogue context and utterances to
mitigate the generation of malevolent responses.
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Summary

Recently, dialogue systems have been adopted in different domains and they interact with
users in daily life. Dialogue generation methods have emerged from early rule-based and
retrieval-based methods as corpus-based methods. Corpus-based conversational agents
can generate more diverse and natural responses than template-based or retrieval-based
agents. With the increased generative capacity of corpus-based conversational agents
comes the need to detect and evaluate malevolent responses that are inappropriate in
terms of content and dialogue acts.

In the thesis, we focus on malevolent dialogue response detection and evaluation.
Few studies have addressed the issue of malevolent dialogue responses which have
negative social risks and consequences. On the one hand, previous studies on the
topic of detecting inappropriate content are mostly focused on a specific category of
malevolence or single sentences instead of an entire dialogue and they do not consider
multi-label malevolence. On the other hand, currently, there is no research on dialogue
malevolence evaluation with both high reliability and low human effort.

First, we analyze malevolence issues of the state-of-the-art dialogue generation
models, including both pre-trained generation models and sequence to sequence (S2S)-
based generation models. We also introduce a knowledge pre-selection based dialogue
generation model, i.e., context-aware knowledge pre-selection (CaKe), to improve
the informativeness of dialogue response since S2S-based generation models tend to
generate bland and deflective responses, which may influence malevolence analysis.
The results suggest that the malevolent response challenge exists for generation models
and that pre-trained generation models are more malevolent than S2S-based generation
models. Results also show that the proposed CaKe is superior to current SOTA baselines
in informativeness, indicating that it benefits from the pre-selection process.

Second, we advance research on the malevolent dialogue response detection and
classifying (MDRDC) task. We define the task and build a hierarchical malevolent
dialogue taxonomy (HMDT), which is a broad hierarchical taxonomy. We create a
labeled multi-turn dialogue dataset and formulate the MDRDC task as a hierarchical
classification task. The MDRDC dataset is the first high-quality multi-turn dialogue
dataset for malevolent dialogues. We apply SOTA text classification methods to the
MDRDC task and report on experiments aimed at assessing the performance of these
approaches. We present a confidence-based classification model that beats the baselines
for single-label dialogue malevolence detection.

Third, we propose the task of multi-label dialogue malevolence detection and crowd-
source a multi-label dataset, multi-label dialogue malevolence detection (MDMD), for
multi-label dialogue malevolence detection from a single-label training set. We also
propose a multi-label malevolence detection model, multi-faceted label correlation en-
hanced CRF (MCRF), with a multi-faceted label correlation mechanism which includes
two kinds of label correlation mechanisms, label correlation in taxonomy (LCT) and
label correlation in context (LCC); and evaluate the model by MDMD dataset. Experi-
ments conducted on MDMD show that MCRF method outperforms the best-performing
baseline by a large margin.

Last, we propose a human-machine collaborative (HMC) framework, human-
machine collaborative evaluation (HMCEval), for dialogue malevolence evaluation,
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that balances overall reliability and human effort. HMCEval views dialogue evaluation
as a sample assignment problem, where we need to decide to assign a sample to a
human or a machine for evaluation. The optimum assignment solution is found by a
sample assignment execution (SAE) module based on the estimated confidence and
effort. The confidence of the predicted sample assignment is estimated by the model
confidence estimation (MCE) module and the human effort is estimated by the human
effort estimation (HEE) module. The performance of HMCEval on the task of evalu-
ating malevolence in dialogues is assessed using the MDRDC dataset, and compared
with automatic evaluation and human judgement. Our experimental results show that
HMCEval achieves around 99% evaluation accuracy with half of the human effort
spared, showing that HMCEval provides reliable evaluation outcomes while reducing
human effort by a large amount.
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Samenvatting

Recentelijk zijn dialoogsystemen in verschillende domeinen ingevoerd en commu-
niceren ze met gebruikers in het dagelijks leven. Dialooggeneratiemethoden zijn
voortgekomen uit vroege, op regels gebaseerde en op retrieval gebaseerde methoden,
en op corpus gebaseerde methoden. Op corpus gebaseerde gespreksagenten kunnen
meer diverse en natuurlijke reacties genereren dan op sjablonen gebaseerde of op re-
trieval gebaseerde agenten. Met de toegenomen generatieve capaciteit van op corpus
gebaseerde gespreksagenten komt de noodzaak om kwaadaardige reacties die ongepast
zijn in termen van inhoud en dialooghandelingen te detecteren en te evalueren.

In het proefschrift richten we ons op het detecteren en evalueren van kwaadwillige
dialoogreacties. Er zijn maar weinig studies die zich bezighouden met het probleem
van kwaadwillige dialoogreacties die negatieve sociale risico’s en gevolgen hebben.
Aan de ene kant zijn eerdere studies over het detecteren van ongepaste inhoud meestal
gericht op een specifieke categorie kwaadwillendheid of enkele zinnen in plaats van op
een hele dialoog en houden ze geen rekening met multi-label kwaadwilligheid. Aan de
andere kant is er momenteel geen onderzoek naar de evaluatie van kwaadwilligheid van
dialogen met zowel een hoge betrouwbaarheid als een lage menselijke inspanning.

Eerst analyseren we boosaardigheidsproblemen van de state-of-the-art dialooggen-
eratiemodellen, met inbegrip van zowel vooraf getrainde generatiemodellen als op
sequentie tot sequentie (S2S) gebaseerde generatiemodellen. We introduceren ook
een op kennisvoorselectie gebaseerd dialooggeneratiemodel, d.w.z. contextbewuste
kennisvoorselectie (CaKe), om de informativiteit van de dialoogrespons te verbeteren,
aangezien op S2S gebaseerde generatiemodellen de neiging hebben om saaie en af-
buigende reacties te genereren, die van invloed kunnen zijn op de kwaadwillendheid-
analyse. De resultaten suggereren dat de boosaardige respons-uitdaging daadwerkelijk
bestaat voor generatiemodellen en dat vooraf getrainde generatiemodellen kwaadwillen-
der zijn dan op S2S gebaseerde generatiemodellen. De resultaten laten ook zien dat de
voorgestelde CaKe superieur is aan de huidige SOTA-baselines in informativiteit, wat
aangeeft dat het profiteert van het preselectieproces.

Ten tweede bevorderen we onderzoek naar de taak voor het detecteren en clas-
sificeren van kwaadwillige dialogen (MDRDC). We definiëren de taak en bouwen
een hiërarchische kwaadwillende dialoogtaxonomie (HMDT), een brede hiërarchis-
che taxonomie. We creëren een gelabelde multi-turn dialoogdataset en formuleren
de MDRDC-taak als een hiërarchische classificatietaak. De MDRDC-dataset is de
eerste hoogwaardige multi-turn dialoogdataset voor kwaadwillige dialogen. We passen
state-of-the-art tekstclassificatiemethoden toe op de MDRDC-taak en rapporteren over
experimenten die gericht zijn op het beoordelen van de prestaties van deze aanpakken.
We presenteren een op confidence gebaseerd classificatiemodel dat de baselines verslaat
voor detectie van kwaadwillendheid met één label.

Ten derde stellen we de taak voor van detectie van kwaadwilligheid met meerdere
labels en het crowdsourcen van een multi-label dataset, multi-label dialoog kwaad-
willigheidsdetectie (MDMD), voor detectie van kwaadwilligheid met meerdere labels
vanuit een trainingsset met één label. We stellen ook een multi-label detectiemodel voor
kwaadwillendheid voor, een veelzijdige labelcorrelatie-versterkte CRF (MCRF), met
een veelzijdig labelcorrelatiemechanisme dat twee soorten labelcorrelatiemechanismen
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omvat: labelcorrelatie in taxonomie (LCT) en labelcorrelatie in context (LCC). We
evalueren het model door middel van de MDMD dataset. Experimenten uitgevoerd op
MDMD tonen aan dat de MCRF-methode de best presterende baseline met een grote
marge overtreft.

Ten slotte stellen we een mens-machine-samenwerkingskader (HMC) voor, mens-
machine-samenwerkingsevaluatie (HMCEval), voor de evaluatie van kwaadwillendheid
in dialogen, dat een balans biedt tussen algehele betrouwbaarheid en menselijke in-
spanning. HMCEval beschouwt dialoogevaluatie als een sampletoewijzingsprobleem,
waarbij we moeten beslissen om een sample toe te wijzen aan een mens of een machine
voor evaluatie. De optimale opdrachtoplossing wordt gevonden door een voorbeeldop-
drachtuitvoeringsmodule (SAE) op basis van het geschatte vertrouwen en de inspanning.
Het vertrouwen van de voorspelde steekproeftoewijzing wordt geschat door de module
voor het schatten van de betrouwbaarheid van het model (MCE) en de menselijke in-
spanning wordt geschat door de module voor het schatten van de menselijke inspanning
(HEE). De prestaties van HMCEval op de taak om kwaadwillendheid in dialogen te
evalueren, worden beoordeeld met behulp van de MDRDC-dataset en vergeleken met
automatische evaluatie en menselijk oordelen. Onze experimentele resultaten laten zien
dat HMCEval een evaluatienauwkeurigheid van ongeveer 99% behaalt met de helft van
de menselijke inspanning, wat aantoont dat HMCEval betrouwbare evaluatieresultaten
biedt terwijl de menselijke inspanning aanzienlijk wordt verminderd.
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