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This dissertation considers three problems of risk allocation and applies 
approaches from theoretical finance and risk management to address several 
policy debates from a macro-finance point of view. The first essay included in 
the thesis addresses a classical finance problem of allocating risks efficiently 
in an investment portfolio. Non-triviality arises when there is uncertainty in 
the immediate availability of a market for the savings assets. The second 
essay puts the risk allocation problem into a policy-relevant setting by 
considering how illiquidity, in the form of trading costs in the retirement 
savings portfolio of the elderly, affects the ability of different generations to 
share financial risks with each other. The third essay shows how monitoring 
and evaluating systemic risk in a financial network can be done through a risk 
management lens, using a credit portfolio approach based on implied market 
views from the Credit Default Swap market.

Daniel Dimitrov holds a B.Sc. in Economics from the University of Magdeburg 
and a M.Sc. in Econometrics and Mathematical Economics from Tilburg University. 
He is a Ph.D. candidate at the University of Amsterdam under the supervision 
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You shall possess the good of the earth and sun, (there are millions of suns left,)

You shall no longer take things at second or third hand, nor look through the

eyes of the dead, nor feed on the spectres in books,

You shall not look through my eyes either, nor take things from me,

You shall listen to all sides and filter them from your self.

– Walt Whitman, Song to Myself

So the guy says, ”What are you doing? You come to fix the radio, but you’re only

walking back and forth!” I say, ”I’m thinking!” Then I said to myself, ”All right,

take the tubes out, and reverse the order completely in the set.” [...] ”He fixes

radios by thinking!” The whole idea of thinking, to fix a radio - a little boy stops

and thinks, and figures out how to do it - he never thought that was possible.

– Richard Feynman, Surely You’re Joking, Mr. Feynman!
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1

Introduction

In this thesis, we consider three non-trivial problems of risk allocation and apply

approaches from theoretical finance and risk management to address several policy debates

from a macro-finance point of view. The three topics considered are diverse, but there

is a common theme that runs through each chapter. In each, we focus on the resolution

of barriers to a first-best risk allocation rule. The barriers can be in the form of market

illiquidity, current generations not being able to participate in the shocks affecting future

generations, or risk spillovers between systemic institutions.

The first essay in Chapter 2 addresses a classical finance problem of allocating risks

efficiently in an investment portfolio, in the spirit of Merton (1969). In our set-up, illiq-

uidity in one of the assets exists as uncertainty in the immediate availability of a market

where price risk can be traded, as in Ang et al. (2014). As a result, illiquidity acts as an

additional non-hedgeable risk component, affecting the portfolio choice decision. We illus-

trate that the temporal dimension of liquidity naturally pushes the problem in the area of

dynamic portfolio choice, leading us away from the standard static portfolio optimization

(Markowitz, 1952) that is ill-equipped to tackle illiquidity risk. From that point of view,

we show how dynamic programming techniques can have practical applications in asset

allocation. We tailor the problem to an issue that long-term investors (pension funds,

endowments, etc.) with private asset classes in their investment mix typically face. We

determine the optimal strategic and the tactical portfolio weights for investors in hedge

funds, private equity, real estate, and infrastructure.
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Furthermore, we show how illiquidity endogenizes the risk aversion of investors, making

essentially the portfolio choice and consumption decisions functions of the share of illiquid

wealth. Quantitatively, for a reasonable parametrization, we find that if the investor

cannot trade the asset over five years on average, the welfare loss, quantified as Certainty

Equivalent Consumption loss, is about 2% relative to an equivalent completely liquid mix.

Still, adding to the investment strategic mix private asset classes, for which secondary

markets do not exist or are too frail, increases significantly the investor’s welfare relative

to a traditional equity-bonds allocation.

The second essay in Chapter 3 puts the allocation problem into a policy-relevant

setting by considering how illiquidity in the form of uncertain trading costs affects the

ability of different generations to share financial risk with each other. In that setting, the

optimal allocation is considered across generations with partially illiquid savings.

We use a stylized two-period overlapping generations framework, where each genera-

tion makes a portfolio allocation decision for retirement. In this context, designing optimal

social security institutions can also be seen as a risk management problem in the spirit of

Shiller (1999). A policymaker balances, on one hand, the benefits of a wider risk-bearing

pool by integrating the young into the financial shock affecting the currently old, and on

the other, the costs of potentially destabilizing the young’s retirement savings over time

with risk being imported into the youth’s starting wealth.

In this essay, we show that illiquidity reduces the range of transferable shocks between

generations and thus lowers the potential benefits from risk-sharing. We still find that

a contingent transfers policy based on a reasonably parametrized savings portfolio with

liquid and illiquid assets increases aggregate welfare. However, higher illiquidity justifies

higher levels of risk sharing to compensate for the trading friction.

The third essay in Chapter 4 looks at a different market failure problem. The default

of a systemically important institution (SIFI) presents an externality when the failure has

the potential to generate fire sales and risk spillovers to other institutions. Regulators

have resorted to charging SIFIs with systemic capital buffers as a way of enhancing the

loss-absorbing capacity of the system. In this chapter, we show how the macro-prudential

problem of monitoring and evaluating institutions in the context of the risks of other insti-

tutions in the system can be seen through a risk management lens as well. The supervisor
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takes ownership of the potential losses in case of system-wide distress, so implicitly it

needs to manage a portfolio of defaultable loans, and its problem can be seen as one of

minimizing the tail risk of the portfolio.

We, thus, propose a credit portfolio approach for evaluating systemic risk and at-

tributing it across institutions by constructing a model that can be estimated from high-

frequency CDS data. This captures risks from privately held institutions and cooperative

banks, extending approaches that rely on information from the public equity market

(Adrian and Brunnermeier, 2016; Acharya et al., 2017). We account for correlated losses

between the institutions, overcoming a modeling weakness in earlier studies. A latent

risk factor with heterogeneous exposures fitted on the default probabilities implied from

single-name CDSs quantifies the potential for joint distress and losses. We apply the

model to a universe of Dutch banks and insurers and show how the framework can be

used to complement the current regulatory framework used for setting optimal systemic

buffers (EBA, 2020).





2

Strategic Asset Allocation with

Private Assets: Untangling

Illiquidity

2.1 Introduction

This paper examines the problem of optimal strategic asset allocation (SAA) for long-

term investors with illiquid asset classes in the investment universe. The liquidity friction

that we consider appears in the form of trading uncertainty in a dynamic portfolio choice

setting. We address several imminent problems that follow from the lack of predictable

liquid trading opportunities. We solve for the optimal portfolio allocations and optimal

consumption of a utility maximizing agent and determine the size of the consumption

cost and the size of the liquidity premium that an investor would require for holding an

illiquid asset, otherwise comparable to public equity. For a reasonable calibration of the

model, we find that adding a private asset class to the strategic allocation mix, such as

hedge funds, private equity, direct real estate, or infrastructure, increases significantly

the certainty equivalent consumption (CEC) of a long-term investor, despite the lack of

reliable secondary markets for such assets.

0Acknowledgements: I am grateful to my supervisor Roel Beetsma for his suggestions and support in
polishing up this paper; Bas Werker who commented on an earlier draft as a master thesis supervisor at
Tilburg University; Albert J. Menkveld, Thierry Foucault and participants in the Market Microstructure
Summer School for the valuable feedback and suggestions.
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Private (or also alternative) asset classes have become a widely accessed investment

option for long-term institutional investors, including pension funds, sovereign wealth

funds, and endowments (Andonov et al., 2015, 2021). The common wisdom is that these

investors are well-poised to exploit any long-term premia and diversification opportunities

that such asset classes may offer. At the same time, they may face spending targets or the

need to accommodate liabilities arising from participants that enter the retirement phase.

This raises the need for a clear understanding of how to handle their specific liquidity

properties in the strategic allocation process, where a secondary market usually does not

exist or is very frail. As relocation cannot be achieved at demand, this will inevitably have

an ex-ante effect on the allocation decision, where in anticipation of the lack of liquidity,

the agent adjusts in advance the strategic asset weights compared to a fully liquid market.

At the same time, in periods without liquidity, the agent adjusts tactically the allocation

to the liquid classes.

We base our analysis on a model by Ang et al. (2014) that introduces uncertainty in the

frequency with which an asset can be traded. This is an extension to the standard model

of intertemporal portfolio optimization (Merton, 1969, 1971, 1973). We further extend

the framework by adding multiple liquid assets to the investment universe thus bringing

the model closer to the strategic allocation process used in practice. In the process, we

establish an efficient numerical algorithm to solve the resulting portfolio choice problem.

We approximate the decision process of long-term institutional investors by an infinite

horizon dynamic allocation problem with intermediate consumption. The nature of lia-

bilities for many institutional investors, such as spending rules or continuous payment of

retirement benefits, justify the modeling choice of agents with intermediate consumption.

The dynamic nature of the problem then arises by considering the temporal dimension

of liquidity. In this interpretation, liquidity represents the opportunity to trade, occur-

ring randomly with intensity determined by the period over which the asset cannot be

traded on average. We find that the effect of illiquidity on the portfolio allocations is

economically significant when calibrated to major asset classes.

This paper then looks at the asset allocation problem from several different angles.

First, we review the baseline dynamic model of portfolio choice with continuous trading

(Merton, 1971) as a benchmark model whose implications are relevant for the investment
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in traditional asset classes, such as money market funds, bonds, and equity. Then we

reformulate the problem by introducing illiquidity and investigate the properties of the

resulting optimal solution. Finally, we apply the models to the SAA problem of long-term

investors with access to illiquid private asset classes along with traditional liquid assets.

The framework that we employ allows us to make a distinction between SAA, as the

asset class portfolio weights that an investor will come back to at every opportunity when

liquidity is available, and tactical asset allocation (TAA), as the sub-optimal achievable

weights that an investor can resort to, when liquidity is available only for a subset of the

assets in the portfolio. This provides a way to factor in ex-ante the costs associated with

illiquidity and its effect on the optimal consumption and allocation across assets.

The illiquid asset cannot be traded for periods of random length. This exposes the

investor to unhedgeable liquidity risks, as the portfolio allocations cannot be adjusted

when price changes lead to sub-optimal allocation. Also, the investor can consume out of

liquid wealth and is allowed to transfer between the liquid and illiquid wealth only with

uncertain timing. This gives rise to the risk of not being able to meet consumption needs

when wealth is locked up in illiquid holdings. Liquid and illiquid wealth are thus imperfect

substitutes and the investor will try to minimize the disutility coming from states of the

world where liquid wealth cannot finance consumption.

Numerically, we confirm the intuitive premise that with higher illiquidity, the investor

will lower ex-ante the strategic allocation to the illiquid asset. The liquidity friction,

however, begins to have economic significance when an average waiting time between

trading events is above two years. At two years, the strategic allocation to the illiquid asset

gets significantly reduced below the continuous trading case and the certainty equivalent

cost of illiquidity starts increasing notably1.

As far as the TAA is concerned, we find that at high shares of illiquid holdings and

without foreseeable ability to trade, the investor will tend to reduce sharply the allocation

to the liquid risky asset in favor of cash in order to reduce liquid wealth volatility. The

share of illiquid risky holdings thus acts as a state variable that also determines the

optimal investment in the liquid asset (Figure 2.2b).

1See Table 2.2 for details.
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A simulation shows that for levels of the friction compatible with the most common

alternative investments, the agent can rebalance often enough, so that disproportionately

large shares of illiquid wealth are avoided and the tactical weights remain in proximity

of the SAA. Overall, the liquidity friction tends to reduce only marginally the average

tactical liquid asset holdings. Still, it creates a fat left tail in the distribution of the liquid

risky asset weights, as the tactical weights of the liquid assets get adjusted to uncontrolled

movements in the illiquid wealth share.2

The lack of a full control on the illiquid asset share fluctuations also leads to a lower

average consumption rate when a strong liquidity friction is present. The investor does

not have a way of offsetting drops in the value of the liquid asset during periods in which

the illiquid cannot be traded. Thus, even though consumption is determined directly only

by the level of liquid wealth, fluctuations in illiquid wealth result in fluctuations in the

consumption share and thus endogenize the investor’s risk aversion. This results in a fat

left tail in the distribution of the consumption rate over time (Figure 2.3e).

To finance consumption over time, the agent needs to keep a higher cash cushion as

liquidity friction increases (Figure 2.1a). As the friction increases, the overall allocation

to risky assets is decreased. As a result, over the long run, the investor needs to stay more

conservative and cannot fully exploit the market risk premium. As a result, the investor’s

wealth and consequently, consumption level is lower over the long run compared to the

completely liquid case (Figure 2.3).

Evaluating the welfare implications of illiquidity, we find that with a five-year friction

the CEC is reduced by 5% compared to an identical completely liquid investment (Table

2.2). Intuitively, this reduction in risk-free equivalent consumption can be seen as triggered

through two channels. First, the reduced strategic holdings in the illiquid asset lowers

the diversification potential of the private asset in the portfolio. Second, the fact that

consumption can be financed out of liquid wealth only, implies a higher risk that liquidity

could be exhausted before a trading opportunity arrives.

Similarly, we find a clear positive dependency between the severity of the illiquidity,

the consumption cost, and the liquidity premium. An asset that cannot be traded for ten

2See histogram plots in Figure 2.3f for details.
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years on average would require a premium of at least 1.26% above the expected return of

an otherwise identical liquid asset (Table 2.2).

In addition, the diversification benefits from the low correlation between the liquid

and illiquid assets are muted relative to the model with no frictions. The CE cost is

much stronger for assets with high negative correlation, which could otherwise diversify

the portfolio. The cost approaches zero for assets that have almost no diversification

potential (Table 2.4a).

The paper continues as follows: Section 2.2 provides an overview of the related lit-

erature; Section 2.3 outlines the benchmark continuous trading model and provides the

corresponding analytical solutions; Section 2.4 provides the basic quantitative structure

of the market with liquidity friction; Section 2.5 investigates the properties of the illiquid

model and looks into the potential for liquidity premia and illiquidity costs of a synthetic

asset comparable to public equities; and finally, Section 2.6 investigates to strategic al-

locations for several private asset classes that typically long-term investors can typically

access.

2.2 Related Literature

First, we relate to the broader literature on dynamic portfolio choice with trading

frictions. The frictions can broadly be classified along three main dimensions: transac-

tion costs, delayed execution, and inability to access a market. The aspect of market

illiquidity that each direction considers has specific implications on the optimal strategies

recommended for investors.

The first dimension, where asset liquidity can be accessed at any point in time by pay-

ing a transaction cost, has been widely explored (Zabel, 1973; Magill and Constantinides,

1976; Gennotte and Jung, 1994; Boyle and Lin, 1997). In essence, this approach exam-

ines portfolio choice with a riskless asset and a set of risky assets subject to proportional

trading costs. Most studies find that with the transaction costs it becomes optimal for

agents to trade only if the illiquid asset allocation moves outside of a no-trade region. In

general equilibrium, Constantinides (1986) determines that, as a result, overall trading is

significantly reduced even for modest transaction costs. By trading smaller amounts and
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less frequently, agents accommodate the transaction costs without sacrificing consump-

tion. Consequently, they do not need a significant liquidity premium to compensate for

the friction. This argument is debated for example by Dai et al. (2011) who find that

with the interaction between asset trading costs and position constraints within investors’

portfolios large liquidity premia may arise.

Later studies introduce a liquid risky asset along with the risky illiquid one and empha-

size that having access also to liquid risky investments, creates hedging and diversification

motives, thus reducing the utility cost of the transaction friction, and alleviating the im-

pact that illiquidity on one asset has on the investment in other assets and the pressure

that this creates on prices (Buss et al., 2015; Bichuch and Guasoni, 2018). To capture

these effects fully, we consider liquid and illiquid risky assets. The curse of dimensionality

makes such problems harder to solve. We apply a numerical algorithm in the spirit of Cai

et al. (2013), who offer a recipe relying on quadrature approximations and value function

iteration for solving non-trivial portfolio choice problems with multiple assets subject to

transaction costs. We adapt the algorithm to be compatible with our problem.

Longstaff (2001) explores the second dimension, where illiquidity appears as a friction

on the quantity that can be traded per period. In his setup, a constraint exists on

the speed with which trades can be executed, so larger trades are executed slowly at a

known rate. By waiting for a deterministic period, the agent is then subject to price risk

without complete control over the allocations in the portfolio and has to hedge against

both expected and unexpected portfolio weight changes. In contrast to the previous set

of studies, they find that the agents optimally trade whenever needed and as much as

needed.

Across the third dimension, Miklós and Ádám (2002) approximate the inability to

trade an asset immediately by introducing a deterministic lag between the time an order

is placed on the market and the time a trade actually takes place. Ang et al. (2014), on

which our study is closely based, further extend this idea by adding uncertainty in the

waiting time. The idea of uncertain waiting time is closely related to the OTC markets

where search frictions usually imply that the time between transactions is stochastic

(Diamond, 1982; Duffie et al., 2004) as counterparties need to find each other to trade.

This is especially relevant for the private asset classes that we consider later on, such as
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private equity and real estate, for which an exchange does not exist and a counterparty

to the trade is usually not immediately available. A similar approach, with uncertain

trading time under a limited horizon set up, is applied by Jansen and Werker (2020) to

estimate the potential cost of illiquidity for the same asset classes.

In general, the literature has identified several market imperfections which can ex-

acerbate market liquidity (Vayanos and Wang, 2012). We do not focus on the reasons

for which illiquidity may be present, but it is worthwhile pointing out that each of these

are present in the market for private asset classes that we consider in (2.6), thus justify-

ing the modelling approaches that we consider. First, clientele effects exist, which allow

only investors with sufficient capital or expertise to trade, especially when participation

costs and transaction costs are present and agents face charges for trading and monitor-

ing market movements. Second, imperfect competition may allow large players to exert

market power and may push out smaller investors causing a strain on liquidity. Third,

the presence of asymmetric information may motivate buyers to leave the market. In ad-

dition, funding constraints, such as the low access to credit for investors may exacerbate

illiquidity further (Brunnermeier and Pedersen, 2009). Also, search frictions, especially in

over-the-counter markets, typically create a decentralized network structure of the market

where investors need to spend time looking for an appropriate trading counterparty to

the trade as in Duffie et al. (2005).

We also relate to the literature on liquidity premia. In Section 2.5 we evaluate the re-

turn surcharge that a utility-maximizing investor is willing to accept (in utility-equivalent

terms) in order to convert the illiquid asset to a liquid one with otherwise comparable

risk-return properties. Even though we do not consider the risk premia in a general equi-

librium framework, the model still provides an indication of the extra return that investors

would require in order to accept holding an illiquid asset. Jansen and Werker (2020) call

this the shadow cost of illiquidity.

Empirically, there is an academic debate on how large liquidity premia are and if they

even exist given biases endemic to illiquid asset classes (Ang, 2011) and the difficulty of

establishing a reliable observational measure of illiquidity even for publicly traded assets
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(Goyenkoa and Trzcinkab, 2009). Our approach provides a theoretically justified link

between the severity of the liquidity friction and the size of the corresponding premium.3

There are very few studies that examine the effect of illiquidity on risk premia and as-

set allocations for long-term alternative asset classes, such as hedge funds, private equity,

real estate, or infrastructure investments, so we try to fill this gap. Korteweg and West-

erfield (2022) provide an overview of the main challenges in terms of data transparency,

performance measurement and investing in private asset classes. In terms of liquidity,

Franzoni et al. (2012) find evidence that private equity shares the same liquidity factor as

public equity, reducing the funds alpha and the diversification potential typically expected

by investors. Jansen and Werker (2020) applies a portfolio choice model with liquidity

costs for investors with a limited horizon, calibrating the model to regulatory data of

alternative investment holdings. We follow a similar approach but overcome the difficulty

to estimate the actual return and risk characteristics on illiquid asset classes by directly

employing forward-looking expected return and risk data from JP Morgan (2022).

Finally, we extend the literature on SAA for institutional investors4 by explicitly in-

corporating a liquidity friction as a latent Poisson factor in the spirit of Ang et al. (2014).

The approach can be related to studies of dynamic portfolio choice with jump risk (Wu,

2003; Liu et al., 2003). The main difference with the current approach is that at the

moment the Poisson jump occurs, we allow for the decision-maker to access liquidity on

the private asset and to reset the portfolio allocations to optimality.

2.3 Baseline Model of Portfolio Choice

We proceed by describing the dynamic investment problem with full market liquidity.

3Overall, the liquidity premia literature tends to focus on market microstructure, for example within
equity (Amihud and Mendelson, 1986; Pastor and Stambaugh, 2003; Acharya and Pedersen, 2005), cor-
porate bonds (Bongaerts et al., 2012), government bonds (Yakov Amihud and Pedersen, 2005), CDS
derivatives Qiu and Yu (2012) and crypto-currency (Brauneis et al., 2021) markets among other classes.
Generally, the effect of illiquidity on risk premia in these studies is assumed to work through channels that
can be summarized as level, when asset-specific characteristic leading to an additional market premium,
and risk, when the asset’s returns are sensitive to market-wide liquidity shocks, where liquidity as risk
may also affect liquid assets as well Amihud and Mendelson (2015). For example, Lou and Sadka (2005)
argues that in a market crisis when liquidity dries out, portfolio managers are likely to de-lever by selling
their risky liquid assets first.

4See for example Campbell et al. (2004); Cochrane (2022).
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2.3.1 Liquid Markets

In the liquid case, we assume that the market is complete5 and there are no arbitrage

opportunities. Denoting the instantaneous risk-free rate as r, the price of a risk-free asset

follows from the process:

dBt/Bt = rdt (2.1)

The n-dimensional vector containing all risky asset returns dS/S in is defined as:

dSt

St

= µdt+ σdZt

= (r1 + σλ)dt+ σdZt

(2.2)

where 1 stands for a column vector of ones, dZt is a vector of n independent Brownian

motions supported by probability space (Ω,ℑ,P); µ is a n× 1 vector of expected returns;

σ is n × n matrix holding the sensitivity of the risky asset returns to the Brownian

uncertainties; λ = σ−1(µ− r1) is the price of risk. In a market with two risky assets we

have:

µ =
[
µ1, µ2

]⊺
,σ =

 σ1 0

ρσ2

√
1− ρ2σ2

 ,Σ = σσ′ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 (2.3)

2.3.2 Preferences and Wealth Dynamics

The market is populated by homogeneous infinitely-lived agents with the same invest-

ment portfolio. They do not receive any income from non-financial sources and consume

out of the portfolio continuously. Their wealth dynamics are thus determined by the

return of the portfolio they hold as a weighted average of the returns on all investment

assets minus the consumption rate ct:

dWt

Wt

= (r + π′
t(µ− r1)− ct)dt+ π′

tσdZt (2.4)

5Completeness implies that any future uncertain pay-off is attainable by combining in a portfolio the
assets which are available on the market. It is achievable when the number of marketable assets is the
same as the number of uncertainty sources.

5A self-financing trading strategy starts with zero investment cost, generates a non-negative payoff
with probability one, and positive payoff with positive probability.



14 Strategic Asset Allocation with Private Assets: Untangling Illiquidity

Over time, agents control two major aspects of the wealth’s evolution - the consump-

tion (withdrawal) rate and the portfolio composition determined by the vector asset allo-

cation weights πt.

Agents derive utility from consumption. It is time-separable and is assumed to be of

the CRRA form:

u(Cs) =
C1−γ

s

1− γ

with γ > 0, γ ̸= 1 as the coefficient of relative risk aversion, where higher γ implies a

higher risk aversion. Over time, agents aim to maximize their expected lifetime utility

by setting the optimal level of consumption and the risky asset weights in the investment

portfolio:

sup
(πs,Cs)

Et

∞∫
t

e−β(s−t)u(Cs)ds (2.5)

By making an optimizing decision agents consider all relevant market factors, such as

the risk-free rate, the expected return of the marketable assets, their price variance, and

correlations, and in the process are subject to the dynamic budget constraint defined by

the wealth process (2.4).

2.3.3 The Martingale Solution

First, we use the martingale approach to determine the current value of the uncer-

tain future consumption streams generated by the stochastic wealth processes. For the

purpose, we define the Stochastic Discount Factor (SDF) as a process Mt, with the pur-

pose of pricing future random payoffs. In particular, for a security with price Pt and

instantaneous payoff Xt, the SDF allows us to write the relationship

Pt = Et

[
Ms

Mt

Xs

]
s ≥ t (2.6)

In the market defined so far, the SDF can be shown6 to evolve as follows:

dMt = −Mt(rdt+ λ′dZt), with M0 = 1 (2.7)

6See for example Campbell and Viceira (2002); Munk (2013); Duffie (2001).
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The SDF uniquely defines prices if and only if the market is complete and there are

no opportunities for arbitrage in the economy. In that case, a unique trading strategy can

replicate future payoffs in any state of the world. As a result, Cox and Huang (1989) show

that agents can transform the dynamic optimization problem of (2.5) into an equivalent

static problem:

sup
Cs

E

∫ ∞

0

e−βsu(Cs)ds

s.t. E

∫ ∞

0

MsCsds = W0M0

(2.8)

The constraint becomes intuitive if we view the wealth process as the total return of

an asset with price Ws, which continuously pays out a dividend of Cs, rewriting (2.4) as:

dWs + Csds

Ws

= (r + π′
sσλ)ds+ π′

sσdZs

Then, the current market value at time t < s of this asset can be found by pricing the

infinite stream of discounted future cash flows spun by the consumption process, such

that:

Wt = Et

∫ ∞

t

Ms

Mt

Csds

If wealth is optimally invested and optimally consumed over time, then at time t = 0

its market value spun by the SDF will equal to initial value W0 available to the agent. In

other words, in optimality, the starting wealth needs to be sufficient to finance expected

future consumption.

The static problem can then be solved by the Lagrange multiplier method:

sup
(Cs)

L = sup
(Cs)

{
E

∫ ∞

0

e−βsu(Cs)ds+ ϕ

(
W0 − E

∫ ∞

0

MsCsds

)}

where ϕ stands for the Lagrangian constant. This can be solved by first finding the op-

timal consumption C∗
s from the first-order condition w.r.t. consumption applied on the

Lagrangian function. Then the multiplier ϕ∗ can be found by substituting consumption

in the constraint. This will provide the optimal wealth dynamics W ∗
t from which op-
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timal portfolio asset allocations can be implied. Following this procedure, the optimal

consumption and investment strategies can be derived (see Appendix 2.A.1) as

ct = c∗ =
β + r(γ − 1)

γ
+

1

2

γ − 1

γ2
∥λ∥2 (2.9)

πt = π∗ =
1

γ
(σ′)−1λ =

1

γ
(σσ′)−1(µ− r1) (2.10)

The landmark result observed seen here is that in the Merton world defined so far,

both the investment weights and the consumption share are fixed and independent of the

current wealth.

The optimal wealth process allows us to define the value function V (W ∗
t ) as the cu-

mulative expected utility when the optimal wealth trajectory is followed. In Appendix

(2.A.1) we show that this simplifies to

V (W ∗
t ) = H · (W ∗

t )
1−γ (2.11)

where H = 1
1−γ

(
1
c∗

)γ
.

2.3.4 The Dynamic Programming Solution

An alternative is to consider the problem within the context of dynamic optimization.

This approach will prove itself useful when we relax the liquidity assumption in the next

section, so we explore it here.

The dynamic problem that agents need to solve at any time instant is

sup
(πs,Cs)

Et

∫ ∞

t

e−β(s−t)u(Cs)ds

s.t. dWs = Ws(r + π′
sσλ)ds− Csds+Wsπ

′
sσdZs

(2.12)

Reexamining the value function over a short time period ∆t we can follow the Bellman

principle of optimality to arrive at a more tractable optimizing equation. In particular,

we split today’s value function into an optimizing decision over the upcoming time span
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(from t until t+∆t) and an optimal strategy afterward:

V (Wt) = sup
(πs,Cs)

∫ t+∆t

t

e−β(s−t)u(Cs)ds+ e−β∆tE[V (t+∆t,Wt+∆t)] (2.13)

Note that the time subscript from the expectation has been dropped, as the wealth dy-

namics are driven by independent random shocks, implying that knowledge of the present

does not help in forecasting the expected value function, so the unconditional expectation

can be used instead of the conditional. In the limit for small ∆t this converges to the

continuous time Bellman equation, as shown in Appendix (2.A.2):

βV (Wt) = sup
(πt,Ct)

u(Ct) + E [dV (Wt)] (2.14)

where E [dV (Wt)] stands for the drift term of the value process dV (Wt).

An appealing intuition can be derived by rewriting the Bellman equation (2.14) in

the following form7 indicating that over any short interval of time the optimal allocation

and consumption strategies have to ensure that the discounted utility exactly offsets any

expected decline in the discounted value function:

sup
(πt,Ct)

e−βtu(Ct) + E
[
d(e−βtV (Wt))

]
dt = 0 (2.15)

Taking advantage of Ito’s calculus, we show in Appendix 2.A.2 that the Bellman

principle gives rise to the following partial differential equation that the value function,

and the optimal strategies for consumption Ct and portfolio weight allocations πt have to

satisfy (known as the Hamilton-Jacobi-Bellman (HJB) equation):

LC + Lπ − βV = 0

LC = sup
Ct

{
u(Ct)− CtVW

}
Lπ = sup

πt

{
(r + π′

t(µ− r1))VWWt +
1

2
VWWW 2

t π
′
tΣπt

} (2.16)

7Follows by reversing the terms in d(e−βtV (Wt)) = −βe−βtV (Wt) + e−βtdV (Wt) and substituting in
Equation (2.14)
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and where we define V ≡ V (Wt), VW ≡ ∂V (Wt)
∂Wt

and VWW ≡ ∂2V (Wt)

∂W 2
t

. This allows us

to derive the Envelope Theorem, implying that at optimality, the marginal utility from

consuming a little more needs to be equal to the marginal value of investing a little more:

u′(Ct) = VW (2.17)

As a result, optimal consumption can be determined

C∗
t = Iu′(VW ) (2.18)

where Iu′(.) denotes the inverse of the marginal utility function. For CRRA utility we

have C∗
t = (VW )−

1
γ .

The first order condition with respect to the optimal assets allocation then implies:

π∗ = − VW

WtVWW

Σ−1(µ− r1) = − VW

WtVWW

(σ′)−1λ (2.19)

In total the agent will invest the fraction − VW

WVWW
1′(σ′)−1λ in risky assets and the rest

in the risk-free asset. The fraction − VW

WVWW
defines the relative risk tolerance of individuals

given their indirect utility V (W ) and is the inverse of the Relative Risk Aversion measure

constructed as −u′′(C)C
u′C

.

The optimal risky asset investment is thus determined by two components: (1) the

preference-specific relative risk tolerance VW/WVWW and (2) a vector, which is the same

for everyone on the market and which is composed of the inverse of the assets’ variance-

covariance matrix and the excess expected returns: (σ′)−1λ.

Note that the second-order conditions for maxima are satisfied both for (2.17) and

(2.19) as long as V (W ) is concave in W and u(C) is concave in C. Substituting the

maximizing allocation and consumption terms in the HJB equation of (2.16) and applying

explicitly the assumed CRRA utility form simplifies further to the equation:

βV =
γ

1− γ
V

1−1/γ
W + rWtVW − 1

2

V 2
W

VWW

∥λ∥2 (2.20)



2.4 Baseline Model with an Illiquid Asset 19

This second order Partial Differential Equation (PDE) can be solved by making a

guess for the value function of the form V (Wt, t) = g(t)γ
W 1−γ

t

1−γ
. Substituting in (2.20)

verifies that the guess solves the PDE for g(t) = 1
A
, where A is the same constant we

found in (2.42). The optimal consumption share is again c∗ = Ct

Wt
= A. Note that g(t) is

a constant function in the case of an infinite horizon problem.

2.4 Baseline Model with an Illiquid Asset

When the assumption of a complete market does not hold, we need to resort to the

DP approaches outlined earlier to solve the agents’ optimization problem.8The presence of

illiquidity violates the market completeness property, since in periods of illiquidity certain

market outcomes will not be reachable. In a way, illiquidity risk presents a new source of

uncertainty that cannot be managed and hedged within the portfolio.

Asset prices are again defined through relation (2.2). The additional component now

is that the investor cannot be certain that a market for n-th asset with price Sn will exist

over time. Following Ang et al. (2014), we formalize this by assuming that a trading

opportunity for the asset arrives with the intensity η of a Poisson process Nt, which is

independent of the Brownian motions.9A jump in Nt indicates that a liquidity opportunity

for the asset has materialized, the investor can trade without further costs or frictions and

can freely rebalance the portfolio to her strategic objectives. We assume that the illiquid

asset cannot be used as collateral to issue riskless debt.10

This changes the structure of the problem and the agents’ wealth dynamics. Investors

can only consume directly out of liquid wealth Wt and can transfer funds dIt from illiquid

8An alternative is to adjust the martingale method. For more details see for example Karatzas and
Shreve (1998). We do not explore this option here.

10The assumption ensures that the illiquidity constraint cannot be circumvented by pledging the illiquid
asset and issuing debt. Still, the assumption is empirically valid, as the private assets we consider later
on are rarely accepted as collateral.

10The counting process {Nt, t ∈ [0,∞)} is a Poisson process with rate η > 0 if: (1) The starting value
of the process is zero: N0 = 0 (2) Increments of the process are stationary and independent (3) The
number of events that occur during any time increment of length ∆t is Poisson distributed with mean
η∆t. Formally, for any t ≥ 0,∆t > 0:

P (Nt+∆t −Nt = n) = e−η∆t (η∆t)n

n!
, n = 0, 1, ...

See Appendix (2.B.2) for more details.
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wealth Xt only when an appropriate opportunity arises. Assume that θt is an n−1 vector

holding the fractions of liquid wealth that are invested into the liquid risky assets, and ct

is the fraction of liquid wealth consumed, then the wealth dynamics will evolve as follows:

dWt/Wt = (r + θ′
t(µ1:n−1 − r11:n−1)− ct)dt+ θ′

tσn−1dZt − dIt/Wt

dXt/Xt = µndt+ σndZt + dIt/Xt

(2.21)

where the subscripts 1 : n− 1 and n indicate the first n− 1 rows, or respectively the n-th

row of the corresponding matrix or vector, specified in (2.2).

The value function for this problem can be written as

V (Wt, Xt) = sup
θs,dIs,cs

Et

∞∫
t

e−β(s−t)u(Cs)ds (2.22)

We denote Qt = Wt+Xt as total liquid and illiquid wealth, and ξt as the proportion of

illiquid asset holdings to total wealth.11 For a CRRA utility, we can define the reduced-

form value function H(ξ) ≡ V ((1− ξ), ξ). From the homogeneity properties of the value

function, it follows that:

V (Wt, Xt) = (Qt)
1−γH(ξt) (2.23)

As a result, we can transform the optimization problem of (2.22) from one of finding the

value function V (Wt, Xt) itself to solving for the the concave function H(ξt).

Whenever liquidity is available, when the Poisson shock hits, agents are free to move

to the top of the H(ξt) curve.12 They do so by rebalancing between liquid and illiquid

wealth, such that a fixed portion ξ∗ is held in the illiquid asset. As a result, they set

ξ∗ = argmaxξ H(ξ) by choosing the appropriate amount of dIτ = (ξ∗ − ξτ−)Wτ− where

ξτ− is the initial weight before rebalancing occurs and ξ∗ is the target weight that can

be reached immediately after rebalancing. Whenever the asset stays illiquid, the agent

is stuck with sub-optimal ξt and is below the optimum of the H(ξt). Once we find the

11We diverge here from the notation of the previous section. To reconcile the two, note (suppressing
the time notation) that π1:n−1 = θ(1− ξ) is the allocation to the first (liquid) risky asset as a proportion
of total wealth, πn = ξ is the allocation to the illiquid asset, and c(1 − ξ) is now the consumption rate
out of total rate, where in the illiquid case, c is consumption out of liquid wealth.

12Ang et al. (2014) show analytically that H(ξ) is finite, continuous, concave and is maximized at ξ∗

for ξ ∈ [0, 1).
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function H(ξ) then, we can determine both the optimal mix between liquid and illiquid

assets ξ∗, and the value function V (Wt, Xt) itself.

Going forward, we will interpret ξ∗ and θ(ξ∗) as the strategic allocation mix. The

reaction function θ(ξ) when trading opportunity in the illiquid asset is not available, will

form the tactical allocation as a reaction to the illiquid wealth share in the portfolio.

2.4.1 The HJB Equation with Three Assets

Assuming that there are three assets: liquid risk-free, liquid risky and illiquid risky,

and following the form established in (2.3), the wealth dynamics will evolve as

dWt/Wt = (r + (µ1 − r)θt − ct)dt+ θtσ1dZ1t − dIt/Wt

dXt/Xt = µ2dt+ σ2ρdZ1t + σ2

√
1− ρ2dZ2t + dIt/Xt

We can then derive the HJB equation governing optimal consumption and allocation

as functions of the illiquid wealth share13:

LC + Lθ + L = βV

LC = sup
Ct

{
u(Ct)− CtVW

}
Lθ = sup

θt

{
(r + θt(µ1 − r1))VWWt +

1

2
VWWW 2

t θ
2
t σ

2
1 + VWXWtXtθσ2σ1ρ

}
L = VXµ2 +

1

2
VXXX

2 + η(V ∗ − V )

(2.24)

with V ∗ the point at which the value function jumps once the Poisson shock hits and the

agent changes the illiquid-to-total wealth ratio back to the strategic ξ∗.14

By construction, consumption in the periods between the Poisson liquidity arrivals can

be funded from liquid wealth only, so by maximizing LC we arrive at a modified version of

13See Appendix (2.A.4) for details.
14We can also establish bounds for the H(ξ) function. Agents will invest in the illiquid asset only if

that leads to higher cumulative utility than the one-asset Merton case. At the same time, with a liquidity
friction agents will not be able to reach the two-asset Merton case, where liquidity is fully available. This
leads to the value function of (2.22) being bounded from above and below:

HM1W
1−γ ≤ V (W,X) ≤ HM2(W +X)1−γ ≤ 0

=⇒ HM1 (1− ξ)
1−γ ≤ H(ξ) ≤ HM2 ≤ 0

where the constants HM1 and HM2 are the one and two asset value function constants from (2.11).
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the Envelope Theorem (2.17). At optimum, the marginal utility of liquid wealth is equal

to the value of a marginal change in liquid wealth, such that

u′(Ct) = VW (Wt, Xt)

⇐⇒ C∗
t = Iu′ (VW (Wt, Xt)) ≡ (VW (Wt, Xt) )

− 1
γ

In the CRRA case in particular, Vw(Wt, Xt) = W−γ
t ((1− γ)H(ξt)− ξtH

′(ξt)) and

u′(ctWt) = u′((1− ξt)Wt) = (1− γ)(cW )−γ. As a result total wealth can be canceled out

and the optimal consumption rate (out of total wealth) ct can be expressed as

ct =
(
(1− γ)H(ξt)−H ′(ξt)ξt

)− 1
γ
(1− ξt)

−1 (2.25)

In contrast to the fixed Merton optimal consumption rate in (2.9), the consumption

rate between trading events now is time-varying with ξt. As the share of illiquid wealth

floats randomly in periods of illiquidity, the optimal consumption rate will change as well.

The optimal investment in the risky liquid asset can be derived correspondingly:

θt =
µ1 − r

σ2
1

(
− VW

VWWWt

)
︸ ︷︷ ︸

Φ(ξt)

+
σ2ρ

σ1

(
− VWXXt

VWWWt

)
︸ ︷︷ ︸

Ψ(ξt)

(2.26)

Note that we can split the optimal investment in the liquid risky asset into two parts.

First, the investment demand in the liquid risky asset is driven by

µ1 − r

σ2
1

Φ(ξt)

where it can be seen that the function Φ(ξt) = − VW

VWWWt

1
1−ξt

Qt is decreasing in ξt as

− VW

VWW
≥ 0. This implies that, even with zero correlation between the two risky assets,

the optimal investment allocation in the risky liquid asset will still be state-dependent,

and decreasing in the share of current illiquid asset holdings.

Second, the hedging demand term is represented by

σ2ρ

σ1

Ψ(ξt)
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where Ψ(ξt) = − VWX

VWW

(
ξt

1−ξt

)
again can be shown to be decreasing in ξt ∈ (0, 1), as due

to the convexity of the value function we have − VWX

VWW
≤ 0. If the correlation between the

two assets then is negative, increases in the share of the illiquid asset will increase the

hedging demand for the liquid asset, counterbalancing the investment demand effect. For

positive correlation, however, the hedging and the investment demand will be going in

the same direction, both decreasing the share of liquid risky investments when the share

of illiquid wealth increases.

2.4.2 The Certainty Equivalent and Utility Loss

Apart from determining the optimal investment and consumption strategies, we want

to quantify the utility-equivalent cost of illiquidity. For this purpose, we define the CEC,

as the guaranteed continuous consumption stream which makes agents indifferent between

risk-free and uncertain consumption. It is determined by equating the cumulative utility

associated with risk-free consumption to the indirect utility associated with a particular

risky consumption stream Cs:∫ ∞

t

e−βsu(CESt)ds = Et

∫ ∞

t

e−βsu(Cs)ds (2.27)

The right-hand side of the equation corresponds to the value function derived from

the optimization problem the agent faces. The left-hand-side of this equation can be

simplified to

u(CECt)

∫ ∞

t

e−βsds =
1

β
u(CECt)

which implies that the CEC is

CECt = Iu

(
βEt

∫ ∞

t

e−βsu(Cs)ds

)
(2.28)

Expressing the CEC as a fraction of total wealth, we can relate it to the reduced

cumulative utility functions ((2.11) in the case of full liquidity, and (2.23) in the case of
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illiquidity). Thus, dividing both sides of (2.28) by Qt, we get

CECM
t

Qt

= (β(1− γ)HM)
1

1−γ

=β
γ

1−γ

(
1

cM

) 1
1−γ

In the illiquid case, it will be dependent on the current share of illiquid wealth

CECil
t (ξ)

Qt

= (β(1− γ)H(ξt))
1

1−γ (2.29)

As a result, we define the cost of liquidity L(ξ) as the CEC loss associated with a

lack of liquidity. It is measured as the percentage of CE consumption the agent would be

willing to give up in order to make the second risky asset completely liquid. In particular

we have

L(ξt) ≡ 1− CECil
t (ξ)

CECM2
t

= 1−
(
H(ξt)

HM2

) 1
1−γ

(2.30)

where CECM2
t is determined for the Merton two-asset case. Note that the utility loss is

again state-dependent through ξt.

It can be shown that L(ξt) is also the percentage loss on current total wealth that

individuals are willing to take in order to make their wealth fully liquid. For the individual

to be indifferent between holding fully liquid or holding illiquid wealth, we need the value

function in the two-asset Merton case as a function of total wealth minus the acceptable

loss to be equal to the value function in the illiquid case:

V M2(Qt(1− L(ξt))) = V (Wt, Xt)

HM2Q
1−γ
t (1− L(ξt))

1−γ = H(ξt)Q
1−γ

L(ξt) = 1−
(
H(ξt)

HM2

)1−γ

The last term is precisely the expression in (2.30).
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Table 2.1: Parameters

Parameter Definition Default Value

r risk-free rate 0.02
β personal discount rate 0.03
µ1 first (liquid) risky asset expected return 0.055
σ1 first (liquid) risky asset volatility 0.14
µ2 second (illiquid) risky asset expected return 0.055
σ2 second (illiquid) risky asset volatility 0.14
ρ correlation 0
1/η average time (in years) between a trading opportunity arises 10
γ risk aversion parameter in the CRRA utility function 6

Note. The table shows a short summary of the parameter values that are used for the presented model.
Unless stated otherwise, these parameters are used for the numerical work. The return and risk of the
assets are based on annual projections for U.S. public equity and cash in JP Morgan (2022)

2.5 Numerical Evaluation of Illiquidity

In this section we investigate the properties of the illiquid asset and the effect of illiq-

uidity of premia and allocations where the continous trading case is used as a benchmark.

We assume the same means and variances for the liquid and illiquid risky assets. To

calibrate the model, we look at investment data projections for a number of private asset

classes with substantial illiquidity.15

We use a risk-aversion coefficient γ = 6, as in the Merton two-asset case, under the

given initial parametrization, this produces roughly 60% investment in risky assets and

40% in risk-free bonds which is a standard long-term investment strategy for moderately

risk-averse agents.

The input variables used in the numerical procedures and their default values are given

in Table 2.1. Unless stated otherwise, those are the base case parameter values used for

15Note that we make sure that a number of parameter restrictions are satisfied in setting up the
parametrization of the models, as posed in Ang et al. (2014). First, the illiquid asset has to have at least
as large a Sharpe ratio as that of the liquid asset:

µ2 − r

σ2
≥ µ1 − r

σ1

Second, a standard discount rate restriction (see (Back, 2010)) holds:

β > (1− ρ)

(
r +

k2

2ρ

)
where k =

√
λ′λ = (µ − r1)Σ−1(µ − r1). The first assumption is needed to discourage shorting the

illiquid asset, and the second - to ensure existence of the HJB equation as stated in (2.16).
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the current section. We use five-year ahead capital market projections developed by JP

Morgan (2022).

We evaluate the chance at least once over a year to meet a counterparty willing to

trade in the illiquid asset. This underlies the calibration of trading friction, which for a

Poisson process through the relationship is (Appendix (2.B.2)):

p = 1− e−η∆t (2.31)

The model is solved numerically through value function iteration on the discretized

Bellman equation corresponding to the continuous-time problem as outlined in Appendix

(2.B.1).

Table 2.2: Sensitivity of Cost and Decision Variables to the Average Trading Interval

Cost Consumption Allocation Rabalancing

η p rp(ξ∗) LC(ξ∗) CEC(ξ∗) E[c(ξ)(1− ξ)] θ(ξ∗)(1− ξ∗) E[θ(ξ)] ξ∗ E[ξ] E
[
dI+/Q

]
E

[
dI−/Q

]
M1 - 2.53 2.60 29.76 29.76
M2 - 3.04 3.03 29.76 29.76
1/12 100.00 0.01 0.54 3.03 3.03 29.35 29.35 29.35 29.40 0.83 0.96
1/4 98.17 0.01 0.54 3.03 3.03 29.35 29.34 29.33 29.58 1.09 1.41
1/2 86.47 0.05 0.57 3.02 3.03 29.34 29.33 29.18 29.66 1.39 2.18
1 63.21 0.06 0.66 3.02 3.03 29.33 29.29 28.72 29.89 1.66 2.86
2 39.35 0.08 0.88 3.01 3.02 29.29 29.21 27.71 29.29 2.02 4.27
5 18.13 0.28 2.33 2.97 2.91 29.19 26.98 22.58 30.41 2.38 10.62
10 9.52 1.21 6.43 2.85 2.79 29.20 26.95 14.06 21.60 2.11 11.61

Note. This table shows the cost of liquidity and the sensitivity of optimal consumption and allocation
to the strength of the liquidity uncertainty. The liquidity friction is quantified by the first two columns
- trading interval and probability of being able to trade over the coming year. The first two lines stand
for the continuous-trading Merton case with one and two assets (M1 and M2 respectively). All numbers
are in percentage points.

2.5.1 Optimal Allocations

First, we examine how the optimal portfolio allocation is affected by the severity of

the liquidity friction. Table 2.2 presents the effects of different average waiting times

to trade (1/η) on the SAA. The connection between the average waiting time and the

trading probability over a year occurs through the Poisson process in equation (2.31).

As indicated in Table 2.2, at the full rebalancing point the allocation in the second

asset when trading can occur up to a year on average point is still close to the continuous
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Figure 2.1: Holdings and Cost Sensitivity to the Trading Friction
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Note. This figure shows the effect of the trading friction (a) on the asset allocation as a function of the
average waiting time to trade, (b) on the illiquid asset holdings as a function of the probability of being
able to trade over the coming year, the dashed line indicating the Merton two-asset solution. Part (c)
shows certainty equivalent consumption loss as percent to total wealth. The grey dashed lines stands for
the two-asset continuous trading case, the black dashed line for the one-asset continuous trading case.

trading case, around 29.76%. As ξ∗ is significantly reduced, however, the trading friction

intensifies – up to 14.06% allocation for a 10-year average waiting time. Figure 2.1a also

illustrates the point – the optimal base allocation to the illiquid asset starts decreasing

with a friction above one year and the cash cushion starts increasing.

How fast rebalancing to base allocations can be expected to happen will depend on

the average frequency with which one can trade in the illiquid asset. The propensity

of the assets to drift away from the optimal allocations will then guide the size of the

allocation correction agents will resort to when the opportunity arises. As a result, there

is a discrepancy between the base allocations ξ∗, and the average realized weights E[ξ] that

is larger, the more severe the liquidity friction. Occasionally, when the Poisson liquidity

shock hits, agents will be able to rebalance back to the base weights (ξ∗ and θ(ξ∗)) and

avoid getting stuck with extreme levels of illiquid wealth. The rest of the time, they will

be forced to hold sub-optimal allocations.

From that point of view, the average realized allocation moves down less sharply,

and the gap between base and average realized allocation becomes larger as the friction

increases. This can be interpreted as agents consistently targeting lower illiquid wealth

shares. As the premium on illiquid wealth is positive, the share in illiquid wealth then

tends to grow on average over time while agents are not able to withdraw from it. It is not

surprising then that the average withdrawal rates from illiquid wealth E [dI−/Q] become
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larger, the longer is the expected waiting time to trade, while the average investment rate

E [dI−/Q] is not significantly affected.

During periods of illiquidity, the agents can only adjust consumption and investment

in the first (liquid) asset as a response to the stochastic share of illiquid wealth. This

motivates Figures (2.2) where the (reduced) value function, consumption, and the liquid

risky asset allocation are represented as response functions to the current share of illiquid

wealth.

Figure 2.2c illustrates the allocation curves to the liquid asset for a one-year and ten-

year friction. The Merton liquid case is presented for comparison by the two flat dashed

lines (one- and two-asset market solutions respectively). In the Merton case agents can

continuously rebalance to optimality, and allocations in one asset are insensitive to the

current endowment in other assets.

In the one-year illiquid case, the base illiquid wealth allocation ξ∗ stands close to the

two-asset case liquid solution of 29.8% indicated by the diamonds on the graphs. The

value function also stays close to that of the two-asset cases whenever illiquid wealth is

below 80% of total wealth. Below that threshold, all one-year curves are flat, and the

agent can finance more or less the same consumption rate as in the continuous trading

case at any level of ξ. In each chart, a gap between the Merton flat lines and the illiquid

solutions forms sharply as illiquidity grows beyond that point and as the chance grows for

the agent to end up in scenarios where liquid wealth is too low to finance consumption. In

particular, agents need to prevent scenarios in which liquid wealth is exhausted before the

next trading opportunity arises, so consumption and liquid risky investments are getting

reduced preventively. Liquid asset investments are reduced sharply at the upper edge of

the curve, which curtails the volatility of liquid wealth. In the case of a ten-year friction

the same effect occurs much sooner on the ξ dimension. At around ξ = 20% the reaction

curves of consumption and liquid investment start decreasing linearly.

2.5.2 Consumption and Welfare Losses

Table 2.2 shows the CEC for agents as a function of the liquidity friction. This serves

as an indication of the risk-free consumption equivalent to the consumption which can



Figure 2.2: Consumption and Allocation Responses to Illiquid Asset Holdings
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Note. This set of figures displays consumption and liquid asset holdings as a reaction to the illiquid asset
allocation level. In each chart, we presents a one-year (solid curve), ten-year friction (dotted curve) and
the continuous trading cases denoted by the flat dashed lines. Panel 2.2a shows the reduced form of
the value function H(ξ), compared to a Merton liquid market with one asset (bottom dashed line) and
with two assets (top dashed line). Panel 2.2b shows optimal consumption. Panel 2.2c displays optimal
liquid asset holdings. Panel 2.2d illustrates the certainty equivalent cost associated with a one-year and
a ten-year friction. If a trading opportunity arises, the agent returns to the point indicated by a blue
diamond in each of the charts. In the Merton cases, rebalancing to optimality is possible all the time,
so the decision curves are insensitive to the illiquid asset holdings - the agent always can rebalance to
achieve optimality.
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be financed by the risky portfolio. The reduction in CEC when the liquidity friction

is strengthened is also an indication of the welfare loss due to illiquidity relative to the

completely liquid case.

The CEC is reduced from 3.04 in the liquid two-asset case to 2.85 (per 100 total wealth)

in the illiquid case with a 10-year friction. Still, it stays above the certainty equivalent

of 2.53 for the one-asset case. Correspondingly, L(ξ∗) indicates that the agents will be

willing to give up 6.43% of their current wealth (Figure 2.1c) in order to make fully liquid

an asset with a ten-year waiting time.

Note that here we evaluate the CEC loss only at the optimal wealth rebalancing point

for ξt = ξ∗. Figure 2.2d illustrates that this is the lower limit on the losses that can be

expected. For a one-year waiting time (the solid line), the loss curve is very flat for most

of the range but rises sharply beyond a certain threshold, after which the agents find it

difficult to finance consumption. For the ten-year waiting time (dashed curve) the loss

rises notably even for moderate deviations of ξt from ξ∗.

Overall, the welfare loss from the illiquid and the continuous-trading case can be

attributed to two factors. First, higher liquidity friction implies a higher constraint on

the ability of agents to finance their consumption, when liquid holdings decrease too

much. Second, the lack of trading opportunity leads to lower diversification, as ex-ante

the holdings in the illiquid asset are reduced. The longer the expected waiting time until

trading can happen, the higher each of these two components to the welfare cost will be.

The illiquidity cost can also be translated into a liquidity premium – the spread over

the illiquid asset’s expected return in order to make it just as attractive as a liquid asset

with otherwise the same risk characteristics. The column αlp in Table 2.2 makes this

point. For an asset that can be traded semi-annually on average, the liquidity premium

is about 5bps. The premium grows to above 1.21% for assets which can be expected to

be traded ten years from now. This premium is again computed at the high point of the

value curve and presents a lower bound on the possible observed losses.

The cost that illiquidity posts on long-term investors is also shown in Figure 2.3 where

we simulate for the two assets a number of time paths of length 100 years and allow the

investor to follow the optimal strategies discussed so far. It can be seen that consumption

and wealth grow at a lower rate when the friction is higher. More severe illiquidity induces



Figure 2.3: Simulation Paths with Illiquidity
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This set of charts shows a model simulation. Charts (a)-(c) show the simulated paths of consumption,
liquid, and total wealth over 100 years with monthly discretization of the stochastic processes. We show
the median levels at every point in time as well as a 90% confidence intervals. The blue lines are based
on a one-year friction; the light purple line is based on a ten-year friction. The model is parameterized
for a 10 years trading friction. Charts (d)-(f) show the corresponding density of the decision variables in
the model. All fractions are expressed as a percentage of total wealth. Consumption and liquid wealth
allocation vary with the level of illiquid asset holdings ξ. The dotted vertical line in each case shows the
optimal values at the base allocation point when liquidity is available. The orange line here is for the
one-year friction, the blue line is for the ten-year one.
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more conservative investment, which can also be traced back in the optimal composition

of the portfolio in Figure 2.1a, stating that as the friction intensifies, the investor holds

a higher proportion of the portfolio into cash as a cushion on the wealth volatility and

illiquidity risk. A lower share of risky assets, in turn, hampers the investor’s ability to

build up wealth over time and consumption. We can see that in the case of the ten-year

friction (purple), consumption grows at a slower pace compared to the case with a more

liquid asset (blue).

Figure 2.1a also provides the simulated densities of the decision variables of the model.

In (2.3d), the illiquid asset allocation exhibits a fat right tail and a tendency on average to

float above the target level ξ∗ indicated by the vertical dashed line. The expected return

of the two risky assets is the same, still, the continuous consumption withdrawal from

liquid wealth reduces its expected return below that of the expected return of illiquid

wealth, and as a result, the share ξ tends to grow on average. The consumption share

and the illiquid asset share both exhibit fat left tails as a reaction to the fact that ξ tends

to drift above optimal levels, which often requires consumption and risky allocations to

be reduced.

2.5.3 Parameter Sensitivity

Figure 2.4 explores how the liquidity cost and base allocations to the illiquid risky

assets change as the correlation and respectively the expected return in the illiquid asset

increases.

We can see in chart (2.4a) that for high expected waiting time between trades (the

dotted line represents a ten-year friction) the liquidity cost is larger for negative and low

correlation levels between the two risky assets. If the two assets were fully liquid, with low

correlation, agents could continuously adjust allocations to hedge risk in one of the assets

with risk in the other asset. The higher the waiting time between the assets, however,

the lower the ability of agents to do so.

The higher the expected return of the second risky asset, the wider the gap between

its allocation in the completely liquid case and in the illiquid case (Figure 2.4d). With

higher expected return on the illiquid asset, illiquid wealth tends to grow faster than liquid
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Figure 2.4: Holdings and Cost Sensitivity to Return and Correlation
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This figure shows the effect varying correlation and the expected return on the second asset on the
liquidity cost and optimal allocation of the portfolio.

wealth, so the agent will prefer to transfer larger amounts of wealth when the opportunity

arises, and will set the base illiquid allocation to a lower rate.

2.6 Strategic Allocation with Private Asset Classes

In this section, we relate the two dynamic portfolio choice models presented so far

to the SAA process for long-term investors. The optimal portfolio weights at the point

where rebalancing is possible will present the base weights to which an investor will be

aiming to return whenever the trading opportunity arises. Conceptually this corresponds

to the SAA of a long-term investor.
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First, we evaluate the optimal allocation when only traditional asset classes are part

of the potential investment mix. For these, well-developed markets exist and liquidity is

not a concern from the long-term investment perspective that we consider here. Then, we

introduce in the allocation decision also several alternative classes widely known to have

limited liquidity and immature secondary markets. In the process, we extend the model

by Ang et al. (2014) to incorporate multiple risky liquid assets, thus bringing it closer to

practice.

We compare several investment universes. The long-term investor will allocate wealth

between a money market (MM) account that pays the risk-free rate and (1) long-term

government bonds (GB) subject to interest rate risk16, (2) public equity (PuE), (3) both

GB and PuE, or in a combination with an alternative illiquid investment option such as

(4) GB and PuE with hedge funds (HF), with (5) GB and PuE with private equity (PrE),

with (6) GB and PuE with direct real estate holdings (RE), or with (7) infrastructure

(Inf) investments. Cases (1), (2), and (3) can be solved with the continuous rebalancing

model of Section 2.3.1. Each of the cases involving an alternative asset class is solved

through the model incorporating a liquidity friction from Section 2.4.

2.6.1 Calibration

To calibrate the models, we use data from the capital market assumptions report by

JP Morgan (2022). The JPM report provides volatility, expected return, and correlation

projections, and is widely used by pension funds and investors to gauge their SAA. The

trading probabilities for the illiquid alternative asset classes, on the other hand, are cali-

brated based on holding period estimates from Ang et al. (2014) and references therein.

Tables (2.3) and (2.4) summarize the overall data.

Table 2.3 shows the average time between transactions for several private asset classes

according to Ang et al. (2014). We will use this as a crude measure of the severity of

the asset class illiquidity. Some asset classes, such as direct infrastructure investments,

lie on the very extreme of the illiquidity spectrum. For others, such as private equity

and hedge funds, secondary markets have only recently come into existence, and even

16We do not model interest rate dynamics explicitly.
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then trading is typically very thin, and funds are priced at large discounts (Kleymenova

et al., 2012; Ramadorai, 2012). It is still the norm that private equity and venture capital

are exited by finding an appropriate counterparty to buy into the investments once the

firms in the fund have matured. From that point of view, the average holding time is

an appropriate measure of how easy it is for an investor to rebalance back to the SAAs.

In hedge funds, investments are usually redeemed directly from the fund manager once

contractual lock-ups and notice periods are satisfied. The contractual clauses for different

funds can vary, but we are focused on the SAA, which involves a decision on aggregate

investment classes before particular funds are selected to invest in. As a result, the average

liquidity properties of hedge funds are appropriate.

We use market projections, rather than actual asset return data for several reasons.

First, the SAA decision is by definition forward-looking, and JPM’s projections represent a

reliable source for long-term investors’ expectations about market developments. Second,

by using projections rather than directly historical data, we avoid engaging in data biases

endemic to the historical returns of many alternative assets. Since markets for these assets

are frail, data is often based on appraisals rather than market trading. Often, alternative

fund managers have the discretion when and how to report historical returns, with the

clear incentive to report returns when they are good. Even when trading occurs, selection

bias is not excluded, as the tendency exists for the market to generate observable returns

when asset prices are high and sellers are willing to enter the market. Furthermore,

empirically, it has been observed that infrequent trading tends to over-smooth historical

return data (Ang, 2014), biasing the asset variance downward.

2.6.2 Optimal Allocation and Welfare Gains from Alternative

Investment

First, we examine if the introduction of one of the alternative asset class leads to a

significant improvement in the CEC of agents following the optimal trading strategy. We

evaluate the starting period CEC at the rebalancing point ξ∗, assuming that strategic

allocations are set at the moment when agents can transact in the illiquid asset class and

will set the illiquid asset allocation at the optimal target. Table 2.5 shows the resulting



Table 2.3: Asset Classes

JPM Class 1/η p µ σ

MM U.S. Cash 0.0 1.00 1.30 0.00
GB U.S. Long Treasuries 0.0 1.00 2.44 14.00
PuE AC World Equity 0.0 1.00 6.17 12.75
HF Diversified Hedge Funds 1.0 0.63 3.82 6.84
Pr Private Equity 4.0 0.22 9.66 18.68
RE U.S. Core Real Estate 9.0 0.11 3.82 6.84
Inf Global Core Infrastructure 55.0 0.02 6.64 10.74

Note. This table shows the expected return and volatility asset class data used to calibrate each of the
consequent strategic allocation cases.

Table 2.4: Asset Classes, Correlations

GB PuE HF PrE RE Inf

GB 1.0 -0.3 -0.33 -0.57 -0.3 -0.34
PuE -0.3 1.0 0.76 0.84 0.4 0.6
HF -0.33 0.76 1.0 0.80 0.37 0.46
PrE -0.57 0.84 0.80 1.0 0.43 0.65
RE -0.3 0.4 0.37 0.43 1.0 0.38
Inf -0.34 0.6 0.46 0..65 0.38 1.0

Note. This table shows the assumed expected correlations between the risky asset classes.
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percentage improvement in CEC relative to the benchmark continuous rebalancing case

(GB+PuE). Figure 2.6 shows the allocation to all assets in the portfolio for each of the

considered cases.

We can see that each alternative asset class provides an economically significant im-

provement in the risk-free equivalent consumption. Most favorable, with 35% improve-

ment, is the combination of traditional asset classes and direct real estate with 16.4%

portfolio allocation. Next in the ranking is the combination with infrastructure invest-

ments, despite its relatively low allocation of 6.3% and despite the long assumed average

waiting time to transact of 55 years.

Furthermore, we can observe that the illiquid model generates diversified portfolios,

thus beating down a major concern that theoretical allocation models may generate overly

concentrated portfolios. Between 6% and 27% are allocated to the private asset classes

when they are available, and in each case, it is optimal to invest in every available asset

class.

Table 2.5: Asset Classes

CEC(ξ∗) Improvement
GB 1.47 -40%
PuE 2.11 -13%
GB+PuE 2.42 0%
GB+Pu+HF 3.15 30%
GB+Pu+PrE 3.05 26%
GB+Pu+RE 3.27 35%
GB+Pu+Inf 3.17 31%

Note. This Table shows CEC at the rebalancing point. The last column shows the improvement in
welfare, measured by the percentage change in CEC relative to the case where investors have access to
government bonds and public equity (GB+Pu).

Figure 2.4 examines the shape of the certainty equivalent as a function of the illiquid

asset holdings. The more concave the curve around the rebalancing point at ξ∗, the faster

the CEC will fall once the illiquid share of wealth floats away from the optimal strategic

allocation. The dashed line shows the threshold below which the illiquid opportunity

becomes less favorable in CEC terms compared to the benchmark case of investing in

bonds and public equity (the GB+PuE case). In all cases, we can see that even though

the CEC is falling once the illiquid asset share moves away from the optimal ξ∗ at the
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Figure 2.5: CEC Profile per Asset Class
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Note. This figure shows the curvature of the CEC profile as a function of the illiquid asset share for each
alternative class scenario. The gray dashed lines represent the CEC of the liquid investment scenario of
holding MM, GB and PuE.

top of the curve, there is still a sizable buffer until reaching the threshold benchmark line.

For example, for the most severe illiquid case of investing in infrastructure (Figure 2.5d),

the optimal share of infrastructure is 6.3%. Still, if the share of the illiquid asset stays

below around 40% in periods when liquidity is not available, the CEC of this portfolio is

still better than the purely liquid portfolio benchmark.
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Figure 2.6: Strategic Asset Allocation
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Note. This figure shows the allocations to alternative asset classes when the ivestor has access to different
allocation universes.

2.7 Conclusion and Further Research

We looked at the presence of stochastic liquidity friction in the asset market and its

effect on optimal portfolio choice for an infinitely lived investor. We found economically

significant effects from the presence of illiquidity most notably on the allocation to the

illiquid asset. The effects correlate with the degree of the friction and manifest in lower

consumption rate, reduced holding of the illiquid asset, high utility costs, and sub-optimal

holding of the liquid asset compared to a market with full liquidity.

We looked at a specific channel through which illiquidity affects wealth, allocation,

and consumption decisions. The investor can consume directly only out of the liquid

asset, and transfers between liquid and illiquid wealth are allowed with uncertain timing.

This gives rise to risks for the investor of not being able to meet consumption objectives

as part of the total investment wealth may stay locked up in illiquid holdings.

As the illiquid asset cannot be traded for periods of random length, it exposes the

investor to risks that are not hedgeable. The investor cannot always adjust allocations
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to account for optimality. Thus when market conditions change, the allocation between

liquid and illiquid wealth is driven away from optimality.

Calibrating the model to market projections used by pension funds and long-term

investors, we find that despite their illiquid nature, private asset classes have the potential

to significantly increase the welfare of investors.

Throughout the paper, we have compared our findings to predictions from the classical

baseline Merton model. We illustrated the solution methods for each of the models and

drew parallels between them. We illustrated for reasonable data used in the SAA process

that the model produces diversified portfolio with reasonable allocations.

Overall, the model presents an intuitive framework for the discussion of liquidity. The

definition of illiquidity is crucial and we discussed a number of alternatives considered

in the literature such as proportional transaction costs and limitations in the quantity of

shares the market can absorb at a given instant. Still, the trading uncertainty and the

split between liquid and illiquid risky wealth considered in this study can capture a very

wide area of private asset classes and can accommodate the long-term SAA decision.

The portfolio choice model presented here provides a way for practitioners, especially

long-term investors in the area of SAA, to embed illiquid investments in their optimization

decision. Yet, further extensions are possible and may be necessary to capture the nuances

of each specific asset class. Fixed costs of investment, for example, are a main concern for

smaller investors, and may be a reason why smaller pension funds tend to shy away from

private assets. Often private assets require particular expertise and organization of the

due diligence process that make such investments unpopular choice. Furthermore, more

research can be put into modeling the common factors that affect returns across asset

classes. Extensions of the liquidity friction could, for example, be relaxed by adding the

possibility of accessing secondary markets, which are still frail for private assets but have

started developing in recent years. Yet, the model presented here provides a sound basis

for refinements.
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2.A Proofs and Derivations

2.A.1 Liquid Market: Martingale Solution

Restating the static problem specified with the Martingale approach in (2.3.3):

sup
Cs

E

∫ ∞

0

e−βsu(Cs)ds

s.t. E

∫ ∞

0

MsCsds = W0M0

(2.32)

The problem implies the Lagrange form:

sup
(Cs)

L = sup
(Cs)

{
E

∫ ∞

0

e−βsu(Cs)ds+ ϕ

(
W0 − E

∫ ∞

0

MsCsds

)}
(2.33)

Apply the first order condition w.r.t. Cs on the Lagrange function and substitute the

CRRA utility.

e−βsu′(C∗
s ) = ϕMs

⇐⇒ C∗
s = Iu′

(
lMse

βs
)

where If (x) stands for the inverse function of f(x). In particular, for the CRRA utility

function, u′(Ct) = C−γ
t implies

C∗
s =

(
ϕMse

βs
)− 1

γ (2.34)

Substitute the optimal consumption in the budget constraint and solve for the La-

grange constant ϕ at the optimum:

W0M0 = W0 = E

∫ ∞

0

MsC
∗
sds = E

∫ ∞

0

MsIu′
(
ϕMse

βs
)
ds

In particular for a CRRA utility:

W0 = E

∫ ∞

0

Ms

(
ϕMse

βs
)− 1

γ ds = (ϕ)−
1
γE

∫ ∞

0

e−
β
γ
sM

1− 1
γ

s ds
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It is useful to define an auxiliary function gt for t < s such that

gt ≡ Et

∫ ∞

t

e−
β
γ
(s−t)

(
Ms

Mt

)1−1/γ

ds (2.35)

and we get

W0 = (ϕ)−
1
γ gt (2.36)

In that case, note that we also have g0 = E
∫∞
0

e−
β
γ
sM

1−1/γ
s ds and we get W0 =

(ϕ)−
1
γ g0. So, we can solve for the optimal Lagrange constant as:

ϕ∗ =

(
W0

g0

)−γ

= W−γ
0 gγ0 (2.37)

and substitute back in the optimal consumption expression

C∗
s =

(
ϕ∗Mse

βs
)− 1

γ

=
(
W−γ

0 gγ0Mse
βs
)− 1

γ

=
W0

g0
e−

β
γ
sM

− 1
γ

s

(2.38)

Then the optimal wealth trajectory W ∗
t can be determined by following the optimal

consumption policy, so we substitute C∗
s in the budget constraint:

W ∗
t =

1

Mt

Et

∫ ∞

t

MsC
∗
sds

=
1

Mt

Et

∫ ∞

t

Ms
W0

g0
e−

β
γ
sM

− 1
γ

s ds

=
W0

g0

1

Mt

Et

∫ ∞

t

e−
β
γ
sM1−1/γ

s ds

=
W0

g0
M

− 1
γ

t e−
β
γ
tEt

∫ ∞

t

e−
β
γ
(s−t)

(
Ms

Mt

)1−1/γ

ds

=
W0

g0
M

− 1
γ

t e−
β
γ
tgt

(2.39)

We can also conveniently write the last equation as
W ∗

t

gt
= W0

g0
M

− 1
γ

t e−
β
γ
t. Note that the right

hand side of this is then equal to the optimal consumption from (2.38). This allows us to
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find current consumption as a function of current wealth, rather than initial wealth. So,

reconciling the two we get that gt is proportional to the optimal wealth-to-consumption

ratio:

C∗
t =

W ∗
t

gt
(2.40)

As indicated above we can also find C∗
s as a function of the information (wealth)

available in time t. It can be derived by restating (2.38), expanding for Mt and combining

the result with (2.39):

C∗
s =

W0

g0
e−

β
γ
sM

− 1
γ

s =
W0

g0
e−

β
γ
tM

− 1
γ

t e−
β
γ
(s−t)

(
Ms

Mt

)− 1
γ

=
W ∗

t

gt
e−

β
γ
(s−t)

(
Ms

Mt

)− 1
γ

(2.41)

Finally, we can solve 2.35 for an explicit form of the gt function.

gt = Et

∫ ∞

t

e−
β
γ
(s−t)

(
Ms

Mt

)1−1/γ

ds

=

∫ ∞

t

e−
β
γ
(s−t)Et

[(
Ms

Mt

)1−1/γ
]
ds

Using the explicit formula for the SDF process Mt = exp
{
−rt− λ′Zt − 1

2
∥λ∥2t

}
we can

simplify gt:

gt =

∫ ∞

t

e−
β
γ
(s−t)Et

[(
e−r(s−t)−λ′(Zs−Zt)− 1

2
∥λ∥2(s−t)

)1−1/γ
]
ds

=

∫ ∞

t

e−
β
γ
(s−t)−(1− 1

γ )r(s−t)− 1
2(1−

1
γ )∥λ∥2(s−t)Et

(
e−(1−

1
γ )λ′(Zs−Zt)

)
ds

We can use the formula for the expectation of the exponent of a normal random variable,

where for X ∼ N(µ, σ2) we have E
(
eαX
)
= e−αµ1+

1
2
α2σ2

. In our case, α = −
(
1− 1

γ

)
and x = λ′(Zs − Zt), where Zs − Zt is a Brownian Motion increment so it is normally

distributed with mean zero and variance ∥λ∥2(s− t). As a result:

gt =

∫ ∞

t

e−
β
γ
(s−t)−(1− 1

γ )r(s−t)− 1
2(1−

1
γ )∥λ∥2(s−t)e

1
2(1−

1
γ )

2
∥λ∥2(s−t)ds =

∫ ∞

t

e−A(s−t)ds =
1

A
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where A is a constant, which can safely be assumed positive for plausible parametrization:

A ≡ β + r(γ − 1)

γ
+

1

2

γ − 1

γ2
∥λ∥2

=
β + r(γ − 1)

γ
+

1

2

γ − 1

γ2
(µ− r1)′(σσ′)−1(µ− r1)

(2.42)

The end result shows that in the infinite-horizon case with intermediate consumption

the ratio of optimal consumption to wealth is a constant. From (2.40) we have that

C∗
t = AW ∗

t . As a result:

c∗t =
C∗

t

W ∗
t

=
1

g(t)
= A =

β + r(γ − 1)

γ
+

1

2

γ − 1

γ2
∥λ∥2 (2.43)

The final step is to solve for π∗, the optimal investment in the risky asset. For this

purpose, we employ (2.39). As gt = g0 = 1/A we can cancel the terms out and get:

dW ∗(Mt, t) = W ∗
t =

W0

g0
M

− 1
γ

t e−
β
γ
tgt = W0M

− 1
γ

t e−
β
γ
t

Applying Ito’s rule then and focusing on the relevant terms we get:

dW ∗(Mt, t) =
∂W ∗

∂t
dt+

∂W ∗

∂Mt

dMt +
1

2

∂2W ∗

∂2Mt

[dMt]
2 (2.44)

= (...)dt+
1

γ
W0e

−β
γ
tM

−1− 1
γ

t Mtλ
′dZt

= (...)dt+
1

γ
W ∗

t λ
′dZt

From the wealth process we also have

dWt = (...)dt+Wtπ
′
tσdZt

The underlying assumption in the Martingale approach (2.8) is that wealth is optimally

invested. Thus, reconciling the two wealth processes one can get the optimal allocation:

1

γ
λ′ = π′

tσ (2.45)

⇐⇒ π∗
t =

1

γ
(σ′)−1λ =

1

γ
(σσ′)−1(µ− r1)
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Using the optimizing consumption and allocation strategies, one can now solve for the

value function as well.

V (W ∗
t ) = Et

∞∫
t

e−β(s−t)u(C∗
s )ds

=
1

1− γ
Et

∞∫
t

e−β(s−t)(C∗
s )

1−γds

=
1

1− γ

(
W ∗

t

gt

)1−γ

Et

∞∫
t

e−
β
γ
(s−t)

(
Ms

Mt

)1−1/γ

ds

=
1

1− γ
gt

γ(W ∗
t )

1−γ

=
1

1− γ

(
1

A

)γ

(W ∗
t )

1−γ

(2.46)

2.A.2 Liquid Market: HJB Equation

Proof. Assuming that the strategies for πs and Cs are set and stay constant for the time

interval s ∈ [t, t+∆t) where ∆t → 0, we can write

V (t,Wt) = sup
(πs,Cs)

∫ t+∆t

t

e−β(s−t)u(Cs)ds+ e−β∆tE
[
V (t+∆t,Wt+∆t)

]
Multiplying both sides by 1

∆t
eβ∆t and rearranging:

eβ∆t − 1

∆t
V (t,Wt) = sup

(πs,Cs)

1

∆t

∫ t+∆t

t

e−β(s−t−∆t)u(Cs)ds+
1

∆t
E
[
V (t+∆t,Wt+∆t)−V (t,Wt)

]
Evaluating the above equation for ∆t → 0, applying the L’Hopital rule, the fact that

1
∆t

∫ t+∆t

t
f(s)ds = f(t) and using the definition of a drift term in a stochastic differential

equation by denoting it as E[dV (t,Wt] we get

βV (t,Wt) = sup
(πt,Ct)

u(Ct) + E
[
dV (t,Wt)

]
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Apply the Itô rule on the stochastic term dV (t,Wt) and substitute in the budget constraint

for dWt

dV =
∂V

∂t
dt+ VWdWt + 1/2VWW [dWt]

2

=
∂V

∂t
dt− CtVWdt+ VWWt(rdt+ π′

t(µ− r1)dt+ π′
tσdZt) +

1

2
VWWW 2π′

tΣπtdt

Then use the fact that E[dZj] = 0, and that in the infinite horizon case ∂V
∂t

= 0.

Consequently we can derive the drift term of the Bellman equation as

E [dV (t,Wt)] dt =

[
−CtVW + VWWt(r + π′

t(µ− r1)) +
1

2
VwwW

2π′
tΣπt

]
dt

which after substitution yields the HJB equation of Proposition (2.20):

βV (t,Wt) = sup
(πt,Ct)

u(Ct)− CtVW + VWWt(r + π′
t(µ− r1)) +

1

2
VwwW

2π′
tΣπt

2.A.3 Illiquid Market: Homogeneity of the Value function

The proof follows from Ang et al. (2014). For CRRA utility in particular, the value

function V (Wt, Xt) is homogeneous of degree 1−γ, i.e. V (kWt, kXt) = k1−γV (Wt, Xt) for

any k > 0. This is a direct consequence of the fact that the budget constraint dynamics

are linear in wealth and have constant moments (independent of the corresponding wealth

states). Then it is reasonable to accept that for an optimal solution {W ∗
s , X

∗
s , dI

∗
s , c

∗
s, θ

∗
s}

also {kW ∗
s , kX

∗
s , kdI

∗
s , c

∗
s, θ

∗
s} will be optimal as well for any k > 0, so that scaling both

liquid and illiquid wealth up or down by the same number does not change the optimal

investment and consumption rates given that we also scale the wealth transfers dI by the

same number.

Then we can write

V (kWt, kXt) = sup
θ,dI,c

Et

 ∞∫
t

e−β(s−t) (kcs(1− ξs)Ws)

1− γ

1−γ

ds

 = k1−γV (Wt, Xt)



2.A Proofs and Derivations 47

As a result

V (Wt, Xt) =

(
1

k

)1−γ

V (kWt, kXt)

Setting k = 1/(Wt +Xt) we get

V (Wt, Xt) = (Xt +Wt)
1−γV ((1− ξ), ξ) = (Xt +Wt)

1−γH(ξ)

where ξ is the portion of total wealth invested in the illiquid asset x and (1 − ξ) is the

portion invested in the liquid asset. The additional proof that H(ξ) is concave is available

in (Ang et al., 2014).

2.A.4 Illiquid Market: HJB Equation

Here we derive the equation (2.24). Starting with the continous time Bellman equation

(2.14) with ξt =
Xt

Wt+Xt
as the proportion of total wealth invested in the illiquid asset and

θt as the proportion of liquid wealth invested in the illiquid asset we get:

βV (Xt,Wt) = sup
(ξt,θt,Ct)

{u(Ct) + E[dV (Xt,Wt)]}

= sup
(ξt,θt,Ct)

{u(Ct) + VWWt(r + (µ1 − r)θt)− VWCt + VXXtµ2

+
1

2
VWWW 2

t θ
2σ2

1 +
1

2
VXXX

2σ2
2 + VWXWtXtσ2σ1ρθ + η(V ∗ − V (Wt, Xt))}

where in the last line the Ito rule for jump processes (see (Shreve, 2004, Chapter 11)) is

applied such that:

E[dV ] = E

[
VwdW

c + VXdX
c +

1

2

(
VWW [dW c]2 + VXX [dX

c]2 + 2VWX [dX
cdW c]

)
+ (V ∗ − V )dN

]
= (r + θt(µ1 − r1))VWWt + CtVW +

1

2
VWWW 2

t θ
2
t σ

2
1

+ VXµ2 +
1

2
VXXX

2σ2
2 + VWXWXθσ2σ1ρ+ η(V ∗ − V (Wt, Xt))
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where we denote as dXc and dW c the continuous portion of the budget constraints and

thus get the corresponding quadratic variation terms:

dW c
t = (r + (µ1 − r)θt)Wdt− Ct + θtσ1WdZ1t

dXc
t = µ2Xtdt+ σ2ρXtdZ1t + σ2

√
1− ρ2XtdZ2t

[dW c
t ]

2 = θ2t σ
2
1W

2dt

[dXc
t ]

2 = σ2
2X

2
t

[dW c
t dX

c
t ] = θσ2σ1ρWX

and denoting the jump size in the value function when a liquidity opportunity arises

as V ∗ − V (Wt, Xt), such that the expected jump size over a short period of time is

η(V ∗−V (Wt, Xt))dt. Note that whenever the Poisson jump process hits, we have inferred

that the value function jumps to V ∗ = (Wt +Xt)
1−γH∗.

This yields the given HJB equation

LC + Lθ + L − βV (Wt, Xt) = 0

where

LC = sup
Ct

{
u(Ct)− CtVW

}
Lθ = sup

θt

{
(r + θt(µ1 − r1))VWWt +

1

2
VWWW 2

t θ
2
t σ

2
1 + VWXWXθtσ2σ1ρ

}
L = VXµ2 +

1

2
VXXX

2 + η(V ∗ − V (Wt, Xt))

To solve for consumption and liquid investment in terms the illiquid asset holdings,

we apply the substitutions

ξt =
Xt

Wt +Xt

V (Wt, Xt) = (Wt +Xt)
1−γH(ξt)
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such that

VW = (W +X)−γ ((1− γ)H(ξ)− ξH ′(ξ))

VX = (W +X)−γ ((1− γ)H(ξ) + (1− ξ)H ′(ξ))

VWW = (W +X)−γ−1
(
−γ(1− γ)H(ξ) + 2ξγH ′(ξ) + ξ2H ′′(ξ)

)
VXX = (W +X)−γ−1

(
−γ(1− γ)H(ξ)− 2(1− ξ)γH ′(ξ) + (1− ξ)2H ′′(ξ)

)
VWX = (W +X)−γ−1 (−γ(1− γ)H(ξ)− 2(1− ξ)γH ′(ξ)− (1− ξ)H ′′(ξ)ξ)

The partial derivatives are implied using the Chain Rule such that ∂ξ
∂X

= 1−ξ
W+X

and

∂ξ
∂W

= − ξ
W+X

, where H ′(ξt) and H ′′(ξt) denote the first and second partial derivatives of

H(ξ) with respect to ξ.

Applying that in the HJB equation we can solve for optimal consumption

c∗t =
(
(1− γ)H(ξt)−H ′(ξt)ξt

)− 1
γ
(1− ξt)

−1

and optimal liquid risk asset investment

θ∗t = −k1H(ξt) + k2H
′(ξt) + k3H

′′(ξt)

k4H(ξt) + k5H ′(ξt) + k6H ′′(ξt)

where k1, .., k6 are known constants defined by the market parameters and the agent’s risk

aversion such that

k1 = −(1− γ)(µ1 − r) + γ(1− γ)σ2ρσ1ξ

k2 = (µ1 − r)ξ − σ2σ1ρξγ(2ξ − 1)

k3 = −σ2σ1ρξ
2(1− ξ)

k4 = −γ(1− γ)(1− ξ)σ2
1

k5 = 2γξ(1− ξ)σ2
1

k6 = ξ2(1− ξ)σ2
1
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2.B Discretization & Numerical Solution Methods

2.B.1 The Bellman Equation

The discretized version of the Bellman Equation for the problem (2.21 - 2.22), with

δ = e−β∆t as the discrete-time discount factor, can be written as 17:

V (Wt, Xt) = max
(θt,dIt,ct∈A)

{u(Ct)∆t+ δEWt,Xt [V (Wt+∆t, Xt+∆t)]} (2.47)

The expectation is conditional on liquid wealth Wt and illiquid wealth Xt. Condition-

ing on t is not needed as we are looking at an infinite horizon problem and both wealth

processes have the Markovian property. Using the homothetic properties of the CRRA

utility function we can write

V (Wt, Xt) = Q
(1−γ)
t H(ξt)

u(Ct) = u(ctWt)

= Q1−γ
t u(ct(1− ξt))

where Qt = Wt +Xt stands for total wealth and Wt = (1− ξt)Qt.

Knowing the function H(ξ) allows us to find the optimal ratio of illiquid to total

wealth ξ∗ as the maximizing value for that function. Our goal is then to write the Bellman

equation and to solve for the control variables in terms of ξt and H(ξt).

The Bellman Equation can then also be written as:

V (Qt, ξt) = max
(θt,ξt,ct∈R)

{u(ct(1− ξt)Qt)∆t+ δEQt,ξt [V (Qt+∆t, ξt+∆t)]}

Q
(1−γ)
t H(ξt) = max

(θt,ξt,ct∈R)
{Q(1−γ)

t u(ct(1− ξt))∆t+ δEQt,ξt [Q
(1−γ)
t+∆t H(ξt+∆t)]}

(2.48)

As illustrated on Figure 2.7, with probability p the agent will be able to trade the

illiquid asset next period and will bring the portion of illiquid wealth to the desired

optimal level ξ∗ = argmaxξ H(ξ). This is done by setting the transfer dIt between liquid
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and illiquid wealth to accommodate optimal asset allocations, so:

dIt =

ξ∗Qt −Xt− with probab. p

0 with probab. 1− p

where Xt− is the level of illiquid holdings just before rebalancing takes place. As a result,

we eliminated the need to solve directly for dIt by taking into account that the agent will

set ξt+∆t = ξ∗ whenever trading is possible. If trading is not possible, the agent cannot

rebalance and is stuck with sub-optimal levels of illiquid holdings ξt+∆t = Xt+∆t/Qt+∆t,

and the ratio will float away from last period’s value as the prices of the two risky assets

move erratically.

Combining those two states with the corresponding realization probabilities, we can

use the law of iterated expectations18 to drop the conditional expectation with respect to

ξ.19

Q
(1−γ)
t H(ξt)
=

max
(θt,dIt,ct∈R)

{
Q

(1−γ)
t u(ct(1− ξt))∆t+ δ

(
pEQt [Q

(1−γ)
t+∆t ]H

∗ + (1− p)EQt [Q
(1−γ)
t+∆t H(ξt+∆t)]

)}

Canceling out wealth from both sides of the equation yields desired form of the equa-

tion. Note, that by canceling out Qt and by embedding it in the expectations the condi-

tional part of the expectation with respect to Q has been dropped:

(2.49)

H(ξt) =

max
(θt,ξt,ct)

{
u(ct(1− ξt))∆t+ δ

(
pH∗Eξt

[
R1−γ

q,t+∆t

]
+ (1− p)Eξt

[
R1−γ

q,t+∆tH(ξt+∆t)
])}

where Rq,t+∆t is the growth of total wealth in the next period net of current consumption,

and ξt+∆t is the holdings ratio given that rebalancing is not possible. The laws of motion

18The law as applied here states that E(X|Y1) = E(E(X|Y1, Y2)|Y2).
19A similar approach to decomposing the Bellman equation is used also by Moore and Young (2006).

They apply it as part of a Markov Chain approximation method in order to solve a portfolio choice
problem with insurable loss which occurs with a Poisson probability.
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Figure 2.7: State Transition Dynamics
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This chart illustrates the dynamics behind the optimal choice problem. In the coming period, the illiquid
asset share floats freely to ξt+∆t. With probability p the agent can trade in the illiquid asset and can set
it back to the optimal target of ξ∗ by maximizing the known function H(ξ). With probability 1− p the
agent cannot trade and is stuck with the illiquid asset share of ξt+∆t.

then for these two variables are such that:

Rq,t+∆t =
Qt+∆t

Qt

=
WtRw,t+∆t +XtRx,t+∆t

Qt

= (1− ξt)Rw,t+∆t + ξRx,t+∆t

ξt+∆t =
Xt+∆t

Qt+1

=
Xt

Qt

Xt+∆t

Xt

Qt

Qt+∆t

= ξt
Rx,t+∆t

Rq,t+∆t

(2.50)

Where Rw,t+∆t and Rx,t+∆t are the discretized gross returns on liquid and illiquid

wealth respectively after factoring out consumption. Using Euler time-discretization of

the continuous stochastic process we get:

Rw,t+∆t =
Wt+∆t

Wt

= (r + (µ1 − r)θt − ct)∆t+ σ1

√
∆t∆Z1,t

1 +Rx,t+∆t =
Xt+∆t

Xt

= µ2∆t+ σ2ρ∆Z1,t + σ2

√
1− ρ2

√
∆t∆Z2,t

(2.51)
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where ∆Z1,t and ∆Z2,t are two independent standard normal random variables. We use

a Gaussian quadrature approach for the space-discretization of the normal distribution

and for the evaluation of the expectations in the Euler equation.

The discretized Bellman equation can then be solved through value function iteration

combined with standard numerical techniques. In Appendix 2.B.3 we show the algorithm

used for the purpose.

2.B.2 Trading Probability

The Poisson process is a counting process, which itself is defined as a stochastic process

{Nt, t ∈ [0,∞)} where Nt represents the total number of events that have occurred by

time t, such that Nt ≥ 0, N(t) is integer valued and for t1 < t2, Nt1 ≤ Nt2 and for t1 < t2,

Nt2 −Nt1 equals the number of events that occur in the interval (t1; t2]. The time between

Poisson events becomes stochastic and in fact can be shown to be exponentially distributed

with rate 1/η, where the exponential density is given by f(x) = 1
η
e−x 1

η , x ≥ 0. See e.g.

Ross (2007) for further discussion.

We know that a Poisson process has stationary and independent increments, where the

number of events that occur during any time increment of length ∆t is Poisson distributed

with mean η∆t. Formally, for any t ≥ 0,∆t > 0, the probability of n events occurring

can be written as:

P (Nt+∆t −Nt = n) = e−η∆t (η∆t)n

n!
, n = 0, 1, ...

19To provide some intuition on the discretization step, note that the discrete Bellman equation

V (Wt) = sup
(πt,Ct)

{u(Ct)∆t+ e−β∆tE[V (Wt+∆t)]}

can be shown to converge to its continuous counterpart for ∆t → 0. Multiply the equation by eβ∆t,
subtract V (W ) from both sides and divide by ∆t and this results in:

eβ∆t − 1

∆t
V (W ) = sup

(πt∈Rd,ct≥0)

{u(ct) +
1

∆t
Et[V (Wt+∆t)− V (Wt)]}

Let ∆t → 0, then eβ∆t → 1 and also by the L’Hôpital rule we have that eβ∆t−1
∆t → β. As a result

1
∆tEt[V (Wt+∆t)− V (Wt)] → Et[dV ] which makes discretized equation equivalent to the continuous time
version of (2.15).
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The probability of having a trading opportunity over the next period ∆t can be cali-

brated through the intensity η of the Poisson process which determines the trading oppor-

tunities for the illiquid asset. Poisson arrivals are a common way to model search frictions

following the seminal paper by Diamond (1982). Note one major difference between the

Brownian Motion used to drive the asset return dynamics and the Poisson Process used to

drive the liquidity dynamics: in the former, the size of the movement and thus its variance

is time-dependent, while in the latter, the probability of occurrence is time-dependent.

We can then calibrate the illiquid asset’s trading probability as the Poisson probability

of having at least one trading event over time period ∆t, given that the average time to

wait for a trading opportunity over a year is 1/η, and the average number of trading

opportunities per year correspondingly is η. In that case:

p = P (Nt+∆t −Nt ≥ 1) = 1− P (Nt+∆t −Nt = 0) = 1− e−η∆t (2.52)

Figure 2.8 illustrates this functional relationship.

Figure 2.8: Relationship between p and η
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The plot shows the connection based on the probability to trade p in an illiquid asset within a year and
η, the average waiting time in years between trades.

2.B.3 Value Function Iteration

Based on the discretization from Section 2.B.1, we can solve the portfolio choice dy-

namic problem through value function iteration. Discretizing ξ and simulating the system

one period ahead will allow us to iterate (2.49) until the iterative approximation of the

value function H(ξ) converges. The procedure will eventually yield a numerical approx-
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imation of the value function and the optimal solution for the policy functions c(ξ) and

θ(ξ). So, the goal is to find the vector h̃ = [h1, h2, ..., hN ] on a grid ξ̃ which best approxi-

mates the function H(ξ). We use the following iterative procedure:

Initialization: Discretize the random space (the random variables ∆Z1 and ∆Z2 in

(2.51)) through a simulation or strategically selected (Gaussian) quadrature points.

Select an approximation grid of N gridpoints for ξt: ξ̃ = {ξ1, ..., ξN} ∈ [0; 1), j =

1, .., N . We use N = 20. Select a class of approximating functions h(a; ξ̃) which will

approximate the true value function H(ξ) and initialize the functional parameters

a. Select an initial maximum of the value function h∗.20As a starting point for the

iteration we use the analytical two-asset Merton solution. We can then initiate the

following iterative algorithm.

1. Optimization: For each ξj in the grid compute optimal consumption and liquid

asset allocation:

c∗,k, θ∗,k+1 =

argmin
{
u(c(1− ξj))∆t+ δ

(
ph∗E

[
q̂(c, θ, ξj)

1−γ
]
+ (1− p)E

[
h
(
ak; ξ̂(c, θ, ξj)

)
q̂(c, θ, ξj)

1−γ
])}

where ξ̂() and q̂() are next-period’s dynamics calculated through (2.50), and k =

1, ..., p is a counter measuring the iteration run.

2. Update: For each ξj and the optimal control policies found in the previous step

update values of the value function that lie on the grid. Update the fit of the

approximation function h(ak+1; ξ) based on the new values. Update h∗,k+1 =

argmaxξ h(a
k+1; ξ).

3. Stopping: The algorithms stops if
∥∥ln(h(ak+1; ξ)

)
− ln

(
h(ak; ξ)

)∥∥2 < ϵ, otherwise

we go to Step 1. I use ϵ = 0.16

The expectation operator in the second step is evaluated through multi-variate quadra-

ture (Judd, 1998; Cai et al., 2013; Cai and Judd, 2014).

20We have successfully tried simple polynomials and cubic splines for the purpose. Eventually, the later
turned out to provide more flexibility, so all the shown results are derived through this functional form.





3

Intergenerational Risk Sharing with

Market Liquidity Risk

3.1 Introduction

There are well-known hurdles in a free market economy to sharing risk between gen-

erations that are born over distinct periods and thus are subject to different economic

prosperity over their lifetimes. Due to the natural physical limitation of a finite life-

time, individuals cannot directly participate in risk that materializes before or after they

become economically active. Combined with a lack of a strong bequest motive this cre-

ates a classical incomplete market inefficiency. A policy intervention that sets contingent

transfers between young and old generations can improve social welfare by widening the

risk-bearing pool in the economy and thus increasing its capacity to bear risk.1

However, any illiquidity that comes in the form of uncertain transaction cost to be

paid when selling an asset from the lifetime savings mix of households has the potential

to lower the benefits of such transfers. An increase in illiquidity, first of all, discourages

individuals from holding risky assets, as the transaction cost that could be incurred when

0Acknowledgements: I would like to thank Roel Beetsma for the support and the valuable discussions
which made the current paper possible. The paper draws extensively on those discussions. I am also
thankful for the useful remarks and comments from Sweder van Wijnbergen, Christian Stoltenberg,
Alessia Russo, Hans Schumacher, Agnieszka Markiewicz, Albert Jan Hummel and all participants in the
MInt Macro Seminar at the University of Amsterdam, and the Tinbergen Institute Job Market seminars.

1See Merton (1981); Gordon and Varian (1988); Shiller (1999); Ball and Mankiw (2007); Gottardi
and Kubler (2011); Lancia et al. (2020). Beetsma and Romp (2016) provide an overview of the growing
literature of intergenerational risk sharing, its policy relevance, and institutional arrangements.
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exiting the investment lowers the expected return from the asset. Second, it compresses

the distribution of returns and thus lowers the range of asset returns that can be realized2.

As a result, there is less financial risk to be shared between generations, and the potential

benefits from sharing the risk between generations is lower. We find that higher illiquidity,

measured as higher expected transaction costs in selling an asset, requires higher levels

of risk sharing to compensate for the loss of sensitivity of the risk transfers to the asset

variance. Nevertheless, the total improvement in welfare compared to a situation of no

risk-sharing decreases with the level of illiquidity.

The fields of intergenerational risk sharing (IRS) and asset illiquidity overlap natu-

rally when we consider the typical structure of lifetime savings and investments, and the

institutions that manage them. First, long-term investors are often seen as well-poised to

bear liquidity risk3. In the search for diversification and return potential, pension funds in

the developed world tend to allocate significant portions of their portfolios to alternative

asset classes such as hedge funds, infrastructure, real estate, and private equity funds4.

These alternative investments impose a liquidity cost that can be a substantial source of

investment risk. Second, housing wealth tends to account for a significant share of the

retirement wealth of individuals worldwide and the marketability of housing is found to

be a significant factor affecting the well-being of retirees5.

Nevertheless, there is currently, to the best of our knowledge, no other study that ex-

plores the intersection between risk sharing (intergenerational or otherwise) and market

illiquidity. This is a significant gap in the literature, given that the implications of illiq-

uidity are well known for portfolio choice (Ang et al., 2014; Constantinides, 1986; Acharya

and Pedersen, 2005), as well as for the conduct of fiscal (Kaplan and Violante, 2014) and

monetary (Sousa, 2010; Chatziantoniou et al., 2017) policy. In this study, we connect the

personal finance aspect of illiquidity to its policy relevance.

2Assume a fixed proportional liquidation cost l̄ ∈ (0, 1) exists such that the realized returns net of
liquidation costs are measured as R(1− l̄). The variance of the realized returns will be (1− l̄)2Var(R) <
Var(R). The treatment of illiquidity here is more nuanced (see Section 3.3.2) but follows this line of
thinking.

3Academically, the point has been made for example by Ang (2014); Amihud and Mendelson (1991);
Gârleanu (2009)

4See, for example, data from OECD (2019); PensionsEurope (2018)
5Refer to Lusardi and Mitchell (2007); Crawford and O’Dea (2020); Shao et al. (2019); Nakajima and

Telyukova (2020); Munk (2020)
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We define illiquidity in an ex-ante sense as the expected proportional cost that needs

to be paid to liquidate a risky investment. In terms of modeling the risk of illiquidity, we

use a simple on and off shock that materializes with a given probability each period. This

relates to the approach of Acharya and Pedersen (2005) who define illiquidity as a latent

factor with a time-varying cost component in order to establish testable hypotheses of

the way liquidity risk affects asset prices. The binary liquidity cost assumed in this paper

can then be seen as a wedge between the fair value of the asset and its realizable market

value in the spirit of Brunnermeier and Pedersen (2009).6

Our modeling approach relates to the fact that investments in alternative asset classes,

such as private equity, often suffer large haircuts on their NAV when taken to the sec-

ondary market (Nadauld et al., 2019; Bollen and Sensoy, 2015; Albuquerque et al., 2018).

It can also be seen as an expression of the latent costs associated with illiquidity, such as

foregone earnings or diversification loss due to trading delays. Note that we look at the

liquidity of the investor’s portfolio around the time of switching from old age to young

age. We ignore any illiquidity effects occurring before that. Expanding the model with

more granular time periodicity, however, could also take that into account.

We develop a stylized framework with two overlapping generations (OLG) to consider

the outlined problem. Wealth shocks arise from the returns of risky assets in the savings

portfolio of individuals and from liquidation costs when the portfolio is sold to fund

retirement consumption. Shocks each period occur before the current young have accessed

the capital markets, and before they have made any investment decisions. The young

start with labor endowment that is not affected by the current shock while the old bear

financial risk on their savings. In a fully decentralized market economy, the young are

making consumption, savings, and allocation decisions that optimize their lifetime utility,

while the old consume from the accumulated retirement wealth.

This arrangement leaves room for an institutional designer to intervene and enforce

transfers between the young and the old, which are contingent on the accumulated return

of the old generation’s savings portfolio. The transfers are designed from an ex-ante point

6Brunnermeier and Pedersen (2009) distinguish between market liquidity, the ease with which an asset
can be placed on the market, and funding liquidity, the ease with which outside funds can be accessed
once a liability shock hits on an agent’s balance sheet. In this paper, liquidity is of the first kind as
it concerns only the marketability of accumulated assets at a particular point in the lifetime of agents
associated with retirement age.
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of view and welfare in the economy is evaluated before any shocks materialize. The trans-

fers are linear in the realized return on the individuals’ retirement portfolio after paying

out any liquidation costs and act as a partial insurance on retirement wealth, covered

by the young. Once aware of the policy implementation, utility-optimizing individuals

adjust their savings mix by factoring in the regulated transfer policy, giving rise also to

indirect welfare effects.

We show that the link between optimal risk-sharing and risk itself can be split into

two opposing effects. On one hand, a policy that engages the young in the shock that

otherwise affects only the old widens the pool of people who can participate in that shock

and increases the risk-bearing capacity of the economy. At the same time, this imports

additional risk in the youth’s labor endowment, thus extending the horizon over which

individuals bear risk. Cumulatively, the latter effect also leads to more risk in their old

age. The larger the variance of the asset is, the more the second effect dominates, and

thus the lower optimal risk sharing needs to be. Similarly, the lower the asset variance,

the more the first effect dominates, and the higher the optimal risk sharing should be.

We abstract from the particularities of the institutions through which IRS occurs.

In reality, the contingent transfers between young and old, as modeled here, could be

the result of several arrangements. First, risk sharing rules could be embedded in a

collective pension system, for example, through indexation of the benefits received and

contributions paid based on the funding ratio of the pension plan (Cai et al., 2013; Gollier,

2008). Alternatively, they could be implemented through counter-cyclical adjustments in

the tax code in combination with adjustments to the public debt, through the pay-as-

you-go pension system, or by some combination of each of these (Chen et al., 2016).7

As a benchmark risk-sharing case, we look at a planner solution, where the planner

invests on behalf of the young and allocates consumption centrally between all young and

7One can refer to the existing literature on details about the optimal institutional arrangements of
IRS. Beetsma and Romp (2016) provide an overview of the institutional side; Bovenberg and Mehlkopf
(2014) review the literature on funded pension schemes, exploring the overlap between life-cycle investing
and IRS, elaborating on commitment issues, problems of intergenerational fairness, and sustainability
of the pension contract. Gollier (2008) (revisited by Schumacher (2021)) looks at a collective pension
plan which allocates funds between a risky and a riskless asset and pays out benefits on a rolling-window
basis. Similarly, Cui et al. (2011) look at risk sharing within funded plans with defined-benefit and hybrid
structures, where IRS occurs through adjustments in the contribution and benefit levels.
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old generations. In the spirit of Gollier (2008) this allows the clever use of wealth buffers

to spread risk between generations that do not necessarily live in the same time periods.

Overall, we find that IRS mechanism increases the young’s capacity to bear liquidity

risk and allows them to allocate more wealth to illiquid assets compared to the case

when those individuals are saving in isolation from the shocks that other cohorts are

experiencing. We extend the results from earlier models which show that IRS increases

the demand for risky assets (Gollier, 2008; Campbell and Nosbusch, 2007) by showing

that the same effect holds for illiquid assets as well.

Quantitatively, we show that contingent transfers between two generations, as a second-

best implementation of intergenerational risk-sharing (IRS) to what a central planner can

do, can achieve a welfare improvement relative to the no-risk sharing case that is not

too far from the benchmark first-best solution. For a reasonable parametrization based

on global asset returns, we find that when the young can borrow, a policymaker should

set risk sharing to 5% of the asset returns variation for risky liquid assets (and 2.1% for

illiquid risky assets if agents are constrained), achieving 36% welfare improvement (17%

improvement in the constrained case) relative to the no-risk-sharing case, when welfare

is measured in the ex ante sense, i.e. before the realization of any shocks. Illiquid risky

holdings by individuals increase by 61% on average after they adjust their portfolio to the

policy. The benchmark planner case, on the other hand, realizes a welfare improvement

of 48% by being able to spread risk among infinitely many generations.8

The paper continues as follows. Section 3.2 provides a short literature overview of two

separate fields relating to the current paper, IRS and portfolio choice with illiquidity fric-

tions, and puts the current paper in perspective. Section 3.3 provides the basic structure of

the overlapping generations in the economy, defines the social welfare function, constructs

the illiquid asset and discusses its properties. Section 3.4 defines the benchmark model

with an infinitely lived planner. Section 3.5 redefines the problem for a decentralized

economy where each generation solves its own savings-consumption-allocation optimiza-

tion, while a policymaker determines the transfer policy between young and old. Section

3.6 explores the main mechanisms of risk sharing by exploring the analytical solutions to

several simplified cases which illustrate the benefits of pooling risks versus the costs of

8Refer to tables (3.3) and (3.2) for further details.
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compounding risky returns over time. This provides a rationale for role of asset variance

and illiquidity in the context of IRS. Finally, Section 3.7 provides a welfare analysis and

discusses the quantitative results.

3.2 Relation to the Literature

Several pioneering studies provide the theoretical backing for this paper. Gordon

and Varian (1988) show the main mechanisms behind IRS and illustrate the possibility

for welfare improvements for all generations together with the constraints that such a

policy needs to handle. Even though their argument was initially developed to provide

a non-Keynesian justification for the use of debt and social security transfers towards

unlucky generations as a counter-cyclical policy, it also provided economic intuition for

the existence of social security systems as risk-sharing mechanisms. We embed their

arguments in a more formal OLG set-up, introducing a clear-cut welfare rule for the

policymaker to set optimal policy, and add illiquidity risk to the investment asset.

Shiller (1999) argues that designing a social security system is a problem of creating a

tool for optimal risk management, placing it naturally in the realm of theoretical finance

and asset pricing. The planner problem is non-trivial compared to the standard problem

of designing individual optimal asset allocation under risk. The risk-sharing system has

to be implemented in a way that generations that are either not born yet or are not

economically active, can participate in shocks currently occurring. We extend that point

of view, arguing that the risk-sharing properties of the social security system should also

be able to consider illiquidity of savings.

Within a general equilibrium framework, Ball and Mankiw (2007) develop the rationale

for a funded social security trust that is sensitive to equity shocks in order to achieve an

efficient allocation of risk across generations. Lancia et al. (2020) look at risk sharing

between generations when the social planner policy cannot be enforced and needs to

ensure that the participation constraints of each cohort are satisfied. In that case, a

trade-off emerges between the efficiency of the policy and its sustainability over time.

The current paper draws from their formulation of the policymaker welfare function while

keeping the social policy mandatory and embedding it in a richer asset allocation context.
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Merton (1981) develops the rationale that social security, if appropriately designed, can

indirectly allow people to trade some of their human capital for partial old-age market-

risk insurance. IRS policies thus allow agents to participate early in their lifetime in

lotteries that otherwise materialize in old age. In aggregate, this widens the pool of

risk participants each period and expands the risk-bearing capacity of the economy. The

modeling framework in the current paper is different, but we also come to the same

conclusion and extend the known results to the case where market illiquidity is present.

We relate also to the literature on portfolio choice with illiquidity and with transaction

costs. In Ang et al. (2014), the illiquid asset is marketable only when liquidity materializes

with the arrival of a Poisson shock. We relax this assumption by allowing access to a

secondary market by accepting a price discount on the fair value of the asset, rather than

barring trading altogether. This makes the properties of the asset more suitable to a

two-period model of lifetime dynamics. Calibrating a period to 30-years, an individual

should be able to always sell the illiquid asset within that time frame, what will vary is

only whether a liquidation cost is paid or not. At the same, we keep the risk component

that illiquidity has, deviating from the common assumption of fixed proportional cost in

the transaction cost literature (Magill and Constantinides, 1976; Cai et al., 2013).

We also loosely relate to the macro literature of durable investments with life-cycle

portfolio choice, and their policy implications. Kaplan and Violante (2014) in particular

look at consumers’ response to a fiscal stimulus when holding non-durable assets, and find

that the ratio of housing to total wealth has significant implications on the effectiveness

and timely response consumption demand to fiscal expansions. We add in the discussion

the risk properties of liquidity and provide another regulatory perspective.

3.3 The Model

3.3.1 Assumptions

Time is discrete and indexed by t ∈ {0, 1, 2, 3 . . . }. There is a small open overlapping

generations (OLG) economy, where each generation lives for a fixed duration of two peri-

ods (youth and old age), the two cohorts are of equal sizes, each cohort has homogeneous



64 Intergenerational Risk Sharing with Market Liquidity Risk

preferences and receives the same fixed endowment, there is no population growth, and

there is no technological progress. All stochastic variables are defined by the probability

space (Ω,F ,P) and all variables indexed by t are measurable w.r.t. the filtration Ft

which defines all public information. Agents form expectations conditional on current

information and there is no information asymmetry between agents and policymakers.

Individuals have time-separable discounted lifetime utility of consumption which can

be written as:

uy(Cy,t) + βEtuo(Co,t+1)

where uy(.) and uo(.) stand for the utility of consumption of the young and the old, with

positive and diminishing marginal utility of consumption, and β ∈ (0, 1] is a subjective

lifetime discount factor for the agent. In the general case, we assume that the Inada

conditions for utility hold, even though in Section 3.6, we break this assumption for

illustrative purposes.

At the beginning of their lifetime, individuals receive a fixed endowment Y . The

endowment which is not consumed can be saved and transferred for consumption in the

next period through several investment opportunities. First, agents can invest in a risk-

free asset with fixed gross return of Rf > 1. Second, a frictionless market for N risky

assets exists, where the price of each asset i follows a stochastic process P s,i
t , and its gross

return is defined as
P s,i
t

P s,i
t−1

= Rs,i
t = µs,i + ϵs,it

Third, an illiquid market exists where an asset can be bought at a price P x
t but can

only be sold at the price P x
t (1 − lt) where the liquidity cost lt evolves independently of

any asset shocks ϵs,it and ϵxt , and follows an i.i.d. stochastic jump process such that

lt =

0 with probab. p

l̄ with probab. 1− p

(3.1)

The proportional liquidity cost l ∈ (0, 1) stands for the price discount over the fair

value of the asset at the time of the sale in case an illiquidity shock hits. Illiquidity is thus

asymmetric and presents only downside risk. Short-selling of risky assets is not allowed.
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3.3.2 Properties of the Illiquid Return

The gross return of the illiquid asset, excluding the effect ot illiquidity itself, is defined

as Rx
t = µx + ϵxt and we have

[
ϵ1t , . . . , ϵ

N
t , ϵ

x
t

]′
∼ IID(0,Σ). In a two period setting,

assuming that agents buy the illiquid asset when young and sell it when old, we can write

the after-liquidation return as:

R̃x
t =

P x
t (1− lt)

P x
t−1

= Rx
t (1− lt) = µx − µxlt + ϵxt (1− lt)

(3.2)

The illiquidity component is thus first of all a drag on the expected return of the asset.

At the same time, the illiquidity shock interacts with the asset-specific risk component ϵxt ,

and whenever a liquidity shock hits, it lowers the magnitude of the asset specific return.

Note that we can also write the gross return of the asset in a way that isolates the

expected return from the noise term, where each of the two take into account the effect

of illiquidity:

R̃x
t = µ̃x + ϵ̃xt (3.3)

with

µ̃x ≡ E(R̃x
t ) = µx(1− E(lt))

= µx

(
p+ (1− l)(1− p)

)
ϵ̃xt ≡ Rt(1− lt)− µ̃x

(3.4)

The liquid asset then will be a special case with either p or l set to zero.

Formally, we define ex-ante illiquidity as the expected proportional cost that needs to

be paid when selling the illiquid asset:

E(lt) = l(1− p) (3.5)

As a result, ex-ante illiquidity will be increasing in the liquidation cost of the asset l and

will be decreasing in the probability of incurring this cost p. Ex-post illiquidity, on the
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other hand, is quantified as l and measures the proportional transaction cost that needs

to be paid given that the illiquidity risk has materialized. Going forward, unless specified

otherwise, the illiquidity considered here refers to the ex-ante type.

We can then isolate several properties of the illiquid asset return. First of all, the

expected return of the illiquid asset is monotonously decreasing with the severity of the

liquidity friction (as l increases or p decreases). This is clear from (3.4). Taking first

derivatives, we get ∂µ̃x

∂l
= l < 0 and ∂µ̃x

∂p
= p− 1 > 0.

Second, as the asset becomes more illiquid, the expected quadratic variations in the

asset returns become smaller. To see that, note that the independence between the

illiquidity shock lt and the shock ϵt implies that

E
(
(R̃x

t+1)
2
)
= E

(
(Rx

t+1)
2(1− lt+1)

2
)
= E

(
(Rx

t+1)
2
)

E
(
(1− lt+1)

2
)

=
(
µ2
x + σ2

x

) (
p+ (1− l)2(1− p)

) (3.6)

Then, the partial derivatives of E(R̃t+1)
2 are:

∂E
(
(R̃x

t+1)
2
)

∂p
=
(
µ2
x + σ2

x

)
l(2− l) > 0

∂E
(
(R̃x

t+1)
2
)

∂l
= 2

(
µ2
x + σ2

x

)
(1− l)(p− 1) < 0

(3.7)

.

The effect of illiquidity on the variance of the asset returns is unclear in general, as

both the expectation and the expected variation of asset returns are decreasing. To see

that formally, note that

σ̃2
x ≡ Var

(
R̃x

t

)
= E

(
(R̃x

t )
2
)
−
(

ER̃x
t

)2
= E

(
(Rx

t )
2(1− lt)

2
)
− (ERx

t )
2 (E(1− lt))

2

= (σ2
x + µ2

x)(p+ (1− p)(1− l̄)2)− µ2
x(p+ (1− p)(1− l))2

Even though in general the effect is ambiguous, Figure 3.1 illustrates that for a reason-

able parametrization the variance will be monotonously decreasing in illiquidity. Figure

3.2 illustrates how the distribution of the illiquid asset return is formed by mixing the
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distribution of the ex-post liquid returns Rx
t and the distribution of the ex-post illiquid

returns Rx
t (1 − l). The higher the liquidation cost l, the more the distribution of R̃x

t

(illustrated with the dashed-line distribution) is shifted to the left, and the lower is the

resulting range of possible returns. At the same time, when the trading probability p is

low, the ex-post illiquid returns distribution dominates when forming the distribution for

R̃x
t and in the extreme case of p approaching one, the ex-post and ex ante distributions

will merge.

Figure 3.1: Illiquid Return Variance
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Note. This plot shows the effect of varying the liquidity parameters to the variance of asset return R̃x
t if

Rx
t is log-normally distributed with annualized mean .061 and variance of .156, and the asset is held for

30 years.

Figure 3.2: Gross Return with Illiquidity
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Note. This figure illustrates the effect of the stochastic illiquidity cost lt on the gross return distribution
of the illiquid asset. The dotted line shows the distribution of the ex-post liquid returns. The dashed
line shows the ex-post illiquid returns, where the cost lt = l is paid in all scenarios. The solid line in
each case shows the ex-ante illiquid returns R̃t = Rt(1 − lt), where lt is unknown in advance. Returns
are log-normally distributed with µx = .061 and σx = .156, and the asset is held for 30 years.
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Finally, note that the combined term ϵ̃x, satisfies the same properties that are otherwise

natural for a liquid asset, regardless of the liquidity parameters:

E(ϵ̃x) = 0

E((ϵ̃x)2) = E(ϵ̃xR̃x
t ) = Var(ϵ̃xt ) ≡ σ̃2

x

(3.8)

3.3.3 Social Welfare

Welfare is quantified ex-ante through the unconditional expectation with respect to

all generations’ lifetime utilities in all possible states of the world, over all future time

periods. The resulting social welfare is the discounted sum of the weighted expected

utilities of all future young and old generations:

V0 = E

(
∞∑
t=1

δt−1

(
β

δ
uo(Co,t) + uy(Cy,t)

))
(3.9)

where δ < 1 is a policy-relevant discount factor and β
δ
keeps the relative social weights

between young and old utility fixed between time periods910.

It is worth noting that in order to make the problem tractable, we abstract from some

real-world complexity. First of all, we look at a partial equilibrium setting, justified by the

assumption of a small open economy, such that world market returns are left unaffected

by investment or consumption decisions within the home country. Thus, asset market

returns are assumed to be exogenous and any possible general equilibrium effects on asset

prices and on economic growth once the risk sharing system is implemented are ignored.

Also, we ignore any spillover effects from the investment. In reality, potential investments

in illiquid assets which finance for example infrastructure projects could have a positive

spillover on social welfare. Second, we concentrate on risk coming from asset holdings

and ignore labor income risk and possible correlations between labor and financial market

9Equivalently, we can also write the expectation as conditional on all information that the policymaker
has available in period t = 0, as only consumption happening after period zero is policy relevant, and
shocks happening in period one are independent from the realizations in period zero.

10This welfare specification is similar to Lancia et al. (2020) who use it in a social planner setting to
develop an optimal intergenerational insurance rule under a voluntary scheme. The approach relates back
to Ball and Mankiw (2007).
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earnings11. Third, we focus on a purely utilitarian approach and ignore any political

risks on keeping the policy. It is well known that risk sharing is welfare improving for

all future generations on an ex-ante basis (before shocks materialize), and not necessarily

beneficial for a particular generation on an ex-post basis, as paying compensation after

the shock has materialized will make a particular generation worse off (Ball and Mankiw,

2007). Here, generations pre-commit to the scheme before they are born, and participation

is mandatory. In reality, there is an incentive for the young to walk away from the

arrangement if a negative asset return shock occurs, or the old to walk away if a positive

asset return shock occurs. Finally, following the standard approach of a representative

agent, we abstract also from any heterogeneity within cohorts.

3.4 Planner Problem

First, we consider a mechanism for optimizing social welfare, defined through an in-

finitely lived planner. The planner is taking over the young generation’s labor endowment

and is providing consumption for the young and the old every period. Any residual is

invested on the market with allocations optimally set across the available assets. The

resulting problem is in line with Gollier (2008), whose planner simultaneously optimizes

over retirement benefits and the investment allocation for multiple overlapping genera-

tions. Two generations are used to illustrate the dynamics of the problem, even though

in theory the model can be extended to cover multiple generations. In contrast to Gollier,

we model consumption for the young in addition to retirement (old-age) consumption to

capture more completely lifetime motives of investment. The illiquid asset here extends

the investment universe of Gollier’s problem and provides an additional dimension for

asset allocation.

Using liquid and illiquid wealth as separate state variables is common in the portfolio

choice literature whenever there is a transaction cost (Cai et al., 2013) or a liquidity friction

(Ang et al., 2014) associated with one of the assets. We follow the same convention here.

The planner allocates aggregate savings between liquid wealth Wt (consisting of a risk-

11Models relating labor income risks and investment shocks have been developed, for example, by
Hemert (2005); Krueger and Kubler (2006); Boelaars and Mehlkopf (2018)
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free liquid investment and a risky liquid investment St) and illiquid wealth Xt, which is

managed by withdrawing amounts D+
t and investing amounts D−

t . Note that modeling

the flows into and out of illiquid wealth as separate choice variables allows the introduction

of asymmetric liquidity costs while also allowing for differentiability of the objective with

respect to all decision variables. Here whenever some amount is withdrawn from illiquid

wealth, the stochastic proportional cost lt has to be paid for being able to access the

market.

This gives rise to the intertemporal wealth constraints:

Wt+1 =
(
Wt + Y − Cy,t − Co,t −D+

t +D−
t (1− lt)

)
Rf + S ′

tr
s
t+1

Xt+1 =
(
Xt +D+

t −D−
t

)
Rx

t+1

(3.10)

where rst+1 = Rs
t+1 − Rf1 is the vector of excess returns on the liquid risky assets, and 1

is a vector of ones.

Denoting rxt+1 = Rx
t+1 − Rf as the excess return on the illiquid asset, we can see that

total wealth Qt+1 = Wt+1 +Xt+1 evolves as:

Qt+1 = (Wt + Y − Cy,t − Co,t)R
f + (D+

t −D−
t )r

x
t+1 + S ′

tr
s
t+1 +XtR

x
t −D−

t ltR
f

Wealth is thus being destroyed each period when the liquidity shock hits through the

term D−
t ltR

f , as the planner needs to pay the costs of withdrawing from illiquid wealth

instead of earning the risk-free rate on this investment.

The solvency region A is defined by several constraints. First, borrowing is allowed up

to a limited amount L ≥ 0, so that aggregate consumption and investment do not exceed

the available liquid wealth and income by more than the limit amount. Since the planner

needs to stay solvent in all states of nature, the withdrawal amount is corrected by the

maximum liquidity costs l̄ that can be paid:

Cy,t + Co,t +D+
t −D−

t (1− l̄) + S ′
t1 ≤ Wt + Y + L (3.11)

Second, the illiquid asset cannot be set up as collateral, indicating that the amount

withdrawn from illiquid wealth cannot be larger than illiquid wealth itself. The liquid
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risky asset cannot be short as well. These lead to the following constraints, respectively:

D−
t ≤ Xt

D−
t , St, D

+
t ≥ 0

(3.12)

The planner is maximizing the ex-ante social welfare defined in equation (3.9). Fol-

lowing Bellman’s principle of optimality, we can re-write it in recursive form as:

V (Wt, Xt) = max
Cy,t,Co,t,St,D

+
t ,D−

t ∈A

{
ũ(Cy,t, Co,t) + δEV (Wt+1, Xt+1)

}
(3.13)

with ũ(Cy,t, Co,t) =
β
δ
uo(Co,t) + uy(Cy,t).

In optimality, as shown in the appendix (3.A.1) the planner will then set the consump-

tion of the young and the old such that

u′
y(Cy,t) =

β

δ
u′
o(Co,t) = VW (Wt, Xt) (3.14)

The appendix derives also the first-order relations with respect to the investments in

each risky asset.

3.5 Intergenerational Transfer Scheme

Now, we transition from an economy fully governed by a planner to one where gen-

erations make independent savings and asset allocation decisions. In the process, we in-

troduce a policymaker, operating in that environment, who decides on welfare-improving

transfers between the young and the old.

3.5.1 The Individuals’ Problem

In a decentralized framework, agents decide how much of their endowment Y to save

and how to allocate it across liquid and illiquid wealth (Wt and Xt respectively). Individ-

uals are solving a similar problem to the planner, with the difference that now they face a

limited horizon and have to liquidate all holdings before retirement, paying any liquidity

cost if such arise. Unlike the planner, who can take advantage of illiquid wealth buffers
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over time, a single generation has to liquidate all wealth in the second period of their life

to finance retirement consumption.

Between periods zero and one, transfer policy Tt is introduced between the young and

the old. The policy is not anticipated before its introduction12. All future cohorts are

obliged to participate without a walk-out option. The transfers can be either positive or

negative for each cohort depending on the realization of the risky returns. The evolution

of wealth from young age to retirement can then be written as

Wt+1 = (Y − Cy,t −D+
t − Tt)R

f + S ′
tr

s
t+1

Xt+1 = D+
t R

x
t+1

In old age, agents sell all accumulated assets paying any liquidation fees, and consume

their retirement wealth net of the transfers Tt+1 with the new-born cohort:

Co,t+1 = Wt+1 +Xt+1(1− lt+1) + Tt+1

I ignore any bequests in the utility specification. This keeps the model tractable,

avoiding any time path dependencies across generations. On an intuitive level, it can be

expected that the stronger the bequest motive, the closer the decentralized solution will

get to the planner solution defined earlier.

Denoting Mt ≡ Y − Cy,t − S ′
t1 −D+

t − Tt as the investment in the risk-free asset and

combining the equations above, we get a simpler formulation of the problem. Individuals

optimize consumption, taking the current state of the world and any transfer policy at

the time they are born as given. This gives rise to the following optimization problem:

max
Mt,St,D

+
t

{uy(Cy,t) + βEtuo(Co,t+1)}

s.t. Cy,t = Y − I ′t1 − Tt

Co,t+1 = I ′tRt+1 + Tt+1

(3.15)

12A more granular multi-period specification can incorporate anticipation effects. In a two-period
setting, however, where each period represents 30 years the implementation of an unanticipated policy
seems more realistic.
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where Rt+1 =
[
Rf , (R

s
t+1)

′, Rx
t+1(1− lt+1)

]′
is a vector of asset returns net of any liquida-

tion fees, and It =
[
Mt, S

′
t, D

+
t

]′
is a vector of investment amounts allocated across all

available assets.

The transfers between generations that we consider are driven purely by risk sharing

and thus are designed to be neutral in expectation. As the policymaker does not have a

re-distributive objective, there is no sharing in the expected asset returns. This is ensured

by considering transfers which are linear in the shock.13 The transfers are thus given by

Tt≥1 = T (τ, Rt) where τ is a vector of parameters standing for the portion of the risk in

each asset that is transferred from the old to the young.

To ensure that there is no systematic component and expected transfers are zero, the

transfer function is constrained to be linear in the deviations of asset returns, net of any

liquidation costs:

T (τ, Rt) = Y τ ′ (E(Rt)−Rt) (3.16)

To illustrate, assume that there is only one risky asset and that τ is set to be positive.

A negative shock (ϵt = Rt − µ < 0) then implies that returns fall below the expectation,

which in turn implies that the transfer Tt = −τϵt will have a positive value for the old, so

the young will partially reimburse the old for their losses. If the shock is positive on the

other hand, this implies that the old will share a proportion of their excess return with

the young.

We can then write the individual’s first-order optimizing conditions with respect to

each asset in the portfolio as a vector equation:

1u′
y(Cy,t) = βEtRt+1u

′
o(Co,t+1)

=⇒ 1u′
y(Y − I ′t1 + T (τ, Rt)) = βEtRt+1u

′
o(I

′
tRt+1 − T (τ, Rt+1)) (3.17)

where 1 is a vector of ones, u′
i(.) stands for the marginal utility of young-age or respectively

old-age consumption with i = y, o.

13While linear transfers are to some extent restrictive, this does capture first-order effects and signifi-
cantly simplifies the consequent optimization problems. Non-linear transfers which will further increase
welfare are possible, but the added insight relative to the added modeling complexity is likely to be low.
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The system (3.17) implicitly defines the optimal investment amounts as a function

of the policy instruments and of the realized random shocks, which can be written as

It = I(τ, Rt). Substituting into the budget constraints of (3.15) we get the resulting

optimal consumption policies:

Cy(τ, Rt) = Y − I(τ, Rt)
′1 − T (τ, Rt)

Co(τ, Rt) = I(τ, Rt)
′Rt+1 + T (τ, Rt+1)

(3.18)

Note that, when a policymaker sets the risk-sharing parameters τ , this affects optimal

consumption in two ways: first, through the transfers that are directly dependent on the

policy parameters, and second, through the adjustment that individuals make on their

savings and asset allocations mix in anticipation of the policy. This will then guide the

marginal effect on the individuals’ utility from changing the policy parameters.

As policy anticipation effects have been ruled out, the generation born in period zero

will not factor in the possibility of a transfer in its optimal investment-consumption deci-

sion, but still will get to participate in the risk-sharing scheme once it is old:

Co(τ, R1) = I
′
R1 + T (τ, R1) (3.19)

where the investment amounts in the vector I are fixed before the risk-sharing policy is

implemented. This implies that while I is set without anticipating the ensuing installment

of a transfer scheme when the generation born in period zero reaches old age it gets to

participate in the risk-sharing scheme, and they are compensated by the young born in

period one if a negative shock is realized or get to transfer to the young some of the

accumulated wealth if the shock is positive. Thus, only the direct channel of transfers

will affect their lifetime utility.

3.5.2 Policymaker’s Problem

The policymaker maximizes the welfare for current and future generations by imple-

menting the IRS policy between periods zero and period one as illustrated in Figure 3.3.
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Figure 3.3: Two-period OLG Model
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This figure illustrates the timing of the intergenerational transfers in the presented model, the policy
introduction and the overlapping structure of the generations.

She fine-tunes the transfers, knowing that the young will take the transfer policy into

account when choosing consumption and asset allocation. In this context, the welfare

function in (3.9) becomes an indirect utility that arises from summing up and weighting

each generation’s optimization problem as a function of the policy instrument τ .

To illustrate that, first note that we can write the social welfare function from (3.9)

as:

V0 = E
β

δ
u(Co,1) + E [uy(Cy,1) + βE1uo(Co,2)] + δE [uy(Cy,2) + βE2uo(Co,3)] + ...

We can then substitute in the individuals’ optimal consumption from (3.15). Denote

the optimal lifetime utility of a generation as v(τ, Rt). Since asset returns are independent

and identically distributed, and the optimal decision of each generation born after period

zero is equivalent to the optimal decision of each consequent generation, the problem is

13The planner and the policymaker problems defined here fall under a Ramsey planner macro treatment
where the policymaker has a restricted set of policy instruments at her disposal. The pension finance
literature is relatively loose in defining both as social planner problems, even though in macro context
there is a strict distinction between the two. Ball and Mankiw (2007) provide a link between the social
planner and the Ramsey planner problems in the context of risk sharing with conditions on the social
planner weights which ensure equivalence to a Ramsey solution.
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stationary, and when looked at from period zero, v(τ, Rt) is identical in expectation for

any t. We can factor it out of the sum, such that:

V (τ) = E
β

δ
u
(
Co(τ, R1)

)
+

∞∑
j=1

δj−1Ev(τ, Rt) = E
β

δ
u(Co(τ, R1)) + Ev(τ, Rt)

∞∑
j=1

δj−1

which results in the indirect utility of the policymaker as a function of the policy instru-

ments

V (τ) = E
β

δ
u
(
Co(τ, R1)

)
+

1

1− δ
Ev(τ, Rt) (3.20)

The policymaker then solves for the optimal transfer parameters τ ∗:

τ ∗ = argmax
τ

{
β

δ
Euo

(
Co(τ, R1)

)
+

1

1− δ
Euy (Cy(τ, Rt)) +

β

1− δ
Euo(Co(τ, Rt))

}
(3.21)

The degree of risk sharing will then naturally depend on the individuals’ optimal

investments as determined in (3.17), or equivalently, the resulting optimal consumption

from (3.18-3.19). This implies that the government needs to balance the utility of the old

generation present immediately after the scheme is implemented with young age and old

age utilities of future cohorts, weighted appropriately through the discount factors of the

policymaker and the individuals. To reduce the notation overload going forward, we write

Co,1,Cy,t and Co,t while keeping in mind that each of these satisfies the forms of (3.18)

and (3.19).

Assuming that the expectation operator and the derivative can be interchanged, the

optimality condition with respect to one of the instruments i can be written as:

∂V (τ)

∂τi
:

β

δ

∂Euo (Co,1)

∂τi
+

1

1− δ

∂Ev(τ, Rt)

∂τi
= 0 (3.22)

As all consumption terms are assumed to satisfy the individual optimality conditions,

relying on the Envelope Theorem for the individuals’ optimal consumption sensitivity to

τ , we can write:

β

δ
E

[
u′
o(Co,1)

∂Co,1

∂τi

]
+

1

1− δ
E

[
u′
y(Cy,t)

∂Cy,t

∂τi
+ βu′

o(Co,t)
∂Co,t

∂τi

]
= 0 (3.23)
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This can further be expanded by splitting the expectation-of-product terms into expec-

tations and covariances, and noting that for generation zero E∂Co,1

∂τi
= 0, we have :

β

δ
Cov

(
u′
o(Co,1),

∂Co,1

∂τi

)
+

1

1− δ

[
Eu′

y(Cy,t)E
∂Cy,t

∂τi
+ Cov

(
u′
y(Cy,t),

∂Cy,t

∂τi

)]
+

β

1− δ

[
Eu′

o(Co,t)E
∂Co,t

∂τi
+ Cov

(
u′
o(Co,t),

∂Co,t

∂τi

)]
= 0

(3.24)

3.6 Main Mechanism with Quadratic Utility

In the general set-up, in optimality the individuals’ condition (3.17) and the poli-

cymaker’s condition (3.22) are simultaneously fulfilled. Now, we look at several special

cases, which keep this set up but simplify the optimization conditions to make the re-

sulting problem analytically tractable and to provide intuition in the dynamics of the

model.

Assume for now that agents have the same quadratic period utility of the form u(C) =

C − γ
2
C2 implying that their expected utility is a function of the mean and the variance

of the random payoff C such that

Eu(C) = EC − γ

2

(
VarC + (EC)2

)
(3.25)

where γ > 0 defines the degree of risk aversion, with higher γ implying higher aversion.

Once the shock is realized, and consumption is deterministic, it also defines the marginal

utility of consumption, evaluated as u′(C) = 1 − γC. Consumption is assumed to stay

below the satiation level of utility, such that C < 1
γ
almost surely.14.

Next, Section 3.6.1 looks at a simple setting when agents do not adjust their savings

levels in response to the risk-sharing policy, Section 3.6.2 introduces endogenous savings,

and Section 3.6.3 summarizes the main mechanisms at play and clarifies the intuition

behind the observed mechanism. Appendix 3.A.4 looks at a setup with a risky and

risk-free asset as individuals can consume in their youth and retirement. The analytical

14Loosely speaking, the quadratic utility assumption can be seen as a second-order approximation
of the expected utility of a more complex utility function (Levy and Markowtiz, 1979; Buccola, 1982;
Sharpe, 2007). For details on the use of quadratic utility in portfolio choice models see Brandimarte
(2006), Cerný (2009), and D’Amato and Galasso (2010) who use it within an IRS context with a political
game determining the optimal level of risk sharing with voting.
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expressions become very complex, so we examine further the case in detail in the numerical

section of 3.7 where additional complexity is added.

3.6.1 Exogenous Savings

Assume now that the savings are fixed to some S̄ where S̄ ∈ (0, Y ). All shocks

imported in the young age endowment wealth through the transfer scheme are completely

absorbed through the consumption of the young. Assume for simplicity that only one

risky asset is available, such that Tt = τY (µ̃ − R̃x
t ) = −τY ϵ̃xt where the risk-sharing

parameter is τ . Optimal consumption defined in (3.18) then evolves as follows:

Cy,t = Y − S + τ ϵ̃xt Y

Co,t+1 = SR̃x
t+1 − τ ϵ̃xt+1Y

(3.26)

Now, investments are fixed and do not react to changes in τ , so we have that E∂Cy,t

∂τ
=

E∂Co,t+1

∂τ
= 0, and the policymaker’s optimality condition (3.24) simplifies. Furthermore,

the policy surprise effect becomes irrelevant for the generation born in period zero, as

neither they, nor by construction any future generation adjust their investments to the

policy parameters. Also, the policy parameter τ is set once and for all before the realiza-

tion of any shocks. As a result, the consumption streams for the old in period one and

in any other period differ only in the realization of the shock. As a result, we can write

condition (3.24) as

β

δ
Cov

(
u′(Co,t),

∂Co,t

∂τ

)
+

[
1

1− δ
Cov

(
u′(Cy,t),

∂Cy,t

∂τ

)
+

β

1− δ
Cov

(
u′(Co,t),

∂Co,t

∂τ

)]
≡ δCov

(
u′(Cy,t),

∂Cy,t

∂τ

)
︸ ︷︷ ︸

<0

+ βCov

(
u′(Co,t),

∂Co,t

∂τ

)
︸ ︷︷ ︸

>0

!
= 0 (3.27)

The underbrackets show the signs of the covariance terms assuming15 that 0 < τ < S
Y
.

They hold for any utility function with a decreasing marginal utility of consumption. To

illustrate why this is happening, imagine that there is a negative financial shock (ϵt < 0).

15It can also be shown that in optimality τ cannot be negative when savings are positive, as then both
covariances will be positive and the first-order condition would never hold. If τ > S̄/Y on the other
hand, both covariances are negative, and again the optimality condition cannot hold.
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The IRS mechanism then transfers wealth from the young to the old. This has two effects.

First, the marginal consumption of the old (∂Co,t

∂τ
) increases and their marginal utility

decreases for higher τ as they get compensated for the resource loss on their retirement

savings. Second, the transfers induce a resource loss to the young as any compensation

for the old is subtracted from their initial endowment, driving down the young’s marginal

consumption (∂Cy,t

∂τ
) and driving up their marginal utility. Since the transfers are linear,

exactly the opposite effect occurs with a positive financial shock.

Overall, the IRS policy allows the old to trade negative retirement-wealth shocks with

the currently young, who in turn in good times gain from the additional accumulated

wealth of the old. The risk-sharing parameter τ drives the sizes of the trade-offs for each

generation, so it needs to balance out the willingness of one generation to get protection in

bad states of nature in lieu of smaller gain in good states with the willingness of the other

generation to forego current consumption in bad states in lieu of higher consumption in

good states. Overall, optimal τ needs to be set such that the two effects, as captured by

the covariance terms, balance out.

In particular, for quadratic utility, we have

Cov

(
u′(Cy,t),

∂Cy,t

∂τ

)
= Cov(−γτ ϵ̃xt , ϵ̃

x
t ) = −γτVar(ϵ̃xt ) ≤ 0

Cov

(
u′(Co,t+1),

∂Co,t+1

∂τ

)
= Cov

(
−γ

(
S

Y
− τ

)
ϵ̃xt+1,−ϵ̃xt+1

)
= γ

(
S

Y
− τ

)
Var

(
ϵ̃xt+1

)
≥ 0

Substituting in (3.27), the asset return variance and risk preferences cancel out of the

policymaker condition and do not play a role in determining optimality. The optimal

proportion of the shock that will be shared across generations is proportional to the

savings rate and depends on the discount rates:

τ ∗ =

(
β

β + δ

)
S

Y
(3.28)

The more a generation values old-age relative to young-age utility (higher personal dis-

count factor β), the higher the optimal level of IRS should be in order to allow generations

to hedge the negative states of nature they could experience in retirement. Similarly, by
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construction a lower value for δ decreases the relative weight of the young in the welfare

function (3.9) driving down the need for IRS.

3.6.2 Utility of Old-age Consumption Only

Now, assume that agents derive utility from old-age consumption only.16 By construc-

tion, they will save all their young-age endowment and consume it when old. In contrast

to the previous case, where young-age wealth shocks resulting from the transfers were

fully absorbed by consumption, now the transfer shocks are fully absorbed by savings17.

Formally, the indirect utility of consumption for each generation becomes

v(τ, ϵ̃xt ) = βEtuo(Co,t+1) (3.29)

where

Co,t+1 = StR̃
x
t+1 − τY ϵ̃xt+1 (3.30)

For each generation born after implementation of the policy we have St = Y +τY ϵ̃xt , while

in absence of anticipation effects generation zero has fixed savings S0 = Y .

Substituting in the policymaker’s optimizing condition (3.23) and simplifying we get:

β

δ
E

(
u′(Co,1) ·

∂Co,1

∂τ

)
+

β

1− δ
E

(
u′(Co,t+1) ·

∂Co,t

∂τ

)
= 0

Simplifying further (Appendix (3.A.2) shows the derivation details), Y , γ and σ̃2 cancel

out, and we can solve for the optimal level of risk-sharing

τ ∗ =
1

δE
(
(R̃x

t )
2
)
+ 1

=
1

δE (µ̃2 + σ̃2) + 1
(3.31)

16This set-up is common in the pension literature where agents derive utility only from pension income
and retirement consumption.

17A similar risk-sharing set up appears within the context of a political game for example in D’Amato
and Galasso (2010); Ciurila and Romp (2015)
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In contrast to the case with fixed savings, τ ∗ is now a decreasing function of the

riskiness of the asset, quantified as the expected quadratic variation in the return of the

asset after the risk of liquidity costs is covered. The discount rates do not appear here

in the optimal term, as young-age consumption is not modeled and risk is not discounted

over the lifetime of individuals.

The expected quadratic variation E
(
(R̃x

t )
2
)

is positively related to the probability

to trade and negatively related to the liquidity cost, as shown in Section 3.3.2. Then it

follows that as the illiquidity friction becomes more severe, the quadratic variations in the

asset returns become smaller and an increase in the risk-sharing parameter is needed to

ensure that enough risk is transferred across generations. Formally, we can show that

∂τ ∗

∂p
< 0,

∂τ ∗

∂l
> 0 (3.32)

3.6.3 Risk Pooling vs. Compounding of Risk

Now, we explore the relationship between the level of IRS and the variance of the

risky asset. We decompose the relationship into two counterbalancing effects. First, in

aggregate, IRS expands the pool of people who can participate in a shock occurring in

a given period by including the individuals who are not economically active in the risk-

bearing pool. Second, it extends the time window over which individuals bear risk by

forcing them to participate earlier in their lifetime in the realization of financial shocks,

which are otherwise only affecting the wealth of the old. We know that the first effect

enhances the overall risk-bearing capacity of the population. The second effect, however,

on its own produces a welfare loss for the young and needs to be explored further.

It is well-known that the uncertainty in a risky asset’s returns does not diversify with

time, and that longer investment horizons do not lead to lower variance of the accumulated

wealth. In essence, this is the fallacy of time diversification which states that aggregating

shocks over time increases their cumulative variability (Samuelson, 1963; Ross, 1999).

Gordon and Varian (1988) also refer to the compounding of lotteries and suggest that the

time accumulation of variance, due to the random shocks transferred from one generation

to the next, embeds a cost in the IRS mechanism. In our setting, as well, compounding of



82 Intergenerational Risk Sharing with Market Liquidity Risk

uncertainty makes it expensive in utility terms to transfer risks over to the young as the

risk they will start bearing when young will accumulate through their savings and will

lead to higher consumption variability in retirement. It is then natural that the larger the

variance of the savings portfolio is, the more costly it is to transfer risk across generations.

Consider again the set-up of Section 3.6.2. The multiplicative shock which will appear

in the old-age consumption equation (3.30) is the key driver of the inverse relationship

between the level of optimal IRS and the magnitude of the asset variance. To illustrate,

assume for the sake of argument that the savings asset is liquid. Then, old-age consump-

tion is

Co,t+1 = StRt+1 + Tt+1 = Y ((1 + τϵt)Rt+1 − τϵt+1)

This means that the policy (τ > 0) imports additional uncertainty into old-age con-

sumption, having made the young-age starting wealth uncertain as Y (1 + τϵt). In old

age, the variance of endowment is translated into additional variance of savings and in

old age gets magnified by the variance of the accumulated asset return. Old-age wealth

as a fraction of Y then becomes (1+ τϵt)Rt+1 = µ+ ϵt+1+ τµϵt+ τϵtϵt+1. As a result, the

variance of consumption becomes function of the risk sharing parameter.

We can decompose the total variance of old age consumption with IRS into the fol-

lowing two effects18:

Var(Co,t+1) = Var (StRt+1 − Y τϵt+1)

= Y 2

σ2(1− τ)2︸ ︷︷ ︸
Pooling Effect

+ µ2σ2τ 2 + τ 2σ4︸ ︷︷ ︸
Risk-Compoinding Effect

 (3.33)

First of all, the IRS mechanism expands the pool of individuals that can participate

in the risk, which is about to materialize in a given period. So, the old will bear only

1− τ proportion of the risk occurring in their retirement, while the rest is transferred to

the newly born. This drives the pooling effect of the variance.

The young consume their wealth when they retire. The risk that they have to partic-

ipate in while young, proportional to τ , is then reinvested until retirement, when a new

shock occurs and this amplifies the initial one. This results in the risk-compounding effect.

18See Appendix (3.A.3) for details on the derivation
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As the variance of consumption is convex in the risk-sharing parameter, there will

be a point after which the uncertainty imported in old age consumption through risk

sharing will dominate over the reduction in uncertainty coming from the increased risk-

bearing pool. The policymaker’s problem then is to set τ such that the two effects are

balanced. The variance of consumption is thus minimized for τ ∗ = 1
1+σ2+µ2 . Note that

as the variance of the asset increases, the risk-compounding effect, having a higher order,

dominates over the pooling effect, and to achieve optimal variance of consumption, the

policymaker needs to reduce the level of risk sharing.

The individuals born in period zero, before the policy is implemented, get to experience

solely the pooling effect, without being subject to the compounding cost. In particular,

the variance of their consumption is

Var(Co,1) = Y 2Var(R1 − τϵ1) = Y 2Var(µ+ (1− τ)ϵ1) = Y 2 (1− τ)2σ2︸ ︷︷ ︸
Pooling benefit

(3.34)

These individuals are thus privileged from an ex-ante point of view, as they benefit

for each τ ∈ (0, 1] and in optimality will want to have it set to unity. With no risk

sharing, they bear the full risk of their old-age consumption, and with complete sharing

their old-age consumption risk is reduced to zero and any negative shocks are shifted to

the newly born young generation at period one. For this generation, the risk reduction

occurs free of the compounding cost, that other generations need to bear.

Note that sometimes the literature uses time-additive shocks to illustrates the pooling

benefits of risk sharing. Crucially, this misses the time aggregation component of risk. To

illustrate how additive shocks can mislead, assume first that the young bear τ portion of

the shock while the old take proportion 1−τ . Additive shocks would imply that the young

save St = Y +τϵtY and the old consume Co,t = St−1+(1−τ)ϵtY = Y (1+τϵt−1+(1−τ)ϵt).

It is clear that with i.i.d. shocks, we then have Var(Co,t) = ((1− τ)2 + (τ)2)σ2Y 2. The

sharing parameter which minimizes the variance of consumption then is τ ∗add. = 1/2 and

it is clearly independent of the variance of the asset returns.

From that point of view, the argument can be made that averaging n independent

shocks additive shocks, such that each generation gets a portion 1
n
of each shock, leads
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to Var
(
1
n

∑n
i=0 ϵt−i

)
= 1

n
σ2, and n → ∞, the shocks will diversify away. Using this

argument within the context of risk sharing can mislead that splitting shocks over many

generations can make the risk disappear. When aggregating stochastic i.i.d. returns over

time, however, which is in a way done by multiplying out the gross returns over time, the

variance of the accumulated return will grow linearly with time:

Var(Rt·Rt−1 . . . Rt−n) = Var(ϵt·ϵt−1 . . . ϵt−n) = E
(
ϵ2t · ϵ2t−1 . . . ϵ

2
t−n

)
+E(ϵt) . . .E(ϵt−n) = nσ2

3.7 Quantitative Evaluation andWelfare Analysis with

CRRA Utility

3.7.1 Set-up, Parameters and Initial Conditions

Now, assume that there are three assets available for investment: a risk-free liquid,

a risky liquid, and a risky illiquid asset. The risky assets’ gross returns follow a log-

normal distribution, such that Rt =

Rs
t

Rx
t

 where log(Rt) ∼ N(µ,Σ) with µ =

µs

µx

 and

Σ =

 σ2
s ρσsσx

ρσsσx σ2
x

 and returns are scaled over a thirty-year holding period in line with

the two-period OLG setting.

The risk-free asset is calibrated to the expected return of medium-term world govern-

ment bonds. The risky liquid asset matches global equity’s risk and returns characteristics.

The risky illiquid asset is calibrated to match the properties of a portfolio of representa-

tive illiquid asset classes, where the weights are based on the relative sizes in a typical

pension fund of private loans, equity, hedge funds, real estate and infrastructure holdings.

Aggregated data on pension fund allocations are gathered from OECD (2019) for global

funds and (PensionsEurope, 2018) for European funds. The data is summarized in Table

3.1. Expected asset returns, volatility, and correlations across the asset classes are based

on the long term capital market forecasts in JP Morgan (2020). The costless trading

probability (3.1) follows from a Poisson specification as the probability of having at least
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one trading opportunity during a time period ∆t, such that19:

p = 1− e−η∆t (3.35)

Note that in this set-up (1/η) is the average time one needs to wait for a costless

trading opportunity to arrive. In calibrating η, we rely on data from Ang et al. (2014),

who provide estimates of the average holding times and turnover of the illiquid asset

classes considered here. Table 3.1 summarizes the data and the corresponding probability

estimates for the variety of illiquid assets considered here. Further, ∆t represents the

period over which individuals would seek to sell their illiquid holdings. We assume five

years as an approximation of the time before or after retirement during which individuals

liquidate their asset holdings in order to fund retirement consumption. Overall, based on

these considerations and based on the data, we assume p = .8 for the base scenario as

a reasonable ballpark figure corresponding to the representative illiquid asset considered

here.

The liquidity cost parameter l is calibrated through the average trading discount on

the Net Asset Value (NAV) which needs to be accepted when selling private investments

on the secondary market. Nadauld et al. (2019) explore the secondary market for private

equity funds and find that they trade on average at a discount of 13.8%. The number varies

significantly, typically in a range between 5% and 30%, depending on market conditions,

fund age, and fund type (e.g., Buyout, Venture Capital, Real Estate). We assume l = 20%

as a ballpark base figure. Further on, we explore the solution’s sensitivity by varying both

p and l parameters. We set γ = 5 and β = δ = e−.03·30.

19The costless trading opportunity for the illiquid asset arrives as a Poisson event with an expectation
η. The probability of having n such trading opportunities over a period of time ∆t then is

P (n) = e−η∆t (η∆t)n

n!
, n = 0, 1, ...

Denoting Nt as the cumulative number of trading events which occurred up to time t, the probability p
of being able to trade costlessly in the illiquid asset at least once over a given period can then be derived
as

p = P (Nt+∆t −Nt ≥ 1) = 1− P (Nt+∆t −Nt = 0) = 1− e−η∆t

Formally, this is equivalent to modeling liquidity events as a Poisson process, as in e.g. Ang et al.
(2014).
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Table 3.1: Parameters Calibration

Holding Time p Weight µ σ ρ

Liquid Risk-Free Asset
- Mid-Term Gov Bonds 100% 0.002 -
Liquid Risky Asset - - 1.000
- Global Equity 100% 0.061 0.156
Illiquid Risky Asset 0.049 0.120 0.586
- Hedge Funds 1 - 2 0.92 - 0.99 16% 0.030 0.074 0.730
- Private Equity 4 0.71 23% 0.078 0.202 0.800
- Institutional Real Estate 8 - 10 0.39 39% 0.046 0.111 0.500
- Institutional Infrastructure 50 - 60 0.08 14% 0.047 0.105 0.550
- Private Loans - - 8% 0.017 0.045 0.150

This table shows the calibrated values for the return and risk properties of the three assets in the model.
The average number of years it takes to trade on one of the illiquid assets is used as input to calculate
the probability p that the asset can be sold over a five-year period. The Poisson probability formula links
the two. The figures on µ and σ indicate the expected return and standard deviation respectively of the
asset class, and ρ indicates the corresponding correlation to equity global. Data is used from JP Morgan
(2020) adjusted for a fixed inflation rate of 2%. The weights indicate the asset proportions within the
illiquid portfolio of a typical global pension fund as in OECD (2019) and they are used to aggregate the
basket of illiquid assets into one representative illiquid asset.

The young and the old are assumed to have the same CRRA utility of consumption,

where γ > 1 is the usual parameter of risk aversion:

u(C) ≡ 1

1− γ
C1−γ, C > 0

In the planner case, after the system is initiated (for t ≥ 1), due to (3.14) in optimality

we have:

C∗
y,t =

(
β

δ

)− 1
γ

C∗
o,t

As a result, one only needs to solve for the youth age consumption in the planner case,

and optimal old-age consumption will be proportional.

Using the social welfare formulation of (3.9), we can translate the utility units into

Certainty Equivalent Consumption (CEC) units, where the CEC measures the stream of

fixed risk-free future consumption that the current and all future generations would be

willing to accept for the stream of risky consumption leaving the agent indifferent utility-

wise between the two options. In the case of a CRRA utility, as Appendix (3.A.5) shows,
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the CEC for the whole population can then be written as:

CEC0 =

[
(1− δ)(1− γ)

δ

β + δ
V0

] 1
1−γ

(3.36)

where V0 is a function of the starting wealth values V0 = V (W0, X0) in the case of the

planner problem, while in the case of intergenerational transfers, it is a function of the

policy instruments such that V0 = V (τ ∗).

In the decentralized cases, either with or without risk sharing, all generations but

generation zero are identical ex-ante and start with the same endowment and the same

wealth, so this eliminates the need to establish initial conditions. In the autarky case,

welfare is evaluated through equation (3.20), with all transfers set to zero, while in the

case with transfers, the policymaker picks the optimal risk-sharing parameters.

In the planner economy, the initial conditions matter. To be consistent with the

policymaker problem of section 3.5, we assume that the economy exists initially in a

decentralized no-risk-sharing regime. Individuals from generation zero then freely pick

their asset allocation and savings level ignorant of the following policy implementation.

Between periods zero and one, the planner appropriates the accumulated savings in the

economy. After period one, she starts optimally distributing consumption between the

young and the old and starts picking the appropriate asset mix and the aggregate savings

level, as indicated in section 3.7.2. The accumulated up to period one liquid and illiquid

wealth then provide the initial conditions on which the planner relies. Consequently, we

evaluate the welfare as the probability-weighted value-function level at accumulated liquid

and illiquid wealth in period one, assuming that further on the planner is picking optimal

values for the decision variables.

3.7.2 Planner Solution

First, in the planner economy, we look at how aggregate welfare, consumption and

investment behave as functions of the stochastic state variables Xt and Wt. Figures (3.4a)

and (3.4b) show that welfare and aggregate consumption, respectively, unambiguously

increase if more liquid or illiquid wealth becomes available. The increase with respect

to illiquid wealth follows from the fact that for l < 1 and p > 0 the illiquidity friction



Figure 3.4: Planner Optimal Policies
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(d) Illiquid Wealth Withdrawals

This set of figures shows the solution of the planner dynamic programming problem. The charts show
the value function (presented in CEC units), optimal consumption, optimal risky liquid investments,
and the withdrawals (dashed, negative lines) and investments (solid, positive lines) into illiquid wealth,
respectively. Borrowing is constrained with L = 0 in (3.11). The optimal solutions are presented as
functions of the two stochastic state variables, Wt and Xt. In a dynamic setting, optimal consumption
and investment for the coming period are set by knowing the two-state variables at the beginning of the
period.
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is only setting a potential cost to withdrawing funds for consumption but is not barring

withdrawals entirely. Note, however, that due to the risk of incurring withdrawal costs,

a proportional increase in liquid or illiquid wealth does not lead to an equal increase in

welfare, so the slope of the iso-lines is not unity.

Figure 3.4c shows the optimal levels of liquid risky asset investments St given the

beginning of period illiquid and liquid wealth. First, it can be seen that if the current

liquid wealth is already high (the right half of the chart), it is not optimal to allocate

resources to the liquid risky assets, as the regular endowment income provides enough

liquidity for the coming period, and it becomes more profitable to allocate to the illiquid

asset and reap the illiquidity premium embedded in it. At the same time, if the start-of-

period illiquid wealth is too high (in the upper half of the chart) it becomes optimal to

shift resources from the illiquid risky asset towards liquid risky assets, so St starts picking

up, again to secure diversification.

Figure 3.4d shows the total amount of withdrawals D−
t (if negative) and investments

D+
t (if positive) in illiquid wealth. This chart complements the findings so far. If a certain

proportion of illiquid-to-liquid wealth is breached, indicated with the zero diagonal line,

the planner will reallocate, withdrawing or depositing into illiquid savings in order to

avoid over-concentrated holdings in one type of wealth. That relocation will either be

consumed or invested in risk-free liquid holdings or risky-liquid holdings.

3.7.3 No Risk Sharing Solution

Now we look at an economy where generations themselves optimize the asset mix in

their portfolio. First, they cannot share risks with other generations. We keep in line

with the literature by referring to this as autarky, taking into account the fact that agents

consume purely out of their endowments and do not have the technology to consume

out of the endowment income of other generations (Beetsma and Romp, 2016; Gollier,

2008). Formally, the solution follows from the individuals’ savings problem (3.15) where

all transfers Tt are set to zero and where the policymaker does not play any role.

The set of figures (3.5) shows how welfare and investments are affected by illiquidity.

It is clear that as the liquidity friction increases (either p increases or l decreases), the



Figure 3.5: Illiquidity without Risk Sharing
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(d) Illiquid Risky Investments

This set of contour plots show the effect of the liquidity friction in the base case on the invested amounts
in each of the assets. The lifetime CEC measures the certainty equivalent consumption of individuals
over the two periods of their lifetime.
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welfare in the economy (Figure 3.5a) goes down monotonically. This is driven by several

factors. First, investment in the illiquid asset decreases (Figure 3.5d). Investment in the

risky liquid asset increases (Figure 3.5c) to compensate, but overall there is a drop in

total risky asset holdings as illiquidity rises20. Precautionary risk-free savings increase

(Figure 3.5b). In this case, as the illiquidity friction increases, agents suffer from reduced

diversification in their investment mix. At the same time, their capacity to bear market

risk is reduced and they are not in a position to exploit fully the market risk premia.

3.7.4 Risk Sharing Transfers

Agents now solve the allocation-savings problem in a decentralized economy, where

a policymaker administers the risk-sharing instruments by optimizing aggregate ex-ante

welfare. The set of figures (3.6) shows the effect that risk sharing has on welfare and

investment. The parameters τs and τx stand for sharing in the liquid and in the illiquid

risky asset respectively. Individuals are allowed to borrow in their youth.

Figure 3.6a shows the aggregate welfare in the economy in period one as a function

of the policy instruments. Welfare is measured in CEC units in line with (3.36). It is

growing for the most part with the degree of risk-sharing, but it suddenly cuts off to zero

at the chart’s upper-right edge. This occurs when the risk-sharing parameters are set

too high, which in combination with a large negative shock in either of the risky assets

has the potential to produce scenarios where the endowment income of the young after

transfers to the old leave nothing for young-age consumption and thus marginal utility

becomes infinite.

Figures (3.6b), (3.6c), (3.6d) illustrate how the allocation to each of the three assets

changes when either of the risk sharing instruments is varied. The charts, thus, show

the expected investments over time, since (as shown in Section 3.5) risk sharing makes

the amount available for investment random by being dependent on the realized financial

shocks of the current period.

20For example, in a high liquidity case (bottom right corner of each chart, where l is low and p is high)
total risky investments are around .26. In the low-liquidity case (the upper right corner of each chart),
total liquid and illiquid risky investments drop to about .195
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In line with studies done before (Gollier, 2008; Shiller, 1999; Campbell and Nosbusch,

2007), the increase in risk sharing between generations enhances the ability of individuals

to bear investment risk. The average amounts allocated to the liquid (Figure 3.6c) and

the illiquid asset (Figure 3.6d) increase with the degree of IRS, while the investment in

the risk-free asset decreases (Figure 3.6b) and even becomes negative, as the individual

leverages up by borrowing. In line with the diversification principle, the increase in risk

sharing even in one of the assets increases the ability to bear risk in both of the risky

assets. For example, an increase in τx from .009 to .016 increases the average optimal

holdings in the liquid asset from .135 to .15. Still, an equivalent increase in one sharing

parameter favors more the risky asset that it targets.

Figure 3.6: Illiquidity with Risk-Sharing Transfers
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This plot shows the effect of varying the risk-sharing parameters on welfare and the average levels of the
optimal asset holdings. The white space in the upper-right edge of Figure 3.6a shows the values of τs
and τx where the CEC cuts off to zero as scenarios appear in which transfers become larger than the
endowment of the young.
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Table 3.2 presents the values for consumption and optimal investment in an economy

under optimal risk sharing. Two cases are considered for robustness: when agents are

either able to borrow and when borrowing is restricted. As observed before, compared to

autarky, risk sharing effectively increases the capacity to invest in the risky assets in both

cases, even though the effect is more substantial without a borrowing constraint. Even in

the case of restricted borrowing, the portfolio is on average fully invested in risky assets.

Going forward, we quantify the degree of welfare improvement in line with Beetsma

and Romp (2016): (
CECi

CECa
− 1

)
· 100%

where CECi stands either for the specific policy to be evaluated, and CECa stands for

the aggregate welfare in the benchmark autarky economy.

Table 3.3 compares the welfare improvement from the two IRS mechanisms considered

so far - from the intergenerational transfers and from the planner case. Naturally, the

welfare achieved through a planner is higher, as a policymaker can share risk between two

generations only, while a planner can share risk with infinitely many future generations.

In addition, policymaker is restricted to apply only linear transfers of risk. Still, whether

borrowing is restricted or not, the model projects that a policymaker is already able to

realize a lot of the benefits possible through risk sharing, and the difference to what is

achievable by the planner is not large. If borrowing is possible, the model projects a

welfare improvement of 36% in the decentralized case with transfers vs. 48% for in the

policymaker case. With borrowing, the relation is 17% vs. 21%.

A question of interest is to what degree the introduction of risk-sharing between the

young and the old can help lower the welfare losses from increased asset risk. Next, we

look at how changes in the risk profile of the illiquid asset, either in terms of increased

variance or increased liquidity cost, affect welfare.

First, holding investment and risk-sharing fixed as in Figure 3.7a, we can see that

for increased risk, there is, at least initially, more potential for welfare improvement in

transferring part of it from the old to the young. The linear intergenerational transfers

relocate wealth from the old to the young in states of nature where the marginal utility

of the additional consumption of the old is low, and when asset returns are above their



Table 3.2: Risk Sharing vs. Base Case

No Risk Sharing Risk Sharing Risk Sharing
with borrowing without borrowing

ECy 0.694 1.008 0.805
ECo 1.359 1.374 1.379
EM 0.054 -0.446 0.000
ES 0.119 0.224 0.110
ED+ 0.133 0.214 0.085
τ ∗s 0.050 0.018
τ ∗x 0.021 0.030

Note. This table compares the policymaker risk-sharing and the autarky (no risk sharing) solution,
looking at the case where a lower limit of zero on borrowing (investment Mt) is applied and when no
such limit is applied. There is an internal optimal solution in the no sharing solution, so a constraint on
borrowing does not change anything. The expected values are calculated for generations born in t > 0.

Table 3.3: Risk Sharing

No Risk Sharing Policymaker Planner

With borrowing

CEC 0.687 0.932 1.014
Improvement - 36% 48%

Without borrowing

CEC 0.687 0.805 0.830
Improvement - 17% 21%

Note. This table shows the welfare improvement over autarky when risk sharing is introduced either
through a policymaker or through a planner approach. In the former case, individuals are allowed to
borrow. In the latter case, borrowing is allowed only up to a level comparable to the one observed in the
policymaker optimal solution.
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expected values. Furthermore, wealth is relocated in the opposite direction, from the

young to the old, in states of nature when asset returns are low, consequently savings of

the old are depreciated, and the old’s marginal utility is currently high.

However, when the variance of the investment portfolio and consequently the variance

of transfers increases, at some point the transfers may become too much for the young

to bear. As scenarios of larger transfers from the young become more frequent, this may

leave them with too little endowment to cover their young-age consumption, causing more

scenarios where young-age utility drops more than the corresponding increase in the utility

of the old, and thus also lowering the overall expected lifetime utility of the generation. As

a result, at some point, this second push-back effect prevails and the welfare improvement

starts declining with further variance. If τx is set too large, it may even happen that the

risk-sharing policy comes at a disadvantage compared to the initial situation. Allowing

τx to be adjusted avoids the problem of transferring too much risk from one generation

to another, as shown in Figures (3.8).

Figure 3.7: Fixed Allocation and Risk Sharing
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Note. This set of charts shows the effect of varying the volatility on the illiquid asset and respectively its
liquidity cost. The investments are fixed in all states of nature to Mt = St = D+

t = .1, and risk sharing
is fixed such that τs = 0, τx = .05.
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Note however that increased liquidity risk does not increase the variance of transfers

(3.7b). This is in line with the way illiquidity affects asset returns as shown in Section

3.3.2: higher illiquidity lowers the variance of wealth, thus lowering also the chance that

more variance is transferred to the young than they could bear. As a result, improvement

in welfare is monotonously increasing with rising illiquidity cost, in contrast to the effect

observed for higher variance.

Figure 3.8: Fixed Allocation and Optimized Risk Sharing
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Note. This set of charts shows the effect of varying the volatility on the illiquid asset and respectively its
liquidity cost. The investments are fixed in all states of nature to Mt = St = D+

t = .1, and risk sharing
for the illiquid asset is optimized by the policymaker, while τs = 0.

Second, as the risk of the illiquid asset increases, an investment substitution effect

occurs, where individuals reduce holdings in that asset and increase their holdings in the

risky liquid asset. This is clearly seen in Figures (3.9) where allocations are optimized

while the risk sharing instruments stay fixed. The implementation of risk-sharing transfers

shifts up the investments in each of the two risky assets, the increase being financed

through lower holdings in the risk-free asset.

The plots in Figure 3.10 combine the effects of individuals optimizing their asset

holdings and the policymaker simultaneously setting the optimal degree of risk sharing.



Figure 3.9: Optimized Allocation and Fixed Risk Sharing
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Note. This set of charts shows the effect of varying the volatility on the illiquid asset and respectively its
liquidity cost. The investments are determined based on the individual optimality conditions while the
risk sharing is fixed such that τs = 0, τx = .05.
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First, as variance increases, the amount of optimal risk-sharing τ ∗x decreases to stabilize

the variance of transfers. Second, risk sharing increases the desire of individuals to hold

risky assets compared to autarky. Still, with higher risk, individuals hold less of the riskier

illiquid asset and more of the substitute liquid asset. The investment in risky assets, in

total, is diminishing with the increase in risk. In end effect, as the variance of the asset

increases, the reduction of diversification in the savings portfolio held by the individuals

results in lower welfare improvements as the variance of the illiquid asset increases. IRS

cannot compensate for this effect, so overall, as the risk of the illiquid asset increases, the

improvement in welfare is going down.

There is one notable difference in how an increase in σx versus an increase in l is

affecting optimal risk sharing. Higher volatility justifies sharing a lower degree of IRS

τx, while higher illiquidity calls for increased risk-sharing. The decrease in the variance

of transfers caused by illiquidity needs to be compensated by a higher sensitivity of the

transfers to the variance of the asset. This is in line with the arguments made earlier that

with growing illiquidity, the variance of the savings portfolio decreases and sharing in the

illiquid asset needs to be increased to compensate.

Figure 3.11 summarizes all cases considered and illustrates that the welfare increases

with each relaxation of the constraints from the base case, defined as an individual with

fixed investment shares without access to a risk sharing technology. The highest welfare

occurs with case C5 when both IRS parameters are optimized by the policymaker while

simultaneously individuals optimize their asset holdings.



Figure 3.10: The Effect of Risk on Welfare Improvements. Optimal Solution
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Note. This set of charts shows the effect of varying the volatility on the illiquid asset and respectively its
liquidity cost. The level of inter-generational risk sharing is optimized over τx while τs = 0. The model
is parameterized for the base case, and in the first column the variance is varied, while in the second
column the liquidation cost is varied.
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Figure 3.11: Welfare Improvements vs. the Constrained No-Risk-Sharing Benchmark
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Note. This set of charts shows the resulting welfare improvement vs. an autarky benchmark economy,
in which agents cannot adjust their savings and Mt = St = D+

t = 0.1 in all states of nature. The lines
represent the percentage CEC improvement resulting from switching to an intergenerational risk-sharing
economy where C1: τs = 0, τx = .05, while the investments that individuals hold are fixed; C2: τs = 0,
τx = .05, while individuals can adjust their asset holdings; C3: investments are fixed, τs = 0 and τx is
optimally adjusted; C4: investments are optimized, τs = 0 and τx is optimized; C5: investments, τs and
τx are optimized.

3.8 Conclusion

This paper examined the problem of optimally allocating risks across generations in

the presence of market illiquidity within the asset mix of individuals’ savings. We show in

a stylized two-period overlapping generations framework that a contract of risk transfers

between coexisting young and old cohorts enforced by a policymaker can improve welfare.

First, we show that optimal IRS is dependent on the variance of the savings portfolio

of individuals. On one hand, the policymaker can create a mechanism that expands the

pools of individuals who can bear the variance risk by including the young in the risk-

sharing pool (pooling effect). On the other hand, introducing additional risk early on

in individuals’ lifetime savings accumulates higher variance in their old-age consumption

(risk-compounding effect). The higher the variance, the more the latter dominates, and

the lower the risk-sharing parameter should be.

From that point of view, illiquidity poses a friction to risk sharing between generations,

as it reduces the variance over which the illiquid asset in the portfolio can be traded. To

compensate for the loss of sensitivity of the IRS transfers to movements in the fair value of

the asset, a policymaker needs to increase the level of risk sharing. In contrast, increases

in the variance of a liquid asset, ceteris paribus, justify lower levels of risk sharing, as
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otherwise resources of the young will be destabilized, pushing them towards states of

nature where the decline in young age utility of consumption is higher than the benefit

of the elderly, thus lowering their lifetime utility and lowering the overall welfare in the

aggregate economy.

Second, we find that risk sharing allows individuals to invest more into illiquid as-

sets compared to the case when they are holding personal savings accounts without a

mechanism to shift risks across generations. This is also in line with the literature which

explores intergenerational risk-sharing mechanisms within funded pension plans (Gollier,

2008; Cui et al., 2011; Shiller, 1999).

The analytical results were justified by a quantitative welfare analysis with a realis-

tic asset composition and utility specification. The framework highlights several policy-

relevant implications. The tendency of pension funds to invest in illiquid asset classes,

such as private equity, infrastructure projects, etc., may call for increased risk-sharing

mechanisms between pension fund participants of different generations. Alternatively,

increasing the liquidity of otherwise illiquid assets, for example with the development of

attractive secondary markets for OTC traded assets, has the potential to also increase

the benefits of intergenerational risk sharing, while also allowing for lower levels of risk

sharing between cohorts.
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3.A Appendix: Derivations

3.A.1 Planner Problem Derivations

Taking into account the constraints of the Bellman equation (3.13), we can write the

optimization problem in Lagrangian form:

L = ũ(Cy,t, Co,t) + δEV (Wt+1, Xt+1)−
∑
j

λjgj(Wt, Xt, Cy,t, Co,y, St, D
+
t , D

−
t )

where each of the gj(.) functions, j = 1, . . . 6, represent one of the constraints written in

a form such that gj(.) ≤ 0

g1(.) = Cy,t + Co,t +D+
t −D−

t (1− l) + St1 −Wt − Y − L;

g2(.) = D−
t −D+

t −Xt;

g3(.) = D−
t −Xt;

g4(.) = −D−
t ; g5(.) = −D+

t ; g6(.) = −St

and λj are the non-negative KKT multipliers subject to the standard interpretation as

sensitivity of the optimal solution to relaxing the corresponding constraint. The standard

first-order conditions apply together with complementary slackness and non-negativity:

∂L
∂x

= 0 x ∈ {Cy,t, Co,y, St, D
+
t , D

−
t }

λjgj(.) = 0

gj(.) ≤ 0

λj ≤ 0, j = 1, ...6
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In particular, the first-order conditions with respect to consumption can be written as

∂L
∂Cy,t

:
∂ũ(Cy,t, Co,t)

∂Cy,t

= δRfEVW (Wt+1, Xt+1) + λ1

=⇒ u′
y(Cy,t) = δRfEVW (Wt+1, Xt+1) + λ1

∂L
∂Co,t

:
∂ũ(Cy,t, Co,t)

∂Co,t

= δRfEVW (Wt+1, Xt+1) + λ1

=⇒ β

δ
u′
o(Co,t) = δRfEVW (Wt+1, Xt+1) + λ1

(3.37)

As the optimal condition is symmetric w.r.t. the consumption of the young and the old,

from (3.37) we have:

u′
y(Cy,t) =

β

δ
u′
o(Co,t) (3.38)

Applying the Envelope Theorem on the constrained problem, we get:

∂V (Wt, Xt)

∂Wt

: VW (Wt, Xt) = δRfEVW (Wt+1, Xt+1) + λ1 (3.39)

and combining (3.39) with (3.37), we get this planner’s version of the standard Ramsey

equivalence of the marginal utility and the (liquid) wealth derivative of the value function:

u′
y(Cy,t) = VW (Wt, Xt)

β

δ
u′
o(Co,t) = VW (Wt, Xt)

(3.40)

Substituting (3.40) forward in (3.37), we can get the Euler relation, now corrected for

a possible breach of the non-negativity borrowing constraint:

u′
y(Cy,t) = δRfEũ′(Ci,t+1) + λ1

β

δ
u′
o(Co,t) = δRfEũ′(Ci,t+1) + λ1

(3.41)

The first-order condition w.r.t. the liquid risky investment in asset i is

∂L
∂Si

t

: EVW (Wt+1, Xt+1)r
s,i
t+1 −

1

δ
(λ1 − λ6) = 0 (3.42)
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The first-order condition w.r.t. new investments in the illiquid asset D+
t and with-

drawals from illiquid wealth D−
t , respectively, can be written as

∂L
∂D+

t

: RfEVW (Wt+1, Xt+1) +
1

δ
(λ1 − λ2 − λ5) = EVX(Wt+1, Xt+1)R

x
t+1

∂L
∂D−

t

: RfEVW (Wt+1, Xt+1)(1− lt) +
1

δ

(
λ1(1− l)− λ2 − λ3 + λ4

)
= EVX(Wt+1, Xt+1)R

x
t+1

3.A.2 Utility of Old-Age Consumption

The generation born before implementation of the policy saves S0 = Y , and consumes

Co,1 = Y
(
R̃1 − τ ϵ̃1

)
which implies the sensitivity of consumption to the risk-sharing

parameter of ∂Co,1

∂τ
= −Y ϵ̃1.

Using the quadratic utility assumption, we get

E

(
u′
o(Co,1) ·

∂Co,1

∂τ

)
= E ((1− γC1) (−Y ϵ̃1))

= E
((

1− γY (R̃1 − τ ϵ̃1)
)
(−Y ϵ̃1)

)
= −Y E (ϵ̃1) + γY E

(
(R̃1 − τ ϵ̃1)ϵ̃1)

)
= γY 2σ̃2 (1− τ)

where we use the fact that E(ϵ̃t) = 0, E(R̃x
t ϵ̃t) = E(ϵ̃t) = σ̃2.

Generations born in periods t ≥ 1, after the policy has been implemented, save St =

Y+τY ϵt and consume in old age Co,t+1 = StR̃t+1−τY ϵt+1 with
∂Co,t+1

∂τ
= Y

(
ϵ̃tR̃t+1 − ϵ̃t+1

)
.

As a result:

E

(
u′
o(Co,t+1) ·

∂Co,t+1

∂τ

)
= E

(
(1− γCt+1) ·

∂Co,t+1

∂τ

)
= E

(
∂Co,t+1

∂τ

)
− γE

(
Ct+1

∂Co,t+1

∂τ

)
= −γY E

(
Ct+1

(
ϵ̃tR̃t+1 − ϵ̃t+1

))
= −γY 2E

(
(1 + τ ϵ̃t)R̃t+1 − τ ϵ̃t+1

)(
ϵ̃tR̃t+1 − ϵ̃t+1

)
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Opening up the brackets and noting that due to time independence

E(R̃2
t+1ϵt) = ER̃2

t+1Eϵt = 0

Eϵ̃2t R̃
2
t+1 = Eϵ̃2tER̃

2
t+1 = σ̃2(µ̃2 + σ̃2)

E(ϵ̃2t R̃
2
t+1) = Eϵ̃2tER̃

2
t+1 = σ̃2

we get

E

(
u′
o(Co,t+1) ·

∂Co,t+1

∂τ

)
= γY 2σ̃2

(
1− µ̃2τ − σ̃2τ − τ

)
The policymaker maximizes welfare by reconciling the marginal expected benefits for

all generations by applying condition (3.23).

β

δ
E

(
u′
o(Co,1) ·

∂Co,1

∂τ

)
+

β

1− δ
E

(
u′
o(Co,t+1) ·

∂Co,t+1

∂τ

)
= 0

Substituting in the derived terms for the generations born at period zero and after

that, and canceling out γ, Y , β we get

1

δ
σ̃2 (1− τ) +

1

1− δ
σ̃2
(
1− (µ̃2 + σ̃2)τ − τ

)
= 0

=⇒ τ ∗ =
1

δER̃2
t + 1

=
1

δ(µ̃2 + σ̃2) + 1

3.A.3 Variance of Old-Age Consumption

In (3.33) we have:

Var(
Co,t+1

Y
) = Var

(
St

Y
Rt+1 − τϵt+1

)
= Var ((1 + τϵt)(µ+ ϵt+1)− τϵt+1)

= Var (µ+ ϵt+1 + τµϵt + τϵtϵt+1 − τϵt+1)

= Var ((1− τ)ϵt+1 + τµϵt + τϵtϵt+1)

= Var((1− τ)ϵt+1) + Var(τµϵt) + Var(τϵtϵt+1)

= (1− τ)2σ2 + (τ)2µ2σ2 + (τ)2σ4
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where due to the zero-mean and i.i.d. properties of the shock we have Cov(ϵt, ϵt+1) =

Cov(ϵt, ϵtϵt+1) = Cov(ϵt+1, ϵtϵt+1) = 0 and V ar(ϵtϵt+1) = σ4 or in more details:

Cov(ϵt, ϵtϵt+1) = E(ϵ2t ϵt+1) + E(ϵt)E(ϵtϵt+1)
i.i.d.
= E(ϵ2t )E(ϵt+1) = 0

Var(ϵtϵt+1) = E(ϵ2t ϵ
2
t+1)− E(ϵt)E(ϵt+1)

i.i.d.
= E(ϵ2t )E(ϵ

2
t+1) = σ4

Minimizing the variance of consumption for the generation born after t > 0, we get

the first-order condition with respect to τ

∂Var(Co,t+1)

∂τ
= −(1− τ)σ2 + τµ2 + τσ2 = 0

=⇒ τ(µ2 + σ2 + 1) = 1

This illustrates again that for an increase in the variance, τ needs to go down in order

to keep the outcome optimal for a future generation.

3.A.4 Allocation Decision with Risk-Free and Risky Assset

Assume that generations have a nonzero utility of consumption when old and when

young, such that uy(C) = uo(C). Also, there is a risk-free asset with a fixed gross return

of Rf and a risky asset. At the same time, the young have to decide how much to consume

and save and how to allocate their savings between the risk-free asset and the risky asset.

The two-period budget constraints of (3.15) simplify to

Cy,t = Y −Mt − St + ϵ̃tτY

Co,t+1 = MtR
f + StR̃

s
t+1 − ϵ̃t+1τY

Applying the individuals’ optimality conditions (3.17), it can be shown that

I(τ, ϵt) =

Mt

St

 = Y

−(a1 + b1)

a1

+

−(a2 + b2)

a2

 τ +

−(a3 + b3)

a3

 τ ϵ̃t

 (3.43)
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where all coefficients but b1 are positive functions of the problem’s primals. Optimal

consumption for the young and the old then is

Cy,t = Y [1 + b1 + b2τ + (1− b3)τ ϵ̃t]

Co,t = Y [− ((a1 + b1) + (a2 + b2)τ − (a3 + b3)τ ϵ̃t−1)Rf + (a1 + a2τ − a3τ ϵ̃t−1) (µ+ ϵ̃t)− τ ϵ̃t]

(3.44)

where µ = µ̃−Rf is the excess return on the risky asset the coefficients in equation (3.43)

are

a1 =
µ (−RfY γ +Rf + 1)

Y γ
(
R2

fβσ̃
2 + µ2 + σ̃2

) ; a2 =
σ̃2
(
R2

fβ + 1
)

R2
fβσ̃

2 + µ2 + σ̃2
; a3 =

Rfµ

R2
fβσ̃

2 + µ2 + σ̃2

b1 =
−Rfβσ̃

2 − Y µ2γ − Y γσ̃2 + µ2 + σ̃2

Y γ
(
R2

fβσ̃
2 + µ2 + σ̃2

) ; b2 =
Rfµβσ̃

2

R2
fβσ̃

2 + µ2 + σ̃2
; b3 =

µ2 + σ̃2

R2
fβσ̃

2 + µ2 + σ̃2

The parameters have an appealing interpretation: a1 captures the autonomous level

of savings, independent of the realized shocks; a2 is the increase in the share of (risky)

savings which varies with the risk sharing; a3 is the variation in savings due to shocks;

b1 and b2 capture the autonomous change in young-age consumption after the policy is

implemented while 1−b3 captures consumption variation with the realization of the shock.

As a result, with risk sharing, on average the individual starts investing more into

risky assets and less into risk-free assets. So, the standard conjecture that the capacity

of individuals to bear risk increases with risk sharing, holds here as well. In addition,

now we can see that the realization of a positive shock leads to a decrease in risky asset

holdings and either increase in risk-free assets or an increase in young-age consumption.

3.A.5 Certainty Equivalent Consumption

Equating the cumulative utility for the two, we get:

∞∑
j=1

δt−1

(
u(CEC) +

β

δ
u(CEC)

)
=

∞∑
j=1

δt−1E

(
β

δ
u(Co,t) + u(Cy,t))

)
= V0
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where in the case of the planner problem of Section 3.4, V0 is a function of the starting

wealth values V0 = V (W0, X0), while in the case of optimal transfers of Section 3.5.2,

welfare is a determined by the optimal transfers, such that V0 = V (τ ∗).

The left-hand side can then be expanded so that we get

1

1− δ

(
u(CEC) +

β

δ
u(CEC)

)
=

1

1− δ

(
1 +

β

δ

)
u(CEC)

which produces the equation

CEC0 = Iu

[
(1− δ)

δ

β + δ
V0

]
(3.45)

where Iu is the inverse of the utility function.



3.B Appendix: Numerical Algorithms 109

3.B Appendix: Numerical Algorithms

3.B.1 Solution Algorithm for the Planner Problem

I solve the problem numerically through value function iteration. Several authors

among other examine the tools needed to set up the solution algorithm (Judd, 1998;

Miranda and Fackler, 2002; Cai and Judd, 2014; Rust, 1996; Cai et al., 2013). We use

the following approach:

0. Initialize

• Set up a grid for the two state variables {Wt}jw , {Xt}jx

• Set up an initial guess on the function values V0 on the grid.

• Set-up interpolating splines for V (W,X) to approximate the value function.

We use in particular cubic splines, which allows us to evaluate also the first-

order derivatives of the function.

• Get bivariate quadrature points and weights for RS and RX (see Section 3.B.3)

1. Maximization: For each Wjw and for each Xjx find the consumption and invest-

ment vector which maximize the RHS of the Bellman equation (3.13) subject to the

constraints. Sequential Quadratic Programming (SLSQP) is used to solve numeri-

cally the resulting problem.

2. Approximation: Find the left-hand side of (3.13) and fit a new spline approxima-

tion to the value function.

3. Evaluation Evaluate distance from previous-run value function dist = ||V i−V i−1||1

and iterate until dist < tol for some error tolerance level.

3.B.2 Solution Algorithm for the Policymaker Problem

Solving the risk-sharing problem accounts to solving two optimization problems. We

have to solve the unconstrained optimization of the policymaker (3.21) by providing as

input the optimal solution of the individual portfolio choice problem (3.15). We use the



110 Intergenerational Risk Sharing with Market Liquidity Risk

Nelder-Mead method to find numerically the solution of the former and the SLSQP to

find the optimum of the latter. Again, a two-dimensional quadrature (Section 3.B.3) is

used to evaluate expectations.

Also, note that this specification of the liquidity factor allows me, using the law of

iterated expectations, to evaluate individuals indirect utility function as

Ev(τ, Rt) = pE (v(τ, Rt)|lt = 0) + (1− p)E
(
v(τ, Rt)|lt = l̄

)
I also split the expectation of the value function of the planner in the same way.

3.B.3 Quadrature

I use quadrature to evaluate the expectation terms in the numerical section of this

paper. In low dimensions, the quadrature provides a fast and reliable approximation.21

Multi-dimensional quadrature methods are less common, so I provide here explicitly the

approach taken.

In the uni-variate space, the Gaussian quadrature performs the following approxima-

tion: ∫ b

a

f(x)w(x)dx ≈
m∑
i=1

wif(xi)

for some quadrature nodes xi, and some positive quadrature weights wi, and m is the

number of quadrature points used.

When working with a normally distributed random variable, it is usefule to apply

in particular the Gauss-Hermite (GH) quadrature which selects a weight function of the

form w(x) = e−x2
. ∫ ∞

−∞
f(x)e−x2

dx ≈
m∑
i=1

wif(xi) (3.46)

with xi and wi as the GH nodes and weights, respectively.

21For more details see (Judd, 1998; Cai et al., 2013; Cai and Judd, 2014).
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Assume for example that the random variable y is normally distributed with y ∼

N(µ, σ). We can evaluate the expectation of f(y) as

E(f(y)) = (2πσ2)−1/2

∫ ∞

−∞
f(y)e−

(y−µ)2

2σ2 dy

To reconcile this with the Gauss-Hermite approach of (3.46), we use a change of

variable y =
√
2σx+ µ such that

E(f(
√
2σx+ µ)) = (2πσ2)−1/2

∫ ∞

−∞
f(
√
2σx+ µ)e−x2√

2σdx

≈ 1√
π

m∑
i=1

wif(
√
2σxi + µ)

We can apply this approximation in asset pricing context for an asset whose log re-

turns R are normally distributed such that ln(R) ≡ y ∼ N(µ, σ). We can then find the

expectation of a function of R as Ef(R) as

Ef(ey) = (2πσ2)−1/2

∫ ∞

−∞
f(ey)e−

(y−µ)2

2σ2 dy ≈ 1√
π

m∑
i=1

wif(e
√
2σxi+µ)

In the multi-dimensional space, we can use the quadrature product rule, which ap-

proximates ∫
Rd

f(x)dx ≈
m∑

i1=1

· · ·
m∑

id=1

wi1wi2 · · ·widf(xi1 , xi2 , · · · , xid)

For example, assuming that a two-dimensional vector process Y ∼ N(µ,Σ) where µ

is a 2 × 1 vector of expectations and Σ is the (positive semi-definite) covariance matrix.

To reconcile this with the Hermite-Gauss approximation, we follow the same approach

as before. We perform a Choleski decomposition Σ = LL′ and do a change of variable
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Y =
√
2LX + µ and as a result, we get

E(f(x)) = 2π|Σ|−1/2

∫
R2

f(y)e−
(Y −µ)′Σ(Y −µ)

2 dY

= 2π|Σ|−1/2

∫
R2

f(X)e−X′X2|L|dX

≈ 1

π

m∑
i1=1

m∑
i2=1

wi1wi2f(
√
2L11xi1 + µ1,

√
2(L21xi1 + L22xi2) + µ2)

where xi and wi are the nodes and weights from the Gaus-Hermite quadrature, µ1,µ2

are elements of the vector of expectations, and L11,L22 are elements of the L matrix.
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Quantifying Systemic Risk in the

Presence of Unlisted Bank

4.1 Introduction

The canonical approach to measuring various aspects of systemic risk in banking re-

lies on equity return correlations to assess interdependencies between banks’ losses above

Value at Risk (Adrian and Brunnermeier (2016)). But in many countries this approach is

thwarted by the presence of state-owned and/or co-operative banks. To circumvent this

problem we extend the Adrian-Brunnermeier approach (and the related Marginal Ex-

pected Shortfall (MES) approach introduced by Acharya et al. (2017)) by relying on CDS

contracts rather than equity returns to extract the required information on covariance

structure. We extend the portfolio-of-loans approach suggested by Huang et al. (2009,

2012) by explicitly focusing on tail risk and by modelling tail dependencies in distress.

We look at key private institutions in the Dutch financial sector (insurance and banking)

and develop a valuation-of-loans approach to measure systemic risk and identify and rank

the systemic players on this market. Our approach is appropriate whenever potentially

systemic institutions are not publicly traded on the equity market. Our analysis con-

0Acknowledgements: We are grateful to DNB for the financial and operational support during the
realization of this project, Saskia de Vries of DNB for her support, Jeroen Huiting, Kenny Martens,
Laura Izquierdo Rios from DNB Financial Stability Division for earaly discussions. However, the views
expressed in this paper are purely thosue of the authors and do not necessarily correspond to views held
by the DNB. We would also like to thank Franc Klassen for his valuable feedback, as well as participants
in the research seminars at the University of Amsterdam, and DNB for the valuable discussions.
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firms that financial institutions need to be monitored in the context of other financial

institutions, as Adrian and Brunnermeier (2016) also argue. In particular, we show that

important linkages exist between banking and insurance firms that need to be explored

further and taken into account when measuring systemic risk.

Systemic linkages arise naturally through various channels. A direct link stems from

the channels by which banks operate on the interbank market. Banks and insurers also

tend to trade directly with each other on the derivative markets. Finally systemic de-

pendencies may also arise indirectly, due to common exposure of the key institutions to

the same risk sources - either on the liability side, when funding sources are similar, or

on the asset side, when the institutions hold similar or correlated asset portfolios (Moore

and Zhou, 2012; de Haan et al., 2019). We present a framework that does not require

a particular view on what is causing systemic losses, but rather offers an approach that

can identify the potential for high joint distress based on observed dependencies between

traded credit protection on the market whatever the underlying channels of interdepen-

dencies are.

First, we show that monitoring the financial risk of an institution in isolation of the

risks of its counterparties, and the system as a whole, may offer a misleading ranking

between systemically important financial institutions (SIFIs). Second, we illustrate that

high-frequency data from the credit default swap (CDS) market can be used to monitor

ex-ante the build-up of systemic risk and systemic dependencies. This is particularly

valuable in the context of the Dutch financial sector, where key institutions are privately

held, and market data on their equity value is not available. Third, we link systemic risk

to the potential for joint distress between institutions by evaluating the tail dependencies

in their losses if a default of one institution were to occur.

We define systemic risk both through the prospect that several key institutions become

distressed at the same time, and through the prospect that the common losses they

generate may have a large social impact. To quantify such risk, our model relies on

several building blocks. First, we use a contingent balance sheet approach (Merton, 1974)

and define distress as the situation in which the market value of a firm’s assets falls below

a default barrier. The observed CDS spreads allow us to estimate the probability of such

distress occurring. Second, a latent factor is assumed to drive common changes in the asset
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values of firms. Systemic risk will thus have two related components: first, the possibility

that several companies realize a credit event at the same time; and second, the magnitude

and the dependency in the losses that are generated among the financial institutions once

a default occurs. We aggregate the two components using a credit portfolio approach and

estimate the MES for the institutions in the portfolio (Acharya et al., 2017). The MES

measures the average potential loss of an institution if the system as a whole realizes a

tail event, thus quantifying the sensitivity of an institution to other institutional losses in

the system. In addition, we relate the liability-weighted MES to the share of systemic

risk that can be attributed to a single institution.

To the best of our knowledge, we are the first to model empirically, in a systemic

risk context, dependencies between default occurrences and the potential losses given a

default. Such dependencies are crucial for a number of reasons. First, there is sound

empirical evidence that realized losses tend to rise in periods when risk probabilities also

increase (Artzner, 1999). Second, the potential default of a SIFI by definition will have

a strong impact on other players in the industry by increasing their default risk and

at the same time lowering the value of the assets backing up their liabilities below fair

value as industry-wide distress triggers fire sales. From that point of view, we argue that

reliable systemic risk estimation should cover the potential for LGD (Loss Given Default)

dependencies.

We use a flexible modeling approach which allows for factor exposure heterogeneity

fitted on CDS data. This is an improvement over the well-known Vasicek credit model

(Vasicek, 1987) which assumes a single correlation parameter driving the dependencies in

the whole portfolio.

We look at seven Dutch financial institutions: two insurers (Aegon and NN) and five

banks (ING Bank, ABN, VB, Rabobank, and NIBC). Our model allows us to rank the

companies by their contribution to risk, where risk is quantified by the Expected Shortfall

of the systemic portfolio.

The current paper continues as follows. In Section 4.2 we review the relevant literature.

Section 4.3 describes the structural credit model we employ to describe co-dependencies

between institutions in the system. Section 4.4 discusses the credit risk approach used to

quantify the sensitivity and the contribution of each institution to systemic risk. Section
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4.5 reviews the dataset and defines the regulatory portfolio. Sections (4.6) and (4.7)

discuss the results and respectively their policy relevance, while Section 4.8 concludes.

4.2 Literature Review

Our paper is part of the wider literature using high-frequency asset prices to inform

central bank policies. Examples are Hattori et al. (2016); Olijslagers et al. (2019) who

use option-implied asset volatilities and risk-neutral distributions to evaluate the effec-

tiveness of central bank stabilization policies. Market-implied views have also been seen

as a valuable tool for monitoring financial stability and for advising on macro-prudential

policies (Jayaram and Gadanecz, 2016). Acharya et al. (2014) use co-movements in CDS

rates of sovereigns and local banks during the Euro sovereign debt crisis to show how

a doom-loop channel evolves, in which a bail-out of a local bank in trouble, because it

is deemed systemically important, leads to a deterioration in the creditworthiness of the

government, which then further depresses the credit-worthiness of the bailed-out bank

due to its large exposure to local sovereign bonds; after which there are further hits to

the solvency of the government and so on.

Also, our paper relates closely to the literature of systemic risk which utilizes equity

market information. In many cases, especially in Europe and certainly in the sample

of Dutch institutions that we consider, the major challenge in exposing market-implied

views is that some of the key players in the financial sector are not publicly traded. Ap-

proaches that rely on equity price co-movements (like Adrian and Brunnermeier (2016))

then cannot encompass the full system, cannot be used to track the systemic impact of

those institutions, and may in fact not be usable at all if too few of the quantitatively im-

portant institutions have an equity market listing. For this reason, we develop a structural

approach that utilizes information from the CDS market.

The intuition behind the mechanism that we employ is simple. We know through

Merton (1974) that the market value of a company’s assets is related both to the market

value of its equity and of its liabilities. The level of the firm’s CDS spread at any particular

instance relates to the chance that the value of its assets may drop and that it may
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experience distress in the form of a credit event captured by the CDS contract1. What is

more important for us however, is that co-movements in default probabilities can provide

information on the tendency of the institutions to become distressed at the same time.

Tarashev and Zhu (2006) also follow this line of reasoning. Rather than estimating the

unobservable asset values, as is done for example in Duan (1994, 2000) and in Lehar

(2005), we add a model of the losses in case of default that allows us to quantify the

distribution of systemic losses and the potential for large losses by several institutions at

the same time.

A CDS is in essence an insurance contract, which is traded over-the-counter (OTC),

and in which the protection buyer agrees to make regular payments, the CDS spread rate

over a notional amount, to the protection seller. In return, the protection seller commits

to compensate the buyer in case of default of the contractually referenced institution. The

value of a CDS contract thus provides information on the fair value spread that should

be used to discount the company’s debt2.

The CDS market has several features that make it an attractive source of information

for the financial sector. It is more liquid and has fewer trading frictions compared to credit

traded directly through the corporate bonds market. In terms of information transmission,

CDS spreads have been shown to lead bond markets, especially in distress periods, and

have an edge over credit rating agencies (Bai and Collin-Dufresne, 2019; Avino et al., 2019;

Culp et al., 2018; Annaert et al., 2013). Some evidence exists that they may even lead

equity markets, especially in revealing negative credit news. This relates to the fact that in

contrast to conventional asset markets, the CDS market almost by definition is composed

of insiders (Acharya and Johnson, 2005). Furthermore, liquidity and transparency in the

market have increased substantially in recent years. After the Financial Crisis of 2008/09,

OTC derivatives, and as such also CDS contracts, became subject to increased regulatory

scrutiny through the EMIR framework in Europe and the Dodd-Frank Act in the US. To

1For a similar line of thinking, cf Carr and Wu (2011) who provide a link between the value of a CDS
contract and deep out-of-the-money put options on a company’s stock.

2Apart from a hedging opportunity, CDSs are used to arbitrage away any relative mispricing between
the equity and bond prices of the reference entity (capital structure arbitrage (Kapadia and Pu, 2012)),
or to exploit mispricings in the value of traded debt (Augustin and Schnitzler, 2021). There is a large
empirical literature dealing with such possibilities and the limits to arbitrage, which we do not consider
in the current study.
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cope with systemic risk issues, central clearing was introduced with increased contract

standardization and transparency was improved by introducing reporting mandates for

counterparties3.

Furthermore, CDS prices trade on standardized terms and conditions and do not have

be bootstrapped or interpolated as do bond yields. Also, comparison between firms is

easier, because unlike corporate fixed income securities, single-name CDS contracts do

not contain additional noise from issue-specific covenants, such as seniority, callability or

coupon structure (Zhang et al., 2009; Culp et al., 2018).

Several general concerns regarding CDS prices need to be mentioned as well however.

First, CDS rates also price in the risk of default of the protection seller and not only the

reference entity. The size of this extra premium, however, has been shown empirically

to be economically negligible (Arora et al., 2012), and with the recent rise of Central

Clearing for OTC derivatives it is likely to have decreased further (Loon and Zhong,

2014, 2016). Second, single-name CDS contracts are not as liquid as public equity and

this raises concerns that the spreads could be overstating default risk by confounding it

with an illiquidity premium. Even though the argument is valid, it misses two important

points. Illiquidity risk tends to be correlated with default risk, as protection dries up at

times when it is most needed (Kamga and Wilde; Augustin and Schnitzler, 2021). Also,

strong illiquidity in the CDS contract may be indicative of the market’s unwillingness to

fund a particular financial institution due to fears that a possible future fire sale could

push it into insolvency (cf Diamond and Rajan (2011)), and may well reflect a private cost

of leverage as in Shleifer and Vishny (1992). Overall, we take the view of Segoviano and

Goodhart (2009), backed up by empirical evidence, that even though in magnitude CDS

spreads may be overreacting to bad news in certain situations, the direction is usually

justified by information on the reference institution’s creditworthiness. Thus, we use the

CDS mid quotes without correcting them further for non-credit related premia.

Part of the literature on bank distress relies on reduced-form statistical modelling

to link bank CDS movements to periods of financial adversity. Avino et al. (2019), for

example, look at the spreads of single-name CDS contracts for European and US banks

3For an overview of the market microstructure, and recent regulatory reforms of the CDS market see
Aldasoro and Ehlers (2018) and Paddrik and Tompaidis (2019).
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and evaluate the propensity of spread changes to predict bank distress in the form of

recapitalization or nationalization. One standard deviation increase in the CDS spread

changes, is estimated to correspond to a 7% to 14% increase in the (physical) probability

of financial distress of a bank. Annaert et al. (2013) look at the determinants of CDS

spread changes for a universe of European banks and separate them into a firm-specific

credit risk component, a trading liquidity component, and a business cycle components

capturing common variation linked to the business environment.

On the methodological front, Oh and Patton (2018) link bank distress to large upticks

in the CDS prices of the reference banks, and measure the probability of joint distress

through a factor copula dependency model. Billio et al. (2012) offer an early econometric

model which quantifies interconnectedness through Granger-causality networks. Bräuning

and Koopman (2016) extend the idea with time-varying heterogeneity in the link forma-

tion between banks using CDS spreads of US and European institutions. The goal is to

capture the dynamic formation of potential core-periphery clusters, which are natural for

the financial sector. Moratis and Sakellaris (2021) on the other hand use a panel VAR

model to decompose the transmission of systemic shocks across a universe of global banks.

These studies offer preliminary evidence that CDS fluctuations can serve as an early warn-

ing signal of bank risk, supplementing data from the stock market, credit rating agencies,

and accounting data. Our contribution to this literature is to embed CDS spreads into

a structural model of the firm’s capital, which allows for non-linear relationships to form

naturally.

An earlier branch of the empirical literature also uses structural firm models to imply

bank fragility (Gropp et al., 2006; Chan-Lau and Sy, 2007; Bharath and Shumway, 2008).

Most notable is the distance-to-default (DD) measure (Merton, 1974; Crosbie and Bohn,

2002) which compares the current market value of assets to the default barrier of the

firm4. While the foundation in our study is similar, we aim to evaluating cross-linkages

and the impact each bank has on the system as a whole, rather than on modelling the

individual default risk of each bank in isolation.

4Various extensions of the DD measure exist, capturing for example volatility clustering (Nagel and
Purnanandam, 2019), and asymmetric volatility shocks (Kenc et al., 2021).
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Most of all, we relate to the broader literature on measuring and quantifying systemic

risk through asset price co-movements (Lehar, 2005; Segoviano and Goodhart, 2009; Zhou,

2010; Huang et al., 2012; Adrian and Brunnermeier, 2016; Brownlees and Engle, 2017;

Acharya et al., 2017; Engle, 2018). Some of the approaches developed in that area can be

seen as largely model-free since they do not rely on particular capital structure assump-

tions of the individual firms. The CoVaR approach of Adrian and Brunnermeier (2016)

for example, along with an earlier study by Baur and Schulze (2009), relies on a quan-

tile regression on equity prices to determine tail co-dependencies and risk contributions.

Wang (2021) adapt this approach by embedding a neural network. Most of these studies

rely on high-frequency data on equity prices.

Another strand of the systemic literature, most notably Lehar (2005), relies on Mer-

ton’s theory of contingent claims to imply the market value of firm assets and the cor-

relations between institutions as a measure of systemic risk. In contrast, our approach

does not aim to imply the value of assets themselves. Rather, we directly focus on the

potential for systemic events to materialize and evaluate the potential losses for the sys-

temic portfolio when defaults occur. Using a structural model in combination with copula

default dependencies, Segoviano and Goodhart (2009) comes to the PAO measure, the

probability of at least one more bank defaulting given a default in particular bank. We

develop the idea further by also calculating the probability of two or more defaults given

that at least one has occurred. This allows us to concentrate specifically on periods of

financial contagion.

We view the regulatory space as a portfolio of risky loans, similar to Chan-Lau and

Gravelle (2005); Huang et al. (2009, 2012); Puzanova and Düllmann (2013); Kaserer and

Klein (2019). In that approach, systemic losses arise when an institution defaults and

cannot cover the value of its liabilities. The tendency of particular institutions to drive

systemic losses will result in a higher contribution to systemic risk.

From this perspective, the modeling tools developed by the securitization literature,

typically used to value n-th to default derivatives on loan portfolios, can be applied (Hull

and White, 2004; Tarashev and Zhu, 2006). In particular, Tarashev and Zhu (2006)

link the correlation structure embedded in CDS prices to the correlation between asset

values in the Merton capital structure framework. A latent factor model driving the asset
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return variations can then be used to connect the default probabilities of the different

institutions.5

Our innovation is to also embed a model of correlated losses between the institutions,

overcoming a modeling deficiency in earlier studies, which typically assume a fixed Loss

Given Default (LGD) (Puzanova and Düllmann, 2013) or assume that Recovery Rates

(RRs) are random but sampled independently from each other (Huang et al., 2012; Kaserer

and Klein, 2019). In a tail scenario, a SIFI’s default can be expected not only to raise

the default risk of other participants in the sector, but also to simultaneously decrease

the value of the assets backing up their liabilities. From that point our approach of

endogenizing the LGD relates to the literature on fire sales. See for example Shleifer and

Vishny (1992) who argue that in times of industry-wide distress and increased default

rates, assets tend to go to industry outsiders who may lack the necessary skills to manage

them and will thus be willing to buy them only at a discount to fair value. As a result,

LGDs will tend to rise with the drop in liquidation prices. This has been empirically

observed among others by Acharya et al. (2007).6

We finish by quantifying systemic risk through a Monte Carlo simulation of the possible

scenarios over the coming year by evaluating the average loss of an institution if the

portfolio as a whole is its tail (Acharya et al., 2017).

4.3 A Structural Model of Defaults and Losses

We begin by defining the structural credit risk model behind the occurrence of systemic

losses. Key here will be the assumptions driving asset value correlations and loss corre-

lations. These asset value processes will be at the core of the data-generating processes

that we define in sections (4.3.1) and (4.3.2), dealing respectively with default correlations

and correlations of Losses Given Default. These data-generating processes will then guide

factor model estimation in Section 4.3.3, and tail-risk estimation later in Section 4.4.

5The approach here can be traced back to an early latent factor credit model developed by Vasicek
(1987) to price loan portfolios. In general, using a factor model to drive the correlations structure between
portfolio positions is referred to as a factor copula model.

6See also IJtsma and Spierdijk (2017) for a discussion of fire sales, endogenous LGDs and the relation
to systemic risk.
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4.3.1 Default and Asset Correlations

We start from Merton (1974) and describe the evolution of the value of assets of each

institution i = 1, ..., n under the risk-neutral measure through the process

d lnVi,t = rdt+ σv,idWi,t (4.1)

Note that we can write (4.1) as dWi,t =
d lnVi,t−rdt

σv,i
which gives the statistical interpre-

tation of dWi,t as the standardized excess asset returns under the risk-neutral measure.

We assume that the risk component of asset value changes is driven by a common

factor component Mt and an idiosyncratic component Zi,t:

dWi,t = AiMt +
√
1− AiA′

iZi,t (4.2)

where Mt = [m1,t, . . .mf,t]
′ is the vector of stochastic latent factors and Zi,t is the firm-

specific factor. Ai = [αi,1, ..., αi,f ] is the vector of factor loadings, such that AiA
′
i ≤ 1. All

factors are assumed to be mutually independent with zero mean and a standard deviation

of one. Note that if one assumes Ai = Aj for all i, j, one gets the well known Vasicek

loan pricing model which assumes the same averaged-out factor exposure across all loans.

In the approach used here, we allow for exposure heterogeneity. One could interpret the

factors as independent economy-wide and industry-wide shocks affecting the uncertainty

in the firm’s asset value.

In Merton’s setting7, default occurs at maturity (T = t +∆t) when assets fall below

the face value of debt:

PDt = P(Vt+∆t ≤ D)

= P

(
Vt exp

(
(r − σ2

v

2
)∆t+ σvWt+∆t

)
≤ D

)
7See Appendix (4.A) for presentation of Merton’s firm value model and the role spreads play in it.
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Consider next Distance-to-Default DDt
8:

DDt =
ln Vt

D
+
(
r − σ2

v

2

)
∆t

σv

√
∆t

which allows us to rewrite the expression for the probability of default as:

PDt = P

(
Wt+∆t√

∆t
≤ −DDt

)

As a result, we get:

PDt = Φ(−DDt) (4.3)

where Φ(.) is the cumulative standard normal distribution.

We can then write the discrete first difference of DDt as:

∆DDt =
∆ lnVt

σv

The correlation between asset returns can be written as:

ρi,j = Corr(∆ lnVi,t, ∆ lnVj,t)

= Corr(σv,i∆DDi,t, σv,j∆DDj,t)

Correlations are invariant to linear transformation, so we can drop the σv term. Then

after substituting in the inverted relationship (4.3), the asset correlations can be implied

from the correlations between the transformed probabilities of the default:

ρi,j = Corr
(
∆Φ−1(PDi,t), ∆Φ−1(PDj,t)

)
(4.4)

Equation (4.4) is of crucial importance because it relates the co-dependencies in the

probabilities of default (PDs) to the asset correlations of the underlying institutions. This

allows us to use PDs that can be derived from observed single-name CDS prices to pinpoint

8The DD measure has a wide application to risk management as a predictable indicator of bank
fragility (Gropp et al., 2006; Chan-Lau and Sy, 2007).
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values for the correlations between institutions. In Section 4.3.3 we discuss in detail how

these asset correlations can be used to estimate the parameters of the latent factor model

in (4.2).

Our reliance on the Merton (1974) framework implies that we assume default to occur

when a fixed default barrier is crossed at debt maturity. Further refinements have been

developed to relax this assumption, of which we mention in particular Leland (1994)

who endogenizes the default barrier and defines it as the boundary beyond which equity

holders refuse to supply new equity to avoid default. Even though the Merton framework

maybe conceptually restrictive, it is a widely used as a raw approximation of default.

The related Merton-based DD has also been shown to be predictive of actual defaults

(Bharath and Shumway, 2008) and has certain robustness against model misspecification

(Jessen and Lando, 2015). As a result, we do not pursue any of the structural extensions

in this study.9

Next, we use the asset correlations implied from co-movements in the default proba-

bilities to solve for the loadings of the latent factor model (4.2). We pick the coefficients

which minimize the squared error between the target correlations and the correlations

implied by the factor loadings:

min
A1,...,An

N∑
i=2

N∑
j=1

(ρij − AiA
′
j)

2 (4.5)

An efficient algorithm that solves the minimization problem is provided by Andersen and

Basu (2003). It operates through an iterative principal component analysis rather than

by brute force numerical optimization. Appendix (4.B) clarifies the algorithm.10

In Section 4.3.3 we discuss in detail how observed CDS rates can be used to imply

default probabilities for the period, how the target correlations ρi,j are set and in turn

how the factor model driving asset returns is estimated, but before doing that we have to

specify the processes driving losses conditional on default.

9See Sundaresan (2013) for a review of structural credit models and their applications.
10An alternative is to use Kalman Filtering techniques. As shown by Tarashev and Zhu (2006), the

two produce very similar results.
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4.3.2 A Model of Loss Correlations

The next step is determining the size of the potential losses if a default were to occur.

A common deficiency in the systemic risk literature which uses the portfolio-of-loans

approach is that the realized recovery rate RR is assumed to be either fixed (Puzanova

and Düllmann, 2013) or stochastic but independent across firms and from the realization

of default (Huang et al., 2009, 2012; Kaserer and Klein, 2019).11 Relying on strong

assumptions on default losses is inevitable, as defaults, especially of SIFIs, are rarely

observed. Yet, we try to addresses the empirical evidence that as default rates in the

economy increase, the recovery values on assets decrease (Altman et al., 2004; Acharya

et al., 2007). Therefore in an extension of the existing literature we allow default losses to

be dependent on the latent factors driving asset correlations. Accounting for this is likely

to have significant consequences for the quantification of systemic risk which inevitably

depends on the tail risk dependencies between institutions.

To do so we follow Frye (2000) and Andersen and Sidenius (2005) and model the

RRs based on the value of a stochastic collateral process Ci,t which backs up liabilities.

Dependency is achieved by making the value of the collateral dependent on the same

set of factors that drive the asset value processes. In particular, we define the value of

collateral per euro of liabilities as:

d lnCi = σcdW
c
i (4.6)

where dW c
i is a term driving the total recovery risk and σc is a scaling parameter.

We assume that common collateral value variation is driven by the same common

factors defining the asset correlations in (4.2). Zc
i defines an independent factor capturing

possible firm-specific discrepancies between the underlying assets of the firm and the value

of recovered collateral, which could be due to a loss on the value of intangible assets, or

any other restricting costs due to, liquidation, or delay costs. The same factor loadings

11This relies on a modelling approach often used in the credit risk literature to sample simulations of
the random RRs independently from triangular or beta distributions (Hull, 2018).
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determined in (4.2) are assumed to hold here as well. Formally, we therefore have

dW c
i = AiM +

√
1− AiA′

iZ
c
i (4.7)

Finally, in case of default, the recovery rate (RRi) as a proportion of liabilities is never

larger than 100% of the recovered liabilities:

RRi = µc,i min(1, Ci)

= µc,i min (1, exp{σcdW
c
i })

(4.8)

where µc,i is calibrated to match the assumption of the expected RR.

We do not have a reliable way to estimate σc for each institution in the portfolio, so

we match it to the VSTOXX index (Figure 4.14) as a way of generating time variation

which is tied to the willingness of investors to take risks and thus to the overall asset

valuation sentiment in the economy. VSTOXX, similarly to its US counterpart VIX,

measures the implied volatility derived from near-term exchange-traded options on the

Euro Stoxx 50 index. The options are widely used by investors for hedging purposes, so

the two composite indices constructed from their prices are indicative of the risk appetite

prevalent in the economy. A low appetite for risk relates to a greater cost of capital,

lowering investments, and driving down prices, while a high appetite relates to credit and

asset price bubbles, increasing the chance for future recessions and stress in the financial

system (Illing and Aaron, 2005; Gai and Vause, 2006; Aven, 2013).

4.3.3 Extracting Default Probabilities from observed CDS prices

We now proceed with the estimation of the factor loadings of equation (4.2). The

first step is to find the institutions’ default probabilities over time. Once we have these

time series, relation (4.4) allows us to pin down the asset correlation matrix between the

various institutions under consideration. These will serve as target correlations against

which the model is fitted when estimating the factor loadings.

So, first, we extract the (risk-neutral) default probabilities needed in Equation (4.4)

from the observed CDS rates. Following Duffie (1999) we assume, in this subsection only,
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that RRs are constant over the horizon of the contract, setting aside the equation (4.8)

we use in analyzing correlated LGDs. We do not try to identify expected recovery rates

separately from the observed CDS data. There are alternative and more sophisticated

approaches; for example Pan and Singleton (2008) identify separately the RR and the

default intensity of the credit process exploiting the term structure of the CDS curve

constructed from contracts with different maturities. Christensen (2006) models jointly

the dynamics of the RR, the default intensity, and interest rate by breaking away from

the standard Recovery of Market Value (RMV) approach of Duffie and Singleton (1999)

according to which at default the bondholder receives a fixed fraction of the prevailing

market value of the firm. Under the RMV approach the default intensity only shows up

within a product with the recovery rate, so the two cannot be identified separately. Having

one collateral model when assessing LGD correlations and another one when extracting

default probabilities from observed CDS spreads comes down to an inconsistency that is

well known in the literature (see Tarashev and Zhu (2006)’s discussion of precisely this

issue). Yet, the simplifying assumption we employ in estimation is widely used in the

literature and is hard to improve on given the identification problem we just discussed.

With this in mind we can proceed with the pricing equation of the CDS contract.

By market convention, at the initiation date t of the contract the spread CDSt is set to

ensure that the value of the protection leg and the premium leg of the contract are equal,

such that the contract has a zero value:

CDSt

∫ t+T

t

e−rτ τΓτdτ︸ ︷︷ ︸
PV of CDS premia

= (1− ERRt)

∫ t+T

t

e−rτ τqτdτ︸ ︷︷ ︸
PV of protection payment

(4.9)

rτ is the risk-free rate, CDSt is the observed CDS spread for the day, qτ is the annualized

instantaneous risk-neutral default probability , Γτ = 1−
∫ τ

t
qsds is the risk-neutral survival

probability until time τ , and ERRt is the expected recovery rate in case of default,

assumed to be constant over time.

For simplicity we assume that the risk-free rate r and the annualized default rate q

are fixed over the horizon of the contract. Then the default probability q at time t follows
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from equation (4.9):

qt =
aCDSt

a(1− ERRt) + bCDSt

(4.10)

with a =
∫ t+T

t
e−rτdτ and b =

∫ t+T

t
τe−rτdτ . Setting T = 5 to capture 5 year CDS

contracts, we can imply the annualized default probabilities.12 We can then substitute

the implied risk neutral probability qt for PDt in Equation (4.4), which then allows us to

fix the asset correlations between all pairs of institutions.

Finally we should point out that we are ignoring correlation risk premia. We rely on

evidence provided by Tarashev and Zhu (2006) that such premia, if they exist at all, are

quantitatively very small in CDS prices.

4.4 Measuring Systemic Risk: A Credit Portfolio Ap-

proach

We now have the machinery in place to start modeling systemic risk. We model

the space of institutions falling under the regulator’s supervision as a structured credit

portfolio. An institution becomes distressed if a credit event occurs in its subordinated

debt. Each institution’s liability can be seen as a loan from the public and amounts to

the total Exposure at Distress (EAD). A loss occurs whenever an institution defaults and

cannot deliver the full promise of its outstanding liabilities to its counterparties.

Formally, the systemic loss Lsys is the sum of the individual losses of each institution

in case of distress over the following year; the sum is scaled by the total liabilities in the

system:

Lsys =
n∑

i=1

wiLi

Li = 1di(1−RRi)

(4.11)

12In credit risk (and more generally in survival analysis), the variable q relates to the hazard rate, the
constant arrival rate (in a Poisson sense) of a credit event. At any instant, given that a default has not
yet occurred, the time until it does is exponentially distributed with parameter q. For a small ∆t and
small q, the probability of default is then ∆t.q. See Duffie (1999) for details.
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where each loss Li stands for the percentage losses in default as a proportion of the own

liabilities of institution i, and wi = Bi∑N
j=1 Bj

is the relative weight of the institution’s

liabilities (Bi) in the systemic portfolio. 1di is a default indicator function, where in line

with the structural assumptions made so far default occurs when dWi ≤ −DDi, in line

with the expression from equation (4.3).

We define systemic risk as the potential for large default losses in the financial system.

A single entity’s contribution to systemic risk then will be measured as its propensity to

increase that potential. Several elements can thus drive the systemic risk contributions

of an institution. First of all, both increases in the default probability and decreases in

the proportion that can be recovered in case of default will lead to a higher contribution.

Second, the size of the institution, measured by its outstanding liability relative to the

size of others, will determine how important the institution’s potential losses are for the

system as a whole. Third, the propensity of the institution to become distressed or to

realize large losses whenever other institutions in the portfolio are distressed will also

affect its systemic risk contribution.

Formally, we quantify downside risk through Expected Shortfall13 (ES), which mea-

sures the average losses of an institution, or, where relevant, the portfolio as a whole, in

the worst q-th percentile of its potential loss distribution:

ESi = E(Li|Li ≥ V aRi) (4.12)

where V aRi stands for the Value-at-Risk of the institution at confidence level (CL) 1−q:14

P(Li ≥ V aRi) = q

The ES thus measures the average loss once the V aR-threshold of an institution has

been exceeded. An appealing feature of this measure is that it is coherent, in the sense

13The measure is often referred to as Expected Tail Loss or Conditional Value at Risk (Rachev et al.,
2008)

14Typically, q stands for the tail probability and takes value of e.g. 5%, 1%, .01% depending on how far
in the tail we want to measure the potential for extreme losses. Then, given the potential loss distribution,
we are (1− q)% certain that losses will not exceed the corresponding V aR estimate.
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of Artzner (1999), and thus allows for capturing diversification in an intuitive way when

the losses of a system are aggregated.15

The V aR and the ES of a financial institution quantify the potential losses that could

occur if an institution is distressed. These measures however do not take into account the

fact that banks operate in a network and each institution’s failure may trigger failures of

other institutions.

As a measure of tail codependency, we follow Acharya et al. (2017) to define Marginal

Expected Shortfall (MES) as the average loss of institution i given that the system is in

the worst q-th percentile of its distribution of potential losses:

MESi = E (Li|Lsys ≥ V aRsys) (4.13)

Note that the weighted sum of all MESs in the portfolio provides the ES of the system.

This follows from (4.12) and (4.11):

ESsys =E

(∑
i

wiLi|Lsys ≥ V aRsys

)
=
∑
i

wiE (Li|Lsys ≥ V aRsys)

=
∑
i

wiMESi

(4.14)

This additivity property allows us to break down the total ES of the portfolio into per-

centage contributions due to each institution as

PC to ESi =
wiMESi

ESsys

(4.15)

which will be a useful metric further on in attributing risk across institutions and ranking

them by systemic importance. Note that (4.14) implies also that the MES measure can

15The set of coherent risk measures are defined axiomatically through a number of intuitive properties:
(1) Monotonicity : comparing several random payoffs, lower losses in all states of nature imply lower risk;
(2) Positivide homogeneity : scaling a portfolio random payoff by a positive factor also scales its risk by
the same factor; (3) Sub-additivity : the risk of the portfolio is not greater than the sum of the risks of
the assets which comprise it; (4) Invariance: adding cash to a portfolio reduces its risk by the amount
added. ES covers all of the properties, while VaR fails at sub-additivity. In fact, functionals which satisfy
(2) and (3) are convex, a feature that defines mathematically the concept of diversification in modern
portfolio theory (Rachev et al., 2008).
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be interpreted as the sensitivity of the system’s tail risk to the weight of the institution

in the portfolio as we have ∂ESsys

∂wi
= MESi.

4.5 Data

4.5.1 Note on the Dutch Financial Sector

The Dutch banking sector is comparatively large relative to other EU countries: the

total cumulative balance sheet value of all banks accounts to about 400% of GDP in

the beginning of 2013, a rise from about 100% in the 1970s. For comparison that figure

amounted to about 300% in the EU and in Germany according to figures by DNB (2015).

By 2018, The Netherlands is in the top 5 countries ranked by the ratio of value of bank

assets to GDP (DNB, 2019). The sector is highly concentrated, and domestic banks are

dominating the market. We look at the five largest Dutch banks:

• ING Bank: privately held by ING Group, it is the most internationally oriented

Dutch bank with operations also in Mexico, Taiwan, etc.

• ABN AMRO: mostly focused domestically with some operations abroad. Equity

on the company is publicly traded, providing a little less than half of the capital of

the bank. The remainder is Government held, down from 100% after a national-

ization/rescue in 2008. It is the only bank in our sample whose equity is publicly

traded.16

• Rabobank: a cooperative bank, largely focused on the agricultural and consumer

sector with certain activities abroad.

• NIBC Bank N.V.: a commercial bank, subsidiary of NIBC Holding N.V. which

is publicly traded.

15In the risk management jargon (Hull, 2018), the weighted MESs are often referred to as Component
Expected Shortfall.

16ING Group’s equity is publicly traded, but it owns a large number of subsidiaries operating worldwide
that are operationally and legally disjoint from the Dutch subsidiary. NIBC’s equity has been de-listed
since February, 2021.
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• De Volksbank: a bank holding operating exclusively in the Netherlands owned by

the Dutch state since the nationalization of its predecessor SNS in 2012.

Out of the 5 institutions, ABN AMRO, ING, and Rabobank are designated as sys-

temically important by the European Banking Authority.

In addition, we look at two insurance companies, which have CDS swaps traded on

their name:

• NN Group: one of the largest insurance holdings in the Netherlands. It is active

in life and non-life insurance, and also has an asset management branch. NN was

part of the ING Group and was split off from it between 2013 and 206. Its equity

is currently publicly traded.

• Aegon NV: a holding company engaging in insurance, pensions, and asset man-

agement services. It is globally active in its operations.

The goal is to check if the market perceives dependencies between the insurance sector

and the banking sector in the Netherlands and to check if any of the insurance firms will

show up as systemically important when looked at in the context of the total financial

sector. Also, we want to capture any potential interlinkages between insurers and banks

that could drive systemic losses. The equity of both insurers is publicly traded on the

equity market.

4.5.2 Dataset and Data Assumptions

We use weekly data for ISDA’14 compliant CDS mid prices on subordinated debt. The

data is collected from Bloomberg. Figure 4.12 in Appendix (4.C) shows the evolution of

CDS rates for each institution and Figure 4.13 (also in Appendix (4.C)) shows a scatter

matrix and distribution plots for the CDS rate log changes. This gives an initial view of

the possible dependencies in the occurrence of credit events between institutions.

We evaluate systemic risk in a cross section and over time. First we use the period

September 9th, 2019 to September 13th, 2021 to evaluate and rank the institutions by

their contribution to systemic risk. Then we use a rolling window backtest in the period

January 1st, 2010 up to September 13th, 2021 to evaluate the evolution of the systemic
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risk measures. In the spirit of Lehar (2005), the time window consists of 2 years of weekly

observations to evaluate the model and project the risk metrics, after which the window

is shifted forward by a week and the model is re-evaluated. This produces a series of

out-of-sample metrics.

Annual balance sheet data is collected from FactSet and from publicly available finan-

cial statements of the firms, whenever the data provider has a gap. The annual numbers

are interpolated to weekly with a cubic spline to avoid jumps at year-end, driven by

accounting standards rather than the arrival of new market information.

The structure of the liabilities of each company is used to induce the expected recovery

rate (ERR) in case of default (Figure 4.15 and Table 4.1). Following Kaserer and Klein

(2019), an expected recovery rate of 80% is assumed on deposits (in case the institution

is a bank) or policy insurance liabilities (in case the institution is an insurer) and 40%

on other liabilities. The reasoning is that the collateral on the former type of liabilities

is regulated to be more liquid and low-risk and thus higher recovery in case of default

can be expected. Kaserer and Klein (2019) provides an overview of the empirical studies

which underpin the numbers on the expected recovery rates ERR.

Figure 4.15 (in Appendix (4.C)) shows for each institution the value of the deposits

and insurance policies, the value of other liabilities, and the resulting ERR assumptions.

There is little variation in the ERR over time but diversity across institutions is large.

Table 4.1 below shows the average liability weights (LW), the weight of the institution in

the systemic portfolio; the liability ratio (LR), the ratio of deposits and policy liabilities

to other types of liabilities, and the ERR per institution. Ranked by LW, the largest

institutions are ING Bank, Rabobank, and Aegon. In terms of ERR, Volksbank has the

highest value, while Aegon has the lowest (note that RR is a ratio).
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Table 4.1: Recovery Assumptions

LW LR ERR

ABN 0.15 0.64 0.66
INGB 0.35 0.72 0.69
RABO 0.23 0.61 0.64
NIBC 0.01 0.57 0.63
VB 0.02 0.83 0.73
AEGO 0.16 0.31 0.52
NN 0.09 0.72 0.69

Note. This table shows the average Liability Weights (LW) over the period 2010-2021 in the regulatory
portfolio, the Liability Ratio (LR) as the average ratio of deposits (or respectively policy weights) in the
company’s balance sheet, and average recovery rate (RR) per company.

4.6 Results: an Overview

4.6.1 Factor Exposures and Asset Correlations

The first building block for evaluating the potential systemic losses driven by individual

institutions consists of the estimation of the latent factor model, as showin in Section 4.3.1.

The latent factor, synthesized from the common asset return variation in the sample, is

often interpreted as a market driver of risk. From that point of view, the factor loadings

on their own provide a useful interpretation as market exposures. They measure the

sensitivity of an institution to market movements, and indicate the number of standard

deviations the asset return of an institution will fall below the mean in response to one

standard deviation drop in the return of the market.

Figure 4.1 shows the exposure values for each institution. The factor loadings are

estimated based on the observed CDS prices over the considered time window. We can

already see that three groups of institutions start to form - those with high sensitivity

to the common factor (Aegon, Rabo, and VB), those with median exposure (ING, ABN,

NIBC), and those with low factor sensitivity (NN).

For interpretation purposes, it is also useful to translate the exposure figures into the

share of total asset return variation due to market risk vs. the share due to idiosyncratic

variation. In fact, squaring the loadings provides the share of market risk:
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Figure 4.1: Common Factor Loadings
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Note. This figure shows the estimated exposure (loading) of each institution to the common latent factor.

Var(∆ lnVi)

σi

= a2i Var(Mi) + (1− a2i )Var(Zi)

= a2i︸︷︷︸
Factor Risk Share

+ (1− a2i )︸ ︷︷ ︸
Idiosyncratic Risk Share

(4.16)

In the same line of thought, cross-multiplying the loadings of two institutions provides

the implied correlation between the return of their asset holdings, since we have:

Corr(∆ lnVi, ∆ lnVj) = aiaj

Figures (4.2) below illustrate the results. Naturally, the smaller the factor loading of

an institution is, the more the risk of that institution is purely idiosyncratic, and the less

correlated it is with all other institutions in the market.

4.6.2 Probabilities of Joint and Systemic Defaults

The next building block of the model is the default simulation based on a fixed de-

fault barrier in line with the Merton firm model. To do this we draw 500K independent

Monte Carlo simulations for the idiosyncratic and the common factors. Based on each
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Figure 4.2: Common Factor Loadings
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institution’s factor exposures, outlined in the previous section, these can be translated

into scenarios of (standardized) asset value changes over the coming year. The default

probability implied through the observed CDS rate for the period provides the default

boundary for the institution, as indicated in equation (4.3). Subsequently, in each simu-

lated scenario of asset value drops, we can evaluate whether the barrier would be crossed

and whether a default would occur. The common factor provides co-variation in the oc-

curance of defaults, which will guide the probability of multiple defaults occurring at the

same time.

In aggregate, this allows us to estimate the average share of default scenarios per

institution, matching the estimated individual default probability from the observed CDS

spread. More importantly, we can find the average share of joint defaults, illustrating

the tendency of institutions to become distressed at the same time. Figure 4.3a shows

these numbers. The diagonal corresponds to the standalone default probabilities. VB,

Aegon, and Rabo are ranked highest. The off-diagonal terms show the probability of joint

defaults. The three highest pairs here are, maybe not surprisingly, again among the group

of institutions that have the highest common factor exposure: Aegon with Rabo, Aegon

with VB, and VB with Rabo.
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Next, we can translate the joint default probabilities into conditional probabilities of

one institution’s default conditional on a default of another institution using the defini-

tional relationship:

P(1di = 1|1dj = 1) =
P(1di = 1, 1dj = 1)

P(1dj = 1)

where in each case P(·) indicates the probability of default. Figure (4.3b) below shows

the results. We can see that the high asset correlations also translate into high joint and

conditional default probabilities.

Figure 4.3: Default Probability Matrix
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(b) Conditional Probability of Default

Note: This set of charts shows (a) the probability that two institutions may default together over a one
year horizon; (b) the probability that institution i may default, conditional on j being in default.
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We also want to look at the potential for a systemic event to trigger cascading defaults.

For the purpose, we define the random variable Nd which will measure the number of

defaults that will materialize over the coming period as:

Nd =
N∑
i=1

1di (4.17)

The factor-based simulation, outlined in Section 4.3, allows us to evaluate the pro-

portion of cases where more than k = 1, 2, 3, 4 defaults happen at the same time. This

produces P(Nd ≥ k1), as summarized in column two in Table 4.2. There is about 7%

chance that at least one of the considered institutions may default over the next year.

The probability is relatively high, but the overall trend, as Figure 4.4a indicates, has been

decreasing since the 2008/09 financial crisis.

We also compute the probability that there are more defaults, given that one or

two have already materialized. Using the law of conditional probabilities, these can be

computed as
P(Nd ≥ k)

P(Nd ≥ k)

where k is the total number of defaults given that at least k have already happened. The

results are reported in column three and column four of Table 4.2 for k equal to one or

two, respectively. If a default occurs, there is a substantial chance (about 34%) that other

defaults may follow. Examining the trend of conditional defaults over time, Figure 4.4b

shows that the cyclical pattern here is different - the probability decreases after the Euro

government debt crisis in 2010-2011, increases in 2016, possibly due to Brexit concerns,

and spikes suddenly in March 2020, which is when the first Covid waves came up in

Europe.

It is worth noting that, since our model is not identifying causality in any form, the

conditional probability of additional defaults could stand either for potential spillovers

from one distressed bank to another, or could represent a common external shock affecting

multiple institutions.



Table 4.2: Probability of Systemic Defaults

k P(Nd ≥ k) P(Nd ≥ k|Nd ≥ 1) P(Nd ≥ k|Nd ≥ 2)

1 7.17 - -
2 2.50 34.88 -
3 1.24 17.27 49.50
4 0.61 8.52 24.43

Note. The first column in the table indicates the threshold number of defaults k. The second column
shows the unconditional probability that more than k out of 7 firms default at the same time. The third
and fourth columns show respectively the conditional probability that more than one or two additional
institutions will default given that at least one or respectively two have already defaulted.

Figure 4.4: Probability of Systemic Defaults
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Note. This set of charts shows (a) the probability that more than one, two, three or
four defaults occur at the same time; (b) the probability that more than two defaults
could occur if one has already happened.
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Figure 4.5: Systemic Default Loss Distribution.
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Note. The first figure presents the probability that systemic losses (as percent of total liabilities in the
system) will be larger than a threshold L as a function of that threshold. The second figure shows the
expected systemic loss, as percent of total liabilities in the system, conditional on the factor dropping by
more than M standard deviations away from the mean.

4.6.3 Marginal Expected Shortfall

Evaluating only systemic default probabilities as was done in Section 4.6.2 does not

take into account the fact that the default of some institutions may have a much larger

impact than that of others. Everything else fixed, bailing out a larger institution, will

be more costly for the regulator, and its default and the possibility that it cannot cover

its liabilities will have a wider impact on the economy. A proper systemic risk appraisal

should also capture the size of the potential losses given that joint distress occurs. So our

next step is to assess the size of the expected losses if tail risk events do in fact happen.

Now we need to incorporate the stochastic nature of expected losses and the way they

are correlated across institutions and, equally important, the way they depend on default

probabilities, following the approach outlined in Section 4.3.2.

The charts in Figure 4.5 show an initial view into the potential size of the systemic

losses and the probability that such losses could be realized. First, Figure 4.5a shows

the distribution of the simulated cumulative losses as a percent of the total outstanding

liabilities in the system. Consistent with the earlier estimates in Table 4.2, in about

93% of the cases (corresponding to 1 − P(Lsys > 0)), the system is resilient and does
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not encounter any distress which would lead to default losses for any of its composite

institutions. In about 3% of the cases, systemic losses could be above 10%.

Figure 4.5b on the other hand, relates the size of the aggregate losses that can be

expected to the size of a potential systemic shock driven by a drop in the common factor

M . By our estimates, for example, a drop of more than two standard deviations in the

latent factor (e.g. a shock of the magnitude of the 2008/09 Financial Crisis) can be

expected to bring losses of about 20% of the size of aggregate liabilities. In other words,

given the defaults that this large systemic shock would generate, some of the financial

institutions will experience asset value drops by such a magnitude that they will not be

able to deliver about 20% of their outstanding liability commitments.

A standard approach to quantify the risk of losses within a portfolio in a single number

is to employ the downside risk measures defined in Section 4.4. In particular, we use the

Expected Shortfall to measure the average of the worst 1% of the possible outcomes for

the coming year. Using the simulated systemic losses, we evaluate the systemic risk by

the ES of the portfolio of institutions, and arrive at an estimate of 35.05% (cf Table 4.3).

Table 4.3 summarizes the risk for the system and for each individual institution, where

the ES will be indicative of standalone risk.

For the system as a whole, Figure 4.6 puts the risk evaluation in context, plotting

over time the ES and the V aR of the systemic portfolio. Note that in contrast to the

downward trend of Figure 4.4a, the tail risk of the systemic portfolio is not on a downward

trend over time but seems to be more in line with the cycles in Figure 4.4b.

Overall, these estimates allow regulators not only to track the resilience in the system

and to look for increased probability of large systemic losses, but also to verify whether

the buffers currently in the system are enough to cover the potential losses once a systemic

event materializes. If the buffers are not sufficient, regulators could either require higher

buffers to be set aside, or could look for ways to increase the resilience of the system, by

closely examining the institutions which are the highest contributors to risk.

In order to attribute the potential systemic losses to the individual institutions com-

prising the system, we employ the MES measure suggested by Acharya et al. (2017) and

defined in (4.13). In particular, we look at the percentage contributions defined in (4.15).
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Figure 4.6: Systemic Risk (ES, VaR)
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Note. This plot shows the tail risk of the systemic portfolio quantified by the ES and V aR.

Table 4.3 summarizes the results. First of all, it points to a certain discrepancy between

bank vulnerability rankings in relation to banks’ own risk, as measured by ES99, and in

relation to the vulnerability of the system as a whole, as measured by MES99. The two

riskiest institutions on their own are Aegon and Rabo. They are also the most sensitive

to shocks in the system, followed by VB which is number five when ranked by ES.

Second, taking institutional size into account, the top three contributors to systemic

risk shift. Ranking by PC to ES, Rabo becomes first, owning about 32% of the total

systemic risk, followed by ING with about 28%, Aegon, an insurer, with 26% and ABN

with about 9%.

We can also define a so-called network relation based on ES as:

NESi,j = E (Li|Lj ≥ V aRj) (4.18)

to measure the average losses of institution i when institution j is in distress. In contrast

to the asset correlations and the conditional default probabilities, this distress dependency

metric also takes into account the size of the losses.

Figure 4.7a then shows the expected loss of the row entry given that the column entry

is below its 99% V aR, where the diagonal of the table corresponds to the ES of each

entity, and the last column corresponds to the MES of each institution. More interesting
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Note: These set of charts illustrate the network effects of tail losses. The first chart shows the expected
loss of the i entry, conditional on the j entry. The last column and the last row, labeled Sys, stand for
Systemic losses. The diagonal of the table corresponds to the ES of each entity, and the last column
corresponds to the MES of each institution, the last row measures the CoES of the column item, and
the off-diagonal terms measure NESi,j with i as the row entry and j as the column entry.
The second chart shows the percentage contributions to systemic losses given that the column item is in
its tail. Column items sum up to 100% and can be interpreted as percentage contributions to CoES.
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Table 4.3: Systemic Risk Statistics

EL w ES99 MES99 PC to ES99

ABN 0.73 (4) 14.67 (4) 51.21 (3) 21.38 (5) 8.95 (4)
INGB 0.60 (6) 34.57 (1) 47.87 (6) 28.24 (4) 27.86 (2)
RABO 0.97 (2) 23.24 (2) 58.88 (2) 49.45 (2) 32.80 (1)
NIBC 0.65 (5) 0.73 (7) 50.07 (5) 14.22 (6) 0.30 (7)
VB 0.94 (3) 2.50 (6) 50.56 (4) 29.33 (3) 2.09 (5)
AEGO 1.29 (1) 15.54 (3) 67.15 (1) 59.65 (1) 26.46 (3)
NN 0.47 (7) 8.75 (5) 35.09 (7) 6.22 (7) 1.55 (6)
System 0.81 100.00 35.05 35.05 100.00

Note. This table shows the Expected Loss, Liability Weight, ES, MES, and Percentage Contribution
to ES statistics. All statistics are in percentage loss format. The numbers in the brackets provide the
ranking relative to the group.

are the off-diagonal entries, which quantify loss co-dependencies between the different

institutions, corresponding to the NESi,j measure defined earlier: the average loss of

institution i given that j is in distress. In contrast to the asset correlations and the

conditional default probabilities, this distress dependency metric takes into account the

size of the losses. The largest co-dependent loss here occurs between Aegon and Rabo. In

particular, if Rabo is in its tail, Aegon would lose 52.5%, which is not far from the loss it

would realize in its tail, an ES of 58.9%.

Note that the last row of Figure 4.7a shows, the average loss of the system given that

the institution is in its tail, a measure which we can call the CoES. This is an inverted

version of the MES presented in (4.13). The additivity property of the expectation

combined with common conditioning, allows us to break down the CoES of an institution

into its weighted network components:

CoESj = E(Lsys|Lj ≥ V aRj)

= E(
∑
i

wiLi|Lj ≥ V aRj) =
∑
i

wiNESi,j

(4.19)

One possible interpretation of the CoES is as a stress scenario, measuring the expected

systemic loss if one institution becomes distressed. Note that all other institutions in that

scenario will not be held fixed but will react following their tail dependencies with the

distressed institution. A higher value for the metric means that either the distressed entity
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has more impact on the system on its own, or that all institutions are strongly correlated

when generating losses. In the extreme, if either an entity is driving all the losses in the

system, or the entity’s losses are fully correlated to those of other players, its CoES will

be equal to the ES of the system. From that point of view Rabo, Aegon, and ING Bank

respectively have the highest potential to impact the system.

Weighting up and adding up all NESi,j over i, i.e. all row entries over a column entry

j, generates the CoES of institution j, as indicated earlier in (4.19). This allows us to

determine the percentage contribution each institution will bring about to systemic losses

when one of its peers is in its tail. Formally, we have

Network PC to ESi,j =

∑
iNESi,j

CoESj

The highest systemic loss of 31.1% will occur if Rabo ends up in its tail. If that were

to happen, we can see from Figure 4.7b that only 44% of the systemic losses will be due

to Rabo itself. The rest will be contributed in large part by Aegon (26.2% of the risk),

ING (17.9%), and ABN (about 8%).

Figure 4.8 shows rolling-window MES estimates for each institution. Note that the

ES, as a measure of standalone risk, is not always moving in conjunction with the systemic

contributions (MES). Periods, where the two disagree in direction, are indicative of

changes in the correlation between the institution and the portfolio.

The Covid impact spike at the beginning of 2020 is a clear systemic event increasing

the standalone risk of each company. For some companies, the standalone risk spikes

together with the corresponding contribution and reverses a former trend of declining

contributions (Rabobank, NIBC, Aegon). For NIBC, in contrast, the spike keeps the firm

at an increased level of systemic contribution. For ABN and VB, the shock seems to

be largely transient. An interesting case is NN. Even though it experiences an uptick in

standalone risk, its contribution does not move.

Figure 4.9 shows the contributions to systemic risk over time as a share of total

systemic risk. The companies are ranked on the chart by contribution as of the end of

2021. There is no change in ranking for the top three contributors over time: Rabobank,
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Figure 4.8: Backtest, 99% MES
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Note. This figure shows the MES vs. the ES at q = .99% for each company. The MES of the institutions
sums up to the total ES of the system.

ING Bank, and Aegon. However, the relative contribution coming from ING Bank has

diminished after 2017.

4.6.4 Robustness

Finally, as a robustness check, we employ two checks to verify if changing or isolating

out some components of the model changes the systemic rankings we estimate. First,

we look at whether several other measures of systemic risk sensitivity comply with the

rankings established in Section 4.6.3. Second, we look at the sensitivity of our results

relative to the parameter assumption of σc underlying the RR dynamics in (4.6).

As indicated in Section 4.2, there is a wide variety of measures in use that imply the

systemic risk sensitivity of an institution from market data. Adrian and Brunnermeier

(2016) propose the CoV aR to quantify the tail-dependency between an institution and

the system it is part of. It is evaluated as the worst q% losses of the system, given that

an institution i is in its worst q%. To align this measure with the concept underlying the

MES, we invert it to get the Exposure ECoV aR, which now also quantifies the sensitivity

of the institution’s losses to a systemic tail event17:
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Figure 4.9: 99% MES (Percentage Contribution)
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This figure shows the MES vs. the ES at q = .99% respectively for each company. The MES of the
institutions sums up to the total ES of the system.

P(Li ≥ ECoV aRi|Lsys ≥ V aRsys) = q

Both the MES and the ECoV aR measure the institution’s losses if the system ends up

in the tail of its potential losses over the coming year. However, in contrast to MES,

which measures the average loss once the system is its tail, the ECoV aR zooms in deep

in the tail of the potential losses of the institution, measuring the q-th quantile not only

with respect to the systemic losses but also with respect to the institution’s losses.

Next, we relate to another measure, which focuses only on default correlations as

presented in Section 4.6.2. The idea is to compare our results to a measure that is not

17Note that originally Adrian and Brunnermeier (2016) define CoV aR by conditioning on individual
losses being equal to a quantile rather than a region of their distribution as:

P(Lsys ≥ CoV aRi|Li = V aRi) = q

This allows the use of quantile regression for the estimation of the measure. On the negative side,
such conditioning can give a misleading tail-risk indication when the loss distribution is fat-tailed, by
not capturing the probability mass below the V aR quantile. In our case, systemic losses are strongly
non-Gaussian, so we use the modified version of CoVaR, as in Huang et al. (2012), which conditions on
Li ≥ V aRi. See also Nolde and Zhou (2021) for the same argument, and the relation to Extreme Value
Theory of the modified measure.
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influenced by the assumptions on how losses are formed and how they correlate between

companies, as these assumptions will inevitably affect both the MES and the ECoV aR

which are driven by the same loss simulations. To measure the sensitivity of individual

institutions to distress in the system, Zhou (2010) defines the Vulnerability Index (VI) as

the probability that institution i will be in default conditional on more than one default

in the system:

V Ii = P(1di = 1|Nd > 1) (4.20)

Note that Zhou (2010) relies on Extreme Value Theory to estimate the proposed measures.

Also, we rely on default as an indication of distress, whereas the original measure is

constructed to capture large tail movements in the equity value of the institution. Our

approach differs methodologically, but based on the outlined model, the measures can be

adapted.18

Table 4.4 summarizes the results. First, we compare the unweighted systemic risk

measures to the MES rankings of Table 4.3. The rank correlations in sub-table (b)

indicate strong agreement between the V I measure and the MES. The MES and the

ECoV aR agree only moderately. Closer inspection indicates that the disagreement is

that ECoV aR switches the ranks of NIBC and VB, and of ABN and ING.

Sub-table (c) compares the size-weighted measures and finds strong agreement between

them. It is worth noting that only the weighted MES measure (the ranking of which

coincides with the presented earlier ranking by PC to ES) sums up to total systemic

risk. This is due to the additivity property (4.14). The two other risk measures do not

have this property and their weighting can be considered only as a heuristic.19Once the

measures are weighted, they show a stronger correlation among each other. It is worth

noting that size itself correlates strongly to MES. It fails however to identify Rabo as

18The VI index is constructed by inverting an earlier measure of conditional default proposed by
Segoviano and Goodhart (2009). To evaluate the impact of each institution upon the system, they
measure the probability that at least one more institution becomes distressed (PAO) conditional on the
distress of one particular institution: PAOi = P(Nd > 1|1di

= 1). We do not explore systemic impact
measures here, as an initial analysis shows that there is very little difference in rankings between the
impact measures (PAO and SII) and the sensitivity measure (SII) for our sample.
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Table 4.4: Systemic Rankings Comparison

ECoV aR (%) V I (%) w · ECoV aR w · V I

ABN 64.94 (4) 33.81 (4) 9.52 (4) 4.96 (4)
INGB 63.65 (5) 32.12 (5) 22.00 (1) 11.10 (2)
RABO 67.73 (2) 57.33 (2) 15.74 (2) 13.33 (1)
NIBC 65.39 (3) 28.06 (6) 0.48 (7) 0.21 (7)
VB 62.41 (6) 53.26 (3) 1.56 (6) 1.33 (6)

AEGO 73.95 (1) 67.00 (1) 11.49 (3) 10.41 (3)
NN 56.72 (7) 15.41 (7) 4.96 (5) 1.35 (5)

(a) Rankings

MES ECoV aR V I

MES
ECoVaR 0.64

VI 0.96 0.68

(b) Rank Correlations

w PC to ES w · ECoV aR w · V I

w
PC to ES 0.93
w · ECoV aR 1.00 0.93
w · V I 0.96 0.96 0.96

(c) Rank Correlations, Weighted Measures

Note. This set of tables shows the systemic risk rankings according to alternative measures and the rank
correlations between them.

the major contributor to systemic risk. Yet, both the PC to ES and the weighted V I

find Rabo to be more systemic than ING.

Next, we vary the parameter σc to verify to what extent the results are driven by the

decision to calibrate the parameter to the VSTOXX index. Table 4.5 shows the resulting

percentage difference in the 99% MES estimates when a fixed number of .15 and then to

.05 is used in the model, relative to the base figures in which the value of the VSTOXX

index was used (at the reference date the index has a value of .2). The parameter choice

19To see how the CoV aR can be broken down into components that satisfy the additivity property see
Puzanova and Düllmann (2013). For general discussion on the additivity of risk measures see the Euler
property in e.g. Chapter 12 of Hull (2018).
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Table 4.5: Percentage Change in MES when Varying σc

σc = .15 σc = .05

ABN 8.22 24.31
INGB 8.22 22.54
RABO 9.50 30.04
NIBC 7.41 21.29
VB 11.36 35.07
AEGO 6.76 20.89
NN 6.25 17.27
Sys 8.28 24.90

Note. This table shows the percentage difference in MES estimates, relative to the base case from Table
4.3, when arbitrary fixed values are used to calibrate the σc parameter.

affects the magnitude of the MES estimates. The new MES figures however do not

change the systemic ranking.

Figure 4.10 shows the ES of the system for each alternative σc estimate. Again, the

magnitude of the tail risk values change, but the overall trends do not. Using VSTOXX

also makes the estimates more sensitive to short-term variations. Having a reliable esti-

mate of the individual institutions’ asset variance will make a difference in differentiating

better between their risk characteristics or in defining the magnitude of the possible losses.

In absence of such data, however, using a single number matched to the implied volatility

of European stocks seems an appropriate second-best alternative that does not enforce

ranking changes in systemic risk across the observed universe.
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Figure 4.10: Expected Shortfall of the Systemic Portfolio
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Note. This figure shows ES for the system calculated based on two assumption: σc is scaled by the
implied volatility of the VSTOXX index, and σc is fixed to 20%. Evaluated at .95 confidence level.

4.7 Policy Relevance

Our results are relevant for the policy framework for systemic risk. For Global Sys-

temically Important Banks (G-SIBs), the Basel Committee on Banking Supervision and

the European Banking Authority (EBA) specify in detail the methodology according to

which capital surcharges are allocated to institutions that are designated as systemically

important. The goal of the surcharges is to improve the resilience of the system by in-

ternalizing the systemic risk generated in the financial sector. In addition, the European

Union designates banks that it regards to be systemically significant as Other Systemi-

cally Important Institutions (O-SIIs), and requires that national authorities, under EBA

guidance, decide on identification procedure and on the size of the surcharges for these

institutions.

There is currently a large disconnect between the academic approaches used to measure

systemic risk and the regulatory approach used to set systemic capital buffers. Section 4.2

has extensively explored the academic perspective. For European regulators, the general

guidance by the EBA is to focus on four criteria of systemic relevance: size, importance,

complexity, and interconnectedness (EBA, 2020). Usually, a score is provided in each

category and the four categories are equally weighted up to a single O-SII score. The
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ranked institutions are bucketed based on score ranking, and for each bucket, systemic

buffer surcharges are discretionary set through a step-up ladder structure.

As we focus on institutions residing in the Netherlands, we can directly compare the

systemic ranking coming out of our model to the ranking based on the O-SII surcharge

rate set by the Dutch regulator. In the Netherlands, as of 2021 the following O-SII

buffers apply20: ING Bank (2.5%), Rabo (2%), ABN (1.5%), Volksbank (1%). As Table

4.3 indicates, this ranking differs from our ranking by PC to ES, where Rabo comes before

ING. Ranking by size, however, we match the O-SII results. It is difficult to generalize

based on our small sample, but this could be an indication that the O-SII score is not

putting enough weight on the interdependency between the institutions, and is focused

more either on size or on standalone risk, where ING ranked on top.

Naturally, the sample that we have is too small to allow us to generalize any con-

clusions. Yet, we relate to other studies that find a difference between the policy and

the academic approaches on measuring systemic risk. For example, Brogi et al. (2021)

compare the G-SIB buffer rankings to systemic risk rankings calculated based on a credit

portfolio approach similar to ours. They use the DIP measure provided by Huang et al.

(2009, 2012) which calculates the average loss (rather than the ES) for the regulatory

portfolio, where loss is again generated in default. They find significant differences in the

two approaches and argue that the regulatory framework would benefit by incorporating

also a risk contribution metric into generating systemic rankings.

Bianchi and Sorrentino (2021), on the other hand, explore a small sample consisting of

the four Italian banks designated as systemically important and largely find consistency

in the ranking based on the CoVaR measure and based on the O-SII buffer rates set by

the Italian central bank. Yet, having higher frequency data allows them to link systemic

risk estimates to the evolution of bank characteristics and conditions.

Overall, we can conclude that there is no downside to embedding market-based implied

measures of systemic risk, as ours, into the policy process. First of all, such measures

could provide a way to verify the ranking that policymakers come up with based on

EBA’s guidelines and using regulatory data. Any discrepancy in the rankings based on

the two approaches could raise important questions, the answers of which could improve

20See https://www.esrb.europa.eu/national˙policy/systemically/html/index.en.html
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the regulator’s approach to assessing systemic risk. Or even if no discrepancy between the

two appears, a market-based measure as the MES can be used to assess risks between

annual policy assessments.

4.8 Conclusion

In this paper we examined the systemic linkages and the potential systemic risks arising

in the Dutch financial sector. In particular, we look at seven key insurance and banking

institutions. To do so we addressed a common challenge in estimating and monitoring

the build-up of systemic risks: a regulator cannot resort to equity prices for institutions

that are privately or state-held. In these cases, we show how high-frequency data from

the CDS market can still be used to imply views on co-dependencies and joint losses. We

use the Dutch financial sector as a case study for our approach.

We argue that in contrast to micro-prudential policies, an appropriate macro-prudential

view should try to monitor and manage not only the risky positions of an institution on

its own, but also the interdependencies between institutions and the potential for several

of them to realize large losses at the same time. From that perspective, in the sample

that we consider, we confirm that a risk ranking incorporating tail dependence across

the institutions is different from a ranking based on standalone tail risk. From a risk

management point of view, it is clear that a focus on the former is more important if the

goal is to curb risk in the total portfolio. Yet, we find in our sample that the latter is

closer to the current ranking based on the O-SII capital surcharges for systemic risk.

In the process, we presented a model, which builds upon the existing academic lit-

erature that addresses systemic risk from a structured credit angle (Huang et al., 2012;

Puzanova and Düllmann, 2013). The financial institutions in the system are seen as part

of a defaultable loan portfolio. Systemic losses occur in the case of default of one or

several institutions. The average tail losses of the portfolio (the ES measure) speak for

the magnitude of the systemic risk. The average losses of each institution, given that the

system is in its tail, speak for the sensitivity of each institution to systemic risk. The

share of the portfolio tail risk that can be attributed to each institution speaks for the

contribution of the institution to systemic losses. We extend the existing approaches by
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also incorporating dependency in the size of the losses, and not purely in the default

probabilities.

Our research speaks directly to the policy debate around the risk rankings used to set

additional buffer charges for systemic risk for banks. We find certain differences in the

top three institutions ranked as most systemic by our portfolio-based approach and the

regulatory approach. The sample that we consider is too small to draw general conclusions

but may indicate a disconnect between how regulators measure systemic importance, and

what market co-movements in the price of default protection imply. A natural extension

of the current study would be to expand the universe of institutions that are considered

and to observe if those rankings systematically differ across European countries. The

O-SII buffer rates in Europe are mandated separately by each national regulator, each

following its own implementation of the EBA guidelines.

It needs to be acknowledged that there is currently little theoretical backing on de-

termining the size of the capital buffers that institutions need once they are designated

as systemic. The policy approach has been to recommend a two-step heuristic, where in

the first step institutions are ranked based on a set of criteria associated with systemic

importance, and in the second they are bucketed together and surcharges are set in a

step-up manner to each bucket. This holds both of O-SIIs and for G-SIIs. Previous

studies have found that the approach is very sensitive both to the ranking and bucketing

methodologies used (Brogi et al., 2021). In the methodology that we propose, it is natural

to link the size of the capital surcharges directly to the possible systemic contributions,

measured by the weighted MES. Further research is needed to determine what mapping

between the two would be socially optimal.

A larger sample would also allow the exploration of additional features in the systemic

risk model. In fact, the currently proposed portfolio approach could be considered a basic

architecture, which is extendable to incorporate specific observed stylized features of asset

prices or of the structure of the examined financial network. Since tail correlations between

the institutions are a key driver of systemic contributions, it is worthwhile exploring non-

linear structures of these dependencies. The ability to model large multi-dimensional

dependencies is key. Oh and Patton (2018) for example suggests the use of a factor

Copula approach. Wang (2021) suggest a deep learning approach. Alternatively, network
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models could be used to mimic the often observed core-periphery structure of the financial

sector (Bräuning and Koopman, 2016; Andrieş et al., 2022). Institutions that constitute

the core of the network could be dominant drivers of systemic risk (Glasserman and

Young, 2016; Jackson and Pernoud, 2021).

To sum up, estimating systemic risk contributions properly is essential for the efficient

regulation of the financial system. The additional capital surcharges are a cost that

needs to go to the institutions generating the systemic externality, so identifying these

institutions is crucial. More research into the methods used to quantify and attribute

systemic risk is thus important.
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4.A The Merton model of firm value

We present the baseline model of Merton (1974). The value of assets is an exogenous

process following a Geometric Brownian Motion

dVt = µvVtdt+ σvVtdWt (4.21)

The company’s debt is a zero-coupon bond with maturity T and face value of D and

default can occur only at the moment when it matures. If the value of its assets are below

the face value of its debt, the owners of the company will prefer to succumb to default.

If the value is above the value of debt, the owners retain any residual value.

ET = max[0, VT −D]

In that case, the value of equity at maturity can be seen as a long European call option

on the firm’s assets, and before maturity can be evaluated through the Black-Scholes (BS)

equation as:

E(t, Vt, σv) = VtN(d1)−D∗N(d2) (4.22)

where D∗ = De−r∆t is the value of debt, discounted at the risk-free rate r, ∆t = T − t

is the time until debt maturity, N(.) stands for the standard normal distribution, and d1

and d2 are given as follows: 21

d1 = −
ln
(

D∗

Vt

)
σv

√
∆t

+
1

2
σv

√
∆t (4.23)

d2 = d1 − σv

√
∆t (4.24)

In the Merton framework under the risk-neutral measure d2 corresponds to Distance

to Default (DD), a measure often used to assess the credit risk of a firm. Loosely speaking

it measures the number of standard deviations of the asset value of the firm to the default

barrier point (Chan-Lau and Gravelle, 2005). The risk neutral survival probability in
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the Merton model can be shown to be P (Vt > D) = N(d2), and N(−d2) is the default

probability, where d2 is then the risk-neutral Distance-to-Default measure DD.

Both the asset value and the asset volatility are unknown. As E = E(t, Vt, σt) is a

function of the stochastic underlying asset value, applying Ito’s rule we can write the

default probability as:

dE =

(
∂E

∂t
+ µvV

∂E

∂Vt

+
1

2
σ2
vV

2∂
2E2

∂V 2
t

)
dt+ σvVt

∂E

∂Vt

dWt

The standard approach in calibrating the model, relying on Ronn and Verma (1986),

notes that stock prices Et are themselves observable on the market and follow a Geometric

Brownian motion of the type

dEt = µEEtdt+ σEEtdWt

Matching coefficients in the diffusion term with (4.22) we get

σEEt = σvVt
∂E

∂Vt

(4.25)

We can then solve the system of two equations and two variables defined by (4.22)

and (4.25). In Merton’s setting, we get that ∂E
∂Vt

= N(d1), where the derivative is also

known as the option delta in option pricing theory.

At any time, the value of assets can be decomposed by sources of financing into debt

and equity, so we can write the current market value of its debt as

Bt = Vt − Et (4.26)

which, using (4.22), can also be written as

B(t, Vt, σv) = VtN(−d1) +D∗N(d2) (4.27)
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Equivalently, at maturity bondholders either get back the face value of debt or if the

company defaults, they get the residual asset value, such that:

BT = min[D, VT ] = D −min[0, D − VT ]

As a result, the value of liabilities corresponds to a portfolio of a short put with strike

D and a long risk-free bond with the same face value. Valuing liabilities before maturity

can again be done through the BS formulas by evaluating: Bt = De−r(T−t)−P (Vt) where

P (.) is the corresponding value of a European put option with a strike D written on the

asset’s underlying.

Using the put-call parity, with E(.) and P (.) the values for a call and a put written

on the company assets as an underlying, we have E(Vt)−P (Vt) = Vt−D exp{−r(T − t)}

which implies

Bt = Vt − E(Vt)

At the same time, denoting yt as the yield on the corporate bond, we have

Bt = D∗e−(yt−r)∆t

which implies a corporate bond spread:

s(t, Vt, σv) = yt − r = − 1

∆t
ln

Bt

D∗ (4.28)

where Bt is given by (4.27). Note then that:

∂st
∂Vt

= − 1

∆t

N(−d1)

Bt

(4.29)

where we make use of the fact that ∂Bt

∂Vt
= ∂(Vt−Et)

∂Vt
= 1−N(d1) = N(−d1).
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Figure 4.11: Merton Model

0.0 0.1 0.2
Spread

80

85

90

95

B

(a)

0.0 0.1 0.2
Spread

0

5

10

15

20

E

V = 0.01
V = 0.05
V = 0.15

(b)

0.0 0.1 0.2
Spread

80

90

100

110

120

V

V = 0.01
V = 0.05
V = 0.15

(c)

This figure shows the results of using the spread level to imply through the Merton model (a) the firm’s
liabilities (b) the firm’s Equity value and (c) the asset value of the company. The company’s debt is fixed
at 100.

4.B Latent Factor Model Estimation

We apply the following algorithm based on Andersen and Basu (2003) to estimate the

latent factor model from time-series data of the institutions’ CDS prices.

Assume that Σ is an n×n matrix containing the target asset correlations between the

key institutions. Assume the following factor model

U = AM +Z

where U is an n × 1 vector of standardized asset returns for the n institutions, A is an

n × f common factor loadings matrix, M is an f × 1 vector of common factors and Z

is a n × 1 vector of idiosyncratic factors. All factors are independent of each other with

zero expectation and unit variance.

The problem is one of solving for A by minimizing the least squared difference of the

model correlation matrix to the target one, such that:

min
A

{
(Σ−AA′ − F ) (Σ−AA′ − F )

′}
where F is a diagonal matrix such that diag(F ) = 1− diag(AA′).

The numerical solution algorithm then is

1. Guess F 0
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2. Perform PCA on Σ−F i and compute Ai = Ei
√
Λ

i
, where i is an iterations counter,

E is a matrix of the normalized column eigenvectors of Σ − F ,
√
Λ is Cholesky

decomposition of the diagonal matrix containing the f largest eigenvalues of Σ−F .

3. Calculate F i+1

4. Continue with Step 2, until F i+1 is sufficiently close to F i.

4.C Charts and Graphs

Figure 4.12: CDS Prices (bps)
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Figure 4.13: CDS Prices Log Changes
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Figure 4.15: Liability Weights
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Figure 4.16: Simulations, Scatter Matrix



Figure 4.17: Recovery Rate Simulations
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Andrieş, A. M., Ongena, S., Sprincean, N., and Tunaru, R. 2022. Risk spillovers and

interconnectedness between systemically important institutions. Journal of Financial

Stability, 58:100963. ISSN 1572-3089.

Ang, A. 2011. Illiquid assets. Technical Report 28, CFA Institute Conference Proceedings

Quarterly.

Ang, A. 2014, Asset Management. Oxford University Press.

Ang, A., Papanikolaou, D., and Westerfield, M. M. 2014. Portfolio choice with illiquid

assets. Management Science, 60(11):2737–2761.

Annaert, J., De Ceuster, M., Van Roy, P., and Vespro, C. 2013. What determines euro

area bank CDS spreads? Journal of International Money and Finance, 32(C):444–461.



Bibliography 167

Arora, N., Gandhi, P., and Longstaff, F. A. 2012. Counterparty credit risk and the

credit default swap market. Journal of Financial Economics, 103(2):280–293. ISSN

0304-405X.

Artzner, P. 1999. Application of coherent risk measures to capital requirements in insur-

ance. North American Actuarial Journal, 3(2):11–25.

Augustin, P. and Schnitzler, J. 2021. Disentangling types of liquidity and testing limits-

to-arbitrage theories in the CDS–bond basis. European Financial Management, 27(1):

120–146.

Aven, T. 2013. On the meaning and use of the risk appetite concept. Risk Analysis, 33

(3):462–468.

Avino, D. E., Conlon, T., and Cotter, J. 2019. Credit default swaps as indicators of bank

financial distress. Journal of International Money and Finance, 94(C):132–139.

Back, K. E. 2010, Asset Pricing and Portfolio Choice Theory. Oxford University Press.

Bai, J. and Collin-Dufresne, P. 2019. The CDS-bond basis. Financial Management, 48

(2):417–439.

Ball, L. and Mankiw, N. G. 2007. Intergenerational Risk Sharing in the Spirit of Arrow,

Debreu, and Rawls, with Applications to Social Security Design. Journal of Political

Economy, 115(4):523–547.

Baur, D. G. and Schulze, N. 2009. Financial market stability–a test. Journal of Interna-

tional Financial Markets, Institutions and Money, 19(3):506–519.

Beetsma, R. and Romp, W. Intergenerational Risk Sharing, chapter 6, pages 311–380.

Handbook of the Economics of Population Aging. Elsevier, 2016.

Bharath, S. T. and Shumway, T. 2008. Forecasting default with the Merton distance to

default model. Review of Financial Studies, 21(3):1339–1369.

Bianchi, M. L. and Sorrentino, A. M. 2021. Exploring the systemic risk of domestic banks

with δcovar and elastic-net. Journal of Financial Services Research, pages 1–15.



168 Bibliography

Bichuch, M. and Guasoni, P. 2018. Investing with liquid and illiquid assets. Mathematical

Finance, 28(1):119–152.

Billio, M., Getmansky, M., Lo, A. W., and Pelizzon, L. 2012. Econometric measures

of connectedness and systemic risk in the finance and insurance sectors. Journal of

Financial Economics, 104(3):535–559. ISSN 0304-405X.

Boelaars, I. and Mehlkopf, R. 2018. Optimal risk-sharing in pension funds when stock

and labor markets are co-integrated. DNB Working Papers 595, Netherlands Central

Bank, Research Department.

Bollen, N. P. B. and Sensoy, B. A. 2015. How Much for a Haircut? Illiquidity, Secondary

Markets, and the Value of Private Equity. Working Paper Series 2015-08, Ohio State

University, Charles A. Dice Center for Research in Financial Economics.

Bongaerts, D., De Jong, F., and Driessen, J. 2012. An asset pricing approach to liquidity

effects in corporate bond marketsets. Technical report, Tilburg University.

Bovenberg, L. and Mehlkopf, R. 2014. Optimal design of funded pension schemes. Annual

Review of Economics, 6:445–474.

Boyle, P. P. and Lin, X. 1997. Optimal portfolio selection with transaction costs. North

American Actuarial Journal, 1(2):27–39.

Brandimarte, P. 2006, Numerical Methods in Finance and Economics, Second Edition.

John Wiley and Sons Inc.

Brauneis, A., Mestel, R., Riordan, R., and Theissen, E. 2021. How to measure the

liquidity of cryptocurrency markets? Journal of Banking & Finance, 124:106041. ISSN

0378-4266.

Brogi, M., Lagasio, V., and Riccetti, L. 2021. Systemic risk measurement: bucketing

global systemically important banks. Annals of Finance, 17(3):319–351.

Brownlees, C. and Engle, R. F. 2017. SRISK: A conditional capital shortfall measure of

systemic risk. Review of Financial Studies, 30(1):48–79.



Bibliography 169

Brunnermeier, M. K. and Pedersen, L. H. 2009. Market liquidity and funding liquidity.

The Review of Financial Studies, 22(6):2201–2238.

Bräuning, F. and Koopman, S. J. 2016. The dynamic factor network model with an

application to global credit risk. Working Papers 16-13, Federal Reserve Bank of Boston.

Buccola, S. T. 1982. Portfolio Selection Under Exponential And Quadratic Utility.

Western Journal of Agricultural Economics, 7(1):1–10.

Buss, A., Uppal, R., and Vilkov, G. 2015. Asset prices in general equilibrium with

recursive utility and illiquidity induced by transactions costs. Technical report.

Cai, Y. and Judd, K. L. 2014. Advances in numerical dynamic programming and new

applications. Handbook of computational economics.

Cai, Y., Judd, K. L., and Xu, R. 2013. Numerical Solution of Dynamic Portfolio Opti-

mization with Transaction Costs. NBER Working Paper No. w18709.

Campbell, J. Y. and Viceira, L. M. 2002, Strategic Asset Allocation, Chapter 5. Oxford

University Press, New York.

Campbell, J. Y., Chacko, G., Rodriguez, J., and Viceira, L. M. 2004. Strategic asset

allocation in a continuous-time var model. Journal of Economic Dynamics and Control,

28(11):2195–2214.

Campbell, J. and Nosbusch, Y. 2007. Intergenerational risksharing and equilibrium asset

prices. Journal of Monetary Economics, 54(8):2251–2268.

Carr, P. and Wu, L. 2011. A simple robust link between american puts and credit

protection. Review of Financial Studies, 24(2):473–505.
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Summary in English

In this thesis, we consider three non-trivial problems of risk allocation and apply

approaches from theoretical finance and risk management to address several policy debates

from a macro-finance point of view. The three topics considered are diverse, but there

is a common theme that runs through each chapter. In each, we focus on the resolution

of barriers to a first-best risk allocation rule. The barriers can be in the form of market

illiquidity, current generations not being able to participate in the shocks affecting future

generations, or risk spillovers between systemic institutions.

The first essay in Chapter 2 addresses a classical finance problem of allocating risks

efficiently in an investment portfolio. In our set-up,illiquidity in one of the assets exists

as uncertainty in the immediate availability of a market where price risk can be traded.

As a result, illiquidity acts as an additional non-hedgeable risk component, affecting

the portfolio choice decision. We show how illiquidity endogenizes the risk aversion of

investors, making the portfolio choice and consumption decisions functions of the share

of illiquid wealth.

The second essay in Chapter 3 puts the allocating problem into a policy-relevant

setting by considering how illiquidity in the form of uncertain trading costs affects the

ability of different generations to share financial risk with each other. We use a stylized

two-period overlapping generations framework, where each generation makes a portfolio

allocation decision for retirement. In this context, designing optimal social security insti-

tutions can also be seen as a risk management problem. A policymaker balances, on one

hand, the benefits of a wider risk-bearing pool by integrating the young into the financial

shock affecting the elderly, and on the other, the costs of potentially destabilizing the

young’s retirement savings.



The third essay in Chapter 4 shows how monitoring and evaluating systemic risk can

be done through a risk management lens. The supervisor implicitly owns a portfolio of

defaultable loans corresponding to the liabilities of financial institutions, and needs to

manage the tail risk of the portfolio. We, thus, propose a credit portfolio approach for

evaluating systemic risk and attributing it across institutions by constructing a model

that can be estimated from high-frequency CDS data.



Summary in Dutch

In dit proefschrift beschouwen we drie niet-triviale problemen van risicoallocatie en

passen we benaderingen uit finance en risicobeheer toe om verschillende beleidsdebat-

ten vanuit macrofinancieel oogpunt te analyseren. De drie behandelde onderwerpen zijn

divers, maar er is een gemeenschappelijk thema dat alle hoofdstukken verbindt. In elk

hoofdstuk richten we ons op het wegnemen van belemmeringen om dichter bij een first-

best risico-allocatieregel te komen. Voorbeelden van belemmeringen zijn: illiquiditeit,

het feit dat huidige generaties niet kunnen deelnemen aan de schokken die toekomstige

generaties zullen treffen, of spillovers van risico tussen systeeminstellingen.

Het eerste essay in hoofdstuk (2) behandelt een klassiek financieel probleem van het

efficiënt toewijzen van risico’s in een beleggingsportefeuille. In onze opzet modelleren we

illiquiditeit in een van de activa als onzekerheid in de beschikbaarheid van een markt waar

prijsrisico kan worden verhandeld. Als gevolg hiervan fungeert illiquiditeit als een extra

onverzekerbare risicocomponent, die van invloed is op de portefeuillekeuze. We laten

zien hoe illiquiditeit de risicoaversie van beleggers endogeniseert, waardoor in wezen de

portefeuillekeuze en consumptiebeslissingen afhankelijk worden van het aandeel illiquide

activa.

Het tweede essay in hoofdstuk (3) plaatst het allocatieprobleem in een beleidsrelevante

omgeving door na te gaan hoe illiquiditeit in de vorm van onzekere handelskosten van in-

vloed is op het vermogen van verschillende generaties om financiële risico’s met elkaar

te delen. We gebruiken een gestileerd raamwerk voor overlappende generaties met twee

perioden, waarbij elke generatie een beslissing neemt over de portefeuilletoewijzing voor

pensionering. In deze context kan het ontwerpen van een optimaal socialezekerheidssys-

teem ook worden gezien als een risicobeheersingsprobleem. Een beleidsmaker balanceert

enerzijds de voordelen van een grotere risicodragende pool door de jongeren te integreren
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in de financiële schok die de huidige bejaarden treft, en anderzijds de kosten van het

potentieel destabiliseren van het pensioensparen van de jongeren in de loop van de tijd,

waarbij extra risico wordt toegevoegd aan het vermogen van de jongeren.

Het derde essay in hoofdstuk (4) laat zien hoe het monitoren en evalueren van systeem-

risico’s kan worden gedaan door het probleem te bekijken door een risicobeheerlens. De

toezichthouder bezit impliciet een portefeuille van in gebreke blijvende leningen die over-

eenkomt met de verplichtingen van financiële instellingen, en moet het staartrisico van de

portefeuille beheren. Daarom stellen we een kredietportefeuillebenadering voor om sys-

teemrisico’s te evalueren en toe te wijzen aan instellingen door een model te construeren

dat kan worden geschat op basis van hoogfrequente CDS-data.
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