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ABSTRACT
Compared to top-down coarse-grained (CG) models, bottom-up approaches are capable of offering higher structural fidelity. This fidelity
results from the tight link to a higher resolution reference, making the CG model chemically specific. Unfortunately, chemical specificity
can be at odds with compound-screening strategies, which call for transferable parameterizations. Here, we present an approach to reconcile
bottom-up, structure-preserving CG models with chemical transferability. We consider the bottom-up CG parameterization of 3441 C7O2
small-molecule isomers. Our approach combines atomic representations, unsupervised learning, and a large-scale extended-ensemble force-
matching parameterization. We first identify a subset of 19 representative molecules, which maximally encode the local environment of all
gas-phase conformers. Reference interactions between the 19 representative molecules were obtained from both homogeneous bulk liquids
and various binary mixtures. An extended-ensemble parameterization over all 703 state points leads to a CG model that is both structure-based
and chemically transferable. Remarkably, the resulting force field is on average more structurally accurate than single-state-point equivalents.
Averaging over the extended ensemble acts as a mean-force regularizer, smoothing out both force and structural correlations that are overly
specific to a single-state point. Our approach aims at transferability through a set of CG bead types that can be used to easily construct new
molecules while retaining the benefits of a structure-based parameterization.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0104914

I. INTRODUCTION
In order to facilitate the molecular design for a wide variety

of applications, there has recently been a growing interest in uti-
lizing data-driven techniques to infer chemical structure–property
relationships that span broad regions of chemical compound space
(CCS).1–5 A common rate-limiting step in deriving these rela-
tionships is acquiring target properties for a sufficient number
of compounds, so as to ensure robustness and transferability. As
such, a push for increasingly automated workflows for generat-
ing data via both experimental and computational methods has
risen in tandem with these data-driven approaches. While exper-
imental approaches are limited due to material cost and ease of
chemical synthesis, computational methods do not suffer from these
restrictions. Instead, computation is primarily limited by sampling,
calling for ever-improving high-performance computing platforms
or algorithms.6–8 The limitations to computational high-throughput

screening often stem from the prohibitive computational cost of
simulating large systems (on the order of thousands of atoms) at
atomic or electronic resolutions.9

A different strategy to computationally screen across more
compounds consists of relying on lower resolution models. Here, we
focus on particle-based coarse-grained (CG) simulations, in which
groups of atoms are mapped to superparticles or beads.10 The inter-
actions that govern the behavior of these beads aim at recovering the
essential physics of the system. This results in simulations that are
more computationally efficient due to the reduction in the number
of particles and a smoothened free-energy landscape. In the con-
text of screening, some CG models offer even more computational
efficiency: the CG representation averages over molecules, easing
the coverage of CCS. These CG models, commonly called transfer-
able, reduce the size of CCS by making use of a discrete set of CG
bead types.11,12 Transferable CG models have been used to efficiently
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cover large subsets of CCS and rapidly sketch structure–property
relationships for complex thermodynamic properties.13,14 These
studies relied on the biomolecular Martini force field, a top-down
CG model aiming to reproduce thermodynamic-partitioning behav-
ior in different environments.15 While top-down CG models can
prove extremely efficient to parameterize and extend, they often
feature limited structural accuracy.16

To construct structurally accurate CG models, bottom-up
methods offer a more systematic route.17–19 They derive CG interac-
tions by matching microscopic information from a higher resolution
reference, for instance, the radial distribution function (RDF) or
other features of the many-body potential of mean force (MBPMF).
The reduction in the number of degrees of freedom makes these
target properties inherently dependent not only on the chemical
composition but also on the thermodynamic state point. It is,
thus, no surprise that most bottom-up CG studies have focused
on individual reference systems. There are various strategies to
build bottom-up CG models that are state-point and/or chemically
transferable. Intuition can go a long way: different molecules may
inspire a consistent CG mapping and set of bead types. For instance,
Wang and Deserno parameterized a CG model for phospholipid
membranes and showed that the same set of CG beads could be
used to construct reliable models for lipids with different satura-
tion levels.20 In general, however, intuition may not be a silver
bullet, particularly when bridging across chemical compositions.
Van der Vegt and co-workers have demonstrated that an approach
based on thermodynamic cycles can provide improved thermo-
dynamic and chemical transferability, with respect to alternative
bottom-up methods, subjecting to the limitations of the form
of the interaction potentials.21–23 Several groups have used local
density-dependent potentials to derive CG models that are trans-
ferable across binary mixture concentrations and phases, providing
a more accurate description of liquid–vapor interfaces.24–29 In the
context of biomolecules, Engin et al. demonstrated the utility of
“fragment-based” approaches by identifying particular interactions

that could be effectively transferred between distinct peptide units.30

Sanyal et al. recently expanded upon this perspective by develop-
ing an extended-ensemble relative-entropy method and constructed
a CG protein-backbone model that could accurately reproduce the
structures of over 200 different globular proteins.31

Counter to the expectation that a single model can repro-
duce the behavior of many different types of systems, transfer-
ability may require defining environment-dependent interactions.
“Ultra-coarse-grained” models are built from a series of internal
states.32 They can accurately model challenging liquid–vapor and
liquid–liquid interfaces,33 as well as complex hydrogen-bonding
environments.26 CG “conformational surface hopping” applies a
simple tuning of the state probabilities to transfer CG models across
both state points and chemistry.34,35 Other approaches aiming at
transferability tend to combine multiple references. For instance,
the extended-ensemble framework augments the force-matching
based multiscale coarse-graining (MSCG) method by averaging over
multiple MBPMFs.36 Mullinax and Noid applied the extended-
ensemble approach to build CG potentials of alkanes and alcohols
that aim to be transferable across liquid-state binary mixtures.36

Dunn and Noid later expanded upon this approach by lever-
aging a pressure-matching framework, in conjunction with the
force-matching method, to ensure the accuracy of both thermody-
namic and structural properties across state points.37 A conceptually
analogous approach was also implemented in the context of the
iterative-Boltzmann-inversion method.38

In this work, we extend the scope of bottom-up CG parame-
terizations to target a significantly larger collection of state points
and chemical compositions. Conceptually, we seek a CG parame-
terization scheme that benefits from multiple reference calculations
from various parts of the chemical compound space. We extend
the scope of structure-based and chemically transferable CG models
by simultaneously parameterizing several thousand small organic
molecules—the largest bottom-up CG parameterization, to the best
of our knowledge. Our data-driven and hierarchical approach is

FIG. 1. Schematic of our protocol to develop broad chemical transferability in a structure-based coarse-grained (CG) model. (a) Given an atomistic chemical space, identify
representative compounds (see Fig. 2). (b) Run reference (atomistic) liquid-phase simulations for various homogeneous liquids and binary mixtures. (c) Optimize a set of
CG bead types using an extended-ensemble force-matching scheme. (d) The bead types can readily be used to parameterize any molecule in the (smaller) CG chemical
space.
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illustrated in Fig. 1. Given a set of chemical compounds, we first
identify a small number of “representative compounds,” whose con-
figurational space is the best representative of the entire set. Overall,
our workflow consists of: (a) using gas-phase conformationally aver-
aged many-body atomic environments, we identify a small number
of “representative” molecules; (b) various atomistic simulations of
homogeneous liquids and binary mixtures provide reference mean
forces; (c) an extended-ensemble MSCG method simultaneously
parameterizes a force field with a small collection of CG bead types
over all state points; and (d) the set of optimized bead types readily
provides nonbonded parameters for all compounds. We note here
the utility of the direct MSCG method: although an iterative refine-
ment of the CG potentials is possible in principle, such an approach
quickly becomes impractical for large datasets.

We illustrate our approach on 3441 C7O2 isomers found in the
Generated Database (GDB).39,40 The identification of 19 represen-
tative compounds leads to the generation of 703 atomistic liquids
and binary mixtures, used simultaneously to parameterize our CG
model. We then quantify the accuracy of the transferable CG model
by comparing the RDFs to atomistic references. We also benchmark
our transferable model against “traditional” state-point-specific CG
force fields.

The results show that enforcing state-point and chemical
transferability in CG potentials can yield high structural accuracy.
Remarkably, the extended-ensemble parameterization is on average
more accurate than state-point specific force fields. Specifically, we
find that gains in accuracy are due to a “regularization-like” effect
that effectively smooths the average forces acting on specific CG
bead types. Averaging over distinct state points and environments
reduces the overfitting of system-specific features. Similarly, cross-
correlations inferred from the atomistic reference simulations are
also smoothed, counteracting errors that arise due to the pairwise
form of the CG interactions. On the other hand, we also find a
few examples where the extended-ensemble model performs notably
worse. Low performance stems from certain functional groups that
promote vastly different conformational ensembles depending on
the environment and molecular topology. An extended-ensemble
average over the structural correlations of these functional groups
does not capture the specificity of these diverging conformational
states and, instead, suggests the need for an improved mapping41–43

or an increased force-field complexity.25,34,44,45 We validate the
transferability of the derived potentials by running CG simulations
on compounds that were not used in the extended-ensemble train-
ing set and find that the accuracy of the CG RDFs is on par with that
of the representative compounds. Overall, we provide a systematic
means to perform a bottom-up coarse-graining over several thou-
sand molecules, resulting in chemically transferable CG potentials
that retain structural accuracy in liquid simulations. At the same
time, we highlight the limitations of this approach and note key
implementation pitfalls to avoid.

II. METHODS
A. Nomenclature

We first clarify our nomenclature:

● We consider the chemical space of 3441 C7O2 isomers—the
entire collection of molecules considered.

● Out of the chemical space considered, we focus on 24
molecules. From a clustering analysis, we identify Nr = 19
representative compounds, which are shown in the
supplementary material (Figs. S1–S4); five additional com-
pounds are selected for validation. Each selected compound
and CG mapping are denoted by numbers, where compound
numbers run from 0 to 23 (i.e., 0–18 denote the represen-
tative compounds and 19–23 refer to the test compounds).
Mapping numbers start from 0 and go up to the handful of
possibilities e.g., Molecule 21 with Mapping 0.

● Each of the reference compounds is simulated at an atom-
istic resolution in a homogeneous liquid and in all consid-
ered binary mixtures, leading to Nr(Nr + 1)/2 = 190 refer-
ence systems. Systems only refer to the chemical species;
as examples, the Molecule 2/Molecule 3 binary system or
the Molecule 10 pure system can be used to describe any
simulation containing these particular sets of compounds.

● A state point denotes the particular thermodynamic para-
meters, including concentration. Specifically, we simulated
each binary mixture at four different concentrations, corre-
sponding to four state points per system.

● We refer to each combination of system and state point as
an ensemble. The aggregate number of homogeneous liquids
and binary mixtures of all 19 representative compounds
at four different concentrations amount to a total of 703
atomistic ensembles simulated for this work.

● Upon coarse-graining, it does not suffice to define the system
and state point, but we also need to describe the mapping
used, the combination of which we refer to as the mapped
ensemble. A single atomistic ensemble may give rise to mul-
tiple mapped ensembles if at least one of the compounds
has more than one possible CG mapping. In this work, the
703 atomistic ensembles translate to a total of 2476 mapped
ensembles.

B. Database
We selected a subset of the Generated Database (GDB), a

computer-generated set of drug-like organic compounds, to test our
data-driven bottom-up approach.39,40 Specifically, we selected the set
of GDB compounds that were made up of seven carbon atoms and
two oxygen atoms only. We further filtered out any compounds con-
taining triple bonds. After applying these filters, we were left with a
database of 3441 C7O2 isomers, listed in their simplified molecular-
input line-entry system (SMILES) format. Despite restricting the size
of the molecules and only including three elements (C, O, and H),
a large variety is still present in the resulting chemical structures.
Furthermore, complex interactions, such as hydrogen-bonding and
π-stacking interactions, are also present for many of the compounds
in this database. Because the database was limited in terms of the
chemical elements, but still contained compounds that we expected
to display complex behavior in the bulk phase, we felt this choice
of the database would prove useful for determining which spe-
cific physical interactions would be (un)successfully captured by our
chemically transferable model.

C. Gas-phase simulations
For each compound in the database, we first ran single-

molecule gas-phase molecular dynamics simulations. The initial
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structures were obtained by converting the molecules from their
SMILES string representations to energy-minimized 3D conforma-
tions using the RDKIT package.46 The force-field parameters for
each compound were generated using the CGENFF tool, included
in the SILCSBIO 2018 package, which automatically assigns para-
meters from the CHARMM General Force Field based on the input
chemistry.47 The simulations were run at constant volume using
a stochastic velocity-rescaling thermostat48 to maintain a constant
temperature, T = 300 K. The simulations were run using a 2 fs
timestep for a total of 3 ns, with the LINCS algorithm used to con-
strain terminal bonds to hydrogen atoms.49 A frame was output
every 2 ps, yielding 1500 frames/simulation for each compound in
the database. The GROMACS 16.1 package was used to run all of
the systems simulated in this work at the atomistic resolution.50

D. Defining local environments with SLATM
The Spectrum of London Axilrod–Teller–Muto (SLATM)

vector describes a molecule as a sum of atomic environments that
encode the one-, two-, and three-body interactions within a cut-
off distance.51,52 For each atom, its corresponding SLATM vector
consists of the elemental atomic number (one-body), a spectrum of
two-body London interactions convoluted with a Gaussian function
(two-body), and a spectrum of three-body Axilrod–Teller–Muto
interactions also convoluted with a Gaussian function (three-body).
The two-body spectrum is computed over the distance as a London
interaction between all pairs within a cut-off value with a specified
step-size. Similarly, the three-body spectrum is computed as an
Axilrod–Teller–Muto interaction over the angle for all triplets
within the cut-off distance. We applied the QML package made for
PYTHON 2.7 to convert our database of compounds into aSLATM
representations.53 The default values, which were optimized for pre-
dicting quantum-mechanical properties, were used, with a cutoff
value of 0.48 nm and a grid spacing of 0.003 nm and 0.03 rad for
the two-body and three-body spectra, respectively.

Each frame of the gas-phase simulations yields nine atomic
SLATM vectors, i.e., one vector per heavy atom, ignoring hydrogens.
Because the number of heavy atoms and chemical composition was

constant across the entire database, the length and ordering of the
many-body types for each aSLATM vector were the same. Figure
S6 shows the aSLATM vectors of the first molecule over the entire
simulation projected into two dimensions using UMAP.54 There
are only four large clusters due to the symmetry of the compound.
HDBSCAN facilitated the identification of clusters in an automated
fashion and seemed relatively insensitive to the choice of HDBSCAN
parameters.55 The use of different clustering approaches as well as
the robustness of the results with respect to the parameters used for
these approaches will be the subject of a future study.

E. Selecting representative molecules
All of the gas-phase aSLATM cluster centers were combined

and clustered using HDBSCAN. We used the default HDBSCAN
parameters, with both the minimum cluster size and the number
of nearest neighbors set to five points. Figure 2(b) shows a UMAP
projection of this dataset colored by the identified representative
molecules. It clearly shows that the set of representative compounds
covers the conformational space of all compounds. The UMAP
projection (set using the default parameters) is used only for visual-
ization purposes, while the identification of clusters was performed
in the high-dimensional aSLATM space. Beyond the overall sepa-
ration of aSLATM vectors based on chemical elements, no other
global trends are seen across the various clusters defined. Although
we only provide labels for a small fraction of the clusters identified
in Fig. 2, we saw that most of the distinct clusters that are present in
the UMAP projection are also labeled as distinct clusters according
to our HDBSCAN results on the high-dimensional data. Because we
were also able to identify the key chemical motifs that define these
clusters via visual inspection, we are confident in the accuracy of
the clustering results. We then chose representative molecules by
first ranking them by the number of clusters “visited,” meaning we
prioritized the compounds with aSLATM vectors belonging to as
many different clusters as possible. We then included subsequent
molecules if the number of new clusters visited by the molecule
was greater than the number of clusters already visited by the other
chosen molecules. By applying this simple algorithm, we found

FIG. 2. (a) Atomic environments averaged over gas-phase simulations are encoded in aSLATM vectors, φ(x). (b) UMAP projection of the averaged aSLATM vectors for
the 3441 C7O2 isomers. A given cluster is colored based on the representative molecule that “visits” that cluster, meaning the molecule has an aSLATM vector belonging to
that cluster.
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19 molecules containing local environments that shared cluster
assignments with over 92% of the assigned aSLATM vectors. These
19 representative molecules, shown in Figs. S1–S4, were then used as
the foundation for our extended-ensemble approach.

F. Atomistic simulations of bulk liquid-phase binary
mixtures

An extended ensemble consisting of bulk liquid-phase molecu-
lar dynamics simulations of each of the 19 representative molecules,
as well as binary mixtures of the representative molecules, was con-
structed. Each system consisted of 400 molecules in total with the
concentrations for compounds in the binary mixtures ranging from
20% to 80% in 20% increments. Therefore, the total number of state
points simulated at the atomistic resolution was 703: 19 pure liquids
plus every possible combination of binary mixtures, each simulated
at the four different concentrations.

Each of these 703 systems was simulated using the following
protocol, adapted from the procedure used by Dunn and Noid.56

400 molecules were first randomly placed into an isotropic box
with a volume of 1000 nm3. The system was energy-minimized and
then run in the NVT ensemble using a velocity-rescaling thermo-
stat for 2 ns at a temperature of 1000 K.48 The system was then
cooled to 300 K over the course of the next 10 ns. At this point, the
Berendsen thermostat and barostat were used to reduce the size
of the box and equilibrate the system in the NPT ensemble at
300 K and 1 bar57 The resulting densities ranged from ≈ 0.80 to
≈ 1.0 g/cm3. While no specific density data could be obtained for
these 19 representative molecules, these densities roughly agree with
those of 1,7-heptanediol (0.95 g/cm3), heptanoic acid (0.92 g/cm3),
and pentyl acetate (0.87 g/cm3), which also consist of seven carbon
and two oxygen atoms.58 In a similar vein, we were unable to find
previously reported isothermal compressibilities for these specific
compounds and used the isothermal compressibility of heptanoic
acid, 7.4 ⋅ 10−5 bar−1 for all systems.59 Production runs were then
carried out under these conditions in the NPT ensemble using the
Nosé–Hoover thermostat and the Parinello–Rahman barostat with
coupling constants of τT = 0.5 ps and τP = 5.0 ps, respectively.56

The force-field parameters used were the same as those used in
the gas-phase simulations with LINCS constraints applied to the
hydrogen-to-heavy-atom bonds. The final trajectories consisted of
60 ns simulations of each system of which the first 5 ns were dis-
carded to allow for equilibration after applying the new thermostat
and barostat.

G. Applying the multi-scale coarse-graining
technique

We briefly outline the MSCG method here but refer to the
reader for a more in-depth description.10,18,59–63 The first step in
the coarse-graining process is to define a mapping function from
atoms to CG beads.10 The loss of resolution makes the mapping
choice an important one, although, in practice, this is often based
on chemical intuition alone. The analysis of the clusters shown in
Fig. 2 naturally points to a mapping scheme corresponding to func-
tional groups. As a result, we adopted a mapping scheme in which
all combinations of two- and three-heavy-atom fragments consist-
ing of carbon and oxygen are assigned to different bead types, as
given in Table I. In order to ensure completeness of our training

TABLE I. Bead types and their corresponding fragments in SMILES notation.

CG CG CG
Type Fragment Type Fragment Type Fragment

B01 CC B06 CCO B11 C=CO
B02 CO B07 COC B12 OC=O
B03 C=C B08 OCO B13 C(C)(C)C
B04 C=O B09 CC=C B14 C(C)(C)O
B05 CCC B10 CC=O

set—all heavy atoms are assigned to a bead type and the topology
of the fragments is preserved—we also included two fully branched
bead types mapping to four-heavy-atom fragments. This set of bead
types led to mapping degeneracy for a number of molecules, i.e.,
they can be mapped in multiple ways. The full set of compounds
and associated CG mappings are shown in Figs. S1–S4. Although
the cartoon mappings shown in these figures in some cases depict
the beads as being ellipsoidal, the potentials assigned to each bead
type are radially symmetric (corresponding to a spherical shape).

We now turn to determine the CG potential. In order to main-
tain the thermodynamic consistency condition across both CG and
atomistic systems, the marginal probabilities over the CG degrees of
freedom between the CG model and reference atomistic simulations
must be equal.10,61 Under this condition, solving for the CG force
field yields a projection of the atomistic free-energy surface onto
the CG degrees of freedom, known as the MBPMF.10 We use the
MSCG approach to variationally determine a CG potential that best
approximates the MBPMF.18 The variational principle ensures that
the resulting CG potential best reproduces the averaged atomistic
net force acting on CG sites. For this reason, the MSCG approach
is also commonly referred to as the force-matching method for
bottom-up coarse-graining. The high-dimensional MBPMF is often
projected onto molecular mechanics terms commonly used in atom-
istic MD, including nonbonded pairwise contributions. Due to the
inherently many-body nature of the MBPMF, the use of pairwise
interactions in the CG force field, while computationally convenient,
usually introduces some degree of error due to the projection of
many-body effects onto a pairwise basis. However, in this work, we
limit ourselves to pairwise non-bonded interactions between the dif-
ferent bead types, represented using a set of flexible spline functions
as a basis set. If the CG forces depend linearly on the parameters
of the model, ϕ, then the MSCG method corresponds to a linear
least-squares problem in these parameters. This optimization prob-
lem can equivalently be expressed as a coupled set of linear equations
(i.e., the normal equations),

∑
D′

GDD′ϕD′ = bD, (1)

where D denotes a single interaction type at a specified distance.
In this equation, the correlation matrix, GDD′ , measures the cross-
correlations between all atomistic interactions when projected onto
the force-field basis vectors defined. bD is a vector obtained by
projecting the MBPMF of the atomistic reference onto these force-
field basis vectors. Solving Eq. (1) yields the parameters ϕD′ corre-
sponding to the CG potential that minimizes the force-matching
functional.
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We used the BOCS software package developed by Dunn et al.
to apply the MSCG method to each of the 703 atomistic ensembles in
the extended ensemble.64 For systems made up of compounds with
multiple mappings, we systematically applied every possible map-
ping (or combination of mappings in the case of binary mixtures)
and calculated the MSCG potential from each mapped atomistic
trajectory. We first applied the direct Boltzmann inversion method
in order to obtain intramolecular (i.e., “bonded”) CG potentials. In
cases where certain angle and dihedral values were not sampled,
we modified the resulting potential to include large barriers, effec-
tively preventing the CG systems from sampling these values. To
properly account for the contribution of these intramolecular inter-
actions to the mean force, we explicitly calculated the contributions
and subtracted them before solving Eq. (1),65 including only the
nonbonded and bond interactions. Although the bond interactions
are included in the calculation, we do not update the corresponding
forces (i.e., the Boltzmann-inverted bond potentials are used for all
simulations). Previous work has suggested that the inclusion of the
bond interactions, even after subtracting their contribution to the
mean force, can provide numerical stability for determining optimal
nonbonded parameters.66–68 All pairwise interactions were repre-
sented with radially isotropic fourth-order basis splines with control
points spaced every 0.01 nm ranging from 0.0 to 1.4 nm. In this fash-
ion, a set of CG pairwise potentials was generated for each mapping
at each state point. This protocol was applied using an automated
framework, and, to the best of our knowledge, this is the first study
in which such a large number of systems have been systematically
coarse-grained using the MSCG method.

H. Averaging over the extended ensemble
Mullinax and Noid proposed the extended-ensemble MSCG

framework, which extends the variational principle of the MSCG
method to determine the optimal approximation to a general-
ized MBPMF, constructed from a number of system-dependent
MBPMFs.36 Within the extended ensemble, the average of an
observable, ⟨A⟩, is evaluated as

⟨AΓ(RΓ)⟩ =
NΓ

∑
Γ

PΓ⟨AΓ(RΓ)⟩Γ, (2)

where Γ specifies the molecular identity, CG mapping, and thermo-
dynamic state point of a single system within the extended ensemble
(i.e., a mapped ensemble as previously defined), RΓ represents the
Cartesian coordinates of system Γ, and NΓ is the total number of
systems making up the extended ensemble. PΓ is the weight of
system Γ and is taken to be 1/NΓ in this work. ⟨⋅⟩Γ denotes the
usual ensemble average within system Γ and implies the appropri-
ate conditional averaging for observables evaluated from atomically
detailed simulations. Similar to the original MSCG framework, the
optimal CG force-field parameters, ϕ, within the extended ensemble
can be determined by solving Eq. (1) while evaluating the correlation
functions according to Eq. (2).36,64

In practice, we first initialize a correlation matrix GDD′ and
mean force vector bD for all 105 pairwise interactions between the
14 bead types that we have defined as well as all bonded interac-
tions (to ensure numerical stability). With all elements initially set
to zero, we then iterate over all of the mapped ensembles, adding
each of the blocks of the correlation matrix and segments of the

mean force vector for a single state point to the corresponding block
and segment in the extended-ensemble correlation matrix and mean
force vector, respectively. As multiple mappings can exist for a sin-
gle ensemble, we use the same atomistic trajectory multiple times
to efficiently obtain correlations. For example, Fig. 5(b) shows that
Molecule 21 has two different mappings, labeled mapping 0 and
mapping 1. Although the number and type of beads do not change,
the way in which the atomistic fragments are mapped to these beads
does change. In this case, two distinct sets of pairwise interaction
statistics for the same interactions from a single atomistic trajectory
are obtained. In addition to the Molecule 21 case, Figs. S1–S4 show
several different mappings that are applied to the same compound,
similarly allowing for additional correlations to be included with-
out generating additional atomistic trajectories. After including the
correlations from each of these mapped ensembles to GDD′ and bD,
we compute the average by dividing by the total number of mapped
ensembles as required by Eq. (2). Using the BOCS software package,
we solved Eq. (1) with the extended-ensemble correlation matrix and
mean-force vector.

I. Validation and quantifying structural accuracy
Once we have obtained our CG potentials, we compare state-

point (SP) specific CG potentials to the extended-ensemble (EE)
potentials. Both approaches share the same intramolecular poten-
tials. The CG simulations are run in the NVT ensemble using an
isotropic box that has dimensions matching the average density cal-
culated from the atomistic state-point trajectory. A time step of
δt = 0.002τ was used for all simulations, where τ is the natural time
unit for the propagation of the model defined in terms of the units
of energy E = 1 kJ/mol, mass ℳ = 1 amu, and length ℒ = 1 nm, as
τ =ℒ

√
ℳ /E. The simulations were run for 5 × 106 time steps with

every 500th frame saved as output, and the first 500 output frames
were discarded. The GROMACS 5.1 package was used to run all CG
simulations in this work.50 We observed a speed-up factor of ≈3.0
when comparing the CG to the atomistic simulations (with the CG
simulations running at ≈0.35 ns/CPU h).

Overall, the greatest bottleneck in this workflow stems from
the generation of the all-atom data. The coarse-graining step for
the state-point specific models is essentially instantaneous in com-
parison, while the CG simulations, with the speed-up factor and
shorter trajectories, were also relatively fast compared to the atom-
istic simulations. For the extended-ensemble model, the size of the
correlation matrix, GDD′ , depends on the number of interactions
considered as well as the number/spacing of the control points used
for the spline functions. For this work, the inversion of the correla-
tion matrix required ∼50 GB of RAM, which is another noteworthy
computational bottleneck.

To assess the effectiveness of the EE potentials, we first compare
radial distribution functions (RDFs), g(r), between the different
models. We quantify the agreement between the CG and atomistic
RDFs using the Jensen–Shannon divergence (JSD).69 Divergences
relating to two functions have successfully been used in the con-
text of the relative-entropy framework as a useful tool for evaluating
the quality of CG models.70,71 We previously used the JSD to evalu-
ate the CG distribution of water/octanol partitioning free energies
across small organic molecules,12 as well as force-field accuracy
within the conformational surface hopping scheme.35 While the

J. Chem. Phys. 157, 104102 (2022); doi: 10.1063/5.0104914 157, 104102-6

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Kullback–Leibler divergence, DKL,72 directly relates two distribu-
tions, the JSD computes the relative entropy by comparing each of
these distributions to the average of the other two,

DJS =
1
2

DKL(gCG(r)∥gavg(r)) +
1
2

DKL(gAA(r)∥gavg(r)), (3)

where

DKL(gA(r)∥gB(r)) =
rmax

∑
r=0

gA(r) ln( gA(r)
gB(r)

),

gavg(r) =
1
2
(gCG(r) + gAA(r)).

In the above equations, we define DKL in terms of two arbitrary
RDFs, gA(r) and gB(r) ranging from r = 0 to rmax. For all RDFs,
we used a grid spacing of 0.01 nm and rmax = 1.5 nm. All RDFs were
calculated using the GMX RDF package included in GROMACS 5.1.
The JSDs for both the SP and EE are compared to their respective
atomistic RDFs.

J. Mean force decomposition analysis
Equation (1) can be transformed to depend only on structural

information, revealing the set of equations as a generalization of the
Yvon–Born–Green integral equation framework from liquid state
theory.73,74 Within this formulation, for a single pairwise-additive
distance-dependent interaction represented with a set of piecewise
constant basis functions, b corresponds to a structural correlation
function that is directly related to the radial distribution function
(RDF),

bD = kBTcR2
D(

dg
dR
)

D
, (4)

where c = (4πN)/(3V) and g is the discretization of the RDF
implied by the basis function representation. (dg/dR) is meant as
a numerical derivative of g with respect to interparticle distance R,
given by the basis function centers {RD}.

The correlation matrix G also has a clear physical interpreta-
tion.75 First, it is useful to decompose G into two matrices that,
through Eq. (1), determine the direct and indirect contributions
to b,

GDD′ = ḡDδDD′ + ḠDD′ , (5)

where δDD′ is the Kronecker delta function. The direct contribu-
tion ḡ is a correlation function that is again related to the RDF:
ḡD = cRDgD. Ḡ, on the other hand, quantifies the cross-correlations
between pairs of interactions, in this case, the average cosine of the
angle formed between triplets of CG sites.75 Equation (4) clearly
implies a relationship between b(R) and the pair mean force,
−w′(R) = − d

dR [−kBT ln g(R)]. Thus, using Eq. (5), the pair mean
force can be decomposed into direct and indirect contributions,

− w′D =
bD

ḡD
= ϕD +

1
ḡD
∑
D′

ḠDD′ϕD′. (6)

III. RESULTS
In this work, we construct a chemically transferable and struc-

turally accurate CG model for C7O2 isomers following a bottom-
up approach. The model was parameterized using an “extended
ensemble” of 703 atomistic reference ensembles of pure liquids and
binary mixtures, consisting of 19 representative compounds deter-
mined by clustering the gas-phase conformation-averaged atomic
SLATM vectors of 3441 C7O2 isomers. The parameterization also
included multiple CG mappings for individual reference systems,
resulting in 2476 mapped ensembles in total (see Figs. S1–S4).

In the following, the extend ensemble (EE) model is assessed
through comparisons of RDFs to both the reference atomistic
ensembles (at the CG level of resolution) and also to state-point spe-
cific (SP) models, i.e., models constructed using individual reference
simulations. SP and EE parameterizations share all intramolecu-
lar (i.e., bond, angle, and dihedral) interactions, obtained by direct
Boltzmann inversion of the pure-liquid simulations. Each of the
2476 mapped ensembles contains up to 28 RDFs, making a manual
inspection unfeasible (although all EE RDFs are available online76).
Note that while the atomistic simulations were run in the NPT
ensemble, the CG simulations were run in the NVT ensemble, with
the volume of the simulation box equal to the average volume of
the atomistic simulation box. We assess the relative error of the CG
models at a density corresponding to the atomistic reference. We use
JSD values to quantify the accuracy of the SP and EE CG RDFs rel-
ative to the atomistic RDFs. Figure S5 provides several examples of
RDF comparisons that result in certain JSD values, a useful reference
for interpreting these JSD values in terms of the error when com-
paring atomistic and CG RDFs. Figure 3 reports the distribution of
JSD values for all systems simulated in this work (see Fig. S7 for the
state-point averaged JSDs per system for the 36 single-component
systems, not including mixtures). Also shown in this figure are the
mean of both the SP and EE CG models. One might expect the EE
model to perform worse than the SP models because the EE model
is obtained by averaging over many different reference ensembles,
rather than optimizing the model for any particular one. Remark-
ably, on average, the transferable EE model outperforms the SP

FIG. 3. Distribution of JSD values using both the state-point specific (orange)
and transferable extended-ensemble (EE; blue) models. The black dashed line
denotes the cutoff JSD value for “good” agreement with atomistic RDFs, 0.002.
The blue dashed line and the orange solid line correspond to the mean JSD values
for the EE distribution (0.0024) and SP (0.0038) distributions, respectively.
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FIG. 4. JSD values of interactions sampled in pure, homogeneous liquids using both the state-point (SP) specific and transferable extended-ensemble (EE) CG models on
the left and right panels, respectively.

models with an average JSD value of 0.0024 vs 0.0038, respectively.
The EE distribution is also narrower, indicating more regularity in
the quality of the CG parameterizations. We find several state points
where the EE model greatly outperforms the SP model: Molecule
3 mapping 0, Molecule 8 mapping 0, and Molecule 1 mapping 0,
see Fig. S7. On the other hand, we also find opposite cases: Molecule
6 mapping 0 and Molecule 5.

We now change perspective: we analyze the same set of sys-
tems and RDFs but average according to interaction types. Figure 4
presents a matrix-form heat map of JSD values with column–row
combinations representing interaction pairs. The lighter coloring
of the EE interactions conveys the same message as before: EE
CG models are on average closer to the atomistic reference and
the SP CG models show more outliers. The use of a logarithmic
scale emphasizes strong deviations. While most of the EE RDFs are
significantly below the “good” agreement JSD cutoff, the previous
averaging over systems leads to larger JSD values (Fig. S7). The
difference in the tails of the SP and EE distributions in Fig. 3
highlights the dominating effect of a few interaction types.

TABLE II. Test molecules, SMILES strings, and SLATM distance to the representative
molecules scaled by the maximum distance.

Molecule Scaled SLATM distance
index SMILES string from training set

19 CCC(CC)OC(C)=O 0.43
20 CC(C)=CC(=C)C(O)=O 0.48
21 C=COC(=C)C(=C)C=O 0.88
22 CC(C)(C)C(C=O)C=O 0.91
23 CC(C)C(C)(C=O)C=O 0.91

We now investigate the transferability of the EE model beyond
the set of representative molecules but within the considered chem-
ical space of 3441 C7O2 isomers. “Test” compounds are selected
based on their molecular SLATM distance from the training com-
pounds. The molecular SLATM vector simply consists of the sum
of aSLATM vectors in a molecule. We quantify compound sim-
ilarity from the 3441 isomers to the 19 representative molecules
by means of a matrix of pairwise Euclidean distances between
molecular SLATM representations. To focus on molecules that
share as little information as possible from the pool of representa-
tive molecules, we focus on the largest average distances. Table II
reports the SMILES string of the five furthest compounds, as well
as their scaled SLATM distance (i.e., the maximum Euclidean
distance is 1.0).

The performance of the CG models for the test molecules, as
well as an illustration of their mappings, is shown in Fig. 5. In anal-
ogy to Fig. 3, we average the JSDs of the SP and EE CG RDFs
for each system. We find that the largest improvement from SP
to EE parameterization corresponds to Molecule 19—the closest
compound to the representative set. It confirms that a larger con-
formational overlap can benefit the transferable-parameterization
strategy. Other factors also play a role, as indicated by the superior
and comparable performance of the EE model for Molecules 23 and
21, respectively, despite these molecules being further away from the
representative set on average (see Table II). On the other hand, the
EE model underperforms compared to the SP model for Molecules
20 and 22. While Molecule 22 is also one of the furthest com-
pounds on average from the representative set, Molecule 20 is only
slightly further than Molecule 19. We defer a rationalization of the
results for these compounds to later in the text. Evidently, an analy-
sis of five molecules is by no means statistically representative of the
chemical space considered. However, this provides a glimpse of the
behavior of the EE model for molecules with varying conformational
overlap.
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FIG. 5. (a) Average JSD values of bulk liquid MD simulations for five test com-
pounds, displaying both SP (circles) and EE (triangles) CG models. Molecule 21
has two mappings, shown in different colors. The gray line denotes the cutoff JSD
value for “good” agreement with atomistic RDFs, 0.002. The molecules are ordered
based on an increasing agreement of the atomistic RDFs with the EE CG RDFs.
(b) CG mappings of the test compounds.

IV. DISCUSSION
Our results show that an extended-ensemble (EE) parameter-

ization across a wide set of small organic isomers leads to more
accurate and consistent CG models. This was demonstrated in Fig. 3,
where the distribution of EE JSD values shows a smaller mean and
variance than the state-point specific (SP) models. These results
might be counterintuitive, in which a force field that is parameter-
ized using information averaged over many simulations is expected
to perform worse than another of equal complexity that focuses on a
particular reference ensemble. Instead, the results indicate that bet-
ter transferability can go hand in hand with improved accuracy. This
sentiment is consistent with previous, but much more restricted,
investigations of the extended-ensemble approach, demonstrating
that the resulting models were both more transferable and more
accurate.37 Beyond this overall improved accuracy, the reduced vari-
ance of the JSD distribution indicates that the EE model will result
in more reliable predictions. On the other hand, our analysis also
reveals cases where the EE model underperforms, compared to a
more traditional SP parameterization. To better understand the
advantages and pitfalls of the EE parameterization, we investigate
certain ensembles and the corresponding mapped ensembles where
the EE and SP models lead to significant differences.

Before digging deeper, it is worth mentioning the recent work
from Shen et al.,77 which argues that an appropriate choice of a sin-
gle reference ensemble can have a much more significant impact on
the accuracy and transferability of a CG model than an extended-
ensemble approach. This study considers an iterative optimization
of the CG potentials, which effectively matches the distribution func-
tions along the order parameters governing the CG interactions,
e.g., the radial distribution functions. Thus, there is a fundamental
difference with the non-iterative approach taken in this study. In
particular, the positive impact of the extended-ensemble approach
discussed in greater detail below is partially due to correcting for
errors that are inherent to the MSCG approach. In addition, this
effect cannot be easily separated from the pure impact of consid-
ering multiple reference ensembles. Moreover, this study has not
addressed the question of optimizing the set of reference ensem-
bles. Thus, the work of Shen et al. is not in conflict with the present
results, but rather these studies together provide a broad outlook
for improving the chemical and thermodynamic transferability of
bottom-up CG models.

We first consider the pure Molecule-3 system. Mapping 0,
depicted in the molecular image at the top of Fig. 6, shows the
greatest structural improvement from SP to EE parameterization,
according to the average JSD value (Fig. S7). An example RDF
for the B04–B04 interaction is shown in Fig. 6(a), and the RDFs
pertaining to all other pairwise interactions are available in the
supplementary material (see Figs. S8–S13). The SP model (solid red
curve) drastically overstabilizes the first and second solvation peaks
of the B04–B04 RDF, while the EE model (dashed green curve) bet-
ter reproduces the AA simulation, with a mild understabilization
of the solvation structure. Figure 6(b) presents the B04–B04 pair
forces for the SP and EE models. Both forces exhibit similar fea-
tures within the first solvation shell region, with minima at r ≈ 0.4
nm. However, the EE force demonstrates a significant reduction of
the magnitude of repulsive forces beyond this minimum. Overall,
we found that the magnitude of these repulsive features were always
either maintained or reduced in the EE model with respect to the SP
model and were rarely seen to increase in the EE case. The repulsive
nature of the SP forces is consistent with previous work showing that
structure-based CG approaches tend to result in models with overly
repulsive potentials.35,56,78,79 Compared to the SP models, the EE
forces tend to look simpler—qualitatively more similar to a Lennard-
Jones form. A similar finding was reached when augmenting a
CG model with multiple, conformationally dependent force fields.35

The results suggest that solving Eq. (1) over the extended ensem-
ble promotes a regularization effect, which accounts for correlations
across conformational and chemical space. Averaging over these
correlations appears to have the net effect of smoothening sharp,
localized features in the mean force while preserving the key fea-
tures shared across the extended ensemble. The smoothening tends
to wipe out longer ranged features of the many-body correlations,
resulting in overall more localized potentials. These observations
echo a previous conjecture of Dunn and Noid37 when examining a
more limited application of the EE approach. In addition, alterna-
tive bottom-up approaches, such as effective-force coarse-graining80

and the conditional reversible work method,23 have demonstrated
improved transferability of CG force fields through the removal
of many-body contributions to the mean force, not entirely unlike
the smoothening effect of the EE approach. Simplifying the MSCG
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FIG. 6. Atomistic and CG RDFs of pure-liquid simulations and pairwise forces for Molecules (a) and (b) 3, (c) and (d) 6, (e) and (f) 9, and (g) and (h) 22, respectively. The
black, red, and green curves denote, respectively, the atomistic, SP, and EE RDFs for the fragments that map to the bead types listed in the top-right of each plot.

correlation matrix implies that the resulting potential will more
closely resemble that obtained from direct Boltzmann inversion
(i.e., the pair potential of mean force). Thus, our results support
previous work aimed at explicitly simplifying these correlations to
obtain more accurate and transferable interaction potentials.67,81

Next, we examine cases where the EE model underperforms
compared to the SP model. Figure 4 shows that the EE B12–B12
interaction, found in Molecules 6, 9, and 16 (see Figs. S15–S17
in the supplementary material), is significantly worse when com-
pared to the SP model, with average JSD values of 0.018 and 0.008,

FIG. 7. Mean forces (black curves) for the interactions corresponding to the RDFs shown in Fig. 6. (a) and (b) The three of the three-body contributions to the mean force
for both the SP (solid) and EE (dashed) models. (c) and (d) The two-body contributions to the B12–B12 mean force for the SP (solid) and EE (dashed) models.
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respectively. Panels (c) and (d) of Fig. 6 present the SP and EE
B12–B12 RDFs and forces, respectively, for Molecule 6. Panels
(e) and (f) show the corresponding quantities for Molecule 9. In
contrast to the B04–B04 interactions of Molecule 3, the repulsive
bumps at r ≈ 0.6 nm are retained within the EE model, suggest-
ing that they are essential for stabilizing the proper structure. Both
the SP and EE forces for Molecule 9 contain a sharp attractive
feature at r ≈ 0.3 nm, which are clearly responsible for the cor-
responding sharp peaks in the RDFs at this distance. A similar
feature is found in the EE force for Molecule 6, although there is
no corresponding feature for the SP model. We conclude that the
extended-ensemble averaging “transferred” this particular trait from
Molecule 9 to others—including Molecule 6, resulting in signifi-
cant errors in the RDFs for this interaction type. Overall, we find
that, within the EE approach, interactions involving B12 average
over significantly different local environments. Indeed, the atom-
istic RDFs of Molecules 6 and 9 display pronounced differences. The
sharp peaks observed in Molecule 9 are absent in the Molecule 6
liquid. This is expected: the presence of a terminal carboxylic-acid
group in Molecule 9 encourages hydrogen bonding in the bulk-
liquid phase, which promotes ordering. On the other hand, the
B12 bead in Molecules 6 and 16 represents ester groups, which
lack hydrogen bonding. Our use of a single bead type to repre-
sent such different chemical environments results in a CG poten-
tial that cannot faithfully reproduce either case. This issue might
be remedied by employing multi-state potentials that distinguish
between environments26,33–35 or through the application of poten-
tials that go beyond pairwise and isotropic functions.82,83 However,
improvements in the CG mapping would also clearly help the situa-
tion. While the reuse of atomistic trajectories to generate multiple
mapped ensembles allows for an efficient way to obtain correla-
tions and forces to average over using the EE approach, failing to
account for these differences in atomic environments can lead to
an exacerbation, rather than a reduction, of undesirable features
in the resulting forces. Interestingly, the SP model for Molecule 9
reasonably reproduces the sharp peak in the B12–B12 RDF. When
comparing against a previous study attempting to model carboxylic
acid groups with higher resolution using the MSCG method,26

this result indicates that the lower resolution employed here (i.e.,
1 site for the entire carboxylic acid group) already performs suffi-
cient smoothing over the many-body correlations (discussed further
below) to improve the accuracy of the SP model for this particular
environment.

To further understand the apparent regularization effect that
arises due to averaging correlations within the extended ensemble,
we performed an analysis of the mean forces for the pure liquid
systems of the four molecules presented in Fig. 6 (representative
Molecules 3, 6, and 9, and test Molecule 22). Following Sec. II J,
we first decomposed the SP mean forces into contributions from
each of the interactions in the system using the cross-correlations
calculated from the corresponding reference ensemble. The solid
curves in panel (a) of Fig. 7 present the resulting decomposition for
the B04–B04 interaction of Molecule 3 for a subset of the contribu-
tions. The remaining contributions have a negligible impact on the
B04–B04 mean force (solid black curve). The solid red curve rep-
resents the direct, or two-body, contribution (i.e., the SP B04–B04
pair force). The other colored solid curves represent three-body

contributions (i.e., correlated contributions to the B04–B04 mean
force from a particular distinct interaction). By definition, the sum
of two- and three-body contributions equals the total mean force
[Eq. (6)]. Thus, in this case, it is apparent that, while the two-
body contribution is dominant, there are significant contributions
from other interactions, both within the first solvation shell and
beyond. Panel (b) of Fig. 7 presents the corresponding result for the
B10–B13 interaction of Molecule 22, with similar overall features to
the B04–B04 case.

To directly probe the impact of averaging correlations over
distinct environments, we repeated the decomposition of the SP
mean forces using EE correlations instead of the SP correlations.
The results are presented as the dashed curves in panels (a) and
(b) of Fig. 7. For both Molecules 3 and 22, there is a reduction in
the magnitude of the three-body contributions to the mean force, as
might be expected due to smoothing of correlations via the EE aver-
aging. This can be most clearly seen in the similarity between the
two-body contributions (red dashed curves) and the total mean force
(black solid curves). To interpret these results, it helps to reconsider
the g-YBG equations. Equation (1) represents an exact relationship
between the force-field parameters ϕ and the structural correlation
functions b(ϕ) for a single-state point, determined from molecu-
lar simulations, via the cross-correlations, G(ϕ), generated by the
same model ϕ. In contrast, the MS-CG method attempts to pre-
dict the force-field parameters ϕ that will reproduce bAA using GAA

as a proxy for the cross-correlations of the CG model.66,67 While
ideally GAA = G(ϕ), limitations in the CG basis set can only approxi-
mately reproduce the AA correlations. The EE scheme populates the
correlation matrix with complementary contributions from various
systems and state points. Incorporating more reference simulations
could improve the state-point parameterization by smoothing out
correlations that are too complicated for the CG model to repro-
duce. However, this numerical experiment represents only a portion
of the extended-ensemble calculation, which additionally performs
an average over the various mean forces, i.e., through the aver-
age over the bAA coefficients for each system and state point. It is
apparent from the analysis in Fig. 7 that the smoothing of correla-
tions is not responsible for the lack of repulsive features in the EE
forces beyond the first solvation minimum, as discussed above. This
implies, instead, that the smoothing of the mean force itself is the
primary cause for the removal of these features.

Panels (c) and (d) of Fig. 7 present a similar analysis for
Molecules 6 and 9, respectively, but only show the total mean forces
(black solid curves) and the two-body contributions (red curves)
using SP (solid) and EE (dashed) correlations. For Molecule 9 [panel
(d)], which exhibits the ordered peak in the B12–B12 RDF, both
the SP and EE correlations result in a two-body contribution with
a strong inflection (i.e., a deep minimum in the potential) at r ≈
0.3 nm. On the other hand, for Molecule 6 [panel (c)], the SP model
displays no such inflection. Note that the dip in the SP force for short
distances is a numerical artifact that sometimes occurs at the end of
the sampled region. In the case of the EE correlations, the situation
is less clear. There is some sort of inflection in the force at short dis-
tances, which could be partially due to the correlations or could also
be a numerical artifact. Since the simulation of the resulting forces
does not yield such strongly ordered peaks, as in the full EE case, we
conclude that it is primarily the combination of mean forces within
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the extended ensemble that is responsible for transferring the strong
ordering behavior between systems.

Finally, we turn our attention to the test molecules used for val-
idation of the EE parameterization. Molecules 19, 21, and 23 show
similar or improved performance using the EE model compared to
SP. On the other hand, the EE model underperforms for Molecules
20 and 22. Reminiscent of Molecules 6 and 9, the discrepancy for
Molecule 20 also stems from the poor modeling of the carboxylic-
acid B12 bead type. Molecule 20 is indeed similar to Molecule 9, both
featuring alternating single and double bonds, as well as a terminal
carboxylic-acid group. On the other hand, the SP parameterization
of Molecule 20 is significantly more accurate than that of Molecule 9.
Interestingly, Fig. S18 in the supplementary material shows that the
largest difference between SP and EE models when comparing these
two molecules does not stem from B12, but instead from the B09
bead type present in Molecule 20. The SP model features a large
repulsive peak in the B09–B09 interaction, nonexistent in the EE
model. Indeed, the EE parameterization was devoid of B09 frag-
ments showing any ordering behavior. The superiority of SP, in
this case, reinforces the need for a consistent mapping of fragments,
thereby ensuring homogeneous chemical environments.

Molecule 22 also poses a challenge for the EE parameterization.
While both molecules 22 and 23 are furthest from the representative
compounds and feature similar molecular structures, the EE param-
eterization under- and overperformed compared to SP, respectively
(Fig. 5). Both molecules are structurally similar, branched, and sym-
metric with respect to the two carbonyl groups. Critically, the CG
mapping for Molecule 23 is symmetric, while that of Molecule 22
is asymmetric. The carbonyl groups in Molecule 22 are unevenly
split into fragments of different sizes, mapping to B04 and B10
types (Fig. 5). Here, symmetry appears to impact the quality of the
EE parameterization. Chakraborty et al. recently showed that the
CG-mapping symmetry has a negligible impact on structural accu-
racy.41 Asymmetry indeed appears to be irrelevant for SP models.
However, the use of asymmetric CG mappings will affect the trans-
ferability in the EE scheme. To understand why, it helps to consider
the g-YBG equation [Eq. (1)]. Much of the benefit of the EE strategy
revolves around the sharing of reference atomistic information, both
within the correlation matrix GDD′ as well as the projection of the
mean force bD, thereby enriching the parameterization with infor-
mation from more reference ensembles. A symmetric choice of CG
mappings acts in a similar way on GDD′ and bD, further enhancing
the beneficial impact of the EE scheme.

All in all, our results highlight the favorable transferability of
the EE parameterization for a variety of compounds with promising
prospects across our chemical space of 3441 isomers. Once the CG
bead types have been parameterized across the EE, the procedure
readily offers structurally accurate nonbonded CG interactions for
any additional molecule: we simply decorate them with appropri-
ate bead types. While capable of offering transferable CG potentials,
the gas-phase-based mapping scheme was not able to account for
some of the emergent behavior occurring in the liquid phase. For
example, we did not account for specific intermolecular interac-
tions (e.g., hydrogen bonding), leading to some discrepancies. The
fact that one such “anomalous” compound made its way as a repre-
sentative molecule speaks for the strength of our clustering analysis
from gas-phase trajectories alone. We hypothesize that a subsequent
clustering step on liquid-phase trajectories could help overcome this

issue. Incorporating liquid-phase simulations could help reveal vari-
ations of local environments for the same fragment and could be
used to optimize the number and set of CG bead types, as well as the
complexity of the CG force field. In this case, the local environments
of the carboxylic acid and ester fragments would be significantly
different, leading to these fragments being clustered separately and
assigned to different bead types. Another approach would require
certain chemical fragments known to promote specific intermolec-
ular interactions to be assigned multiple bead types. However, this
would require prior knowledge of which fragments to choose and
the number of different bead types that should be assigned per frag-
ment. We leave an exploration of both of these solutions to future
work.

V. CONCLUSIONS
We present an approach to construct chemically transferable

coarse-grained (CG) models that preserve the liquid-phase struc-
ture of small organic molecules. Our strategy couples unsupervised
learning methods with rigorous structure-based coarse-graining
techniques. Instead of focusing on a specific compound, we target
a large collection of molecules at once—in this study, a collec-
tion of 3441 C7O2 small-molecule isomers. The procedure first
consists of sampling the conformational space of each molecule,
here using gas-phase molecular dynamics simulations. We then
encode the configurational information by means of conformation-
ally averaged aSLATM atomic representations.52 Overlapping local
environments across the chemical space are systematically identified
using the graph-based clustering technique HDBSCAN. The clusters
are organized according to hierarchies of increasing resolution, cor-
responding to the many-body types encoded in aSLATM. Because
clusters primarily differentiate on the basis of functional groups, we
choose them as our CG mapping scheme. We identify 19 repre-
sentative compounds whose local environments maximally overlap
with the rest of the chemical space. This subset of representative
compounds forms the basis of our liquid-phase simulations, both
homogeneous bulk and binary mixtures. All 703 atomistic reference
ensembles are combined to parameterize the CG potentials of our 14
bead types using the extended-ensemble multiscale coarse-graining
(EE-MSCG) method.36 To the best of our knowledge, no study so far
has presented an EE parameterization over such a broad chemical
space.

Validation of our CG parameterization consisted of a sys-
tematic and large-scale analysis of the structural accuracy. Radial
distribution functions are compared between CG and atomistic
resolution with an in-depth analysis of certain pure (i.e., single-
component) liquids that stood out as outliers. The transferability
of the CG force field is assessed by comparing the EE model to
a more common state-point specific (SP) force-field parameteriza-
tion. Remarkably, we find that the EE model outperforms the SP
models, despite the EE model being primarily parameterized from
binary mixtures. Beyond the set of representative compounds used
for parameterization, validation against five other molecules led on
average to similar or better performance with the EE model com-
pared to the SP model. Examination of specific systems sheds light
on the benefits of the EE approach: averaging across the extended
ensemble smoothens sharp features in the mean force that are not
shared across systems. On the other hand, key features that persist
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across multiple state points are preserved. Thus, the EE procedure
effectively leads to a regularization in the space of force fields, opti-
mizing the force-matching functional to more transferable solutions.
However, we also found two detrimental effects: (i) averaging over
significantly different chemical environments of a given CG bead
type, for instance, due to strong directional interactions, may erro-
neously promote excessive ordering behavior for some compounds;
and (ii) an inconsistent treatment of symmetry in CG mapping
may limit the beneficial averaging effects of the extended-ensemble
approach. In these cases, averaging correlations and mean forces
over distinct reference ensembles resulted in a model with larger
structural deficiencies than the corresponding SP model. Thank-
fully, there are clear avenues to remedy these aspects. EE-MSCG
parameterizations that cover broad subsets of chemical space offer
an appealing strategy toward structurally accurate high-throughput
coarse-grained modeling.9

SUPPLEMENTARY MATERIAL

The attached supplementary material provides details on (i) all
CG mappings used for the representative compounds; (ii) an alter-
native schematic of the methods; (iii) a subset of the data shown
in Fig. 3 taken only for the single-component systems with the
JSD values averaged over all RDFs per system; (iv) plots of all
RDFs, potentials, and forces for the SP and EE models for the spe-
cific molecules discussed in the main text; (v) the parameterization
method for the new force-fields; and (vi) the complete mean-force
decomposition plots for the systems shown in Fig. 7. In addition,
we provide the list of 3441 C7O2 isomers used for the clustering
approach in this work as smiles strings, the run files for all of the
atomistic and coarse-grained simulations carried out in this work,
including all SP and EE parameters obtained, and the RDF data for
all interactions observed in the 2476 mapped ensembles generated
in this work. These files can be accessed online.76
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