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Abstract: Track functions describe the collective effect of the fragmentation of quarks
and gluons into charged hadrons, making them a key ingredient for jet substructure mea-
surements at hadron colliders, where track-based measurements offer superior angular
resolution. The first moment of the track function, describing the average energy de-
posited in charged particles, is a simple and well-studied object. However, measurements
of higher-point correlations of energy flow necessitate a characterization of fluctuations in
the hadronization process, described theoretically by higher moments of the track function.
In this paper we derive the structure of the renormalization group (RG) evolution equa-
tions for track function moments. We show that energy conservation gives rise to a shift
symmetry that allows the evolution equations to be written in terms of cumulants, κ(N),
and the difference between the first moment of quark and gluon track functions, ∆. The
uniqueness of the first three cumulants then fixes their all-order evolution to be DGLAP,
up to corrections involving powers of ∆, that are numerically suppressed by an effective
order in the perturbative expansion for phenomenological track functions. However, at the
fourth cumulant and beyond there is non-trivial RG mixing into products of cumulants
such as κ(4) into κ(2)2. We analytically compute the evolution equations up to the sixth
moment at O(α2

s), and study the associated RG flows. These results allow for the study
of up to six-point correlations in energy flow using tracks, paving the way for precision jet
substructure at the LHC.
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1 Introduction

The characterization of energy flow within jets, colloquially known as jet substructure,
provides new ways to study QCD and search for potential new physics at the LHC [1, 2].
The remarkable advances in this area in the last decade have primarily focused on the
calculation of infrared and collinear (IRC) safe observables that can be computed within
perturbative QCD, up to power corrections. The famous theorems of Kinoshita, Lee and
Nauenberg [3, 4] state that this is only possible if one is completely inclusive over hadron
species. As a consequence, such calculations can only be used to describe observables
constructed from energy flow information, disregarding all the interesting information con-
tained in other particle properties. Theoretically, these observables are therefore (combi-
nations of) correlation functions of energy flow operators, 〈E(~n1)E(~n2) · · · E(~nk)〉.
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There is significant motivation to go beyond this energy flow paradigm, both for allow-
ing more detailed tests of QCD, and for sharpening our tools in new physics searches. Such
observables are inherently non-perturbative, as they require knowledge of the spectrum of
hadrons in the theory. For example, at the LHC, many precision jet substructure measure-
ments are made using tracks (charged particles), due to the improved angular resolution
of the tracking system. This sensitivity to hadronization can of course also be viewed as
a positive if the goal is to understand features of the hadronization process. For example,
the study of energy flow on charged or strange particles provides insight into how these
quantum numbers evolve in the confinement process.

The departure from IRC safety should not be done arbitrarily, and in particular, one
should attempt to maintain the wealth of theoretical structures and advances of perturba-
tive quantum field theory, but generalize them to a wider class of observables. In ref. [5],
building on [6], it was shown that the natural way to extend the space of IRC safe observ-
ables to incorporate particle species information is to consider correlations of energy flow on
subsets of particles. These are defined theoretically by considering an energy flow operator
on a subset R of particles, ER(~n1), and enable a much more general class of correlations
to be studied, 〈ER1(~n1)ER2(~n2) · · · ERk

(~nk)〉, where in general the subsets, Ri, are distinct.
As we will discuss, these observables exhibit a clean factorization into a non-perturbative
component, and a perturbative component. The perturbative component shares many
of the features of the standard energy correlators, and in particular can be computed at
high perturbative orders using well-developed techniques from perturbative quantum field
theory.

Although the correlators 〈ER1(~n1)ER2(~n2) · · · ERk
(~nk)〉 cannot be directly computed in

perturbation theory, they can be matched onto the standard energy flow correlators using
non-perturbative track functions [7, 8]. These track functions were introduced to describe
the fraction of energy deposited into charged hadrons from a perturbative quark or gluon,
however, they can trivially be generalized to the study of any other quantum number.
Unlike standard fragmentation functions, track functions incorporate correlations between
particles, arising from the fact that quarks and gluons can fragment into an arbitrary
number of charged hadrons. As such, their evolution with scale is substantially more
complicated, since all the correlations mix under evolution.

In ref. [6], it was shown that, by restricting to correlation functions of energy flow
measured on tracks, one is only sensitive to low moments of the track functions. These
characterize the fluctuations in the hadronization process.1 To describe N -th order fluc-
tuations requires only a finite set of operators, which mix under renormalization. Fur-
thermore, the full track function distributions seem well-described by a truncated Gaus-
sian, whose form is fixed by the first two moments. In ref. [5] it was shown that energy
conservation places severe constraints on the RG evolution of the fluctuations, fixing the
evolution of the first three moments to be DGLAP, up to corrections proportional to pow-

1In analogy with the study of a spin system in statistical mechanics, the track function can be though
of as the partition function or generating function, and its moments as the study of the expectations 〈mN 〉.
Instead of studying the full renormalization group structure of the partition function, we consider the
renormalization group of the low fluctuations, as is more standard.
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ers of ∆ = Tq(1) − Tg(1). For track functions describing the production of electrically
charged hadrons in QCD, ∆ � 1, effectively suppressing these contributions by an order
in the perturbative expansion. At the fourth moment and beyond the fluctuations in the
hadronization process exhibit non-trivial RG flows describing the mixing between different
cumulants, for example κ(4) and κ(2)2.

In this paper we discuss in detail the structure of the RG for the moments of the
track functions. In dimensional regularization, the corrections for the track functions are
scaleless thus linking the evolution (UV poles) and the IR poles needed for incorporating
track functions in calculations. We derive general constraints on the structure of the
evolution that hold to all orders in perturbation theory, and in generic theories. In QCD,
we then analytically compute the first six moments at next-to-leading order (NLO), and
study the structure of their RG flows, which exhibit interesting mixing. For the first three
moments the mixing terms are all suppressed by powers of ∆ and smaller than the NNLO
corrections, allowing us to extend our calculation to this order. We also argue, that due to
the nonlinear nature of the track function evolution, it exhibits a UV fixed-point where the
track functions become a delta function. Our explicit results enable the calculation of jet
substructure observables sensitive to up to six point correlations in energy flow on tracks.

While the primary motivation for this work is practical, namely enabling higher point
correlators to be precisely measured at the LHC, the study of track functions is also of
more formal theoretical interest. Track functions, and related multi-hadron fragmenta-
tion, are intrinsically Lorentzian observables whose RG evolution goes beyond standard
DGLAP evolution. Although there has been significant recent progress in understanding
certain classes of Lorentzian operators using lightray operators [9], this has primarily been
restricted to operators on the leading Regge trajectory (which includes DGLAP). Under-
standing how the more general class of track function observables fits into this picture is
interesting, and could lead to a better understanding of the analytic structure of Lorentzian
observables in conformal field theories (CFTs). While we will not address this issue directly
in this paper, our perturbative calculations provide important theoretical data for future
investigations.

The outline of this paper is as follows: we discuss the flow of energy on subsets of
particles in section 2, motivating the study of moments of track functions. In section 3
we review the field-theoretic definition of track functions, and derive all-orders constraints
on the renormalization group evolution of their moments. We then restrict to NLO, and
derive the specific constraints both for a pure gluon theory, as well as for QCD. In section 4
we present results for the first six moments of the track functions at NLO, and describe the
techniques used in the calculation. More details of the calculation for Pure Yang-Mills are
given in appendix A, which include results up to ninth moment, and the time-like splitting
functions entering our results are collected in appendix B. In section 5 we numerically
study the structure of the RG flows. We first show that in QCD, ∆ � 1, allowing us to
extend our results for the evolution of the first three moments to NNLO. We then study
the importance of non-linearities in the evolution of the fourth and fifth moments. We
conclude in section 6.
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(a) (b)

Figure 1. (a) For a standard dijet event shape observable, which constrains the phase space of all
emissions, a separate track function is needed for every emission, leading to a complicated structure
of the hadronization process. (b) For energy correlators, matching can be performed at the level
of the detectors, instead of for each parton. Since the number of detectors is fixed this leads to a
much simpler description of the transition from quarks and gluons to hadrons.

2 Energy flow on tracks and track function moments

To motivate the study of track function moments, we begin by reviewing the natural
generalization of the study of correlations of energy flow, to the study of energy flow on
subsets R of particles. Here we will see that the non-perturbative information required for
this extension is precisely the moments of track functions, motivating our focus on these
moments.

Energy flow in final states is characterized by the energy flow operator [9–16]

E(~n) = lim
r→∞

∞∫
0

dt r2niT0i(t, r~n) . (2.1)

The canonical observables of the theory are the k-point correlation functions 〈E(~n1)E(~n2) · · ·
E(~nk)〉. These generalize the original two-point correlator introduced early on in the QCD
literature [17]. There has recently been significant interest in better understanding these
observables from a number of different perspectives: these include higher loop perturbative
calculations [18–21], resummation and effective field theory studies [6, 22–26], the develop-
ment of CFT techniques [9, 14–16, 18, 27–32], the application of CFT based techniques to
QCD [33–35], and the calculation of higher point correlators [36].

Although these observables appear similar to more standard jet observables, which
are typically called “jet shapes”, they are in fact quite different. Jet shapes constrain
radiation about some underlying hard process, can be thought of as infrared and collinear
safe resolution variables for an S-matrix element of quarks and gluons. On the other hand,
the correlation functions 〈E(~n1)E(~n2) · · · E(~nk)〉, are statistical correlators defined as an
ensemble average, and do not constrain the emitted radiation. While these correlators have
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been well studied in the formal CFT literature, that they can be useful phenomenologically
to systematically probe the structure of QCD was emphasized in ref. [6].

The energy correlators are simpler perturbatively, which has enabled a number of
remarkable calculations in both QCD [19, 20] and N = 4 SYM [18, 21]. However, for
phenomenological applications to QCD, it is perhaps their non-perturbative simplicity that
is even more important, due to the poor current understanding of the hadronization process
in QCD. Standard jet or event shape observables are sensitive to the complete structure of
emissions. This makes their extension to charged particles (or other subsets R of particles)
extremely complicated, since it requires a description of the hadronization process for every
single perturbative particle. This is illustrated in figure 1a. Furthermore, in addition to
having additional track functions at each perturbative order, the observable also depends
on the complete functional form, Ta(x), of these non-perturbative functions. On the other
hand, for correlation functions of energy flow operators, the fragmentation process should
be thought of as a matching between detector operators in the perturbative and non-
perturbative theory. Since the number of detectors is fixed (and in practical applications
only low numbers of detectors are considered), this leads to a simple theoretical description
of the fragmentation process, that is unchanged order by order in perturbation theory, see
figure 1b. It is this simple property of the energy correlators that allows them to be
naturally extended to a description of energy flow on subsets of particles.

We now formalize this in a factorization theorem involving moments of track functions.
This will motivate the study of the renormalization group structure of these moments, which
will be the focus of the remainder of this paper. To understand the energy correlators on
tracks, we begin by introducing an energy flow operator that only measures energy flow on
a restricted set of states, ER. This is a fundamentally non-perturbative object, which does
not admit a perturbative expansion about free asymptotic quark and gluon states. This
restricted energy flow operator admits an OPE onto partonic energy flow operators,

ER(~n1) = Tq̄(1)Eq̄(~n1) + Tq(1)Eq(~n1) + Tg(1)Eg(~n1) . (2.2)

The matching coefficients are given by first moment of the track function Ta(1), describing
the average momentum fraction of the subset R, whose formal definition and RG structure
will be given in the next section. (Note that track functions can differ between quark flavors,
which we ignore here for notational simplicity.) To study multi-point energy correlators
on tracks, one will therefore need to perform the perturbative calculations of the matrix
elements

〈Ea1(~n1)Ea2(~n2) · · · Eak
(~nk)〉 . (2.3)

These are more general than what has been studied in the literature, but the same calcu-
lational techniques can be used, as will be discussed in section 4.

We are now able to present the general form of the factorization formula for a k-point
correlator in terms of these partonic correlators and moments of track functions

〈ER(~n1)ER(~n2) · · · ER(~nk)〉 =
∑

a1,a2,··· ,ak

Ta1(1) · · ·Tak
(1)〈Ea1(~n1)Ea2(~n2) · · · Eak

(~nk)〉

+ contact terms . (2.4)

– 5 –
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The contact terms arise when any two detectors are in the same direction, introducing
dependence on higher moments of the track functions. We will now explicitly show the
structure of the contact terms for the two- and three-point correlator. For the two-point
correlator, we have

〈ER(n1)ER(n2)〉 =
∑
a1,a2

Ta1(1)Ta2(1)〈Ea1(~n1)Ea2(~n2)〉+
∑
a

Ta(2)〈E (1,1)
a (~n1)〉δ(~n1 − ~n2) ,

(2.5)
while for the three-point correlator, we have

〈ER(n1)ER(n2)ER(n3)〉 =
∑

a1,a2,a3

Ta1(1)Ta2(1)Ta3(1)〈Ea1(~n1)Ea2(~n2)Ea3(~n3)〉

+
∑
a1,a

Ta1(1)Ta(2)〈Ea1(~n1)E(1,1)
a (~n2)〉δ(~n2 − ~n3)

+
∑
a2,a

Ta2(1)Ta(2)〈Ea2(~n2)E(1,1)
a (~n1)〉δ(~n1 − ~n3)

+
∑
a3,a

Ta3(1)Ta(2)〈Ea3(~n3)E(1,1)
a (~n1)〉δ(~n1 − ~n2)

+
∑
a

Ta(3)〈E (1,1,1)
a (~n1)〉δ(~n1 − ~n2)δ(~n2 − ~n3) . (2.6)

The extension to higher point correlators should be clear. These contact terms introduce
dependence on higher track function moments Ta(n). The precise operator definition of the
corresponding lightray operators, E(1,1,··· ,1)

a , will not be important here, but in perturbation
theory these simply weight the state by En, where n is the number of 1 in the exponent. The
precise notation is chosen due to their relation to multi-hadron fragmentation functions.

One appealing aspect of this factorization formula is that for an N -point correlator, it
contains a finite sum over the different track function structures. This structure is fixed
by the properties of the detectors, and independent of the order in perturbation theory, as
visualized in figure 1b. This follows the general philosophy arising from CFTs, namely that
one should study the space of detectors rather than the states, which leads to significant
simplifications here.

3 Track function moments and their renormalization group evolution

Having shown how moments of track functions naturally appear in the study of energy
flow, in this section we study in detail their renormalization group structure.

3.1 Definition and sum rules

The track function describes the momentum fraction x of an initial parton i that is con-
verted to a subset R of the final-state hadrons specified in terms of some particular quan-
tum number, e.g. charge, strangeness, etc. Its definition in terms of a matrix element in

– 6 –
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quantum field theory is in light-cone gauge given by [7, 8]

Tq(x) =
∫

dy+dd−2y⊥e
ik−y+/2∑

X

δ

(
x−P

−
R

k−

) 1
2Nc

tr
[
γ−

2 〈0|ψ(y+, 0, y⊥)|X〉〈X|ψ̄(0)|0〉
]
,

(3.1)

Tg(x) =
∫

dy+dd−2y⊥e
ik−y+/2

×
∑
X

δ

(
x− P−R

k−

) −1
(d− 2)(N2

c − 1)k− 〈0|G
a
−λ(y+, 0, y⊥)|X〉〈X|Gλ,a− (0)|0〉.

In general covariant gauges, Wilson lines are required to maintain gauge invariance, as is
standard for fragmentation functions. The Fourier transform of y+ fixes the large light-cone
momentum of the initiating field to be k−, and the y⊥-integral sets its transverse momentum
to zero. The delta function encodes the measurement of the momentum fraction x of the
subset R of the final-state X. Finally, the matrix elements encode the probability of a
quark or gluon to produce a final-state X, averaged over its color and spin (with d the
number of space-time dimensions, used as regularization).

We will often work in terms of the moments of the track functions, defined as

Ta(n, µ) =
1∫

0

dx xn Ta(x, µ) . (3.2)

Note that this differs by one unit from the standard convention, which is why the evolu-
tion of T (n, µ) will involve the DGLAP anomalous dimensions γ(n + 1) in the standard
convention. The zeroth moment satisfies the sum rule

Ta(0, µ) = 1 , (3.3)

implying that the track function is normalized.

3.2 Comparison to fragmentation functions

The difference between the definition of the track function in eq. (3.1) and the fragmentation
function Da→h is that∑
X

δ

(
x− P

−
R

k−

)
|X〉〈X| −→

∫ ddph
(2π)d−1 δ(p

2
h−m2

h)
∑
X′

δ

(
x−

P−h
k−

)
|hX ′〉〈hX ′| , (3.4)

so instead the momentum fraction x of a hadron h (e.g. h = π+) is measured.
Because a single parton can produce multiple hadrons, the fragmentation function is

not normalized, in contrast to eq. (3.3). Instead, it satisfies the momentum sum rule∑
h

Da→h(1, µ) = 1 , (3.5)

where the sum on h is over all hadron species. Note that this is consistent with eqs. (3.3)
and (3.4) because∑

h

∫ ddph
(2π)d−1 δ(p

2
h −m2

h)
∑
X′

P−h
k−
|hX ′〉〈hX ′| =

∑
X

|X〉〈X| (3.6)

– 7 –
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In grouping h and X ′ together in X, the factor P−h /k− is necessary to get the correct
symmetry factor, because X ′ may also contain another hadron h. This is discussed in
section 2.5 of ref. [37].

The first moment of the track function and fragmentation function are related

Ta(1, µ) =
∑

charged h

Da→h(1, µ) (3.7)

However, for the second moment

Ta(2, µ) =
∑

charged h

Da→h(2, µ) +
∑

charged h1,h2

Da→h1h2(1, 1, µ) , (3.8)

where Da→h1h2(1, 1, µ) is a moment of the dihadron fragmentation function. This arises
because x =

∑
i xi where xi is the momentum fractions of the i-th hadron in R, and

x2 =
∑
i x

2
i +

∑
i 6=j xixj . (For the corresponding discussion in the context of jet charge, see

ref. [38].) This can be extended to the n-th moment of the track function, which involves n-
hadron fragmentation functions, clearly demonstrating that the track function is sensitive
to correlations between final-state hadrons.

3.3 Renormalization group evolution and shift symmetries

The track function evolution has the following general form

d
d lnµ2Ta(x) =

∑
N

∑
{af}

[ N∏
i=1

∫ 1

0
dzi
]
δ
(
1−

N∑
i=1

zi
)
Pa→{af}({zf})

×
[ N∏
i=1

∫ 1

0
dxi Tai(xi)

]
δ
(
x−

N∑
i=1

zixi
)
, (3.9)

where we suppressed the argument µ for brevity. There is a sum over all possible splittings
of a parton a into partons af with momentum fractions zf , and for each of these parton
there is a track function Tai . The total momentum fraction x is obtained by summing over
the xi of these partons, which are rescaled because these fractions are with respect to the
parton ai who carry a momentum fraction zi of the initial parton a. The sum on N goes
up to the order αN−1

s that one is working to in perturbation theory. E.g. at order α2
s we

need at most N = 3, corresponding to 1 → 3 collinear splittings. The explicit expression
for P is only known at order αs, for which N = 2.

We note that this evolution equation is invariant when the arguments of all track
functions are shifted Ta(x) → Ta(x + b) and Tai(xi) → Tai(xi + b). This follows because
x −

∑
i zixi = (x + b) −

∑
i zi(xi + b) due to momentum conservation

∑
i zi = 1. Track

functions must satisfy 0 ≤ x, xi ≤ 1, and thus for a generic track function this shift cannot
physically be performed. However, the evolution equation is independent of the functional
form of the track function, so that one can choose to consider a compactly supported track
function on which the shift does make physical sense. This allows shifts to be used to
constrain the form of the evolution.

– 8 –
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Converting eq. (3.9) to moment space for integer n, we can use the multinomial ex-
pansion to obtain

d
d lnµ2Ta(n) =

∑
N

∑
{af}

∑
{mf}

γa→{af}({mf})
N∏
i=1

Tai(mi, µ)

γa→{af}({mf}) =
(

n

m1 m2 · · ·

)[ N∏
i=1

∫ 1

0
dzi zmi

i

]
δ
(
1−

N∑
i=1

zi
)
Pa→{af}({zf}) . (3.10)

The sum of the moments of the track functions on the right-hand side must equal n,
i.e.

∑
imi = n.

The aforementioned shift symmetry of the evolution is particularly convenient for mo-
ments:

Ta(n, µ) =
∫

dx xn Ta(x, µ)→
∫

dx xn Ta(x+ b, µ) =
∫

dx (x− b)n Ta(x, µ) . (3.11)

Explicitly, for the first few moments,

Ta(0, µ)→ Ta(0, µ) = 1 , Ta(1, µ)→ Ta(1, µ)− b , Ta(2, µ)→ Ta(2, µ)− 2bTa(1, µ) + b2 .

(3.12)
In the next subsections we will work out the consequences of this, starting with the case
of a pure Yang-Mills theory that allows us to ignore flavors.

The evolution of the fragmentation function can be derived from the same P in eq. (3.9)

d
d lnµ2Da→h(x) =

∑
N

∑
{af}

[ N∏
i=1

∫ 1

0
dzi
]
δ
(
1−

N∑
i=1

zi
)
Pa→{af}({zf})

×
N∑
i=1

∫ 1

0
dxiDai→h(xi)δ(x− zixi) , (3.13)

In moment space this becomes

d
d lnµ2Da→h(n) = −

∑
b

γba(n+ 1)Db→h(n) ,

γba(n+ 1) = −
∑
N

∑
{af}

[ N∏
i=1

∫ 1

0
dzi

]
δ
(
1−

N∑
i=1

zi
)
Pa→{af}({zf})

N∑
i=1

δb,ai
zni . (3.14)

Here we have used the standard conventions for the timelike twist-two spin-n, anomalous
dimensions, γ(n). A comparison of eqs. (3.10) and (3.14) reveals that the coefficient of the
anomalous dimension of Ta(n) involving Tb(n) is the same as that entering in the evolution
of the moment Da→h(n) of the fragmentation function,

−γba(n+ 1) =
∑
N

∑
{af}

(
γa→{af}({n, 0, · · · , 0})δb,a1 + γa→{af}({0, n, · · · , 0})δb,a2

+ · · ·+ γa→{af}({0, 0, · · · , n})δb,aN

)
. (3.15)
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3.4 Constraints from shift symmetry: pure Yang-Mills theory

We will now demonstrate how the shift-symmetry determines the structure of the evolution
equation for a pure Yang-Mills theory.2 From the form of eq. (3.10) we know that

d
d lnµ2T (1) = γ1T (1) , d

d lnµ2T (2) = γ2T (2) + γ11T (1)2 , (3.16)

etc. Since we have only a gluon, we suppress flavor labels. The notation γ1, γ2, γ11, . . .

for the anomalous dimensions is only used in the pure gluon case described here and in
appendix A. From the perspective of the shift symmetry alone, these anomalous dimensions
are arbitrary. We will later relate them to the timelike twist-2 spin-n anomalous dimensions
γ(n) (note the differing notation).

Applying the shift to these equations, we obtain

d
d lnµ2 (T (1)− b) = γ1(T (1)− b) ,

d
d lnµ2 (T (2)− 2bT (1) + b2) = γ2(T (2)− 2bT (1) + b2) + γ11(T (1)− b)2 , (3.17)

which leads to
d

d lnµ2T (1) = γ1T (1)− γ1b , (3.18)

and thus γ1 = 0 in this case (this is not true when there are other parton species), as
well as

d
d lnµ2T (2) = γ2T (2) + γ11T (1)2 + (γ11 + γ2)(2bT (1) + b2) , (3.19)

implying γ11 = −γ2.
A more economical approach to deriving these equations is to directly use shift-

invariant central moments

σ(n, µ) =
1∫

0

dx (x− 〈x〉)n T (x, µ) , (3.20)

where the average 〈x〉 is simply the first moment T (1, µ). Note that this can simply be
thought of as a change of basis. Now we immediately have

d
d lnµ2σ(2) = γ2 σ(2) , (3.21)

since no other terms can appear on the right-hand side. Inserting σ(2) = T (2)− T (1)2, we
then again obtain γ11 = −γ2. As we will see, in the case of multiple flavors one can form
shift invariant first moments, Ti(1)− Tj(1).

2Note that in this case the electric charge is not relevant, but one could use track functions to describe
the momentum fraction of bound states of e.g. a specific type of glueball.
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Extending this to higher moments, we obtain the general structure of the renormal-
ization group evolution of the central moments of the track functions

d
d lnµ2σ(3) = γ3 σ(3) ,

d
d lnµ2σ(4) = γ4 σ(4) + γ22σ(2)2 ,

d
d lnµ2σ(5) = γ5 σ(5) + γ32σ(3)σ(2) ,

d
d lnµ2σ(6) = γ6 σ(6) + γ42σ(4)σ(2) + γ33σ(3)2 + γ222σ(2)3 ,

d
d lnµ2σ(7) = γ7 σ(7) + γ52σ(5)σ(2) + γ43σ(4)σ(3) + γ322σ(3)σ(2)2 ,

d
d lnµ2σ(8) = γ8σ(8)+γ62σ(6)σ(2)+γ53σ(5)σ(3)+γ44σ(4)2+γ422σ(4)σ(2)2+γ332σ(3)2σ(2),

d
d lnµ2σ(9) = γ9 σ(9) + γ72σ(7)σ(2) + γ63σ(6)σ(3) + γ54σ(5)σ(4) + γ522σ(5)σ(2)2

+ γ432σ(4)σ(3)σ(2) + γ333σ(3)3 , (3.22)

etc. Because the evolution of T (n) can involve at most 3 track functions at order α2
s, the

form of these equations are further restricted at this order. Thus, up to order α2
s,

γ22 = 6γ2 − 8γ3 + 3γ4 , (3.23)
γ32 = 10γ2 − 10γ3 + 2γ5 ,

γ222 = −γ42 + 15γ2 − 40γ3 + 60γ4 − 48γ5 + 15γ6 ,

γ33 = −γ42 + 15γ2 − 20γ3 + 15γ4 − 12γ5 + 5γ6 ,

γ52 = 7
3γ42 − 14γ2 + 70

3 γ3 − 35γ4 + 49γ5 − 35γ6 + 9γ7 ,

γ43 = −7
3γ42 + 35γ2 − 175

3 γ3 + 70γ4 − 70γ5 + 35γ6 − 5γ7 ,

γ322 = −7
3γ42 + 35γ2 − 280

3 γ3 + 140γ4 − 112γ5 + 35γ6 ,

γ53 = 28
3 γ42 − 3γ62 − 56γ2 + 280

3 γ3 − 140γ4 + 168γ5 − 56γ6 − 48γ7 + 28γ8 ,

γ44 = −28
3 γ42 + 2γ62 + 84γ2 − 448

3 γ3 + 210γ4 − 224γ5 + 84γ6 + 32γ7 − 21γ8 ,

γ422 = 28
3 γ42 − 3γ62 − 56γ2 + 112

3 γ3 + 70γ4 − 224γ5 + 364γ6 − 288γ7 + 84γ8 ,

γ332 = −28
3 γ42 + 2γ62 + 84γ2 − 448

3 γ3 + 140γ4 − 196γ6 + 192γ7 − 56γ8 ,

γ63 = 9
2γ62 − 7

2γ72 − 42γ6 + 126γ7 − 126γ8 + 42γ9 ,

γ54 = −9
2γ62 + 5

2γ72 + 36γ2 − 84γ3 + 126γ4 − 126γ5 + 126γ6 − 162γ7 + 126γ8 − 36γ9 ,

γ522 = −84γ42 + 81
2 γ62 − 27

2 γ72 + 612γ2 − 1092γ3 + 1638γ4 − 1764γ5 + 126γ6 + 1458γ7

− 1134γ8 + 270γ9 ,

γ432 = 168γ42 − 153
2 γ62 + 45

2 γ72 − 1188γ2 + 1932γ3 − 2520γ4 + 2268γ5 + 882γ6 − 3294γ7

+ 2142γ8 − 450γ9 ,

γ333 = −84γ42 + 36γ62 − 10γ72 + 612γ2 − 1008γ3 + 1260γ4 − 1008γ5 − 588γ6 + 1656γ7

− 1008γ8 + 200γ9 .
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This structure for the evolution is fixed entirely by shift symmetry alone. However, this does
not fix the values of the anomalous dimensions. To further fix the anomalous dimensions,
we note that from their definition, the diagonal anomalous dimensions γn are related to
the timelike twist-2 anomalous dimensions (moments of the gluon fragmentation function),
γgg(n), by

γn = −γgg(n+ 1) . (3.24)
These anomalous dimensions are known to NNLO [39–42].

Therefore up to σ5 all anomalous dimensions are constrained in terms of the DGLAP
splitting functions, for σ6 only one new anomalous dimension needs to be calculated and
no new one is needed for σ7. Beyond σ7, one (or more) new anomalous dimensions need to
be calculated for every moment.

An alternate approach is to exploit the symmetry of the matrix elements. This is in
practice equivalent to the shift symmetry, though restricted to a specific order in pertur-
bation theory. For example, at order α2

s for which N = 3, we can express the γ in the
equations above to that in eq. (3.10),

γ0 = γ(0, 0, 0) = 0 , γ1 = γ(1, 0, 0) + γ(0, 1, 0) + γ(0, 0, 1) = γ(0, 0, 0) = 0 , (3.25)

using momentum conservation z1 + z2 + z3 = 1. Similarly,

γ2 = γ(2, 0, 0) + γ(0, 2, 0) + γ(0, 0, 2) = 3γ(2, 0, 0) , (3.26)
γ11 = γ(1, 1, 0) + γ(1, 0, 1) + γ(0, 1, 1) = 3γ(1, 1, 0) = 3(γ(0, 0, 0)− 2γ(1, 0, 0)− γ(2, 0, 0))

= −γ2 ,

using the symmetry under permutations of z1, z2, z3. In the final steps we used that under
the integral the following identities hold

2z1z2 = (z1+z2)2−z2
1−z2

2 = (1−z3)2−z2
1−z2

2 = 1−2z3+z2
3−z2

1−z2
2 = 1−2z1−z2

1 . (3.27)

Clearly the use of shift-symmetric central moments is much simpler.

3.5 Constraints from shift symmetry: multi-flavor

Having described in detail how shift symmetry constrains the form of the evolution in
the case of a pure gluon theory, we here extend the discussion to the case of multiple
parton species, which is needed for QCD. We will consider the case of one quark species
and assume that the track functions for quarks and anti-quarks are the same, to keep
the discussion simple and highlight the new features. The extension to multiple quarks is
straightforward, and our final results do not use this assumption.

The simplifying feature of the pure gluon evolution is that the mean, T (1), is not
shift invariant, and therefore cannot appear in the evolution equations. Shift symmetry,
combined with the uniqueness of the shift invariant second and third moments, then fixes to
all orders in perturbation theory the evolution equations for the second and third moments

d
d lnµ2σ(2) = −γ(3)σ(2) ,

d
d lnµ2σ(3) = −γ(4)σ(3) . (3.28)
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When moving to multiple flavors there are two new features that appear. The first is
a trivial extension, namely that we must extend the evolution equations to be matrix
equations in flavor space, as is familiar from DGLAP. Focusing for simplicity on the case
of one quark and one gluon, we define

~σ(n) =
(
σg(n)
σq(n)

)
, (3.29)

as well as the standard matrix of anomalous dimensions

γ̂(n) =
(
γgg(n) γqg(n)
γgq(n) γqq(n)

)
. (3.30)

The second extension that appears in the case of multiple flavors is a more non-trivial
modification, namely the appearance of a new shift invariant quantity,

∆ = Tq(1)− Tg(1) , (3.31)

constructed from the difference of first moments. This object can appear in the evolution
equations, leading to additional complexity.

Focusing on the first five moments, which makes the general structure clear, shift
invariance then implies that to all orders in perturbation theory,

d
d lnµ2 ∆ = −(γqq(2) + γgg(2))∆ , (3.32)

d
d lnµ2~σ(2) = −γ̂(3)~σ(2) + ~γ∆2∆2 ,

d
d lnµ2~σ(3) = −γ̂(4)~σ(3) + γ̂σ2∆~σ(2)∆ + ~γ∆3∆3 ,

d
d lnµ2~σ(4) = −γ̂(5)~σ(4) + γ̂σ2σ2(~σ(2) · ~σ(2)T ) + γ̂σ3∆~σ(3)∆ + γ̂σ2∆2~σ(2)∆2 + ~γ∆4∆4 ,

d
d lnµ2~σ(5) = −γ̂(6)~σ(5) + γ̂σ3σ2(~σ(3) · ~σ(2)T )

+ γ̂σ4∆~σ(4)∆+γ̂σ2
2∆(~σ(2) · ~σ(2)T )∆+γ̂σ3∆2~σ(3)∆2+γ̂σ2∆3~σ(2)∆3+~γ∆5∆5 .

The presence of ∆ significantly complicates the form of the evolution compared with the
pure gluon case, and in particular, the first three moments are no longer uniquely fixed by
the shift symmetry. Note that the anomalous dimensions γ̂σ2σ2 , γ̂σ3σ2 and γ̂σ2

2∆ are rank 3
tensors, taking a matrix as input and returning a vector.

The additional complexity arising from the presence of quarks can be thought of in
the two different ways discussed in section 3.4: from the shift-symmetry perspective, the
complexity arises purely from the presence of the new invariant ∆. From the perspective
of the calculation from matrix elements (discussed briefly at the end of section 3.4 and
made more concrete in section 4.1.2), the presence of quarks implies that one can no longer
symmetrize over the final state particles when using momentum conservation arguments
to reduce integrals. The differences that arise from this lack of ability to symmetrize are

– 13 –



J
H
E
P
0
6
(
2
0
2
2
)
1
3
9

then captured by powers of ∆. The integrals for these residual ∆-dependent pieces turn
out to be simpler to compute.

Despite the fact that the terms proportional to ∆ are not fixed in terms of the DGLAP
kernels, we will see that this organization still proves extremely useful, particularly for the
case of track functions describing the momentum fraction of charged particles in QCD. In
the high energy limit, where the energy cost to produce pions is negligible, one expects that
the average properties of the track functions are fixed by isospin, namely Tg(1) ' Tq(1) '
2/3, and ∆ ' 0. This intuition is born out by the evolution equation for ∆ in eq. (3.32),
where the positivity of γqq(2) + γgg(2) drives ∆→ 0 at asymptotic energies. This behavior
is already well born out at moderate energies, where one finds the approximate numerical
relation ∆2/σ2 ∼ a3/2

s , showing that its contribution to the evolution of the second moment
is suppressed in the perturbative expansion of the evolution. We will show in section 5.1,
the NLO terms proportional to ∆ in the evolution of the second moment are irrelevant
even compared to the NNLO DGLAP corrections. For the third moment, the corrections
in ∆ are effectively suppressed by one order in the perturbative expansion. This allows us
to extend our results for the first three moments to NNLO, which is the most important
practical application of the shift symmetry.

The shift symmetry also forces the evolution of the first moments to be proportional
to ∆, namely

d
d lnµ2Tq(1) = −γqq(2)∆ , (3.33)

d
d lnµ2Tg(1) = −γqg(2)∆ . (3.34)

This result also follows from energy conservation in the one point function 〈E(~n1)〉, further
emphasizing the connection between the shift symmetry and energy conservation. This
result shows that the evolution of the first moments of the track functions is numerically
suppressed by a factor of ∆/T (1), as compared to the naive expectation. The inclusion
of tracks in factorization formulas for energy correlators will therefore have an extremely
minor effect, explaining the observation of [6].

Finally, one appealing feature of the structure of the equations in eq. (3.32) is that it
is known that the eigenvalues of the γ̂(N) are positive. This allows us to immediately see
that the cumulants (or central moments) of the track functions decay to zero. In the high
energy limit, they converge to a delta function with ∆ = 0, which is the unique attractive
fixed point of the evolution. The limiting value of Tq(1) = Tg(1), corresponding to the
position of the delta function, is the only nonperturbative parameter that remains.

4 Track function moments at NLO

Having discussed the general structure of the RG evolution of track function moments in
section 3, we now move on to their calculation in QCD. We describe our calculational tech-
nique in section 4.1, and present the full results for the first six moments in section 4.2. For
simplicity, throughout this section we use the language of track functions for charged par-
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ticles, as opposed to a generic subset of particles. However, our calculations are completely
generic, and can be applied to any general subset, R, of hadrons.

4.1 Calculational technique

To verify the universality of the renormalization of the moments of the track functions,
we compute it in two different ways: first we use an IRC safe observable that is directly
sensitive to the track function moments, namely the EEC and projected EECs. When
computed on tracks, this observable is no longer IRC safe, and the infrared poles directly
determine the RG evolution of the track function moments. Second, we compute the
moments of the track function by computing a jet function on tracks. This approach is
computationally much simpler since it only requires the integration of splitting functions
instead of complete matrix elements, but it assumes collinear factorization, and hence the
universality of the track functions. The agreement between these two approaches provides
a strong check both on our calculations and on the universality of the track functions.
The universality of the first three moments of the track functions was tested at NLO in
this same manner in [5]. Here we extend this to the sixth moment. In the following two
subsections we detail these two approaches.

4.1.1 Using projected energy correlators

We begin by computing the RG for the track functions from the structure of infrared poles
in energy-energy correlators, which was briefly described in [5] for the case of the two-point
correlator. Here we describe it in some detail, as well as its extension to projected energy
correlators, which is necessary to extract the RG of higher moments of the track functions.

The standard two-point energy correlator [17, 43, 44] is defined as

dσ
dz =

∑
i,j

∫
dσ EiEj

Q2 δ
(
z − 1− cosχij

2
)
. (4.1)

This can be extended to a projected N -point energy correlator [6], which is sensitive to
higher point correlations, but is only differential in the longest side, zL. It is defined as

dσ[N ]

dzL
=
∑
m

∑
1≤i1,...,iN≤m

∫
dσe+e−→Xm

∏N
j=1Eij
QN

δ(zL −max{zi1i2 , zi1i3 , . . . , ziN−1iN }) ,

(4.2)
where Xm denotes a m-particle final state and zij = (1− ~ni · ~nj)/2 = (1− cos θij)/2 is the
two-particle angular distance.

The projected correlators are IRC safe observables. However, when computed on
tracks, they have collinear divergences. These collinear divergences must be absorbed by
the track functions. Therefore by computing these collinear divergences, we can obtain
the RG of the track functions. To simplify the notation, we combine all the products of
track functions of a fixed total weight n (see (3.10)) into a vector ~Tn (e.g. for n = 2, ~T2 =
{Tg(2), Tq(2), Tq(1)Tq(1), Tg(1)Tq(1), Tg(1)Tg(1)}). For notational simplicity, throughout
this section we consider the case of a single flavor of quarks, and make the assumption
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Tq = Tq̄. However, we have performed the complete calculation without this assumption.
Writing the renormalization group evolution of ~Tn as

d
d lnµ2

~Tn = R̂n ~Tn , (4.3)

then

~Tn,bare = ~Tn(µ) + as
R̂

(1)
n

ε
~Tn(µ) + 1

2a
2
s

(
R̂

(2)
n

ε
+ R̂

(1)
n R̂

(1)
n − β0R̂

(1)
n

ε2

)
~Tn(µ) +O(a3

s) ,

(4.4)

≡ Γ̂n(as, ε)~Tn(µ) .

where as = αs(µ)/(4π).
In terms of the tree-level track functions T (0), we can write the two-point track EEC as(dΣ

dz

)
tr

=
∑

a,b∈{qj ,q̄j ,g}
T (0)
a (1)T (0)

b (1) dΣab

dz +
∑

c∈{qj ,q̄j ,g}
T (0)
c (2) dΣc2

dz . (4.5)

The perturbatively calculable components entering this formula are given by

dΣab

dz =
∑
m

∑
1≤i1 6=i2≤m

∫
dΦm|Mm|2 δa,fi1

δb,fi2

Ei1Ei2
Q2 δ

(
z − 1− cosχi1i2

2
)
,

dΣc2

dz =
∑
m

∑
1≤i≤m

∫
dΦm|Mm|2 δc,fi

E2
i

Q2 δ(z) . (4.6)

Here fi1 , fi2 , fi denote the flavors of the final-state partons with the four-momenta
pµi1 , p

µ
i2
, pµi , δa,i1 , δb,i2 and δc,i are Kronecker deltas in flavor space, dΦm denotes m-body

phase space andMm is the corresponding matrix element.
Using that in dimensional regularization the loop corrections to the track function are

scaleless, T (0) = Tbare, we can employ (4.4) to rewrite (4.6) in terms of the renormalized
track functions,(dΣ

dz

)
tr

=

d~Σ
dz ·

Γ̂2︷ ︸︸ ︷[
1 + as

R̂
(1)
2
ε

+ 1
2a

2
s

(
R̂

(2)
2
ε

+ R̂
(1)
2 R̂

(1)
2 − β0R̂

(1)
2

ε2

)
+O(a3

s)
]

~T2(µ)︷ ︸︸ ︷
Tg(2)
Tq1(2)
· · ·

Tqnf−1(1)Tqnf
(1)


︸ ︷︷ ︸

~T2,bare

.

(4.7)

The UV poles of the track function renormalization must cancel against the IR poles in
~Σ to yield a finite result, allows us to extract the RG evolution of the first and second
moments of the track function.
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To have access to the higher moments of the track functions, we must consider the
higher point projected correlators. These proceed in a similar manner. Focusing on the
three-point projected correlators, we have( dΣ

dzL

)
tr

=
∑

a,b,c∈{qj ,q̄j ,g}

dΣabc

dzL
T (0)
a (1)T (0)

b (1)T (0)
c (1) +

∑
a,b∈{qj ,q̄j ,g}

dΣab2

dzL
T (0)
a (1)T (0)

b (2)

+
∑

c∈{qj ,q̄j ,g}

dΣc3

dzL
T (0)
c (3) . (4.8)

The perturbatively calculable components entering this formula are

dΣabc

dzL
=
∑
m

∑
1≤i1 6=i2 6=i3≤m

∫
dΦm|Mm|2 δa,fi1

δb,fi2
δc,fi3

Ei1Ei2Ei3
Q3 δ

(
zL −

1− cosχL
2

)
,

dΣab2

dzL
=
∑
m

∑
1≤i1 6=i2≤m

∫
dΦm|Mm|2 δa,fi1

δb,fi2

Ei1E
2
i2

Q3 δ
(
zL −

1− cosχi1i2
2

)
,

dΣc3

dzL
=
∑
m

∑
1≤i≤m

∫
dΦm|Mm|2 δc,fi

E3
i

Q3 δ(zL) . (4.9)

These have the same structure as for the two-point correlator, with the only difference being
the higher energy weights. They can therefore be computed using the same techniques.
The integrals Σabc are more complicated, but fortunately the shift symmetry can be used
to reconstruct the full answer from just Σab2 and Σc3 (at least to the order at which we are
currently working). More generally, for the evolution of the higher moments of the track
functions, we consider the integrals

dΣapbq

dzL
=
∑
m

∑
1≤i1 6=i2≤m

∫
dΦm|Mm|2 δa,i1δb,i2

Epi1E
q
i2

Qp+q
δ
(
zL −

1− cosχi1i2
2

)
,

dΣcp

dzL
=
∑
m

∑
1≤i≤m

∫
dΦm|Mm|2 δc,i

Epi
Qp

δ(zL) . (4.10)

and then use the shift symmetry to reconstruct the full result.
These integrals can be computed using the same approach as was used to compute the

standard energy correlator in ref. [19], and subsequently in refs. [20, 45]. This approach
is an extension of the reverse unitarity method [46], which expresses delta functions from
phase space constraints in terms of propagators allowing more standard loop integration
techniques to be used. Using the Cutkosky rules [46, 47], we express the on-shell delta
functions as the cut propagators

δ(p2) = 1
2πi

( 1
p2 − i0 −

1
p2 + i0

)
(4.11)

and the measurement function as

δ
(
z − 1− cosχij

2
)

= pi · pj
z

δ
(
2z(pi ·Q)(pj ·Q)− pi · pj

)
(4.12)

= 1
2πi

(pi · pj)
z

( 1
(2z(pi ·Q)(pj ·Q)− pi · pj)− i0 −

1
(2z(pi ·Q)(pj ·Q)− pi · pj) + i0

)
,
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where we set the center-of-mass energy Q = (1, 0, 0, 0) for simplicity (the dependence
on Q can be restored by dimensional analysis). The phase-space integrals can then be
reduced to master integrals (MIs) using techniques from the study of multi-loop integrals.
In particular, integration by parts and Lorentz invariance identities were generated with
LiteRed [48, 49] and the reduction to master integrals was performed using FIRE6 [50].
The MIs are the same as that for the standard EEC and can be evaluated by the method
of differential equations (DEs). The canonical forms of the DE systems are obtained by
CANONICA [51]. The solutions of the DEs are written in terms of harmonic polylogarithms,
which can then be simplified to classical polylogarithms using HPL [52]. The calculation of
Σcp is equivalent to the calculation of cut bubble integrals, and the master integrals can
be found in refs. [53, 54].

4.1.2 Using splitting functions

While the calculation of the track function RG from the energy correlators provides a robust
check on the universality of the track functions, it becomes computationally expensive at
higher moments. Indeed, the main advantage of that approach, is that one also gets the full
EEC distribution on tracks, which is itself a physically interesting observable. However,
if one just wants the renormalization of the track functions, which is purely collinear in
nature, it is easier to directly take advantage of collinear factorization, and obtain the RG
from the splitting functions. Here we give a general description of this approach, with more
details for the case of pure Yang-Mills given in app A. Although we focus in this paper
on deriving moments, this approach has the added advantage that it can be generalized to
allow a derivation of the full RG of the track functions in x-space.

To obtain a non-scaleless integral in the collinear limit, one must consider the measure-
ment of some additional observable. We consider the measurement of the jet mass of all
particles and the energy fraction on charged particles, encoded in the jet function Ja(s, x).
The measurement of the jet mass renders the integrals non-scaleless, but importantly, the
renormalization of Ja(s, x) is identical to the standard Ja(s) (see e.g. [55]). After perform-
ing this renormalization, as well as the standard renormalization of the strong coupling
constant, the remaining poles determine the renormalization of the track functions. Unlike
the pure gluon case considered in appendix A, where all terms in the NLO evolution can
be related to those involving three track functions, in the multi-flavor case, one must also
consider terms involving two track functions. Therefore one must properly incorporate
both the 1→ 3 triple collinear splitting functions [56, 57], as well as the NLO corrections
to the 1→ 2 splitting functions [58–60].

We will now provide a bit more detail for each of these steps, starting with the calcu-
lation of the jet function Ja(s, x):

Ja,bare(s, x) =∑
N

∑
{af}

∫
dΦc

N δ(s− s′)σca→{af}({zf}, {sff ′})
∫ [ N∏

i=1
dxiT (0)

ai
(xi)

]
δ
(
x−

N∑
i=1

xizi
)
.

(4.13)
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Here Φc
N is the N -particle collinear phase space with total invariant mass s′ and σca→{af}

is the squared collinear matrix element for a → a1a2 · · · aN . At LO, J (0)
bare,f (s, x) =

δ(s)T (0)
f (x). The NLO calculation of the jet function gives rise to the LO RG evolution of

the track functions. To derive the NLO RG for the track functions, we must consider the
NNLO calculation of Jbare(s, x).

At NNLO, we have both the NLO corrections to the two-particle final state (real-virtual
corrections) and the three-particle final state (real-real corrections). Explicitly,

Ja,bare(s, x)
∣∣∣
a2

s

=∑
b,c

∫
dΦc

2 δ(s−s′)σca→bc(zb, zc, s′=sbc)
∫

dx1dx2T
(0)
b (x1)T (0)

c (x2)δ(x−x1z1−x2z2)

+
∑
b,c,d

∫
dΦc

3δ(s− s′)σca→bcd({zf}, {sff ′})
∫

dx1dx2dx3T
(0)
b (x1)T (0)

c (x2)T (0)
d (x3)

× δ(x− x1z1 − x2z2 − x3z3) ,

(4.14)

where σca→bc and σca→bcd are the NLO 1 → 2 splitting and LO 1 → 3 splitting functions
respectively.

Taking moments of this equation

Ja(s, n) ≡
∫

dxxnJa(s, x) , (4.15)

and using the sum rule for the track functions, one finds that Ja(s, n) is expressed in terms
of integrals of the 1→ 2 and 1→ 3 splitting functions weighted by a polynomial of weight
n, as is done explicitly in appendix A for the pure gluon case. These integrals can be
performed explicitly using the approach of [61] (many integrals relevant for the quark case
can be found in [55]).

For each value of n, the renormalization of Ja(s, n) in the variable s is the same as for
Ja(s). Renormalizing the coupling using

Zα = 1− αs
4π

β0
ε

+O(α2
s) , (4.16)

and expanding the bare jet function and the renormalization factor in terms of the renor-
malized coupling, Ja,bare =

∑∞
L=0 a

L
s (µ)J (L)

a,bare and ZJa =
∑∞
L=0 a

L
s (µ)Z(L)

Ja
, the two loop

renormalization for the jet function is then

J (2)
a (s, n, µ) = Z

(2)
Ja
⊗ J (0)

a,bare + Z
(1)
Ja
⊗ J (1)

a,bare + Z
(0)
Ja
⊗ J (2)

a,bare . (4.17)

The explicit form of the renormalization factors can be found in [55] (for a = q) and [62]
(for a = g) up to order a2

s. After performing this renormalization in s, the RG for the
track functions can be directly read off, as for the EEC based calculation in section 4.1.1.
Explicitly, rewriting the tree-level track functions in (4.14) in terms of the renormalized
track functions, using ~T(0)

n = ~Tn,bare and (4.4), the UV poles from the renormalization
in (4.4) should cancel against the IR poles from the direct integration in (4.14). This
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should be compared with the approach in appendix A, which starts from the matching of
the jet function onto renormalized track functions, where the matching coefficient is finite
and the IR poles are contained in the track functions. Here, instead by expressing T (0) in
terms of renormalized track functions, one automatically gets something of the form of a
matching relation and the resulting coefficient is therefore the finite matching coefficient.
Compared to the full EEC calculation, the integrals over the splitting functions are much
easier (and mostly known). However, the fact that identical results are obtained from both
approaches provides a strong check on our results.

4.2 Results

In this section we present results for the first six moments of the track functions. The
results for the first three moments were presented in [5] and those for the fourth through
sixth moments are new. These results are provided in electronic format accompanying this
paper. We write the evolution equations for the central moments, whose definition can be
found in (3.20), in terms of a perturbative expansion

d
d lnµ2σa(N) =

∞∑
L=0

aL+1
s D

(L)
σa(N) . (4.18)

At a given order in perturbation theory there are constraints to which combinations
of track functions can appear in the evolution equations. These constraints arise from the
fact that in the evolution equation of Ta, a term involving the combination TbTc originates
from a a → bcX splitting contribution. The constraints from the possible splittings at a
given order in perturbation theory results in linear dependencies between different terms
in the evolution of central moments. This motivates the use of a minimal basis, in which
both the constraints from possible splittings as well as shift invariance is clear throughout.
For the evolution of the gluon central moments such a basis is provided by the following
shift invariant quantity

∆a(N) =
∫

dx
[
x− Tg(1)

]N
Ta(x) =

N∑
k=0

(
N

k

)
(−1)kT kg (1)Ta(N − k) , (4.19)

while for the evolution of the quark central moments instead

τa(N) =
∫

dx
[
x− Tq(1)

]N
Ta(x) =

N∑
k=0

(
N

k

)
(−1)kT kq (1)Ta(N − k) (4.20)

is used. The ∆a introduced in section 3.5 is equal to ∆a(1), and we will abbreviate
τa(1) = τa. Note that as a consequence of this notation, τg = −∆q.

The evolution of ∆q is fixed to all loop orders in terms of the DGLAP anomalous
dimension

D
(n)
∆q

= −
[
γ(n)
gg (2) + γ(n)

qq (2)
]
∆q . (4.21)
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The leading order evolution equations for gluons are given by

D
(0)
σg(2) = −γ(0)

gg (3)σg(2) +
∑
i

{
− γ(0)

qg (3)(∆qi(2) + ∆q̄i(2)) + 2
5TF ∆qi∆q̄i

}
,

D
(0)
σg(3) =−γ(0)

gg (4)σg(3)+
∑
i

{
−γ(0)

qg (4)∆qi(3)−2TF σg(2)∆qi + 3
10TF ∆qi(2)∆q̄i +(qi ↔ q̄i)

}
,

D
(0)
σg(4) = −γ(0)

gg (5)σg(4) + 9
7CA σ

2
g(2) +

∑
i

{
− γ(0)

qg (5)∆qi(4) + 26
105TF ∆qi(3)∆q̄i

+ 4
35TF ∆qi(2)∆q̄i(2)− 8

3TF σg(3)∆qi + (qi ↔ q̄i)
}
,

D
(0)
σg(5) = −γ(0)

gg (6)σg(5) + 15
7 CA σg(3)σg(2) +

∑
i

{
− γ(0)

qg (6)∆qi(5) + 3
14TF ∆qi(4)∆q̄i

+ 4
21TF ∆qi(3)∆q̄i(2)− 10

3 TF σg(4)∆qi + (qi ↔ q̄i)
}
,

D
(0)
σg(6) = −γ(0)

gg (7)σg(6) + 83
42CA σg(4)σg(2) + 52

63CA σ
2
g(3)

+
∑
i

{
− γ(0)

qg (7)∆qi(6) + 4
21TF ∆qi(5)∆q̄i + 1

6TF ∆qi(4)∆q̄i(2)

+ 5
63TF ∆qi(3)∆q̄i(3)− 4TF σg(5)∆qi + (qi ↔ q̄i)

}
, (4.22)

and for quarks they are given by

D
(0)
σq(2) = −γ(0)

qq (3)σq(2)− γ(0)
gq (3)τg(2) ,

D
(0)
σq(3) = −γ(0)

qq (4)σq(3)− γ(0)
gq (4)τg(3)− 24

5 CF σq(2)τg ,

D
(0)
σq(4) = −γ(0)

qq (5)σq(4)− γ(0)
gq (5)τg(4)− 22

3 CF σq(3)τg + 7
5CF σq(2)τg(2) ,

D
(0)
σq(5) =−γ(0)

qq (6)σq(5)−γ(0)
gq (6)τg(5)− 208

21 CF σq(4)τg+ 31
21CF σq(3)τg(2)+ 6

7CF σq(2)τg(3) ,

D
(0)
σq(6) = −γ(0)

qq (7)σq(6)− γ(0)
gq (7)τg(6)− 25

2 CF σq(5)τg

+ 43
28CF σq(4)τg(2) + 19

21CF σq(3)τg(3) + 17
28CF σq(2)τg(4) . (4.23)

At NLO the evolution equations for the first six moments of the gluon track functions are

D
(1)
σg(2) = −γ(1)

gg (3)σg(2) +
∑
i

{
− γ(1)

qg (3) (∆qi(2) + ∆q̄i(2)) (4.24)

+ TF

[(12413
1350 −

52π2

45

)
CA + 1528

225 CF −
16
25nfTF

]
∆qi∆q̄i

}
,

D
(1)
σg(3) = −γ(1)

gg (4)σg(3) +
∑
i

{
−γ(1)

qg (4)∆qi(3) +TF
[(
− 638

45 + 8π2

3

)
CA−

3803
250 CF

]
σg(2)∆qi

+ TF

[(5321
3000 −

2π2

5

)
CA + 1523

240 CF −
12
25nFTF

]
∆qi(2)∆q̄i + (qi ↔ q̄i)

}
,
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D
(1)
σg(4) = −γ(1)

gg (5)σg(4) +
[(20709772

55125 − 1584π2

35 + 72ζ3

)
C2
A −

4
15CAnfTF

]
σg(2)2

+
∑
i

{
− γ(1)

qg (5) ∆qi(4) + TF

[(
−66482

3675 + 32π2

9

)
CA −

1291307
66150 CF

]
σg(3)∆qi

+ TF

[(
−51721

2625 + 28π2

15

)
CA −

5177
7875CF

]
σg(2)∆qi(2)

+ TF

[(1018886
55125 − 28π2

15

)
CA −

11889
24500CF

]
σg(2)∆qi∆q̄i

+ TF

[(22403
2450 −

8π2

7

)
CA + 3794489

661500 CF −
1136
3675nfTF

]
∆qi(3)∆q̄i

+ TF

[(
−68429

12250 + 16π2

35

)
CA+ 35003

11025CF−
304
1225nfTF

]
∆qi(2)∆q̄i(2) + (qi ↔ q̄i)

}
,

D
(1)
σg(5) = −γ(1)

gg (6)σg(5) +
[(239432987

617400 − 2896π2

63 +80ζ3

)
C2
A −

4
9CAnfTF

]
σg(3)σg(2)

+
∑
i

{
− γ(1)

qg (6)∆qi(5) + TF

[(
− 579361

26460 + 40π2

9

)
CA −

11205259
463050 CF

]
σg(4)∆qi

+ TF

[(
− 202039

6300 + 28π2

9

)
CA −

68329
308700CF

]
σg(3)∆qi(2)

+ TF

[(579007
18900 −

28π2

9

)
CA −

449
2450CF

]
σg(3)∆qi∆q̄i

+ TF

[
− 45197

52920CA −
41605
74088CF

]
σg(2)∆qi(3)

+ TF

[ 4499
17640CA −

1839
1960CF

]
σg(2)∆qi(2)∆q̄i

+ TF

[(114511
148176−

2π2

7

)
CA+ 152459

29400 CF−
44
245nfTF

]
∆qi(4)∆q̄i

+ TF

[(34183
92610−

16π2

63

)
CA+ 198559

33075 CF−
304
735nfTF

]
∆qi(3)∆q̄i(2) + (qi ↔ q̄i)

}
,

D
(1)
σg(6) = −γ(1)

gg (7)σg(6) + C2
A

[299405789
137200 − 1856π2

7 + 360ζ3

]
σ3
g(2)

+
[(
−3348739

6075 + 1810π2

27 − 80ζ3

)
C2
A −

4
21CAnfTF

]
σg(3)2

+
[(47613060961

22226400 − 2321π2

9 + 360ζ3

)
C2
A −

8
21CAnfTF

]
σg(4)σg(2)

+
∑
i

{
−γ(1)

qg (7)∆qi(6) + TF

[(
−10192933

396900 + 16π2

3

)
CA−

91953847
3175200 CF

]
σg(5)∆qi

+ TF

[(
−75307691

1587600 + 14π2

3

)
CA −

4613227
44452800CF

]
σg(4)∆qi(2)
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+ TF

[(24317347
529200 − 14π2

3

)
CA −

17153
185220CF

]
σg(4)∆qi∆q̄i

+ TF

[
− 2128943

2381400CA −
1218841
6667920CF

]
σg(3)∆qi(3)

+ TF

[ 947
264600CA −

84409
231525CF

]
σg(3)∆qi(2)∆q̄i

+ TF

[(
−42709397

1389150 + 64π2

21

)
CA −

4334179
8890560CF

]
σg(2)∆qi(4)

+ TF

[(669778843
5556600 − 256π2

21

)
CA −

48397
55566CF

]
σg(2)∆qi(3)∆q̄i

+ TF

[(
−16674109

185220 + 64π2

7

)
CA −

36343
75600CF

]
σg(2)∆qi(2)∆q̄i(2)

+ TF

[(53650579
5556600 −

74π2

63

)
CA+ 6547967

1389150CF−
1684
19845nfTF

]
∆qi(5)∆q̄i

+ TF

[(
−502728871

22226400 + 131π2

63

)
CA+ 364099

64800 CF−
926
2835nfTF

]
∆qi(4)∆q̄i(2)

+ TF

[(100850479
6667920 −

310π2

189

)
CA+ 14171

4860 CF−
2332
11907nfTF

]
∆qi(3)∆q̄i(3) + (qi ↔ q̄i)

}
,

and for the quark track functions

D
(1)
σq(2) = −γ(1)

gq (3)τg(2)− γ(1)
qq (3)σq(2)− γ(1)

q̄q (3) τq̄(2) +
[(

1399
5400 −

7π2

9

)
CACF −

67
18C

2
F

]
τ2
g

+
∑
i

{
− γ(1)

Qq (3)
(
τQi(2) + τQ̄i

(2)
)
− 17

100CFTF τQiτQ̄i

}
,

D
(1)
σq(3) = −γ(1)

gq (4)τg(3)− γ(1)
qq (4)σq(3)− γ(1)

q̄q (4)τq̄(3)

+
[(1204633

18000 − 247π2

30 + 12ζ3

)
CF
Nc

+ 11503
3000 CFTF

]
σq(2)τq̄

+
[(32π2

5 − 50299
2250

)
C2
F −

577
20 CACF

]
σq(2)τg

+
[
− 249

50 C
2
F −

3787
750 CACF

]
τg(2)τg

+ CFTF
∑
i

{
− 11867

27000 τQi(3) + 292
75 σq(2)τQi −

59
1000 τQi(2)τQ̄i

+ (Qi ↔ Q̄i)
}
,

D
(1)
σq(4) = −γ(1)

qq (5)σq(4)− γ(1)
gq (5)τg(4)− γ(1)

q̄q (5)τq̄(4)

+
[(88π2

9 − 109699
2700

)
C2
F −

1061
25 CACF

]
σq(3)τg

+
[(151903

9000 − 28π2

15

)
C2
F +

(
14π2

3 − 114827
4500

)
CACF

]
σq(2)τg(2)
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+
[
− 29

45C
2
F +

(
141647
4500 − 14π2

3

)
CACF

]
σq(2)τ2

g

+
[
− 67

18C
2
F +

(
1795559
165375 −

64π2

45

)
CACF

]
τg(3)τg

+
[
− 3143

1800C
2
F +

(
16π2

15 − 593207
55125

)
CACF

]
τg(2)2

+
[(
−203009

1800 + 43π2

3 − 24ζ3

)
CF
Nc
− 5323

4500CFTF
]
σq(2)2

+
[(676639

6750 − 544π2

45 + 16ζ3

)
CF
Nc

+ 998092
165375CFTF

]
σq(3)τq̄

+
[(
−2364943

9000 + 487π2

15 − 48ζ3

)
CF
Nc
− 258203

220500CFTF
]
σq(2)τq̄(2)

+ CFTF
∑
i

{
− 46516

165375 τQi(4)− 7633
165375 τQi(3)τQ̄i

+ 328
55125 τQi(2)τQ̄i

(2)

+ 821
135 σq(3)τQi −

5323
4500 σq(2)τQi(2)− 229

1500 σq(2)τQiτQ̄i
+ (Qi ↔ Q̄i)

}
,

D
(1)
σq(5) = −γ(1)

qq (6)σq(5)− γ(1)
gq (6)τg(5)− γ(1)

gq (6)τq̄(5)

+
[(
−13864028

231525 + 832π2

63

)
C2
F −

370753
6615 CACF

]
σq(4)τg(1)

+
[(11490901

617400 − 124π2

63

)
C2
F +

(
−2406319

44100 + 70π2

9

)
CACF

]
σq(3)τg(2)

+
[(3038951

308700 −
8π2

7

)
C2
F + 1064053

66150 CACF

]
σq(2)τg(3)

+
[
− 32762

11025C
2
F −

552788
231525CACF

]
τg(4)τg(1)

+
[
− 29527

11025C
2
F + 1606

46305CACF
]
τg(3)τg(2)

+
[
− 19

45C
2
F +

(
8012047
132300 −

70π2

9

)
CACF

]
σq(3)τg(1)2

+
[
− 44

45C
2
F −

133918
11025 CACF

]
σq(2)τg(2)τg(1)

+
[(
−54341821

132300 + 154π2

3 − 80ζ3

)
CF
Nc
− 63706

33075CFTF
]
σq(3)σq(2)

+
[(58946437

88200 − 247π2

3 + 120ζ3

)
CF
Nc
− 667

4900CFTF
]
σq(2)2τq̄(1)

+
[(253049689

1852200 − 1024π2

63 + 20ζ3

)
CF
Nc

+ 3832909
463050 CFTF

]
σq(4)τq̄(1)

– 24 –



J
H
E
P
0
6
(
2
0
2
2
)
1
3
9

+
[(
−852928693

1852200 + 3553π2

63 − 80ζ3

)
CF
Nc
− 232447

185220CFTF
]
σq(3)τq̄(2)

+
[(305938939

617400 − 1259π2

21 + 80ζ3

)
CF
Nc
− 66229

102900CFTF
]
σq(2)τq̄(3)

+ CFTF
∑
i

{
− 3649

18522 τQi(5)− 6257
154350 τQi(4)τQ̄i

(1) + 3184
231525 τQi(3)τQ̄i

(2)

− 86971
132300 σq(2)τQi(3)− 667

4900 σq(2)τQi(2)τQ̄i
(1)− 7219

44100 σq(3)τQ̄i
(1)τQi(1)

− 7993
6300 σq(3)τQi(2) + 55024

6615 σq(4)τQi(1) + (Qi ↔ Q̄i)
}
,

D
(1)
σq(6) = −γ(1)

qq (7)σq(6)− γ(1)
gq (7)τg(6)− γ(1)

q̄q (7)τq̄(6)

+
[(
−6245817

78400 + 50π2

3

)
C2
F −

4098089
58800 CACF

]
σq(5)τg(1)

+
[(81534493

7408800 −
76π2

63

)
C2
F + 9352657

529200 CACF
]
σq(3)τg(3)

+
[(195862451

9878400 − 43π2

21

)
C2
F +

(
−2309563

25200 + 35π2

3

)
CACF

]
σq(4)τg(2)

+
[(22075117

3292800 −
17π2

21

)
C2
F +

(
−3925723

98784 + 16π2

3

)
CACF

]
σq(2)τg(4)

+
[
− 1801

5880C
2
F +

(
4926391
50400 − 35π2

3

)
CACF

]
σq(4)τg(1)2

+
[
− 641

980C
2
F −

812183
58800 CACF

]
σq(3)τg(2)τg(1)

+
[
− 67507

88200C
2
F +

(
249991487
1234800 − 64π2

3

)
CACF

]
σq(2)τg(3)τg(1)

+
[
− 15761

39200C
2
F +

(
−65733319

411600 + 16π2
)
CACF

]
σq(2)τg(2)2

+
[
− 2183

882 C
2
F +

(
129951169
11113200 −

29π2

21

)
CACF

]
τg(5)τg(1)

+
[
− 1533479

705600 C
2
F +

(
−60361165

1778112 + 145π2

42

)
CACF

]
τg(4)τg(2)

+
[
− 11488

11025C
2
F +

(
8722057
381024 −

145π2

63

)
CACF

]
τg(3)2

+
[(4333961129

24696000 − 1447π2

70 + 24ζ3

)
CF
Nc

+ 2344837
222264 CFTF

]
σq(5)τq̄(1)

+
[(
−66232429

100800 + 487π2

6 − 120ζ3

)
CF
Nc
− 4355153

2469600CFTF
]
σq(4)σq(2)

+
[(
−2369204633

3292800 + 7351π2

84 − 120ζ3

)
CF
Nc
− 8430209

6350400CFTF
]
σq(4)τq̄(2)
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+
[(
−26205797

58800 + 494π2

9 − 80ζ3

)
CF
Nc
− 41633

58800CFTF
]
σq(3)2

+
[(7626957731

7408800 − 7799π2

63 + 160ζ3

)
CF
Nc
− 11452643

16669800CFTF
]
σq(3)τq̄(3)

+
[(500596781

176400 − 346π2 + 480ζ3

)
CF
Nc
− 3926

15435CFTF
]
σq(3)σq(2)τq̄(1)

+
[(
−8033396911

9878400 + 8149π2

84 − 120ζ3

)
CF
Nc
− 18635861

44452800CFTF
]
σq(2)τq̄(4)

+
[(
−264811033

117600 + 272π2 − 360ζ3

)
CF
Nc
− 2761

102900CFTF
]
σq(2)2τq̄(2)

+ CFTF
∑
i

{
− 779767

5334336 τQi(6)− 3949
111132 τQi(5)τQ̄i

(1) + 10649
1270080 τQi(4)τQ̄i

(2)

+ 28025
2667168 τQi(3)τQ̄i

(3)− 33001
77175 σq(2)τQi(4)− 135433

1234800 σq(2)τQi(3)τQ̄i
(1)

− 2761
205800 σq(2)τQi(2)τQ̄i

(2)− 41633
58800 σq(3)τQi(3)− 8507

58800 σq(3)τQi(2)τQ̄i
(1)

− 7481
5600 σq(4)τQi(2)− 20369

117600 σq(4)τQi(1)τQ̄i
(1)+ 5335

504 σq(5)τQi(1)+(Qi ↔ Q̄i)
}
.

(4.25)
This evolution in moment space is one of the main results of this paper, and illustrates
perturbative control over the structure of track function moments. They enable the cal-
culation of up to the six point correlation functions in energy flow, matching the state of
the art measured at the LHC in jet substructure. Our approach can be straightforwardly
extended to compute higher moments of the track functions, as desired.

5 Numerical studies of track function evolution

In this section we numerically study the structure of the evolution equations for the track
function moments. The goal of this section is two-fold. First, we show that ∆ is sufficiently
small in QCD, that corrections to DGLAP for the first three moments are effectively
suppressed by (at least) an order in the perturbative expansion, allowing us to extend
their RG evolution to NNLO. Second, we show that for the fourth moment and beyond,
non-linearities in the evolution give rise to genuinly new behaviour beyond DGLAP.

5.1 The size of ∆ in QCD and extension to NNLO

We begin by studying the numerical impact of ∆ for the first three-moments. The evolution
of the first three central moments is constrained by shift symmetry to be of the form

d
d lnµ2 ∆ = −

[
γgg(2) + γqq(2)

]
∆ ,

d
d lnµ2~σ(2) = −γ̂(3)~σ(2) + ~γ∆2∆2 ,

d
d lnµ2~σ(3) = −γ̂(4)~σ(3) + γ̂σ2∆~σ(2)∆ + ~γ∆3∆3 , (5.1)
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Figure 2. The ratio defined in eq. (5.3) for the quark (darker) and gluon (lighter) second (blue
dashed) and third (orange dotted) central moments as a function of the renormalization scale µ.
Note that the ratio for the second moment has been amplified by a factor 100 such that it is visible
in this plot. The effect of ∆ on the evolution of the second central moment is much smaller than for
the higher moments because ∆ appears only squared in the evolution for σ(2), while for the other
moments terms linear in ∆ are also allowed.

where the evolution of ∆ is fixed by DGLAP to all orders. For the second and third moment
the evolution can be split into two parts: a linear term fixed by DGLAP and corrections
proportional to powers of ∆. Recall that ∆ = Tq(1) − Tg(1), or more generally in the
multi-flavor case is give by differences between the first moments of the track functions of
different flavors. Since QCD final states at high energies are dominated by large numbers of
nearly massless pions, the average values of the track functions are largely fixed by isospin,
and hence satisfy Tg(1) ' Tq(1) ' 2/3, and ∆ ' 0. Small corrections to this pictures give
rise to ∆� 1 in real world QCD. This suppression of ∆, combined with the shift symmetry
is particularly convenient, since it effectively suppresses the corrections to DGLAP by (at
least) an order in the perturbative expansion. Indeed, we will see that this allows us to
include the NNLO corrections to the DGLAP evolution while keeping the terms involving
∆ at NLO. In our numerical studies we use the following initial conditions [8],

Tg(1) = 0.624 , Tg(2) = 0.417 , Tg(3) = 0.293 ,
Tq(1) = 0.611 , Tq(2) = 0.425 , Tq(3) = 0.319 , (5.2)

at µ = 10GeV, and αs(MZ) = 0.116 with nf = 5.
To demonstrate that the effect of ∆ on the evolution is much smaller than that of

DGLAP, we study the following ratio

Ri(n) =
∣∣∣∣ σi(n)|NLO,∆=0 − σi(n)|NLO
σi(n)|NNLO,∆=0 − σi(n)|NLO

∣∣∣∣ . (5.3)

In this ratio we compare the effect of including ∆ with the effect of including the NNLO
corrections to the DGLAP evolution. The notation σi|(N)NLO,∆=0 means setting the ∆
terms in the (N)NLO evolution to zero, but not in the lower order terms of the evolution.
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(a) (b)

Figure 3. The difference in renormalization group evolution for (a) σg(3) and for (b) σq(3) for the
initial conditions in (5.2). Shown are the effect of the ∆ terms at LO (blue dotted), NLO (orange
solid), the effect of the NLO evolution (red dot-dashed) and the NNLO evolution (green dashed).
Note that two curves are multiplied by 10 for better visibility.

We note that this ratio is scale dependent, and furthermore depends strongly on the value
of ∆. Since this ratio is meant to illustrate the approximate size, we have for simplicity
kept the initial conditions the same for all scenarios, using the values in eq. (5.2). Figure 2
shows this ratio for a range of values of µ, which is much smaller than 1 for the second
moment, as it only involves ∆2 terms. For the third moment, which involves terms linear
in ∆, the ratio is of order 1, indicating that the ∆ terms at NLO are of the same size as
the NNLO correction to the DGLAP evolution. The (unknown) ∆ terms at NNLO are of
course much smaller. We further investigate the various contributions to the third moment
in figure 3. Here we show the size of the NLO evolution, the ∆ term in the LO and NLO
evolution, and the NNLO evolution (without ∆ term) by taking appropriate differences,
demonstrating that the ∆ terms are effectively suppressed by one order in the perturbative
expansion. The ∆ terms at NNLO can therefore safely be neglected.

This allows us to immediately extend the evolution of the first three central moments
of the track function to NNLO using known results for the timelike spin-n anomalous
dimensions [39]. This simplification is quite convenient, as it allows us to immediately
consider NNLO evolution for up to three-point correlators. For convenience, we provide
the DGLAP anomalous dimensions for the first three moments up to NNLO in appendix B.

5.2 Non-linearities in the fourth and fifth moments

Although the evolution of the first three moments are DGLAP up to correction in ∆, this
is not the case for higher moments. This is because the evolution of higher moments can
contain non-linear terms that are not proportional to ∆ and are therefore not suppressed,
even in a pure gluon theory. For example, the evolution of the fourth and fifth central
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moment is constrained by shift symmetry to be of the form

d
d lnµ2~σ(4) = −γ̂(5)~σ(4) + γ̂σ2σ2

[
~σ(2) · ~σT (2)

]
+ γ̂σ3∆~σ(3)∆ + γ̂σ2∆2~σ(2)∆2 + ~γ∆4∆4 ,

(5.4)
d

d lnµ2~σ(5) = −γ̂(6)~σ(5) + γ̂σ3σ2

[
~σ(3) · ~σT (2)

]
+ γ̂σ4∆~σ(4)∆

+ γ̂σ2
2∆
[
~σ(2) · ~σT (2)

]
∆ + γ̂σ3∆2~σ(3)∆2 + γ̂σ2∆3~σ(2)∆3 + ~γ∆5∆5 .

While the terms involving ∆ are suppressed, the terms involving products of σ(2) and σ(3)
are not. These non-linear terms are not constrained by DGLAP and require additional cal-
culational techniques. Therefore extending the evolution of higher track function moments
to NNLO is beyond the scope of this paper.

Let us continue to study the effects of the non-linear terms in the evolution equations.
For simplicity we consider the evolution of the fourth and fifth cumulant in pure Yang-Mills
theory, where the evolution of these moments simplifies to

d
d lnµ2κ(4) = −γgg(5)κ(4) + γκ2κ2κ

2(2) ,

d
d lnµ2κ(5) = −γgg(6)κ(5) + γκ3κ2κ(3)κ(2) . (5.5)

These simplified expressions allow us to study the non-linearity of the evolution by means
of a two-dimensional RG flow plot, shown in figure 4. This figure shows the RG flow for
the fourth and fifth cumulant in the κ(4)− κ2(2) and κ(5)− κ(3)κ(2) planes respectively.
From these plots it is clear that there is a single fixed-point in the evolution at the origin,
corresponding to the trivial fixed point where all cumulants vanish. In addition to this
fixed point, the flow lines are attracted to a common valley before flowing to the fixed
point. Note that the range of the axes on these plots are somewhat arbitrary, as the figure
is invariant under a simultaneous rescaling of both axes.

While it is clear that the trivial fixed point is an attractive fixed point, these plots give
interesting insight into the behavior of the track function. For example, we can consider
a Gaussian track function for which all higher cumulants vanish. In this case, the track
function will first generate a non-zero value of κ(4) through the non-linear mixing, after
which the DGLAP anomalous dimensions drive it back to zero. In this case, which is a good
approximation to real world QCD, the mixing anomalous dimensions dominate the behavior
of the track function evolution. Since physically the distribution must eventually collapse
to a delta function under RG evolution, this suggests that there should be a positivity
bound on γκ2κ2 . This provides further evidence that it may have a direct interpretation as
an anomalous dimension of some generalized lightray operator, and it would be interesting
to understand this better.

The RG flow of the fifth cumulant, κ(5), is interesting in that it illustrates the struc-
ture of odd moments. The RG of the track functions preserves symmetry/anti-symmetry
properties under RG flow. This is manifest in the κ(5)→ −κ(5), κ(3)→ −κ(3) symmetry
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(a) (b)

Figure 4. Renormalization group flow in pure Yang-Mills theory at fixed µ for (a) the fourth
cumulant and (b) for the fifth cumulant. The arrows denote the direction of the derivatives with
respect to lnµ and their color reflects their strength. The black line indicates the eigenvector of
the evolution equation.

of the RG flow in the figure. For higher moments, additional non-linear terms in the evolu-
tion appear and a visualization of the RG flow can only be realized in higher-dimensional
RG flow plots.

Due to the dominance of mixing terms beyond the third moment, we are not imme-
diately able to extend our calculation to NNLO. While the complete calculation of the
NNLO evolution of higher moments is beyond the scope of this paper, we briefly comment
on what would be required to do so. The constraints from shift symmetry hold to all orders
in perturbation theory. Focusing on pure Yang-Mills theory for simplicity, one can show
that to all orders in perturbation theory the fourth moment takes the form

µ
d

dµ
T (4) = −γ(5)T (4)− 4(γ(4)− γ(5))T (1)T (3)

+ (γ1→4 − 6γ(3) + 8γ(4)− 3γ(5))T (2)T (2)
− 2(γ1→4 − 3γ(3) + 2γ(4))T (1)T (1)T (2) + γ1→4T (1)T (1)T (1)T (1)

(5.6)

Here we see that only one anomalous dimension, γ1→4, beyond the standard DGLAP
anomalous dimension, appears. Interestingly, this particular contribution does not involve
any soft singularities, since it has one energy weighting on each parton. Its calculation
is therefore much simpler than calculations of the NNLO DGLAP kernels. It could be
computed, for example, using the known 1→ 4 splitting functions [63, 64].
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6 Conclusions

Track functions characterize the fluctuations in the fragmentation process of quarks and
gluons into charged hadrons (or some other subset of hadrons), and its moments are essen-
tial for the description of track-based measurements of higher-point correlation functions
in jet substructure. Although they are fundamentally non-perturbative objects, the track
function evolution is perturbative and exhibits interesting renormalization group structure
involving mixings between different moments.

In this paper we have derived the all-orders structure of the RG for the moments
of track functions, using the action of energy conservation as a shift symmetry. This
highlights the remarkably constrained structure of the evolution, implying that the RG
can be expressed in terms of cumulants (or equivalently, central moments), and differences
of first moments.

We performed an explicit calculation of the first six moments of the quark and gluon
track functions in QCD. At the fourth moment and beyond one finds interesting RG flows
describing the mixing with products of cumulants, for example between κ(4) and (κ(2))2.
We studied the structure of these RG flows, finding that these mixing terms dominate the
evolution. These higher cumulants of the track functions therefore probe evolution in the
fragmentation process that goes beyond the standard DGLAP evolution, and it would be
interesting to better understand the structure of these mixing terms in terms of anomalous
dimensions of the underlying field theory, and study them experimentally.

Finally, we showed that for the first three moments cumulants of the track function,
shift symmetry constrains any evolution beyond DGLAP to be proportional to ∆. For
track-based measurements in QCD, ∆ � 1, making the corrections proportional to ∆
suppressed by an effective order in the perturbative expansion. This allows us to extend
the evolution to NNLO, enabling up to three-point correlators to be studied on tracks
at this order. We also outlined the missing ingredients for a similar extension to NNLO
beyond the third moment, where genuinely new ingredients are required.

Although we have primarily focused in this paper on the experimental utility of track
functions, we believe that better understanding the evolution of the moments of the track
functions could be of more formal theoretical interest. The DGLAP anomalous dimensions
have a deep connection to the twist-2 operators of the theory, which has recently recieved
renewed attention in the study of lightray operators in CFTs [9]. Track functions are
another class of intrinsically Lorentzian observables, that probe features of the theory
beyond the leading twist trajectory. It would be interesting if they could be put on a
similarly firm theoretical footing, and if one could more precisely understand what features
of the theory they are probing, and how they are related to its operator content.

Our results allow the calculation of up-to six point energy correlators on tracks, which
have recently been investigated with CMS open data [65–67] providing a view on the
hadronization transition, non-Gaussianities and quantum scaling dimensions. The three-
point energy correlator has also been proposed as a new way to extract the top quark
mass [68], with the potential to reduce the theoretical uncertainty, particularly from non-
perturbative effects. The angular resolution offered by tracks is essential to carry out these
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measurements. This is also the case for the azimuthal decorrelation in vector-boson plus
jet production [69], which however requires knowledge of (the evolution of) the full track
function. In conclusion, we believe that our work will be of significant interest for precision
studies at the LHC, and we look forward to their application in phenomenology in the near
future.
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A Splitting function calculation for pure Yang-Mills

We will now discuss how the anomalous dimensions for pure Yang-Mills can be calcu-
lated using the approach of section 4.1.2. We will employ the notation for the anomalous
dimensions in section 3.4.

In our method we will consider γ(a, b, c) with a, b, c > 0, which allows us to avoid soft
singularities in the integrations. For pure Yang-Mills this is sufficient, since γ(a, 0, 0) = 1

3γa
is the known anomalous dimension of the fragmentation function, and we can fix γ(a, b, 0)
using

b∑
c=0

γ(a, b− c, c) =
∫ 1

0
dz1 dz2 dz3 δ(1− z1 − z2 − z3)P ({zi})

b∑
c=0

(
a+ b

a b− c c

)
za1z

b−c
2 zc3

= 1
3

b∑
c=0

(
a+ b

a b− c c

)
(−1)cγa+c . (A.1)

This follows, because under the integral we can make the replacement

b∑
c=0

(
a+b

a b−c c

)
za1z

b−c
2 zc3 =

(
a+b
b

)
za1(z2+z3)b =

(
a+b
b

)
za1(1−z1)b

=
b∑
c=0

(
a+b

a b−c c

)
(−1)cza+c

1 .

(A.2)

As discussed in section 4.1.2, we will extract the track function evolution from the jet
function J(s, x) differential in the total invariant mass s of the jet and the track fraction
x, by integrating the collinear splitting amplitudes. Because the measurement of x only
receives contributes from collinear radiation (contributions from soft radiation are power
suppressed), consistency of factorization in SCET implies that this jet function must have
the same anomalous dimension as the well-known jet function that is only differential in
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the invariant mass s [62]. After this renormalization, the remaining divergences must be
IR in nature and absorbed by the track functions, as encoded by the matching relation

J(s, x;µ) =
∑
N

[ N∏
i=1

∫ 1

0
dzi
]
δ
(
1−

N∑
i=1

zi
)
J1→N (s, {zi}, µ)

∫ [ N∏
i=1

dxi T (xi, µ)
]
δ
(
x−

N∑
i=1

zixi
)
.

(A.3)
Note that this matching is between renormalized quantities, as is standard. Since we are
working in a pure gluon theory, we have removed all flavor labels. Note that the matching
coefficients J are IR finite. The IR poles in the track functions follow from the inverse
of (4.4), which reads

~Tn(µ) =
{

1− as(µ)R̂
(1)
n

ε
+ 1

2a
2
s(µ)

(
−R̂

(2)
n

ε
+ R̂

(1)
n R̂

(1)
n + β0R̂

(1)
n

ε2

)
+O(a3

s)
}
~T(0)
n . (A.4)

At order α2
s, we get the contribution J (0) ⊗ T (2) = δ(s)T (2)(x) in (A.3), which gives us

the desired IR poles of the renormalized track function, from which we can infer the UV
poles R̂(2)

n and anomalous dimension. This also tells us that we can restrict our attention
to the coefficient of the δ(s) term in eq. (A.3). The cross term involving J (1) and T (1) can
be taken into account, using the matching coefficients for fragmenting jet functions [37],
which are the same at this order (since the momentum fraction of the other branch is
simply 1− z). Finally, the J (2) contribution can be ignored, since it does not contain any
poles.

We will now describe the calculation of the jet function J(s, z) in some detail. Since
we restrict to a, b, c > 0, only the double real contribution needs to be included,

J(s, x) = 1
6

∫
dΦc

3 δ(s− s123)σc3
∫ [ 3∏

i=1
dxi T (0)(xi)

]
δ
(
x−

3∑
i=1

zixi
)

+ . . . . (A.5)

Here dΦc
3 the three-body collinear phase space [70] for non-identical particles (hence the 1

6)

dΦc
3 = ds123 ds12 ds13 ds23 δ(s123 − s12 − s13 − s23)dz1 dz2 dz3 δ(1− z1 − z2 − z3)

× 4Θ(−∆)(−∆)−
1
2−ε

(4π)5−2εΓ(1− 2ε) , (A.6)

with zi the momentum fraction of parton in i, sij the invariant mass of partons i and j

and
∆ = (z3s12 − z1s23 − z2s13)2 − 4z1z2s13s23 . (A.7)

The squared collinear matrix element σc3 describing the g → ggg splitting is [56, 57]

σc3 =
(µ2eγE

4π
)2ε 4g4C2

A

s2
123

{(1−ε)
4s2

12

(
2z1s23−z2s13

z1+z2
+ z1−z2
z1+z2

s12
)2

+ 3
4(1−ε)+ s123

s12

[
4z1z2−1

1−z3

+ z1z2−2
z3

+ 3
2 + 5

2z3+ (1−z3(1−z3))2

z3z1(1−z1)

]
+ s2

123
s12s13

[
z1z2(1−z2)(1−2z3)

z3(1−z3) +z2z3−2

+ z1(1+2z1)
2 + 1+2z1(1+z1)

2(1−z2)(1−z3) + 1−2z1(1−z1)
2z2z3

]}
+5 permutations. (A.8)
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The integral over sij can be carried out analytically using the results in the appendix of
ref. [61]. Since we only need the coefficient of δ(s), we can restrict ourselves to the first
term in the plus expansion s−1−2ε = −1/(2ε) δ(s) + . . . . By taking the n-th moment, we
can rewrite ∫

dxxn
3∏
i=1

[∫
dxi T (0)(xi)

]
δ
(
x− z1x1 − z2x2 − z3x3)

=
∑

a+b+c=n

(
n

a b c

)
za1z

b
2z
c
3 T

(0)(a)T (0)(b)T (0)(c) . (A.9)

Because we restricted our attention to those terms with a, b, c > 0 there are no soft singu-
larities, allowing us to first expand in ε and then integrate over zi.

Finally, to subtract the contribution involving J (1) and T (1), we need to transform
eq. (A.3) to moment space. Keeping only the δ(s) term,

J(s, n) = a2
sδ(s)

[
T (2)(n) + 2

∑
a+b=n

(
n

a

)
J (1)
δ (a, b)T (0)(a)T (1)(b)

]
+ . . . , (A.10)

where as = αs/(4π) and (assuming a, b, c > 0)

T (1)(b) = −1
ε

b∑
c=0

T (0)(b− c)T (0)(c)
∫ 1

0
dz zb(1− z)cpgg(z) ,

J (1)(a, b) =
∫ 1

0
dz za(1− z)b ln[z(1− z)] pgg(z) ,

pgg(z) = 2CA
[ z

1− z + 1− z
z

+ z(1− z)
]
. (A.11)

Using this approach we have determined the unknown anomalous dimensions in pure Yang-
Mills up to the ninth moment (see (3.23))

γ
(2)
42 = C2

A

(47613060961
22226400 − 2321π2

9 + 360ζ3
)
,

γ
(2)
62 = C2

A

(6322515311879
1440747000 − 777388π2

1485 + 672ζ3
)
,

γ
(2)
72 = C2

A

(22916518522033
18489586500 − 182096π2

1155 + 288ζ3
)
, (A.12)

and it is easy to obtain results for higher moments.

B Moments of timelike splitting functions

The timelike splitting functions are

Pij(z) =
∞∑
L=0

aL+1
s P

(L)
ij (z) , (B.1)

where as = αs/(4π). The Mellin moments of timelike splitting functions are

γ
(L)
ij (k) = −

∫ 1

0
dz zk−1P

(L)
ij (z) . (B.2)
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Note that this is shifted by one from the definition of the moments of the track function
in eq. (3.2). All the results of Pij(z) up to order-a3

s are e.g. listed in the ancillary file,
“PT.txt”, of [39], and Pij(z) corresponds to PT[“ij”] in that file. At LO, P (0)

q̄q and P
(0)
Qq

vanish while the non-vanishing moments up to the 7th moment are given by

γ(0)
gg (2) = 4

3nfTF , γ(0)
qg (2) = −2

3TF , γ(0)
gq (2) = −8

3CF , γ(0)
qq (2) = 8

3CF ,

γ(0)
gg (3) = 4

3nfTF + 14
5 CA, γ(0)

qg (3) = − 7
15TF , γ(0)

gq (3) = −7
6CF , γ(0)

qq (3) = 25
6 CF ,

γ(0)
gg (4) = 4

3nfTF + 21
5 CA, γ(0)

qg (4) = −11
30TF , γ(0)

gq (4) = −11
15CF , γ(0)

qq (4) = 157
30 CF ,

γ(0)
gg (5) = 4

3nfTF + 181
35 CA, γ(0)

qg (5) = − 32
105TF , γ(0)

gq (5) = − 8
15CF , γ(0)

qq (5) = 91
15CF ,

γ(0)
gg (6) = 4

3nfTF + 83
14CA, γ(0)

qg (6) = −11
42TF , γ(0)

gq (6) = − 44
105CF , γ(0)

qq (6) = 709
105CF ,

γ(0)
gg (7) = 4

3nfTF + 4129
630 CA, γ(0)

qg (7) = − 29
126TF , γ(0)

gq (7) = −29
84CF , γ(0)

qq (7) = 1027
140 CF .

At NLO,

γ(1)
gg (2) = nfTF

[(200
27 −

16π2

9

)
CA+ 260

27 CF
]
,

γ(1)
gg (3) = nfTF

[(3803
675 −

16π2

9

)
CA+ 12839

2700 CF
]
+
(

2158
675 + 26π2

45 −8ζ3

)
C2
A,

γ(1)
gg (4) = nfTF

[(2273
675 −

16π2

9

)
CA+ 57287

13500CF
]
+
(

90047
1500 −

28π2

5

)
C2
A,

γ(1)
gg (5) = nfTF

[(
−16π2

9 + 52798
33075

)
CA+ 680132

165375CF
]
+
(

4706626
165375 −

316π2

315 −8ζ3

)
C2
A,

γ(1)
gg (6) = nfTF

[(
−16π2

9 + 2071
13230

)
CA+ 940633

231525CF
]
+
(

13375435
148176 −

166π2

21

)
C2
A

γ(1)
gg (7) = nfTF

[(
−1262143

1190700−
16π2

9

)
CA+10772855

2667168 CF
]
+
(

2907487777
66679200 −

1819π2

945 −8ζ3

)
C2
A,

γ(1)
qg (2) = TF

[(8π2

9 −
100
27

)
CA−

130
27 CF

]
,

γ(1)
qg (3) = TF

[( 619
2700 + 14π2

45

)
CA−

833
216CF−

8
25nfTF

]
,

γ(1)
qg (4) = TF

[(22π2

45 −
60391
27000

)
CA−

166729
54000 CF−

12
25nfTF

]
,

γ(1)
qg (5) = TF

[( 1999
18375 + 64π2

315

)
CA−

19792
7875 CF−

2048
3675nfTF

]
,

γ(1)
qg (6) = TF

[(22π2

63 −
1249361
740880

)
CA−

427303
205800CF−

436
735nfTF

]
,
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γ(1)
qg (7) = TF

[(29π2

189 −
674773

22226400

)
CA−

77139049
44452800CF−

36158
59535nfTF

]
,

γ(1)
gq (2) =

(
32π2

9 − 568
27

)
C2
F−

376
27 CACF ,

γ(1)
gq (3) =

(
14π2

9 − 2977
432

)
C2
F +

(
−39451

5400 −
7π2

9

)
CACF ,

γ(1)
gq (4) =

(
44π2

45 −
104389
27000

)
C2
F−

142591
13500 CACF ,

γ(1)
gq (5) =

(
32π2

45 −
9374
3375

)
C2
F +

(
−2882863

661500 −
16π2

45

)
CACF ,

γ(1)
gq (6) =

(
176π2

315 −
2626061
1157625

)
C2
F−

948127
154350CACF ,

γ(1)
gq (7) =

(
29π2

63 −
19635271
9878400

)
C2
F +

(
−358501999

133358400−
29π2

126

)
CACF ,

γ(1)
qq (2) =

(
−175

27 +2π2

9 −8ζ3

)
C2
F +

(
1495
54 −

17π2

9 +4ζ3

)
CACF +

(64
27−

128
27 nf

)
CFTF ,

γ(1)
qq (3) =

(
989
432−

7π2

9 −8ζ3

)
C2
F +

(
16673
432 −

43π2

18 +4ζ3

)
CACF +

(4391
5400−

415
54 nf

)
CFTF ,

γ(1)
qq (4) =

(
55553
6000 −

67π2

45 −8ζ3

)
C2
F +

(
2495453
54000 −

247π2

90 +4ζ3

)
CACF

+
(11867

27000−
13271
1350 nf

)
CFTF ,

γ(1)
qq (5) =

(
100669
6750 −

92π2

45 −8ζ3

)
C2
F +

(
156421
3000 −

136π2

45 +4ζ3

)
CACF

+
( 46516

165375−
7783
675 nf

)
CFTF ,

γ(1)
qq (6) =

(
363875
18522 −

788π2

315 −8ζ3

)
C2
F +

(
176024953
3087000 −

1024π2

315 +4ζ3

)
CACF

+
( 3649

18522−
428119
33075 nf

)
CFTF ,

γ(1)
qq (7) =

(
234152309
9878400 −

607π2

210 −8ζ3

)
C2
F +

(
9065721869
148176000 −

1447π2

420 +4ζ3

)
CACF

+
( 779767

5334336−
3745727
264600 nf

)
CFTF ,

γ
(1)
q̄q (2) =

(
−743

54 + 17π2

9 −4ζ3

)
CF
Nc

+ 64
27CFTF ,
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γ
(1)
q̄q (3) =

(
8113
432 −

43π2

18 +4ζ3

)
CF
Nc

+ 4391
5400CFTF ,

γ
(1)
q̄q (4) =

(
−1202893

54000 + 247π2

90 −4ζ3

)
CF
Nc

+ 11867
27000CFTF ,

γ
(1)
q̄q (5) =

(
675559
27000 −

136π2

45 +4ζ3

)
CF
Nc

+ 46516
165375CFTF ,

γ
(1)
q̄q (6) =

(
−252598609

9261000 + 1024π2

315 −4ζ3

)
CF
Nc

+ 3649
18522CFTF ,

γ
(1)
q̄q (7) =

(
1442001293
49392000 −

1447π2

420 +4ζ3

)
CF
Nc

+ 779767
5334336CFTF , (B.3)

For Q 6= q we have γQq = γQ̄q and up to the 7th moment we have

γ
(1)
Qq (2) = 64

27CFTF , γ
(1)
Qq (3) = 4391

5400CFTF , γ
(1)
Qq (4) = 11867

27000CFTF ,

γ
(1)
Qq (5) = 46516

165375CFTF , γ
(1)
Qq (6) = 3649

18522CFTF , γ
(1)
Qq (7) = 779767

5334336CFTF . (B.4)

For the EEC evolution to NNLL, we need the N = 3 moment at LO, NLO and NNLO,
which can be obtained from refs. [40–42, 71]. (Note that we include the pure singlet term
in the qq element.) At NNLO, we have

γ(2)
gg (2) = nfTF

[(
−256ζ3

9 + 12464
243 − 2132π2

81 + 80π4

27

)
C2

A

+
(

112ζ3
9 + 5362

243 −
760π2

81

)
CACF +

(
−64ζ3

9 + 21140
243 − 352π2

81

)
C2

F

]
+ n2

fT
2
F

[(
−256ζ3

9 − 8
27 + 320π2

81

)
CA +

(
164
9 − 256π2

81

)
CF

]
,

γ(2)
gg (3) =

(
−23702ζ3

225 + 32π2ζ3
3 + 96ζ5 −

5819653
486000 + 33179π2

3375 − 1283π4

675

)
C3

A

+ nfTF

[(
478ζ3

9 − 12230737
972000 − 51269π2

1620 + 104π4

45

)
C2

A

+
(

564ζ3
5 − 1700563

54000 − 16291π2

2025

)
CACF +

(
−56ζ3

9 + 219077
97200 + 2411π2

2025

)
C2

F

]
+ n2

fT
2
F

[(
−256ζ3

9 − 73076
10125 + 320π2

81

)
CA +

(
− 2611

40500 −
392π2

405

)
CF

]
,

γ(2)
gg (4) =

(
−3752ζ3

25 + 1069405919
1350000 − 171289π2

1125 + 28π4

3

)
C3

A

+ nfTF

[(
−59068ζ3

225 + 129284923
1215000 − 30316π2

2025 + 80π4

27

)
C2

A

+
(

5488ζ3
45 − 188283293

3037500 −
2158π2

375

)
CACF +

(
27742123
12150000−

704ζ3
225 + 4037π2

10125

)
C2

F

]
+ n2

fT
2
F

[(
−256ζ3

9 − 71341
6750 + 320π2

81

)
CA +

(
−165553

67500 −
968π2

2025

)
CF

]
,
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γ(2)
qg (2) = TF

{(
128ζ3

9 − 6232
243 + 1066π2

81 − 40π4

27

)
C2

A

+
(
−56ζ3

9 − 2681
243 + 380π2

81

)
CACF +

(
32ζ3

9 − 10570
243 + 176π2

81

)
C2

F

+ nfTF

[(
128ζ3

9 + 4
27 −

160π2

81

)
CA +

(
128π2

81 − 82
9

)
CF

]}
,

γ(2)
qg (3) = TF

{(
343ζ3

45 − 1795237
1944000 + 333019π2

81000 − 14π4

25

)
C2

A

+
(

6208ζ3
75 − 3607891

38880 + 24821π2

8100 − 7π4

75

)
CACF

+
(
−26102ζ3

225 + 9397651
97200 − 1021π2

675 + 224π4

675

)
C2

F

+ nfTF

[(
1215691
60750 −

56ζ3
9 − 3616π2

2025

)
CA+

(
3584π2

2025 −
10657
2025

)
CF−

688
1125nfTF

]}
,

γ(2)
qg (4) = TF

{(
1004ζ3

225 − 140682763
6075000 + 94231π2

10125 − 22π4

27

)
C2

A

+
(

6503ζ3
225 − 509985949

24300000 + 7003π2

4500

)
CACF

+
(

622ζ3
225 −

2412861131
48600000 + 79361π2

40500

)
C2

F

+ nfTF

[(
352ζ3

45 − 51449
4500 −

116π2

405

)
CA+

(
3454π2

2025 −
915539
150000

)
CF−

344
375nfTF

}
,

γ(2)
gq (2) =

(
−64ζ3

3 − 20920
243

)
C2

ACF +
(
−2464ζ3

9 − 6608
243 + 1216π2

27 + 32π4

27

)
CAC

2
F

+ nfTF

[(
1024ζ3

9 − 110
81 −

296π2

81

)
CACF +

(
−128ζ3

9 − 4562
81 + 32π2

27

)
C2

F

]
+
(

320ζ3 −
54556
243 + 3632π2

81 − 64π4

9

)
C3

F ,

γ(2)
gq (3) =

(
−2791ζ3

90 − 17093053
777600 − 50593π2

3600 + 98π4

135

)
C2

ACF

+ nfTF

[(
364ζ3

9 + 246767
30375 −

73π2

81

)
CACF +

(
−56ζ3

9 − 419593
40500 + 4π2

27

)
C2

F

]
+
(
−3029ζ3

9 + 63294389
388800 + 123773π2

5400 + 511π4

270

)
CAC

2
F

+
(

2533ζ3
9 − 647639

3888 + 3193π2

324 − 154π4

45

)
C3

F ,

γ(2)
gq (4) =

(
6448ζ3

75 − 2010250477
12150000 − 5449π2

1125

)
C2

ACF

+ nfTF

[(
1408ζ3

45 + 2334509
202500 −

3736π2

2025

)
CACF +

(
152π2

675 − 176ζ3
45 − 14837573

2025000

)
C2

F

]
+
(
−31346ζ3

225 − 1694499413
24300000 + 234407π2

6750 + 44π4

135

)
CAC

2
F

+
(

1796ζ3
15 − 1061823161

24300000 + 39634π2

10125 − 88π4

45

)
C3

F ,
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γ(2)
qq (2) =

(
3079ζ3

9 + 4π2ζ3 + 56ζ5 + 58853
1944 −

485π2

36 − 857π4

270

)
C2

ACF

+ nfTF

[(
34π4

135 −
1088ζ3

9 − 3616
243 + 6π2

)
CACF

+
(

1280ζ3
9 − 20680

243 + 20π2

9 − 68π4

135

)
C2

F + 448
243CFTF −

896
243CFnfTF

]
+ TF

[(
−320ζ3

9 + 3293
243 + 148π2

81

)
CACF +

(
128ζ3

9 + 14543
243 − 208π2

27

)
C2

F

]
+
(
−5708ζ3

9 − 52π2ζ3
3 − 216ζ5 + 163075

486 − 3938π2

81 + 532π4

45

)
CAC

2
F

+
(

1916ζ3
9 + 56π2ζ3

3 + 208ζ5 −
82099
486 + 1313π2

81 − 838π4

135

)
C3

F

+
(

4ζ3
9 −

758
243 + 28π2

81

)
dabcdabc

Nc
,

γ(2)
qq (3) =

(
16483ζ3

36 + 4π2ζ3 + 56ζ5 + 508201
62208 −

13105π2

864 − 2083π4

540

)
C2

ACF

+ nfTF

[(
−1448ζ3

9 − 45515
1944 + 437π2

54 + 34π4

135

)
CACF

+
(

1496ζ3
9 − 568813

3888 + 173π2

27 − 68π4

135

)
C2

F + 324853
243000CFTF −

2569
486 CFnfTF

]
+ TF

[(
−7ζ3

5 −
10843531
1944000 + 15871π2

16200

)
CACF +

(
196ζ3

45 + 1796579
97200 − 3167π2

1350

)
C2

F

]
+
(
−7247ζ3

9 − 52π2ζ3
3 − 216ζ5 + 1286017

1944 − 27689π2

324 + 646π4

45

)
CAC

2
F

+
(

2411ζ3
9 + 56π2ζ3

3 + 208ζ5 −
1997845

7776 + 8551π2

648 − 793π4

135

)
C3

F

+ 205
576

dabcdabc

Nc
,

γ(2)
qq (4) =

(
19939ζ3

36 + 4π2ζ3 + 56ζ5 −
1265893697
64800000 − 5470151π2

324000 − 1303π4

300

)
C2

ACF

+ nfTF

[(
−568ζ3

3 − 34512043
1215000 + 4319π2

450 + 34π4

135

)
CACF

+
(

8248ζ3
45 − 94188089

486000 + 2119π2

225 − 68π4

135

)
C2

F + 236357
243000CFTF −

384277
60750 CFnfTF

]
+ TF

[(
2893382
759375 −

242ζ3
45 + 4246π2

10125

)
CACF +

(
484ζ3
225 + 125062003

12150000 −
8407π2

6750

)
C2

F

]
+
(
−43099ζ3

45 − 52π2ζ3
3 − 216ζ5 + 1856972509

2025000 − 4455181π2

40500 + 10906π4

675

)
CAC

2
F

+
(

2827ζ3
9 + 56π2ζ3

3 + 208ζ5 −
7289888977
24300000 + 700843π2

81000 − 761π4

135

)
C3

F

+
(

11ζ3
100 −

183166273
194400000 + 32767π2

324000

)
dabcdabc

Nc
,
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γ
(2)
q̄q (2) =

(
−2887ζ3

9 − 4π2ζ3 − 56ζ5 + 36169
648 + 485π2

36 + 857π4

270

)
C2

ACF

+ nfTF

[(
704ζ3

9 − 880
81 − 6π2 − 34π4

135

)
CACF

+
(

1760
81 − 1408ζ3

9 + 12π2 + 68π4

135

)
C2

F + 448
243CFTF

]
+ TF

[(
−320ζ3

9 + 3293
243 + 148π2

81

)
CACF +

(
128ζ3

9 + 14543
243 − 208π2

27

)
C2

F

]
+
(

908ζ3 + 52π2ζ3
3 + 216ζ5 −

16651
54 + 290π2

81 − 1756π4

135

)
CAC

2
F

+
(
−4796ζ3

9 − 56π2ζ3
3 − 208ζ5 + 63737

162 − 4945π2

81 + 1798π4

135

)
C3

F

+
(
−4ζ3

9 + 758
243 −

28π2

81

)
dabcdabc

Nc
,

γ
(2)
q̄q (3) =

(
15823ζ3

36 + 4π2ζ3 + 56ζ5 −
2202421
20736 − 13105π2

864 − 2083π4

540

)
C2

ACF

+ nfTF

[(
−848ζ3

9 + 2789
324 + 437π2

54 + 34π4

135

)
CACF

+
(

1696ζ3
9 − 2789

162 −
437π2

27 − 68π4

135

)
C2

F + 324853
243000CFTF

]
+ TF

[(
15871π2

16200 − 7ζ3
5 −

10843531
1944000

)
CACF +

(
196ζ3

45 + 1796579
97200 − 3167π2

1350

)
C2

F

]
+
(
−1353ζ3 −

52π2ζ3
3 − 216ζ5 + 3347233

5184 − 5729π2

324 + 2188π4

135

)
CAC

2
F

+
(

8531ζ3
9 + 56π2ζ3

3 + 208ζ5 −
4492045

5184 + 62231π2

648 − 2293π4

135

)
C3

F −
205
576

dabcdabc

Nc
,

γ
(2)
q̄q (4) =

(
−481207ζ3

900 − 4π2ζ3 − 56ζ5 + 31010955691
194400000 + 5470151π2

324000 + 1303π4

300

)
C2

ACF

+ nfTF

[(
528ζ3

5 − 1583477
202500 −

4319π2

450 − 34π4

135

)
CACF

+
(
−1056ζ3

5 + 1583477
101250 + 4319π2

225 + 68π4

135

)
C2

F + 236357
243000CFTF

]
+ TF

[(
2893382
759375 −

242ζ3
45 + 4246π2

10125

)
CACF +

(
484ζ3
225 + 125062003

12150000 −
8407π2

6750

)
C2

F

]
+
(

387961ζ3
225 + 52π2ζ3

3 + 216ζ5 −
46783579631

48600000 + 1058821π2

40500 − 12476π4

675

)
CAC

2
F

+
(
−58943ζ3

45 − 56π2ζ3
3 − 208ζ5 + 20852067857

16200000 − 647029π2

5400 + 529π4

27

)
C3

F

+
(
−11ζ3

100 + 183166273
194400000 −

32767π2

324000

)
dabcdabc

Nc
,

γ
(2)
Qq (2) = CFTF

[(
−320ζ3

9 + 3293
243 + 148π2

81

)
CA +

(
128ζ3

9 + 14543
243 − 208π2

27

)
CF + 448

243nfTF

]
+
(

4ζ3
9 −

758
243 + 28π2

81

)
dabcdabc

Nc
,

– 40 –



J
H
E
P
0
6
(
2
0
2
2
)
1
3
9

γ
(2)
Qq (3) = CFTF

[(
−7ζ3

5 −
10843531
1944000 + 15871π2

16200

)
CA

+
(

196ζ3
45 + 1796579

97200 − 3167π2

1350

)
CF + 324853

243000nfTF

]
+ 205

576
dabcdabc

Nc
,

γ
(2)
Qq (4) = CFTF

[(
−242ζ3

45 + 2893382
759375 + 4246π2

10125

)
CA

+
(

484ζ3
225 + 125062003

12150000 −
8407π2

6750

)
CF + 236357

243000nfTF

]
+
(

11ζ3
100 −

183166273
194400000 + 32767π2

324000

)
dabcdabc

Nc
, (B.5)

where
dabcdabc = 2CF (C2

A − 4) = (N2 − 4)(N2 − 1)
N

. (B.6)

Along with the DGLAP anomalous dimensions, we also require the β function, which we
expand in powers of αs as

β(αs) = −2αs
∞∑
n=0

βn
(αs

4π
)n+1

. (B.7)

Up to three-loop order in the MS scheme, the coefficients of the β function are [72, 73]

β0 = 11
3 CA −

4
3TFnf , β1 = 34

3 C
2
A −

(20
3 CA + 4CF

)
TFnf ,

β2 = 2857
54 C3

A +
(
C2
F −

205
18 CFCA −

1415
54 C2

A

)
2TFnf +

(11
9 CF + 79

54CA
)

4T 2
Fn

2
f . (B.8)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A
Review of Recent Advances in Theory and Machine Learning, Phys. Rept. 841 (2020) 1
[arXiv:1709.04464] [INSPIRE].

[2] S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet
substructure and boosted-object phenomenology, vol. 958, Springer, Germany (2019).

[3] T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650
[INSPIRE].

[4] T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133
(1964) B1549 [INSPIRE].

[5] Y. Li, I. Moult, S.S. van Velzen, W.J. Waalewijn and H.X. Zhu, Extending Precision
Perturbative QCD with Track Functions, Phys. Rev. Lett. 128 (2022) 182001
[arXiv:2108.01674] [INSPIRE].

– 41 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.physrep.2019.11.001
https://arxiv.org/abs/1709.04464
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.04464
https://doi.org/10.1063/1.1724268
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C3%2C650%22
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1103/PhysRev.133.B1549
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C133%2CB1549%22
https://doi.org/10.1103/PhysRevLett.128.182001
https://arxiv.org/abs/2108.01674
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.01674


J
H
E
P
0
6
(
2
0
2
2
)
1
3
9

[6] H. Chen, I. Moult, X. Zhang and H.X. Zhu, Rethinking jets with energy correlators: Tracks,
resummation, and analytic continuation, Phys. Rev. D 102 (2020) 054012
[arXiv:2004.11381] [INSPIRE].

[7] H.-M. Chang, M. Procura, J. Thaler and W.J. Waalewijn, Calculating Track-Based
Observables for the LHC, Phys. Rev. Lett. 111 (2013) 102002 [arXiv:1303.6637] [INSPIRE].

[8] H.-M. Chang, M. Procura, J. Thaler and W.J. Waalewijn, Calculating Track Thrust with
Track Functions, Phys. Rev. D 88 (2013) 034030 [arXiv:1306.6630] [INSPIRE].

[9] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11
(2018) 102 [arXiv:1805.00098] [INSPIRE].

[10] N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996)
403 [hep-ph/9512370] [INSPIRE].

[11] F.V. Tkachov, Measuring multi - jet structure of hadronic energy flow or What is a jet?, Int.
J. Mod. Phys. A 12 (1997) 5411 [hep-ph/9601308] [INSPIRE].

[12] G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization,
Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].

[13] C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e+e− Event Shape
Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev. D 78
(2008) 034027 [arXiv:0801.4569] [INSPIRE].

[14] D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations,
JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

[15] A.V. Belitsky, S. Hohenegger, G.P. Korchemsky, E. Sokatchev and A. Zhiboedov, From
correlation functions to event shapes, Nucl. Phys. B 884 (2014) 305 [arXiv:1309.0769]
[INSPIRE].

[16] A.V. Belitsky, S. Hohenegger, G.P. Korchemsky, E. Sokatchev and A. Zhiboedov, Event
shapes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 884 (2014) 206 [arXiv:1309.1424]
[INSPIRE].

[17] C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron -
Positron Annihilation: Testing QCD, Phys. Rev. Lett. 41 (1978) 1585 [INSPIRE].

[18] A.V. Belitsky, S. Hohenegger, G.P. Korchemsky, E. Sokatchev and A. Zhiboedov,
Energy-Energy Correlations in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.
112 (2014) 071601 [arXiv:1311.6800] [INSPIRE].

[19] L.J. Dixon, M.-X. Luo, V. Shtabovenko, T.-Z. Yang and H.X. Zhu, Analytical Computation
of Energy-Energy Correlation at Next-to-Leading Order in QCD, Phys. Rev. Lett. 120 (2018)
102001 [arXiv:1801.03219] [INSPIRE].

[20] M.-X. Luo, V. Shtabovenko, T.-Z. Yang and H.X. Zhu, Analytic Next-To-Leading Order
Calculation of Energy-Energy Correlation in Gluon-Initiated Higgs Decays, JHEP 06 (2019)
037 [arXiv:1903.07277] [INSPIRE].

[21] J.M. Henn, E. Sokatchev, K. Yan and A. Zhiboedov, Energy-energy correlation in N=4
super Yang-Mills theory at next-to-next-to-leading order, Phys. Rev. D 100 (2019) 036010
[arXiv:1903.05314] [INSPIRE].

[22] I. Moult and H.X. Zhu, Simplicity from Recoil: The Three-Loop Soft Function and
Factorization for the Energy-Energy Correlation, JHEP 08 (2018) 160 [arXiv:1801.02627]
[INSPIRE].

– 42 –

https://doi.org/10.1103/PhysRevD.102.054012
https://arxiv.org/abs/2004.11381
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.11381
https://doi.org/10.1103/PhysRevLett.111.102002
https://arxiv.org/abs/1303.6637
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.6637
https://doi.org/10.1103/PhysRevD.88.034030
https://arxiv.org/abs/1306.6630
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.6630
https://doi.org/10.1007/JHEP11(2018)102
https://doi.org/10.1007/JHEP11(2018)102
https://arxiv.org/abs/1805.00098
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.00098
https://doi.org/10.1016/0370-2693(96)00558-8
https://doi.org/10.1016/0370-2693(96)00558-8
https://arxiv.org/abs/hep-ph/9512370
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9512370
https://doi.org/10.1142/S0217751X97002899
https://doi.org/10.1142/S0217751X97002899
https://arxiv.org/abs/hep-ph/9601308
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9601308
https://doi.org/10.1016/S0550-3213(99)00308-9
https://arxiv.org/abs/hep-ph/9902341
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9902341
https://doi.org/10.1103/PhysRevD.78.034027
https://doi.org/10.1103/PhysRevD.78.034027
https://arxiv.org/abs/0801.4569
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0801.4569
https://doi.org/10.1088/1126-6708/2008/05/012
https://arxiv.org/abs/0803.1467
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.1467
https://doi.org/10.1016/j.nuclphysb.2014.04.020
https://arxiv.org/abs/1309.0769
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.0769
https://doi.org/10.1016/j.nuclphysb.2014.04.019
https://arxiv.org/abs/1309.1424
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.1424
https://doi.org/10.1103/PhysRevLett.41.1585
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C41%2C1585%22
https://doi.org/10.1103/PhysRevLett.112.071601
https://doi.org/10.1103/PhysRevLett.112.071601
https://arxiv.org/abs/1311.6800
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.6800
https://doi.org/10.1103/PhysRevLett.120.102001
https://doi.org/10.1103/PhysRevLett.120.102001
https://arxiv.org/abs/1801.03219
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.03219
https://doi.org/10.1007/JHEP06(2019)037
https://doi.org/10.1007/JHEP06(2019)037
https://arxiv.org/abs/1903.07277
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.07277
https://doi.org/10.1103/PhysRevD.100.036010
https://arxiv.org/abs/1903.05314
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.05314
https://doi.org/10.1007/JHEP08(2018)160
https://arxiv.org/abs/1801.02627
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.02627


J
H
E
P
0
6
(
2
0
2
2
)
1
3
9

[23] I. Moult, G. Vita and K. Yan, Subleading power resummation of rapidity logarithms: the
energy-energy correlator in N = 4 SYM, JHEP 07 (2020) 005 [arXiv:1912.02188]
[INSPIRE].

[24] L.J. Dixon, I. Moult and H.X. Zhu, Collinear limit of the energy-energy correlator, Phys.
Rev. D 100 (2019) 014009 [arXiv:1905.01310] [INSPIRE].

[25] A. Gao, H.T. Li, I. Moult and H.X. Zhu, Precision QCD Event Shapes at Hadron Colliders:
The Transverse Energy-Energy Correlator in the Back-to-Back Limit, Phys. Rev. Lett. 123
(2019) 062001 [arXiv:1901.04497] [INSPIRE].

[26] M.A. Ebert, B. Mistlberger and G. Vita, The Energy-Energy Correlation in the back-to-back
limit at N3LO and N3LL’, JHEP 08 (2021) 022 [arXiv:2012.07859] [INSPIRE].

[27] G.P. Korchemsky and E. Sokatchev, Four-point correlation function of stress-energy tensors
in N = 4 superconformal theories, JHEP 12 (2015) 133 [arXiv:1504.07904] [INSPIRE].

[28] A.V. Belitsky, S. Hohenegger, G.P. Korchemsky and E. Sokatchev, N = 4 superconformal
Ward identities for correlation functions, Nucl. Phys. B 904 (2016) 176 [arXiv:1409.2502]
[INSPIRE].

[29] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, Superconvergence,
and a Stringy Equivalence Principle, JHEP 11 (2020) 096 [arXiv:1904.05905] [INSPIRE].

[30] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and
conformal colliders, JHEP 01 (2021) 128 [arXiv:1905.01311] [INSPIRE].

[31] C.-H. Chang, M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Transverse
spin in the light-ray OPE, JHEP 05 (2022) 059 [arXiv:2010.04726] [INSPIRE].

[32] G.P. Korchemsky, Energy correlations in the end-point region, JHEP 01 (2020) 008
[arXiv:1905.01444] [INSPIRE].

[33] D. Chicherin, J.M. Henn, E. Sokatchev and K. Yan, From correlation functions to event
shapes in QCD, JHEP 02 (2021) 053 [arXiv:2001.10806] [INSPIRE].

[34] H. Chen, I. Moult and H.X. Zhu, Quantum Interference in Jet Substructure from Spinning
Gluons, Phys. Rev. Lett. 126 (2021) 112003 [arXiv:2011.02492] [INSPIRE].

[35] H. Chen, I. Moult and H.X. Zhu, Spinning Gluons from the QCD Light-Ray OPE,
arXiv:2104.00009 [INSPIRE].

[36] H. Chen, M.-X. Luo, I. Moult, T.-Z. Yang, X. Zhang and H.X. Zhu, Three point energy
correlators in the collinear limit: symmetries, dualities and analytic results, JHEP 08 (2020)
028 [arXiv:1912.11050] [INSPIRE].

[37] A. Jain, M. Procura and W.J. Waalewijn, Parton Fragmentation within an Identified Jet at
NNLL, JHEP 05 (2011) 035 [arXiv:1101.4953] [INSPIRE].

[38] W.J. Waalewijn, Calculating the Charge of a Jet, Phys. Rev. D 86 (2012) 094030
[arXiv:1209.3019] [INSPIRE].

[39] H. Chen, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Analytic Continuation and Reciprocity
Relation for Collinear Splitting in QCD, Chin. Phys. C 45 (2021) 043101
[arXiv:2006.10534] [INSPIRE].

[40] A. Mitov, S. Moch and A. Vogt, Next-to-Next-to-Leading Order Evolution of Non-Singlet
Fragmentation Functions, Phys. Lett. B 638 (2006) 61 [hep-ph/0604053] [INSPIRE].

– 43 –

https://doi.org/10.1007/JHEP07(2020)005
https://arxiv.org/abs/1912.02188
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02188
https://doi.org/10.1103/PhysRevD.100.014009
https://doi.org/10.1103/PhysRevD.100.014009
https://arxiv.org/abs/1905.01310
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.01310
https://doi.org/10.1103/PhysRevLett.123.062001
https://doi.org/10.1103/PhysRevLett.123.062001
https://arxiv.org/abs/1901.04497
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.04497
https://doi.org/10.1007/JHEP08(2021)022
https://arxiv.org/abs/2012.07859
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.07859
https://doi.org/10.1007/JHEP12(2015)133
https://arxiv.org/abs/1504.07904
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.07904
https://doi.org/10.1016/j.nuclphysb.2016.01.008
https://arxiv.org/abs/1409.2502
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.2502
https://doi.org/10.1007/JHEP11(2020)096
https://arxiv.org/abs/1904.05905
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.05905
https://doi.org/10.1007/JHEP01(2021)128
https://arxiv.org/abs/1905.01311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.01311
https://doi.org/10.1007/JHEP05(2022)059
https://arxiv.org/abs/2010.04726
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.04726
https://doi.org/10.1007/JHEP01(2020)008
https://arxiv.org/abs/1905.01444
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.01444
https://doi.org/10.1007/JHEP02(2021)053
https://arxiv.org/abs/2001.10806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.10806
https://doi.org/10.1103/PhysRevLett.126.112003
https://arxiv.org/abs/2011.02492
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.02492
https://arxiv.org/abs/2104.00009
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.00009
https://doi.org/10.1007/JHEP08(2020)028
https://doi.org/10.1007/JHEP08(2020)028
https://arxiv.org/abs/1912.11050
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.11050
https://doi.org/10.1007/JHEP05(2011)035
https://arxiv.org/abs/1101.4953
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.4953
https://doi.org/10.1103/PhysRevD.86.094030
https://arxiv.org/abs/1209.3019
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.3019
https://doi.org/10.1088/1674-1137/abde2d
https://arxiv.org/abs/2006.10534
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.10534
https://doi.org/10.1016/j.physletb.2006.05.005
https://arxiv.org/abs/hep-ph/0604053
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0604053


J
H
E
P
0
6
(
2
0
2
2
)
1
3
9

[41] S. Moch and A. Vogt, On third-order timelike splitting functions and top-mediated Higgs
decay into hadrons, Phys. Lett. B 659 (2008) 290 [arXiv:0709.3899] [INSPIRE].

[42] A.A. Almasy, S. Moch and A. Vogt, On the Next-to-Next-to-Leading Order Evolution of
Flavour-Singlet Fragmentation Functions, Nucl. Phys. B 854 (2012) 133 [arXiv:1107.2263]
[INSPIRE].

[43] C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron-Positron
Annihilation in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys.
Rev. D 19 (1979) 2018 [INSPIRE].

[44] D.G. Richards, W.J. Stirling and S.D. Ellis, Second Order Corrections to the Energy-energy
Correlation Function in Quantum Chromodynamics, Phys. Lett. B 119 (1982) 193 [INSPIRE].

[45] J. Gao, V. Shtabovenko and T.-Z. Yang, Energy-energy correlation in hadronic Higgs decays:
analytic results and phenomenology at NLO, JHEP 02 (2021) 210 [arXiv:2012.14188]
[INSPIRE].

[46] C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD,
Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

[47] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1
(1960) 429 [INSPIRE].

[48] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685
[INSPIRE].

[49] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf.
Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

[50] A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular
Arithmetic, Comput. Phys. Commun. 247 (2020) 106877 [arXiv:1901.07808] [INSPIRE].

[51] C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with
CANONICA, Comput. Phys. Commun. 222 (2018) 295 [arXiv:1705.06252] [INSPIRE].

[52] D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput.
Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

[53] A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals
in massless QCD, Nucl. Phys. B 682 (2004) 265 [hep-ph/0311276] [INSPIRE].

[54] V. Magerya and A. Pikelner, Cutting massless four-loop propagators, JHEP 12 (2019) 026
[arXiv:1910.07522] [INSPIRE].

[55] M. Ritzmann and W.J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90 (2014)
054029 [arXiv:1407.3272] [INSPIRE].

[56] J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton
scattering amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].

[57] S. Catani and M. Grazzini, Collinear factorization and splitting functions for
next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143
[hep-ph/9810389] [INSPIRE].

[58] Z. Bern, V. Del Duca and C.R. Schmidt, The Infrared behavior of one loop gluon amplitudes
at next-to-next-to-leading order, Phys. Lett. B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].

– 44 –

https://doi.org/10.1016/j.physletb.2007.10.069
https://arxiv.org/abs/0709.3899
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.3899
https://doi.org/10.1016/j.nuclphysb.2011.08.028
https://arxiv.org/abs/1107.2263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.2263
https://doi.org/10.1103/PhysRevD.19.2018
https://doi.org/10.1103/PhysRevD.19.2018
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD19%2C2018%22
https://doi.org/10.1016/0370-2693(82)90275-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2C119B%2C193%22
https://doi.org/10.1007/JHEP02(2021)210
https://arxiv.org/abs/2012.14188
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.14188
https://doi.org/10.1016/S0550-3213(02)00837-4
https://arxiv.org/abs/hep-ph/0207004
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0207004
https://doi.org/10.1063/1.1703676
https://doi.org/10.1063/1.1703676
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C1%2C429%22
https://arxiv.org/abs/1212.2685
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.2685
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.1145
https://doi.org/10.1016/j.cpc.2019.106877
https://arxiv.org/abs/1901.07808
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.07808
https://doi.org/10.1016/j.cpc.2017.09.014
https://arxiv.org/abs/1705.06252
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.06252
https://doi.org/10.1016/j.cpc.2005.10.008
https://doi.org/10.1016/j.cpc.2005.10.008
https://arxiv.org/abs/hep-ph/0507152
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0507152
https://doi.org/10.1016/j.nuclphysb.2004.01.023
https://arxiv.org/abs/hep-ph/0311276
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0311276
https://doi.org/10.1007/JHEP12(2019)026
https://arxiv.org/abs/1910.07522
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.07522
https://doi.org/10.1103/PhysRevD.90.054029
https://doi.org/10.1103/PhysRevD.90.054029
https://arxiv.org/abs/1407.3272
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.3272
https://doi.org/10.1016/S0550-3213(98)00295-8
https://arxiv.org/abs/hep-ph/9710255
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9710255
https://doi.org/10.1016/S0370-2693(98)01513-5
https://arxiv.org/abs/hep-ph/9810389
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9810389
https://doi.org/10.1016/S0370-2693(98)01495-6
https://arxiv.org/abs/hep-ph/9810409
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9810409


J
H
E
P
0
6
(
2
0
2
2
)
1
3
9

[59] Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop
QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001
[hep-ph/9903516] [INSPIRE].

[60] G.F.R. Sborlini, D. de Florian and G. Rodrigo, Double collinear splitting amplitudes at
next-to-leading order, JHEP 01 (2014) 018 [arXiv:1310.6841] [INSPIRE].

[61] D.A. Kosower and P. Uwer, Evolution kernels from splitting amplitudes, Nucl. Phys. B 674
(2003) 365 [hep-ph/0307031] [INSPIRE].

[62] T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett. B 695 (2011)
252 [arXiv:1008.1936] [INSPIRE].

[63] V. Del Duca, C. Duhr, R. Haindl, A. Lazopoulos and M. Michel, Tree-level splitting
amplitudes for a quark into four collinear partons, JHEP 02 (2020) 189 [arXiv:1912.06425]
[INSPIRE].

[64] V. Del Duca, C. Duhr, R. Haindl, A. Lazopoulos and M. Michel, Tree-level splitting
amplitudes for a gluon into four collinear partons, JHEP 10 (2020) 093 [arXiv:2007.05345]
[INSPIRE].

[65] P.T. Komiske, I. Moult, J. Thaler and H.X. Zhu, Analyzing N-point Energy Correlators
Inside Jets with CMS Open Data, arXiv:2201.07800 [INSPIRE].

[66] H. Chen, I. Moult, J. Thaler and H.X. Zhu, Non-Gaussianities in Collider Energy Flux,
arXiv:2205.02857 [INSPIRE].

[67] K. Lee, B. Meçaj and I. Moult, Conformal Colliders Meet the LHC, arXiv:2205.03414
[INSPIRE].

[68] J. Holguin, I. Moult, A. Pathak and M. Procura, A New Paradigm for Precision Top
Physics: Weighing the Top with Energy Correlators, arXiv:2201.08393 [INSPIRE].

[69] Y.-T. Chien, R. Rahn, S. Schrijnder van Velzen, D.Y. Shao, W.J. Waalewijn and B. Wu,
Recoil-free azimuthal angle for precision boson-jet correlation, Phys. Lett. B 815 (2021)
136124 [arXiv:2005.12279] [INSPIRE].

[70] A. Gehrmann-De Ridder and E.W.N. Glover, A Complete O (alpha αs) calculation of the
photon + 1 jet rate in e+e− annihilation, Nucl. Phys. B 517 (1998) 269 [hep-ph/9707224]
[INSPIRE].

[71] A. Mitov and S.-O. Moch, QCD Corrections to Semi-Inclusive Hadron Production in
Electron-Positron Annihilation at Two Loops, Nucl. Phys. B 751 (2006) 18
[hep-ph/0604160] [INSPIRE].

[72] O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low Function of QCD in
the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].

[73] S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous
dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].

– 45 –

https://doi.org/10.1103/PhysRevD.60.116001
https://arxiv.org/abs/hep-ph/9903516
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9903516
https://doi.org/10.1007/JHEP01(2014)018
https://arxiv.org/abs/1310.6841
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.6841
https://doi.org/10.1016/j.nuclphysb.2003.09.044
https://doi.org/10.1016/j.nuclphysb.2003.09.044
https://arxiv.org/abs/hep-ph/0307031
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0307031
https://doi.org/10.1016/j.physletb.2010.11.036
https://doi.org/10.1016/j.physletb.2010.11.036
https://arxiv.org/abs/1008.1936
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.1936
https://doi.org/10.1007/JHEP02(2020)189
https://arxiv.org/abs/1912.06425
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.06425
https://doi.org/10.1007/JHEP10(2020)093
https://arxiv.org/abs/2007.05345
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.05345
https://arxiv.org/abs/2201.07800
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.07800
https://arxiv.org/abs/2205.02857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2205.02857
https://arxiv.org/abs/2205.03414
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2205.03414
https://arxiv.org/abs/2201.08393
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.08393
https://doi.org/10.1016/j.physletb.2021.136124
https://doi.org/10.1016/j.physletb.2021.136124
https://arxiv.org/abs/2005.12279
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12279
https://doi.org/10.1016/S0550-3213(97)00818-3
https://arxiv.org/abs/hep-ph/9707224
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9707224
https://doi.org/10.1016/j.nuclphysb.2006.05.018
https://arxiv.org/abs/hep-ph/0604160
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0604160
https://doi.org/10.1016/0370-2693(80)90358-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB93%2C429%22
https://doi.org/10.1016/0370-2693(93)91441-O
https://arxiv.org/abs/hep-ph/9302208
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9302208

	Introduction
	Energy flow on tracks and track function moments
	Track function moments and their renormalization group evolution
	Definition and sum rules
	Comparison to fragmentation functions
	Renormalization group evolution and shift symmetries
	Constraints from shift symmetry: pure Yang-Mills theory
	Constraints from shift symmetry: multi-flavor

	Track function moments at NLO
	Calculational technique
	Using projected energy correlators
	Using splitting functions

	Results

	Numerical studies of track function evolution
	The size of Delta in QCD and extension to NNLO
	Non-linearities in the fourth and fifth moments

	Conclusions
	Splitting function calculation for pure Yang-Mills
	Moments of timelike splitting functions

