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S U M M A R Y

In this thesis, we develop methods for using machine learning to solve combinato-
rial optimization problems, with a focus on vehicle routing problems. The thesis
consists of two parts. In Part i (Chapters 3 and 4), we develop practical methods us-
ing machine learning models to solve different variants of vehicle routing problems.
As these models represent probability distributions over combinatorial spaces, in
Part ii (Chapters 5 and 6), we focus on sampling from such models and optimizing
their parameters.

Specifically, in Chapter 3, we use reinforcement learning to train the attention model,
which represents a construction heuristic, to solve different variants of routing prob-
lems. In Chapter 4, we present deep policy dynamic programming, which uses another
learned model to guide a restricted dynamic programming algorithm, for improved
performance on routing problems and the ability to handle complex constraints
such as time windows.

Given the deterministic nature of combinatorial problems, duplicate samples
from the models in Part i are uninformative, so Part ii focuses on sampling with-
out replacement from such models. In Chapter 5, we present ancestral Gumbel-top-k
sampling as an efficient method for drawing samples without replacement from
structured models over combinatorial domains, and we illustrate the general ap-
plicability beyond routing problems. In Chapter 6, we derive statistical gradient
estimators based on such samples without replacement, which can be used to im-
prove the gradient-based training procedure for the model in Chapter 3.

This thesis is based on the following four papers:

• Wouter Kool, Herke van Hoof and Max Welling. "Attention, Learn to Solve
Routing Problems!" In International Conference on Learning Representations (ICLR),
2019.

• Wouter Kool, Herke van Hoof and Max Welling. "Ancestral Gumbel-Top-k
Sampling for Sampling Without Replacement." In Journal of Machine Learning
Research (JMLR), 2020.

• Wouter Kool, Herke van Hoof and Max Welling. "Estimating Gradients for
Discrete Random Variables by Sampling without Replacement." In Interna-
tional Conference on Learning Representations (ICLR), 2020.

• Wouter Kool, Herke van Hoof, Joaquim Gromicho and Max Welling. "Deep
Policy Dynamic Programming for Vehicle Routing Problems." In International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR), 2021.

iii



S A M E N VAT T I N G - S U M M A R Y I N D U TC H

In dit proefschrift onwikkelen we methoden om machine learning (‘machinaal leren’)
te gebruiken voor het oplossen van combinatorische optimalisatieproblemen, met
een focus op routeringsproblemen. Het proefschrift bestaat uit twee delen. In
Deel i (Hoofdstukken 3 en 4) ontwikkelen we praktische methoden die machine
learning modellen gebruiken om verschillende varianten van routeringsproblemen
op te lossen. Omdat deze modellen kansverdelingen representeren over combina-
torische ruimtes, richten we ons in Deel ii op het verrichten van trekkingen uit zulke
verdelingen en het optimaliseren van hun parameters.

In meer detail, in Hoofdstuk 3 gebruiken we reinforcement learning om het atten-
tion model te trainen, welke een constructieheuristiek representeert om verschillende
varianten van routeringsproblemen op te lossen. In Hoofdstuk 4 presenteren we
deep policy dynamic programming, dat een ander geleerd model gebruikt voor het
sturen van een dynamisch programmeringsalgoritme met een beperkte zoekruimte,
met als resultaat een verbeterde prestatie op routeringsproblemen en de mogeli-
jkheid om om te gaan met complexe restricties zoals tijdvensters.

Gegeven de deterministische aard van combinatorische problemen zijn duplicaat-
trekkingen uit de modellen in Deel i niet informatief, dus Deel ii richt zich op het
verrichten van trekkingen zonder terugleggen van zulke modellen. In Hoofdstuk
5 presenteren we ancestral Gumbel-top-k sampling als een efficiente methode voor
het trekken zonder terugleggen uit gestructureerde modellen over combinatorische
domeinen, en we laten de brede toepasbaarheid zien naast routeringsproblemen. In
Hoofdstuk 6 leiden we statistische schatters af voor gradienten op basis van trekkin-
gen zonder terugleggen, welke kunnen worden gebruikt om de gradient-gebaseerde
trainingsprocedure voor het model in Hoofdstuk 3 te verbeteren.

Dit proefschrift is gebaseerd op de volgende vier artikelen:

• Wouter Kool, Herke van Hoof en Max Welling. "Attention, Learn to Solve
Routing Problems!" In International Conference on Learning Representations (ICLR),
2019.

• Wouter Kool, Herke van Hoof en Max Welling. "Ancestral Gumbel-Top-k
Sampling for Sampling Without Replacement." In Journal of Machine Learning
Research (JMLR), 2020.

• Wouter Kool, Herke van Hoof en Max Welling. "Estimating Gradients for Dis-
crete Random Variables by Sampling without Replacement." In International
Conference on Learning Representations (ICLR), 2020.

• Wouter Kool, Herke van Hoof, Joaquim Gromicho en Max Welling. "Deep
Policy Dynamic Programming for Vehicle Routing Problems." In International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR), 2021.



L I S T O F P U B L I C AT I O N S

This thesis is based on the following papers:

• Wouter Kool, Herke van Hoof and Max Welling. "Attention, Learn to Solve
Routing Problems!" In International Conference on Learning Representations (ICLR),
2019.

• Wouter Kool, Herke van Hoof and Max Welling. "Ancestral Gumbel-Top-k
Sampling for Sampling Without Replacement." In Journal of Machine Learning
Research (JMLR), 2020.

• Wouter Kool, Herke van Hoof and Max Welling. "Estimating Gradients for
Discrete Random Variables by Sampling without Replacement." In Interna-
tional Conference on Learning Representations (ICLR), 2020.

• Wouter Kool, Herke van Hoof, Joaquim Gromicho and Max Welling. "Deep
Policy Dynamic Programming for Vehicle Routing Problems." In International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR), 2022.

I was the lead in the projects that resulted in these papers: the main ideas originated
from me, I conducted all experiments and did most of the writing. Herke and Max
had important advisory roles and provided feedback on the writing. Herke also
helped by (re-)writing some paragraphs, when required to meet deadlines (thanks!).
Joaquim helped shaping the idea for deep policy dynamic programming.

During the PhD I have also authored the following papers:

• Wouter Kool, Herke van Hoof and Max Welling. "Stochastic Beams and Where
to Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Re-
placement." In International Conference on Machine Learning (ICML), 2019. Best
Paper Honorable Mention

• Wouter Kool, Herke van Hoof and Max Welling. "Buy 4 REINFORCE Sam-
ples, Get a Baseline for Free!" In Deep Reinforcement Learning meets Structured
Prediction Workshop at ICLR, 2019.

• Wouter Kool, Chris J. Maddison and Andriy Mnih. "Unbiased Gradient Esti-
mation with Balanced Assignments for Mixtures of Experts." In I Can’t Believe
It’s Not Better Workshop (ICBINB) at NeurIPS, 2021. Best Poster Award

• Wouter Kool, Joep Olde Juninck, Ernst Roos, Kamiel Cornelissen, Pim Agter-
berg, Jelke van Hoorn, Thomas Visser. "Hybrid Genetic Search for the Vehicle
Routing Problem with Time Windows: a High-Performance Implementation."
In 12th DIMACS Implementation Challenge Workshop.

v



vi

The first paper on stochastic beam search was further developed into ancestral
Gumbel-top-k sampling. The second paper was an early version which resulted
in the paper on gradient estimation with discrete random variables. The last paper
is the result of my internship at DeepMind in 2021, where Chris had an important
advisory role, and Andriy was my main supervisor, who gave valuable feedback
and helped with writing of the paper. The last paper describes our winning sub-
mission for the VRPTW track of the 12th DIMACS implementation challenge.

Finally, I enjoyed working with Iris to contribute to the following paper:

• Iris A. M. Huijben, Wouter Kool, Max B. Paulus and Ruud J. G. Sloun. "A
Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity
in Machine Learning." To appear in IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2022.



C O N T E N T S

summary iii

samenvatting - summary in dutch iv

list of publications v

1 introduction 1

1.1 Learning to optimize decisions 1

1.2 Scope & research questions 3

2 background 5

2.1 Combinatorial optimization 5

2.2 Deep (reinforcement) learning 8

2.3 Machine learning & optimization 14

i routing and reinforcement learning

3 attention, learn to solve routing problems! 19

3.1 Introduction 19

3.2 Related work 20

3.3 Attention model 21

3.4 REINFORCE with greedy rollout baseline 25

3.5 Experiments 26

3.6 Discussion 31

4 deep policy dynamic programming 33

4.1 Introduction 33

4.2 Related work 35

4.3 Deep policy dynamic programming 36

4.4 Experiments 41

4.5 Discussion 45

ii sampling and statistical estimation

5 ancestral gumbel-top-k sampling 49

5.1 Introduction 49

5.2 Preliminaries 50

5.3 Ancestral Gumbel-top-k sampling 54

5.4 Related algorithms 64

5.5 Experiments 69

vii



viii contents

5.6 Possible extensions of ancestral Gumbel-top-k sampling 77

5.7 Discussion 79

6 estimating gradients with samples without replacement 81

6.1 Introduction 81

6.2 Related work 82

6.3 Preliminaries 82

6.4 Methodology 84

6.5 Experiments 91

6.6 Discussion 94

7 conclusion 95

acknowledgements 99

bibliography 101

appendix

a attention, learn to solve routing problems! 119

a.1 Attention model details 119

a.2 Travelling salesman problem 120

a.3 Vehicle routing problem 125

a.4 Orienteering problem 127

a.5 Prize collecting TSP 132

a.6 Stochastic PCTSP (SPCTSP) 135

b deep policy dynamic programming 137

b.1 The graph neural network model 137

b.2 Implementation 139

c ancestral gumbel-top-k sampling 143

c.1 Sampling a set of Gumbels with maximum T 143

c.2 Unbiasedness of the importance weighted estimator 144

c.3 Numerical stability of importance weights 145

d estimating gradients with samples without replacement 147

d.1 Notation 147

d.2 Computation of p(Sk), pD\C(S \ C) and R(Sk , s) 147

d.3 The sum-and-sample estimator 150

d.4 The importance-weighted estimator 155

d.5 The unordered set policy gradient estimator 157

d.6 The RISK estimator 159

d.7 Categorical variational auto-encoder 159

d.8 Travelling salesman problem 162



1 I N T R O D U C T I O N

1.1 learning to optimize decisions

You make decisions every day. Some decisions are naturally continuous: what time
do you stop working? Other decisions are discrete: will you work from home or
from the office today? After all, even though hybrid is the new normal, you can
only be at one physical place at a time: a natural constraint. In some cases, this
can be even more challenging: imagine you’re a delivery driver, having to deliver
hundreds(!) of packages each day! Which package should you deliver first, second,
third, etc.? Combining these decisions you arrive at a combinatorial decision making
or optimization problem. Looks familiar? Indeed, it is the famous travelling salesman
problem (TSP) (Held and Karp, 1971).

As a delivery driver (‘21st century salesman’), you’d be more than happy to opti-
mize your decisions and minimize your travels. Such optimization is a good thing:
fewer resources (time, energy, human effort) are used to achieve the same effect: get-
ting packages to happy customers. At large scale, the savings can be enormous, and
as such, the optimization of (combinatorial) decisions has been extensively studied
in the field of operations research (OR) (Taha, 2011). Numerous examples exist, such
as vehicle routing (Toth and Vigo, 2014), optimization of schedules (Pinedo, 2012),
and many more.

But what actually defines an optimization problem? Through the eyes of a math-
ematician, an optimization problem has an objective that should be minimized (or
maximized) by selecting the value of certain decision variables, which should rep-
resent a feasible (valid) solution as defined by a set of constraints. In general, an
optimization problem is characterized by its mathematical structure, whereas dif-
ferent instances of such a problem are characterized by different input parameters,
or data, with that given structure. For example, the TSP considers the problem of
finding the shortest route visiting a set of locations (returning at the start location),
whereas a specific TSP instance specifies the distances between locations (explicitly
or implicitly through a set of coordinates for locations).

"Given a set of locations, with distances dij between locations i and j, what is the shortest
roundtrip visiting all locations?" While seemingly a natural formulation of the TSP,
this question highlights the ‘traditional’ view of OR, which concerns the optimiza-
tion problem, but neglects a very important aspect: the data. In practice, do we
actually care about the shortest distance? Shouldn’t we minimize driving time or
cost (fuel, salary, depreciation) rather than distance? If so, how can we compute,
or at least estimate, the driving time or cost for certain trips, taking into account

1



2 introduction

unknown factors such as traffic, weather and road conditions? Very likely, the
answer involves (historical) data, transitioning the problem into the fields of data
science (DS) (Provost and Fawcett, 2013) and machine learning (ML) (Bishop, 2006),
often popularly referred to as artificial intelligence (AI). If we use machine learning to
make predictions about the input for an optimization problem, this is often referred
to as the "predict, then optimize" paradigm (Elmachtoub and Grigas, 2021). Using
machine learning in this way allows us to make sure that we solve the right problem
instance.

If we know the right problem instance to solve, we remain with an equally im-
portant question: how can we actually solve it? Can we use machine learning here
as well? This brings us at the scope of this thesis: a second paradigm that fuses
machine learning and optimization, which we refer to as "learning to optimize" (Li
and Malik, 2016). Consider a setting where we repeatedly have to solve different, but
related, instances of a specific combinatorial optimization problem, for example,
the daily routing problem for a local delivery service. There may be patterns in the
data of the problem instances, and as a result, good or even optimal solutions for
those instances may exhibit certain patterns as well. Can these patterns be learned?
And can they be used to solve new problem instances faster, or find better quality
solutions given a limited amount of computation time? In other words, can we use
machine learning, to learn to optimize?

Whereas combinatorial optimization problems have been studied for decades,
the addition of machine learning to the combinatorial optimization toolbox has
emerged only in recent years, primarily as a result of the success of deep learning
(DL) and reinforcement learning (RL) to perform complex tasks. DL enables the train-
ing of large scale (deep) neural network (DNN) models, by gradually improving their
parameters using samples from a dataset, a technique known as stochastic gradient
descent (SGD). RL enables models to learn without a dataset, by gaining experience
from interacting with an environment. This thesis investigates the application of
deep learning on a special set of combinatorial optimization problems: vehicle rout-
ing problems (VRPs). In particular, we transform the problem of optimization into
a statistical problem of modelling the conditional distribution of good (or even op-
timal) solutions given a problem instance. As such, the DNN models used in this
thesis represent probability distributions over a combinatorial domain of solutions,
which can be considered more generally as discrete structures. Therefore, this thesis
also presents methods to sample from such models and optimize their parameters.

The research in this thesis is motivated by our belief that machine learning, espe-
cially deep learning, has a large and underexplored potential to improve the way
we solve (combinatorial) optimization problems. But what makes us believe in this
potential? The answer is AlphaGo (Silver et al., 2016), especially AlphaGo Zero (Sil-
ver et al., 2017), DeepMind’s neural network based algorithm that has beaten the
worlds best human player (and the best human-designed algorithm) in the popular
boardgame Go. While Go, being a two player game, is different from combinatorial
optimization, both are computational problems that can, in principle, be solved by
exhaustive search. However, in practice, we can only consider an extremely small
part of the enormous search space, and AlphaGo has been very successful by using



1.2 scope & research questions 3

deep neural networks to identify the most promising moves and board positions to
consider in the search. By learning from experience, obtained by playing Go ‘against
itself’, AlphaGo’s neural network proved to be much more powerful than human
designed heuristics for selecting moves and scoring board positions. Since combi-
natorial optimization algorithms typically contain many human designed heuristics
as well, we believe that there is similar potential in replacing parts of their inter-
nal decision strategies by deep neural networks. Even a marginal improvement of
the quality of the optimization result would lead to tremendous savings of money
and resources in practice, given the vast amount of optimization problems that are
solved on a daily basis in the world. This thesis can be seen as a Go! towards
unleashing this potential.

1.2 scope & research questions

This thesis is structured in two parts. In Part i, we introduce the idea of machine
learning applied to combinatorial optimization problems, and we develop models
that can generate solutions to vehicle routing problems. To train such models using
gradient descent, we need to draw samples from the model and estimate the gra-
dient of the objective (known as the loss function) with respect to the model param-
eters. Therefore, in Part ii, we develop principled methods for sampling (without
replacement) from models over combinatorial spaces and optimizing their parame-
ters. These methods are applicable (but not limited) to the routing models in Part
i. The chapters in both parts of this thesis are structured around a set of research
questions.

1.2.1 Part i: routing & reinforcement learning

Research questions 1 and 2 are the focus of Part i of this thesis, which provides two
examples of applying learning for routing problems. The first is based on reinforce-
ment learning (learning from experience), while the second combines supervised
learning (learning from examples) with an OR technique known as dynamic pro-
gramming (Bertsekas, 2017).

research question 1: How can we use reinforcement learning for learning to solve
vehicle routing problems?

In Chapter 3, adapted from our publication Kool et al. (2019a), we address this
question and develop the attention model, based on the popular Transformer archi-
tecture (Vaswani et al., 2017), which we train using a special variant of REINFORCE
(Williams, 1992), to solve five different variants of routing problems.
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research question 2: How can we integrate machine learning models and dynamic
programming for vehicle routing problems?

In Chapter 4, adapted from our publication Kool et al. (2022a), we address this
question and develop deep policy dynamic programming (DPDP) as a method to com-
bine a learned graph neural network model (Joshi et al., 2019a) for vehicle routing
problems with the principle of dynamic programming, for three different routing
problems.

1.2.2 Part ii: sampling & statistical estimation

Most of the problems considered in Part i are deterministic, such that duplicate sam-
ples are uninformative when training models to solve these problems. Therefore,
Part ii of this thesis provides technical contributions that enable efficient sampling
without replacement from models over combinatorial domains, and using these sam-
ples for gradient based optimization of those models.

research question 3: How can we obtain unique samples from models over combi-
natorial domains?

To answer research question 3, we present ancestral Gumbel-top-k sampling (Kool
et al., 2020a), a generalization of stochastic beam search (Kool et al., 2019c) in Chapter
5. This algorithm, an extension of ancestral sampling, can efficiently draw multi-
ple samples without replacement from a distribution defined over a combinatorial
domain.

research question 4: How can we improve gradient based training of neural net-
work models using unique samples?

In Chapter 6, adapted from our publication Kool et al. (2020b), we answer re-
search question 4 by deriving the Unordered Set Policy Gradient Estimator, which can
be used to train models with SGD using samples without replacement, obtained
using ancestral Gumbel-top-k sampling (or any other algorithm).



2 B A C KG R O U N D

2.1 combinatorial optimization

Combinatorial optimization (Papadimitriou and Steiglitz, 1998; Wolsey and Nemhauser,
1999; Schrijver, 2003) considers the problem of finding of an optimal solution from
a finite set of discrete elements. This set is defined as a combination of certain deci-
sion variables with a set of constraints, and is too large to apply exhaustive search,
i.e. consider all elements in the set to find the optimum.

2.1.1 P vs. NP

Combinatorial optimization problems can be classified in terms of their complexity
(Papadimitriou and Steiglitz, 1998). The class P contains problems which can be
solved efficiently, which means that the time to solve them is bounded by a poly-
nomial function of the problem size. Each problem in P is also in class NP, which
means non-determinstic polynomial and is the class of all problems for which a solu-
tion can be verified in polynomial time, but for which it is an open problem whether
a solution can also be found in polynomial time. As an example, consider the deci-
sion version of the TSP: does a tour of a given maximum length exist? Given such a
tour, we can efficiently verify its length, so the problem is in NP, but it is unknown
if an efficient algorithm exists to find such a tour (assuming it exists), i.e. whether
the problem is in P as well. If we are interested in finding the shortest possible tour,
it is not even clear how we can verify that a given tour is actually the shortest pos-
sible tour. Therefore, the optimization version of the TSP is not in NP (as its solution
cannot be verified efficiently), but is said to be NP-hard, i.e. at least as hard as the
problems in NP.

The P vs. NP question (Cook, 2006) asks whether any problem that can be veri-
fied efficiently (i.e. is in NP) can also be solved efficiently (i.e. is in P), which would
imply that P = NP (as P ⊂ NP). While proofs that P = NP (or P 6= NP) are written
with high frequency, they are proven incorrect with the same frequency (Woeginger,
2016) and the million dollar prize for solving the problem still stands1. The common
belief is that P 6= NP (Gasarch, 2012), which would imply that for many problems
of practical interest, simply no algorithm exists that can find the optimal solution
to any problem instance in polynomial time. Whereas this may seem a disappoint-
ing conclusion, actually, from a practical perspective, we may not strictly require
optimal solutions for all possible problem instances. Instead, we may be interested

1 The P vs NP problem is one of the 7 millenium prize problems (Carlson et al., 2006).
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6 background

in finding solutions of reasonably good quality, only for practically relevant cases.
Therefore, a lot of research is going into the development of heuristics (Michalewicz
and Fogel, 2013; Hromkovič, 2013; Burke et al., 2014; Marti et al., 2018), which do
not have guarantees but can find good solutions quickly. As such, the methods pro-
posed in this thesis, can be seen as learned heuristics for combinatorial optimization
problems.

2.1.2 Routing problems

The TSP (Held and Karp, 1971) is one of the most famous problems in computer
science and the prototypical example of a routing problem that considers the prob-
lem of finding efficient routes to visit a set of locations. Many variants of routing
problems exist, mostly generalisations of TSP, such as the capacitated vehicle routing
problem (CVRP) (Toth and Vigo, 2014), which considers the problem of finding mul-
tiple routes to visit a set of customers, where the total demand of customers assigned
to each route is limited by the vehicle capacity. Other variants include additional
practical constraints such as the VRP with time windows (VRPTW) (Bräysy and Gen-
dreau, 2005), which is a generalization of the CVRP with the additional constraint
that each customer must be visited in a specific time window. Generally, vehicle
routing problems are NP-hard (Lenstra and Kan, 1981).

Routing problems are relevant as they occur in practice, where a reduction of to-
tal route distance by a few percent can imply savings of millions of euros for a large
company (Kant, 2019). Therefore, many variants have been studied over decades
of research. Nonetheless, it remains challenging to solve to optimality instances of
size beyond a few hundred customers (Pessoa et al., 2020). Also, different problem
variants have different types of constraints and their solutions may be vastly differ-
ent, such that specialized algorithms are required for different problem variants. As
it is non-trivial to develop such algorithms, it is promising to use machine learning
to learn specialized algorithms (or algorithm components) that work especially well
for specific problem variants on a specific distributions of instances.

Generally, algorithms for solving routing problems can be divided into exact al-
gorithms, which come with guarantees on their performance, and heuristics, which
lack such guarantees but are designed to work well in practice. Exact algorithms
are often based on branch & bound (Lawler and Wood, 1966), including variants
such as branch & price (Barnhart et al., 1998), where VRPSolver (Pessoa et al., 2020)
is a prominent open-source example that is flexible and can be used to solve many
problem variants. Dynamic programming (see Section 2.1.3) (Bellman, 1952) is of-
ten used as an exact method to solve subproblems in branch & price algorithms.
Heuristic methods come in a wide range of varieties, and most rely on some form
of search (Schrimpf et al., 2000; Ropke and Pisinger, 2006; Helsgaun, 2017; Vidal
et al., 2012; Vidal, 2022; Accorsi and Vigo, 2021). These methods often use efficient
operators to make local changes to solutions or combine different solutions into
new solutions. They need non-trivial adaptions to be used for different problem
variants, as the operators may not always be compatible with different constraints.



2.1 combinatorial optimization 7

While machine learning based approaches still need to be adapted to support dif-
ferent constraints, the learning aspect may help with adapting the solving strategy
to the specific problem variants.

2.1.3 Dynamic programming

Dynamic programming (DP) is a paradigm for solving optimization problems by
breaking them down into smaller subproblems. Famous examples are Dijkstra’s al-
gorithm (Dijkstra, 1959) for finding the shortest path between two locations, and the
Held-Karp algorithm for the TSP (Held and Karp, 1962; Bellman, 1962). The Held-
Karp DP algorithm for the TSP is expressed by the following recursive formula:

C(S, i) = min
j∈S\{i}

C(S \ {i}, j) + cji ∀S, i ∈ S. (1)

In this formula, C(S, i) is the total cost or distance of the optimal (lowest cost/dis-
tance) route starting at a start node 0 and ending at node i ∈ S, while visiting all
nodes in S. cji is the cost/distance to move from node j to i. By the principle of
optimality, any part of an optimal route must also be optimal, since otherwise the
route can be improved, so the optimal route visiting nodes in S while ending at i
must necessarily also visit the nodes in S \ {i} in optimal order, while ending at
the node j which is visited before i. Since we do not know which node j should
be visited before i in the optimal route, the recursion in equation 1 considers all
candidates to determine the one with minimum total cost, taking into account the
cost cji to move from j to i. By recursively computing equation 1 for all S and i ∈ S,
we can find the optimal solution to the TSP problem.

Equation 1 represents the natural backward view of the dynamic program, where
the cost of a solution is expressed in terms of the cost of solutions to smaller sub-
problems. However, to compute C(S, i) in equation 1, we must compute C(S \ {i}, j)
for smaller subproblems first, which again requires smaller subproblems to be com-
puted first. A naïve recursive implementation of equation 1 would compute the
same subproblems over and over again. As an alternative, we can take a forward
view of the problem, in which smaller solutions get extended and suboptimal par-
tial solutions get removed to apply the DP principle. Specifically, for TSP, we can
start with an empty solution, and iteratively extend it into all possible solutions
with one node, then into all possible solutions with two nodes, etc. In each stage,
we can gather all solutions that have the same set of visited nodes and current node,
i.e. all solutions that correspond to the same DP state, and we only need to keep
the best one for each DP state (implicitly computing equation 1). As such, it can be
seen as a brute force search, that removes partial solutions that are somehow domi-
nated by better partial solutions. The overall complexity of this algorithm for TSP is
O(n22n), which, in terms of complexity, makes DP the best-known algorithm that
guarantees optimal results. An additional benefit of the forward view of DP is that
we do not need to keep all solutions at any stage, but we can keep a limited set with
the most promising (according to some criterium, such as the cost) solutions, which
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is known as restricted dynamic programming (Malandraki and Dial, 1996; Gromicho
et al., 2012a), and analogous to a beam search, which can be seen as a restricted brute
force search. By restricting the size of the search space, restricted DP can be seen as
a heuristic variant of DP, where the quality of the heuristic depends on how the DP
search space is restricted. In Chapter 4 we propose to use a learned neural policy
to restrict the state space.

2.2 deep (reinforcement) learning

Deep learning (DL) (Goodfellow et al., 2016) is the name given to the training of
large scale (deep) neural network (DNN) models with many layers. Deep learning
has seen an enormous rise of popularity in recent years, due to many successes
achieved in different fields (LeCun et al., 2015). Whereas deep learning originated
in domains such as computer vision (Krizhevsky et al., 2012), speech recognition
(Graves et al., 2013), and machine translation (Bahdanau et al., 2015), in recent
years, many more applications have been added, which often involve learning with
structured data such as graphs (Kipf and Welling, 2017). Whereas supervised learning
(SL) based on (input, output) pairs of examples (such as images with labels) is the
most widely used technique, reinforcement learning (RL) (Sutton and Barto, 2018) has
been hugely successful as an alternative paradigm that can learn from experience
by interacting with an environment.

2.2.1 Neural networks and gradient based optimization

A neural network fθ(x) is a mathematical function that has as input a vector x and
depends on a set of parameters θ. It is designed to be flexible such that given the
right set of parameters, it can represent a desired function. A deep neural network
(DNN) is composed of many layers, where each layer consists of multiple neurons,
each of which computes a (different) linear transformation of its inputs, followed by
a nonlinear activation function. The rectified linear unit ReLU(x) = max(x, 0) is the
simplest and most popular used nonlinear function, sometimes called an activation
function. The set of output values, sometimes called activations, of the neurons in a
layer is considered a representation of the input data. The neural network can thus
be seen as sequentially updating an internal (hidden) representation of the input
data, which is used to make the final prediction using the output layer of the neural
network. Figure 1 gives an example of a neural network with an input layer, one
hidden layer and an output layer. Increasing the number of hidden layers increases
the flexibility or representational capacity of the neural network, which explains why
deep neural networks typically have many layers.

The goal of deep learning is to find parameters θ such that the DNN fθ(x) rep-
resents a useful function, where the usefulness is specified through a loss function
L that quantifies the performance for some task: a lower loss corresponds to better
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Figure 1: Example of a neural network with 3 inputs, 5 hidden neurons and 2 outputs. Each
neuron computes a linear function of its inputs, by multiplying each input by a
parameter. The result is then passed through an activation function.

performance. For example, we may have a dataset with N images X = x1, ..., xN and
corresponding labels Y = y1, ..., yN and the goal may be to predict the label yi as a
function of the image xi. The loss for the complete dataset can then be computed as
the average over the loss L(θ, xi , yi) for N individual datapoints in the dataset:

L(θ, X , Y) =
1
N

N

∑
i=1
L(θ, xi , yi). (2)

As an example, the neural network may output a vector of probabilities p over C
different classes, and the loss function may be the cross-entropy loss

L(θ, xi , yi) = −
C

∑
j=1

1{yi=j} log pij|pi= fθ(xi)
. (3)

We may write yij = 1{yi=j}, such that yi = (yi0, ..., yiC) is a vector which we call
the one-hot encoding of the label, and equation 3 is the cross-entropy between the
ground-truth label vector yi and the prediction pi. The cross-entropy is minimized
(and equal to zero) if pi = yi, so minimizing the cross-entropy loss results in max-
imizing the ‘similarity’ between the predictions and ground-truth labels (the data).
We can minimize the loss using gradient descent (see Figure 2), where a small step
in the direction opposite to the gradient ∇θL(θ, X , Y) is taken to decrease the loss,
using step size or learning rate η:

θ← θ− η∇θL(θ, X , Y). (4)

The gradient ∇θL = ( ∂L
∂θ1

, ∂L
∂θ2

, ...) is the vector of all partial derivatives with respect
to each of the parameters of the vector θ. As the neural network is a composition
of many simple functions, the gradient for the current set of parameters θ can be
computed efficiently using the chain rule, which is facilitated using deep learning
or automatic differentiation frameworks such as PyTorch (Paszke et al., 2019), Ten-
sorFlow (Abadi et al., 2016) or JAX (Bradbury et al., 2018). Often, the dataset is
too large to compute the gradient for the complete dataset, and we instead use a
randomly sampled subset of the data, also called a minibatch. The algorithm is then
referred to as stochastic gradient descent (SGD), as the minibatch gradient is a stochas-
tic estimate of the true gradient. For more detailed background on deep learning,
we refer to the deep learning book (Goodfellow et al., 2016).
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Figure 2: Gradient descent minimizes the loss function by taking small steps in the direction
opposite of the gradient (which is positive as indicated by the blue line’s slope).

2.2.2 Learning with graph-structured data

Whereas deep neural networks were originally developed for grid-structured data,
such as images (which are grids of pixels), or sequentially structured data, such as
natural language sentences, modern deep learning applications involve other struc-
tures of data, especially represented in the form of graphs. A graph consists of a
set of nodes and a set of edges connecting those nodes. Graphs can represent a vari-
ety of objects, such as social networks, molecular data, or road networks. As such,
recently a lot of research has been devoted to the development of efficient graph neu-
ral networks (GNNs), that can handle graph-structured data in a principled manner
(Bronstein et al., 2021).

Like normal neural networks, GNNs consist of multiple layers, where each layer
updates the hidden representation of the data. Similar to how convolutional net-
works have different representations for different spatial locations (Goodfellow et
al., 2016), graph neural networks track different representations for different nodes,
and in each layer, the representation for each node is obtained by propagating in-
formation from other nodes in the local graph neighborhood. This process is some-
times referred to as neural message passing (see Figure 3). As the information that
is propagated is represented by a neural network function that can be learned, the
overall model can learn to propagate relevant information between nodes, to make
predictions for individual nodes based on their graph context. When a global pre-
diction is required for the complete graph, the individual node representations can
be aggregated (e.g. by taking the average), and the result can be used to make a
global prediction. Based on the node representations, we may also make predic-
tions for individual nodes (e.g. predict which node should be the next to visit when
constructing a TSP tour, see Chapter 3), or edges (e.g. whether an edge should be in
the TSP tour, see Chapter 4). When making predictions for edges, we may represent
an edge by the concatenation of the representations of its two adjacent nodes, or we
may compute explicit internal representations for edges in each layer.

A simple graph neural network may compute the information it receives from
its neighbors simply by averaging over the different neighbors. This limits the
expressivity of the model as the same amount of information is propagated from
all neighbors, which is inefficient if some neighbors are more relevant than others.
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To address this problem, we may use attention (Bahdanau et al., 2015), which allows
a node to gather different amounts of information from different neighbors. The
graph attention network (GAT) (Velickovic et al., 2018) has become a popular neural
network model for learning on graphs using attention. It is closely related to the
Transformer model (Vaswani et al., 2017), which can be seen as a variant of the
GAT on a fully connected graph. The Transformer model has become the basis
of many state-of-the-art deep neural network model architectures, and as such has
enabled a boost in performance on a wide variety of tasks, including language
modelling, specifically machine translation (Vaswani et al., 2017), image recognition
(Dosovitskiy et al., 2021), and many more. It is also the basis for the attention
model introduced in Chapter 3. For an overview of machine learning with graph-
structured data, we refer to the geometric deep learning book (Bronstein et al., 2021).

2.2.3 Reinforcement learning

Whereas supervised learning, i.e. learning from labeled data, is the primary paradigm
used in deep learning, there is an additional growing interest in unsupervised learn-
ing (learning without labels) and reinforcement learning (RL) (Sutton and Barto, 2018),
which is learning from feedback by acting in an environment. In this section, we
focus on RL, which, in principle, allows an agent to learn to solve optimization
problems, solely from feedback on the quality (i.e. the objective value) of solutions
proposed by the agent. Often, an RL problem is formulated as a Markov decision
process (MDP), where an agent needs to define a policy, specifying how to select an
action given that the agent is in a certain state. The MDP, which can be seen as the
environment, then determines how the state transitions into a new state, where the
agent should select the next action, etc. At any time, an agent may receive a reward
following the selection of an action in a certain state, and the goal is to maximize the
cumulative reward over time, which is called the return. In some cases, the agent
does not observe the full state of the environment, but only gets a particular obser-
vation, resulting in a partially observable MDP (POMDP). As a famous example, an
agent learned to play Atari games using the raw screen pixels as observation and
the game score as reward (Mnih et al., 2015).

Figure 3: Message passing in a graph neural network: the representation of a node gets
updated using information from the other nodes.
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Generally, RL methods can be divided into value based and policy based methods.
Value based methods focus on estimating (learning) the value of taking a certain
action in a certain state, where the value is the expected return: the expected total
future reward. Knowing these action-values, the optimal policy is to select the action
with the highest value for each state. While conceptually simple, the disadvantage
of value-based methods is that it may be difficult to learn or estimate the value of
taking a certain action in a certain state, and it is not possible to learn a stochastic
policy which would take different actions with certain probabilities.

As an alternative, policy based methods directly learn a policy. A popular policy
based algorithm is REINFORCE (Williams, 1992), which, in simple terms, can be
explained as an algorithm that samples actions, and increases the probability of tak-
ing them when a positive return is observed, and vice versa. REINFORCE is a very
generally applicable method, as it makes few assumptions about the environment
it is learning from. In general, we consider discrete random variables, or actions (in
RL terminology), but REINFORCE is applicable with continuous random variables
as well. In the case of a discrete random variable, we can easily derive the REIN-
FORCE gradient estimator that can be used to optimize a policy using SGD. Let
pθ(a|s) be the stochastic policy, parameterized by θ, that specifies the probability
for an action a given a state s, and let f (s, a) be the objective function that we are
optimizing, e.g. the return obtained from the RL environment. Then:

∇Ea∼pθ(a|s)[ f (s, a)] = ∇∑
a

pθ(a|s) f (s, a)

= ∑
a
∇pθ(a|s) f (s, a)

= ∑
a

pθ(a|s)∇pθ(a|s)
pθ(a|s) f (s, a)

= Ea∼pθ(a|s)

[
∇pθ(a|s)

pθ(a|s) f (s, a)
]

= Ea∼pθ(a|s) [∇ log pθ(a|s) f (s, a)] . (5)

For continuous variables, some more mathematical care is necessary to move the
derivative (gradient) inside the summation (which becomes an integral), but the
derivation is similar. The REINFORCE estimator uses a sample a ∼ pθ(a|s) to
estimate the gradient, which is expressed in equation 5 as an expectation, as

∇Ea∼pθ(a|s)[ f (s, a)] ≈ ∇ log pθ(a|s) f (s, a). (6)

While REINFORCE is quite general, e.g. f can be a black-box function that does not
even need to be differentiable, it is a high variance estimator which makes learning
(optimizing the parameters θ) slow. This variance can be reduced by including
a baseline to which the value f (s, a) (the return) is compared. Note that for any
constant b or state-dependent function b(s) that does not depend on a, we have
∇Ea∼pθ(a|s)[b(s)] = ∇b(s) = 0, such that we can subtract this baseline from f (s, a):

∇Ea∼pθ(a|s)[ f (s, a)] = Ea∼pθ(a|s) [∇ log pθ(a|s)( f (s, a)− b(s))] . (7)
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A well-chosen baseline reduces the variance of the estimator, and therefore produces
more stable gradient estimates, which can be combined with a higher learning rate
to improve the speed of learning/optimizing parameters using gradient descent. In
this thesis, we consider different candidates for a baseline, e.g. the greedy baseline
in Chapter 3 and the multi-sample estimator with leave-one-out baseline (with and
without replacement) in Chapter 6.

REINFORCE is sometimes also called the score function estimator, as it uses the
score function ∇ log pθ(a|s) to estimate the effect of changing the parameters θ

of the distribution pθ(a|s) on the expectation Ea∼pθ(a|s)[ f (s, a)]. For continuous
distributions, we may use the reparameterization trick (Kingma and Welling, 2014;
Rezende et al., 2014) as an alternative, if the function f (s, a) is differentiable, and
the action a can be written as a differentiable function aθ(s, ε) of noise ε from a
parameterless distribution (e.g. standard uniform) and the state:

∇Ea∼pθ(a|s)[ f (s, a)] = ∇Eε∼p(ε)[ f (s, aθ(s, ε))] = Eε∼p(ε)[∇ f (s, aθ(s, ε))]. (8)

We can take a sample ε ∼ p(ε) to estimate this expectation, where the gradient
∇θ f (s, aθ(s, ε)) can then simply be computed with the chain rule.

Discrete random variables can also be reparameterized, but this does not result
in a usable gradient estimator. For example, consider a Bernoulli variable with
success probability p, which we can reparameterize in terms of standard noise ε ∼
Uniform(0, 1) as 1{ε ≤ p}. The problem is that the indicator function 1{ε ≤ p}
has gradient 0 almost everywhere and is not continuous at the point ε = p, which
makes the second step (swapping gradient and expectation) in equation 8 invalid.
Informally, we say that such a reparameterization function is not differentiable. As
a solution, it has been proposed to use relaxations of discrete variables, based on
the Gumbel-max trick (Maddison et al., 2016; Jang et al., 2016).

2.2.4 The Gumbel-max trick

The Gumbel-max trick is a reparameterization trick (i.e. a way to sample as a deter-
ministic function of standard random noise) for categorical variables, which works
as follows. Let D be a set of categories, and let φi , i ∈ D be unnormalized log-
probabilities for categories i ∈ D. Let gi ∼ Gumbel(0), i ∈ D be i.i.d. standard
Gumbel variables. Then for any subset B ⊆ D it holds that (Maddison et al., 2014):

max
i∈B

Gφi ∼ Gumbel

(
log ∑

i∈B
exp φi

)
, (9)

arg max
i∈B

Gφi ∼ Categorical

 exp φi

∑
i′∈B

exp φi′
, i ∈ B

 . (10)

As a result of equation 10, we can draw a sample from a categorical distribution by
taking the logarithm of the probabilities, perturbing them independently by adding
Gumbel noise, and returning the category corresponding to the largest perturbed



14 background

log-probability. In the relaxation proposed by Maddison et al. (2016) and Jang et al.
(2016), known as the Gumbel-Softmax or Concrete distribution, the non-differentiable
arg max in equation 10 is replaced by a differentiable softmax, as an approximation
which is differentiable. This distribution, and the resulting estimator when combin-
ing with the reparameterization trick (equation 8), has quickly become popular in
the machine learning community, despite the bias resulting from the softmax relax-
ation (Huijben et al., 2022). In this thesis, we do not use such biased estimators, but
we do build on the Gumbel-max trick extensively, especially in Chapter 5 where we
develop ancestral Gumbel-top-k sampling.

2.3 machine learning & optimization

As we discussed before, there are two paradigms that combine machine learning
and optimization: predict, then optimize and learning to optimize.

predict, then optimize The predict, then optimize framework (Elmachtoub and
Grigas, 2021) uses machine learning models to make predictions about uncertain
quantities and uses these in optimization algorithms. We can therefore also say
this is about learning what to optimize. An example is the prediction of driving
times for use in a routing algorithm, which may vary during the day. If we predict
a single value, which is then considered as ‘truth’ by the optimization algorithm,
this is called a point prediction. Clearly, such a point prediction can be wrong and
an alternative is to predict a distribution or a confidence interval, which allows the
machine learning model to express uncertainty in the prediction. The optimization
algorithm can then take this into account if desired, e.g. through robust optimization
(Ben-Tal and Nemirovski, 2002; Bertsimas et al., 2011), which aims to find solutions
which are robust with respect to the uncertainty, or stochastic optimization (Heyman
and Sobel, 2004), which aims to optimize the objective in expectation.

learning to optimize Learning to optimize is the paradigm considered in this
thesis, where machine learning is used to learn or improve an optimization algo-
rithm, i.e. to learn how to optimize. Within this paradigm, we can put approaches
on a scale that varies between end-to-end machine learning approaches, where a ma-
chine learning model is trained to directly produce a solution to an optimization
problem, and hybrid approaches, where a machine learning model is used along-
side or within an optimization algorithm (Bengio et al., 2021). Chapter 3 presents
an example of an end-to-end approach, whereas Chapter 4 illustrates an example of
a hybrid algorithm. Recently presented end-to-end approaches are often construc-
tive approaches which are conceptually similar to the attention model presented in
Chapter 3. On the other hand, hybrid approaches can be roughly divided into using
machine learning to improve heuristics within approximate search methods, which
we call the learning to search paradigm (Chen and Tian, 2019; Hottung and Tierney,
2020), and using machine learning to improve exact algorithms, where learning to
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branch (Khalil et al., 2016; Gasse et al., 2019; Nair et al., 2020) is the most prominent
and general example. When using machine learning to improve exact algorithms,
internal decisions of the solver are guided by a machine learning model, and such
approaches can then be turned into heuristics, for example by limiting the runtime
of the algorithm. Chapter 4 can also be seen as an example of using machine learn-
ing to improve an exact algorithm, in our case dynamic programming.

2.3.1 Challenges in machine learning for combinatorial optimization

Using machine learning, especially deep learning, in the learning to optimize paradigm
to learn algorithms for combinatorial optimization presents a number of challenges.

gradient based training with discrete (non-differentiable) outputs
First of all, the training of deep learning models using gradient descent requires
the model, ultimately a mathematical function, to be differentiable with respect to
its parameters. This is not the case for a model with discrete outputs, which has a
gradient of zero almost everywhere. The solution is to consider a stochastic model,
which defines a distribution over discrete outputs, and to optimize performance on
the task in expectation, for example using REINFORCE (see Section 2.2.3). While this
makes the gradient well-defined, it is still intractable to compute if the expectation
is over a combinatorial domain that grows exponentially with the size of the input.
The common solution is to estimate the gradient using samples, adding a second
source of stochasticity (besides sampling the minibatch) in the stochastic gradient de-
scent (SGD) algorithm introduced in Section 2.2.1. As the performance of the SGD
algorithm depends on the variance of the gradient estimates, Part ii of this thesis is
devoted to sampling techniques and statistical estimators that reduce this variance
when sampling from combinatorial spaces.

defining the right model architecture Machine learning models for com-
binatorial optimization should take as input structured data (such as graphs), and
predict structured outputs (solutions) as well. This requires the right (graph) neural
network architecture, for example to exploit symmetries (see Section 2.2.2). There
are different options to facilitate output structure. For example, when predicting
a tour, we may predict one step at a time (see Chapter 3), or we may directly pre-
dict which edges should be in the tour all at once, and use a post-processing step
to create valid tour (see Chapter 4). Another consideration is what to predict ex-
actly. For example, predicting probabilities (e.g. where to move next in a routing
problem) rather than values (e.g. the expected total tour length or cost) may help
generalization, as probabilities are invariant to factors such as scaling of the data.
This aligns with our preference for policy based RL (Section 2.2.3): predicting actions
rather than values. In any case, even with a suitable neural network architecture,
the model will be sensitive to input value scaling or rotation (e.g. coordinates or
distances with routing problems), although this can, to some extent, be accounted
for by normalizing the input (which is a good idea in general (Stöttner, 2019)).
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defining an efficient training paradigm The third challenge relates to how
to train a machine learning model for combinatorial optimization. The most gen-
eral method is to use reinforcement learning (RL, Section 2.2.3), in which a policy
is trained end-to-end using rewards obtained from the objective function. The down-
side is that RL requires many samples to learn, and each individual sample may
be computationally costly, especially if it considers a hybrid algorithm which inter-
nally uses expensive computations as well. Therefore, one requires creative train-
ing paradigms that exploit existing knowledge. For example, if we can find good
or even optimal solutions using an existing (but computationally costly) algorithm,
we can use this to create a training dataset of good quality solutions once, which can
then be used for many training iterations in a supervised learning setting (see Chap-
ter 4). This is more efficient than using RL, and especially useful while designing
the model, which requires a lot of testing. AlphaGo (Silver et al., 2017) even iterates
this idea for better results: using Monte Carlo tree search (MCTS) to build a training
dataset with good moves, a model is trained to improve the MCTS algorithm, such
that a better dataset can be generated to train an even stronger model, etc. Nonethe-
less, even with a clever training paradigm, training is extremely costly. However,
for a specific problem (and distribution of instances), training is only required once,
after which the trained model can be used to solve many new problem instances.

the model should be worth it(s computation) Even if the cost of training
a model is acceptable, it is non-trivial that the model is also beneficial when solving
a new problem instance at test time, as the impact of the model must be ‘worth’ the
computation it requires. Since a combinatorial optimization problem has a finite
solution space, any reasonable optimization algorithm will find the optimal solu-
tion when given infinite computation time, especially exhaustive (or even random)
search. Therefore, a better (machine-learning based) algorithm should either find
the optimal solution with less computation, or find a better solution within a given
time limit. In other words, we should always evaluate algorithms in terms of both
quality (cost of solution) and computation (see Figure 4). While training uses the
most computation, it is still costly to use a large DNN model to make predictions.
Therefore, if we use predictions in an optimization algorithm, we invest valuable
computation time, which should pay off, e.g. by finding better solutions quickly.
Otherwise, we may better use the same computation as additional search budget in
a (highly optimized) search algorithm. The most successful machine learning based
approaches thus maximize the impact of predictions while minimizing the computation
(flops) invested for making those predictions. Count your flops and make them count!

Co
st

∞

Optimal

Computation

Intelligent algorithm
Exhaustive search

Figure 4: Performance (cost of solution) of an algorithm solving a problem, as a function
of time/computation. Given infinite computation, all algorithms are equal so an
algorithm should always be evaluated w.r.t. both performance and computation.
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summary of part i

In Part i of this thesis, we focus on routing problems. We propose different models
and methods for solving such problems using techniques from machine learning,
especially deep (reinforcement) learning. This is challenging as we require models
that can handle structured input data, such as TSP or VRP instances, as well as
produce structured output in the form of feasible solutions.

In Chapter 3, we propose the attention model, which is a flexible model that can
be applied to different routing problems. It treats the input as a graph of nodes (i.e.
locations to visit), which gets processed by an encoder, resulting in abstract represen-
tations for each node. These are then used by the decoder, which sequentially selects
the next node to visit, based on context information such as the current node and
destination location. Feasibility of the sequentially constructed solution is ensured
by a masking procedure that prevents the model from selecting nodes that would
result in a violation of constraints, e.g. by visiting the same node twice or exceed-
ing the vehicle capacity. The model is trained using a reinforcement learning (RL)
algorithm known as REINFORCE (Williams, 1992), where we develop a variant that
uses a greedy rollout baseline, which directs the model towards progress by compar-
ing sampled solutions against greedy solutions, to determine the relative quality.
While the resulting model does not outperform state-of-the-art algorithms for in-
dividual problems, it provides reasonable solutions for different problems quickly,
and significantly outperforms classic construction heuristics which are of similar
structure, as well as previous learning-based approaches.

Whereas the attention model introduced in Chapter 3 is flexible, and many vari-
ants of it have been applied in follow-up work (Peng et al., 2019; Xin et al., 2020;
Kwon et al., 2020; Ma et al., 2021), it has two important limitations. First, the
sequential construction requires the model to be evaluated at every step, which
is computationally costly if one wants to combine it with search, e.g. generating
many solutions to select the best one in order to improve performance of the model.
Second, while the masking scheme is often effective for enforcing feasibility of the
solutions, some problems have more complex constraints (such as time windows for
routing problems), which cannot simply be enforced by a masking procedure as the
construction can run into dead ends. As a solution to these challenges, in Chapter 4,
we present deep policy dynamic programming (DPDP). DPDP uses a different neural
network model, proposed by Joshi et al. (2019a), which does not require sequential
construction, but outputs a heatmap with probabilities that an edge is ‘good’ (likely
to be part of optimal solution) for all edges in the graph at once. This can then be
combined with dynamic programming over a restricted space of promising solu-
tions, identified by the neural network, which enables to find good solutions even
in the presence of complex constraints. This is an example of a hybrid algorithm
that uses machine learning to improve a ‘classic’ optimization algorithm: dynamic
programming. Results show that this significantly improves the performance of
dynamic programming algorithms for vehicle routing problems.



3 AT T E N T I O N , L E A R N TO S O LV E
R O U T I N G P R O B L E M S !

The recently presented idea to learn heuristics for combinatorial optimization problems is
promising as it can save costly development. However, to push this idea towards practi-
cal implementation, we need better models and better ways of training. We contribute in
both directions: we propose a model based on attention layers with benefits over the pointer
network and we show how to train this model using REINFORCE with a simple baseline
based on a deterministic greedy rollout, which we find is more efficient than using a value
function. We significantly improve over recent learned heuristics for the travelling salesman
problem (TSP), getting close to optimal results for problems up to 100 nodes. With the same
hyperparameters, we learn strong heuristics for two variants of the vehicle routing prob-
lem (VRP), the orienteering problem (OP) and (a stochastic variant of) the prize collecting
TSP (PCTSP), outperforming a wide range of baselines and getting results close to highly
optimized and specialized algorithms.

3.1 introduction

Imagine yourself travelling to a scientific conference. The field is popular, and
surely you do not want to miss out on anything. You have selected several posters
you want to visit, and naturally you must return to the place where you are now:
the coffee corner. In which order should you visit the posters, to minimize your
time walking around? This is the travelling scientist problem (TSP).

You realize that your problem is equivalent to the travelling salesman problem
(conveniently also TSP). This seems discouraging as you know the problem is (NP-
)hard (Garey and Johnson, 1979). Fortunately, complexity theory analyzes the worst
case, and your Bayesian view considers this unlikely. In particular, you have a strong
prior: the posters will probably be laid out regularly. You want a special algorithm
that solves not any, but this type of problem instance. You have some months left to
prepare. As a machine learner, you wonder whether your algorithm can be learned?

motivation Machine learning algorithms have replaced humans as the engi-
neers of algorithms to solve various tasks. A decade ago, computer vision algo-
rithms used hand-crafted features but today they are learned end-to-end by deep
neural networks (DNNs). DNNs have outperformed classic approaches in speech
recognition, machine translation, image captioning and other problems, by learning
from data (LeCun et al., 2015). While DNNs are mainly used to make predictions,
reinforcement learning (RL) has enabled algorithms to learn to make decisions, ei-

19
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ther by interacting with an environment, e.g. to learn to play Atari games (Mnih
et al., 2015), or by inducing knowledge through look-ahead search: this was used
to master the game of Go (Silver et al., 2017).

The world is not a game, and we desire to train models that make decisions to
solve real problems. These models must learn to select good solutions for a prob-
lem from a combinatorially large set of potential solutions. Classically, approaches
to this problem of combinatorial optimization can be divided into exact methods, that
guarantee finding optimal solutions, and heuristics, that trade off optimality for com-
putational cost, although exact methods can use heuristics internally and vice versa.
Heuristics are typically expressed in the form of rules, which can be interpreted as
policies to make decisions. We believe that these policies can be parameterized us-
ing DNNs, and be trained to obtain new and stronger algorithms for many different
combinatorial optimization problems, similar to the way DNNs have boosted per-
formance in the applications mentioned before. In this chapter, we focus on routing
problems: an important class of practical combinatorial optimization problems.

The promising idea to learn heuristics has been tested on the TSP (Bello et al.,
2016). In order to push this idea, we need better models and better ways of training.
Therefore, we propose to use a powerful model based on attention and we propose
to train this model using REINFORCE (Williams, 1992) with a simple but effective
greedy rollout baseline. The goal of our method is not to outperform a non-learned,
specialized TSP algorithm such as Concorde (Applegate et al., 2006). Rather, we
show the flexibility of our approach on multiple (routing) problems of reasonable
size, with a single set of hyperparameters. This is important progress towards the
situation where we can learn strong heuristics to solve a wide range of different
practical problems for which no good heuristics exist.

3.2 related work

The application of neural networks (NNs) for optimizing decisions in combinato-
rial optimization problems dates back to Hopfield and Tank (1985), who applied a
Hopfield-network for solving small TSP instances. NNs have been applied to many
related problems (Smith, 1999), although in most cases in an online manner, starting
‘from scratch’ and ‘learning’ a solution for every instance. More recently, (D)NNs
have also been used offline to learn about an entire class of problem instances.

Vinyals et al. (2015a) introduce the pointer network (PN) as a model that uses at-
tention to output a permutation of the input, and train this model offline to solve
the (Euclidean) TSP, supervised by example solutions. Upon test time, their beam
search procedure filters invalid tours. Bello et al. (2016) introduce an actor-critic al-
gorithm to train the PN without supervised solutions. They consider each instance
as a training sample and use the cost (tour length) of a sampled solution for an
unbiased Monte Carlo estimate of the policy gradient. They introduce extra model
depth in the decoder by an additional glimpse (Vinyals et al., 2016) at the embed-
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dings, masking nodes already visited. For small instances (n = 20), they get close
to the results by Vinyals et al. (2015a), they improve for n = 50 and additionally
include results for n = 100. Nazari et al. (2018) replace the LSTM encoder of the PN
by element-wise projections, such that the updated embeddings after state-changes
can be effectively computed. They apply this model on the vehicle routing problem
(VRP) with split deliveries and a stochastic variant.

Dai et al. (2017) do not use a separate encoder and decoder, but a single model
based on graph embeddings. They train the model to output the order in which
nodes are inserted into a partial tour, using a helper function to insert at the best
possible location. Their 1-step DQN (Mnih et al., 2015) training method trains
the algorithm per step and incremental rewards provided to the agent at every
step effectively encourage greedy behavior. As mentioned in their appendix, they
use the negative of the reward, which combined with discounting encourages the
agent to insert the farthest nodes first, which is known to be an effective heuristic
(Rosenkrantz et al., 2009).

Nowak et al. (2017) train a graph neural network (GNN) in a supervised manner
to directly output a tour as an adjacency matrix, which is converted into a feasible
solution by a beam search. The model is non-autoregressive, so cannot condition
its output on the partial tour and the authors report an optimality gap of 2.7% for
n = 20, worse than autoregressive approaches mentioned in this section. Kaempfer
and Wolf (2018) train a model based on the Transformer architecture (Vaswani et al.,
2017) that outputs a fractional solution to the multiple TSP (mTSP). The result can
be seen as a solution to the linear relaxation of the problem and they use a beam
search to obtain a feasible integer solution.

Independently of our work, Deudon et al. (2018) presented a similar model for
TSP using attention. They show performance can improve using 2OPT local search,
but do not show benefit of their model in direct comparison to the PN. We use a dif-
ferent decoder and improved training algorithm, both contributing to significantly
improved results, without 2OPT and additionally show application to different prob-
lems. For a full discussion of the differences, we refer to Appendix A.2.4.

3.3 attention model

We define our model, the attention model, in terms of the TSP. For other problems,
the model is the same but the input, mask and decoder context need to be defined
accordingly, which is discussed in Appendix A. We define a problem instance s as a
graph with n nodes, where node i ∈ {1, . . . , n} is represented by features xi. For TSP,
xi is the coordinate of node i and the graph is fully connected (with self-connections)
but in general, the model can be considered a graph attention network (Velickovic
et al., 2018) and take graph structure into account by a masking procedure (see
Appendix A.1). We define a solution (tour) π = (π1, . . . , πn) as a permutation of
the nodes, so πt ∈ {1, . . . n} and πt 6= πt′ ∀t 6= t′. Our attention based encoder-
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decoder model defines a stochastic policy p(π|s) for selecting a solution π given a
problem instance s. It is factorized and parameterized by θ as

pθ(π|s) =
n

∏
t=1

pθ(πt|s, π1:t−1). (11)

The encoder produces embeddings of all input nodes. The decoder produces the
sequence π of input nodes, one node at a time. It takes as input the encoder
embeddings and a problem specific mask and context. For TSP, when a partial
tour has been constructed, it cannot be changed and the ‘remaining’ problem is to
find a path from the last node, through all unvisited nodes, to the first node. The
order and coordinates of other nodes already visited are irrelevant. To know the
first and last node, the decoder context consists (next to the graph embedding) of
embeddings of the first and last node. Similar to Bello et al. (2016), the decoder
observes a mask to know which nodes have been visited.

3.3.1 Encoder

The encoder that we use (Figure 5) is similar to the encoder used in the Transformer
architecture by Vaswani et al. (2017), but we do not use positional encoding such
that the resulting node embeddings are invariant to the input order. From the
dx-dimensional input features xi (for TSP dx = 2), the encoder computes initial dh-
dimensional node embeddings h(0)

i (we use dh = 128) through a learned linear

projection with parameters Wx and bx: h(0)
i = Wxxi + bx. The embeddings are

updated using N attention layers, each consisting of two sublayers. We denote with
h(`)

i the node embeddings produced by layer ` ∈ {1, .., N}. The encoder computes
an aggregated embedding h̄(N) of the input graph as the mean of the final node
embeddings h(N)

i : h̄(N) = 1
n ∑n

i=1 h(N)
i . Both the node embeddings h(N)

i and the
graph embedding h̄(N) are used as input to the decoder.

attention layer Following the Transformer architecture (Vaswani et al., 2017),
each attention layer consist of two sublayers: a multi-head attention (MHA) layer
that executes message passing between the nodes and a node-wise fully connected
feed-forward (FF) layer. Each sublayer adds a skip-connection (He et al., 2016b) and
batch normalization (BN) (Ioffe and Szegedy, 2015) (which we found to work better
than layer normalization (Ba et al., 2016)):

ĥi = BN`
(

h(`−1)
i + MHA`

i

(
h(`−1)

1 , . . . , h(`−1)
n

))
(12)

h(`)
i = BN`

(
ĥi + FF`(ĥi)

)
. (13)

The layer index ` indicates that the layers do not share parameters. The MHA
sublayer uses M = 8 heads with dimensionality dh

M = 16, and the FF sublayer has
one hidden (sub)sublayer with dimension 512 and ReLu activation. See Appendix
A.1 for details.
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Figure 5: Attention based encoder. Input nodes are embedded and processed by N sequen-
tial layers, each consisting of a multi-head attention (MHA) and node-wise feed-
forward (FF) sublayer. The graph embedding is computed as the mean of node
embeddings. Best viewed in color.

3.3.2 Decoder

Decoding happens sequentially, and at timestep t ∈ {1, . . . n}, the decoder out-
puts the node πt based on the embeddings from the encoder and the outputs πt′

generated at time t′ < t. During decoding, we augment the graph with a special
context node (c) to represent the decoding context. The decoder computes an atten-
tion (sub)layer on top of the encoder, but with messages only to the context node
for efficiency.1 The final probabilities are computed using a single-head attention
mechanism. See Figure 6 for an illustration of the decoding process.

context embedding The context of the decoder at time t comes from the en-
coder and the output up to time t. As mentioned, for the TSP it consists of the
embedding of the graph, the previous (last) node πt−1 and the first node π1. For
t = 1 we use learned dh-dimensional parameters vl and vf as input placeholders:

h(N)
(c) =


[
h̄(N), h(N)

πt−1 , h(N)
π1

]
t > 1[

h̄(N), vl, vf
]

t = 1.
(14)

Here [·, ·, ·] is the horizontal concatenation operator and we write the (3 · dh)-dimensional
result vector as h(N)

(c) to indicate we interpret it as the embedding of the special con-

text node (c) and use the superscript (N) to align with the node embeddings h(N)
i .

We could project the embedding back to dh dimensions, but we absorb this trans-
formation in the parameter WQ in equation 15.

Now we compute a new context node embedding h(N+1)
(c) using the (M-head)

attention mechanism described in Appendix A.1. The keys and values come from
the node embeddings h(N)

i , but we only compute a single query q(c) (per head)
from the context node (we omit the (N) for readability):

q(c) = WQh(c) ki = WKhi , vi = WVhi. (15)

1 n× n attention between all nodes is expensive to compute in every step of the decoding process.
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Figure 6: Attention based decoder for the TSP problem. The decoder takes as input the graph
embedding and node embeddings. At each time step t, the context consist of the
graph embedding and the embeddings of the first and last (previously output)
node of the partial tour, where learned placeholders are used if t = 1. Nodes that
cannot be visited (since they are already visited) are masked. The example shows
how a tour π = (3, 1, 2, 4) is constructed. Best viewed in color.

We compute the compatibility of the query with all nodes, and mask (set u(c)j =

−∞) nodes which cannot be visited at time t. For TSP, this simply means we mask
the nodes already visited:

u(c)j =


qT
(c)kj√

dk
if j 6= πt′ ∀t′ < t

−∞ otherwise.
(16)

Here dk = dh
M is the query/key dimensionality (see Appendix A.1). Again, we

compute u(c)j and vi for M = 8 heads and compute the final multi-head atten-
tion value for the context node using equations (72)–(74) from Appendix A.1, but
with (c) instead of i. This mechanism is similar to our encoder, but does not use
skip-connections, batch normalization or the feed-forward sublayer for maximal
efficiency. The result h(N+1)

(c) is similar to the glimpse described by Bello et al. (2016).

calculation of log-probabilities To compute the output probabilities
pθ(πt|s, π1:t−1) in equation 11, we add one final decoder layer with a single at-
tention head (M = 1 so dk = dh). For this layer, we only compute the compatibilities
u(c)j using equation 16, but following Bello et al. (2016) we clip the result (before
masking!) within [−C, C] (C = 10) using tanh:

u(c)j =

C · tanh
(

qT
(c)kj√

dk

)
if j 6= πt′ ∀t′ < t

−∞ otherwise.
(17)

We interpret these compatibilities as unnormalized log-probabilities (logits) and
compute the final output probability vector p using a softmax (similar to equation 72

in Appendix A.1):

pi = pθ(πt = i|s, π1:t−1) =
eu(c)i

∑j eu(c)j
. (18)
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3.4 reinforce with greedy rollout baseline

Section 3.3 defined our model that given an instance s defines a probability distri-
bution pθ(π|s), from which we can sample to obtain a solution (tour) π|s. In order
to train our model, we define the loss L(θ|s) = Epθ(π|s) [L(π)]: the expectation of
the cost L(π) (tour length for TSP). We optimize L by gradient descent, using the
REINFORCE (Williams, 1992) gradient estimator with baseline b(s):

∇L(θ|s) = Epθ(π|s) [(L(π)− b(s))∇ log pθ(π|s)] . (19)

A good baseline b(s) reduces gradient variance and therefore increases speed of
learning. A simple example is an exponential moving average b(s) = M with decay
β. Here M = L(π) in the first iteration and gets updated as M← βM+(1− β)L(π)

in subsequent iterations. A popular alternative is the use of a learned value function
v̂(s, w), sometimes called a critic2, where the parameters w are learned from the
observations (s, L(π)).

We propose to use a rollout baseline in a way that is similar to self-critical training
by Rennie et al. (2017), but with periodic updates of the baseline policy. It is defined
as follows: b(s) is the cost of a solution from a deterministic greedy rollout of the policy
defined by the best model so far.

motivation The goal of a baseline is to estimate the difficulty of the instance s,
such that it can relate to the cost L(π) to estimate the advantage of the solution
π selected by the model. We make the following key observation: The difficulty
of an instance can (on average) be estimated by the performance of an algorithm applied
to it. This follows from the assumption that (on average) an algorithm will have
a higher cost on instances that are more difficult. Therefore we form a baseline
by applying (rolling out) the algorithm defined by our model during training. To
eliminate variance we force the result to be deterministic by selecting greedily the
action with maximum probability.

determining the baseline policy As the model changes during training, we
stabilize the baseline by freezing the greedy rollout policy pθBL for a fixed number
of steps (every epoch), similar to freezing of the target Q-network in DQN (Mnih
et al., 2015). A stronger algorithm defines a stronger baseline, so we compare (with
greedy decoding) the current training policy with the baseline policy at the end
of every epoch, and replace the parameters θBL of the baseline policy only if the
improvement is significant according to a paired t-test (α = 5%), on 10000 separate
(evaluation) instances. If the baseline policy is updated, we sample new evaluation
instances to prevent overfitting.

2 Formally, in actor-critic methods, the critic is a learned value function used to estimate the return follow-
ing an action, but the same value function can also be used as a baseline (Sutton and Barto, 2018).
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analysis With the greedy rollout as baseline b(s), the function L(π) − b(s) is
negative if the sampled solution π is better than the greedy rollout, causing actions
to be reinforced, and vice versa. This way the model is trained to improve over its
(greedy) self. We see similarities with self-play improvement by AlphaGo (Silver et
al., 2017): sampling replaces tree search for exploration and the model is rewarded
if it yields improvement (‘wins’) compared to the best model. Similar to AlphaGo,
the evaluation at the end of each epoch ensures that we are always challenged by
the best model.

algorithm We use Adam (Kingma and Ba, 2015) as optimizer resulting in Algo-
rithm 1.

Algorithm 1 REINFORCE with Rollout Baseline

1: Input: number of epochs E, steps per epoch T, batch size B, significance α
2: Init θ, θBL ← θ
3: for epoch = 1, . . . , E do
4: for step = 1, . . . , T do
5: si ← RandomInstance() ∀i ∈ {1, . . . , B}
6: πi ← SampleRollout(si , pθ) ∀i ∈ {1, . . . , B}
7: πBL

i ← GreedyRollout(si , pθBL) ∀i ∈ {1, . . . , B}
8: ∇L ← ∑B

i=1
(

L(πi)− L(πBL
i )
)
∇θ log pθ(πi)

9: θ← Adam(θ,∇L)
10: end for
11: if OneSidedPairedTTest(pθ, pθBL) < α then
12: θBL ← θ
13: end if
14: end for

efficiency Each rollout constitutes an additional forward pass, increasing com-
putation by 50%. However, as the baseline policy is fixed for an epoch, we can
sample the data and compute baselines per epoch using larger batch sizes, allowed
by the reduced memory requirement as the computations can run in pure inference
mode. Empirically we find that it adds only 25% (see Appendix A.2.5), taking up
20% of total time. If desired, the baseline rollout can be computed in parallel (using
an additional GPU) such that there is no increase in time per iteration.

3.5 experiments

We focus on routing problems: we consider the TSP, two variants of the VRP, the ori-
enteering problem and the (stochastic) prize collecting TSP. These provide a range
of different challenges, constraints and objectives and are traditionally solved by dif-
ferent algorithms. For the attention model (AM), we adjust the input, mask, decoder
context and objective function for each problem (see Appendix A for details and
data generation) and train on problem instances of n = 20, 50 and 100 nodes. For
all problems, we use the same hyperparameters: those we found to work well on TSP.
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hyperparameters We initialize parameters Uniform(−1/
√

d, 1/
√

d), with d
the input dimension. Every epoch we process 2500 batches of 512 instances (ex-
cept for VRP with n = 100, where we use 2500 × 256 for memory constraints).
For TSP, an epoch takes 5:30 minutes for n = 20, 16:20 for n = 50 (single GPU
1080Ti) and 27:30 for n = 100 (on 2 1080Ti’s). We train for 100 epochs using training
data generated on the fly. We found training to be stable and results to be robust
against different seeds, where only in one case (PCTSP with n = 20) we had to
restart training with a different seed because the run diverged. We use N = 3 layers
in the encoder, which we found is a good trade-off between quality of the results
and computational complexity. We use a constant learning rate η = 10−4. Training
with a higher learning rate η = 10−3 is possible and speeds up initial learning, but
requires decay (0.96 per epoch) to converge and may be a bit more unstable. See
Appendix A.2.5. With the rollout baseline, we use an exponential baseline (β = 0.8)
during the first epoch, to stabilize initial learning, although in many cases learning
also succeeds without this ‘warmup’. Our code in PyTorch (Paszke et al., 2019) is
publicly available.3

decoding strategy and baselines For each problem, we report performance
on 10000 test instances. At test time we use greedy decoding, where we select the
best action (according to the model) at each step, or sampling, where we sample 1280

solutions (in < 1s on a single GPU) and report the best. More sampling improves
solution quality at increased computation. In Table 1 we compare greedy decod-
ing against baselines that also construct a single solution, and compare sampling
against baselines that also consider multiple solutions, either via sampling or (local)
search. For each problem, we also report the ‘best possible solution’: either optimal
via Gurobi (Gurobi Optimization, LLC, 2022) (intractable for n > 20 except for TSP)
or a strong problem specific algorithm.

run times Run times are important but hard to compare: they can vary by two
orders of magnitude as a result of implementation (Python vs C++) and hardware
(GPU vs CPU). We take a practical view and report the time it takes to solve the
test set of 10000 instances, either on a single GPU (1080Ti) or 32 instances in parallel
on a 32 virtual CPU system (2 × Xeon E5-2630). This is conservative: our model is
parallelizable while most of the baselines are single thread CPU implementations
which cannot parallelize when running individually. Also we note that after train-
ing our run time can likely be reduced by model compression (Hinton et al., 2015).
In Table 1 we do not report running times for the results which were reported by
others as they are not directly comparable but we note that in general our model
and implementation is fast: for instance Bello et al. (2016) report 10.3s for sampling
1280 TSP solutions (K80 GPU) which we do in less than one second (on a 1080Ti).
For most algorithms it is possible to trade off runtime for performance. As report-
ing full trade-off curves is impractical we tried to pick reasonable spots, reporting
the fastest if results were similar or reporting results with different time limits (for
example we use Gurobi with time limits as heuristic).

3 https://github.com/wouterkool/attention-learn-to-route

https://github.com/wouterkool/attention-learn-to-route
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Table 1: Attention model (AM) vs baselines. The gap % is w.r.t. the best value across all
methods.

n = 20 n = 50 n = 100
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

T
SP

Concorde 3.84 0.00% (1m) 5.70 0.00% (2m) 7.76 0.00% (3m)
LKH3 3.84 0.00% (18s) 5.70 0.00% (5m) 7.76 0.00% (21m)
Gurobi 3.84 0.00% (7s) 5.70 0.00% (2m) 7.76 0.00% (17m)
Gurobi (1s) 3.84 0.00% (8s) 5.70 0.00% (2m) -

Nearest insertion 4.33 12.91% (1s) 6.78 19.03% (2s) 9.46 21.82% (6s)
Random insertion 4.00 4.36% (0s) 6.13 7.65% (1s) 8.52 9.69% (3s)
Farthest insertion 3.93 2.36% (1s) 6.01 5.53% (2s) 8.35 7.59% (7s)
Nearest neighbor 4.50 17.23% (0s) 7.00 22.94% (0s) 9.68 24.73% (0s)
Vinyals et al. (gr.) 3.88 1.15% 7.66 34.48% -
Bello et al. (gr.) 3.89 1.42% 5.95 4.46% 8.30 6.90%
Dai et al. 3.89 1.42% 5.99 5.16% 8.31 7.03%
Nowak et al. 3.93 2.46% - -
EAN (greedy) 3.86 0.66% (2m) 5.92 3.98% (5m) 8.42 8.41% (8m)
AM (greedy) 3.85 0.34% (0s) 5.80 1.76% (2s) 8.12 4.53% (6s)

OR-Tools 3.85 0.37% 5.80 1.83% 7.99 2.90%
Chr.f. + 2OPT 3.85 0.37% 5.79 1.65% -
Bello et al. (s.) - 5.75 0.95% 8.00 3.03%
EAN (gr. + 2OPT) 3.85 0.42% (4m) 5.85 2.77% (26m) 8.17 5.21% (3h)
EAN (sampling) 3.84 0.11% (5m) 5.77 1.28% (17m) 8.75 12.70% (56m)
EAN (s. + 2OPT) 3.84 0.09% (6m) 5.75 1.00% (32m) 8.12 4.64% (5h)
AM (sampling) 3.84 0.08% (5m) 5.73 0.52% (24m) 7.94 2.26% (1h)

C
V

R
P

Gurobi 6.10 0.00% - -
LKH3 6.14 0.58% (2h) 10.38 0.00% (7h) 15.65 0.00% (13h)

RL (greedy) 6.59 8.03% 11.39 9.78% 17.23 10.12%
AM (greedy) 6.40 4.97% (1s) 10.98 5.86% (3s) 16.80 7.34% (8s)

RL (beam 10) 6.40 4.92% 11.15 7.46% 16.96 8.39%
Random CW 6.81 11.64% 12.25 18.07% 18.96 21.18%
Random sweep 7.08 16.07% 12.96 24.91% 20.33 29.93%
OR-Tools 6.43 5.41% 11.31 9.01% 17.16 9.67%
AM (sampling) 6.25 2.49% (6m) 10.62 2.40% (28m) 16.23 3.72% (2h)

SD
V

R
P RL (greedy) 6.51 4.19% 11.32 6.88% 17.12 5.23%

AM (greedy) 6.39 2.34% (1s) 10.92 3.08% (4s) 16.83 3.42% (11s)

RL (beam 10) 6.34 1.47% 11.08 4.61% 16.86 3.63%
AM (sampling) 6.25 0.00% (9m) 10.59 0.00% (42m) 16.27 0.00% (3h)

O
P

(d
i
s
t
a

n
c

e
)

Gurobi 5.39 0.00% (16m) - -
Gurobi (1s) 4.62 14.22% (4m) 1.29 92.03% (6m) 0.58 98.25% (7m)
Gurobi (10s) 5.37 0.33% (12m) 10.96 32.20% (51m) 1.34 95.97% (53m)
Gurobi (30s) 5.38 0.05% (14m) 13.57 16.09% (2h) 3.23 90.28% (3h)
Compass 5.37 0.36% (2m) 16.17 0.00% (5m) 33.19 0.00% (15m)

Tsili (greedy) 4.08 24.25% (4s) 12.46 22.94% (4s) 25.69 22.59% (5s)
AM (greedy) 5.19 3.64% (0s) 15.64 3.23% (1s) 31.62 4.75% (5s)

GA (Python) 5.12 4.88% (10m) 10.90 32.59% (1h) 14.91 55.08% (5h)
OR-Tools (10s) 4.09 24.05% (52m) - -
Tsili (sampling) 5.30 1.62% (28s) 15.50 4.14% (2m) 30.52 8.05% (6m)
AM (sampling) 5.30 1.56% (4m) 16.07 0.60% (16m) 32.68 1.55% (53m)

PC
TS

P

Gurobi 3.13 0.00% (2m) - -
Gurobi (1s) 3.14 0.07% (1m) - -
Gurobi (10s) 3.13 0.00% (2m) 4.54 1.36% (32m) -
Gurobi (30s) 3.13 0.00% (2m) 4.48 0.03% (54m) -

AM (greedy) 3.18 1.62% (0s) 4.60 2.66% (2s) 6.25 4.46% (5s)

ILS (C++) 3.16 0.77% (16m) 4.50 0.36% (2h) 5.98 0.00% (12h)
OR-Tools (10s) 3.14 0.05% (52m) 4.51 0.70% (52m) 6.35 6.21% (52m)
OR-Tools (60s) 3.13 0.01% (5h) 4.48 0.00% (5h) 6.07 1.56% (5h)
ILS (Python 10x) 5.21 66.19% (4m) 12.51 179.05% (3m) 23.98 300.95% (3m)
AM (sampling) 3.15 0.45% (5m) 4.52 0.74% (19m) 6.08 1.67% (1h)

SP
C

TS
P REOPT (all) 3.34 2.38% (17m) 4.68 1.04% (2h) 6.22 1.10% (12h)

REOPT (half) 3.31 1.38% (25m) 4.64 0.00% (3h) 6.16 0.00% (16h)
REOPT (first) 3.31 1.60% (1h) 4.66 0.44% (22h) -
AM (greedy) 3.26 0.00% (0s) 4.65 0.33% (2s) 6.32 2.69% (5s)
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3.5.1 Problems

travelling salesman problem (tsp) For the TSP, we report optimal results
by Gurobi, as well as by Concorde (Applegate et al., 2006) (faster than Gurobi as it is
specialized for TSP) and LKH3 (Helsgaun, 2017), an advanced heuristic solver that
empirically also finds optimal solutions in time comparable to Gurobi. We compare
against nearest, random and farthest insertion, as well as nearest neighbor, which is the
only non-learned baseline algorithm that also constructs a tour directly in order (i.e.
is structurally similar to our model). For details, see Appendix A.2.3. Additionally
we compare against the learned heuristics in Section 3.2, most importantly Bello et
al. (2016), as well as Google OR-Tools (Perron and Furnon, 2022), reported by Bello
et al. (2016), and Christofides + 2OPT local search reported by Vinyals et al. (2015a).
Results for Dai et al. (2017) are (optimistically) computed from the optimality gaps
they report on 15-20, 40-50 and 50-100 node graphs, respectively. Using a single
greedy construction we outperform traditional baselines and we are able to achieve
significantly closer to optimal results than previous learned heuristics (from around
1.5% to 0.3% above optimal for n = 20). Naturally, the difference with Bello et al.
(2016) gets diluted when sampling many solutions (as with many samples even a
random policy performs well), but we still obtain significantly better results, without
tuning the softmax temperature. For completeness, we also report results from
running the encode, attend & nagivate (EAN) code4 which is concurrent work by
Deudon et al. (2018) (for details see Appendix A.2.4). Our model outperforms EAN,
even if EAN is improved with 2OPT local search. Appendix A.2.5 presents the
results visually, including generalization results for different n.

vehicle routing problem (vrp) In the capacitated VRP (CVRP) (Toth and
Vigo, 2014), each node has a demand and multiple routes should be constructed
(starting and ending at the depot), such that the total demand of the nodes in
each route does not exceed the vehicle capacity. We also consider the split deliv-
ery VRP (SDVRP), which allows to split customer demands over multiple routes.
We implement the datasets described by Nazari et al. (2018) and compare against
their reinforcement learning (RL) framework and the strongest baselines they report.
Comparing greedy decoding, we obtain significantly better results. We cannot di-
rectly compare our sampling (1280 samples) to their beam search with size 10 (they
do not report sampling or larger beam sizes), but note that our greedy method
also outperforms their beam search in most (larger) cases, getting (in <1 second/in-
stance) much closer to LKH3 (Helsgaun, 2017), a strong algorithm which has been
used to find best known solutions to CVRP benchmarks. See Appendix A.3.4 for
greedy example solution plots.

orienteering problem (op) The OP (Golden et al., 1987) is an important prob-
lem used to model many real world problems. Each node has an associated prize,
and the goal is to construct a single tour (starting and ending at the depot) that
maximizes the sum of prizes of nodes visited while being shorter than a maximum

4 https://github.com/MichelDeudon/encode-attend-navigate

https://github.com/MichelDeudon/encode-attend-navigate
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(given) length. We consider the prize distributions proposed in Fischetti et al. (1998):
constant, uniform (in Appendix A.4.4), and increasing with the distance to the depot,
which we report here as this is the hardest problem. As ‘best possible solution’ we
report Gurobi (intractable for n > 20) and Compass, the recent and strong genetic al-
gorithm (GA) by Kobeaga et al. (2018), which is only 2% better than sampling 1280

solutions with our method (objective is maximization). We outperform a Python
GA5 (which seems not to scale), as well as the construction phase of the heuristic by
Tsiligirides (1984) (comparing greedy or 1280 samples) which is structurally similar
to the one learned by our model. OR-Tools fails to find feasible solutions in a few
percent of the cases for n > 20.

prize collecting tsp (pctsp) In the PCTSP (Balas, 1989), each node has not
only an associated prize, but also an associated penalty. The goal is to collect at
least a minimum total prize, while minimizing the total tour length plus the sum of
penalties of unvisited nodes. This problem is difficult as an algorithm has to trade
off the penalty for not visiting a node with the marginal cost/tour length of visiting
(which depends on the other nodes visited), while also satisfying the minimum
total prize constraint. We compare against OR-Tools with 10 or 60 seconds of local
search, as well as open source C++6 and Python7 implementations of iterated local
search (ILS). Although the attention model does not find better solutions than OR-
Tools with 60s of local search, it finds almost equally good results in significantly
less time. The results are also within 2% of the C++ ILS algorithm (but obtained
much faster), which was the best open-source algorithm for PCTSP we could find.

stochastic pctsp (spctsp) The stochastic variant of the PCTSP (SPCTSP) we
consider shows how our model can deal with uncertainty naturally. In the SPCTSP,
the expected node prize is known upfront, but the real collected prize only becomes
known upon visitation. With penalties, this problem is a generalization of the
stochastic k-TSP (Ene et al., 2018). Since our model constructs a tour one node
at the time, we only need to use the real prizes to compute the remaining prize
constraint. By contrast, any algorithm that selects a fixed tour may fail to satisfy
the prize constraint so an algorithm must be adaptive. As a baseline, we implement
an algorithm that plans a tour, executes part of it and then re-optimizes using the
C++ ILS algorithm. We either execute all node visits (so planning additional nodes
if the result does not satisfy the prize constraint), half of the planned node visits
(for O(log n) replanning iterations) or only the first node visit, for maximum adap-
tivity. We observe that our model outperforms all baselines for n = 20. We think
that failure to account for uncertainty (by the baselines) in the prize might result in
the need to visit one or two additional nodes, which is relatively costly for small in-
stances but relatively cheap for larger n. Still, our method is beneficial as it provides
competitive solutions at a fraction of the computational cost, which is important in
online settings.

5 https://github.com/mc-ride/orienteering
6 https://github.com/jordanamecler/PCTSP
7 https://github.com/rafael2reis/salesman

https://github.com/mc-ride/orienteering
https://github.com/jordanamecler/PCTSP
https://github.com/rafael2reis/salesman
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Figure 7: Held-out validation set optimality gap as a function of the number of epochs for
the attention model (AM) and pointer network (PN) with different baselines (two
different seeds).

3.5.2 Attention model vs. pointer network and different baselines

Figure 7 compares the performance of the TSP20 attention model (AM) and our im-
plementation of the pointer network (PN) during training. We use a validation set
of size 10000 with greedy decoding, and compare to using an exponential (β = 0.8)
and a critic (see Appendix A.2.1) baseline. We used two random seeds and a de-
caying learning rate of η = 10−3 × 0.96epoch. This performs best for the PN, while
for the AM results are similar to using η = 10−4 (see Appendix A.2.5). This clearly
illustrates how the improvement we obtain is the result of both the AM and the
rollout baseline: the AM outperforms the PN using any baseline and the rollout
baseline improves the quality and convergence speed for both AM and PN. For the
PN with critic baseline, we are unable to reproduce the 1.5% reported by Bello et
al. (2016) (also when using an LSTM based critic), but our reproduction is closer
than others have reported (Dai et al., 2017; Nazari et al., 2018). In Table 1 we com-
pare against the original results. Compared to the rollout baseline, the exponential
baseline is around 20% faster per epoch, whereas the critic baseline is around 13%
slower (see Appendix A.2.5), so the picture does not change significantly if time is
used as x-axis.

3.6 discussion

In this chapter we have introduced a model and training method which both con-
tribute to significantly improved results on learned heuristics for TSP and addition-
ally learned strong (single construction) heuristics for multiple routing problems,
which are traditionally solved by problem-specific approaches. We believe that our
method is a powerful starting point for learning heuristics for other combinatorial
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optimization problems defined on graphs, if their solutions can be described as se-
quential decisions. In practice, operational constraints often lead to many variants
of problems for which no good (human-designed) heuristics are available such that
the ability to learn heuristics could be of great practical value.

Compared to previous works, by using attention instead of recurrence (LSTMs)
we introduce invariance to the input order of the nodes, increasing learning effi-
ciency. Also this enables parallelization, for increased computational efficiency. The
multi-head attention mechanism can be seen as a message passing algorithm that
allows nodes to communicate relevant information over different channels, such
that the node embeddings from the encoder can learn to include valuable informa-
tion about the node in the context of the graph. This information is important in our
setting where decisions relate directly to the nodes in a graph. Being a graph based
method, our model has increased scaling potential (compared to LSTMs) as it can
be applied on a sparse graph and operate locally.

Scaling to larger problem instances is an important direction for future research,
where we think we have made an important first step by using a graph based
method, which can be sparsified for improved computational efficiency. Another
challenge is that many problems of practical importance have feasibility constraints
that cannot be satisfied by a single forward construction with a simple masking
procedure. Therefore, in the next chapter, we investigate how we can combine a
learned policy with a form of search, to consider multiple solutions at the same
time.



4 D E E P P O L I C Y DY N A M I C
P R O G R A M M I N G

Routing problems are a class of combinatorial problems with many practical applications. Re-
cently, end-to-end deep learning methods have been proposed to learn approximate solution
heuristics for such problems. In contrast, classical dynamic programming (DP) algorithms
guarantee optimal solutions, but scale badly with the problem size. We propose deep policy
dynamic programming (DPDP), which aims to combine the strengths of learned neural
heuristics with those of DP algorithms. DPDP prioritizes and restricts the DP state space
using a policy derived from a deep neural network, which is trained to predict edges from
example solutions. We evaluate our framework on the travelling salesman problem (TSP),
the vehicle routing problem (VRP) and TSP with time windows (TSPTW) and show that
the neural policy improves the performance of (restricted) DP algorithms, making them com-
petitive to strong alternatives such as LKH, while also outperforming most other ‘neural
approaches’ for solving TSPs, VRPs and TSPTWs with 100 nodes.

4.1 introduction

Dynamic programming (DP) (Bertsekas, 2017) is a powerful framework for solving
optimization problems by solving smaller subproblems through the principle of op-
timality (Bellman, 1952). Famous examples are Dijkstra’s algorithm (Dijkstra, 1959)
for the shortest route between two locations, and the classic Held-Karp algorithm
for the travelling salesman problem (TSP) (Held and Karp, 1962; Bellman, 1962).
Despite their long history, dynamic programming algorithms for vehicle routing
problems (VRPs) have seen limited use in practice, primarily due to their bad scal-
ing performance. More recently, a line of research has attempted the use of machine
learning (especially deep learning) to automatically learn heuristics for solving rout-
ing problems (Vinyals et al., 2015a; Bello et al., 2016; Nazari et al., 2018; Kool et al.,
2019a; Chen and Tian, 2019). While the results are promising (see also Chapter 3),
most learned heuristics are not (yet) competitive to ‘traditional’ algorithms such as
LKH (Helsgaun, 2017) and lack (asymptotic) guarantees on their performance.

In this chapter, we propose deep policy dynamic programming (DPDP) as a frame-
work for solving vehicle routing problems. The key of DPDP is to combine the
strengths of deep learning and DP, by restricting the DP state space (the search
space) using a policy derived from a neural network. In Figure 8 it can be seen
how the neural network indicates promising parts of the search space as a heatmap
over the edges of the graph. This heatmap used by the DP algorithm to find a
good solution. DPDP is more powerful than some related ideas (Yang et al., 2018;
Heeswijk and La Poutré, 2019; Xu et al., 2020; Cappart et al., 2021; Li et al., 2018) as
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Figure 8: Heatmap predictions (red) and solutions (colored) by DPDP (VRP depot edges
omitted for clarity). The heatmap indicates only a small fraction of all edges as
promising, while including (almost) all edges from the solution.

it combines supervised training of a large neural network with just a single model
evaluation at test time, to enable running a large scale guided search using DP. The
DP framework is flexible as it can model a variety of realistic routing problems
with difficult practical constraints (Gromicho et al., 2012a). We illustrate this by test-
ing DPDP on the TSP, the capacitated VRP and the TSP with (hard) time window
constraints (TSPTW).

In more detail, the starting point of our proposed approach is a restricted dynamic
programming algorithm (Malandraki and Dial, 1996; Gromicho et al., 2012a), which
heuristically reduces the search space by retaining at most B solutions per iteration.
The selection process is important as it defines the part of the DP state space con-
sidered and, thus, the quality of the solution found (see Fig. 9). DPDP defines the
selection using a (sparse) heatmap of promising route segments, obtained by pre-
processing the problem instance using a (deep) graph neural network (GNN) (Joshi
et al., 2019a). This brings the power of neural networks to DP, inspired by the
success of neural networks that improved tree search (Silver et al., 2018) or branch-
and-bound algorithms (Gasse et al., 2019; Nair et al., 2020).

In this work, we thus aim for a ‘neural boost’ of DP algorithms, by using a GNN
for scoring partial solutions. Prior work on ‘neural’ vehicle routing has focused on
auto-regressive models (Vinyals et al., 2015a; Bello et al., 2016; Deudon et al., 2018;
Kool et al., 2019a), but they have high computational cost when combined with
(any form of) search, as the model needs to be evaluated for each partial solution
considered. Instead, we use a model to predict a heatmap indicating promising
edges (Joshi et al., 2019a), and define the score of a partial solution as the ‘heat’ of
the edges it contains (plus an estimate of the ‘heat-to-go’ or potential of the solu-
tion). As the neural network only needs to be evaluated once for each instance, this
enables a much larger search (defined by B), making a good trade-off between quality
and computational cost. Additionally, we can apply a threshold to the heatmap to
define a sparse graph on which to run the DP algorithm, reducing the runtime by
eliminating many solutions.

Figure 9 illustrates DPDP. In Section 4.4, we show that DPDP significantly im-
proves over ‘classic’ restricted DP algorithms. Additionally, we show that DPDP
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Figure 9: DPDP for the TSP. A GNN creates a (sparse) heatmap indicating promising edges,
after which a tour is constructed using forward dynamic programming. In each
step, at most B solutions are expanded according to the heatmap policy, restricting
the size of the search space. Partial solutions are dominated by shorter (lower
cost) solutions with the same DP state: the same nodes visited (marked grey) and
current node (indicated by dashed rectangles).

outperformes most other ‘neural’ approaches for TSP, VRP and TSPTW and is com-
petitive with the highly-optimized LKH solver (Helsgaun, 2017) for VRP, while
achieving similar results much faster for TSP and TSPTW. For TSPTW, DPDP also
outperforms the best open-source solver we could find (Da Silva and Urrutia, 2010),
illustrating the power of DPDP to handle difficult hard constraints (time windows).

4.2 related work

DP (Bertsekas, 2017) has a long history as an exact solution method for routing
problems (Laporte, 1992; Toth and Vigo, 2014), e.g. the TSP with time windows
(Dumas et al., 1995) and precedence constraints (Mingozzi et al., 1997), but is limited
to small problems due to the curse of dimensionality. Restricted DP has been used
to address, e.g., the time dependent TSP (Malandraki and Dial, 1996), and has been
generalized into a flexible framework for VRPs with different types of practical
constraints (Gromicho et al., 2012a). DP approaches have also been shown to be
useful in settings with difficult practical issues such as time-dependent travel times
and driving regulations (Kok et al., 2010) or stochastic demands (Novoa and Storer,
2009). For more examples of DP for routing (and scheduling), see Hoorn (2016). For
sparse graphs, alternative formulations can be used (Cook and Seymour, 2003).

Despite the flexibility, DP methods have not gained much popularity compared
to heuristic approaches such as R&R (Schrimpf et al., 2000), ALNS (Ropke and
Pisinger, 2006), LKH (Helsgaun, 2017), HGS (Vidal et al., 2012; Vidal, 2022) or FILO
(Accorsi and Vigo, 2021), which, while effective, have limited flexibility as special op-
erators are needed for different types of problems. While restricted DP was shown
to have superior performance on realistic VRPs with many constraints (Gromicho
et al., 2012a), the performance gap of around 10% for standard (benchmark) VRPs
(with time windows) is too large to popularize this approach. We argue that the
missing ingredient is a strong but computationally cheap policy for selecting which
solutions to consider, which is the motivation behind DPDP.
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In the machine learning community, deep neural networks (DNNs) have recently
boosted performance on various tasks (LeCun et al., 2015). After the first DNN
model was trained (using example solutions) to construct TSP tours (Vinyals et al.,
2015a), many improvements have been proposed, e.g. different training strategies
such as reinforcement learning (RL) (Bello et al., 2016; Joshi et al., 2019b; Delarue
et al., 2020; Kwon et al., 2020) and model architectures, which enabled the same
idea to be used for other routing problems (Nazari et al., 2018; Kool et al., 2019a;
Deudon et al., 2018; Peng et al., 2019; Falkner and Schmidt-Thieme, 2020; Xin et
al., 2020; Ma et al., 2021) (see also Chapter 3). Most constructive neural methods
are auto-regressive, evaluating the model many times to predict one node at the
time, but other works have considered predicting a heatmap of promising edges
at once (Nowak et al., 2017; Joshi et al., 2019a; Fu et al., 2021), which allows a
tour to be constructed (using sampling or beam search) without further evaluating
the model. An alternative to constructive methods is ‘learning to search’, where a
neural network is used to guide a search procedure such as local search (Chen and
Tian, 2019; Lu et al., 2020; Gao et al., 2020; Wu et al., 2021; Hottung and Tierney,
2020; Kim et al., 2021; Li et al., 2021; Xin et al., 2021; Hottung et al., 2021). Scaling
to instances beyond 100 nodes remains challenging (Ma et al., 2020; Fu et al., 2021).

The combination of machine learning with DP has been proposed in limited set-
tings (Yang et al., 2018; Heeswijk and La Poutré, 2019; Xu et al., 2020). Most related
to our approach, a DP algorithm for TSPTW, guided by an RL agent, was imple-
mented using an existing solver (Cappart et al., 2021), which is less efficient than
DPDP (see Section 4.4.3). Also similar to our approach, a neural network predicting
edges has been combined with tree search and local search for maximum inde-
pendent set (MIS) (Li et al., 2018). Whereas DPDP directly builds on the idea of
predicting promising edges (Li et al., 2018; Joshi et al., 2019a), it uses these more
efficiently through a policy with potential function (see Section 4.3.2), and by using
DP rather than tree search or beam search, we exploit known problem structure
in a principled and general manner. As such, DPDP obtains strong performance
without using extra heuristics such as local search. For a wider view on machine
learning for routing problems and combinatorial optimization, see Mazyavkina et
al. (2020), Vesselinova et al. (2020), and Bai et al. (2021).

4.3 deep policy dynamic programming

DPDP uses an existing graph neural network (Joshi et al., 2019a), suitably adapted
for VRP and TSPTW, to predict a heatmap of promising edges. This heatmap is used
in the DP algorithm in two ways: 1) to exclude edges with a value below the heatmap
threshold of 10−5 from the graph and 2) to define a scoring policy to select candidate
solutions in each iteration. In more detail, as illustrated in Fig. 9, the DP algorithm
starts with a beam of a single initial (empty) solution, and proceeds by iterating the
following steps: (1) all solutions on the beam are expanded, (2) dominated solutions
are removed for each DP state, (3) the B best solutions according to the scoring policy
define the beam for the next iteration. The objective function is used to select the
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best solution from the final beam. The resulting algorithm is a beam search over the
DP state space, with beam size B. This is different from a ‘standard’ beam search,
which considers the solution space by not removing dominated solutions. DPDP
is asymptotically optimal as using B = n · 2n for a TSP with n nodes guarantees
optimal results, but by choosing a smaller B, DPDP can trade off performance for
computational cost.

DPDP is a generic framework that can be applied to different problems, by defin-
ing the following ingredients: (1) the variables to track while constructing solutions,
(2) the initial solution, (3) feasible actions to expand solutions, (4) rules to define
dominated solutions and (5) the scoring policy, based on the neural network, for
selecting the B solutions to keep. A solution is always defined by a sequence of
actions, which allows the DP algorithm to construct the final solution by backtrack-
ing. In the next sections, we describe the neural network and define the DPDP
ingredients for the TSP, VRP and TSPTW.

4.3.1 The graph neural network

We use the original (pre-trained) model from Joshi et al. (2019a) (which we describe
in detail in Appendix B.1 for self-containment) for the TSP, but we modify the neural
network architecture and train new models to support the VRP and TSPTW, as we
describe in Sections 4.3.3 and 4.3.4. In general, the resulting model uses problem-
specific node input features and edge input features, which get transformed into
initial representations of the nodes and edges. These representations then get up-
dated sequentially using a number of graph convolutional layers, which exchange
information between the nodes and edges. The final edge representation is used
to make the prediction whether the edge is promising, i.e. whether it has a high
probability of being part of the optimal solution.

The model is trained using a large training dataset of problem instances with
optimal (or high-quality) solutions, obtained using an existing solver. While it takes
a significant amount of resources to create this dataset and train the model (each of
which can take up to a number of days on a single machine), training of the model
is, in principle, only required once given a specific distribution of problem instances.
We consider only instances with n = 100 nodes, but the model can handle instances
of different graph sizes, although good generalization may be limited to graphs
with sizes close to the size trained for (Kool et al., 2019a; Joshi et al., 2019b).

4.3.2 Travelling salesman problem

We implement DPDP for Euclidean TSPs with n nodes on a (sparse) graph, where
the cost for edge (i, j) is given by cij, the Euclidean distance between the nodes i
and j. The objective is to construct a tour that visits all nodes (and returns to the
start node) and minimizes the total cost of its edges.
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For each partial solution, defined by a sequence of actions a, the variables
we track are cost(a), the total cost (distance), current(a), the current node, and
visited(a), the set of visited nodes (including the start node). Without loss of gen-
erality, we let 0 be the start node, so we initialize the beam at step t = 0 with the
empty initial solution with cost(a) = 0, current(a) = 0 and visited(a) = {0}. At
step t, the action at ∈ {0, ..., n− 1} indicates the next node to visit, and is a feasible
action for a partial solution a = (a0, ..., at−1) if (at−1, at) is an edge in the graph
and at 6∈ visited(a), or, when all nodes are visited, if at = 0 to return to the start
node. When expanding the solution to a′ = (a0, ..., at), we can compute the tracked
variables incrementally as:

cost(a′) = cost(a) + ccurrent(a),at
, (20)

current(a′) = at, (21)

visited(a′) = visited(a) ∪ {at}. (22)

A (partial) solution a is a dominated solution if there exists a (dominating) solution
a∗ such that visited(a∗) = visited(a), current(a∗) = current(a) and cost(a∗) <

cost(a). We refer to the tuple (visited(a), current(a)) as the DP state, so removing
all dominated partial solutions, we keep exactly one minimum-cost solution for
each unique DP state1. A solution can only dominate other solutions with the same
set of visited nodes, so we only need to remove dominated solutions from sets
of solutions with the same number of actions. This is why the DP algorithm can
be executed in iterations (as explained): at step t all solutions in the beam have t
actions and t + 1 visited nodes (including the start node). The resulting memory
need is thus limited to O(B) states, with B the beam size.

We define the scoring policy using the pretrained model from Joshi et al. (2019a),
which takes as input node coordinates and edge distances to predict a raw heatmap
value ĥij ∈ (0, 1) for each edge (i, j). The model was trained to predict optimal
solutions, so ĥij can be seen as the probability that edge (i, j) is in the optimal
tour. We force the heatmap to be symmetric thus we define hij = max{ĥij, ĥji}.
The policy is defined using the heatmap values, in such a way to select the
(partial) solutions with the largest total heat, while also taking into account the
(heat) potential for the unvisited nodes. The policy thus selects the B solutions
which have the highest score, defined as score(a) = heat(a) + potential(a), with
heat(a) = ∑t−1

i=1 hai−1 ,ai , i.e. the sum of the heat of the edges, which can be
computed incrementally when expanding a solution. The potential is added as
an estimate of the ‘heat-to-go’ (similar to the heuristic in A∗ search) for the re-
maining nodes, and avoids the ‘greedy pitfall’ of selecting the best edges while
skipping over nearby nodes, which would prevent good edges from being used
later. It is defined as potential(a) = potential0(a) + ∑i 6∈visited(a) potentiali(a) with

potentiali(a) = wi ∑j 6∈visited(a)
hji

∑n−1
k=0 hki

, where wi is the node potential weight given

by wi = (maxj hji) · (1− 0.1( ci0
maxj cj0

− 0.5)). By normalizing the heatmap values for
incoming edges, the (remaining) potential for node i is initially equal to wi but de-
creases as good edges become infeasible due to neighbors being visited. The node

1 If we have multiple partial solutions with the same state and cost, we can arbitrarily choose one to
dominate the other(s), for example the one with the lowest index of the current node.



4.3 deep policy dynamic programming 39

potential weight wi is equal to the maximum incoming edge heatmap value (an up-
per bound to the heat contributed by node i), which gets multiplied by a factor 0.95

to 1.05 to give a higher weight to nodes closer to the start node, which we found
helps to encourage the algorithm to keep edges that enable to return to the start
node. The overall heat + potential function identifies promising partial solutions
and is computationally cheap. It is a heuristic estimate of the total heat of the com-
plete solution, but it is not an estimate of the cost objective (which has a different
unit), neither it is a bound on the total heat or cost objective.

4.3.3 Vehicle routing problem

For the VRP, we add a special depot node dep to the graph. Node i has a demand
di, and the goal is to minimize the cost for a set of routes that visit all nodes. Each
route must start and end at the depot, and the total demand of its nodes cannot
exceed the vehicle capacity denoted by capacity.

Additionally to the TSP variables cost(a), current(a) and visited(a), we keep
track of capacity(a), which is the remaining capacity in the current route/vehicle.
A solution starts at the depot, so we initialize the beam at step t = 0 with the
empty initial solution with cost(a) = 0, current(a) = dep, visited(a) = ∅ and
capacity(a) = capacity. For the VRP, we do not consider visiting the depot as
a separate action. Instead, we define 2n actions, where at ∈ {0, ..., 2n − 1}. The
actions 0, ..., n− 1 indicate a direct move from the current node to node at, whereas
the actions n, ..., 2n − 1 indicate a move to node at − n via the depot. Feasible ac-
tions are those that move to unvisited nodes via edges in the graph and obey the
following constraints. For the first action a0 there is no choice and we constrain
(for convenience of implementation) a0 ∈ {n, ..., 2n− 1}. A direct move (at < n) is
only feasible if dat ≤ capacity(a) and updates the state similar to TSP but reduces
remaining capacity by dat . A move via the depot is always feasible (respecting the
graph edges and assuming di ≤ capacity ∀i) as it resets the vehicle capacity before
subtracting demand, but incurs the ‘via-depot cost’ cdep

ij = ci,dep
+ c

dep,j. When all
nodes are visited, we allow a special action to return to the depot. This somewhat
unusual way of representing a VRP solution has desirable properties similar to the
TSP formulation: at step t we have exactly t nodes visited, and we can run the DP
in iterations, removing dominated solutions at each step t.

For VRP, a partial solution a is a dominated solution dominated by a∗ if
visited(a∗) = visited(a) and current(a∗) = current(a) (i.e. a∗ corresponds to the
same DP state) and cost(a∗) ≤ cost(a) and capacity(a∗) ≥ capacity(a), with at
least one of the two inequalities being strict. This means that for each DP state, given
by the set of visited nodes and the current node, we do not only keep the (single)
solution with lowest cost (as in the TSP algorithm), but keep the complete set of
pareto-efficient solutions in terms of cost and remaining vehicle capacity. This is be-
cause a higher cost partial solution may still be preferred if it has more remaining
vehicle capacity, and vice versa.
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For the VRP scoring policy, we modify the model (Joshi et al., 2019a) (described
in Appendix B.1) to include the depot node and demands. We mark the depot as
a special node type, which affects the initial node representation similarly to edge
types, and we add additional edge types for connections to the depot. Additionally,
each node gets an extra input (next to its coordinates) corresponding to di/capacity

(where we set ddep = 0). The model is trained on example solutions from LKH
(Helsgaun, 2017) (see Section 4.4.2), which are not optimal, but still provide a useful
training signal. Compared to TSP, the definition of the heat is slightly changed to
accommodate for the ‘via-depot actions’ and is best defined incrementally using the
‘via-depot heat’ hdep

ij = hi,dep
· h

dep,j · 0.1, where multiplication is used to keep heat
values interpretable as probabilities and in the range (0, 1). The additional penalty
factor of 0.1 for visiting the depot encourages the algorithm to minimize the number
of vehicles/routes. The heat of the initial state is 0 and when expanding a solution
a to a′ using action at, the heat is incremented with either hcurrent(a),at

(if at < n)
or hdep

current(a),at−n (if at ≥ n). The potential is defined similarly to TSP, replacing the
start node 0 by dep.

4.3.4 Travelling salesman problem with time windows

For the TSPTW, we also have a special depot/start node 0. The goal is to create a
single tour that visits each node i in a time window defined by (li , ui), where the
travel time from i to j is equal to the cost/distance cij, i.e. we assume a speed of 1
(w.l.o.g. as we can rescale time). It is allowed to wait if arrival at node i is before
li, but arrival cannot be after ui. We minimize the total cost (excluding waiting
time), but to minimize makespan (including waiting time), we only need to train
on different example solutions. Due to the hard constraints, TSPTW is typically
considered more challenging than plain TSP, for which every solution is feasible.

The variables we track and initial solution are equal to TSP except that we add
time(a) which is initially 0 (= l0). Feasible actions at ∈ {0, ..., n − 1} are those
that move to unvisited nodes via edges in the graph such that the arrival time is
no later than uat and do not directly eliminate the possibility to visit other nodes in
time2. Expanding a solution a to a′ using action at updates the time as time(a′) =

max{time(a) + ccurrent(a),at
, lat}.

For each DP state, we keep all efficient solutions in terms of cost and time, so a
partial solution a is a dominated solution dominated by a∗ if a∗ has the same DP
state (visited(a∗) = visited(a) and current(a∗) = current(a)) and is strictly better
in terms of cost and time, i.e. cost(a∗) ≤ cost(a) and time(a∗) ≤ time(a), with at
least one of the two inequalities being strict.

The model (Joshi et al., 2019a) for the scoring policy is adapted to include the
time windows (li , ui) as node features (scaled to correspond to a speed of 1 for
the input distances and coordinates, which are scaled to the range [0, 1]), and we
use a special embedding for the depot similar to VRP. Due to the time dimension,

2 E.g., arriving at node i at t = 10 is not feasible if node j has uj = 12 and cij = 3.
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a TSPTW solution is directed, and edge (i, j) may be good whereas (j, i) may be
not, so we adapt the model to enable predictions hij 6= hji (see Appendix B.1). We
generated example training solutions using (heuristic) DP with a large beam size,
which was faster than LKH. Given the heat predictions, the score (heat + potential)
is exactly as for TSP.

4.4 experiments

We implement DPDP using PyTorch (Paszke et al., 2019) to leverage GPU compu-
tation. For details, see Appendix B.2. Our code is publicly available.3 DPDP has
very few hyperparameters, but the heatmap threshold of 10−5 and details like the
functional form of e.g. the scoring policy are ‘educated guesses’ or manually tuned
on a few validation instances and can likely be improved. The runtime is influenced
by implementation choices which were tuned on a few validation instances.

4.4.1 Travelling salesman problem

In Table 2 we report our main results for DPDP with beam sizes of 10K (10 thou-
sand) and 100K, for the TSP with 100 nodes on a commonly used test set of 10000

instances (Kool et al., 2019a). We report cost and gap to the optimal solution found
using Concorde (Applegate et al., 2006) (following (Kool et al., 2019a)) and com-
pare against LKH (Helsgaun, 2017) and Gurobi (Gurobi Optimization, LLC, 2022),
as well as recent results of the strongest methods using neural networks (‘neural ap-
proaches’) from literature. Running times for solving 10000 instances after training
should be taken as rough indications as some are on different machines, typically
with 1 GPU or a many-core CPU (8 - 32). The costs indicated with * are not directly
comparable due to slight dataset differences (Fu et al., 2021). Times for generating
heatmaps (if applicable) is reported separately (as the first term) from the running
time for MCTS (Fu et al., 2021) or DP. DPDP achieves close to optimal results, strictly
outperforming the neural baselines achieving better results in less time (except the
attention model trained with POMO (Kwon et al., 2020), see Section 4.4.2).

4.4.2 Vehicle routing problem

For the VRP, we train the model using 1 million instances of 100 nodes, generated
according to the distribution described by Nazari et al. (2018) and solved using one
run of LKH (Helsgaun, 2017). We train using a batch size of 48 and a learning rate
of 10−3 (selected as the result of manual trials to best use our GPUs), for (at most)
1500 epochs of 500 training steps (following Joshi et al. (2019a)) from which we

3 https://github.com/wouterkool/dpdp

https://github.com/wouterkool/dpdp
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Table 2: Mean cost, gap and total time to solve 10000 TSP/VRP test instances.

Problem TSP100 VRP100

Method Cost Gap Time Cost Gap Time

Concorde (Applegate et al., 2006) 7.765 0.000 % 6m -
HGS (Vidal et al., 2012; Vidal, 2022) - 15.563 0.000 % 6h11m

Gurobi (Gurobi Optimization, LLC, 2022) 7.776 0.151 % 31m -
LKH (Helsgaun, 2017) 7.765 0.000 % 42m 15.647 0.536 % 12h57m

GNN heatmap + beam search (Joshi et al., 2019a) 7.87 1.39 % 40m -
Learning 2-opt heuristics (Costa et al., 2020) 7.83 0.87 % 41m -
Merged GNN heatmap + MCTS (Fu et al., 2021) 7.764* 0.04 % 4m + 11m -
Attention model + sampling (Kool et al., 2019a) 7.94 2.26 % 1h 16.23 4.28 % 2h

Step-wise attention model (Xin et al., 2020) 8.01 3.20 % 29s 16.49 5.96 % 39s

Attn. model + coll. policies (Kim et al., 2021) 7.81 0.54 % 12h 15.98 2.68 % 5h

Learning improv. heuristics (Wu et al., 2021) 7.87 1.42 % 2h 16.03 3.00 % 5h

Dual-aspect coll. Transformer (Ma et al., 2021) 7.77 0.09 % 5h 15.71 0.94 % 9h

Attention model + POMO (Kwon et al., 2020) 7.77 0.14 % 1m 15.76 1.26 % 2m

NeuRewriter (Chen and Tian, 2019) - 16.10 3.45 % 1h

Dynamic attn. model + 2-opt (Peng et al., 2019) - 16.27 4.54 % 6h

Neural LNS (Hottung and Tierney, 2020) - 15.99 2.74 % 1h

Learn to improve (Lu et al., 2020) - 15.57* - 4000h

DPDP 10K 7.765 0.009 % 10m + 16m 15.830 1.713 % 10m + 50m

DPDP 100K 7.765 0.004 % 10m + 2h35m 15.694 0.843 % 10m + 5h48m

DPDP 1M 15.627 0.409 % 10m + 48h27m

select the saved checkpoint with the lowest validation loss. We use the validation
and test sets by Kool et al. (2019a).

Table 2 shows the results, where the gap is relative to Hybrid Genetic Search
(HGS)4, a SOTA heuristic VRP solver (Vidal et al., 2012; Vidal, 2022). HGS is faster
and improves around 0.5% over LKH (Helsgaun, 2017), which is typically consid-
ered the baseline in related work. We present the results for LKH, as well as the
strongest neural approaches and DPDP with beam sizes up to 1 million. Some
results used 2000 (different) instances (Lu et al., 2020) and cannot be directly com-
pared5. DPDP outperforms all other neural baselines, except the attention model
trained with POMO (Kwon et al., 2020), which delivers good results very quickly
by exploiting symmetries in the problem. However, as it cannot (easily) improve
further with additional runtime, we consider this contribution orthogonal to DPDP.
DPDP is competitive to LKH (see also Section 4.4.4).

more realistic instances We also train the model and run experiments with
instances with 100 nodes from a more realistic and challenging data distribution
(Uchoa et al., 2017). This distribution, commonly used in the routing community,
has greater variability, in terms of node clustering and demand distributions. LKH
failed to solve two of the test instances, which is because LKH by default uses a

fixed number of routes equal to a lower bound, given by
⌈

∑n−1
i=0 di

capacity

⌉
, which may be

infeasible6. Therefore we solve these instances by rerunning LKH with an unlimited
number of allowed routes (which gives worse results, see Section 4.4.4).

DPDP was run on a machine with 4 GPUs, but we also report (estimated) run-
times for 1 GPU (1080Ti), and we compare against 16 or 32 CPUs for HGS and LKH.
In Table 3 it can be seen that the difference with LKH is, as expected, slightly larger

4 https://github.com/vidalt/HGS-CVRP
5 The running time of 4000 hours (167 days) is estimated from 24min/instance (Lu et al., 2020).
6 For example, three nodes with a demand of two cannot be assigned to two routes with a capacity of

three.

https://github.com/vidalt/HGS-CVRP
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Table 3: Mean cost, gap and total time to solve 10000 realistic VRP100 instances.

Method Cost Gap Time (1 GPU or 16 CPUs) Time (4 GPUs or 32 CPUs)

HGS (Vidal et al., 2012; Vidal, 2022) 18050 0.000 % 7h53m 3h56m

LKH (Helsgaun, 2017) 18133 0.507 % 25h32m 12h46m

DPDP 10K 18414 2.018 % 10m + 50m 2m + 13m

DPDP 100K 18253 1.127 % 10m + 5h48m 2m + 1h27m

DPDP 1M 18168 0.659 % 10m + 48h27m 2m + 12h7m

than for the simpler dataset, but still below 1% for beam sizes of 100K-1M. We also
observed a higher validation loss, so it may be possible to improve results using
more training data. Nevertheless, finding solutions within 1% of the specialized
SOTA HGS algorithm, and even closer to LKH, is impressive for these challeng-
ing instances, and we consider the runtime (for solving 10K instances) acceptable,
especially when using multiple GPUs.

4.4.3 TSP with time windows

For the TSP with hard time window constraints, we use the data distribution by
Cappart et al. (2021) and use their set of 100 test instances with 100 nodes. These
were generated with small time windows, resulting in a small feasible search space,
such that even with very small beam sizes, our DP implementation solves these
instances optimally, eliminating the need for a policy. Therefore, we also consider a
more difficult distribution similar to Da Silva and Urrutia (2010), which has larger
time windows which are more difficult as the feasible search space is larger7 (Du-
mas et al., 1995). For details, see Appendix B.1. For both distributions, we generate
training data and train the model exactly as we did for the VRP.

Table 4 shows the results for both data distributions, which are reported in terms
of the difference to General Variable Neighborhood Search (GVNS) (Da Silva and
Urrutia, 2010), the best open-source solver for TSPTW we could find8, using 30 runs.
For the small time window setting, both GVNS and DPDP find optimal solutions for
all 100 instances in just 7 seconds (in total, either on 16 CPUs or a single GPU). LKH
fails to solve one instance, but finds close to optimal solutions, but around 50 times
slower. BaB-DQN* and ILDS-DQN* (Cappart et al., 2021), methods combining an
existing solver with an RL trained neural policy, take around 15 minutes per instance
(orders of magnitudes slower) to solve most instances to optimality. Due to complex
set-up, we were unable to run BaB-DQN* and ILDS-DQN* ourselves for the setting
with larger time windows. In this setting, we find DPDP outperforms both LKH
(where DPDP is orders of magnitude faster) and GVNS, in both speed and solution
quality. This illustrates that DPDP, due to its nature, is especially well suited to
handle constrained problems.

7 Up to a limit, as making the time windows infinite size reduces the problem to plain TSP.
8 https://github.com/sashakh/TSPTW

https://github.com/sashakh/TSPTW
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Table 4: Mean cost, gap and total time to solve TSPTW100 instances.

Problem
Small time windows (100 inst.) Large time windows (10K inst.)

(Cappart et al., 2021) (Da Silva and Urrutia, 2010)
Method Cost Gap Fail Time Cost Gap Time

GVNS 30x (Da Silva and Urrutia, 2010) 5129.58 0.000 % 7s 2432.112 0.000 % 37m15s

GVNS 1x (Da Silva and Urrutia, 2010) 5129.58 0.000 % <1s 2457.974 1.063 % 1m4s

LKH 1x (Helsgaun, 2017) 5130.32 0.014 % 1.00 % 5m48s 2431.404 -0.029 % 34h58m

BaB-DQN* (Cappart et al., 2021) 5130.51 0.018 % 25h -
ILDS-DQN* (Cappart et al., 2021) 5130.45 0.017 % 25h -

DPDP 10K 5129.58 0.000 % 6s + 1s 2431.143 -0.040 % 10m + 8m7s

DPDP 100K 5129.58 0.000 % 6s + 1s 2430.880 - 0.051 % 10m + 1h16m

4.4.4 Ablations

scoring policy To evaluate the value of different components of DPDP’s GNN
Heat + Potential scoring policy, we compare against other variants. GNN Heat is
the version without the potential, whereas Cost Heat + Potential and Cost Heat are
variants that use a ‘heuristic’ ĥij =

cij
maxk cik

instead of the GNN. Cost directly uses
the current cost of the solution, and can be seen as ‘classic’ restricted DP. Finally,
BS GNN Heat + Potential uses beam search without dynamic programming, i.e.
without removing dominated solutions. To evaluate only the scoring policy, each
variant uses the fully connected graph (no heatmap threshold). Figure 10a shows
the value of DPDP’s potential function, although even without it results are still sig-
nificantly better than ‘classic’ heuristic DP variants using cost-based scoring policies.
Also, it is clear that using DP significantly improves over a standard beam search
(by removing dominated solutions). Lastly, the figure illustrates how the time for
generating the heatmap using the neural network, despite its significant value, only
makes up a small portion of the total runtime.

beam size With DPDP, we can trade off the performance vs. the runtime using
the beam size B (and the graph sparsity, see below). Figure 10b illustrates this trade-
off, where we evaluate DPDP on 100 validation instances for VRP, with different
beam sizes from 10K to 2.5M. We also report the trade-off curve for LKH(U), which
is the strongest baseline that can also solve different problems. We vary the runtime
using 1, 2, 5 and 10 runs (returning the best solution). LKHU(nlimited) is the
version which allows an unlimited number of routes (see Section 4.4.2). It is hard to
compare GPU vs CPU, so we report (estimated) runtimes for different hardware, i.e.
1 or 4 GPUs (with 3 CPUs per GPU) and 16 or 32 CPUs. We report the difference (i.e.
the gap) with HGS, analogous to how results are reported in Table 2. We emphasize
that in most related work (e.g. Kool et al. (2019a)), the strongest baseline considered
is one run of LKH, so we compare against a much stronger baseline. Also, our
goal is not to outperform HGS (which is SOTA and specific to VRP) or LKH, but
to show DPDP has reasonable performance, while being a flexible framework for
other (routing) problems.
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Figure 10: DPDP ablations on 100 validation instances of VRP with 100 nodes.

graph sparsity Using the heatmap threshold, the DP algorithm uses a sparse
graph to define feasible expansions, which reduces the runtime but may also sac-
rifice solution quality. For most edges, the model confidently predicts close to 0,
such that they are ruled out, even using the default (low) heatmap threshold of
10−5. We may rule out even more edges by increasing the threshold, which can
be seen as a secondary way (besides varying the beam size) to trade off the perfor-
mance and computational cost of DPDP. While this can be seen as a form of learned
problem reduction (Sun et al., 2020), we also consider a heuristic alternative of using
the K-nearest neighbor (knn) graph.9 In Figure 10c, we experiment with different
heatmap thresholds from 10−5 to 0.9 and different values for knn from 5 to 99 (fully
connected). The heatmap threshold strategy clearly outperforms the knn strategy
as it yields the same results using sparser graphs (and lower runtimes). This illus-
trates that the heatmap threshold strategy is more informed than the knn strategy,
confirming the value of the neural network predictions.

4.5 discussion

In this chapter we introduced deep policy dynamic programming, which combines ma-
chine learning and dynamic programming for solving vehicle routing problems.
The method yields close to optimal results for TSPs with 100 nodes and is com-
petitive to the highly optimized LKH (Helsgaun, 2017) solver for VRPs with 100

nodes. On the TSPTW, DPDP also outperforms LKH, being significantly faster, as
well as GVNS (Da Silva and Urrutia, 2010), the best open source solver we could
find. Given that DPDP was not specifically designed for TSPTW, and thus can likely
be improved, we consider this an impressive and promising achievement.

The constructive nature of DPDP (combined with search) naturally supports hard
constraints such as time windows, which are typically considered challenging in
neural combinatorial optimization (Bello et al., 2016; Kool et al., 2019a) and are also
difficult for local search heuristics (as they need to maintain feasibility while adapt-
ing a solution). Given our results on TSP, VRP and TSPTW, and the flexibility of

9 For the symmetric TSP and VRP, we add knn edges in both directions. For the VRP, we also connect
each node to the depot (and vice versa) to ensure feasibility.
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DP as a framework, we think DPDP has great potential for solving many more vari-
ants of routing problems, and possibly even other problems that can be formulated
using DP (e.g. job shop scheduling (Gromicho et al., 2012b)). We hope that our
work brings machine learning research for combinatorial optimization closer to the
operations research (especially vehicle routing) community, by combining machine
learning with DP and evaluating the resulting new framework on different data
distributions used by different communities (Nazari et al., 2018; Uchoa et al., 2017;
Cappart et al., 2021; Da Silva and Urrutia, 2010).

scope, limitations & future work Deep learning for combinatorial opti-
mization is a recent research direction, which could significantly impact the way
practical optimization problems get solved in the future. Currently, however, it
is still hard to beat most SOTA problem specific solvers from the OR community.
Despite our success for TSPTW, DPDP is not yet a practical alternative in general,
but we do consider our results as highly encouraging for further research. We be-
lieve such research could yield significant further improvement by addressing key
current limitations: (1) the scalability to larger instances, (2) the dependency on ex-
ample solutions and (3) the heuristic nature of the scoring function. First, while 100

nodes is not far from the size of common benchmarks (100 - 1000 for VRP (Uchoa
et al., 2017) and 20 - 200 for TSPTW (Da Silva and Urrutia, 2010)), scaling is a chal-
lenge, mainly due to the ‘fully-connected’ O(n2) graph neural network. Future work
could reduce this complexity following e.g. Lee et al. (2019). The dependency on
example solutions from an existing solver also becomes more prominent for larger
instances, but could potentially be removed by ‘bootstrapping’ using DP itself as
we, in some sense, have done for TSPTW (see Section 4.3.4). Future work could iter-
ate this process to train the model ‘tabula rasa’ (without example solutions), where
DP could be seen analogous to MCTS in AlphaZero (Silver et al., 2018). Lastly, the
heat + potential score function is a well-motivated but heuristic function that was
manually designed as a function of the predicted heatmap. While it worked well
for the three problems we considered, it may need suitable adaption for other prob-
lems. Training this function end-to-end (Daumé III and Marcu, 2005; Wiseman and
Rush, 2016), while keeping a low computational footprint, would be an interesting
topic for future work.
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S A M P L I N G A N D S TAT I S T I C A L E S T I M AT I O N
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summary of part ii

In Part i of this thesis, we have introduced machine learning based approaches for
solving vehicle routing problems, based on deep neural network models. These
models represent probability distributions over combinatorial spaces of solutions and,
from a machine learning perspective, can be seen as directed (acyclic) graphical mod-
els. To train such models efficiently, we need techniques for drawing samples and
estimating the gradient of an objective or loss function with respect to the model
parameters.

The problems considered in Part i are mainly deterministic optimization problems,
for which there is no value in sampling the same solution twice. Therefore, in Part ii
of this thesis, we develop techniques for efficient sampling without replacement from
graphical models, and estimating gradients using such samples without replace-
ment. These techniques are generally applicable: they can, for example, also be
used with machine translation models (Ott et al., 2019) or latent variable models with
structured latent spaces (Yin et al., 2019). Therefore, we describe these techniques
in general machine learning terminology and also consider experimental settings
beyond combinatorial optimization.

First, in Chapter 5, we introduce ancestral Gumbel-top-k sampling (Kool et al.,
2020a), as a method for drawing unique samples (i.e. samples without replacement)
from directed acyclic graphical models over discrete (combinatorial) domains. An-
cestral Gumbel-top-k sampling is a generalization of stochastic beam search (Kool et
al., 2019c), which was designed specifically for sequence models: neural networks
that produce sequences such as sentences or the attention model in Chapter 3. We
analyze the properties of ancestral Gumbel-top-k sampling and, as an example of
its generality, we show how it can be used to draw diverse samples from machine
translation models and estimate the quality of generated translations.

In Chapter 6, we build on ancestral Gumbel-top-k sampling, as we derive an esti-
mator that can be used to estimate the gradient of model parameters using a set of
samples without replacement. We show how this can be used to improve training
performance of a latent variable model (Yin et al., 2019) and finally to improve train-
ing speed and final performance of the attention model for the travelling salesman
problem introduced in Chapter 3.



5 A N C E S T R A L G U M B E L-TO P- k

S A M P L I N G

We develop ancestral Gumbel-top-k sampling: a generic and efficient method for sampling
without replacement from discrete-valued Bayesian networks, which includes multivariate
discrete distributions, Markov chains and sequence models. The method uses an extension
of the Gumbel-max trick to sample without replacement by finding the top k of perturbed
log-probabilities among all possible configurations of a Bayesian network. Despite the ex-
ponentially large domain, the algorithm has a complexity linear in the number of variables
and sample size k. Our algorithm allows to set the number of parallel processors m, to trade
off the number of iterations versus the total cost (iterations times m) of running the algo-
rithm. For m = 1 the algorithm has minimum total cost, whereas for m = k the number of
iterations is minimized, and the resulting algorithm is known as stochastic beam search.1

We provide extensions of the algorithm and discuss a number of related algorithms. We ana-
lyze the properties of ancestral Gumbel-top-k sampling and compare against alternatives on
randomly generated Bayesian networks with different levels of connectivity. In the context
of (deep) sequence models, we show its use as a method to generate diverse but high-quality
translations and statistical estimates of translation quality and entropy.

5.1 introduction

Sampling from graphical models is a widely studied problem in machine learning.
In many applications, such as neural machine translation, one may desire to obtain
multiple samples, but wish to avoid duplicates, i.e. sample without replacement. In
general, this is non-trivial: for example rejection sampling may take long if entropy
is low.

In this chapter, we extend the idea of sampling through optimization (Papan-
dreou and Yuille, 2011; Hazan and Jaakkola, 2012; Tarlow et al., 2012; Hazan et al.,
2013; Ermon et al., 2013; Maddison et al., 2014; Chen and Ghahramani, 2016; Balog
et al., 2017) to generate multiple samples without replacement. The most well-known
example of sampling by optimization is the Gumbel-max trick (Gumbel, 1954; Mad-
dison et al., 2014), which samples from the categorical distribution by optimizing
(i.e. taking the argmax of) log-probabilities perturbed with independent Gumbel
noise. Whereas the Gumbel-max trick only considers the argmax (top 1), taking the
top k of perturbed log-probabilities actually results in a sample without replacement
from the categorical distribution (Yellott, 1977; Vieira, 2014).

1 This chapter presents ancestral Gumbel-top-k sampling (Kool et al., 2020a), which was developed as an
extension of stochastic beam search Kool et al. (2019c).
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𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒

(a) Independent
p(y) = ∏

v
p(yv )

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒

(b) Markov chain
p(y) = p(y1) ∏

t>1
p(yt |yt−1)

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒

(c) General network
p(y) = ∏

v
p
(

yv |ypa(v)
)

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒

(d) Sequence model
p(y) = ∏

t
p
(

yt |y1:t−1
)

Figure 11: Examples of Bayesian networks.

We consider sampling from discrete-valued Bayesian networks (since sampling
without replacement from continuous domains is trivial), which means that we
sample from a discrete multivariate distribution which is represented by a proba-
bilistic directed acyclic graphical model (for examples, see Figure 11). By treating
each possible configuration of the variables in the network as a category in a sin-
gle (flat) categorical distribution, we can use ‘Gumbel-top-k sampling’ to sample k
configurations without replacement. To efficiently sample from the exponentially
large domain, we use a top-down sampling procedure (Maddison et al., 2014) com-
bined with an efficient branch-and-bound algorithm, which runs in time linear in
the number of variables and number of samples.

The algorithm presented in this chapter, which we refer to as ancestral Gumbel-top-
k sampling, is a generalization of stochastic beam search (originally presented in Kool
et al. (2019c)), which allows to trade off ‘parallelizability’ against total required
computation and is applicable to general Bayesian networks. As such, it serves the
same purposes and can be used to generate representative and unique sequences
from sequence models, for example for tasks such as neural machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015) and image captioning (Vinyals et al.,
2015b), where the diversity can be controlled by the sampling temperature. Addi-
tionally, being a sampling method, it can be used to construct statistical estimators
as we show in Section 5.5. As we will show in Chapter 6, the ability to sample
without replacement enables the construction of lower variance gradient estimators
(Kool et al., 2019b; Kool et al., 2020b).

5.2 preliminaries

This section introduces Bayesian networks, deep learning and the Gumbel-max trick.

5.2.1 Bayesian networks

A Bayesian network, also known as belief network, is a probabilistic directed acyclic
graphical model that represents a joint probability distribution over a set of vari-
ables, which are nodes in a directed acyclic graph. We index the variables by v ∈ V ,
where a node v can take values yv ∈ Dv. For an arbitrary subset S ⊆ V , we write
the corresponding set of values as yS = (yv : v ∈ S), with domain DS = ∏v∈S Dv.
For the complete network we write y = yV with domain D = DV . The probability
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distribution for yv is defined conditionally on the parents pa(v) ⊆ V \ {v}, with
values ypa(v). This way, the distribution p(y) is given by

p(y) = ∏
v∈V

p
(

yv|ypa(v)

)
. (23)

Any directed acyclic graph has at least one topological order (see e.g. Kahn (1962)),
which is an ordering in which each node is preceded by its parent nodes. For an
example of a Bayesian network in topological order, see Figure 11c. Examples of
Bayesian networks include multivariate categorical distributions where yv, v ∈ V are
independent (Figure 11a), Markov chains where yt depends only on yt−1 (assuming
V = {1, ..., T}), and (finite length) sequence models where yt depends on the complete
‘prefix’ y1:t−1 and the topological order is natural.

To keep notation compact, in general, we will not make the distinction between
variables and their realizations. As each variable yv has a finite domain Dv, there is
a finite number of possible realizations, or configurations, for the complete Bayesian
network, specified by the domain D = ∏v∈V Dv. A configuration y ∈ D has prob-
ability given by equation 23 and therefore, ignoring the graphical structure, we
can treat y as a ‘flat’ categorical variable over the domain D, where each category
corresponds to a possible configuration y.

5.2.2 Deep learning

Our focus is on modern deep learning (LeCun et al., 2015) applications, especially
sampling from models represented as (discrete-valued) stochastic computation graphs
(Schulman et al., 2015), which can be considered Bayesian networks. Such models
specify conditional distributions for variables using neural networks, dependent on
parameters θ and an input or context x. In a discrete setting, such models usually
output probabilities for all yv ∈ Dv in a single model evaluation, by computing a soft-
max (with temperature τ ≥ 0) over unnormalized log-probabilities φθ(yv|ypa(v), x):

pθ(yv|ypa(v), x) =
exp (φθ(yv|ypa(v))/τ)

∑y′v∈Dv
exp (φθ(y′v|ypa(v))/τ)

∀yv ∈ Dv. (24)

In deep learning, model evaluations involve millions of computations, which is why
we seek to minimize them. Additionally, to make efficient use of modern hardware,
algorithms should be efficiently parallelizable. In the remainder of this chapter, we
are concerned with sampling (without replacement) given fixed values of θ and x
so we will omit these in the notation.
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5.2.3 The Gumbel-max trick

Treating the Bayesian network as specifying a categorical distribution, we can use
the Gumbel-max trick (Gumbel, 1954; Maddison et al., 2014) to sample from it by
finding the configuration y with the largest perturbed log-probability. We define φy as
the log-probability of y ∈ D:

φy = log p(y) = ∑
v∈V

log p
(

yv|ypa(v)

)
. (25)

Next we define Gφy as the perturbed log-probability of y, which is obtained by adding
(independent!) Gumbel noise Gy ∼ Gumbel(0) to φy, where Gumbel(φ) is the
Gumbel distribution with CDF

Fφ(g) = exp(− exp(φ− g)). (26)

Using inverse transform sampling, this noise is generated as Gy = F−1
0 (Uy) =

− log(− log Uy), where Uy ∼ Uniform(0, 1). By the shifting property of the Gumbel
distribution, we have

Gφy := Gy + φy = φy − log(− log Uy) ∼ Gumbel(φy). (27)

For any subset B ⊆ D it holds that (Maddison et al., 2014)

max
y∈B

Gφy ∼ Gumbel

(
log ∑

y∈B
exp φy

)
, (28)

arg max
y∈B

Gφy ∼ Categorical

 exp φy

∑
y′∈B

exp φy′
, y ∈ B

 . (29)

Equation 28 is a useful property that states that the maximum of a set of Gumbel
variables is a Gumbel variable with as location the logsumexp of the individual
Gumbel locations. Equation 29 states the most important result: the configuration y
corresponding to the largest perturbed log-probability is a sample from the desired
categorical distribution (since exp φy = p(y)). Additionally, the max (equation 28)
and argmax (equation 29) are independent, which is an important property that is
used in this chapter. For details, see Maddison et al. (2014). Figure 12 gives a visual
illustration of the Gumbel-max trick.

𝐺𝒚 ∼ Gumbel(0)
Gumbel noise

𝜙𝒚 = log 𝑝(𝒚)
log-probability

𝐺"𝒚 ∼ Gumbel 𝜙𝒚
perturbed log-probability

=+

max
𝒚
𝐺#𝒚 ∼ Gumbel log∑𝒚 exp𝜙𝒚

𝒚∗ = argmax
𝒚

𝐺#𝒚 ∼ Categorical
exp𝜙𝒚

∑𝒚N exp𝜙𝒚N

max and argmax 
are independent

Figure 12: The Gumbel-max trick: the argmax of perturbed log-probabilities has a categorical
distribution. The maximum has an independent Gumbel distribution.
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𝒚1∗ , … , 𝒚2∗ = arg top 𝑘
𝒚

𝐺#𝒚

Figure 13: Gumbel-top-k sampling: the top k perturbed log-probabilities are a sample with-
out replacement.

5.2.4 Gumbel-top-k sampling

An extension of the Gumbel-max trick can be used to sample from the categori-
cal distribution without replacement (Yellott, 1977; Vieira, 2014). To this end, let
y∗1 , ..., y∗k = arg top k Gφy , i.e. y∗1 , ..., y∗k are the configurations with the k largest
perturbed log-probabilities in decreasing order (see Figure 13). Denoting with
D∗j = D \ {y∗1 , ..., y∗j−1} the domain (without replacement) for the j-th sampled ele-
ment, the probability for this ordered sample without replacement is given by

p (y∗1 , ..., y∗k ) =
k

∏
j=1

p
(

y∗j
∣∣∣y∗1 , ..., y∗j−1

)
(30)

=
k

∏
j=1

P

y∗j = arg max
y∈D∗j

Gφy

∣∣∣∣∣∣max
y∈D∗j

Gφy < Gφy∗j−1

 (31)

=
k

∏
j=1

P

y∗j = arg max
y∈D∗j

Gφy

 (32)

=
k

∏
j=1

exp φy∗j

∑y∈D∗j
exp φy

(33)

=
k

∏
j=1

p(y∗j )

1−∑
j−1
`=1 p(y∗` )

. (34)

To understand the derivation, note that conditioning on y∗1 , ..., y∗j−1 means that
y∗1 , ..., y∗j−1 are the configurations with the j− 1 largest perturbed log-probabilities,
so y∗j , the configuration with the j-th largest perturbed log-probability, must
be the arg max of the remaining log-probabilities. Additionally, we know that
maxy∈D∗j

Gφy , the maximum of the remaining log-probabilities, must be smaller
than Gφy∗j−1

, which is the smallest of the j − 1 largest perturbed log-probabilities.

This allows us to rewrite equation 30 as equation 31. The step from equation 31 to
equation 32 follows from the independence of the max and arg max (Section 5.2.3)
and the step from equation 32 to equation 33 uses the Gumbel-max trick.

The form of equation 33 is also known as the Plackett-Luce model (Plackett, 1975;
Luce, 1959) and the form of equation 34 highlights its interpretation as sampling
without replacement, where the probabilities get renormalized after each sampled
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configuration. We refer to sampling without replacement by taking the top k of
Gumbel perturbed log-probabilities as Gumbel-top-k sampling. This is mathemat-
ically equivalent to weighted reservoir sampling (Efraimidis and Spirakis, 2006)
which can be seen as a streaming implementation of Gumbel-top-k sampling.

5.3 ancestral gumbel-top-k sampling

Ancestral Gumbel-top-k sampling is an efficient implementation of Gumbel-top-k
sampling for sampling from a probability distribution specified as a Bayesian net-
work. It exploits the graphical structure to sample variables one at a time, con-
ditionally on their parent variables, similar to ancestral sampling. The algorithm
finds the top k configurations with largest perturbed log-probabilities (which deter-
mine the sample without replacement) implicitly, i.e. without sampling perturbed
log-probabilities for all possible configurations of the Bayesian network. It does
so by bounding the perturbed log-probabilities for parts of the domain, such that
they can be pruned from the search if they are guaranteed to not contain a top k per-
turbed log-probability. Therefore, it can be considered a branch-and-bound algorithm
(see e.g. Lawler and Wood (1966)).

To derive ancestral Gumbel-top-k sampling, we start with explicit Gumbel-top-k
sampling to sample k configurations y without replacement from the Bayesian net-
work. This requires instantiating all configurations y ∈ D, sampling their perturbed
log-probabilities and finding the k largest to obtain the sample. See for an example
Figure 14, where the leaf nodes represent all 8 possible configurations for a Bayesian
network with 3 binary variables. As the size of the domain D is exponential in the
number of variables |V|, this is not practically feasible in general, and we will derive
ancestral Gumbel-top-k sampling as an alternative, equivalent, sampling procedure
that does not require to instantiate the complete domain. Instead, it uses a top-down
sampling procedure to sample perturbed log-probabilities for partial configurations
yS (internal nodes in Figure 14) first, which is equivalent but allows to obtain a
bound on the perturbed log-probabilities of completions of yS (descendants of yS
in the tree). This allows the dashed parts of the tree in Figure 14 to be pruned from
the search, while obtaining the same result.

5.3.1 The probability tree diagram

To help develop our theory, we will first assume a fixed topological order of the
nodes V = {1, ..., T}. For t ≤ T, we will use the notation y1:t = y{1,...,t} = (y1, ..., yt)

to indicate a prefix of y, which is a partial configuration of the Bayesian network with
domain D1:t = ∏v∈{1,...,t} Dv. This topological order allows us to represent possible
configurations of the Bayesian network as the probability tree diagram in Figure 14,
where level t has |D1:t| nodes: one node for each possible partial configuration y1:t ∈
D1:t. Given a partial configuration y1:t of the nodes {1, ..., t}, let S be a superset of
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CA
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𝐺"𝒚$:& = max
𝒚∈,(𝒚$:&)

𝐺"𝒚 ∼ Gumbel log 7
𝒚∈,(𝒚$:&)

exp𝜙𝒚

𝐷(𝒚;:<)

𝜙𝒚$:& = log 𝑝(𝒚;:<)

𝐺𝒚$:& ∼ Gumbel(0)

Perturbed log-probability of “C”
= maximum of perturbed

log-probabilities in subtree

Idea: obtain sample from leaf nodes 
using Gumbel-top-𝑘 sampling 

without constructing complete tree

𝑝(𝐴)

𝑝(𝐶|𝐴)

𝑝(𝐴|𝐴𝐶)

𝑝 𝐴 𝑝 𝐶 𝐴 𝑝 𝐴 𝐴𝐶 = 𝑝(𝐴𝐶𝐴)

Figure 14: Example of Gumbel-top-k sampling (k = 3) for a Bayesian network p(y) =
p(y1)p(y2|y1)p(y3|y1, y2), represented by probability tree diagram. The shaded leaf
nodes correspond to the configurations y ∈ D with the largest perturbed log-
probabilities, which is the resulting sample without replacement. We also indi-
cate the perturbed log-probabilities for partial configurations y1:t (internal nodes
in the tree diagram), which are the maximum of the perturbed log-probabilities in
the subtree. Using top-down sampling, the dashed parts of the tree do not need
to be instantiated.

those nodes (i.e. {1, ..., t} ⊆ S) and let DS|y1:t
be the domain of configurations yS

given the partial assignment y1:t:

DS|y1:t
= {y′S ∈ DS : y′1:t = y1:t} = ∏

v∈{1,...,t}
{yv} × DS\{1,...,t}.

In particular, for S = {1, ..., t + 1}, D1:t+1|y1:t
= ∏v∈{1,...,t}{yv} × Dt+1 is the set

of possible extensions of y1:t by the variable yt+1, which defines the set of direct
child nodes of y1:t in the tree diagram. D|y1:t

= DV|y1:t
is the set of possible complete

configurations compatible with (or given) y1:t, which corresponds to the set of leaf
nodes in the subtree rooted at y1:t in the tree diagram.

We define the marginal probability for the partial configuration y1:t by marginaliz-
ing over all possible configurations y ∈ D|y1:t

that match the partial configuration:

p(y1:t) = ∑
y∈D|y1:t

p(y) (35)

= ∑
y∈D|y1:t

∏
v∈{1,...,t}

p
(

yv|ypa(v)

)
∏

v∈{t+1,...,T}
p
(

yv|ypa(v)

)
= ∏

v∈{1,...,t}
p
(

yv|ypa(v)

)
∑

y∈D|y1:t

∏
v∈{t+1,...,T}

p
(

yv|ypa(v)

)
= ∏

v∈{1,...,t}
p
(

yv|ypa(v)

)
= p(y1:t−1)p

(
yt|ypa(t)

)
. (36)

Note that y1:t−1 is the direct parent of the node y1:t so equation 36 allows efficient
computation of the probability p(y1:t−1) by multiplying the conditional probability
p
(

yt|ypa(t)

)
(note that pa(t) ⊆ {1, ..., t− 1}) with the marginal probability p(y1:t−1)

of the parent in the tree diagram.
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5.3.2 Explicit Gumbel-top-k sampling

By using Gumbel-top-k sampling (see Section 5.2.4) explicitly, we can (inefficiently!)
obtain a sample without replacement of size k from the Bayesian network as follows:

• Compute φy = log pθ(y) for all configurations y ∈ D. This means that the
complete tree diagram is instantiated, as in Figure 14.

• For y ∈ D, sample Gφy ∼ Gumbel(φy), so Gφy is the perturbed log-probability
of y.

• Let y∗1 , ..., y∗k = arg top k Gφy , then y∗1 , ..., y∗k is a sample of configurations from
the distribution p(y) (equation 23) without replacement.

Note that the result corresponds to a subset of leaf nodes in the tree diagram. As
explicit Gumbel-top-k sampling requires to instantiate the complete tree diagram
to compute perturbed log-probabilities for all leaf nodes, this is computationally
prohibitive. Therefore, we construct an equivalent process that we call ancestral
Gumbel-top-k sampling, which implicitly finds the configurations y∗1 , ..., y∗k with
computation that is only linear in the number of samples k and the number of
variables T.

5.3.3 Perturbed log-probabilities of partial configurations

So far, we have only defined the perturbed log-probabilities Gφy for complete con-
figurations y ∈ D, corresponding to leaf nodes in the tree diagram. To derive an-
cestral Gumbel-top-k sampling, we find it convenient to also define the perturbed
log-probabilities for partial configurations y1:t ∈ D1:t, which correspond to internal
nodes in the tree diagram. From equation 35, it follows that a partial configuration
y1:t has log-probability

φy1:t = log p(y1:t) = log ∑
y∈D|y1:t

p(y) = log ∑
y∈D|y1:t

exp φy.

For a partial configuration y1:t, we now consider the maximum of the perturbed log-
probabilities Gφy of compatible complete configurations y ∈ D|y1:t

. This corresponds
to the maximum of perturbed log-probabilities in the subtree below y1:t in Figure 14.
By the Gumbel-max trick (equation 28), it has a Gumbel distribution with location
φy1:t . Therefore, we use the notation Gφy1:t

:

Gφy1:t
= max

y∈D|y1:t

Gφy ∼ Gumbel(φy1:t). (37)

Since Gφy1:t
∼ Gumbel(φy1:t), we can rewrite it as

Gφy1:t
= φy1:t + Gy1:t (38)

where we have defined Gy1:t ∼ Gumbel(0). Equation 38 reveals that we can interpret
Gφy1:t

as the perturbed log-probability of partial configuration y1:t. Thus, the perturbed
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log-probability of a partial configuration y1:t is the maximum of perturbed log-
probabilities of its possible completions D|y1:t

. This relation is key to the top-down
sampling algorithm that we will derive.

Looking at the tree diagram in Figure 14, the maximum below a node y1:t must
be attained in one of the subtrees, such that the perturbed log-probability of y1:t

must be the maximum of perturbed log-probabilities of its possible one-variable
extensions (children) y1:t+1 ∈ D1:t+1|y1:t

. Formally, we can partition the domain
D|y1:t

based on the value of yt+1 ∈ Dt+1 as D|y1:t
=
⋃

yt+1∈Dt+1
D|y1:t+1

, such that we
can write equation 37 as

Gφy1:t
= max

yt+1∈Dt+1
max

y∈D|y1:t+1

Gφy = max
yt+1∈Dt+1

Gφy1:t+1
. (39)

This means that we can compute Gφy1:t
for all nodes in the tree recursively, sampling

Gφy for the leaf nodes y ∈ D and computing equation 39 recursively up the tree.
We refer to this procedure as bottom-up sampling of the perturbed log-probabilities.
Here we consider computing Gφy1:t

using equation 39 as a sampling step because
Gφy1:t

is a random variable which has a degenerate (constant) distribution by condi-
tioning on the children.

5.3.4 Top-down sampling of perturbed log-probabilities

As an alternative to sampling the perturbed log-probabilities ‘bottom-up’, we can
reverse the process. Starting from the root of the tree diagram with an empty
configuration, which we denote by y∅ with length t = 0, we conditionally sample
the perturbed log-probabilities for the children recursively.

For the root y∅ at level t = 0 it holds that D|y∅ = D and the log-probability is

φy∅ = log ∑
y∈D

exp φy = log ∑
y∈D

p(y) = log 1 = 0.

This means that we can sample its perturbed log-probability Gφy∅
∼ Gumbel(0),

or we can simply set Gφy∅
= 0, which conditions the sampling process on the

event that maxy∈D Gφy = 0, which does not affect the result since the sample is
determined by the arg max / arg top k, which is independent of the maximum (see
Section 5.2.3).

Given the log-probability φy1:t of a node y1:t, we can efficiently compute the log-
probabilities φy1:t+1 for its children as φy1:t+1 = φy1:t + log p(yt|ypa(t)) (this follows
from equation 36). Similarly, given the perturbed log-probability Gφy1:t

and the log-
probabilities φy1:t+1 , we can top-down sample the perturbed log-probabilities Gφy1:t+1

for each possible yt+1 ∈ Dt+1. However, there is a dependence between Gφy1:t

and Gφy1:t+1
given by Gφy1:t

= maxyt+1∈Dt+1 Gφy1:t+1
(equation 39). Therefore, when

sampling Gφy1:t+1
, we need to make sure this dependency is satisfied, i.e. we need

to sample a set of (independent) Gumbel variables conditionally upon their maximum.
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5.3.5 Sampling a set of Gumbel variables conditionally on their maximum

To sample a set of Gumbel variables Gφi ∼ Gumbel(φi) with a given maximum T,
we can:

• Sample Gφi for all i independently

• Let Z = maxi Gφi be the observed maximum

• Let G̃φi = F−1
φi ,T

(Fφi ,Z(Gφi )), where Fφi ,Z and F−1
φi ,T

are the CDF and inverse CDF
of truncated Gumbel Distributions.

The CDF of a Gumbel(φ) distribution truncated at T is given by

Fφ,T(g) = P(G ≤ g|G ≤ T)

=
P(G ≤ g ∩ G ≤ T)

P(G ≤ T)

=
P(G ≤ min(g, T))

P(G ≤ T)

=
Fφ(min(g, T))

Fφ(T)
,

where Fφ(g) = exp(− exp(φ − g)) is the CDF of the (untruncated) Gumbel(φ)
distribution (equation 26). The inverse CDF of the truncated Gumbel distribution is
given by

F−1
φ,T(u) = φ− log(exp(φ− T)− log u),

such that the transformation G̃φi = F−1
φi ,T

(Fφi ,Z(Gφi )) can be written explicitly as

G̃φi = F−1
φi ,T

(Fφi ,Z(Gφi ))

= φi − log(exp(φi − T)− exp(φi − Z) + exp(φi − Gφi ))

= − log(exp(−T)− exp(−Z) + exp(−Gφi )). (40)

This shows that the samples with maximum Z are effectively ‘shifted’ towards their
desired maximum T, in (negative) exponential space through the (inverse) truncated
Gumbel CDF. See Appendix C.1 for a numerically stable implementation.
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The validity of the sampling procedure is shown by conditioning on arg maxj Gφj .
For i = arg maxj Gφj it holds that

P(G̃φi ≤ g|i = arg max
j

Gφj)

=EZ

[
P(G̃φi ≤ g|i = arg max

j
Gφj , max

j
Gφj = Z)

]
=EZ

[
P(G̃φi ≤ g|Gφi = Z)

]
=EZ

[
P(F−1

φi ,T
(Fφi ,Z(Gφi )) ≤ g|Gφi = Z)

]
=EZ

[
P(F−1

φi ,T
(Fφi ,Z(Z)) ≤ g)

]
=EZ [P(T ≤ g)]

=P(T ≤ g)

=P(Gφi ≤ g|Gφi = T)

=P(Gφi ≤ g|max
j

Gφj = T, i = arg max
j

Gφj).

For i 6= arg maxj Gφj it holds that

P(G̃φi ≤ g|i 6= arg max
j

Gφj)

=EZ

[
P(G̃φi ≤ g|i 6= arg max

j
Gφj , max

j
Gφj = Z)

]
=EZ

[
P(G̃φi ≤ g|Gφi < Z)

]
=EZ

[
P(F−1

φi ,T
(Fφi ,Z(Gφi )) ≤ g|Gφi < Z)

]
=EZ

[
P(Gφi ≤ F−1

φi ,Z
(Fφi ,T(g))|Gφi < Z)

]
=EZ

[
Fφi ,Z(F−1

φi ,Z
(Fφi ,T(g)))

]
=EZ

[
Fφi ,T(g)

]
=Fφi ,T(g)

=P(Gφi ≤ g|Gφi < T)

=P(Gφi ≤ g|max
j

Gφj = T, i 6= arg max
j

Gφj).

Combining the two cases, it holds that

P(G̃φi ≤ g) =P(G̃φi ≤ g|i = arg max
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j
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=P(Gφi ≤ g|max
j

Gφj = T).
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This procedure allows us to recursively sample Gφy1:t
for the complete tree dia-

gram top-down, which is equivalent to sampling the perturbed log-probabilities for
the complete tree diagram bottom-up. This means that for the leaves, or complete
configurations y, it holds that Gφy ∼ Gumbel(φy) independently. The benefit of the
top-down sampling procedure is that we can choose to sample only the parts of the
tree diagram needed to obtain the top k leaves.

5.3.6 Ancestral Gumbel-top-k sampling

At the heart of the ancestral Gumbel-top-k sampling is the idea that we can find
the configurations corresponding to the top k perturbed log-probabilities, without
instantiating the complete domain, by using top-down sampling. To do so, we
maintain a queue Q of partial configurations y1:t, where no partial configuration
y1:t ∈ Q is a prefix of another one. By doing so, each element y1:t ∈ Q can be seen
as the root of a (disjoint) part of the domain D|y1:t

⊆ D. We do this in such a way that
the queue represents a partitioning of the complete domain, so D =

⋃
y1:t∈Q D|y1:t

.

For each of the partial configurations in the queue, we also keep track of the per-
turbed log-probability Gφy1:t

, which is obtained by top-down sampling. The queue
represents the set of leaf nodes of a partially constructed probability tree diagram
(see Figure 15). At any point in time, we can remove an element y1:t from the queue
and add to the queue the set of extensions y1:t+1 for yt+1 ∈ Dt+1, for which we
can sample the perturbed log-probabilities Gφy1:t+1

conditionally upon the value of
their parent Gφy1:t

, as in standard ancestral sampling. Repeating this process will
ultimately result in a queue Q = D, sampling all complete configurations y ∈ D,
including their perturbed log-probabilities, such that the top k determines the sam-
ple without replacement. To improve efficiency, we can bound the size of the queue,
limiting the total number of expansions, without changing the result.

5.3.7 Bounding of the queue size at k

Assuming we are interested in sampling k configurations without replacement, let
κ = κ(D) be the k-th largest of the perturbed log-probabilities {Gφy : y ∈ D} of
complete configurations y ∈ D. We call κ the threshold since, using Gumbel-top-k
sampling, y will be part of the k samples without replacement if Gφy ≥ κ.

Lemma 1. (Lower bound) Let κ(Q) be the k-th largest perturbed log-probability of (partial)
configurations in the queue Q. Then κ(Q) is a lower bound for κ, i.e. κ ≥ κ(Q).

Proof. For each of the k largest perturbed log-probabilities Gφy1:t
in the queue Q, it

holds that Gφy1:t
≥ κ(Q) (by definition). By the definition of Gφy1:t

as the maximum
of perturbed log-probabilities Gφy for y ∈ D|y1:t

(equation 37), there must necessarily
be a completion y ∈ D|y1:t

for which Gφy = Gφy1:t
≥ κ(Q). Since for y1:t ∈ Q

the corresponding domains D|y1:t
are disjoint, this means that there are (at least)
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Figure 15: Ancestral Gumbel-top-k sampling, with k = 3 and m = 1. Configurations in
the queue are shaded and in each iteration, the single (m = 1) incomplete con-
figuration with the highest perturbed log-probability is expanded, sampling the
perturbed log-probabilities for the extensions conditionally. This takes 5 itera-
tions and has a total cost of 5 model evaluations to obtain k = 3 samples without
replacement.

k distinct configurations y ∈ D such that Gφy ≥ κ(Q). Since there are at least k
configurations y ∈ D for which Gφy ≥ κ(Q), and κ is the k-th largest perturbed
log-probability in D, it must hold that κ ≥ κ(Q).

Lemma 2. (Upper bound) For y1:t ∈ Q, the perturbed log-probability Gφy1:t
is an upper

bound for the perturbed log-probabilities of its possible completions, i.e. Gφy1:t
≥ Gφy for

y ∈ D|y1:t
.

Proof. It follows directly from the the definition of Gφy1:t
(equation 37) that

Gφy1:t
= max

y′∈D|y1:t

Gφy′ ≥ Gφy ∀y ∈ D|y1:t
.

Theorem 3. (Limit queue size) All except the k configurations with the largest perturbed
log-probabilities in the queue Q can be discarded while still resulting in a sample without
replacement of size k.

Proof. For y1:t ∈ Q that does not belong to one of the top k perturbed log-
probabilities, it holds that Gφy1:t

< κ(Q) (assuming uniqueness of Gφy1:t
since the

domain is continuous) such that for its possible completions y ∈ D|y1:t
it holds that

(using Lemma 1 and 2)

Gφy ≤ Gφy1:t
< κ(Q) ≤ κ ∀y ∈ D|y1:t

.

If y1:t is not one of the top k in Q, then Gφy < κ for all possible completions of y1:t,
and any such completion will not be in the sample without replacement of size k,
so y1:t can be discarded from the queue without affecting the result.
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As a consequence of Theorem 3, if we desire to sample k configurations, then
at any point in time, we need to keep at most the k partial configurations with
largest perturbed log-probabilities in the queue. This can be implemented by main-
taining Q as a priority queue of limited size k, where the priorities are given by
the perturbed log-probabilities. Repeatedly removing the first incomplete configu-
ration (with the highest perturbed log-probability) from the queue, and replacing
it by its extensions, ultimately results in a queue with k complete configurations,
corresponding to the k largest perturbed log-probabilities, as is illustrated in Figure
15. By its equivalence to explicit Gumbel-top-k sampling, this is a sample without
replacement of size k (in order!). By repeatedly expanding the partial configuration
with highest perturbed log-probability, the algorithm is a best first search algorithm.

In a practical implementation, we can directly ‘yield’ the first complete configura-
tion once it is found, remove it from the queue and decrease the queue size limit by
1. This will yield the first sample in exactly T iterations (where T is the number of
variables), as if we used standard ancestral sampling. Then, it will ‘jump’ back to
the partial configuration y1:t with the highest perturbed log-probability and repeat
the best first search from there, lazily generating each next sample as the algorithm
proceeds. By reusing partially sampled configurations, the algorithm evaluates the
model for each possible partial configuration at most once. It is ‘anytime optimal’
in the sense that to yield k′ ≤ k samples, it only computes model evaluations that
are strictly necessary. The algorithm is a special case of Algorithm 2 with m = 1
(see Section 5.3.8) and a fixed variable selection strategy (Section 5.3.9).

Algorithm 2 AncestralGumbelTopkSampling(pθ, k, m)

1: Input: Bayesian network pθ(yv|pa(v)) ∀v ∈ V , max. sample size k, parallel expansion
parameter m, variable selection strategy V

2: Initialize result and queue empty
3: add (S = ∅, yS = ∅, φyS = 0, GφyS

= 0) to queue

4: while queue not empty do
5: expand ← take and remove top m from queue according to G̃
6: for (S , yS , φyS , GφyS

) ∈ expand (in parallel) do
7: if S = V then
8: add (S , yS , φyS , GφyS

) to queue

9: else
10: select v from {v ∈ V \ S : pa(v) ⊆ S} according to variable selection strategy V
11: let S ′ = S ∪ {v}
12: compute φyS′ ← φyS + log pθ(yv|ypa(v)) ∀yv ∈ Dv (here yS ′ = yS ∪ {yv})
13: sample GφyS′

∼ Gumbel(φyS′ ) ∀yv ∈ Dv conditionally given maximum GφyS

14: add (S ′ , yS ′ , φyS′ , GφyS′
) to queue for all yv ∈ Dv

15: end if
16: end for
17: queue ← take top k from queue according to G̃
18: while first element from queue is complete, i.e. has S = V do
19: remove first element from queue and add it to result

20: k← k− 1
21: end while
22: end while
23: Return result



5.3 ancestral gumbel-top-k sampling 63

5.3.8 Parallelizing the algorithm

Instead of only expanding the first partial configuration in the queue, we can as-
sume availability of m ≤ k parallel processors and expand m partial configurations
in parallel, replacing all of them by their (disjoint) expansions. This results in fewer
required iterations (known as the span or depth) of the algorithm, but an increase
of total cost of the algorithm, which is the number of iterations times m. This is
because of the cost incurred for ‘idle’ parallel processors if initially the queue size is
smaller than m, and because of redundant model evaluations if nodes are expanded
which, in a fully sequential setting, would have been ‘pushed’ off the queue by other
expansions (see Figure 16 for an example).

For m = k, the complete queue gets replaced in every iteration by the top k of all
expansions, and the resulting algorithm is a limited width breadth first search which
was originally presented in Kool et al. (2019c) as stochastic beam search (Figure 16).
While this algorithm requires the fewest iterations, as it guarantees k samples are
generated in exactly T iterations (where T is the number of variables), it is the least
efficient in terms of total cost.

Ultimately, the optimal choice of m depends on properties of the model and avail-
able parallel hardware, e.g. the number of GPUs2 (or parallel processors on a single
GPU) in modern deep learning applications. For example, if a single model evalua-
tion can already fully utilize the GPUs (e.g. if it is a large and highly parallelizable
neural network model), then setting m = 1 is optimal as this computes only strictly
necessary model evaluations. On the other hand, if GPUs cannot be fully utilized for
individual model evaluations, or additional GPUs are freely available, one should
use m = k to minimize the number of iterations which then directly translates to
minimizing running time.
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(𝜙∅ = log 1 = 0) …
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… sample children 
𝐺#𝒚$:&C$conditionally on
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𝐺#𝒚$:&C$ = 𝐺#𝒚$:& … … repeat for best 𝑚 = 𝑘 nodes …
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Figure 16: Ancestral Gumbel-top-k sampling, with k = m (= 3), also known as stochastic
beam search (Kool et al., 2019c). This version expands in each iteration all partial
configurations in the queue in parallel, traversing the tree diagram per level, i.e.
using breadth first search. Compared to ancestral sampling with m = 1, this
reduces the number of iterations from 5 to 3, but has a total cost of 3 iterations ×
3 processors = 9. The total cost can be divided into a cost of 6 (rather than 5) for
model evaluations, in this case since ‘CC’ is expanded unnecessarily, and a cost of
3 for idle processors if the queue (marked by shaded nodes) size is smaller than
m: this cost is 2 in the first iteration and 1 in the second. The result is equivalent
to using m = 1 (Figure 15) or any other m < k.

2 GPU is an abbreviation of graphical processing unit.
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Figure 17: Example of top-down sampling using a dynamic variable selection strategy for a
graphical model p(y) = p(y1)p(y2)p(y3).

5.3.9 Variable selection strategy

We can consider a tree diagram as a tree representing the possible paths (from root
to leaf) that standard ancestral sampling can take to generate a sample. In the tree
diagram in Figure 14, each level t corresponds to the fixed variable yt, such that the
sample is always generated in the order y1, ..., yT . However, if the graphical model
has multiple topological orderings, any such order yields a valid tree diagram and
thus valid order for ancestral sampling. Moreover, the order does not have to be
globally fixed, but can vary depending on the partial configuration sampled so far.

In general, when ancestral sampling, we are free to choose any variable yt to
sample next, as long as its parents ypa(t) have been sampled. For example, for a
fully factorized model p(y) = p(y1)p(y2)p(y3), we are free to start sampling with
y3, and, depending on the value of y3, select either y1 or y2 to sample next. This is
an example of a variable selection strategy, which is represented by the tree diagram
in Figure 17. While the resulting distribution is the same, the variable selection
strategy affects which parts of the tree can be discarded (dashed nodes in Figure
17) and thus the number of iterations that are required by the algorithm. Sampling
low-entropy variables first is a good idea, as this allows larger partial configurations
to be ‘reused’ for subsequent samples (see Section 5.5.1). Algorithm 2 is presented
in the form that can take an arbitrary variable selection strategy.

5.4 related algorithms

In this section we discuss a number of algorithms related to ancestral Gumbel-top-k
sampling.

5.4.1 The ‘trajectory generator’

For m = 1, our ancestral Gumbel-top-k sampling algorithm is similar to the ‘trajec-
tory generator’ with ε = 0 described by Lorberbom et al. (2020), where it is used
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in the context of reinforcement learning (Sutton and Barto, 2018) to generate direct
policy gradients. Our algorithm replaces a partial configuration y1:t in the queue by
all expansions y1:t+1, motivated by the idea that this is efficient if we consider com-
puting p(y1:t+1|y1:t) for all yt+1 to be a single model evaluation, e.g. the forward
pass of a neural network with a softmax output layer (equation 24). In the probabil-
ity tree diagram, this means that if node is expanded, all childnodes are added to
the tree. In the context of reinforcement learning, the algorithm by Lorberbom et al.
(2020) is assumed to operate on a ‘state-reward tree’, where generating a new node
corresponds to taking an action which requires an interaction with the environment.
Therefore, they only add a single child node to the tree in each iteration.

In the implementation by Lorberbom et al. (2020), elements in the queue do not
(only) represent leaf nodes of the tree, but the idea that they form a partition of the
domain is still maintained. In particular, in our implementation, upon expansion we
partition the domain D|y1:t

represented by y1:t as D|y1:t
= ∪yt+1∈Dt D|y1:t+1

, whereas
Lorberbom et al. (2020) expand only a single child node and partition the domain
as D|y1:t

= D|y1:t+1
∪ (D|y1:t

\D|y1:t+1
). When a single child node y1:t+1 is created, this

corresponds to the maximum and thus it inherits the perturbed log-probability from
the parent. For the parent, a new perturbed log-probability is sampled, truncated
at the previous maximum, which then becomes the maximum of perturbed log-
probabilities for the remaining domain D|y1:t

\ D|y1:t+1
corresponding to the child

nodes that have not yet been instantiated.

5.4.2 (Stochastic) beam search

Beam search is a widely used method for approximate inference in various domains
such as machine translation (Sutskever et al., 2014; Bahdanau et al., 2015) and image
captioning (Vinyals et al., 2015b). In machine learning, beam search is typically a
test-time procedure, but there are works that include beam search in the training
loop (Daumé et al., 2009; Wiseman and Rush, 2016; Edunov et al., 2018b; Negrinho
et al., 2018; Edunov et al., 2018a). Beam search suffers from limited diversity of the
results, and variants have been developed that encourage diversity (Li et al., 2016;
Shao et al., 2017; Vijayakumar et al., 2018).

We argue that adding stochasticity is also a principled way to increase diversity
in a beam search: this motivated the development of stochastic beam search (Kool
et al., 2019c). While stochastic beam search is equivalent to ancestral Gumbel-top-k
sampling (only) for m = k, the result (a sample without replacement) is equivalent
for any m ≤ k. As such, we also consider ancestral Gumbel-top-k sampling as a
principled alternative to a heuristically randomized/diversified beam search, even
though it is not (in general) a beam search.

We analyze the result of ancestral Gumbel-top-k sampling by comparing stochas-
tic beam search to a naïve alternative implementation of a randomized beam search.
In particular, imagine that we use an ordinary beam search, but replace the deter-
ministic top-k operation by sampling without replacement in each step, e.g. using
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Gumbel-top-k sampling, but without top-down sampling conditionally. In this naïve
approach, a low-probability partial configuration will only be extended to comple-
tion, if it gets to be re-sampled, independently, again with low probability, at each
step during the beam search. The result is a much lower probability to sample this
configuration than assigned by the model.

Intuitively, we should somehow commit to a sampling ‘decision’ made at step t.
However, a hard commitment to generate exactly one completion for each of the
k partial configurations at step t would prevent generating any two completions
from the same partial configuration. By using top-down sampling, stochastic beam
search propagates the Gumbel perturbation of a partial configuration to its exten-
sions, which can be seen as a soft commitment to that partial configuration. This
means that it gets extended as long as its total perturbed log-probability is among
the top k, but ‘falls off’ the beam if, despite the consistent perturbation, another
partial configuration becomes more promising. By this procedure, the result is a
sample without replacement, which is true to the model, suggesting that stochas-
tic beam search, or equivalently, ancestral Gumbel-top-k sampling, is a principled
alternative to a heuristically randomized beam search.

5.4.3 Threshold sampling

While Gumbel-top-k sampling uses a fixed sample size of k, a related algorithm is
threshold sampling (Duffield et al., 2005), which instead sets a fixed threshold and
returns a variable sized sample. In analogy with Gumbel-top-k sampling, threshold
sampling returns all configurations in the domain for which the perturbed log-
probability exceeds a fixed threshold, instead of the k largest. Threshold sampling
is a special case of Poisson sampling as each configuration is included in the sample
with probability independent of the other configurations. This allows the sample to
be used for statistical estimation using the Horvitz-Thompson estimator (Horvitz
and Thompson, 1952). To overcome the limitation of a variable sample size, priority
sampling (Duffield et al., 2007) uses the (k + 1)-th largest value as empirical thresh-
old to obtain a fixed sample size k. This is equivalent to Gumbel-top-k sampling and
we experiment with the resulting estimator in Section 5.5.3. An alternative method
to control the sample size is to use an adaptive threshold (Ting, 2017).

5.4.4 Rejection sampling

As an alternative to our algorithm, we can draw samples without replacement by
rejecting duplicates from samples drawn with replacement. However, if the domain
is large and the entropy low (e.g. with a translation model where there are only a
few valid translations), then rejection sampling requires many samples and conse-
quently many (expensive) model evaluations. Also, we have to estimate how many
samples to draw (in parallel) or draw samples sequentially. Our algorithm allows
us to set m = k, which guarantees generating k unique samples with exactly kT
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model evaluations in a single pass of T steps, which is equal to the computational re-
quirement for taking k samples with replacement. When allowing our algorithm to
generate samples sequentially, setting m < k, it can generate k samples with fewer
model evaluations than standard sampling with replacement.

5.4.5 Sequential ancestral sampling without replacement

As an alternative to ancestral Gumbel-top-k sampling, we can also derive an algo-
rithm based on ‘standard’ sequential sampling without replacement. This means
sampling the first configuration y∗1 , then renormalizing the probability distribution
to the domain D \ {y∗1} to sample y∗2 , et cetera. The sequential method we propose
is similar to Wong and Easton (1980), but instead of an arbitrary binary tree, we
use the tree structure (Figure 14) induced by ancestral sampling from the graphical
model. This method was concurrently proposed by Shi et al. (2020).

We represent configurations y ∈ D as ‘buckets’ on a horizontal axis, with size
equal to their probability p(y). Sampling from p(y) is equivalent to uniformly
selecting a point on this axis and returning the configuration of the corresponding
bucket. See an example in Figure 18. Sampling without replacement means that
to obtain the second sample, we should remove the bucket corresponding to the
first sample, as indicated by the dark shading in Figure 18, and sample uniformly a
position on the horizontal axis that is not shaded. When using ancestral sampling,
we can determine the bucket by first determining the larger bucket, corresponding
to the assignment of the first variable y1, then sequentially narrowing it down to
the final bucket by sampling y2, ..., yT . Note that, although this consists of multiple
sampling steps, this can be done using a single random number, as illustrated by
the dotted line in Figure 18, such that the result will be equivalent to the result
without ancestral sampling with the same random number.

When sampling without replacement, we desire unique complete configurations,
but we may have duplicate partial configurations. This means that if we desire to use
sequential ancestral sampling to obtain a second sample without replacement, we
cannot remove any partial configurations from the domain, but we need to remove
the probability mass already sampled from the partial configurations, as illustrated
in Figure 18. We can keep track of the probability mass already sampled for each
partial configuration by building a prefix tree (or trie) representing the samples, re-
moving the probability mass from each partial configuration by backtracking the
path that was used to generate each sample. Each next sample can then be gener-
ated by sampling a path down this tree using the adjusted probabilities to sample
without replacement, until we arrive at a partial configuration that has not been
sampled before, which means that the remaining variables in the configuration can
be sampled straightforwardly and the tree is grown to include this path.

Similar to ancestral Gumbel-top-k sampling, sequential ancestral sampling with-
out replacement has the benefits that it can reuse model evaluations for partial
configurations and generate samples one at the time. As downside, this sequential
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Figure 18: Sampling from a discrete domain visualized as selecting a point uniformly on a
horizontal axis. The bucket (with size equal to sampling probability) which con-
tains the random point is the sample. Ancestral sampling can be seen as sequen-
tially narrowing down the ‘bucket’ that contains the sampled point, indicated by
light shading. Sampling without replacement requires removing probability mass
corresponding to the buckets that have already been sampled (indicated by dark
shaded areas) and selecting the random point uniformly from the remaining area.
When using sequential ancestral sampling, we can use a tree to keep track of the
probability mass that should be removed for partial configurations that have been
sampled before.

method requires more iterations as it starts from the root for each sample, whereas
ancestral Gumbel-top-k sampling directly jumps to a partial configuration from the
priority queue. Also, this sequential method requires careful administration of a
complete tree structure whereas ancestral Gumbel-top-k sampling only requires to
maintain a queue of partial configurations (without any tree structure). Lastly, se-
quential ancestral sampling without replacement cannot be parallelized efficiently.

5.4.6 Weighted reservoir sampling with exponential jumps

Weighted reservoir sampling (Efraimidis and Spirakis, 2006) is an algorithm for
sampling without replacement from a stream of items given weights (unnormalized
probabilities) to sample each item. Mathematically, it is equivalent to Gumbel-top-k
sampling (see Section 5.2.4), but it is executed in a streaming manner, i.e. perturbing
(unnormalized) log-probabilities as they arrive while keeping track of the k largest
perturbations so far.

In the streaming implementation, each next item replaces an item in a priority
queue if its perturbed log-probability exceeds the k-th largest so far. Efraimidis and
Spirakis (2006) note that the total weight that is ‘skipped’ before a next item enters
the queue follows an exponential distribution, which can also be sampled directly,
such that one can directly make an ‘exponential jump’ to the next item to insert the
queue, without sampling the perturbations for each item individually. This can be
seen as a form of top-down sampling.

Using weighted reservoir sampling, or equivalently, ‘streaming’ Gumbel-top-k
sampling, we can derive yet another algorithm for sampling without replacement
from a Bayesian network, by iterating over the complete domain (leaf nodes in the
tree diagram in Figure 14) using a tree traversal algorithm, and keeping track of
the k-largest perturbed log-probabilities so far. While this needs to enumerate the
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complete domain, we can use the ‘exponential jumps’ to directly jump to the next
sequence in the domain. In doing so, complete subtrees can be skipped directly
as the total weight (probability mass) in the subtree is given by the probability of
the partial configuration corresponding to the root of the subtree. This means it
can be executed without instantiating the complete tree. Additionally, traversing
the tree by expanding the highest probability children first will limit the number of
additions to the priority queue as more likely elements are inserted earlier.

While this algorithm is closely connected to our method, it is not equivalent. In
particular, using streaming Gumbel-top-k sampling with exponential jumps, the
queue will be initially filled with k complete configurations, which get replaced
later by other complete configurations with higher perturbed log-probabilities. The
result can only be returned after the complete domain has been traversed. By
contrast, ancestral Gumbel-top-k sampling maintains partial configurations in the
queue, which can be used to bound parts of the domain, and additionally returns
samples without replacement as they are found, in order.

5.5 experiments

This section presents the experiments and results.

5.5.1 Different methods for sampling without replacement

In our first experiment, we analyze three methods for sampling without replace-
ment:

• Ancestral Gumbel-top-k sampling (Section 5.3), where we experiment with dif-
ferent values of m to control the paralellizability of the algorithm.

• Rejection sampling (Section 5.4.4) which generates samples with replacement (us-
ing standard ancestral sampling) sequentially and rejects duplicates. We also
implement a ‘parallel’ version of this, that generates m samples with replace-
ment in parallel, then rejects the duplicates and repeats this procedure until k
unique samples are found.

• Sequential ancestral sampling without replacement (Section 5.4.5). This algo-
rithm is inherently sequential, but we also implement a simple parallelizable
version similar to rejection sampling. This version generates m samples (with
replacement) in parallel, removes duplicates and then constructs the tree in
Figure 18 to remove the corresponding probability mass from the distribution.
Then it uses this tree to generate (again in parallel) m new samples, which
are distinct from the first m samples but may contain duplicates, which are
again removed, after which the tree is updated. This is repeated until in total
k unique samples have been generated.



70 ancestral gumbel-top-k sampling

data generation We generate a random Bayesian network of 10 Bernoulli vari-
ables yi. We generate the variables in topological order, and variable i has a depen-
dency on variable j < i (so j ∈ pa(i)) with probability c ∈ [0, 1], where c is the
connectivity factor of the graph. For c = 0, the model is fully independent (Figure
11a), while for 0 < c < 1 the result will (most likely) be a sparse Bayesian network
(Figure 11c) and for c = 1 the result is a ‘fully connected’ sequence model (Figure
11d). The Bernoulli distribution for yi ∈ {0, 1} is a mixture between an independent
prior and a distribution depending on the parents, which is given by

P(yi = 1|ypa(i)) = αi p
ypa(i)
i + (1− αi)pi.

Here αi ∼ Uniform(0, 1) is a parameter that determines how much the variable yi

is influenced by its parents pa(i), pi ∼ Uniform(0, 1) is the ‘independent’ or ‘prior’
probability that yi = 1, and p

ypa(i)
i ∼ Uniform(0, 1) ∀ypa(i) ∈ Dpa(i) determines the

influence of the parents on the probability that yi = 1, given as a table for each of
the 2|pa(v)| possible values in Dpa(i).

number of iterations First we set m = 1, making all algorithms fully sequen-
tial. For our algorithm, we measure the number of iterations (removing m = 1
element from the queue and adding its expansions), which is equal to the number
of model evaluations. For rejection sampling and the sequential ancestral sampling
algorithm, we count as iteration the sampling of one variable, such that the num-
ber of iterations is also equal to the number of model evaluations and generating
a single sample y with T variables takes T iterations/model evaluations. In Figure
19a we compare the number of iterations for generating different numbers of sam-
ples using the different methods. We clearly observe how our method requires the
fewest iterations/model evaluations to generate the same number of samples.

parallelizing the algorithms By choosing the number of parallel processors
m we can trade off the total time (iterations), also known as the depth or span, against
the total cost of running the algorithm, which is m times the depth or span. Figure
19b shows for different values of m how many iterations it takes to generate k = 100
samples, i.e. it summarizes the result for the previous experiment run for different
values of m. It is clear how increasing the parallelization quickly decreases the
number of iterations required although the effect diminishes as m increases.

To visualize the overhead from the parallelization, Figure 19c visualizes the total
cost, which is the number of iterations (Figure 19b) multiplied by m. For ancestral
Gumbel-top-k sampling, the increased costs for larger m has two different sources
as explained in Section 5.3.8: redundant model evaluations of partial configurations
which would have been pushed off the queue in the sequential setting, and ‘idle’
parallel resources if the queue size is smaller than m. For rejection sampling, the
parallel version is suboptimal because too many samples may be generated since
they are generated in batches of size m. For the sequential ancestral sampling
algorithm with batches (m > 1), there may still be duplicates in a single batch, and
more than k samples may be generated in total.
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Figure 19: Results of sampling from 100 randomly generated models (Bayesian networks)
with 10 Bernoulli variables each and a connectivity of c = 0.5. For each model,
we generated k = 100 samples without replacement, using different methods and
different numbers of parallel processors m. Rejection sampling and sequential
ancestral sampling show a peak at m = 50 since they typically generate 3× 50 =
150 samples (cost 1500) to obtain 100 unique samples, whereas m = 40 and m = 60
can suffice with generating 3× 40 or 2× 60 = 120 samples. Results are presented
as mean and standard deviation over the 100 different models. Results with c = 0
or c = 1 (not shown) are similar in terms of iterations and costs.
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Ultimately, m determines the trade-off between the number of iterations and the
total cost of the algorithm, which is visualized in Figure 19d. Our algorithm with
m = k = 100 (i.e. stochastic beam search) uses 10 iterations (since there are 10

variables) and has a cost of 10× 100 = 1000, which is the minimum for sequential
ancestral sampling and rejection sampling. On the other extreme, the sequential
algorithm with m = 1 uses around 300 iterations with a cost of 300. The difference
is large because of the small setting, where, with m = 100, many processors are
idle in 6 of the 10 iterations since 26 = 64 < 100. We expect the difference to be
smaller in real applications, but this experiment clearly shows that there is a trade-
off, and suggests that limited parallelization (in this case m = 10) rapidly decreases
the number of iterations without increasing total cost too much.

variable selection strategy As explained in Section 5.3.9, we can select any
variable from {v ∈ V \ S : pa(v) ⊆ S} to sample in each iteration. We experiment
with the following variable selection strategies:

• Fixed uses the order in which the variables are generated. Since we generated
the Bayesian network in topological order, this is valid.

• Random chooses the variable from {v ∈ V \ S : pa(v) ⊆ S} to sample next
uniformly at random.

• Minimum entropy computes the (conditional) entropy for all variables {v ∈
V \ S : pa(v) ⊆ S} as − p̂v log( p̂v)− (1− p̂v) log(1− p̂v), where p̂v = P(yv =

1|ypa(v)) and selects the variable v with minimum entropy.

• Maximum entropy selects the variable v with maximum entropy.

We note that selecting v based on entropy requires the model to be evaluated,
which may be undesirable in some cases. However, theoretically these model eval-
uations can be cached/reused as most evaluations will be required eventually to
sample the remaining variables. In the extreme case of c = 0, i.e. the fully indepen-
dent model in Figure 11a, we can simply precompute all model evaluations (which
is a good idea anyway), and using the entropy variable selection strategy reduces
to sorting the variables by their entropy before starting the Gumbel-top-k sampling
algorithm.

In Figure 20a we clearly see that selecting variables with minimum entropy first
is the best strategy (it requires fewest iterations), whereas selecting based on maxi-
mum entropy performs worst, with a random strategy or using the fixed generation
order (which can also be considered random) in between. As explained in Section
5.3.9, this is because selecting variables with a low entropy allows maximum reuse
of partial configurations. In Figure 20b we show how the difference between differ-
ent variable selection strategies decreases as there are more dependencies between
variables, where for a ‘fully connected’ sequence model (c = 1, Figure 11d) there is
no freedom in variable selection and all strategies perform the same.
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Figure 20: Results of generating k = 100 samples using ancestral Gumbel-top-k sampling
with m = 1 and different variable selection strategies, for models with different
levels of connectivity c. Results are presented as mean and standard deviation
over 100 randomly generated models.

5.5.2 Diverse beam search

This experiment was originally presented in Kool et al. (2019c). The results were
obtained using stochastic beam search (i.e. m = k), but are valid for any implemen-
tation of ancestral Gumbel-top-k sampling with parallelism factor m < k. In this
experiment we compare stochastic beam search as a principled (stochastic) alterna-
tive to diverse beam search (Vijayakumar et al., 2018) in the context of neural machine
translation to obtain a diverse set of translations for a single source sentence x.
Following the setup by Vijayakumar et al. (2018) we report both diversity as mea-
sured by the fraction of unique n-grams in the k translations, as well as mean and
maximum BLEU score (Papineni et al., 2002) as an indication of the quality of the
sample. The maximum BLEU score corresponds to ‘oracle performance’ reported
by Vijayakumar et al. (2018), but we report the mean as well since a single good
translation and k− 1 completely random sentences scores high on both maximum
BLEU score and diversity, while being undesirable. A good method should increase
diversity without sacrificing mean BLEU score.

We compare four different sentence generations methods: beam search (BS), sam-
pling (with replacement), stochastic beam search (SBS) (sampling without replacement)
and diverse beam search with G groups (DBS(G)) (Vijayakumar et al., 2018). For sam-
pling and stochastic beam search, we control the diversity of the sentences using the
softmax temperature τ (see equation 24) used to compute the model probabilities. We
use τ = 0.1, 0.2, ..., 0.8, where a higher τ results in higher diversity. Heuristically, we
also vary τ for computing the scores with (deterministic) beam search. The diver-
sity of diverse beam search is controlled by the diversity strengths parameter, which
we vary between 0.1, 0.2, ..., 0.8. We set the number of groups G equal to the sample
size k, which Vijayakumar et al. (2018) reported as the best choice.

We modify the beam search in fairseq (Ott et al., 2019) to implement stochastic
beam search3, and use the fairseq implementations for beam search, sampling and
diverse beam search. For theoretical correctness of the stochastic beam search, we

3 Our code is available at https://github.com/wouterkool/stochastic-beam-search.

https://github.com/wouterkool/stochastic-beam-search
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(a) k = 5 (b) k = 10 (c) k = 20

Figure 21: Minimum, mean and maximum BLEU score vs. diversity for different sample
sizes k. Points indicate different temperatures/diversity strengths, from 0.1 (low
diversity, left in graph) to 0.8 (high diversity, right in graph).

disable length-normalization (Wu et al., 2016) and early stopping (and therefore
also do not use these parameters for the other methods). We use the pretrained
model from Gehring et al. (2017) and use the wmt14.v2.en-fr.newstest2014 test
set4 consisting of 3003 sentences. We run the four methods with sample sizes k =

5, 10, 20 and plot the minimum, mean and maximum BLEU score among the k
translations (averaged over the test set) against the average d = 1

4 ∑4
n=1 dn of 1, 2, 3

and 4-gram diversity, where n-gram diversity is defined as

dn =
# of unique n-grams in k translations

total # of n-grams in k translations
.

In Figure 21, we represent the results as curves, indicating the trade-off between
diversity and BLEU score. The points indicate datapoints and the dashed lines in-
dicate the (averaged) minimum and maximum BLEU score. For the same diversity,
stochastic beam search achieves higher mean/maximum BLEU score. Looking at a
certain BLEU score, we observe that stochastic beam search achieves the same BLEU
score as diverse beam search with a significantly larger diversity. For low tempera-
tures (< 0.5), the maximum BLEU score of stochastic beam search is comparable to
the deterministic beam search, so the increased diversity does not sacrifice the best
element in the sample. Note that sampling achieves higher mean BLEU score at the
cost of diversity, which may be because good translations are sampled repeatedly.
However, the maximum BLEU score of both sampling and diverse beam search is
lower than with beam search and stochastic beam search.

5.5.3 BLEU score estimation

In our second experiment, also presented originally in Kool et al. (2019c), we use
sampling without replacement to evaluate the expected sentence level BLEU score for
a translation y given a source sentence x. Although we are often interested in corpus
level BLEU score, estimation of sentence level BLEU score is useful, for example
when training using minibatches to directly optimize BLEU score (Ranzato et al.,

4 Available at https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-fr.newstest2014.tar.bz2.

https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-fr.newstest2014.tar.bz2
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2016). We leave dependence of the BLEU score on the source sentence x implicit,
and write f (y) = BLEU(y, x). We want to estimate the following expectation:

Ey∼pθ(y|x) [ f (y)] = ∑
y∈D

pθ(y|x) f (y). (41)

Under a Monte Carlo (MC) sampling with replacement scheme with size k, we write
S as the set5 of sampled sequences and estimate equation 41 using

Ey∼pθ(y|x) [ f (y)] ≈ 1
k ∑

y∈S
f (y). (42)

If the distribution pθ(y|x) has low entropy (for example if there are only few valid
translations), then MC estimation may be inefficient since repeated samples are
uninformative. We can use sampling without replacement as an improvement, but
we need to use importance weights to correct for the changed sampling probabilities.
Using Gumbel-top-k sampling, we can implement an estimator equivalent to the
estimator described by Vieira (2017), which can be seen as a Horvitz-Thompson
estimator (Horvitz and Thompson, 1952) used with priority sampling (Duffield et
al., 2007):

Ey∼pθ(y|x) [ f (y)] ≈ ∑
y∈S

pθ(y|x)
qθ,κ(y|x)

f (y). (43)

Using this estimator, we ‘sacrifice’ the k-th sample to obtain the empirical threshold
κ (which is the k-th largest perturbed log-probability, see Section 5.3.7), and we
define S as the set of the k− 1 sequences corresponding to the k− 1 largest perturbed
log-probabilities. It holds that y ∈ S if Gφy > κ, which highlights the relation to
threshold sampling (see Section 5.4.3). We define

qθ,a(y|x) = P(Gφy > a) = 1− exp(− exp(φy − a)). (44)

If we would assume a fixed threshold a and variably sized sample S = {y ∈ D :
Gφy > a}, then qθ,a(y|x) = P(y ∈ S) and pθ(y|x)

qθ,a(y|x)
is a standard importance weight.

Surprisingly, using a fixed sample size k (and empirical threshold κ) also yields in
an unbiased estimator, and we include a proof adapted from Duffield et al. (2007)
and Vieira (2017) in Appendix C.2.

Empirically, the estimator in equation 43 has high variance, and in practice we
find it is preferred to normalize the importance weights by W(S) = ∑y∈S

pθ(y|x)
qθ,κ(y|x)

(Hesterberg, 1988):

Ey∼pθ(y|x) [ f (y)] ≈ 1
W(S) ∑

y∈S

pθ(y|x)
qθ,κ(y|x)

f (y). (45)

The estimator in equation 45 is biased but consistent: in the limit k = |D| we sample
the entire domain, so we have empirical threshold κ = −∞ and qθ,κ(y|x) = 1 and
W(S) = 1, such that the estimators in equation 45 and equation 41 are equal.

5 Formally, when sampling with replacement, S is a multiset.
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Figure 22: BLEU score estimates for three sentences sampled/decoded by different estima-
tors for different temperatures.

We have to take care computing the importance weights as, depending on the en-
tropy, the terms in the quotient pθ(y|x)

qθ,κ(y|x)
can become very small, and the computation

of equation 44 can suffer from catastrophic cancellation (see Appendix C.3).

Because the model is not trained to use its own predictions as input, at test time
errors can accumulate. As a result, when sampling with the default temperature
τ = 1, the expected BLEU score is very low (below 10). To improve quality of gener-
ated sentences we use lower temperatures and experiment with τ = 0.05, 0.1, 0.2, 0.5.
We then use different methods to estimate the BLEU score:

• Monte Carlo (MC), using equation 42.

• Stochastic beam search (SBS), where we compute estimates using the estimator
in equation 43 and the normalized variant in equation 45.

• Beam search (BS), where we compute a deterministic beam S (the temperature
τ affects the scoring) and compute ∑y∈S pθ(y|x) f (y). This is not a statistical
estimator, but a lower bound to the target (equation 41), which serves as a val-
idation of the implementation and gives insight on how many sequences we
need at least to capture most of the mass of the expectation in equation 41. We

also compute the normalized version ∑y∈S pθ(y|x) f (y)
∑y∈S pθ(y|x)

, which can heuristically
be considered as a ‘determinstic estimate’.

In Figure 22 we show the results of computing each estimate 100 times (BS
only once as it is deterministic) for three different sentences6 for temperatures
τ = 0.05, 0.1, 0.2, 0.5 and sample sizes k = 1 to 250. We report the empirical mean
and 2.5-th and 97.5-th percentile. The normalized SBS estimator indeed achieves
significantly lower variance than the unnormalized version and for τ < 0.5, it sig-
nificantly reduces variance compared to MC, without adding observable bias. For
τ = 0.5 the results are similar, but we are less interested in this case as the overall
BLEU score is lower than for τ = 0.2.

6 These are sentences 1500, 2000 and 2500 from the WMT14 data set.
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Figure 23: Entropy estimates for three sentences sampled/decoded by different estimators
for different temperatures.

5.5.4 Conditional entropy estimation

Additionally to estimating the BLEU score we use f (y) = − log pθ(y|x) such that
equation 41 becomes the model entropy (conditioned on the source sentence x)

Ey∼pθ(y|x) [− log pθ(y|x)] .

Entropy estimation is useful in optimization settings where we want to include an
entropy loss to ensure diversity. It is a different problem than BLEU score estimation
as high BLEU score (for a good model) correlates positively with model probability,
while for entropy rare y contribute the largest terms − log pθ(y|x). We use the
same experimental setup as for the BLEU score and present the results in Figure
23. The results are similar: the normalized SBS estimate has significantly lower
variance than MC for τ < 0.5 while for τ = 0.5, results are similar. This shows that
stochastic beam search can be used to construct practical statistical estimators.

5.6 possible extensions of ancestral gumbel-
top-k sampling

Our algorithm can be extended in various ways, to give efficient implementations
of two existing algorithms or to perform efficient sampling with replacement.

5.6.1 Memory augmented policy optimization

Our algorithm can be extended to give an efficient implementation of memory aug-
mented policy optimization (MAPO) (Liang et al., 2018), an extension of REIN-
FORCE (Williams, 1992) that optimizes a policy in reinforcement learning using a
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replay buffer of good experiences. MAPO computes an exact gradient for the b
experiences (configurations) in the buffer, which requires b model evaluations, and
uses a sample from the model outside of the buffer, obtained using (potentially
inefficient) rejection sampling. We can adapt ancestral Gumbel-top-k sampling to
implement MAPO efficiently, by modifying the priority queue to use a hierarchical
criterion, that will put in the front partial configurations which correspond to par-
tial configurations in the buffer,7 and sort the remaining configurations based on
the perturbed log-probability. When using k = b + 1, the result will be the b config-
urations in the buffer (with their model evaluations), and a single sample outside
of the buffer.

5.6.2 Rao-Blackwellized stochastic gradients

While MAPO is an estimator that computes an exact gradient for a number of ‘good’
configurations, Liu et al. (2019) proposed a similar estimator that computes an ex-
act gradient for high probability configurations (instead of ‘good’ ones), which may
have a greater contribution overall. While they consider 1-dimensional categorical
distributions only, we note that the estimator can also be used in multi-dimensional
settings, where high probability categories can be found by an approximate algo-
rithm such as (deterministic) beam search, but in this case it is challenging to obtain
a sample from the remaining domain.

Similar to MAPO, we can make a modification of our algorithm, to yield both
the high probability configurations, and a sample from the remaining domain. In
particular, we can modify stochastic beam search (our algorithm with m = k) to
maintain in the queue the k− 1 partial configurations with highest log-probability
(without Gumbel perturbation) and one partial configuration which has the highest
perturbed log-probability among the remaining configurations. This means that we
have a ‘deterministic’ beam of size k− 1 as well as a single sample (partial configu-
ration) outside of the beam.8

In general, it may be preferred to have fewer exact and more sampled configura-
tions; see the relevant discussions in Fearnhead and Clifford (2003) and Liu et al.
(2019). Using our algorithm, we could maintain k − ` configurations by their log-
probability, and ` configurations by the perturbed log-probability. The resulting `

samples without replacement can be converted to (at least) ` samples with replace-
ment using resampling (see below), or one can use an estimator based on sampling
without replacement (Kool et al., 2019b; Kool et al., 2020b).

7 Existence of a partial configuration/trajectory in the buffer can be efficiently checked by representing
the replay buffer as a prefix tree (trie), similar to Figure 18.

8 The result may be slightly different than deterministic beam search with size k− 1, since extensions of
the k-th configuration (the sample) may have high log-probability and push other configurations off the
beam. If desired, this can be heuristically prevented.
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5.6.3 Sampling with replacement with sampling without replacement

Sampling without replacement can be used to sample with replacement by using
a resampling algorithm. The basic idea is that using ancestral Gumbel-top-k sam-
pling (Algorithm 2) ‘lazily’, we can obtain the first sample y∗1 , for which sampling
with/without replacement is the same. Then for the second sample, we can take
y∗1 with probability p(y∗1 ), or sample from D \ {y∗1} with probability 1 − p(y∗1 ),
which can be done by continuing incremental sampling without replacement. At
any point, if y∗1 , ..., y∗n are the samples without replacement so far, we can get another
sample with replacement by choosing y∗1 with probability p(y∗1 ), y∗2 with probability
p(y∗2 ), et cetera or find the next sample y∗n+1 (without replacement) with probabil-
ity 1−∑n

i=1 p(y∗i ). Repeating this algorithm to obtain a desired number of samples
has a lower computational cost (as measured by model evaluations) than standard
sampling with replacement, as resampling is cheap (it does not require additional
model evaluations) and the inner ancestral Gumbel-top-k sampling algorithm uses
model evaluations efficiently.

5.7 discussion

We introduced ancestral Gumbel-top-k sampling, an algorithm that can efficiently
draw samples without replacement from a probability distribution represented as
a Bayesian network. It has a parameter to control the amount of parallelism of
the algorithm, trading off the number of required iterations versus the total cost
of running the algorithm, such that it can make efficient use of modern hardware.
We discussed possible extensions of the algorithm, enabling implementations of the
gradient estimators by Liang et al. (2018) and Liu et al. (2019) and a resampling
algorithm to efficiently obtain samples with replacement.

We have discussed related algorithms and empirically shown the benefits of using
ancestral Gumbel-top-k sampling: it enables to generate samples without replace-
ment using a significantly lower computational cost than alternatives. We have
analyzed the influence of the number of parallel processors experimentally, sug-
gesting that limited parallelism quickly decreases the number of required iterations
without increasing total cost too much. Additionally, we have shown how selecting
the order of sampling based on entropy can reduce the cost of the algorithm, which
is especially useful for sampling from fully independent models where the ‘optimal’
order of sampling can be determined upfront.

In the context of sequence models, Gumbel-top-k sampling relates to sampling
(with replacement) and (deterministic) beam search and can be seen as a method
that combines the advantages of both. Our experiments support the idea that
Gumbel-top-k sampling can be used as a drop-in replacement in places where sam-
pling (with replacement) or (deterministic) beam search is used. In fact, our experi-
ments show that sampling without replacement can be used to yield lower-variance
estimators and high-diversity samples from a machine translation model.
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We hope that our method motivates future work to develop improved statistical
learning methods, especially in the context of deep learning, based on sampling
without replacement, a direction of research that has, in fact, already started (Kool
et al., 2019b; Kool et al., 2020b) and is presented in Chapter 6. We believe that ances-
tral Gumbel-top-k sampling has potential to increase both computational and sta-
tistical efficiency in deep learning applications that involve discrete computations,
such as combinatorial optimization (Part i of this thesis), neural machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015) and image captioning (Vinyals et al.,
2015b).



6 E S T I M AT I N G G R A D I E N T S W I T H

S A M P L E S W I T H O U T R E P L A C E M E N T

We derive an unbiased estimator for expectations over discrete random variables based on
sampling without replacement, which reduces variance as it avoids duplicate samples.
We show that our estimator can be derived as the Rao-Blackwellization of three different
estimators. Combining our estimator with REINFORCE, we obtain a policy gradient esti-
mator and we reduce its variance using a built-in control variate which is obtained without
additional model evaluations. The resulting estimator is closely related to other gradient
estimators. Experiments with a toy problem, a categorical variational auto-encoder and the
travelling salesman problem show that our estimator is the only estimator that is consis-
tently among the best estimators in both high and low entropy settings.

6.1 introduction

Put replacement in your basement! We derive the unordered set estimator1: an unbi-
ased (gradient) estimator for expectations over discrete random variables based on
(unordered sets of) samples without replacement. In particular, we consider the prob-
lem of estimating (the gradient of) the expectation of f (x) where x has a discrete
distribution p over the domain D, i.e.

Ex∼p(x)[ f (x)] = ∑x∈D p(x) f (x). (46)

This expectation comes up in reinforcement learning, discrete latent variable mod-
elling (e.g. for compression), structured prediction (e.g. for translation), hard atten-
tion and many other tasks that use models with discrete operations in their com-
putational graphs (see e.g. Jang et al. (2016)). In general, x has structure (such as a
sequence), but we can treat it as a ‘flat’ distribution, omitting the bold notation, so
x has a categorical distribution over D given by p(x), x ∈ D. Typically, the distri-
bution has parameters θ, which are learnt through gradient descent. This requires
estimating the gradient ∇θEx∼pθ(x)[ f (x)], using a set of samples S. A gradient
estimate e(S) is unbiased if

ES[e(S)] = ∇θEx∼pθ(x)[ f (x)]. (47)

The samples S can be sampled independently or using alternatives such as stratified
sampling which reduce variance to increase the speed of learning. In this chapter,
we derive an unbiased gradient estimator that reduces variance by avoiding dupli-
cate samples, i.e. by sampling S without replacement. This is challenging as samples

1 Code available at https://github.com/wouterkool/estimating-gradients-without-replacement.
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without replacement are dependent and have marginal distributions that are differ-
ent from p(x). We further reduce the variance by deriving a built-in control variate,
which maintains the unbiasedness and does not require additional samples.

6.2 related work

Many algorithms for estimating gradients for discrete distributions have been pro-
posed. A general and widely used estimator is REINFORCE (Williams, 1992). Bi-
ased gradients based on a continuous relaxations of the discrete distribution (known
as Gumbel-Softmax or Concrete) were jointly introduced by Jang et al. (2016) and
Maddison et al. (2016). These can be combined with the straight-through estimator
(Bengio et al., 2013) if the model requires discrete samples, or be used to construct
control variates for REINFORCE, as in REBAR (Tucker et al., 2017) or RELAX (Grath-
wohl et al., 2018). Many other methods use control variates and other techniques
to reduce the variance of REINFORCE (Paisley et al., 2012; Ranganath et al., 2014;
Gregor et al., 2014; Mnih and Gregor, 2014; Gu et al., 2016; Mnih and Rezende,
2016). Some works rely on explicit summation of the expectation, either for the
marginal distribution (Titsias and Lázaro-Gredilla, 2015) or globally summing some
categories while sampling from the remainder (Liang et al., 2018; Liu et al., 2019).
Another approach is to use a finite difference approximation to the gradient (Lor-
berbom et al., 2020). Yin et al. (2019) introduced ARSM, which uses multiple model
evaluations where the number adapts automatically to the uncertainty.

In the structured prediction setting, there are many algorithms for optimizing a
quantity under a sequence of discrete decisions, using (weak) supervision, multiple
samples (or deterministic model evaluations), or a combination both (Ranzato et
al., 2016; Shen et al., 2016; He et al., 2016a; Norouzi et al., 2016; Bahdanau et al.,
2017; Edunov et al., 2018b; Leblond et al., 2018; Negrinho et al., 2018). Most of
these algorithms are biased and rely on pretraining using maximum likelihood or
gradually transitioning from supervised to reinforcement learning. Using Gumbel-
Softmax based approaches in a sequential setting is difficult as the bias accumulates
because of mixing errors (Gu et al., 2018).

6.3 preliminaries

Throughout this chapter, we will denote with Bk an ordered sample without replace-
ment of size k and with Sk an unordered sample (of size k) from the categorical
distribution p.
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restricted distribution When sampling without replacement, we remove
the set C ⊂ D already sampled from the domain and we denote with pD\C the
distribution restricted to the domain D \ C:

pD\C(x) =
p(x)

1−∑c∈C p(c)
, x ∈ D \ C. (48)

ordered sample without replacement Bk Let Bk = (b1, ..., bk), bi ∈ D be
an ordered sample without replacement, which is generated from the distribution p as
follows: first, sample b1 ∼ p, then sample b2 ∼ pD\{b1}, b3 ∼ pD\{b1 ,b2}, etc. i.e.
elements are sampled one by one without replacement. Using this procedure, Bk

can be seen as a (partial) ranking according to the Plackett-Luce model (Plackett,
1975; Luce, 1959) and the probability of obtaining the vector Bk is

p(Bk) =
k

∏
i=1

pD\Bi−1
(bi) =

k

∏
i=1

p(bi)

1− ∑
j<i

p(bj)
. (49)

We can also restrict Bk to the domain D \ C, which means that bi 6∈ C for i = 1, ..., k:

pD\C(Bk) =
k

∏
i=1

pD\C(bi)

1− ∑
j<i

pD\C(bj)
=

k

∏
i=1

p(bi)

1− ∑
c∈C

p(c)− ∑
j<i

p(bj)
. (50)

unordered sample without replacement Let Sk ⊆ D be an unordered sam-
ple without replacement from the distribution p, which can be generated simply by
generating an ordered sample and discarding the order. We denote elements in the
sample with s ∈ Sk (so without index) and we write B(Sk) as the set of all k! permu-
tations (orderings) Bk that correspond to (could have generated) Sk. It follows that
the probability for sampling Sk is given by:

p(Sk) = ∑
Bk∈B(Sk)

p(Bk)

= ∑
Bk∈B(Sk)

k

∏
i=1

p(bi)

1− ∑
j<i

p(bj)

=

(
∏

s∈Sk

p(s)

)
· ∑

Bk∈B(Sk)

k

∏
i=1

1
1− ∑

j<i
p(bj)

. (51)

The last step follows since Bk ∈ B(Sk) is an ordering of Sk, such that ∏k
i=1 p(bi) =

∏s∈S p(s). Naive computation of p(Sk) is O(k!), but in Appendix D.2 we show how
to compute it efficiently.

When sampling from the distribution restricted to D \ C, we sample Sk ⊆ D \ C
with probability:

pD\C(Sk) =

(
∏

s∈Sk

p(s)

)
· ∑

Bk∈B(Sk)

k

∏
i=1

1
1− ∑

c∈C
p(c)− ∑

j<i
p(bj)

. (52)
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gumbel-top-k sampling As an alternative to sequential sampling, we can also
use Gumbel-top-k sampling (Section 5.2.4) and sample Bk and Sk by taking the top
k of Gumbel variables (Yellott, 1977; Vieira, 2014; Kim et al., 2016). Using notation
similar to Chapter 5, we define the perturbed log-probability gφi = φi + gi, where φi =

log p(i) and gi ∼ Gumbel(0). Then let b1 = arg maxi∈D gφi , b2 = arg maxi∈D\{b1} gφi ,
etc., so Bk is the top k of the perturbed log-probabilities in decreasing order. The prob-
ability of obtaining Bk using this procedure is given by equation 49, so this provides
an alternative sampling method which is effectively a (non-differentiable) reparame-
terization of sampling without replacement. For a differentiable reparameterization,
see Grover et al. (2019).

It follows that taking the top k perturbed log-probabilities without order, we obtain
the unordered sample set Sk. This way of sampling underlies the efficient computa-
tion of p(Sk) in Appendix D.2.

6.4 methodology

In this section, we derive the unordered set policy gradient estimator: a low-variance,
unbiased estimator of ∇θEpθ(x)[ f (x)] based on an unordered sample without re-
placement Sk. First, we derive the generic (non-gradient) estimator for E[ f (x)] as
the Rao-Blackwellized version of a single sample Monte Carlo estimator (and two
other estimators!). Then we combine this estimator with REINFORCE (Williams,
1992) and we show how to reduce its variance using a built-in baseline.

6.4.1 Rao-Blackwellization of the single sample estimator

A very crude but simple estimator for E[ f (x)] based on the ordered sample Bk is to
only use the first element b1, which by definition is a sample from the distribution
p. We define this estimator as the single sample estimator, which is unbiased, since

EBk∼p(Bk)[ f (b1)] = Eb1∼p(b1)
[ f (b1)] = Ex∼p(x)[ f (x)]. (53)

Discarding all but one sample, the single sample estimator is inefficient, but we
can use Rao-Blackwellization (Casella and Robert, 1996) to signficantly improve it.
To this end, we consider the distribution Bk|Sk, which is, knowing the unordered
sample Sk, the conditional distribution over ordered samples Bk ∈ B(Sk) that could
have generated Sk.2 Using Bk|Sk, we rewrite E[ f (b1)] as

EBk∼p(Bk)[ f (b1)] = ESk∼p(Sk)

[
EBk∼p(Bk |Sk) [ f (b1)]

]
= ESk∼p(Sk)

[
Eb1∼p(b1|Sk) [ f (b1)]

]
.

2 Note that Bk |Sk is not a Plackett-Luce distribution restricted to Sk!
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The Rao-Blackwellized version of the single sample estimator computes the inner
conditional expectation exactly. Since Bk is an ordering of Sk, we have b1 ∈ Sk and
we can compute this as

Eb1∼p(b1|Sk) [ f (b1)] = ∑
s∈Sk

P(b1 = s|Sk) f (s) (54)

where, in a slight abuse of notation, P(b1 = s|Sk) is the probability that the first
sampled element b1 takes the value s, given that the complete set of k samples is Sk.
Using Bayes’ Theorem we find

P(b1 = s|Sk) =
p(Sk|b1 = s)P(b1 = s)

p(Sk)
=

pD\{s}(Sk \ {s})p(s)
p(Sk)

. (55)

The step p(Sk|b1 = s) = pD\{s}(Sk \ {s}) comes from analyzing sequential sampling
without replacement: given that the first element sampled is s, the remaining ele-
ments have a distribution restricted to D \ {s}, so sampling Sk (including s) given
the first element s is equivalent to sampling the remainder Sk \ {s} from the re-
stricted distribution, which has probability pD\{s}(Sk \ {s}) (see equation 52).

the unordered set estimator For notational convenience, we introduce the
leave-one-out ratio.

Definition 4. The leave-one-out ratio of s w.r.t. the set S is given by

R(Sk , s) =
pD\{s}(Sk \ {s})

p(Sk)
. (56)

Rewriting equation 55 as P(b1 = s|Sk) = p(s)R(Sk , s) shows that the probability
of sampling s first, given Sk, is simply the unconditional probability multiplied
by the leave-one-out ratio. We now define the unordered set estimator as the Rao-
Blackwellized version of the single sample estimator.

Theorem 5. The unordered set estimator, given by

eUS(Sk) = ∑
s∈Sk

p(s)R(Sk , s) f (s) (57)

is the Rao-Blackwellized version of the (unbiased!) single sample estimator.

Proof. Using P(b1 = s|Sk) = p(s)R(Sk , s) in equation 54 we have

Eb1∼p(b1|Sk) [ f (b1)] = ∑
s∈Sk

P(b1 = s|Sk) f (s) = ∑
s∈Sk

p(s)R(Sk , s) f (s). (58)

The implication of this theorem is that the unordered set estimator, in explicit
form given by equation 57, is an unbiased estimator of E[ f (x)] since it is the Rao-
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Blackwellized version of the unbiased single sample estimator. Also, as expected
by taking multiple samples, it has variance equal or lower than the single sample
estimator by the Rao-Blackwell theorem (Lehmann and Scheffé, 1950).

6.4.2 Rao-Blackwellization of other estimators

The unordered set estimator is also the result of Rao-Blackwellizing two other unbi-
ased estimators: the stochastic sum-and-sample estimator and the importance-weighted
estimator.

the sum-and-sample estimator We define as sum-and-sample estimator any
estimator that relies on the identity that for any C ⊂ D

Ex∼p(x)[ f (x)] = Ex∼pD\C(x)

[
∑
c∈C

p(c) f (c) +

(
1− ∑

c∈C
p(c)

)
f (x)

]
. (59)

For the derivation, see Appendix D.3.1 or Liang et al. (2018) and Liu et al. (2019).
In general, a sum-and-sample estimator with a budget of k > 1 evaluations sums
expectation terms for a set of categories C (s.t. |C| < k) explicitly (e.g. selected by
their value f (Liang et al., 2018) or probability p (Liu et al., 2019)), and uses k− |C|
(down-weighted) samples from D \ C to estimate the remaining terms. As is noted
by Liu et al. (2019), selecting C such that 1−∑c∈C p(c)

k−|C| is minimized guarantees to
reduce variance compared to a standard minibatch of k samples (which is equivalent
to setting C = ∅). See also Fearnhead and Clifford (2003) for a discussion on
selecting C optimally. The ability to optimize C depends on whether p(c) can be
computed efficiently a-priori (before sampling). This is difficult in high-dimensional
settings, e.g. sequence models which compute the probability incrementally while
ancestral sampling. An alternative is to select C stochastically (as equation 59 holds
for any C), and we choose C = Bk−1 to define the stochastic sum-and-sample estimator:

eSSAS(Bk) =
k−1

∑
j=1

p(bj) f (bj) +

(
1−

k−1

∑
j=1

p(bj)

)
f (bk). (60)

For simplicity, we consider the version that sums k− 1 terms here, but the following
results also hold for a version that sums k−m terms and uses m samples (without
replacement) (see Appendix D.3.3). Sampling without replacement, it holds that
bk|Bk−1 ∼ pD\Bk−1

, so the unbiasedness follows from equation 59 by separating the
expectation over Bk into expectations over Bk−1 and bk|Bk−1:

EBk−1∼p(Bk−1)

[
Ebk∼p(bk |Bk−1)

[
eSSAS(Bk)

]]
= EBk−1∼p(Bk−1) [E[ f (x)]] = E[ f (x)].

In general, a sum-and-sample estimator reduces variance if the probability mass is
concentrated on the summed categories. As typically high probability categories are
sampled first, the stochastic sum-and-sample estimator sums high probability cate-
gories, similar to the estimator by Liu et al. (2019) which we refer to as the determin-
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istic sum-and-sample estimator. As we show in Appendix D.3.2, Rao-Blackwellizing
the stochastic sum-and-sample estimator also results in the unordered set estimator.
This even holds for a version that uses m samples and k − m summed terms (see
Appendix D.3.3), which means that the unordered set estimator has equal or lower
variance than the optimal (in terms of m) stochastic sum-and-sample estimator, but
conveniently does not need to choose m.

the importance-weighted estimator The importance-weighted estimator
(Vieira, 2017) is

eIW(Sk , κ) = ∑
s∈Sk

p(s)
q(s, κ)

f (s). (61)

This estimator is based on the idea of priority sampling (Duffield et al., 2007). It
does not use the order of the sample, but assumes sampling using Gumbel-top-k
sampling and requires access to κ, the (k + 1)-th largest perturbed log-probability,
which can be seen as the ‘threshold’ since gφs > κ ∀s ∈ Sk. q(s, a) = P(gφs > a)
can be interpreted as the inclusion probability of s ∈ Sk (assuming a fixed threshold
a instead of a fixed sample size k). For details and a proof of unbiasedness, see
Vieira (2017) and Kool et al. (2019c) or Appendix C.2. As the estimator has high
variance, in Section 5.5.3, we normalized the importance weights, resulting in biased
estimates. Instead, here we use Rao-Blackwellization to eliminate stochasticity by κ.
Again, the result is the unordered set estimator (see Appendix D.4.1), which thus
has equal or lower variance.

6.4.3 The unordered set policy gradient estimator

Writing pθ to indicate the dependency on the model parameters θ, we can com-
bine the unordered set estimator with REINFORCE (Williams, 1992) to obtain the
unordered set policy gradient estimator.

Corollary 6. The unordered set policy gradient estimator, given by

eUSPG(Sk) = ∑
s∈Sk

pθ(s)R(Sk , s)∇θ log pθ(s) f (s) = ∑
s∈Sk

∇θpθ(s)R(Sk , s) f (s), (62)

is an unbiased estimate of the policy gradient.

Proof. Using REINFORCE (Williams, 1992) combined with the unordered set esti-
mator we find:

∇θEpθ(x)[ f (x)] = Epθ(x)[∇θ log pθ(x) f (x)]

= ESk∼pθ(Sk)

[
∑

s∈Sk

pθ(s)R(Sk , s)∇θ log pθ(s) f (s)

]
.
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variance reduction using a built-in control variate The variance of RE-
INFORCE can be reduced by subtracting a baseline from f . When taking multiple
samples (with replacement), a simple and effective baseline is to take the mean of
other (independent!) samples (Mnih and Rezende, 2016). Sampling without replace-
ment, we can use the same idea to construct a baseline based on the other samples,
but we have to correct for the fact that the samples are not independent.

Theorem 7. The unordered set policy gradient estimator with baseline, given by

eUSPGBL(Sk) = ∑
s∈Sk

∇θpθ(s)R(Sk , s)

(
f (s)− ∑

s′∈Sk

pθ(s′)RD\{s}(Sk , s′) f (s′)

)
, (63)

where

RD\{s}(Sk , s′) =
pD\{s,s′}

θ (Sk \ {s, s′})
pD\{s}

θ (Sk \ {s})
(64)

is the second order leave-one-out ratio, is an unbiased estimate of the policy gradient.

Proof. See Appendix D.5.1.

This theorem shows how to include a built-in baseline based on dependent samples
(without replacement), without introducing bias. By having a built-in baseline, the
value f (s) for a sample s is compared against an estimate of its expectation E[ f (s)],
based on the other samples. The difference is an estimate of the advantage (Sutton
and Barto, 2018), which is positive if the sample s is ‘better’ than average, causing
pθ(s) to be increased (reinforced) through the sign of the gradient, and vice versa.
By sampling without replacement, the unordered set estimator forces the estimator
to compare different alternatives, and reinforces the best among them.

including the pathwise derivative So far, we have only considered the sce-
nario where f does not depend on θ. If f does depend on θ, for example in a VAE
(Kingma and Welling, 2014; Rezende et al., 2014), then we use the notation fθ and
we can write the gradient (Schulman et al., 2015) as

∇θEpθ(x)[ fθ(x)] = Epθ(x)[∇θ log pθ(x) fθ(x) +∇θ fθ(x)]. (65)

The additional second (‘pathwise’) term can be estimated (using the same samples)
with the standard unordered set estimator. This results in the full unordered set
policy gradient estimator:

eFUSPG(Sk) = ∑
s∈Sk

∇θpθ(s)R(Sk , s) fθ(s) + ∑
s∈Sk

pθ(s)R(Sk , s)∇θ fθ(s)

= ∑
s∈Sk

R(Sk , s)∇θ (pθ(s) fθ(s)) . (66)

Equation 66 is straightforward to implement using an automatic differentiation li-
brary. We can also include the baseline (as in equation 63) but we must make sure
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to call stop_gradient (detach in PyTorch) on the baseline (but not on fθ(s)!). Im-
portantly, we should never track gradients through the leave-one-out ratio R(Sk , s)
which means it can be efficiently computed in pure inference mode.

scope & limitations We can use the unordered set estimator for any discrete
distribution from which we can sample without replacement, by treating it as a
univariate categorical distribution over its domain. This includes all the distribu-
tions that can be sampled from using ancestral Gumbel-top-k sampling (Chapter 5):
multivariate categorical distributions, sequence models or any other distributions
that are represented as discrete-valued Bayesian networks (see Figure 11). In the
presence of continuous variables or a stochastic function f , we may separate this
stochasticity from the stochasticity over the discrete distribution, as in Lorberbom
et al. (2020). The computation of the leave-one-out ratios adds some overhead, al-
though they can be computed efficiently, even for large k (see Appendix D.2). For a
moderately sized model, the costs of model evaluation and backpropagation domi-
nate the cost of computing the estimator.

6.4.4 Relation to other multi-sample estimators

relation to murthy’s estimator We found out that the ‘vanilla’ unordered
set estimator (equation 57) is actually a special case of the estimator by Murthy
(1957), known in statistics literature for estimation of a population total Θ = ∑i∈D yi.
Using yi = p(i) f (i), we have Θ = E[ f (i)], so Murthy’s estimator can be used to
estimate expectations (see equation 57). Murthy derives the estimator by ‘unorder-
ing’ a convex combination of Raj (1956) estimators, which, using yi = p(i) f (i), are
stochastic sum-and-sample estimators in our analogy.

Murthy (1957) also provides an unbiased estimator of the variance, which may
be interesting for future applications. Since Murthy’s estimator can be used with
arbitrary sampling distribution, it is straightforward to derive importance-sampling
versions of our estimators. In particular, we can sample S without replacement
using q(x) > 0, x ∈ D, and use equations 57, 62, 63 and 66, as long as we compute
the leave-one-out ratio R(Sk , s) using q.

While part of our derivation coincides with Murthy (1957), we are not aware
of previous work using this estimator to estimate expectations. Additionally, we
discuss practical computation of p(S) (Appendix D.2), we show the relation to the
importance-weighted estimator, and we provide the extension to estimating policy
gradients, especially including a built-in baseline without adding bias.

relation to the empirical risk estimator The empirical risk loss (Edunov
et al., 2018b) estimates the expectation in equation 46 by summing only a subset S
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of the domain, using normalized probabilities p̂θ(s) =
pθ(s)

∑s′∈S pθ(s)
. Using this loss, the

(biased) estimate of the gradient is given by

eRISK(Sk) = ∑
s∈Sk

∇θ

(
pθ(s)

∑s′∈Sk pθ(s′)

)
f (s). (67)

The risk estimator is similar to the unordered set policy gradient estimator, with
two important differences: 1) the individual terms are normalized by the total prob-
ability mass rather than the leave-one-out ratio and 2) the gradient w.r.t. the normal-
ization factor is taken into account. As a result, samples ‘compete’ for probability
mass and only the best can be reinforced. This has the same effect as using a built-in
baseline, which we prove in the following theorem.

Theorem 8. By taking the gradient w.r.t. the normalization factor into account, the risk
estimator has a built-in baseline, which means it can be written as

eRISK(Sk) = ∑
s∈Sk

∇θpθ(s)
1

∑s′′∈Sk pθ(s′′)

(
f (s)− ∑

s′∈Sk

pθ(s′)
1

∑s′′∈Sk pθ(s′′)
f (s′)

)
.

(68)

Proof. See Appendix D.6.1

This theorem highlights the similarity between the biased risk estimator and our
unbiased estimator (equation 63), and suggests that their only difference is the
weighting of terms. Unfortunately, the implementation by Edunov et al. (2018b)
has more sources of bias (e.g. length normalization), which are not compatible with
our estimator. However, we believe that our analysis helps analyze the bias of the
risk estimator and is a step towards developing unbiased estimators for structured
prediction.

relation to vimco VIMCO (Mnih and Rezende, 2016) is an estimator that uses
k samples (with replacement) to optimize an objective of the form log 1

k ∑i f (xi),
which is a multi-sample stochastic lower bound in the context of variational in-
ference. VIMCO reduces the variance by using a local baseline for each of the k
samples, based on the other k− 1 samples. While we do not have a log term, as our
goal is to optimize general E[ f (x)], we adopt the idea of forming a baseline based
on the other samples, and we define REINFORCE with replacement (with built-in
baseline) as the estimator that computes the gradient estimate using samples with
replacement Xk = (x1, ..., xk) as

eRFWR(Xk) =
1
k

k

∑
i=1
∇θ log pθ(xi)

(
f (xi)−

1
k− 1 ∑

j 6=i
f (xj)

)
. (69)

This estimator is unbiased, as Exi ,xj [∇θ log pθ(xi) f (xj)] = 0 for i 6= j (see also Kool
et al. (2019b)). We think of the unordered set estimator as the without-replacement
version of this estimator, which weights terms by pθ(s)R(Sk , s) instead of 1

k . This
puts more weight on higher probability elements to compensate for sampling with-
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out replacement. If probabilities are small and (close to) uniform, there are (almost)
no duplicate samples and the weights will be close to 1

k , so the gradient estimate of
the with- and without-replacement versions are similar.

relation to arsm ARSM (Yin et al., 2019) also uses multiple evaluations
(‘pseudo-samples’) of pθ and f . This can be seen as similar to sampling without
replacement, and the estimator also has a built-in control variate. Compared to
ARSM, our estimator allows direct control over the computational cost (through the
sample size k) and has wider applicability, for example it also applies to multivari-
ate categorical variables with different numbers of categories per dimension.

relation to stratified/systematic sampling Our estimator aims to reduce
variance by changing the sampling distribution for multiple samples by sampling
without replacement. There are alternatives, such as using stratified or systematic
sampling (see, e.g. Douc and Cappé (2005)). Both partition the domain D into
k strata and take a single sample from each stratum, where systematic sampling
uses common random numbers for each stratum. In applications involving high-
dimensional or structured domains, it is unclear how to partition the domain and
how to sample from each partition. Additionally, as samples are not independent, it
is non-trivial to include a built-in baseline, which we find is a key component that
makes our estimator perform well.

6.5 experiments

6.5.1 Bernoulli toy experiment

We use the code by Liu et al. (2019) to reproduce their Bernoulli toy experiment.
Given a vector p = (0.6, 0.51, 0.48), the goal is to minimize the loss

L(η) = Ex1 ,x2 ,x3∼Bern(σ(η))

[
3

∑
i=1

(xi − pi)
2

]
.

Here x1, x2, x3 are i.i.d. from the Bernoulli(σ(η)) distribution, parameterized by a
scalar η ∈ R, where σ(η) = (1 + exp(−η))−1 is the sigmoid function. We com-
pare different estimators, with and without baseline (either ‘built-in’ or using ad-
ditional samples, referred to as REINFORCE+ in Liu et al. (2019)). We report the
(log-)variance of the scalar gradient ∂L

∂η as a function of the number of model evalu-
ations, which is twice as high when using a sampled baseline (for each term).

As can be seen in Figure 24, the unordered set estimator is the only estimator
that has consistently the lowest (or comparable) variance in both the high (η = 0)
and low entropy (η = −4) regimes and for different number of samples/model
evaluations. This suggests that it combines the advantages of the other estimators.



92 estimating gradients with samples without replacement

2 4 6 8 10 12 14 16
Number of evaluations (incl. baseline)

10 4

10 3

10 2

10 1

Gr
ad

ie
nt

 v
ar

ia
nc

e 
(lo

g 
sc

al
e)

 = 0.0
Stratified (no bl)
Systematic (no bl)
REINF. w.r. (no bl)
Det. sum & sample (no bl)
Stoch. sum & sample (no bl)
Unordered (no bl)
REINF. w.r. (built-in bl)
Det. sum & sample (sample bl)
Stoch. sum & sample (sample bl)
Unordered (built-in bl)

(a) High entropy (η = 0)

2 4 6 8 10 12 14 16
Number of evaluations (incl. baseline)

10 9

10 7

10 5

10 3

10 1

Gr
ad

ie
nt

 v
ar

ia
nc

e 
(lo

g 
sc

al
e)

 = -4.0
Stratified (no bl)
Systematic (no bl)
REINF. w.r. (no bl)
Det. sum & sample (no bl)
Stoch. sum & sample (no bl)
Unordered (no bl)
REINF. w.r. (built-in bl)
Det. sum & sample (sample bl)
Stoch. sum & sample (sample bl)
Unordered (built-in bl)

(b) Low entropy (η = −4)

Figure 24: Bernoulli gradient variance (on log scale) as a function of the number of model
evaluations (including baseline evaluations, so the sum-and-sample estimators
with sampled baselines use twice as many evaluations). Note that for some esti-
mators, the variance is 0 (log variance −∞) for k = 8.

We also ran the actual optimization experiment, where with as few as k = 3 samples
the trajectory was indistinguishable from using the exact gradient (see Liu et al.
(2019)).

6.5.2 Categorical variational auto-encoder

We use the code from Yin et al. (2019) to train a categorical or discrete variational auto-
encoder (VAE) with 20 dimensional latent space, with 10 categories per dimension
(details in Appendix D.7.1). To use our estimator, we treat this as a single factorized
distribution with 1020 categories from which we can sample without replacement
using ancestral Gumbel-top-k sampling (Chapter 5 and Kool et al. (2020a)). We also
perform experiments with 102 latent space, which provides a lower entropy setting,
to highlight the advantage of our estimator.

measuring the variance In Table 5, we report the variance of different gradi-
ent estimators with k = 4 samples, evaluated on a trained model. The unordered set
estimator has the lowest variance in both the small and large domain (low and high
entropy) setting, being on-par with the best of the (stochastic3) sum-and-sample
estimator and REINFORCE with replacement4. This confirms the toy experiment,
suggesting that the unordered set estimator provides the best of both estimators. In
Appendix D.7.2 we repeat the same experiment at different stages of training, with
similar results.

3 We cannot use the deterministic version by Liu et al. (2019) since we cannot select the top k categories.
4 We cannot compare against VIMCO (Mnih and Rezende, 2016) as it optimizes a different objective.

Table 5: VAE gradient log-variance of different unbiased estimators with k = 4 samples.

ARSM RELAX REINFORCE Sum & sample REINF. w.r. Unordered

Domain (no bl) (sample bl) (no bl) (sample bl) (built-in bl) (built-in bl)
Small 102

13.45 11.67 11.52 7.49 6.29 6.29 6.65 6.29
Large 1020

15.55 15.86 13.81 8.48 13.77 8.44 7.06 7.05
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Figure 25: VAE smoothed training curves (-ELBO) of two independent runs when training
with different estimators with k = 1, 4 or 8 (thicker lines) samples (ARSM has a
variable number). Some lines coincide, so we sort the legend by the lowest -ELBO
achieved and report this value.

elbo optimization We use different estimators to optimize the ELBO (details
in Appendix D.7.1). Additionally to the baselines by Yin et al. (2019) we compare
against REINFORCE with replacement and the stochastic sum-and-sample estima-
tor. In Figure 25 we observe that our estimator performs on par with REINFORCE
with replacement (and built-in baseline, equation 69) and outperforms other estima-
tors in at least one of the settings. There are a lot of other factors, e.g. exploration
that may explain why we do not get a strictly better result despite the lower vari-
ance. We note some overfitting (see validation curves in Appendix D.7.2), but since
our goal is to show improved optimization, and to keep results directly comparable
to Yin et al. (2019), we consider regularization a separate issue outside the scope
of this work. These results are using MNIST binarized using a threshold of 0.5. In
Appendix D.7.2 we report results using the standard binarized MNIST dataset from
Salakhutdinov and Murray (2008).

6.5.3 Structured prediction for the travelling salesman problem

To show the wide applicability of our estimator, we consider the structured predic-
tion task of predicting routes (sequences) for the travelling salesman problem (TSP)
(Vinyals et al., 2015a; Bello et al., 2016; Kool et al., 2019a). We build on the TSP
experiment with 20 nodes from Chapter 3. For details, see Appendix D.8.

We implement REINFORCE with replacement (and built-in baseline) as well
as the stochastic sum-and-sample estimator and our estimator, using ancestral
Gumbel-top-k sampling (Chapter 5 and Kool et al. (2020a)) for sampling, specifically
the fully-parallel version known as stochastic beam search (Kool et al., 2019c). Also,
we include results using the biased normalized importance-weighted policy gradi-
ent estimator with built-in baseline (derived in Kool et al. (2019b), see Appendix
D.4.2). Additionally, we compare against REINFORCE with greedy rollout base-
line (Rennie et al., 2017; Kool et al., 2019a) used in Chapter 3 and a batch-average
baseline. For reference, we also include the biased risk estimator, ‘sampling’ either
using stochastic or deterministic beam search (as in Edunov et al. (2018b)).
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Figure 26: TSP validation set optimality gap measured during training. Raw results are light,
smoothed results are darker (2 random seeds). We compare our estimator against
different unbiased and biased (dotted) multi-sample estimators and against single
sample REINFORCE, with batch-average or greedy rollout baseline.

In Figure 26a, we compare training progress (measured on the validation set) as
a function of the number of training steps, where we divide the batch size by k to
keep the total number of samples equal. Our estimator outperforms REINFORCE
with replacement, the stochastic sum-and-sample estimator and the strong greedy
rollout baseline (which uses additional baseline model evaluations) and performs
on-par with the biased risk estimator. In Figure 26b, we plot the same results
against the number of instances, which shows that, compared to the single sample
estimators, we can train with less data and less computational cost (as we only need
to run the encoder once for each instance).

6.6 discussion

We introduced the unordered set estimator, a low-variance, unbiased gradient esti-
mator based on sampling without replacement, which can be used as an alternative
to the popular biased Gumbel-Softmax estimator (Jang et al., 2016; Maddison et al.,
2016). Our estimator is the result of Rao-Blackwellizing three existing estimators,
which guarantees equal or lower variance, and is closely related to a number of
other estimators. It has wide applicability, is parameter free (except for the sample
size k) and has competitive performance to the best of alternatives in both high and
low entropy regimes.

In our experiments, we also found that REINFORCE with replacement, with mul-
tiple samples and a built-in baseline as inspired by VIMCO (Mnih and Rezende,
2016), is a simple yet strong estimator which has performance similar to our esti-
mator in the high entropy setting. Independently of our work, the same estimator
has been presented by Luo (2020), but we are not aware of any other recent work
on gradient estimators for discrete distributions that has considered this estimator,
while it may be often preferred given its simplicity.



7 C O N C L U S I O N

Machine learning has the exciting potential to revolutionarize the way we solve
(combinatorial) optimization problems today. This thesis presented a set of ideas,
techniques, experiments and results to inspire research in this direction, which has
become known as neural combinatorial optimization. With a focus on solving vehicle
routing problems, this thesis also presented methods for sampling from neural net-
work models defined over combinatorial spaces, and optimizing their parameters.

Part i

In Part i of this thesis, we presented some of the first methods to use machine
learning for combinatorial optimization, especially vehicle routing. While the pro-
posed methods have not provided an immediate and unconditional improvement
of the state-of-the-art for vehicle routing, they have shown impressive results ob-
tained using a different paradigm for optimization: learning to optimize. Whereas
traditional techniques rely on search to explicitly (or implicitly) consider many so-
lutions, the methods proposed in Chapter 3 and 4 yield competitive solutions while
considering a much smaller fraction of the search space.

The attention model (Chapter 3) is able to create a high quality tour in a single
sequential construction, which is completely different from using search or local
improvement. This has the potential to address new types of optimization prob-
lems as well, e.g. with stochasticity such as the PCTSP in Chapter 3. In Chapter 4,
we have illustrated how machine learning is able to identify promising edges for
vehicle routing, which is much better than using a naïve alternative such as using
the cost (distance) of the edges. In a hybrid algorithm, combined with dynamic
programming, this gives a significant improvement over the classic DP algorithm.

The methods presented in Part i provide answers to our research questions 1

and 2: Chapter 3 gives a clear example of how we can use reinforcement learning
to solve vehicle routing problems and Chapter 4 addresses routing problems by
integrating supervised machine learning and dynamic programming, as an example
to combine learning and exact optimization. More importantly, the methods we
proposed have sparked a large interest in learning based algorithms for vehicle
routing and other optimization problems. For a review of these see e.g. Mazyavkina
et al. (2020), Vesselinova et al. (2020), and Bai et al. (2021). Research in the area of
neural combinatorial optimization happens at an increasingly fast pace: for example
the work in Chapter 4 was based on the model developed by Joshi et al. (2019a),
which itself was inspired by the attention model proposed in Chapter 3.
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Part ii

In Part ii of this thesis, we presented various methods that were originally moti-
vated by our search for better methods to optimize deep learning models for com-
binatorial optimization, especially the attention model in Chapter 3. However, as
the methods are equally applicable to other machine learning tasks involving struc-
tured models over combinatorial spaces, they are described in general machine
learning terminology and include results in different application domains, such as
machine translation and latent variable modelling. We may say that Part i of this
thesis used ideas from the machine learning community to solve optimization prob-
lems, whereas Part ii gives back the results of our effort to improve techniques to
optimize models over combinatorial spaces.

In Chapter 5, we presented ancestral Gumbel-top-k sampling, which was the re-
sult of further developing stochastic beam search (Kool et al., 2019c). Ancestral
Gumbel-top-k sampling is an efficient, but primarily very elegant method to draw
multiple samples without replacement from a structured model over a combinato-
rial domain, and provides an answer to research question 3. In Chapter 6, we have
illustrated how the resulting samples without replacement can be used to define a
gradient estimator that improves training performance for various models, includ-
ing the attention model from Chapter 3, providing an answer to research question
4. Whereas the methods presented in Part ii of this thesis are advanced methods
that specifically address optimization of structured models using sampling without
replacement, they have also contributed to popularizing the underlying ideas of
Gumbel-top-k sampling (without a structured model), and the leave-one-out base-
line for REINFORCE (when sampling with replacement).

Building bridges between communities

This thesis contains research on the intersection of machine learning (ML) and op-
erations research (OR), with a focus on vehicle routing. Most of the research pre-
sented in the different chapters has been published in the ML community, but the
work has reached an audience in the OR community as well. Both communities
are now working on the integration of the two disciplines, although there is still a
clear gap that can be observed: researchers from the ML community tend to dis-
regard or misrepresent baselines or techniques from the OR community (Accorsi
et al., 2021), whereas researchers from the OR community often use relatively sim-
ple ML techniques, leaving a lot of potential from deep learning underexplored.
Various initiatives aim to bridge this gap, for example by providing the Ecole envi-
ronment (Prouvost et al., 2021), releasing benchmark datasets (Queiroga et al., 2022)
or organizing workshops or competitions (Gasse, 2021).

Over the past decades, the performance of OR algorithms has improved by over
a million times, using a combination of algorithmic improvements and better hard-
ware, primarily faster CPU cores. With an enormous effort, a similar improve-
ment of neural network performance has been achieved in the ML community in
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recent years, with both algorithmic improvements and massive scaling of computa-
tional resources through parallelization. As a result, we believe that new scientific
breakthroughs are within reach when both communities cooperate in combining
state-of-the-art techniques to solve problems at scales or complexities that were
previously considered impossible. Scaling to larger instances, dealing with differ-
ent constraints, parallelization of OR algorithms and combining them with neural
networks effectively (see also Section 2.3) are just a few of the challenges to be over-
come. When these are addressed successfully, we may expect significant improve-
ments in the state-of-the-art of combinatorial optimization. Some of the effects of
ongoing efforts are already visible, e.g. multiple improved solutions for well-known
MIPLIB benchmark instances (Gleixner et al., 2021) have been found recently (Nair
et al., 2020).

Optimizing the world

We can only imagine what the world will look like 10, 20 or 50 years from now. In-
evitably, major parts of the infrastructure that enables our society will be controlled
by ‘artificial intelligence’ (as that sounds fancier than ‘algorithms’). This provides
a tremendous opportunity for optimizing the way in which we use the scarce re-
sources available on earth. Time, space and energy (to name just a few) should be
allocated carefully to best cater to our (inflating) demands in a sustainable manner.
Optimizing the world is not a luxury: it is a necessity for a sustainable future. Impor-
tant decisions should be made with increasing frequency, and at an increasingly fast
pace, not only taking into account available data, but also in the face of uncertainty;
all of this in a continuously changing environment. As we simply cannot keep a
human in the loop for every decision, machines must learn to make decisions: they
must not only predict, but also act automatically. In our complex society, machines
must learn what the problem is and how to optimize it (see also Section 2.3). If
we continue on the road to success, machine learning will be the technology that
enables us to learn what the optimized world of tomorrow will look like. Let’s Go!
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A AT T E N T I O N , L E A R N TO S O LV E
R O U T I N G P R O B L E M S !

a.1 attention model details

Figure 27: Illustration of weighted message passing using a dot-attention mechanism. Only
computation of messages received by node 1 are shown for clarity. Best viewed
in color.

attention mechanism We interpret the attention mechanism by Vaswani et al.
(2017) as a weighted message passing algorithm between nodes in a graph. The
weight of the message value that a node receives from a neighbor depends on the
compatibility of its query with the key of the neighbor, as illustrated in Figure 27.
Formally, we define dimensions dk and dv and compute the key ki ∈ Rdk , value
vi ∈ Rdv and query qi ∈ Rdk for each node by projecting the embedding hi:

qi = WQhi , ki = WKhi , vi = WVhi. (70)

Here parameters WQ and WK are (dk × dh) matrices and WV has size (dv × dh).
From the queries and keys, we compute the compatibility uij ∈ R of the query qi of
node i with the key kj of node j as the (scaled, see Vaswani et al. (2017)) dot-product:

uij =


qT

i kj√
dk

if i adjacent to j

−∞ otherwise.
(71)

In a general graph, defining the compatibility of non-adjacent nodes as−∞ prevents
message passing between these nodes. From the compatibilities uij, we compute the
attention weights aij ∈ [0, 1] using a softmax:

aij =
euij

∑j′ e
uij′

. (72)
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Finally, the vector h′i that is received by node i is the convex combination of mes-
sages vj:

h′i = ∑
j

aijvj. (73)

multi-head attention As was noted by Vaswani et al. (2017) and Velickovic
et al. (2018), it is beneficial to have multiple attention heads. This allows nodes
to receive different types of messages from different neighbors. Especially, we
compute the value in equation 73 M = 8 times with different parameters, using
dk = dv = dh

M = 16. We denote the result vectors by h′im for m ∈ 1, . . . , M. These
are projected back to a single dh-dimensional vector using (dh × dv) parameter ma-
trices WO

m . The final multi-head attention value for node i is a function of h1, . . . , hn

through h′im:

MHAi(h1, . . . , hn) =
M

∑
m=1

WO
m h′im. (74)

feed-forward sublayer The feed-forward sublayer computes node-wise pro-
jections using a hidden (sub)sublayer with dimension dff = 512 and a ReLu activa-
tion:

FF(ĥi) = Wff,1 · ReLu(Wff,0ĥi + bff,0) + bff,1. (75)

batch normalization We use batch normalization with learnable dh-
dimensional affine parameters wbn and bbn:

BN(hi) = wbn � BN(hi) + bbn. (76)

Here � denotes the element-wise product and BN refers to batch normalization
without affine transformation.

a.2 travelling salesman problem

a.2.1 Critic architecture

The critic network architecture uses 3 attention layers similar to our encoder, after
which the node embeddings are averaged and processed by an MLP with one hid-
den layer with 128 neurons and ReLu activation and a single output. We used the
same learning rate as for the AM/PN in all experiments.
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a.2.2 Instance generation

For all TSP instances, the n node locations are sampled uniformly at random in the
unit square. This distribution is chosen to be neither easy nor artificially hard and
to be able to compare to other learned heuristics.

a.2.3 Details of baselines

This section describes details of the heuristics implemented for the TSP. All of the
heuristics construct a single tour in a single pass, by extending a partial solution
one node at the time.

nearest neighbor The nearest neighbor heuristic represents the partial solu-
tion as a path with a start and end node. The initial path is formed by a single node,
selected randomly, which becomes the start node but also the end node of the ini-
tial path. In each iteration, the next node is selected as the node nearest to the end
node of the partial path. This node is added to the path and becomes the new end
node. Finally, after all nodes are added this way, the end node is connected with
the start node to form a tour. In our implementation, for deterministic results we
always start with the first node in the input, which can be considered random as
the instances are generated randomly.

farthest/nearest/random insertion The insertion heuristics represent a
partial solution as a tour, and extends it by inserting nodes one node at the time.
In our implementation, we always insert the node using the cheapest insertion cost.
This means that when node i is inserted, the place of insertion (between adjacent
nodes j and k in the tour) is selected such that it minimizes the insertion costs
dji + dik − djk, where dji, dik and djk represent the distances from node j to i, i
to k and j to k, respectively.

The different variants of the insertion heuristic vary in the way in which the node
which is inserted is selected. Let S be the set of nodes in the partial tour. Nearest
insertion inserts the node i that is nearest to (any node in) the tour:

i∗ = arg min
i 6∈S

min
j∈S

dij. (77)

Farthest insertion inserts the node i such that the distance to the tour (i.e. the dis-
tance from i to the nearest node j in the tour) is maximized:

i∗ = arg max
i 6∈S

min
j∈S

dij. (78)

Random insertion inserts a random node. Similar to nearest neighbor, we consider
the input order random so we simply insert the nodes in this order.
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a.2.4 Comparison to concurrent work

Independently of our work, Deudon et al. (2018) also developed a model for TSP
based on the Transformer (Vaswani et al., 2017). There are important differences to
our approach:

• As ‘context’ for the decoder, Deudon et al. (2018) use the embeddings of the
last K = 3 visited nodes. We use only the last (e.g. K = 1) node but add
the first visited node (as well as the graph embedding), since the first node is
important (it is the destination) while the order of the other nodes is irrelevant
as we explain in Section 3.3.

• Deudon et al. (2018) use a critic as baseline (which also uses the Transformer
architecture). We also experiment with using a critic (based on the Trans-
former architecture), but found that using a rollout baseline is much more
effective (see Section 3.5).

• Deudon et al. (2018) report results with sampling 128 solutions, with and
without 2OPT local search. We report results without 2OPT, using either a
single greedy solution or sampling 1280 solutions and additionally show how
this directly improves performance compared to Bello et al. (2016).

• By adding 2OPT on top of the best sampled solution, Deudon et al. (2018)
show that the model does not produce a local optimum and results can im-
prove by using a ‘hybrid’ approach of a learned algorithm with local search.
This is a nice example of combining learned and traditional heuristics, but it
is not compared against using the pointer network (Bello et al., 2016) with
2OPT.

• The model of Deudon et al. (2018) uses a higher dimensionality internally in
the decoder (for details see their paper). Training is done with 20000 steps
with a batch size of 256.

• Deudon et al. (2018) apply principal component analysis (PCA) on the input
coordinates to eliminate rotation symmetry whereas we directly input node
coordinates.

• Additionally to TSP, we also consider two variants of VRP, the OP with differ-
ent prize distributions and the (stochastic) PCTSP.

We want to emphasize that this is independent work, but for completeness we
include a full emperical comparison of performance. Since the results presented
in the paper by Deudon et al. (2018) are not directly comparable, we ran their
code1 and report results under the same circumstances: using greedy decoding and
sampling 1280 solutions on our test dataset (which has exactly the same generative
procedure, e.g. uniform in the unit square). Additionally, we include results of
their model with 2OPT, showing that (even without 2OPT) final performance of
our model is better. We use the hyperparameters in their code, but increase the

1 https://github.com/MichelDeudon/encode-attend-navigate

https://github.com/MichelDeudon/encode-attend-navigate
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Table 6: Epoch durations and results and with different seeds and learning rate schedules
for TSP.

epoch η = 10−4 η = 10−3 × 0.96epoch

time seed = 1234 seed = 1235 seed = 1234 seed = 1235

TSP20 5:30 3.85 (0.34%) 3.85 (0.29%) 3.85 (0.33%) 3.85 (0.32%)
TSP50 16:20 5.80 (1.76%) 5.79 (1.66%) 5.81 (2.02%) 5.81 (2.00%)
TSP100 (2GPUs) 27:30 8.12 (4.53%) 8.10 (4.34%) - -

N = 0 3:10 4.24 (10.50%) 4.26 (10.95%) 4.25 (10.79%) 4.24 (10.55%)
N = 1 3:50 3.87 (0.97%) 3.87 (1.01%) 3.87 (0.90%) 3.87 (0.89%)
N = 2 5:00 3.85 (0.40%) 3.85 (0.44%) 3.85 (0.38%) 3.85 (0.39%)
N = 3 5:30 3.85 (0.34%) 3.85 (0.29%) 3.85 (0.33%) 3.85 (0.32%)
N = 5 7:00 3.85 (0.25%) 3.85 (0.28%) 3.85 (0.30%) 10.43 (171.82%)
N = 8 10:10 3.85 (0.28%) 3.85 (0.33%) 10.43 (171.82%) 10.43 (171.82%)

AM / Exponential 4:20 3.87 (0.95%) 3.87 (0.93%) 3.87 (0.90%) 3.87 (0.87%)
AM / Critic 6:10 3.87 (0.96%) 3.87 (0.97%) 3.87 (0.88%) 3.87 (0.88%)
AM / Rollout 5:30 3.85 (0.34%) 3.85 (0.29%) 3.85 (0.33%) 3.85 (0.32%)

PN / Exponential 5:10 3.95 (2.94%) 3.94 (2.80%) 3.92 (2.09%) 3.93 (2.37%)
PN / Critic 7:30 3.95 (3.00%) 3.95 (2.93%) 3.91 (2.01%) 3.94 (2.84%)
PN / Rollout 6:40 3.93 (2.46%) 3.93 (2.36%) 3.90 (1.63%) 3.90 (1.78%)

batch size to 512 and number of training steps to 100× 2500 = 250000 for a fair
comparison (this increased the performance of their model). As training with n =

100 gave out-of-memory errors, we train only on n = 20 and n = 50 and (following
Deudon et al. (2018)) report results for n = 100 using the model trained for n = 50.
The training time as well as test run times are comparable.

a.2.5 Extended results

hyperparameters We found in general that using a larger learning rate of 10−3

works better with decay but may be unstable in some cases. A smaller learning
rate 10−4 is more stable and does not require decay. This is illustrated in Figure
29, which shows validation results over time using both 10−3 and 10−4 with and
without decay for TSP20 and TSP50 (2 seeds). As can be seen, without decay the
method has not yet fully converged after 100 epochs and results may improve even
further with longer training.

Table 6 shows the results in absolute terms as well as the relative optimality gap
compared to Gurobi, for all runs using seeds 1234 and 1235 with the two different
learning rate schedules. We did not run final experiments for n = 100 with the
larger learning rate as we found training with the smaller learning rate to be more
stable. It can be seen that in most cases the end results with different learning rate
schedules are similar, except for the larger models (N = 5, N = 8) where some
of the runs diverged using the larger learning rate. Experiments with different
number of layers N show that N = 3 and N = 5 achieve best performance, and
we find N = 3 is a good trade-off between quality of the results and computational
complexity (runtime) of the model.

generalization We test generalization performance on different n than trained
for, which we plot in Figure 28 in terms of the relative optimality gap compared to
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Figure 28: Optimality gap of different methods as a function of problem size n ∈
{5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125}. General baselines are drawn using
dashed lines while learned algorithms are drawn with a solid line. Algorithms
(general and learned) that perform search or sampling are plotted without con-
necting lines for clarity. The *, **, *** and **** indicate that values are reported
from Bello et al. (2016), Vinyals et al. (2015a), Dai et al. (2017) and Nowak et al.
(2017) respectively. Best viewed in color.

(a) TSP20, four schedules for η (2 seeds) (b) TSP50, four schedules for η (2 seeds)

Figure 29: Validation set optimality gap as a function of the number of epochs for different
η.

Gurobi. The train sizes are indicated with vertical marker bars. The models gener-
alize when tested on different sizes, although quality degrades as the difference be-
comes bigger, which can be expected as there is no free lunch (Wolpert and Macready,
1997). Since the architectures are the same, these differences mean the models learn
to specialize on the problem sizes trained for. We can make a strong overall algo-
rithm by selecting the trained model with highest validation performance for each
instance size n (marked in Figure 28 by the red bar). For reference, we also include
the baselines, where for the methods that perform search or sampling we do not
connect the dots to prevent cluttering and to make the distinction with methods
that consider only a single solution clear.
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a.3 vehicle routing problem

The capacitated vehicle routing problem (CVRP) is a generalization of the TSP in
which case there is a depot and multiple routes should be created, each starting and
ending at the depot. In our graph based formulation, we add a special depot node
with index 0 and coordinates x0. A vehicle (route) has capacity D > 0 and each
(regular) node i ∈ {1, . . . n} has a demand 0 < δi ≤ D. Each route starts and ends
at the depot and the total demand in each route should not exceed the capacity, so

∑i∈Rj
δi ≤ D, where Rj is the set of node indices assigned to route j. Without loss

of generality, we assume a normalized D̂ = 1 as we can use normalized demands
δ̂i =

δi
D .

The split delivery VRP (SDVRP) is a generalization of CVRP in which every node
can be visited multiple times, and only a subset of the demand has to be delivered
at each visit. Instances for both CVRP and SDVRP are specified in the same way:
an instance with size n as a depot location x0, n node locations xi , i = 1 . . . n and
(normalized) demands 0 < δ̂i ≤ 1, i = 1 . . . n.

a.3.1 Instance generation

We follow Nazari et al. (2018) in the generation of instances for n = 20, 50, 100, but
normalize the demands by the capacities. The depot location as well as n node
locations are sampled uniformly at random in the unit square. The demands are
defined as δ̂i =

δi
Dn where δi is discrete and sampled uniformly from {1, . . . , 9} and

D20 = 30, D50 = 40 and D100 = 50.

a.3.2 Attention model for the VRP

encoder In order to allow our attention model to distinguish the depot node
from the regular nodes, we use separate parameters Wx

0 and bx
0 to compute the

initial embedding h(0)
0 of the depot node. Additionally, we provide the normalized

demand δi as input feature (and adjust the size of parameter Wx accordingly):

h(0)
i =

Wx
0 xi + bx

0 i = 0

Wx [xi , δ̂i
]
+ bx i = 1, . . . , n.

(79)

capacity constraints To facilitate the capacity constraints, we keep track of
the remaining demands δ̂i,t for the nodes i ∈ {1, . . . n} and remaining vehicle ca-
pacity D̂t at time t. At t = 1, these are initialized as δ̂i,t = δ̂i and D̂t = 1, after
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which they are updated as follows (recall that πt is the index of the node selected
at decoding step t):

δ̂i,t+1 =

max(0, δ̂i,t − D̂t) πt = i

δ̂i,t πt 6= i
(80)

D̂t+1 =

max(D̂t − δ̂πt ,t, 0) πt 6= 0

1 πt = 0.
(81)

If we do not allow split deliveries, δ̂i,t will be either 0 or δ̂i for all t.

decoder context The context for the decoder for the VRP at time t is the
current/last location πt−1 and the remaining capacity D̂t. Compared to TSP, we do
not need placeholders if t = 1 as the route starts at the depot and we do not need
to provide information about the first node as the route should end at the depot:

h(N)
(c) =


[
h̄(N), h(N)

πt−1 , D̂t

]
t > 1[

h̄(N), h(N)
0 , D̂t

]
t = 1.

(82)

masking The depot can be visited multiple times, but we do not allow it to be
visited at two subsequent timesteps. Therefore, in both layers of the decoder, we
change the masking for the depot j = 0 and define u(c)0 = −∞ if (and only if)
t = 1 or πt−1 = 0. The masking for the nodes depends on whether we allow split
deliveries. Without split deliveries, we do not allow nodes to be visited if their
remaining demand is 0 (if the node was already visited) or exceeds the remaining
capacity, so for j 6= 0 we define u(c)j = −∞ if (and only if) δ̂i,t = 0 or δ̂i,t > D̂t. With
split deliveries, we only forbid delivery when the remaining demand is 0, so we
define u(c)j = −∞ if (and only if) δ̂i,t = 0.

split deliveries Without split deliveries, the remaining demand δ̂i,t is either
0 or δ̂i, corresponding to whether the node has been visited or not, and this in-
formation is conveyed to the model via the masking of the nodes already visited.
However, when split deliveries are allowed, the remaining demand δ̂i,t can take any
value 0 ≤ δ̂i,t ≤ δ̂i. This information cannot be included in the context node as it
corresponds to individual nodes. Therefore we include it in the computation of the
keys and values in both the attention layer (glimpse) and the output layer of the
decoder, such that we compute queries, keys and values using:

q(c) = WQh(c) ki = WKhi + WK
d δ̂i,t, vi = WVhi + WV

d δ̂i,t. (83)

Here we WK
d and WV

d are (dk × 1) parameter matrices and we define δ̂i,t = 0 for the
depot i = 0. Summing the projection of both hi and δ̂i,t is equivalent to projecting
the concatenation [hi , δ̂i,t] with a single ((dh + 1)× dk) matrix WK. However, using
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this formulation we only need to compute the first term once (instead for every t)
and by the weight initialization this puts more importance on δ̂i,t initially (which is
otherwise just 1 of dh + 1 = 129 input values).

training For the VRP, the length of the output of the model depends on the
number of times the depot is visited. In general, the depot is visited multiple times,
and in the case of SDVRP also some regular nodes are visited twice. Therefore the
length of the solution is larger than n, which requires more memory such that we
find it necessary to limit the batch size B to 256 for n = 100 (on 2 GPUs). To keep
training times tractable and the total number of parameter updates equal, we still
process 2500 batches per epoch, for a total of 0.64M training instances per epoch.

a.3.3 Details of baselines

For LKH3
2 by Helsgaun (2017) we build and run their code with the SPECIAL param-

eter as specified in their CVRP runscript3. We perform 1 run with a maximum of
10000 trials, as we found performing 10 runs only marginally improves the quality
of the results while taking much more time.

a.3.4 Example solutions

Figure 30 shows example solutions for the CVRP with n = 100 that were obtained by
a single construction using the model with greedy decoding. These visualizations
give insight in the heuristic that the model has learned. In general we see that the
model constructs the routes from the bottom to the top, starting below the depot.
Most routes are densely packed, except for the last route that has to serve some
remaining (close to each other) customers. In most cases, the node in the route
that is farthest from the depot is somewhere in the middle of the route, such that
customers are served on the way to and from the farthest nodes. In some cases,
we see that the order of stops within some individual routes is suboptimal, which
means that the method will likely benefit from simple further optimizations on
top, such as a beam search, a post-processing procedure based on local search (e.g.
2OPT) or solving the individual routes using a TSP solver.

a.4 orienteering problem

In the orienteering problem (OP) each node has a prize ρi and the goal is to maximize
the total prize of nodes visited, while keeping the total length of the route below a
maximum length T. This problem is different from the TSP and the VRP because

2 http://akira.ruc.dk/~keld/research/LKH-3/
3 run_CVRP in http://akira.ruc.dk/~keld/research/LKH-3/BENCHMARKS/CVRP.tgz

http://akira.ruc.dk/~keld/research/LKH-3/
http://akira.ruc.dk/~keld/research/LKH-3/BENCHMARKS/CVRP.tgz
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(a) (b)

(c) (d)

(e) (f)

Figure 30: Example greedy solutions for the CVRP (n = 100). Edges from and to depot
omitted for clarity. Legend order/coloring and arcs indicate the order in which
the solution was generated. Legends indicate the number of stops, the used and
available capacity and the distance per route.
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visiting each node is optional. Similar to the VRP, we add a special depot node with
index 0 and coordinates x0. If the model selects the depot, we consider the route to
be finished. In order to prevent infeasible solutions, we only allow to visit a node if
after visiting that node a return to the depot is still possible within the maximum
length constraint. Note that it is always suboptimal to visit the depot if additional
nodes can be visited, but we do not enforce this knowledge.

a.4.1 Instance generation

The depot location as well as n node locations are sampled uniformly at random
in the unit square. For the distribution of the prizes, we consider three different
variants described by Fischetti et al. (1998), but we normalize the prizes ρi such that
the normalized prizes ρ̂i are between 0 and 1.

constant ρi = ρ̂i = 1. Every node has the same prize so the goal becomes to
visit as many nodes as possible within the length constraint.

uniform ρi ∼ DiscreteUniform(1, 100), ρ̂i =
ρi

100 . Every node has a prize that is
(discretized) uniform.

distance ρi = 1 +

⌊
99 · d0i

maxn
j=1 d0j

⌋
, ρ̂i =

ρi
100 , where d0i is the distance from the

depot to node i. Every node has a (discretized) prize that is proportional to the
distance to the depot. This is designed to be challenging as the largest prizes are
furthest away from the depot (Fischetti et al., 1998).

The maximum length Tn for instances with n nodes (and a depot) is chosen to be
(on average) approximately half of the length of the average TSP tour for uniform
TSP instances with n nodes4. This idea is that this way approximately (a little more
than) half of the nodes can be visited, which results in the most difficult problem
instances (Vansteenwegen et al., 2011). This is because the number of possible node
selections (n

k) is maximized if k = n
2 and additionally determining the actual path is

harder with more nodes selected. We set fixed maximum lengths T20 = 2, T50 = 3
and T100 = 4 instead of adjusting the constraint per instance, such that for some
instances more or less nodes can be visited. Note that Tn has the same unit as the
node coordinates xi, so we do not normalize them.

4 The average length of the optimal TSP tour is 3.84, 5.70 and 7.76 for n = 20, 50, 100.
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a.4.2 Attention model for the OP

encoder Similar to the VRP, we use separate parameters for the depot node
embedding. Additionally, we provide the node prize ρ̂i as input feature:

h(0)
i =

Wx
0 xi + bx

0 i = 0

Wx [xi , ρ̂i] + bx i = 1, . . . , n.
(84)

maximum length constraint In order to satisfy the maximum length con-
straint, we keep track of the remaining maximum length Tt at time t. Starting at
t = 1, T1 = T. Then for t > 0, T is updated as

Tt+1 = Tt − dπt−1 ,πt . (85)

Here dπt−1 ,πt is the distance from node πt−1 to πt and we conveniently define π0 =
0 as we start at the depot.

decoder context The context for the decoder for the OP at time t is the curren-
t/last location πt−1 and the remaining maximum length Tt. Similar to VRP, we do
not need placeholders if t = 1 as the route starts at the depot and we do not need to
provide information about the first node as the route should end at the depot. We
do not need to provide information on the prizes gathered as this is irrelevant for
the remaining decisions. The context is defined as:

h(N)
(c) =


[
h̄(N), h(N)

πt−1 , Tt

]
t > 1[

h̄(N), h(N)
0 , Tt

]
t = 1.

(86)

masking In the OP, the depot node can always be visited so is never masked.
Regular nodes are masked (i.e. cannot be visited) if either they are already visited
or if they cannot be visited within the remaining length constraint:

u(c)j = −∞⇔ ∃t′ < t : πt′ = j or dπt−1 ,j + dj0 > Tt (87)

a.4.3 Details of baselines

For Compass5 by Kobeaga et al. (2018), we compile their code and run it with de-
fault parameters, only adding -op -op-ea4op to indicate that the Genetic Algorithm
for the Orienteering Problem should be used. As Compass uses integer coordinates
and prizes, we multiply all floats by 107 and round to integers. We run the Python
Genetic Algorithm6 with default parameters.

5 https://github.com/bcamath-ds/compass
6 https://github.com/mc-ride/orienteering

https://github.com/bcamath-ds/compass
https://github.com/mc-ride/orienteering
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tsiligirides Tsiligirides (1984) describes a heuristic procedure for solving the
OP. It consists of sampling 3000 tours through a randomized construction procedure
and applies local search on top. The randomized construction part of the heuristic
is structurally exactly the same as the heuristic learned by our model, but with a
manually engineered function to define the node probabilities. We implement the
construction part of the heuristic and compare it to our model (either greedy or
sampling 1280 solutions), without the local search (as this can also be applied on
top of our model). The final heuristic used by Tsiligirides (1984) uses a formula
with multiple terms to define the probability that a node should be selected, but
by tuning the weights the form with only one simple term works best, showing
the difficulty of manually defining a good probability distribution. In our terms,
the heuristic defines a score si for each node at time t as the prize divided by the
distance from the current node πt−1, raised to the 4th power:

si =

(
ρ̂i

dπt−1 ,i

)4

. (88)

Let S be the set with the min(4, n− (t− 1)) unvisited nodes with maximum score
si. Then the node probabilities pi at time t are defined as

pi = pθ(πt = i|s, π1:t−1) =


si

∑j∈S sj
if i ∈ S

0 otherwise.
(89)

or-tools For the Google OR-Tools implementation, we modify the formulation
for the CVRP7:

• We replace the Manhattan distance by the Euclidean distance.

• We set the number of vehicles to 1.

• For each individual node i, we add a disjunction constraint with {i} as the set
of nodes, and a penalty equal to the prize ρ̂i. This allows OR-Tools to skip
node i at a cost ρ̂i.

• We replace the capacity constraint by a maximum distance constraint.

• We remove the objective to minimize the length.

We multiply all float inputs by 107 and round to integers. Note that OR-Tools
computes penalties for skipped nodes rather than gains for nodes that are visited.
The problem is equivalent, but in order to compare the objective value against our
method, we need to add the constant sum of all penalties ∑i ρ̂i to the OR-Tools
objective.

7 https://github.com/google/or-tools/blob/master/examples/python/cvrp.py

https://github.com/google/or-tools/blob/master/examples/python/cvrp.py
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Table 7: Additional results for the OP

Method 20 50 100

O
P

(c
o

n
s
t
a

n
t

)

Gurobi 10.57 (4m) - -
Compass 10.56 (55s) 29.58 (3m) 59.35 (8m)

Tsili (greedy) 8.82 (5s) 23.89 (4s) 47.65 (5s)
AM (greedy) 10.27 (0s) 28.31 (2s) 55.81 (5s)

GA (Python) 9.72 (10m) 18.52 (1h) 25.68 (5h)
OR-Tools (10s) 8.54 (52m) - -
Tsili (sampling) 10.48 (28s) 28.26 (2m) 54.27 (6m)
AM (sampling) 10.49 (4m) 29.36 (17m) 58.33 (56m)

O
P

(u
n

i
f
o

r
m

)

Gurobi 5.85 (7m) - -
Compass 5.84 (1m) 16.46 (5m) 33.30 (14m)

Tsili (greedy) 4.85 (4s) 12.80 (4s) 25.48 (5s)
AM (greedy) 5.60 (0s) 15.62 (2s) 31.03 (5s)

GA (Python) 5.53 (10m) 10.81 (1h) 14.89 (5h)
OR-Tools (10s) 4.69 (52m) - -
Tsili (sampling) 5.70 (26s) 15.28 (2m) 29.54 (5m)
AM (sampling) 5.76 (4m) 16.25 (16m) 32.41 (51m)

a.4.4 Extended results

Table 7 displays the results for the OP with constant and uniform prize distributions.
The results are similar to the results for the prize distribution based on the distance
to the depot, although by the calculation time for Gurobi it is confirmed that indeed
constant and uniform prize distributions are easier.

a.5 prize collecting tsp

In the prize collecting TSP (PCTSP) each node has a prize ρi and an associated
penalty βi. The goal is to minimize the total length of the tour plus the sum of
penalties for nodes which are not visited, while collecting at least a given minimum
total prize. W.l.o.g. we assume the minimum total prize is equal to 1 (as prizes can
be normalized). This problem is related to the OP but inverts the goal (minimizing
tour length given a minimum total prize to collect instead of maximizing total prize
given a maximum tour length) and additionally adds penalties. Again, we add a
special depot node with index 0 and coordinates x0 and if the model selects the
depot, the route is finished. In the PCTSP, it can be beneficial to visit additional
nodes, even if the minimum total prize constraint is already satisfied, in order to
avoid penalties.
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a.5.1 Instance generation

The depot location as well as n node locations are sampled uniformly at random
in the unit square. Similar to the OP, we select the distribution for the prizes and
penalties with the idea that for difficult instances approximately half of the nodes
should be visited. Additionally, neither the prize nor the penalty should dominate
the node selection process.

prizes We consider uniformly distributed prizes. If we sample prizes ρi ∼
Uniform(0, 1), then E(ρi) = 1

2 , and the expected total prize of any subset of n
2

nodes (i.e. half of the nodes) would be n
4 . Therefore, if S is the set of nodes that is

visited, we require that ∑i∈S ρi ≥ n
4 , or equivalently ∑i∈S ρ̂i ≥ 1 where ρ̂i = ρi · 4

n
is the normalized prize. Note that it can be the case that ∑n

i=1 ρ̂i < 1, in which case
the prize constraint may be violated but it is only allowed to return to the depot
after all nodes have been visited.

penalties If penalties are too small, then node selection is determined almost
entirely by the minimum total prize constraint. If penalties are too large, we will
always visit all nodes, making the minimum total prize constraint obsolete. We
argue that in order for the penalties to be meaningful, they should contribute a
term in the objective approximately equal to the total length of the tour. If Ln is
the expected TSP tour length with n nodes, we try to achieve this by sampling
βi ∼ Uniform(0, 2 · Ln

n ) such that E(βi) = Ln

n and the expected total penalty for
a subset of n

2 nodes is Ln

2 . Following the numbers we use for the OP, we roughly
define Ln

2 ≈ Kn = 2, 3, 4 for n = 20, 50, 1008. This means that we should sample
βi ∼ Uniform(0, 4 · Kn

n ), but empirically we find that β̂i ∼ Uniform(0, 3 · Kn

n ) works
better, which means that the prizes and penalties are balanced as the minimum total
prize constraint is sometimes binding and sometimes not.

a.5.2 Attention model for the PCTSP

encoder Again, we use separate parameters for the depot node embedding.
Additionally, we provide the node prize ρ̂i and the penalty β̂i as input features:

h(0)
i =

Wx
0 xi + bx

0 i = 0

Wx [xi , ρ̂i , β̂i
]
+ bx i = 1, . . . , n.

(90)

minimum prize constraint In order to satisfy the minimum total prize con-
straint, we keep track of the remaining total prize Pt to collect at time t. At t = 1,
P1 = 1 (as we normalized prizes). Then for t > 0, P is updated as

Pt+1 = max(0, Pt − ρ̂πt). (91)

8 The average length of the optimal TSP tour is 3.84, 5.70 and 7.76 for n = 20, 50, 100.
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If the constraint is satisfied after visiting πt is visited at time t, then Pt+1 will be 0.

decoder context The context for the decoder for the PCTSP at time t is the
current/last location πt−1 and the remaining prize to collect Pt. Again, we do not
need placeholders if t = 1 as the route starts at the depot and we do not need to
provide information about the first node as the route should end at the depot. The
information about the prizes collected is implicitly provided to the model in the
form of Pt and we do not need to provide any information about the penalties as
this is irrelevant for the remaining decisions:

h(N)
(c) =


[
h̄(N), h(N)

πt−1 , Pt

]
t > 1[

h̄(N), h(N)
0 , Pt

]
t = 1.

(92)

masking In the PCTSP, the depot node cannot be visited if the remaining prize
to collect Pt is larger than 0 and not yet all nodes have been visited (so t ≤ n):

u(c)0 = −∞⇔ Pt > 0 and t ≤ n. (93)

Regular nodes are masked (i.e. cannot be visited) only if they are already visited:

u(c)j = −∞⇔ ∃t′ < t : πt′ = j. (94)

a.5.3 Details of baselines

For the C++ iterated local search (ILS) algorithm9, we perform 1 run as this takes
already 2 minutes per instance (single thread) on average. For the Python ILS
algorithm10 we perform 10 runs as this algorithm is fast. This improved results
somewhat for n = 20.

or-tools For the Google OR-Tools implementation, we modify the formulation
for the CVRP11:

• We replace the Manhattan distance by the Euclidean distance.

• We set the number of vehicles to 1.

• For each individual node i, we add a disjunction constraint with {i} as the set
of nodes, and a penalty equal to the penalty β̂i. This allows OR-Tools to skip
node i at a cost β̂i.

• We replace the capacity constraint by a minimum total prize constraint by
adding the prizes as a dimension.

9 https://github.com/jordanamecler/PCTSP
10 https://github.com/rafael2reis/salesman
11 https://github.com/google/or-tools/blob/master/examples/python/cvrp.py

https://github.com/jordanamecler/PCTSP
https://github.com/rafael2reis/salesman
https://github.com/google/or-tools/blob/master/examples/python/cvrp.py
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We multiply all float inputs by 107 and round to integers. Note that we keep the total
length objective from the CVRP and add the disjunction constraint with penalties
to obtain the right objective.

a.6 stochastic pctsp (spctsp)

For the SPCTSP, we assume that the real prize collected ρ̂∗i at each node only be-
comes known when visiting the node, and ρ̂i = E

[
ρ̂∗i
]

is the expected prize. We
assume the real prizes follow a uniform distribution, so ρ̂∗i ∼ Uniform(0, 2ρ̂i).

a.6.1 Attention model for the SPCTSP

In order to apply the attention model to the stochastic PCTSP, the only change
we need is that we use the real ρ̂∗i to update the remaining prize to collect Pt in
equation 91:

Pt+1 = max(0, Pt − ρ̂∗πt). (95)

We could theoretically use the model trained for PCTSP without retraining, but we
choose to retrain. This way the model could (for example) learn that if it needs to
gather a remaining (normalized) prize of 0.1, it might prefer to visit a node with
expected prize 0.2 over a node with expected prize 0.1 as the first real prize will be
≥ 0.1 with probability 75% (uniform prizes) whereas the latter only with 50% and
thus has a probability of 50% to not satisfy the constraint.

a.6.2 Rollout baseline in the stochastic setting

Instead of sampling the real prizes online, we already sample them when creating
the dataset but keep them hidden to the algorithm. This way, when using a rollout
baseline, both the greedy rollout baseline as well as the sample (rollout) from the
model use the same real prizes, such that any difference between the two is not
a result of stochasticity. This can be seen as a variant of using common random
numbers for variance reduction (Glasserman and Yao, 1992).

a.6.3 Details of baselines

For the SPCTSP, it is not possible to formulate an exact model that constructs a tour
offline (as any tour can be infeasible with nonzero probability) and an algorithm that
computes the optimal decision online should take into account an infinite number
of scenarios. As a baseline we implement a strategy that:
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1. Plans a tour using the expected prizes ρ̂i

2. Executes part of the tour (not returning to the depot), observing the real prizes
ρ̂∗i

3. Computes the remaining total prize that needs to be collected

4. Computes a new tour (again using expected prizes ρ̂i), starting from the last
node that was visited, through nodes that have not yet been visited and ending
at the depot

5. Repeats the steps (2) - (4) above until the minimum total prize has been col-
lected or all nodes have been visited

6. Returns to the depot

Planning of the tours using deterministic prizes means we need to solve a (deter-
ministic) PCTSP, for which we use the ILS C++ algorithm as this was the strongest
algorithm for PCTSP (for large n). Note that in (4), we have a variant of the PCTSP
where we do not have a single depot, but rather separate start and end points,
whereas the ILS C++ implementation assumes starting and ending at a single depot.
However, as the ILS C++ implementation uses a distance matrix, we can effectively
plan with a start and end node by defining the distance from the ‘depot’ to node
j as the distance from the start node (the last visited node) to node j, whereas we
leave the distance from node j to the depot/end node unchanged (so the distance
matrix becomes asymmetrical). Additionally, we remove all nodes (rows/columns
in the distance matrix) that have already been visited from the problem.

We consider three variants that differ in the number of nodes that are visited
before replanning the tour, for a tradeoff between adaptivity and run time:

1. All nodes in the planned tour are visited (except the final return to the depot).
We only need to replan and visit additional nodes if the constraint is not
satisfied, otherwise we return to the depot.

2. Half of the nodes in the planned tour are visited, where we visit k nodes if there
are 2k + 1 nodes (excluding the return to the depot), so we round down if an
odd number of visits is planned. This way, we will have O(log n) replanning
iterations, while being more adaptive when we are closer to satisfying the
total prize constraint. This is a trade-off of adaptivity vs computation time.

3. Only the first node is visited, after which we directly replan. This allows the
algorithm to take new online information about the real prizes into account
directly, but is very expensive to compute as it requires O(n) iterations.



B D E E P P O L I C Y DY N A M I C
P R O G R A M M I N G

b.1 the graph neural network model

For the TSP, we use the exact model from Joshi et al. (2019a), which we describe here
for self-containment. The model uses node input features and edge input features,
which get transformed into initial representations of the nodes and edges. These
representations then get updated sequentially using a number of graph convolu-
tional layers, which exchange information between nodes and edges, after which
the final edge representation is used to predict whether the edge is part of the
optimal solution.

input features and initial representation The model uses input features
for the nodes, consisting of the (x, y)-coordinates, which are then projected into
H-dimensional initial embeddings x0

i (H = 300). The initial edge features e0
ij are a

concatenation of a H
2 -dimensional projection of the cost (Euclidean distance) cij from

i to j, and a H
2 -dimensional embedding of the edge type: 0 for normal edges, 1 for

edges connecting K-nearest neighbors (K = 20) and 2 for self-loop edges connecting
a node to itself (which are added for ease of implementation).

graph convolutional layers In each of the L = 30 layers of the model, the
node and edge representations x`i and e`ij get updated into x`+1

i and e`+1
ij (Joshi et al.,

2019a):

x`+1
i = x`i + ReLU

BN

W`
1 x`i + ∑

j∈N (i)

σ(e`ij)

∑j′∈N (i) σ(e`ij′)
�W`

2 x`j

 (96)

e`+1
ij = e`ij + ReLU

(
BN

(
W`

3 e`ij + W`
4 x`i + W`

5 x`j
))

. (97)

Here N (i) is the set of neighbors of node i (in our case all nodes, including i, as
we use a fully connected input graph), � is the element-wise product and σ is the
sigmoid function, applied element-wise to the vector e`ij. ReLU(·) = max(·, 0) is
the rectified linear unit and BN represents batch normalization (Ioffe and Szegedy,
2015). W1, W2, W3, W4 and W5 are trainable parameter matrices, where we fix W4 =

W5 for the symmetric TSP.

output prediction After L layers, the final prediction hij ∈ (0, 1) is made inde-
pendently for each edge (i, j) using a multi-layer perceptron (MLP), which takes eL

ij
as input and has two H-dimensional hidden layers with ReLU activation and a 1-
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dimensional output layer, with sigmoid activation. We interpret hij as the predicted
probability that the edge (i, j) is part of the optimal solution, which indicates how
promising this edge is when searching for the optimal solution.

training For TSP, the model is trained on a dataset of 1 million optimal solu-
tions, found using Concorde (Applegate et al., 2006), for randomly generated TSP
instances. The training loss is a weighted binary cross-entropy loss, that maximizes
the prediction quality when hij is compared to the ground-truth optimal solution.
Generating the dataset takes between half a day and a few days (depending on
number of CPU cores), and training the model takes a few days on one or multiple
GPUs, but both are only required once given a desired data distribution.

b.1.1 Predicting directed edges for the TSPTW

The TSP is an undirected problem, so the neural network implementation1 by Joshi
et al. (2019a) shares the parameters W l

4 and W l
5 in equation 97, i.e. W l

4 = W l
5, re-

sulting in el
ij = el

ji for all layers l, as for l = 0 both directions are initialized the
same. While the VRP also is an undirected problem, the TSPTW is directed as the
direction of the route determines the times of arrival at different nodes. To allow
the model to make different predictions for different directions, we implement W l

5

as a separate parameter, such that the model can have different representations for
edges (i, j) and (j, i). We define the training labels accordingly for directed edges,
so if edge (i, j) is in the directed solution, it will have a label 1 whereas the edge
(j, i) will not (for the undirected TSP and VRP, both labels are 1).

b.1.2 Dataset generation for the TSPTW

We found that using our DP formulation for TSPTW, the instances by Cappart et
al. (2021) were all solved optimally, even with a very small beam size (around 10).
This is because there is very little overlap in the time windows as a result of the
way they are generated, and therefore very few actions are feasible as most of the
actions would ‘skip over other time windows’ (advance the time so much that other
nodes can no longer be served)2. We conducted some quick experiments with a
weaker DP formulation, that only checks if actions directly violate time windows,
but does not check if an action causes other nodes to be no longer reachable in their
time windows. Using this formulation, the DP algorithm can run into many dead
ends if just a single node gets skipped, and using the GNN policy (compared to a
cost based policy as in Section 4.4.4) made the difference between good solutions
and no solution at all being found.

1 https://github.com/chaitjo/graph-convnet-tsp/blob/master/models/gcn_layers.py
2 If all time windows are disjoint, there is only one feasible solution. Therefore, the amount of overlap in

time windows determines to some extent the ‘branching factor’ of the problem and the difficulty.

https://github.com/chaitjo/graph-convnet-tsp/blob/master/models/gcn_layers.py


b.2 implementation 139

We made two changes to the data generation procedure by Cappart et al. (2021)
to increase the difficulty and make it similar to Da Silva and Urrutia (2010), defining
the ‘large time window’ dataset. First, we sample the time windows around arrival
times when visiting nodes in a random order without any waiting time, which is
different from Cappart et al. (2021) who ‘propagate’ the waiting time (as a result
of time windows sampled). Our modification causes a tighter schedule with more
overlap in time windows, and is similar to Da Silva and Urrutia (2010). Secondly,
we increase the maximum time window size from 100 to 1000, which makes that the
time windows are in the order of 10% of the horizon3. This doubles the maximum
time window size of 500 used by Da Silva and Urrutia (2010) for instances with 200

nodes, to compensate for half the number of nodes that can possibly overlap the
time window.

To generate the training data, for practical reasons we used DP with the heuristic
‘cost heat + potential’ strategy and a large beam size (1M), which in many cases
results in optimal solutions being found.

b.2 implementation

We implement the dynamic programming algorithm on the GPU using PyTorch
(Paszke et al., 2019). While mostly used as a Deep Learning framework, it can be
used to speed up generic (vectorized) computations.

b.2.1 Beam variables

For each solution in the beam, we keep track of the following variables (storing them
for all solutions in the beam as a vector): the cost, current node, visited nodes and
(for VRP) the remaining capacity or (for TSPTW) the current time. As explained,
these variables can be computed incrementally when generating expansions. Ad-
ditionally, we keep a variable vector parent, which, for each solution in the current
beam, tracks the index of the solution in the previous beam that generated the ex-
panded solution. To compute the score of the policy for expansions efficiently, we
also keep track of the score for each solution and the potential for each node for
each solution incrementally.

We do not keep past beams in memory, but at the end of each iteration, we
store the vectors containing the parents as well as last actions for each solution on
the trace. As the solution is completely defined by the sequence of actions, this
allows to backtrack the solution after the algorithm has finished. To save GPU
memory (especially for larger beam sizes), we store the O(Bn) sized trace on the
CPU memory.

3 Serving 100 customers in a 100x100 grid, empirically we find the total schedule duration including
waiting (the makespan) is around 5000.
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(a) Example beam for VRP with variables, grouped by set
of visited nodes (left) and feasible, non-dominated expan-
sions (right), with 2n columns corresponding to n direct
expansions and n via-depot expansions. Some expansions
to unvisited nodes are infeasible, e.g. due to the capacity
constraint or a sparse adjacency graph. The shaded ar-
eas indicate groups of candidate expansions among which
dominances should be checked: for each set of visited
nodes there is only one non-dominated via-depot expan-
sion (indicated by solid green square), which must neces-
sarily be an expansion of the solution that has the lowest
cost to return to the depot (indicated by the dashed green
rectangle ; note that the cost displayed excludes the cost
to return to the depot). Direct expansions can be domi-
nated (indicated by red dotted circles) by the single non-
dominated via-depot expansion or other direct expansions
with the same DP state (set of visited nodes and expanded
node, as indicated by the shaded areas). See also Figure
31b for (non-)dominated expansions corresponding to the
same DP state.
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(b) Example of a set of dominated
and non-dominated expansions (di-
rect and via-depot) corresponding
to the same DP state (set of visited
nodes and expanded node i) for
VRP. Non-dominated expansions
have lower cost or higher remain-
ing capacity compared to all other
expansions. The right striped area
indicates expansions dominated by
the (single) non-dominated via-
depot expansion. The left (darker)
areas are dominated by individual
direct expansions. Dominated ex-
pansions in this area have remain-
ing capacity lower than the cumu-
lative maximum remaining capacity
when going from left to right (i.e.
in sorted order of increasing cost),
indicated by the black horizontal
lines.

Figure 31: Implementation of DPDP for VRP

For efficiency, we keep the set of visited nodes as a bitmask, packed into 64-bit
long integers (2 for 100 nodes). Using bitwise operations with the packed adjacency
matrix, this allows to quickly check feasible expansions (but we need to unpack
the mask into boolean vectors to find all feasible expansions explicitly). Figure 31a
shows an example of the beam (with variables related to the policy and backtracking
omitted) for the VRP.

b.2.2 Generating non-dominated expansions

A solution a can only dominate a solution a′ if visited(a) = visited(a′) and
current(a) = current(a′), i.e. if they correspond to the same DP state. If this is
the case, then, if we denote by parent(a) the parent solution from which a was
expanded, it holds that

visited(parent(a)) = visited(a) \ {current(a)}

= visited(a′) \ {current(a′)}

= visited(parent(a′)).
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This means that only expansions from solutions with the same set of visited nodes
can dominate each other, so we only need to check for dominated solutions among
groups of expansions originating from parent solutions with the same set of visited
nodes. Therefore, before generating the expansions, we group the current beam (the
parents of the expansions) by the set of visited nodes (see Figure 31a). This can be
done efficiently, e.g. using a lexicographic sort of the packed bitmask representing
the sets of visited nodes4.

travelling salesman problem For TSP, we can generate (using boolean oper-
ations) the B× n matrix with boolean entries indicating feasible expansions (with n
action columns corresponding to n nodes, similar to the B× 2n matrix for VRP in
Figure 31a), i.e. nodes that are unvisited and adjacent to the current node. If we find
positive entries sequentially for each column (e.g. by calling torch.nonzero on the
transposed matrix), we get all expansions grouped by the combination of action
(new current node) and parent set of visited nodes, i.e. grouped by the DP state.
We can then trivially find the segments of consecutive expansions corresponding to
the same DP state, and we can efficiently find the minimum cost solution for each
segment, e.g. using torch_scatter

5.

vehicle routing problem For VRP, the dominance check has two dimensions
(cost and remaining capacity) and additionally we need to consider 2n actions: n
direct and n via the depot (see Figure 31a). Therefore, as we will explain, we check
dominances in two stages: first we find (for each DP state) the single non-dominated
‘via-depot’ expansion, after which we find all non-dominated ‘direct’ expansions
(see Figure 31b).

The DP state of each expansion is defined by the expanded node (the new current
node) and the set of visited nodes. For each DP state, there can be only one6 non-
dominated expansion where the last action was via the depot, since all expansions
resulting from ‘via-depot actions’ have the same remaining capacity as visiting the
depot resets the capacity (see Figure 31b). To find this expansion, we first find, for
each unique set of visited nodes in the current beam, the solution that can return
to the depot with lowest total cost (thus including the cost to return to the depot,
indicated by a dashed green rectangle in Figure 31a). The single non-dominated
‘via-depot expansion’ for each DP state must necessarily be an expansion of this so-
lution. Also observe that this via-depot solution cannot be dominated by a solution
expanded using a direct action, which will always have a lower remaining vehicle
capacity (assuming positive demands) as can bee seen in Figure 31b. We can thus
generate the non-dominated via-depot expansion for each DP state efficiently and
independently from the direct expansions.

For each DP state, all direct expansions with cost higher (or equal) than the via-
depot expansion can directly be removed since they are dominated by the via-depot

4 For efficiency, we use a custom function similar to torch.unique, and argsort the returned inverse after
which the resulting permutation is applied to all variables in the beam.

5 https://github.com/rusty1s/pytorch_scatter
6 Unless we have multiple expansions with the same costs, in which case can pick one arbitrarily.

https://github.com/rusty1s/pytorch_scatter
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expansion (having higher cost and lower remaining capacity, see Figure 31b). After
that, we sort the remaining (if any) direct expansions for each DP state based on the
cost (using a segmented sort as the expansions are already grouped if we generate
them similarly to TSP, i.e. per column in Figure 31a). For each DP state, the lowest
cost solution is never dominated. The other solutions should be kept only if their
remaining capacity is strictly larger than the largest remaining capacity of all lower-
cost solutions corresponding to the same DP state, which can be computed using a
(segmented) cumulative maximum computation (see Figure 31b).

tsp with time windows For the TSPTW, the dominance check has two dimen-
sions: cost and time. Therefore, it is similar to the check for non-dominated direct
expansions for the VRP (see Figure 31b), but replacing remaining capacity (which
should be maximized) by current time (to be minimized). In fact, we could reuse
the implementation, if we replace remaining capacity by time multiplied by −1 (as
this should be minimized). This means that we sort all expansions for each DP state
based on the cost, keep the first solution and keep other solutions only if the time
is strictly lower than the lowest current time for all lower-cost solutions, which can
be computed using a cumulative minimum computation.

b.2.3 Finding the top B solutions

We may generate all ‘candidate’ non-dominated expansions and then select the top
B using the score function. Alternatively, we can generate expansions in batches,
and keep a streaming top B using a priority queue. We use the latter implementa-
tion, where we can also derive a bound for the score as soon as we have B candidate
expansions. Using this bound, we can already remove solutions before checking
dominances, to achieve some speedup in the algorithm.7

b.2.4 Performance improvements

There are many possibilities for improving the speed of the algorithm. For example,
PyTorch lacks a segmented sort so we use a much slower lexicographic sort instead.
Also an efficient GPU priority queue would allow much speedup, as we currently
use sorting as PyTorch’ top-k function is rather slow for large k. In some cases, a
binary search for the k-th largest value can be faster, but this introduces undesired
CUDA synchronisation points.

7 This may give slightly different results if the scoring function is inconsistent with the domination rules,
i.e. if a better scoring solution would be dominated by a worse scoring solution but is not since that
solution is removed using the score bound before checking the dominances.



C A N C E S T R A L G U M B E L-TO P- k

S A M P L I N G

c.1 sampling a set of gumbels with maximum T

As explained in Section 5.3.5, to sample a set of Gumbels with maximum T, let
Gφi ∼ Gumbel(φi), let Z = maxi Gφi and define

G̃φi = F−1
φi ,T

(Fφi ,Z(Gφi )) = − log(exp(−T)− exp(−Z) + exp(−Gφi )). (98)

Direct computation of equation 98 can be unstable as large terms need to be expo-
nentiated. Instead, we compute

vi = T − Gφi + log1mexp(Gφi − Z),

G̃φi = T −max(0, vi)− log1pexp(−|vi|)

where we have defined

log1mexp(a) = log(1− exp(a)), a ≤ 0

log1pexp(a) = log(1 + exp(a)).

This is equivalent as

T −max(0, vi)− log(1 + exp(−|vi|))

= T − log(1 + exp(vi))

= T − log
(
1 + exp

(
T − Gφi + log

(
1− exp

(
Gφi − Z

))))
= T − log

(
1 + exp

(
T − Gφi

) (
1− exp

(
Gφi − Z

)))
= T − log

(
1 + exp

(
T − Gφi

)
− exp (T − Z)

)
= − log

(
exp(−T) + exp(−Gφi )− exp(−Z)

)
= G̃φi

The first step can be easily verified by considering the cases vi < 0 and vi ≥ 0.
log1mexp and log1pexp can be computed accurately using log1p(a) = log(1 + a)
and expm1(a) = exp(a)− 1 (Mächler, 2012):

log1mexp(a) =

log(− expm1(a)) a > −0.693

log1p(− exp(a)) otherwise,

log1pexp(a) =

log1p(exp(a)) a < 18

a + exp(−a) otherwise.

143



144 ancestral gumbel-top-k sampling

c.2 unbiasedness of the importance weighted
estimator

We give a proof of unbiasedness of the importance weighted estimator, which is
adapted from the proofs by Duffield et al. (2007) and Vieira (2017). For generality of
the proof, we enumerate categories in the domain D by i = 1, ..., n and we consider
general random keys hi for i = 1, ..., n (not necessarily Gumbel perturbations). As
was noted by Vieira (2017), the actual distribution of the keys does not influence the
unbiasedness of the estimator, but does determine the effective sampling scheme.
Using Gumbel perturbed log-probabilities as keys (e.g. hi = Gφi ) is equivalent to
the PPSWOR scheme described by Vieira (2017). For simplicity, we write pi = pθ(i)
and qi(a) = qθ,a(i) = P(hi > a) (see Equation 44), and we define h1:n = {h1, ..., hn}
and h−i = {h1, ..., hi−1, hi+1, ..., hn} = h1:n \ {hi}.

Given a fixed threshold a, it holds that qi(a) = P(i ∈ S) is the probability that
category i is included in the sample S, so it can be thought of as the inclusion
probability of i. Given a fixed sample size k, let κ be the (k + 1)-th largest element of
h1:n, so κ is the empirical threshold. Let κ′i be the k-th largest element of h−i (the k-th
largest of all other elements). We first prove Lemma 9, which is then used to prove
Theorem 10, which states that the importance weighted estimator is an unbiased
estimator of E[ f (i)], for a given function f (i).

Lemma 9. The expected weight of each term in the importance weighted estimator is 1:

Eh1:n

[
1{i∈S}
qi(κ)

]
= 1.

Proof. We make use of the observation (slightly rephrased) by Duffield et al. (2007)
that conditioning on h−i, we know κ′i , and the event i ∈ S implies that κ = κ′i since
i will only be in the sample if hi > κ′i , which means that κ′i is the (k + 1)-th largest
value of h−i ∪ {hi} = h1:n. The reverse is also true: if κ = κ′i then hi must be larger
than κ′i since otherwise the (k + 1)-th largest value of h1:n will be smaller than κ′i .
By separating the expectation over h1:n it follows that

Eh1:n

[
1{i∈S}
qi(κ)

]
=Eh−i

[
Ehi

[
1{i∈S}
qi(κ)

∣∣∣∣hi

]]
=Eh−i

[
Ehi

[
1{i∈S}
qi(κ)

∣∣∣∣h−i , i ∈ S
]

P(i ∈ S|h−i) + Ehi

[
1{i∈S}
qi(κ)

∣∣∣∣h−i , i 6∈ S
]

P(i 6∈ S|h−i)

]
=Eh−i

[
Ehi

[
1

qi(κ)

∣∣∣∣h−i , i ∈ S
]

qi(κ
′
i) + 0

]
=Eh−i

[
Ehi

[
1

qi(κ)

∣∣∣∣κ = κ′i

]
qi(κ

′
i)

]
=Eh−i

[
1

qi(κ
′
i)

qi(κ
′
i)

]
= Eh−i [1] = 1.
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Theorem 10. The importance weighted estimator is an unbiased estimator of E[ f (i)]:

Eh1:n

[
∑
i∈S

pi
qi(κ)

f (i)

]
= E[ f (i)].

Proof.

Eh1:n

[
∑
i∈S

pi
qi(κ)

f (i)

]
=Eh1:n

[
n

∑
i=1

pi
qi(κ)

f (i)1{i∈S}

]

=
n

∑
i=1

pi f (i) ·Eh1:n

[
1{i∈S}
qi(κ)

]
=

n

∑
i=1

pi f (i) · 1

=E[ f (i)].

c.3 numerical stability of importance weights

We have to take care computing the importance weights as, depending on the en-
tropy, the terms in the quotient pi

qi(κ)
(using notation from Appendix C.2) can be-

come very small, and the computation of qi(κ) = 1 − exp(− exp(φi − κ)) (equa-
tion 44) can suffer from catastrophic cancellation. We can rewrite this expres-
sion using the more numerically stable implementation expm1(x) = exp(x) − 1
as qi(κ) = −expm1(− exp(φi − κ)) but this may still suffer from instability as
exp(φi − κ) can underflow if φi − κ is small. Instead, for φi − κ < −10 we use

log(1− exp(−z)) = log(z)− z
2
+

z2

24
− z4

2880
+O(z6)

to directly compute the log importance weight using z = exp(φi− κ) and φi = log pi

(we assume φi is normalized). Since qi(κ) = 1− exp(−z), we have

log
(

pi
qi(κ)

)
= log pi − log qi(κ)

= log pi − log (1− exp(−z))

= log pi −
(

log(z)− z
2
+

z2

24
− z4

2880
+O(z6)

)
= log pi −

(
φi − κ − z

2
+

z2

24
− z4

2880
+O(z6)

)
= κ +

z
2
− z2

24
+

z4

2880
+O(z6).

If φi − κ < −10 then 0 < z < 10−6 so the result will not lose significant digits.





D E S T I M AT I N G G R A D I E N T S W I T H

S A M P L E S W I T H O U T R E P L A C E M E N T

d.1 notation

Throughout Appendix D we will use the following notation from Maddison et al.
(2014):

eφ(g) = exp(−g + φ)

Fφ(g) = exp(− exp(−g + φ))

fφ(g) = eφ(g)Fφ(g).

This means that Fφ(g) is the CDF and fφ(g) the PDF of the Gumbel(φ) distribution.
Additionally we will use the identities by Maddison et al. (2014):

Fφ(g)Fγ(g) = Flog(exp(φ)+exp(γ))(g) (99)∫ b

g=a
eγ(g)Fφ(g)∂g = (Fφ(b)− Fφ(a))

exp(γ)
exp(φ)

. (100)

Also, we will use the following notation, definitions and identities (see Kool et al.
(2019c)):

φi = log p(i) (101)

φS = log ∑
i∈S

p(i) = log ∑
i∈S

exp φi (102)

φD\S = log ∑
i∈D\S

p(i) = log

(
1−∑

i∈S
p(i)

)
= log(1− exp(φS)) (103)

Gφi ∼ Gumbel(φi) (104)

GφS = max
i∈S

Gφi ∼ Gumbel(φS) (105)

For a proof of equation 105, see Maddison et al. (2014).

d.2 computation of p(Sk ) , pD\C (S \ C) and R(Sk , s)

We can sample the set Sk from the Plackett-Luce distribution using the Gumbel-
top-k trick by drawing Gumbel variables Gφi ∼ Gumbel(φi) for each element and
returning the indices of the k largest Gumbels. If we ignore the ordering, this means
we will obtain the set Sk if mini∈Sk Gφi > maxi∈D\Sk Gφi . Omitting the superscript
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k for clarity, we can use the Gumbel-max trick, i.e. that GφD\S = maxi 6∈S Gφi ∼
Gumbel(φD\S) (equation 105) and marginalize over GφD\S :

p(S) = P(min
i∈S

Gφi > GφD\S)

= P(Gφi > GφD\S , i ∈ S)

=
∫ ∞

gφD\S=−∞
fφD\S(gφD\S)P(Gφi > gφD\S , i ∈ S)∂gφD\S

=
∫ ∞

gφD\S=−∞
fφD\S(gφD\S)∏

i∈S

(
1− Fφi (gφD\S)

)
∂gφD\S (106)

=
∫ 1

u=0
∏
i∈S

(
1− Fφi

(
F−1

φD\S
(u)
))

∂u (107)

Here we have used a change of variables u = FφD\S(gφD\S). This expression can
be efficiently numerically integrated (although another change of variables may be
required for numerical stability depending on the values of φ).

exact computation in O(2k) The integral in equation 106 can be computed
exactly using the identity

∏
i∈S

(ai − bi) = ∑
C⊆S

(−1)|C|∏
i∈C

bi ∏
i∈S\C

ai

which gives

p(S) =
∫ ∞

gφD\S=−∞
fφD\S(gφD\S)∏

i∈S

(
1− Fφi (gφD\S)

)
∂gφD\S

= ∑
C⊆S

(−1)|C|
∫ ∞

gφD\S=−∞
fφD\S(gφD\S)∏

i∈C
Fφi (gφD\S) ∏

i∈S\C
1∂gφD\S

= ∑
C⊆S

(−1)|C|
∫ ∞

gφD\S=−∞
eφD\S(gφD\S)FφD\S(gφD\S)FφC (gφD\S)∂gφD\S

= ∑
C⊆S

(−1)|C|
∫ ∞

gφD\S=−∞
eφD\S(gφD\S)Fφ(D\S)∪C (gφD\S)∂gφD\S

= ∑
C⊆S

(−1)|C|(1− 0)
exp(φD\S)

exp(φ(D\S)∪C)

= ∑
C⊆S

(−1)|C|
1−∑i∈S p(i)

1−∑i∈S\C p(i)
. (108)

computation of pD\C(S \ C) When using the Gumbel-top-k trick over the re-
stricted domain D \ C, we do not need to renormalize the log-probabilities φs, s ∈
D \ C since the Gumbel-top-k trick applies to unnormalized log-probabilities. Also,
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assuming C ⊆ Sk, it holds that (D \ C) \ (S \ C) = D \ S. This means that we can
compute pD\C(S \ C) similar to equation 106:

pD\C(S \ C) = P( min
i∈S\C

Gφi > Gφ(D\C)\(S\C))

= P( min
i∈S\C

Gφi > GφD\S)

=
∫ ∞

gφD\S=−∞
fφD\S(gφD\S) ∏

i∈S\C

(
1− Fφi (gφD\S)

)
∂gφD\S . (109)

computation of R(Sk , s) Note that, using equation 55, it holds that

∑
s∈Sk

pD\{s}(Sk \ {s})p(s)
p(Sk)

= ∑
s∈Sk

P(b1 = s|Sk) = 1

from which it follows that

p(Sk) = ∑
s∈Sk

pD\{s}(Sk \ {s})p(s)

such that

R(Sk , s) =
pD\{s}(Sk \ {s})

p(Sk)
=

pD\{s}(Sk \ {s})
∑s′∈Sk pD\{s′}(Sk \ {s′})p(s′)

. (110)

This means that, to compute the leave-one-out ratio for all s ∈ Sk, we only need
to compute pD\{s}(Sk \ {s}) for s ∈ Sk. When using the numerical integration or
summation in O(2k), we can reuse computation, whereas using the naive method,
the cost is O(k · (k− 1)!) = O(k!), making the total computational cost comparable
to computing just p(Sk), and the same holds when computing the ‘second-order’
leave one out ratios for the built-in baseline (equation 63).

details of numerical integration For computation of the leave-one-out ra-
tio (equation 110) for large k we can use the numerical integration, where we need
to compute equation 109 with C = {s}. For this purpose, we rewrite the integral as

pD\C(S \ C) =
∫ ∞

gφD\S=−∞
fφD\S(gφD\S) ∏

i∈S\C

(
1− Fφi (gφD\S)

)
∂gφD\S

=
∫ 1

u=0
∏

i∈S\C

(
1− Fφi

(
F−1

φD\S
(u)
))

∂u

=
∫ 1

u=0
∏

i∈S\C

(
1− uexp(φi−φD\S)

)
∂u

= exp(b) ·
∫ 1

v=0
vexp(b)−1 ∏

i∈S\C

(
1− vexp(φi−φD\S+b)

)
∂v

= exp(a + φD\S) ·
∫ 1

v=0
vexp(a+φD\S)−1 ∏

i∈S\C

(
1− vexp(φi+a)

)
∂v.
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Here we have used change of variables v = uexp(−b) and a = b− φD\S. This form
allows to compute the integrands efficiently, as

∏
i∈S\C

(
1− vexp(φi+a)

)
=

∏i∈S

(
1− vexp(φi+a)

)
∏i∈C

(
1− vexp(φi+a)

)
where the numerator only needs to computed once, and, since C = {s} when
computing equation 110, the denominator only consists of a single term.

The choice of a may depend on the setting, but we found that a = 5 is a good
default option which leads to an integral that is generally smooth and can be ac-
curately approximated using the trapezoid rule. We compute the integrands in
logarithmic space and sum the terms using the stable logsumexp trick. In our code
we provide an implementation which also computes all second-order leave-one-out
ratios efficiently.

d.3 the sum-and-sample estimator

d.3.1 Unbiasedness of the sum-and-sample estimator

We show that the sum-and-sample estimator is unbiased for any set C ⊂ D (see also
Liang et al. (2018) and Liu et al. (2019)):

Ex∼pD\C(x)

[
∑
c∈C

p(c) f (c) +

(
1− ∑

x∈C
p(c)

)
f (x)

]

= ∑
c∈C

p(c) f (c) +

(
1− ∑

c∈C
p(c)

)
Ex∼pD\C(x)[ f (x)]

= ∑
c∈C

p(c) f (c) +

(
1− ∑

c∈C
p(c)

)
∑

x∈D\C

p(x)
1−∑c∈C p(c)

f (x)

= ∑
c∈C

p(c) f (c) + ∑
x∈D\C

p(x) f (x)

= ∑
x∈D

p(x) f (x)

= Ex∼p(x)[ f (x)]
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d.3.2 Rao-Blackwellization of the stochastic sum-and-sample estimator

In this section we give the proof that Rao-Blackwellizing the stochastic sum-and-
sample estimator results in the unordered set estimator.

Theorem 11. Rao-Blackwellizing the stochastic sum-and-sample estimator results in the
unordered set estimator, i.e.

EBk∼p(Bk |Sk)

[
k−1

∑
j=1

p(bj) f (bj) +

(
1−

k−1

∑
j=1

p(bj)

)
f (bk)

]
= ∑

s∈Sk

p(s)R(Sk , s) f (s). (111)

Proof. To give the proof, we first prove three Lemmas.

Lemma 12.

P(bk = s|Sk) =
p(Sk \ {s})

p(Sk)

p(s)
1−∑s′∈Sk\{s} p(s′)

(112)

Proof. Similar to the derivation of P(b1 = s|Sk) (equation 55), we can write:

P(bk = s|Sk) =
P(Sk ∩ bk = s)

p(Sk)

=
p(Sk \ {s})pD\(Sk\{s})(s)

p(Sk)

=
p(Sk \ {s})

p(Sk)

p(s)
1−∑s′∈Sk\{s} p(s′)

.

The step from the first to the second row comes from analyzing the event Sk ∩ bk = s
using sequential sampling: to sample Sk (including s) with s being the k-th element
means that we should first sample Sk \ {s} (in any order), and then sample s from
the distribution restricted to D \ (Sk \ {s}).

Lemma 13.

p(S) + p(S \ {s}) 1−∑s′∈S p(s′)
1−∑s′∈S\{s} p(s′)

= pD\{s}(S \ {s}) (113)

Dividing equation 108 by 1−∑s′∈S p(s′) on both sides, we obtain
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Proof.
p(S)

1−∑s′∈S p(s′)

= ∑
C⊆S

(−1)|C|
1

1−∑s′∈S\C p(s′)

= ∑
C⊆S\{s}

(
(−1)|C|

1
1−∑s′∈S\C p(s′)

+ (−1)|C∪{s}|
1

1−∑s′∈S\(C∪{s}) p(s′)

)

= ∑
C⊆S\{s}

(−1)|C|
1

1−∑s′∈S\C p(s′)
+ ∑

C⊆S\{s}
(−1)|C∪{s}|

1
1−∑s′∈S\(C∪{s}) p(s′)

= ∑
C⊆S\{s}

(−1)|C|
1

1− p(s)−∑s′∈(S\{s})\C p(s′)
− ∑

C⊆S\{s}
(−1)|C|

1
1−∑s′∈(S\{s})\C p(s′)

=
1

1− p(s) ∑
C⊆S\{s}

(−1)|C|
1

1−∑s′∈(S\{s})\C
p(s′)

1−p(s)

− p(S \ {s})
1−∑s′∈S\{s} p(s′)

=
1

1− p(s)
pD\{s}(S \ {s})

1−∑s′∈S\{s}
p(s′)

1−p(s)

− p(S \ {s})
1−∑s′∈S\{s} p(s′)

=
pD\{s}(S \ {s})

1− p(s)−∑s′∈S\{s} p(s′)
− p(S \ {s})

1−∑s′∈S\{s} p(s′)

=
pD\{s}(S \ {s})
1−∑s′∈S p(s′)

− p(S \ {s})
1−∑s′∈S\{s} p(s′)

.

Multiplying by 1−∑s′∈S p(s′) and rearranging terms proves Lemma 13.

Lemma 14.

p(s) +

(
1− ∑

s′∈Sk

p(s′)

)
P(bk = s|Sk) = p(s)R(Sk , s) (114)

Proof. First using Lemma 12 and then Lemma 13 we find

p(s) +

(
1− ∑

s′∈Sk

p(s′)

)
P(bk = s|Sk)

=p(s) +

(
1− ∑

s′∈Sk

p(s′)

)
p(Sk \ {s})

p(Sk)

p(s)
1−∑s′∈Sk\{s} p(s′)

=
p(s)

p(Sk)

(
p(Sk) +

1−∑s′∈Sk p(s′)
1−∑s′∈Sk\{s} p(s′)

p(Sk \ {s})
)

=
p(s)

p(Sk)
pD\{s}(Sk \ {s})

=p(s)R(Sk , s).
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Now we can complete the proof of Theorem 11 by adding p(bk) f (bk) −
p(bk) f (bk) = 0 to the estimator, moving the terms independent of Bk outside the
expectation and using Lemma 14:

EBk∼p(Bk |Sk)

[
k−1

∑
j=1

p(bj) f (bj) +

(
1−

k−1

∑
j=1

p(bj)

)
f (bk)

]

=EBk∼p(Bk |Sk)

[
k

∑
j=1

p(bj) f (bj) +

(
1−

k

∑
j=1

p(bj)

)
f (bk)

]

= ∑
s∈Sk

p(s) f (s) + EBk∼p(Bk |Sk)

[(
1− ∑

s′∈Sk

p(s′)

)
f (bk)

]

= ∑
s∈Sk

p(s) f (s) + ∑
s∈Sk

(
1− ∑

s′∈Sk

p(s′)

)
P(bk = s|Sk) f (s)

= ∑
s∈Sk

(
p(s) +

(
1− ∑

s′∈Sk

p(s′)

)
P(bk = s|Sk)

)
f (s)

= ∑
s∈Sk

p(s)R(Sk , s) f (s).

d.3.3 The stochastic sum-and-sample estimator with multiple samples

As was discussed in Liu et al. (2019), one can trade off the number of summed
terms and number of sampled terms to maximize the achieved variance reduction.
As a generalization of Theorem 11 (the stochastic sum-and-sample estimator with
k− 1 summed terms), we introduce here the stochastic sum-and-sample estimator
that sums k − m terms and samples m > 1 terms without replacement. To estimate
the sampled term, we use the unordered set estimator on the m samples without
replacement, on the domain restricted to D \ Bk−m. In general, we denote the un-
ordered set estimator restricted to the domain D \ C by

eUS,D\C(Sk) = ∑
s∈Sk\C

p(s)RD\C(Sk , s) f (s) (115)

where RD\C(Sk , s) is the leave-one-out ratio restricted to the domain D \ C, similar to
the second order leave-one-out ratio in equation 64:

RD\C(Sk , s) =
p(D\C)\{s}

θ ((Sk \ C) \ {s})
pD\C

θ (Sk \ C)
. (116)

While we can also constrain Sk ⊆ (D \ C), this definition is consistent with equa-
tion 64 and allows simplified notation.
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Theorem 15. Rao-Blackwellizing the stochastic sum-and-sample estimator with m > 1
samples results in the unordered set estimator, i.e.

EBk∼p(Bk |Sk)

[
k−m

∑
j=1

p(bj) f (bj) +

(
1−

k−m

∑
j=1

p(bj)

)
eUS,D\Bk−m

(Sk)

]
= ∑

s∈Sk

p(s)R(Sk , s) f (s). (117)

Proof. Recall that for the unordered set estimator, it holds that

eUS(Sk) = Eb1∼p(b1|Sk) [ f (b1)] = Ex∼p(x)

[
f (x)

∣∣∣x ∈ Sk
]

(118)

which for the restricted equivalent (with restricted distribution pD\C) translates
into

eUS,D\C(Sk) = Ex∼pD\C(x)

[
f (x)

∣∣∣x ∈ Sk
]
= Ex∼p(x)

[
f (x)

∣∣∣x ∈ Sk , x 6∈ C
]

. (119)

Now we consider the distribution bk−m+1|Sk , Bk−m: the distribution of the first ele-
ment sampled (without replacement) after sampling Bk−m, given (conditionally on
the event) that the set of k samples is Sk, so we have bk−m+1 ∈ Sk and bk−m+1 6∈ Bk−m.
This means that its conditional expectation of f (bk−m+1) is the restricted unordered
set estimator for C = Bk−m since

eUS,D\Bk−m
(Sk) = Ex∼p(x)

[
f (x)

∣∣∣x ∈ Sk , x 6∈ Bk−m
]

= Ebk−m+1∼p(bk−m+1|Sk ,Bk−m) [ f (bk−m+1)] . (120)

Observing that the definition (equation 117) of the stochastic sum-and-sample es-
timator does not depend on the actual order of the m samples, and using equa-
tion 120, we can reduce the multi-sample estimator to the stochastic sum-and-
sample estimator with k′ = k−m+ 1, such that the result follows from equation 111:

EBk∼p(Bk |Sk)

[
k−m

∑
j=1

p(bj) f (bj) +

(
1−

k−m

∑
j=1

p(bj)

)
eUS,D\Bk−m

(Sk)

]

=EBk−m∼p(Bk−m |Sk)

[
k−m

∑
j=1

p(bj) f (bj) +

(
1−

k−m

∑
j=1

p(bj)

)
eUS,D\Bk−m

(Sk)

]

=EBk−m∼p(Bk−m |Sk)

[
k−m

∑
j=1

p(bj) f (bj) +

(
1−

k−m

∑
j=1

p(bj)

)
Ebk−m+1∼p(bk−m+1 |Sk ,Bk−m) [ f (bk−m+1)]

]
=EBk−m+1∼p(Bk−m+1|Sk)

[
k−m

∑
j=1

p(bj) f (bj) +

(
1−

k−m

∑
j=1

p(bj)

)
f (bk−m+1)

]

=ESk−m+1|Sk

[
EBk−m+1∼p(Bk−m+1 |Sk−m+1)

[
k−m

∑
j=1

p(bj) f (bj) +

(
1−

k−m

∑
j=1

p(bj)

)
f (bk−m+1)

]]
=ESk−m+1|Sk

[
∑

s∈Sk

p(s)R(Sk , s) f (s)

]
= ∑

s∈Sk

p(s)R(Sk , s) f (s). (121)
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d.4 the importance-weighted estimator

d.4.1 Rao-Blackwellization of the importance-weighted estimator

In this section we give the proof that Rao-Blackwellizing the importance-weighted
estimator results in the unordered set estimator.

Theorem 16. Rao-Blackwellizing the importance-weighted estimator results in the un-
ordered set estimator, i.e.:

Eκ∼p(κ|Sk)

[
∑

s∈Sk

p(s)
1− Fφs(κ)

f (s)

]
= ∑

s∈Sk

p(s)R(Sk , s) f (s). (122)

Here we have slightly rewritten the definition of the importance-weighted esti-
mator, using that q(s, a) = P(gφs > a) = 1− Fφs(a), where Fφs is the CDF of the
Gumbel distribution (see Appendix D.1).

Proof. We first prove the following Lemma:

Lemma 17.

Eκ∼p(κ|Sk)

[
1

1− Fφs(κ)

]
= R(Sk , s) (123)

Proof. Conditioning on Sk, we know that the elements in Sk have the k largest per-
turbed log-probabilities, so κ, the (k + 1)-th largest perturbed log-probability is
the largest perturbed log-probability in D \ Sk, and satisfies κ = maxs∈D\Sk gφs =

gφD\Sk ∼ Gumbel(φD\Sk ). Computing p(κ|Sk) using Bayes’ Theorem, we have

p(κ|Sk) =
p(Sk|κ)p(κ)

p(Sk)
=

∏s∈Sk (1− Fφs(κ)) fφD\Sk (κ)

p(Sk)
(124)

which allows us to compute (using equation 109 with C = {s} and gφD\S = κ)

Eκ∼p(κ|Sk)

[
1

1− Fφs(κ)

]
=
∫ ∞

κ=−∞
p(κ|Sk)

1
1− Fφs(κ)

∂κ

=
∫ ∞

κ=−∞

∏s∈Sk (1− Fφs(κ)) fφD\Sk (κ)

p(Sk)

1
1− Fφs(κ)

∂κ

=
1

p(Sk)

∫ ∞

κ=−∞
∏

s∈Sk\{s}
(1− Fφs(κ)) fφD\Sk (κ)∂κ

=
1

p(Sk)
pD\{s}(S \ {s})

=R(Sk , s).
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Using Lemma 17 we find

Eκ∼p(κ|Sk)

[
∑

s∈Sk

p(s)
1− Fφs(κ)

f (s)

]

= ∑
s∈Sk

p(s)Eκ∼p(κ|Sk)

[
1

1− Fφs(κ)

]
f (s)

= ∑
s∈Sk

p(s)R(Sk , s) f (s).

d.4.2 The importance-weighted policy gradient estimator with built-in baseline

For self-containment we include this section, which is adapted from Kool et al.
(2019b). The importance-weighted policy gradient estimator combines REINFORCE
(Williams, 1992) with the importance-weighted estimator (Duffield et al., 2007;
Vieira, 2017) in equation 61 which results in an unbiased estimator of the policy
gradient ∇θEpθ(x)[ fθ(x)]:

eIWPG(Sk , κ) = ∑
s∈Sk

pθ(s)
qθ,κ(s)

∇θ log pθ(s) f (s) = ∑
s∈Sk

∇θpθ(s)
qθ,κ(s)

f (s). (125)

Recall that κ is the (k + 1)-th largest perturbed log-probability (see Section 6.4.2).
We compute a lower variance but biased variant by normalizing the importance
weights using the normalization W(Sk) = ∑s∈Sk

pθ(s)
qθ,κ(s)

.

As we show in Kool et al. (2019b), we can include a ‘baseline’ B(Sk) =

∑s∈Sk
pθ(s)

qθ,κ(s)
f (s) and correct for the bias (since it depends on the complete sample

Sk) by weighting individual terms of the estimator by 1− pθ(s) +
pθ(s)

qθ,κ(s)
:

eIWPGBL(Sk , κ) = ∑
s∈Sk

∇θpθ(s)
qθ,κ(s)

(
f (s)

(
1− pθ(s) +

pθ(s)
qθ,κ(s)

)
− B(Sk)

)
. (126)

For the normalized version, we use the normalization W(Sk) = ∑s∈Sk
pθ(s)

qθ,κ(s)
for

the baseline, and Wi(Sk) = W(Sk)− pθ(s)
qθ,κ(s)

+ pθ(s) to normalize the individual terms:

∇θEy∼pθ(y) [ f (y)] ≈ ∑
s∈Sk

1
Wi(Sk)

· ∇θpθ(s)
qθ,κ(s)

(
f (s)− B(Sk)

W(Sk)

)
. (127)

It seems odd to normalize the terms in the outer sum by 1
Wi(Sk)

instead of 1
W(Sk)

, but
equation 127 can be rewritten into a form similar to equation 63, i.e. with a different
baseline for each sample, but this form is more convenient for implementation (Kool
et al., 2019b).
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d.5 the unordered set policy gradient estimator

d.5.1 Proof of unbiasedness of the unordered set policy gradient estimator with
baseline

To prove the unbiasedness of result we need to prove that the control variate has
expectation 0:

Lemma 18.

ESk∼pθ(Sk)

[
∑

s∈Sk

∇θpθ(s)R(Sk , s) ∑
s′∈Sk

pθ(s′)RD\{s}(Sk , s′) f (s′)

]
= 0. (128)

Proof. Similar to equation 55, we apply Bayes’ Theorem conditionally on b1 = s to
derive for s′ 6= s

P(b2 = s′|Sk , b1 = s) =
P(Sk|b2 = s′, b1 = s)P(b2 = s′|b1 = s′)

P(Sk|b1 = s)

=
pD\{s,s′}

θ (Sk \ {s, s′})pD\{s}
θ (s′)

pD\{s}
θ (Sk \ {s})

=
pθ(s′)

1− pθ(s)
RD\{s}(Sk , s′). (129)

For s′ = s we have RD\{s}(Sk , s′) = 1 by definition, so using equation 129 we can
show that

∑
s′∈Sk

pθ(s′)RD\{s}(Sk , s′) f (s′)

= pθ(s) f (s) + ∑
s′∈Sk\{s}

pθ(s′)RD\{s}(Sk , s′) f (s′)

= pθ(s) f (s) + (1− pθ(s)) ∑
s′∈Sk\{s}

pθ(s′)
1− pθ(s)

RD\{s}(Sk , s′) f (s′)

= pθ(s) f (s) + (1− pθ(s)) ∑
s′∈Sk\{s}

P(b2 = s′|Sk , b1 = s) f (s′)

= pθ(s) f (s) + (1− pθ(s))Eb2∼pθ(b2|Sk ,b1=s) [ f (b2)]

= Eb2∼pθ(b2|Sk ,b1=s) [pθ(b1) f (b1) + (1− pθ(b1)) f (b2)] .
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Now we can show that the control variate is actually the result of Rao-
Blackwellization:

ESk∼pθ(Sk)

[
∑

s∈Sk

∇θpθ(s)R(Sk , s) ∑
s′∈Sk

pθ(s′)RD\{s}(Sk , s′) f (s′)

]

= ESk∼pθ(Sk)

[
∑

s∈Sk

pθ(s)R(Sk , s)∇θ log pθ(s) ∑
s′∈Sk

pθ(s′)RD\{s}(Sk , s′) f (s′)

]

= ESk∼pθ(Sk)

[
∑

s∈Sk

P(b1 = s|Sk)∇θ log pθ(s) ∑
s′∈Sk

pθ(s′)RD\{s}(Sk , s′) f (s′)

]

= ESk∼pθ(Sk)

[
Eb1∼pθ(b1|Sk)

[
∇θ log pθ(b1) ∑

s′∈Sk

pθ(s′)RD\{b1}(Sk , s′) f (s′)

]]
= ESk∼pθ(Sk)

[
Eb1∼pθ(b1 |Sk)

[
∇θ log pθ(b1)Eb2∼pθ(b2 |Sk ,b1)

[pθ(b1) f (b1) + (1− pθ(b1)) f (b2)]
]]

= ESk∼pθ(Sk)

[
EBk∼pθ(Bk |Sk) [∇θ log pθ(b1) (pθ(b1) f (b1) + (1− pθ(b1)) f (b2))]

]
= EBk∼pθ(Bk) [∇θ log pθ(b1) (pθ(b1) f (b1) + (1− pθ(b1)) f (b2))]

This expression depends only on b1 and b2 and we recognize the stochastic sum-
and-sample estimator for k = 2 used as ‘baseline’. As a special case of equation 59

for C = {b1}, we have

Eb2∼pθ(b2|b1)
[(pθ(b1) f (b1) + (1− pθ(b1)) f (b2))] = Ei∼pθ(i) [ f (i)] . (130)

Using this, and the fact that Eb1∼pθ(b1)
[∇θ log pθ(b1)] = ∇θEb1∼pθ(b1)

[1] = ∇θ1 = 0
we find

ESk∼pθ(Sk)

[
∑

s∈Sk

∇θpθ(s)R(Sk , s) ∑
s′∈Sk

pθ(s′)RD\{s}(Sk , s′) f (s′)

]
= EBk∼pθ(Bk) [∇θ log pθ(b1) (pθ(b1) f (b1) + (1− pθ(b1)) f (b2))]

= Eb1∼pθ(b1)

[
∇θ log pθ(b1)Eb2∼pθ(b2|b1)

[(pθ(b1) f (b1) + (1− pθ(b1)) f (b2))]
]

= Eb1∼pθ(b1)

[
∇θ log pθ(b1)Ex∼pθ(x) [ f (x)]

]
= Eb1∼pθ(b1)

[∇θ log pθ(b1)]Ex∼pθ(x) [ f (x)]

= 0 ·Ex∼pθ(x) [ f (x)]

= 0
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d.6 the risk estimator

d.6.1 Proof of built-in baseline

We show that the RISK estimator, taking gradients through the normalization factor
actually has a built-in baseline. We first use the log-derivative trick to rewrite the
gradient of the ratio as the ratio times the logarithm of the gradient, and then swap
the summation variables in the double sum that arises:

eRISK(S) = ∑
s∈S
∇θ

(
pθ(s)

∑s′∈S pθ(s′)

)
f (s)

= ∑
s∈S

pθ(s)
∑s′∈S pθ(s′)

∇θ log
(

pθ(s)
∑s′∈S pθ(s′)

)
f (s)

= ∑
s∈S

pθ(s)
∑s′∈S pθ(s′)

(
∇θ log pθ(s)−∇θ log ∑

s′∈S
pθ(s′)

)
f (s)

= ∑
s∈S

pθ(s)
∑s′∈S pθ(s′)

(
∇θpθ(s)

pθ(s)
− ∑s′∈S∇θpθ(s′)

∑s′∈S pθ(s′)

)
f (s)

= ∑
s∈S

∇θpθ(s) f (s)
∑s′∈S pθ(s′)

− ∑s,s′∈S pθ(s)∇θpθ(s′) f (s)

(∑s′∈S pθ(s′))
2

= ∑
s∈S

∇θpθ(s) f (s)
∑s′∈S pθ(s′)

− ∑s,s′∈S pθ(s′)∇θpθ(s) f (s′)

(∑s′∈S pθ(s′))
2

= ∑
s∈S

∇θpθ(s)
∑s′∈S pθ(s′)

(
f (s)− ∑s′∈S pθ(s′) f (s′)

∑s′∈S pθ(s′)

)

= ∑
s∈S

∇θpθ(s)
∑s′′∈S pθ(s′′)

(
f (s)− ∑

s′∈S

pθ(s′)
∑s′′∈S pθ(s′′)

f (s′)

)
.

d.7 categorical variational auto-encoder

d.7.1 Experimental details

We use the code1 by Yin et al. (2019) to reproduce their categorical VAE experi-
ment, of which we include details here for self-containment. The dataset is MNIST,
statically binarized by thresholding at 0.5 (although we include results using the
standard binarized dataset by Salakhutdinov and Murray (2008) and Larochelle
and Murray (2011) in Section D.7.2). The latent representation z is K = 20 dimen-
sional with C = 10 categories per dimension with a uniform prior p(zk = c) =

1/C, k = 1, ..., K. The encoder is parameterized by φ as qφ(z|x) = ∏k qφ(zk|x) and
has two fully connected hidden layers with 512 and 256 hidden nodes respectively,
with LeakyReLU (α = 0.1) activations. The decoder, parameterized by θ, is given
by pθ(x|z) = ∏i pθ(xi|z), where xi ∈ {0, 1} are the pixel values, and has fully
connected hidden layers with 256 and 512 nodes and LeakyReLU activation.

1 https://github.com/ARM-gradient/ARSM

https://github.com/ARM-gradient/ARSM
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elbo optimization The evidence lower bound (ELBO) that we optimize is given
by

L(φ, θ) = Ez∼qφ(z|x)
[
ln pθ(x|z) + ln p(z)− ln qφ(z|x)

]
(131)

= Ez∼qφ(z|x) [ln pθ(x|z)]− KL(qφ (z|x)||p(z)) . (132)

For the decoder parameters θ, since qφ(z|x) does not depend on θ, it follows that

∇θL(φ, θ) = Ez∼qφ(z|x) [∇θ ln pθ(x|z)] . (133)

For the encoder parameters φ, we can write ∇φL(φ, θ) using equation 132 and
equation 65 as

∇φL(φ, θ) = Ez∼qφ(z|x)
[
∇φ ln qφ(z|x) ln pθ(x|z)

]
−∇φKL(qφ (z|x)||p(z)) . (134)

This assumes we can compute the KL divergence analytically. Alternatively, we can
use a sample estimate for the KL divergence, and use equation 131 with equation 65

to obtain

∇φL(φ, θ) = Ez∼qφ(z|x)
[
∇φ ln qφ(z|x)(ln pθ(x|z) + ln p(z)− ln qφ(z|x)) +∇φ ln qφ(z|x)

]
(135)

= Ez∼qφ(z|x)
[
∇φ ln qφ(z|x)(ln pθ(x|z)− ln qφ(z|x))

]
. (136)

Here we have left out the term Ez∼qφ(z|x)
[
∇φ ln qφ(z|x)

]
= 0, similar to Roeder

et al. (2017), and, assuming a uniform (i.e. constant) prior ln p(z), the term
Ez∼qφ(z|x)

[
∇φ ln qφ(z|x) ln p(z)

]
= 0. With a built-in baseline, this second term

cancels out automatically, even if it is implemented. Despite the similarity of the
equation 131 and equation 132, their gradient estimates (equation 135 and equa-
tion 134) are structurally dissimilar and care should be taken to implement the RE-
INFORCE estimator (or related estimators such as ARSM and the unordered set es-
timator) correctly using automatic differentiation software. Using Gumbel-Softmax
and RELAX, we take gradients ‘directly’ through the objective in equation 132.

We optimize the ELBO using the analytic KL for 1000 epochs using the Adam
(Kingma and Ba, 2015) optimizer. We use a learning rate of 10−3 for all estimators
except Gumbel-Softmax and RELAX, which use a learning rate of 10−4 as we found
they diverged with a higher learning rate. For ARSM, as an exception we use the
sample KL, and a learning rate of 3 · 10−4, as suggested by the authors. All reported
ELBO values are computed using the analytic KL. Our code is publicly available2.

2 https://github.com/wouterkool/estimating-gradients-without-replacement

https://github.com/wouterkool/estimating-gradients-without-replacement
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Figure 32: Gradient log variance of different unbiased estimators with k = 4 samples, es-
timated every 100 (out of 1000) epochs while training using REINFORCE with
replacement. Each estimator is computed 1000 times with different latent sam-
ples for a fixed minibatch (the first 100 records of training data). We report (the
logarithm of) the sum of the variances per parameter (trace of the covariance ma-
trix). Some lines coincide, so we sort the legend by the last measurement and
report its value.
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Figure 33: Smoothed validation -ELBO curves during training of two independent runs
when with different estimators with k = 1, 4 or 8 (thicker lines) samples (ARSM
has a variable number). Some lines coincide, so we sort the legend by the lowest
-ELBO achieved and report this value.

d.7.2 Additional results

gradient variance during training We also evaluate gradient variance of
different estimators during different stages of training. We measure the variance
of different estimators with k = 4 samples during training with REINFORCE with
replacement, such that all estimators are computed for the same model parame-
ters. The results during training, given in Figure 32, are similar to the results for
the trained model in Table 5, except for at the beginning of training, although the
rankings of different estimator are mostly the same.

negative elbo on validation set Figure 33 shows the -ELBO evaluated dur-
ing training on the validation set. For the large latent space, we see validation error
quickly increase (after reaching a minimum) which is likely because of overfitting
(due to improved optimization), a phenomenon observed before (Tucker et al., 2017;
Grathwohl et al., 2018). Note that before the overfitting starts, both REINFORCE
without replacement and the unordered set estimator achieve a validation error
similar to the other estimators, such that in a practical setting, one can use early
stopping.
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(c) Validation -ELBO, small domain (102)
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Figure 34: Smoothed training and validation -ELBO curves during training on the standard
binarized MNIST dataset (Salakhutdinov and Murray, 2008; Larochelle and Mur-
ray, 2011) of two independent runs when with different estimators with k = 1, 4

or 8 (thicker lines) samples (ARSM has a variable number). Some lines coincide,
so we sort the legend by the lowest -ELBO achieved and report this value.

results using standard binarized mnist dataset Instead of using the
MNIST dataset binarized by thresholding values at 0.5 (as in the code and paper
by Yin et al. (2019)) we also experiment with the standard (fixed) binarized dataset
by Salakhutdinov and Murray (2008) and Larochelle and Murray (2011), for which
we plot train and validation curves for two runs on the small and large domain in
Figure 34. This gives more realistic (higher) -ELBO scores, although we still observe
the effect of overfitting. As this is a bit more unstable setting, one of the runs using
REINFORCE with replacement diverged, but in general the relative performance of
estimators is similar to using the dataset with 0.5 threshold.

d.8 travelling salesman problem

We train the exact same attention model as in Chapter 3, and minimize the expected
length of a tour predicted by the model, using different gradient estimators. We did
not do any hyperparameter optimization and used the exact same training details,
using the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 10−4

(no decay) for 100 epochs for all estimators. For the baselines, we used the same
batch size of 512, but for estimators that use k = 4 samples, we used a batch size
of 512

4 = 128 to compensate for the additional samples (this makes multi-sample
methods actually faster since the encoder still needs to be evaluated only once).
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